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Abstract

This report gives a review of the various types of unsteady flow phenomena that occur within

a turbomachine and examines existing methods for computing several of these flows. Then,

we discuss a method for applying two-dimensional, unsteady, thin airfoil theory in a stripwise

manner to compute the unsteady forces and moments on the shaft of a rotor operating within

a nonuniform inflow. Techniques for computing these unsteady forces and moments on a rotor

blade row with rake and skew are included.
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Nomenclature

an Fourier coefficients of the cosine terms

ao Fourier cosine amplitude of the zeroth harmonic

bn Fourier coefficients of the sine terms

B number of rotor blades

c rotor blade chord length

C Theodorsen Function

CL steady lift coefficient

dC,.
d slope of lift line

F force on the rotor blade per unit span

F! maximum camber function

F. angle of attack function

.i eT

Jo Bessel Function of the first kind of order zero

Ji Bessel Function of the first kind of order one

k blade rate harmonic

e rotor blade index

L lift force on the rotor blade per unit span

m meridional direction

A! moment on the rotor blade per unit span

n inflow harmonic

r radius from the centerline of the turbomachine (radial direction)

s rotor blade spacing
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t time I
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v distortion velocity normal to the relative velocity (W) (transverse gust)

V absolute velocity i
V. freestream or advance velocity I
W velocity relative to the rotor blade

X horizontal coordinate direction 3
Xb coordinate direction parallel to the relative velocity (W)

y vertical coordinate direction 5
Yb coordinate direction normal to the relative velocity (W) I
YM maximum camber of the blade

Y. Bessel Function of the second kind of order zero

Y, Bessel Function of the second kind of order one

z axial coordinate direction 3
Zr axial displacement of rotor blade section (rake)

a angle of attack on rotor blade i
aeff effective anlge of attack on rotor blade 3
0absolute flow angle

ly stagger angle of the rotor blade i

6," distortion amplitude variation factor

0 angular coordinate direction

P streamline inclination angle = tan-, ('Vi./V,)

V9 angular frequency of the nih harmouiic

p fluid density I
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distortion phase angle

unsteady lift phase angle on reference blade

angular displacement of rotor blade section (skew)

W reduced frequency

Qangular frequency of a rotor blade section

Subscripts

H radial hub

m meridional direction

mc midchord

n inflow harmonic order

= kB, multiples of the number of rotor blades

= kB ± 1, adjacent to the multiples of the number of rotor blades

r radial direction

T radial tip

X horizontal coordinate direction

y vertical coordinate direction

Xbo located at position Xbo along the chord

Ybo located at position Ybo along the chord

z axial coordinate direction

0 angular coordinate direction
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Introduction

For many years, engineers have designed and analyzed turbomachines using one major as-

sumption. They have assumed the flow to be steady. However, as we strive to design even better

turbomachines, we must begin to focus on the complexities of unsteady flow. For various types

of turbomachinery, unsteady flow can affect energy transfer, blade vibration, noise generation,

heat transfer, and cavitation characteristics.

Before we discuss the unsteady flow considerations in turbomachinery design, we will briefly

review the various types of unsteady flows in turbomachines. Given some knowledge of the

physical phenomena involved, we shall examine several available methods for calculating unsteady

forces and moments and how these methods can be applied to turbomachinery blading. We

shall discuss the advantages and disadvantages of all these methods as well as point out the

approximations needed in the development of these methods. Finally, we show how we can

adapt these methods to turbomachinery.
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Unsteady Flows in Turbomachines

Before we include unsteady effects in our design process, we must begin to understand the

physics of these various unsteady effects and the relationship between these various effects. Dean

[19591 showed that the flow through a turbomachine had to be unsteady. His "unsteady paradox"

states that local unsteady changes in static pressure must exist within a turbomachine in order for

that machine to exchange energy with the fluid. If this turbomachine includes only a single blade

row with a uniform inflow, we can consider the problem to be steady by writing our governing

equations in a coordinate system rotating with the blades. When a row of rotating blades

operates with a circumferentially varying inflow, or if it operates in the vicinity of stationary

blades, struts, or other appendages-the flow is unsteady, despite the frame of reference we use.

When we discuss unsteady flow in turbomachinery, we usually refer to periodic unsteadiness.

We must also remember that a random or aperiodic unsteadiness exists because of turbulence.

Turbulence also has strong effects on energy and heat transfer and it also includes important

random pressure fluctuations. Our concern with turbulence will be in how turbulence interacts

with periodic unsteadiness.

Let us now discuss why an inherent periodic unsteadiness exists within a turbomachine.

Blades moving relative to one another can operate within a periodically varying potential flow

field. For incompressible flows, we can normally neglect this periodic potential interaction when

a blade row is displaced at least one chord length upstream or downstream of neighboring rows

of blades or appendages. For compressible flows, the influence of the periodic potential field

extends much farther axially as the Mach number increases.

Because of the fairly large axial blade gaps in most turbomachines, the periodic potential

interactions are usually dominated by other types of periodic unsteadiness. Most importantly,
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a blade row interacts with the wakes shed from an upstream row of blades or appendages that I
have relative motion. These wakes are convected downstream, chopped by the downstream

blade row, and transported through the downstream blade passages. As seen in Figure 1, the

periodically passing wakes cause a periodically varying incidence angle on the downstream blades.

This unsteady incidence results in a periodically varying blade static-pressure distribution and

thus a periodically varying lift. In addition, the behavior of the chopped wake segment as it I
is transported through the blade passage is quite interesting. For instance, we can see from I

Figure 2 that the highly turbulent fluid in the wake segment moves from the suction surface of a

compressor blade and impinges on the pressure surface as the wake segment moves downstream. 3
This action results in local pressure fluctuations due to the passing wake segment. Meyer [1958]

made the first theory of this wake interaction effect while Kerrebrock and Mikolajczak [19701 5
proved it experimentally. For a turbine blade passage, the wake fluid moves from the pressure 3
surface to the suction surface. Other researchers have further extended our knowledge of wake

interaction effects. 5
Periodic wake interactions have many influences that can affect a turbomachine design. The

periodically varying blade static-pressure distribution can cause a forced vibration. Unsteady 1
forces and moments affect the blades and whatever is attached to the blades such as the rotor I
shaft or the stationary hub and casing. These unsteady forces can cause vibration at the frequency

of unsteadiness-namely the blade rate frequency and its harmonics. Periodic wake interactions 3
also cause the boundary layers near the blade surface to be unsteady. Varying the blade static-

pressure distribution changes the local strearnwise pressure gradients which in turn changes

the boundary layer characteristics. In addition, the effects of the transported wake segments I
can have strong local effects on the boundary layer. Evans [19781, Walker [19821, and Hodson

11983] all made measurements within turbomachines that show some boundary layers alternating 1
between laminar and turbulent because of the unsteady flow. Periodic unsteadiness can also affect

separation. These unsteady boundary layers, along with the complexities of the wake 111 eractions, 5
I
I
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strongly affect the energy transfer within the machine. In addition, the changing character of

the boundary layers affects the turbulence and thus the random pressure fluctuations. Finally, if

the pressure fluctuations become large enough, cavitation can occur in machines operating with

liquid as the working fluid-as shown by the unsteady cavitation experiment of Yeh and Eisenhuth

[19591.

