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PREFACE

The 1990 program on "Stellar Fluid Dynamics" marked our deepest penetration into
astrophysical fluid dynamics since 1963. Introductory lectures by Ed Spiegel and Jean-
Paul Zahn, with a supplement on solar MHD by Steve Childress, paved the way for more
specialized lectures on solar oscillations (Balmforth), radiatively-driven stellar winds
(Owocki), and neutron stars (Arons). Norm Lebovitz gave us a beautiful synthesis of the
theory of polytropes, and Leon Golub challenged our theoretical impulses with the latest x-
ray images of the solar corona. There was considerable focus on stellar convection (Zahn,
Stein, Ghosal), and on flows with strong magnetic fields.

As usual, the lecture subjects ranged considerably beyond the special topic of the
summer, with GFD filling its traditional role as a clearinghouse for new ideas among the
many fields concerned with rotating, differentially-heated fluids. Some of these topics
(symmetry groups, wavelets, negative energy modes) seem about to burst upon the fluid
mechanics scene, while others, such as the flow on a three-dimensional sphere in four-
dimensional space, may yet be a few years away.

This was a year in which many familiar faces were absent or tardy, and some new ones
appeared. Former fellows Andrew Gilbert and Andrew Woods joined the staff, and
newcomer Phil Morrison, who gave us added breadth in the direction of theoretical plasma
physics, seemed to enjoy discussing everything with everybody. Our nine fellows (from
the USA, Canada, England, Germany, and Ireland) came to us from diverse backgrounds
in astronomy, mathematics, physics, and fluid dynamics; all seemed to thrive in the
interdisciplinary atmosphere of Walsh Cottage.

1990 was also the year that computers came to Walsh Cottage -- with a vengeance.
Thanks to a generous gift from the Mellon Foundation, we were able to buy or borrow two
Sun workstations, a laser printer, and two personal computers. After a bumpy start that
nearly overwhelmed the director, we were rescued by the computer expertise and generous
assistance of Glenn Flierl and Steve Meacham.

Once again, we gratefully acknowledge the support of the National Science Foundation
and the Office of Naval Research, and the capable assistance of Jake Peirson and his staff
in the Education Office of the Woods Hole Oceanographic Institution. Special thanks go to
Barbara Ewing-DeRemer, our administrative assistant and editor, who kept things running
smoothly in the cottage.

Rick Salmon, 1990 director
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OUR PRINCIPAL LECTURERS,

Jean Paul Zahn and Edward Spiegel




STELLAR FLUID DYNAMICS

E.A. Spiegel

Astronomy Department

Columbia University
New York, NY 10027

Lecture 1

1 Astrophysical Fluid Dynamics

Astrophysics is a branch of astronomy, so when I say “astronomers” in these lectures, |
include astrophysicists. In fact, astronomy is mostly astrophysics so I think that this is
a good characterization. On the forefront of astronomy, the job is to isolate the relevant
physics in different kinds of celestial objects with a view to modeling. It is only after
some agreement about the nature of the objects has been reached that careful studies are
warranted. In good astrophysics, physical arguments, often based on rough estimates, are
the key to success.

As more phenomena in astronomical objects are recognized to be fluid dynamical,
the need for intuitive understanding of such processes grows. In this school, we have
practiced the development of understanding fluid processes by careful analysis of simple
models. Often, over the decades, practitioners have felt that such studies may not be
relevant to their disciplines, but more and more, the language of G.F.D. inquiry is heard
in discussions by these same practitioners. The reason that these words have acquired
increased meaning and comprehensibility comes from their careful elucidation in simple
pilot studies. That, at any rate, is the credo of Walsh College.

Astronomers have studied what they call cosmical gas (or aero-) dynamics for years.
That is astrophysics in which the physics is fluid dynamics. What we shall discuss here is
to be called Astrophysical Fluid Dynamics to emphasize that the aim is, like that of GFD,
to extract relevant models that are sufficiently simple to be analyzed in detail by whatever
means are needed. The results of such analysis are to be used to inform astrophysical
studies but, as the name implies, our subject here is fluid dynamics and it is an end in
itself. No apologies need be made for that.

Modern developments in the mathematical sciences are also affecting the progress in
astronomy. In astromathematics, the object is to parallel the work in astrophysics by using
general mathematical ideas to isolate mathematical processes that elucidate the behavior
of a cosmic object. For example, if we suspect that a galactic pattern is engendered by
an instability, we need not decide exactly which instability it is in order to begin to write
down an equation to describe such a pattern. If we can isolate a suitable equation for the
purpose by qualitative mathematical arguments, we can later go back and argue about
which among possible physical processes is responsible for the instability. A.F.D. is a
good source of examples of this approach.




In the lectures sketched here, the concentration is on stellar fluid dynamics. That
fits in nicely with the Astro in A.F.D. There will be no attempt to provide a systematic
course on the background astrophysics, though some introductory material will be given
as the need seems to arise. The main aim is to introduce some fluid dynamical problems
that seem peculiarly stellar. Afterwards, the lectures of Jean-Paul Zahn