A few other characteristics of periodic wake interactions should be noted. First, time or

phase lags always appear. As the incidence angle changes, the static pressure near the leading

edge of the blade changes much sooner than the static pressure near the trailing edge. In fact,

experiments have shown that the amplitude of the periodically changing pressure is much larger

near the leading edge than near the trailing edge. The effect of the varying incidence appears

to decay as one approaches the trailing edge. In addition, the characteristics of the unsteady

boundary layers can also lag behind the change in the local velocity and static-pressure gradient.

We should also take note of a second important factor. The flow within the wakes and wake

segments can also be unsteady. We have all seen measurements that make us think of a wake

as merely a region of velocity defect. However, these measurements are probably time-averagc

measurements. In fact, real turbomachine wakes can be made of periodically unsteady vortex

streets such as those we normally identify with the wakes behind blunt bodies. This wake

unsteadiness includes time varying pressures which can influence the unsteady wake interactions.

In addition to the periodically unsteady potential and wake interactions, we can encounter

other kinds of periodically unsteady flows. Blades may also periodically interact with shock

waves, end-wall boundary layers, tip vorticies, and other secondary flow vorticies. The three-

dimensional nature of these types of flow can create significant circumferential variations in

velocity and static pressure which interact unsteadily with downstream blades.

We have only discussed uasteady flows that are inherently found in turbomachine flows.

Since these flows will always exist, we must learn their effects and use this knowledge to design

better turbomachines. Other types of unsteady flows can occur, however, which we must try to
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avoid. Thes- unsteady flows are instabilities which may cause large resonant stresses in blades U
and drastic reductions in machine performance.

As blades vibrate, the mechanical surfaces exchange energy with the fluid passing through

the blade passage. If the fluid extracts energy from the blade, the surface oscillations will be I
aerodynamically dampened. However, if the fluid increases the energy of the oscillating blades, 3
the blades will become vibrationally unstable. We call this instability flutter. Flutter exists

because the unsteady work on the blades exceeds the work dissipated by friction and material 3
damping. Normally, flutter occurs when the blade boundary layer separates. But flutter can

also occur when the blade boundary layers are attached-especially at near-choke conditions. 3
Compressibility strongly increases the chances of developing flutter.

Large inlet flow distortions can cause a blade to stall in a turbomachine in a similar manner

in which an isolated blade may stall. In both cases, the potential flow around the blade will

change. In a turbomachine, however, the new potential flow will decrease the incidence of one

neighboring blade and will increase the incidence of the other adjacent blade, causing this blade

to stall. A stall zone of one or more blade passages will then propagate circumferentially around

the annulus of blades. We call this flow instability rotating stah and it leads to a large pressure

drop across the blade passage. Hysteresis effects cause the recovery from rotating stall to be

very difficult. For machines where the working fluid is liquid, inlet flow distortions and the

corresponding changes in incidence angle can lead to cavitation. Some machines have shown an 3
instability similar to rotating st dl called rotating cavitation. I

Rotating stall is one factor that can lead to a global instability within a compressor called

surge. Surge occurs when the throttle pressure-loss characteristic curve has a smaller slope than 3
the constant-speed compressor characteristic curve at the point of operation. A reduction in

flow would then cause a greater reduction in compressor pressure rise than the corresponding I
pressure drop through the throttling system. As a result, the annulus mass flow oscillates with

large changes in amplitude at low frequencies.

I
I
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Reduced Frequency

Periodic unsteady flow can have strong effects on a turbomachine, but the strength of these

effects varies with the level of unsteadiness. Therefore, we need some parameter that represents

the level of unsteadiness.

The level of unsteadiness depends on two time scales. First, the time scale associated with

the angular frequency of the unsteady motion relative to the rotating blades is J - For this

case, our interest is in the n Ih harmonic of the unsteady motion. Second, we need the time scale

associated with the time it takes a fluid particle to travel through the device. If this device is a

blade row, a fluid particle will travel through the blade passage in time w. The ratio of these

time scales then describes the change in local flow parameters while a fluid particle resides in a

blade passage. If we change the relevant length from c to 1, we refer to this ratio as the reduced

frequency,

Vnc
W = 2W

Sometimes c is used instead of L We could also think of the reduced frequency as a ratio of

length scales-the semi-chord divided by the wavelength of the n' h harmonic of the unsteady

motion.

For many unsteady flow problems, such as the periodic shedding of vorticies into a wake,

one refers to the reduced frequency as a Strouhal number (see Strouhal (1878]). For the prob-

lem of a shedding Karman vortex street, we might substitute the shedding frequency for v, and

the trailing edge diameter for a in defining a Strouhal number. For periodic interaction prob-
2

lems in turbomachinery, we use the reduced frequency where the disturbance is both moving

circumferentially relative to a blade row and is being convected downstream.
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For a reduced frequency much less than one, we refer to the unsteady flow as quasi-steady. 1

That is, the flow is only a function of the instantaneous conditions and not a function of pre-

vious conditions. For a reduced frequency greater than one, the limiting state of quasi-steady

flow would provide estimates of the unsteady flow that would be much too conservative. Most 1
turbomachinery flows are characterized by reduced frequencies of order unity or greater and we

cannot adequately describe these flows in a quasi-steady manner. In compressible flow, the level 1
of unsteadiness depends on the product of the reduced frequency and the Mach number.

In turbomachinery problems, we may require an additional nondimensional frequency param-

eter. Once again, we need the time scale associated with the angular frequency of the unsteady 1
motion relative to the rotating blades, . Next, we need the time scale associated with the

motion of the blades relative to the distortion, -L. Taking the ratio gives

We call this nondimensional parameter the inter-blade frequency or the inter-blade phase angle. I
This parameter accounts for the variation in unsteady interactions from blade to blade. Just as

we think of wn as a ratio of semi-chord to disturbance wavelength, we can think of r," as a ratio I
of blade spacing to disturbance wavelength. I

I
I
I
I
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Unsteady Singularity Solutions

Several different types of methods exist for computing the unsteady forces and moments on

a turbomachine blade. As we have already discussed, we can use quasi-steady methods for flows

with a reduced frequency much less than one. We assume that the blades operate continually

at the instantaneous flow conditions. Then we can calculate the unsteady forces by actually

calculating the steady forces at each instant of time. An example is a quasi-steady actuator

disc analysis. One of the oldest methods for computing unsteady forces and moments involves

the modeling of the blades with singularities and letting the singularities induce a potential

flow around the blade. Another method involves the treatment of the blades as boundaries and

modeling the flow with the governing partial differential equations of fluid mechanics. These

partial differential equations are further approximated and solved numerically.

Interest in the use of singularity solutions for unsteady flow problems began in the 1930's.

Theodorsen [1935] derived the exact solution for a flat plate in sinusoidally oscillatory motion.

Von Karman and Sears [1938] used the ideas of Theodorsen [1935] for their unsteady thin airfoil

theory and finally Sears [1941] expanded these ideas to derive his unsteady lift function. The

unsteady thin airfoil theory of Sears [1941] has many similarities with steady thin airfoil theory

for incompressible flow. Sears 11941] represented an airfoil as a fiat plate of zero thickness and

modeled the airfoil with a continuous vortex distribution along its chord. Each vortex induces a

potential flow at every point in the flow field which we can superimpose upon the potential flow

from the steady inflow. Unfortunately, the system of equations is not closed since the downstream

conditions remain unknown. We can complete the solution and find a unique lift by applying

the Kutta condition; no velocity discontinuity can exist at the trailing edge. Now we adjust the

strength of the vortex distribution such that no fluid flows through the airfoil giving the airfoil
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a unique bound vorticity and lift. For his unsteady problem, Sears [19411 treated the inflow 1
as a gust being convected with a velocity, W. Figure 3 shows this gust which we assume as a 3
harmonic function in time. Sears [19411 assumed that the amplitude of the disturbance velocity

normal to the chord ,, is small compared to f. I
Sears [19411 found it necessary to expand on the Kutta condition when applying it to un-

steady flow. Since the inflow varies in time, the strength of the vortex distribution necessary to

satisfy the blade boundary condition will also vary with time; this then causes the lift to vary f
with time. Thus, a trailing vorticity must be shed into the wake. The trailing vorticity affects

the flow throughout the flow field which means that the flow field depends on the history of the I
periodically unsteady flow. Sears 11941] modeled the trailing vorticity with a vortex distribution

being convected away from the airfoil in the direction of the chord with a velocity, W.

Sears [19411 developed an equation for the unsteady lift per unit span, L,,, for a transverse 5
disturbance velocity, Vi, and a reduced frequency, Wn,

IdCL -
L.(t) = L--pcW-- , S(w.)

where 

I

S(wn) = C(wn)[Jo(Wn) - iJ(Wn)] + iJI(wn) 5
is called the Sears Function. Theodorsen [1935] developed

Ow)= Ji(Wn) - iY1 (Wn)
C(w) =[Ji(wn) - iY(wn)] + i[Jo(wn) - iYo(wn)] I

which we call the Theodorsen Function. We calculate unsteady lift functions of this kind from

Bessel functions using the appropriate reduced frequency. We should note that several of the 3
singularity techniques under discussion were developed for isolated, thin airfoils with infinite

span where the theoretical value of ._. equals 27r. Since we are concerned with nonisolated I
turbomachinery blades with finite span and thickness, we will let d C remain a variable. Osborne g

I
U
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[1973] made a further modification. He developed an unsteady thin airfoil theory for transverse

gusts that includes compressibility effects.

Since the inflow gust varies harmonically in time, all the time varying quantities will be

harmonic functions which we associate with an amplitude and a phase angle. We can then plot

the Sears Function on the complex plane as done in Figure 4. For a very small wn, S(wn) lies

near the real axis giving a small phase angle and showing why a quasi-steady approach works.

For increasing w, the entire airfoil cannot respond immediately to a changing incidence which

results in a significant phase angle.

Horlock 11968a] extended the unsteady thin airfoil theory to include a steady angle of attack

and thus a chordwise gust, ii,

2 dCL r

where

T,(u) = Jo(w,) + iJl(w,,) + S(w,,)

is termed the Horlock Function. Holmes (see Horlock [1968b]) and Naumann and Yeh [1973]

further extended the unsteady thin airfoil theory to include camber,

I dCLc-[2y n ]
,,-(t) = --- w jS(w,) + ail,,F(w.) + 2 , Fl(w")

where

F. = Jo(wu) + iJI(w,)

and

Ff = 3J(wn) + Jo(w,,) + C(w.)[Jo(W-) - J 2 (wn) - i2Jj(wn)]

They obtained this equation by placing the vortex distribution on the camber line, but with

a small value of camber such that the blade boundary condition could be satisfied along the

chord line. We should note that these new unsteady lift functions are merely added to the Sears

Function. To obtain this result, we must assume small values of steady lift, steady angle of
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attack, and maximum camber. We also need to assume small values of Un and Vn as compared I
to W. These assumptions allow us to linearize the various potential flow equations and obtain 3
in as the summation of various functions.

Before we use these versions of the unsteady thin airfoil theory for turbomachinery problems, I
we must determine the correct reduced frequency associated with the various Bessel functions. I
For the case of a blade rotating through a nonuniform inflow, Figure 5 shows the nth harmonic

of an inflow distortion convected with an absolute flow angle /3. For # = 0, the distortion lies 5
in the circumferential direction and has a wavelength of (2"*). For a nonzero value of 3, the

wavelength becomes (2") sec(/O). However, we must model this distortion as a transverse gust 5
and a chordwise gust in order to apply unsteady thin airfoil theory.

As shown in Figure 5, we can decompose this distortion into two components-both perpen-

dicular and parallel to the blade chord. In order to determine the correct reduced frequency 5
associated with these two gusts, we first must compute the angular frequency,

vp 2 r hase velocityI
wavelength

The phase velocity for the transverse (or perpendicular) gust is the component of the relative i
velocity vector, W, in the chordwise direction. As mentioned earlier, the chorwise (or parallel) I
gust will only produce an unsteady lift if the blade experiences a steady angle of attack or if

the blade has camber. The phase velocity will be the component of W perpendicular to the

chord. When o is zero, this will give a phase velocity of zero and, therefore, values of zero for the

angular frequency, reduced frequency, and unsteady lift-which we know cannot be the case for a 5
cambered blade. To circumvent this problem, we can determine an effective angle of attack, aeff, 5
by adding the angle of zero lift to the angle of attack. The zero lift line can be approximated as

passing through the trailing edge and the camber line at midchord. Further, assuming that the 5
value of camber at midchord is yn yields

aeff = a + tan-1( -) • I
cI

U
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We can compute a wavelength for the transverse gust of (2_) csc(y) and the chordwise gust

of (2"-) sec(7). From this information, we can now find the angular frequency of the unsteady

transverse gust relative to the rotating blade,

, = 2 7rW C cs(.y)J n sin(-v) cos(a ef)

and a reduced freqency,

=, () sin(y) cos(cieff)

The angular frequency of the unsteady chordwise gust relative to the rotating blade is

V =2 7 [W sntvef)] (T W) cos(-y) sifl(aeff)

and the reduced freqency is

(c) cos(y) sin(aeff)

In evaluating the various lift functions, we need to use the appropriate reduced frequency corre-

sponding to either the transverse or chordwise gust.

Aside from the assumptions already stated, Horlock [1968a], Holmes (see Horlock [1968b]),

and Naumann and Yeh 119731 also assumed that the incoming gust would not change as it was

convected past the airfoil. Goldstein and Atassi [1976] allowed the gust to be distorted by the

steady-state potential flow field about the airfoil. This coupling effect led to a second-order

expansion for calculating the unsteady lift about the airfoil. Atassi [19841 expanded these ideas

to show that the resulting expressions for the unsteady lift still possess a linear character.

We have discussed several methods to model the unsteady wake interaction problem. By

treating the oncoming wakes as time-dependent gusts, these models attempt to model how the

oncoming wakes periodically change the incidence of an isolated airfoil. None of these models

accounts for the physics of the chopped wake segments within the blade passage. Meyer [1958]

and Lefcort [1965] attempted to model this behavior. They modeled the chopped wake segments

as jets sucking fluid from the suction surface of a compressor blade and impinging fluid on the
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pressure surface. They then calculated the unsteady static pressure on an isolated thin airfoil 1

in much the same manner as Sears [19411 except the modeled wake segments gave large local 3
variations in static pressure. The contribution of Lefcort [1965] allowed for a more realistic wake

width in the model. 3
So far, we have only discussed the use of unsteady thin airfoil theory to model the unsteady

wake interaction problem. Kemp and Sears [1953] and more recently Lienhart [1974] have used

unsteady thin airfoil theory to model the unsteady potential flow interaction as well. Kemp 1
and Sears [1953] attempted to solve the unsteady interaction problem of a row of stator blades

followed by a row of rotor blades. To avoid a very complex mathematical problem, they made 3
several assumptions. The unsteady lift of a single stator depended only on the relative motion

between that blade and the steady potential flow fields of the rotor blades. The unsteady lift of I
a single rotor blade depended on two things. First, the unsteady lift depended on the relative 1
motion between that blade and the steady potential flow fields of the stator blades. Also, the

unsteady lift on each rotor blade was computed using the upstream stator blade wakes with a 3
theory similar to that of Sears (1941].

Kemp and Sears 11953] developed the first singularity technique for use with multiple blades. 1
However, when calculating the unsteady lift of a particular blade, they neglected the unsteady

effects from all other blades. As the solidity of a blade row increases, the neighboring blades have

a stronger influence on the unsteady lift of the reference blade. We can make a slightly better 3
assumption of the unsteady lift by using the method of Weinig (1935]. He computed the values

of steady lift in cascades of various solidities and stagger angles which allows us to change the 1

value of dc- (a quasi-steady correction). This method does break down for high stagger angles,

however.

Some researchers have developed unsteady cascade analyses using unsteady thin airfoil the- 3
ory. Whitehead [1960] modeled all of the blades with a finite number of vorticies (usually eight)

and all of the trailing vortices with a continuous vortex distribution. Fleeter [1973] updated this

U
3
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method to include the effects of compressibility. Whitehead [1960] also considered the vibrational

response of each blade to the unsteady lift and Smith (19711 used this with some compressibility

effects to determine the resulting acoustic field. For unsteady cascade analyses, we need the

inter-blade frequency,

-r,=

The strength of the bound and trailing vorticity from all blades must be summed and this

sum must satisfy the unsteady blade boundary condition. In the development of his analysis,

Whitehead [1960] uses a summation method that excludes solutions when r. equals an integer

multiple of 21r. Therefore, his analysis does not solve cases where the number of cycles in the

distortion (the inflow harmonic) is a multiple of the number of blades. After some complex

integration, Whitehead 11960] computes an unsteady lift coefficient which we may use to replace

the Sears Function in the unsteady lift equation of Naumann and Yeh [1973].

Henderson [19721 also developed an unsteady cascade analysis. He modeled the reference

blade with a continuous vortex distribution and the other blades with a single vortex located

at the quarter chord. Like Whitehead [1960], Henderson [1972] also modeled the trailing vor-

tices with continuous vortex distributions. For turbomachinery problems, we should note that

modeling the trailing vorticity along the extended chord line can become a poor assumption. Un-

fortunately, Henderson 119721 could not determine an analytical solution for one of the integrals

in his analysis and therefore, he could not obtain a close-form solution.

Lienhart [1974] extended the potential interaction work of Kemp and Sears [19531 to include

some vortex representation of all the blades. Thus, when calculating the unsteady lift on a blade,

he included the unsteady effects due to all the other blades. However, he did not include unsteady

wake interaction. Of these cascade analyses, only Henderson [1972] includes the effects of camber

or steady angle of attack.

For us to apply the preceding singularity techniques to the turbomachinery problem, we must

calculate the unsteady lift at several blade sections in two-dimensional, independent strips. In a
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later section, we shall discuss the proper technique for summing unsteady forces and moments I
in a turbomachine using two-dimensional, unsteady strip theory. 3

Three-dimensional singularity techniques, although mathematically more complex, have also

been developed. Brown [1964] developed an unsteady lifting line technique. As with lifting line 3
methods for steady flow, a single vortex models each blade section and all of these vorticies

form a continuous radial vortex distribution. Again, the strength of this distribution changes in

time with the varying inflow resulting in shed vorticity downstream of the blade. Brown [1964] 1
uses corrections to account for the bound vortex on neighboring blades and both the radial

and streamwise trailing vorticity. For high reduced frequencies where the wavelength of the 1
disturbance is much smaller than the chord, we might suspect that modeling each blade section

with a single vortex will not give as enough resolution to properly calculate the unsteady lift. In I
order to somewhat alleviate this problem, we could model each blade section with several vorticies 3
and thus model each three-dimensional blade with several lifting lines. We call this technique an

unsteady lifting surface technique. Tsakonas, Jacobs, and Ali [1973], Kerwin and Lee [1978],and

Tsakonas, Jacobs, and Liao [1983] have developed such unsteady lifting surface techniques. The

latter two techniques consider moderately loaded blades where the discrete lifting lines lie on 1
the camber surface. Kerwin and Lee [1978] also include sources in their singularity technique to

account for blade thickness. The shed trailing vorticity travels on a helicoidal path downstream

and the various unsteady lifting surface techniques differ on how to model this complex, three- 3
dimensional phenomenon. 1

I
1
1
I
3
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Unsteady Computational Fluid Dynamics

Unsteady singularity techniques have several drawbacks. First, we cannot adequately model

many blades of interest in turbomachinery. Singularities cannot give us good surface definition

(unless someone develops a good unsteady, three-dimensional panel method) and most methods

limit the camber, thickness, and steady angle of attack. We also have difficulties modeling the

shed trailing vorticity, the chopped wake segment effects, and some three-dimensional effects.

Finally, since the singularities can only induce potential flow, we cannot extend these methods to

viscous flow. It seems that much of our future unsteady flow computations will lie in numerically

modeling the fluid flow instead of modeling the blades.

Several unsteady numerical methods have recently been developed. After much initial work

by several researchers, Hodson [1985] developed a numerical method to compute the wake-

generated unsteady flow around a rotating blade row. He modeled the two-dimensional, com-

pressible, Euler equations and solved them using an explicit finite volume approach. Figure 6

shows some typical results for a turbine rotor row. These results show much of the anticipated

physics of wake interactions. The unsteady static-pressure distribution may be numerically in-

tegrated to find the amplitude, phase angle, and location of the unsteady lilft. Koya and Kotake

119851 developed a similar method. They do everything the same as Hodson 11985] except that

they apply the method to the three-dimensional, compressible, Euler equations. They have also

attempted to apply the method to successive blade rows to obtain the unsteady potential flow

effects. However, since the method is inviscid, they cannot compute the wakes from the upstream

blade row that interact with the downstream blade row.

We still have many problems that hinder our use of unsteL ly computational fluid dynamics in

computing unsteady forces and moments in turbomachines. When applying Euhi solvers to the
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steady cascade problem, we use spatial periodicity in our boundary conditions. In the unsteady

cascade problem, we can either use time-dependent periodicity conditions or we must include 3
the number of blade passages over which the upstream flow pattern repeats. These alternatives

are either difficult to apply or very time consuming. Also, we must generate a suitable grid.

For the multiple blade row problem, the grids for each blade row must coincide at each time

step. Additionally, we might have a simple bookkeeping and computer storage problem since the 1
computations must include enough time steps to include the transient period and at least one 3
cycle of the periodic unsteady flow. Finally, no adequate computational methods exist yet for

the incompressible, unsteady flow problem. 3
Several methods exist for computing unsteady boundary layer flows. Most of these methods

simply use the unsteady, two-dimensional, boundary layer equations. A major problem occurs

when attempting to use these methods in turbomachinery problems since these boundary layers

have regions of laminar, transitional, turbulent, and separated flow. We find the biggest problem

in our selection of a turbulence model. Modeling Reynolds stresses is difficult enough in steady, 3
viscous flow. For unsteady flow, we can obtain Reynolds stresses due to periodic unsteadiness

as well as turbulent unsteadiness. Furthermore, our selection of empirical constants for these I
turbulence models becomes more difficult because of the interaction between the periodic and

turbulent unsteadiness. Besides, few if any good periodic unsteady experiments exist for the

selection of these constants. 3
I
I
3
U
U
3



18

Nonuniform Inflow

Before we compute the unsteady forces and moments within a turbomachine, we need to

establish the nonuniform flow upstream of the blade row of interest. We can compute the

nonuniform inflow by numerically solving the viscous flow around the blades creating the wakes,

or we can use some numerical method in conjunction with some empirical wake models. However,

in order to satisfactorily obtain the entire harmonic content of the nonuniform inflow, we may

need to measure the wakes experimentally. In any case, we must be aware that the flow field

experienced by a rotating blade row will be different than the flow field that e'ists with the

rotating blade row removed. Since the rotor blades accelerate the flow, the rotor blades will shift

the streamlines toward the roots of the rotor blades ;- -r to satisfy continuity.

If we intend to compute the urn. ady forces and moments with a singularity technique, we

need to simulate the nonuniio: m inflow as a convected gust. We can consider any nonuniform

inflow as a harmonic function in space. First, we decompose the nonuniform inflow into a

circumferential average velocity and a circumferentially varying velocity,

V(z, r, 0) = V(z, r) + V(z, r, 0)

We may describe this velocity by a Fourier series as

00

V(z,r,O) = -0 + 1 [a,, cos(nO) + bn sin(nO)]
2 n=1

where

an(z,r) = [ V cos(nO)dO

and

-(z, r) V sin(nO) dO
i1" _
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The term 2a represents the circumferential average velocity, V. We can now rewrite the distortion

velocity for the n' h harmonic as 3
V,,(z,r,O) = a, cos(nO) + b, sin(nO)

= IV.l(a./IV.I) cos(nO) + IV.l(b./IV.I) sin(nO) i
= IVnI cos(¢n) cos(nO) + jVi sin(O.) sin(nO)

= IV! cos(nO - 0,)

where I V represents the amplitude of the distortion velocity and 0, represents the phase angle. I
The phase angle represents the combination of cosine and sine waves that make up the nth 3
harmonic. We can define the amplitude and phase angle as

IVI(z,r) = Va/72 + b;

and i

0n(z,r) = tan-(bn/an) .

We define the phase angle as positive when measured in the direction opposite to blade rotation.

It is also important to know the 0 position where the measured phase angle was referenced. A i
typical reference position might be vertically up. We must also remember that all amplitudes g
and phase angles can vary radially and these variations can lead to changes in unsteady forces.

For simplicity, we will rewrite the distortion as an exponential, 5
V(z,r, 0) = IP le' - .- 5

In writing the distortion in this manner, we are only concerned with the real part of the expression.

I
i
U
3
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Unsteady Forces and Moments on a Rotating

Shaft

We will now focus on the calculation of unsteady forces and moments on a rotating shaft

caused by rotor blades interacting with a nonuniform inflow. In order to accomplish this cal-

culation, we will need to transfer the nonuniform inflow into a rotating coordinate system. For

the interaction of a stator blade row with upstream rotor wakes, the rotating rotor wakes can be

transferred into a stationary coordinate system. In either case, we need to adjust the distortion

velocity in order to apply a two-dimensional, unsteady thin airfoil theory to a blade.

The distortion velocity will depend on the meridional direction1 , m. The fluid flows merid-

ionally a distance m in time M-. In this time, the fluid also moves circumferentially a distance

rAO. Moving rzO takes time -. Since these two times must be equal, we obtain

Vr

AO= - .~
rVm

Thus, if swirl exists upstream of the rotating blades, the phase angle will vary meridionally:

-(zlr,0) = i '-

We can estimate the m dependence of IVnI with a factor e- 6- ' /V. 6,, is a factor, in units of

1/sec, that shows how the distortion amplitude changes as m increases. One example of how

IV,, can change meridionally is the diffusion of a wake due to viscosity. Thus

14(z,r, 0) e-,6 n"/V, me - -v

1 The meridional direction is defined by the direction of the vector sum of the axial and radial

mean velocities.
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Since most analytical techniques compute the unsteady lift on an isolated airfoil, or at least I
reference the computation to a particular blade, we shall include a shift in the 0 position due to 3
the rotor blade number, B,

V, (z, r, 0, t) eV Ie'le- "" e'F,,(+ + ) - - ,

In order to calculate the unsteady lift on a rotor blade, we must shift from the stationary 3
coordinate system that we have been using to a coordinate system rotating with the blades.

Using Figure 7, we see that we must transform from (z, r, 0) to (z', r', 0') by 3
0 = O' + VkM, - Qt

Z = Z + Z+ ,

and

r = r' . I

Onc is the skew angle of the blade midchord, Q is the angular velocity of the blades, and Zr-, is 1

the rake of the blade midchord. The reference point of Figure 7 could represent a radial stacking

line or a radial line defining the midchord rake and skew to be zero at the hub. We define the 3
skew angle as positive in the direction opposite to blade rotation and rake as positive in the same

direction as axial flow. Assuming that zr-, is in the meridional direction instead of the axial I
direction (since zr,,, is usually small), we can now write the distortion velocity in terms of the

rotating coordinate system

V I;(,r',',t,f) = IV+I6 "(m' +  ,

- - . + no.. - + nG' ' -#+Vno'

In order for us to view the problem as time increases, we can simply change the sign of all 3
the terms in the last exponential function. This will not change our results since we are only

concerned with the real part of the expression. This yields I/ (z', r',O0', t,) = n I 1-6-< ' +  z'-,)/V"

i t+ -, ,- ' -- ., - I
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We note here that the measured phase angle, 0,, causes a time lead and the skew angle causes

a time lag in the distortion relative to the case with no measured phase and no skew. The rake,

however, causes a time lead if V& is positive and a time lag if Ve is negative.

Many analytical methods for computing the unsteady lift use a coordinate system (x, &1, r')

attached to the rotor blade as seen in Figure 7. We can rotate our current coordinate system to

this rotating system using the following relations:

'= 4 cos('+) - Y'b sin(7 + a)

and

r'O' = x' sin(7 + a) + y' cos(" + a)

From the velocity diagram of Figure 7, we obtain

Ve + r'Q
sin(y + a) = 

and
Vm

cos(Y + o) =

and these equations yield

,., _ , (s-¢T + r')
w w

and

of 4(Va + r'Q) I Vm.
r'W r'W

From the velocity diagram of Figure 7, we get

V6
____ = tan(13).
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We can now rewrite the last two terms in the last exponential of the expression for the distortion I
velocity, 3

-nO' + rm'V n r( + r'r) n WVn +

r'Vm W

nz n y /b VV__. "r'V'Q)rf)
nf2x ni4 cVe (Va + r') +V

- II
W W

= ~V_~ V V 'm

=-'!U + V "
- nx' noiA [1 - tan() tan (-I+ c)

W W L tan (fl) + tan (y + a)

/' il) nfyb

We now obtain I
in(x',4b, r',t,e) = I,1 - 6 (m' + ,

, nnt - JL + 0.. - - + - + 3
e w

The calculations of the unsteady lift in the (x', y, r') coordinate system requires us to resolve 3
the distortion velocity into components in the z direction, ii, and the y4 direction, V. We can

compute these components as follows U
U (X4, yb, r', t, ) = Y. cos(f + y + a)

= 1/, cos(f) cos(-y + ot) - f/n sin(f) sin(-f + a )

and
Vn (x', y=, r', t, f) =-V sin( + y + a)

= -Vn sin(#) cos(y + a) - 1',, cos(aO) sin(-y + a) 3
= -Vm sin(7 + a) + Ve. cos(-y + a). I

3
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In this section, we will use the equation for the unsteady lift per unit span on an isolated

airfoil derived by Naumann and Yeh [1973],

L = 1 dCLpcw  [i S(w,) + ai,, F(wn) + 2Ym Ff (w,,)
=2 dot Fic)

The expressions for ii and jY were used in the derivation of this equation. The term involving Y,

dropped out since we are only interested in the effects on the blade surface where y6 = 0 in the

thin airfoil approximations. The term involving 4' became part of three larger expressions in

deriving the functions S, F, and Ff. These expressions were integrated from 4' - to x-

For the chord, we should estimate the projection of the chord in the meridional direction. This

allows us to use a two-dimensional method along a circumferential-mean streamsurface where

three-dimensional flow effects should be minimized. The values of 4.C-, c, W, a, and Ym are all

a function of the radius.

Before computing the total unsteady force components due to all blades, all radial sections,

and all inflow harmonics, we must decide where the unsteady lift acts on each blade section. In his

analysis, Sears [1941] calcutated that the unsteady lift would act at ' = - '. We must calculate

the unsteady lift at the location in which it acts in order to avoid calculating the corresponding

unsteady moments along the chord. For small values of a, the relationship between the midchord

skew and rake and the skew and rake at 4. is

tkn - r'b_. sin(y)

and

Zin P - X'. cos(y)

We can now rewrite the skew and rake terms of the distortion velocity exponential as

V8  nz Vg nxr1b Ve
-nbm, + nzr. z . --nV' + -- i sin(-y) + cos(y)

nflr V8
-n/ + r'V,

+ nzo - W 9

+ !2 sin(y) - =- Cos(7)W r'r2V?
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Using Figure 7 and the law of sines gives 

m

W - sin(1. -/3) _ cos(3)

r' i sin(13+y+a) sin(# + -y + a)

The unsteady thin airfoil theory that we use to compute the unsteady lift assumes a small value 5
of a. Using a small angle approximation gives

sin(3 + -y + a) - sin(D8 + y) = sin(#3) cos(7) + cos(3) sin(-y)

From the velocity diagram of Figure 7, we get N
= tan(D) U

V m

and finally 3
nlzrm,,V l , nzV 8

n10m, + 'Vm t -nO + r'V,e m
+ n fXb cos(/3) sin(7)

W sin(3) cos(y) + cos(p) sin(-y)

- sin(i)] cos(fl) cos(y)

cos -1 sin(D) cos(-y) + cos(3) sin(/)nzV + nmx
-nOb + + n z b .

r'Vm W

This equation yields two methods to compute the unsteady lift at the quarter chord. We can move I
the coordinate system from (x, 1b, r') to (4' - j, y,, r') and simply use the values of skew and

rake at this new location. Or we can compute the unsteady lift at midchord and then move the

location of the unsteady lift to the quarter chord by multiplying by e- 'nfc/ 4W . The dependence

of the location of the coordinate system in computing unsteady lift can be demonstrated by the

lift function developed by Brown 11964] as seen in Figure 8. For a particular reduced frequency, 3
the amplitude of unsteady lift does not change with coordinate system location. Only the phase

angle of the unsteady lift is affected. We can compute the change in unsteady lift by m

4nz'b. :-- =~ ei /W 3
m
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Since we must eventually sum the unsteady forces radially, we should compute the unsteady

lift at the location where the unsteady lift acts. This new rotating coordinate system is shown

in Figure 9 and the transformation from the stationary coordinate system to this new rotating

coordinate system would have used the skew and the rake at quacter chord instead of at midchord.

Therefore, to obtain the unsteady lift acting at quarter chord, we use the following expression

for the distortion velocity prior to using the equation for the unsteady lift:

~ ' ' t, li.l -d.m' + z,.)/Vm

dnflt - - + .-. - no + -. + k. l

After adjusting the measured inflow phase angle for skew and rake at quarter chord, we

compute an unsteady lift for each blade,

Ln(r',t,e) = J , ei( "n - AV + -P)

This unsteady lift acts in the positive y4 direction (see Figure 9). Now we can determine the

components of this unsteady lift in the z', r', and 0' directions as

F.;(r',t,e) = -L, sin(y +a) cos(p)

Fr, (r', t, t) = -L, sin(y + a) sin(p)

and

Fe.(', t,e) = Ln cos(-Y + a)

where

p =tan- (I)
p represents the inclination of the streamlines to the axial direction. To calculate the total

unsteady force acting on the shaft in the z' direction, we must move all of the F,- vectors to a

point on the shaft centerline. This involves summing the F,- vectors over all inflow harmonics,

all blades, and all radial sections,
rT B 00i 

na A

F,,(t) = - J : IIsin(-y + )cos/p)e'( o o ' - a + )
r'=rH t=1 n=l
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From the summation relationships of Gradshteyn and Ryzhik [19801, we can easily derive 2

S-in2t/B B kB

t=1 0 if n# kB

Using this relationship allows us to obtain 5
r
T

F2 ,(t) = -B '=ri: ILkBI sin(y + a) cos(p) ei(kBft + 'ZA;B)

t'=rH k=1

This force is the negative of the unsteady thrust on the shaft. The unsteady thrust occurs at 3
frequencies that are integer multiples of the blade passing frequency and can be computed from

the inflow harmonics corresponding to these frequencies. We denote the multiples of blade rate 3
harmonics with the subscript k.

We can also calculate the unsteady side forces on the shaft. The components of unsteady

force in the r' and 0' directions must be resolved into components of unsteady force in the x' 3
and y' directions. Using Figure 10, we calculate the total unsteady force in the x' direction,

rT B oo 
I 7

F,, (t) = ELZZ I sin(7+a) sin(p) cos - 2
r'=rH 1=1 n=1

,i(nnt - W + 0) 3
E EEt .ncCS-+ co B-

rI=rH 1=1 n=1

eint- sL + -. 5
S
U
U
I
U
I
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We can write the last cosine factor in each term as a sum of exponentials using Euler's Formula,

itT B co

1: E Z II sin(7+) sin(ju)
rH~r 1=1 ni=1

int- (n+l)Wi + -b+.&

+ 2 E Z Z njSin(-f+a)sin(pu)
r'=r H 1=1 tl=l

int- (n-1)2ff + ~ P+ Z]

- 2 E EIZcos(7y+a)
r'~rH t=1 0s=1

e i[nflt - (n+)Zy + 1b + ]

- 2 E EIZcos(Y+ai)

eint- (n-I)Wj + -P - P

The summation relation . -, of Gradshteyn and Ryzhik 119801 yield

Bei(n-+l) 2 vI/B -fB if (n 1) = B

1=1 ( 0 if (n 1) #kB

We can now write

F ~r(t =0 B [s&.in + a) si'p e-0/ 2 _cos(7y + C,

r'tHl k=1

e i[(kB-1)fli + O&B-1 + 'P]

B rT 0r
+ 2 1: 1: I~kB+1 I [sin(-y + ca) sin(p) .u/ 2 _ cos(7Y + a)

'r~f k=1

e ifkB+~nt+ Oka+1 - tP]

We can compute the total unsteady force in the y' direction in the same manner:

B T 00i/

FyI(t) = 2 E jL..-1 I [P sin(-y + a) sin(y) - cos(-y + a) e-w2
r'=rH k=1

e i[kB-)Ot+ 'IhB-I + 'P1

+ 2 1: E~B1 -sin(-y + ai) sin(p) - cos(-. + a
r,',H k=1

eilkB+~nt+ OZkER+l - 1
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In order to better compare PY, with P,, we can also write 29, as

Fv () = J~kB- I-.I [sin(-y + a) sin(p) T co-0T/2 _ Cos(_Y + a,)]
rl=rH k=1

i[(kB-I)nt + -DkB-i + 'k - 3
+ B E E IZILB+I I [sin(7 + a) sin(p) e r 2 - cos (Y + a)]

r=rH k=1 3
ei[(kB+l)nt + OkB+1 - ' +

In the rotating coordinate system, the unsteady side forces occur at frequencies adjacent to the 3
integer multiples of blade passing frequency and are computed from inflow harmonics correspond-

ing to these frequencies. A 90 degree phase shift exists between the portions of unsteady side 3
force in the x' and y directions that occur at each of the adjacent frequencies.

The unsteady forces on the blades also create unsteady moments at the point on the shaft

centerline where we computed the unsteady forces. Vectorially, we can compute the unsteady 3
moment at this point by

M(r', t'e)= (r + x

The components of this unsteady moment in the z', r', and 0' directions are I
M.2,,(r,W,) = 1 ') 9 - 3

= r'LZ cos(y +a)

Mr,(r',te) = -zrF'

= andzrL cos(7 + a),

and

Mo. (r',t,t) = -r'Fz. + zrFr' I

= r'Z L sin(y + a) cos(p) - zZ, sin(y + a) sin(p)

We can compute the components of the total unsteady moment in the z', x', and y direction in 3
the same manner as the unsteady force components:

rT 00 3M,,(t) = B E ZI-kBlr' cos(-y+a)e(kBt+
rl=rff k=1

I
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-( t = B " c c[
" E ( r ITB-1 PIr cos(-y +a) - / 2 e - r' sin(y +a) cos(p)

r'=rHf k=1

+ zr sin(y + or) sin(p)] ei[(kBl)nt + 4
'kB-I + 0]

B rT 00 [ .+ 2 Z E _ ILkB+I I [z, cos(y + a) e''/2 - r' sin(y + a) cos(p)
r =rH k=1

+ Zr sin(7 + a) sin(p)] ei [(k B+ l )flt + 44B+1 - ']

and B rT C

2" JZkB-11I[z, Cos(Y + a) e -
i/2 - r' sin(y + a) cos(p)

r'=rH k=1

+ Zr sin(7 + a) sin(p)] ei[(kB- )lb + 2B-1 + ' -

B TT a0) cos/p
+- E JZlkB+I Hz os(y + a) e#/ 2 - r' sin(y +la) cos(p)

r':rH k=1

+Zr sin(- + a) sin(p)] ei[(k B+1) t + 2&n+x - 'P +

The unsteady torque, -M,, occurs at integer multiples of the blade passing frequency while

the unsteady bending moments occur at the frequencies adjacent to the integer multiples of the

blade passing frequency.

We have now computed the various components of unsteady force and unsteady moment on

the rotor shaft for a coordinate system rotating with the shaft. Next, we need to transform these

forces and moments to a stationary coordinate system as shown in Figure 11. The z components

of the unsteady force and moment are exactly the same as the z' components:

r T  00(cft+ 
k B

F(t) = -B 1 1 IZ,,i sin("y + a) cos(p) ei(kBf'  + 4'B)

rmrH k=1

and
rT o

, = B E ZLI-SIr cos("y+ae l t + a) )
rr-- k=1

Using Figure 12, we can write the relation hetwoen the two coordinate systems as

= x' cos(-Qt) + y' sin(-Qt)

and

y = -z' sin(-flt) + y' cos(-flt)



The transformations for unsteady side forces are 
3

F.,(t) =F.,, cos(-Q2i) + P. o (-Qt - )

an= F,, cos(Ot) + -PCo Q +

and3
F11 ~ Ty(t) Cos-i~ e(~t+~ -Q -,e' + P + os '( + Q ""

We can chnow compue theansmteady hoizontals foceing thesinr oora tesstm

{2 + P) in e- ~ ' 2 o~ )]ekBl

Py~ ~ Px sin( + a) -inP), eW/ - cos + + a) eint +P.2)flSO

I Isin(-r + a) sin() eTv/2 _ cos(y + a)] ekBfZ?

" [-sin(- + a) sin(p) e-iv/ 2 + COS(y + a)] e(kB2)ft}

" [sin(-y + a) sin(p) ehi/ 2 _ COS(-Y + a)] eikBltI

+ [- sin(-y +. a) sin(p) e-i,/2 + cos(y + a)] ei(kB+2)lt

+ sin(y + ) sin(p) eiw/ 2 _ cos-y + a)] e kBfl)t}

" [sin(-y + a) in) e / O(Y+f]ek

" sn~ +a)si~p eir2 cs(y a Ie ~k+I0

" [in-y+ ) inp)e" 1 _CO(- +ot] iIn
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This expression simplifies to

F(t) = 1 :T IkB1 [sin(7 + a) sin(p) e-i /2  cos(Y + a)]
r=rH k=1

ei(kBnt + 4
'kB- + 0)

+ E I [sin('I + a) sin(p) e/ 2  cos( + a)]
r-rH k=1

ei(kBMl + vZkJ3+1-

We can formulate the expressions for FY, -w, and y in the same manner:

F (t) = SB Z- . ILkB-lI "  o[sin(-+ a) sin(p)e - 'w/2 - cos(')+ a)]

B I; 2 ILk+ [sin(y + a) sin(p)e - cos(7 + a)]

r=rH k=1
e i(kBflt + tkBi-1 + +

-B rT O0M+(t) 2 5 :L -1 Z os+ + )e' ' /2 - sin(+y + a) os(s)

r=rjj k=1

+ Zr sin(7 + a) sin()] ei(kB t + XB2 + k)

B rT 0[
+ 2 E E I I [Zr Cos(- + a) esT/ 2 - r sin(y + a) cos(p)

rrH k1

+ z,. sin(7I + a) sin(p)] e (kB fn t + tia-I+' - ),

+ z, sin (-y + a) sin~p)] e i~kBflt + 4
'kB+l - 4)

and

B rT0 i/My(t) = - Z ILB.-1I [Zr cos(-y +,a) / - r sin(- + a) cos(p)
r=rH k=l

+ Zr sin(y + a) sin(p)] ei(
k vn t + t -hB + 0 - f)

B r7 '0 r/+ 2 E IL s+II [Z Cos(Y + a) ei/2 - r sin(- + ae) cos(p)
r=rH k=1

+ Zr sin(-y + a) sin(p)] et(kBnt + ,kB+ - + )

The unsteady side forces and bending moments are exactly the same in the rotating and station-

ary coord:nate systems except that they occur at frequencies adjacent to the integer multiples of

blade passing frequency in the rotating coordinate system and they occur at the integer multiples

of blade passing frequency in the stationary coordinate system.
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Conclusions

We have presented a method for computing the unsteady forces and moments on the shaft of

a rotor blade row operating within a nonuniform inflow. The method uses a Fourier analysis and

several coordinate transformations to develop equations for all six components of unsteady forces

and moments-in both a stationary coordinate system and a coordinate system rotating with the

rotor shaft. This strip theory does incorporate the rake and skew of the rotor blades. In the

stationary coordinate system, all of the components of the unsteady forces and moments occur at

integer multiples of the blade passing frequency. The unsteady thrust and torque are computed

from the inflow harmonics corresponding to these frequencies while the unsteady side forces and

bending moments are computed from the inflow harmonics corresponding to frequencies adjacent

to the integer multiples of blade passing frequency. The only difference in these results when

we switch to a coordinate system rotating with the blades is that the unsteady side forces and

bending moments actually occur at frequencies adjacent to the integer multiples of blade passing

frequency.

This two-dimensional strip theory can be used in conjunction with any two-dimensional

method for computing the unsteady lift on a single rotor blade operating within a nonuniform

inflow. If we use an unsteady thin airfoil technique, the method proves to be very fast and

adequate for predicting trends. A computer program has been written using the unsteady thin

airfoil theory of Naumann and Yeh [1973] with options to use the methods of Weinig [1935] and

Whitehead [1960]. This Penn State ARL code uses Fourier analyzed wake surveys measured

at several radii. Because of the finite number of radial and circumferential measurements as

well as the many approximations involved in the unsteady thin airfoil technique, we should

not depend on these calculations to obtain absolute unsteady force levels. However, comparing



U
calculations using different blade designs gives important trends of how the different designs i

affect the unsteady forces and moments. Hopefully, engineers will incorporate these and otheri

unsteady force computations within the turbomachinery design process.

I
I
U

I
I
U
I
I
I
i
I
U
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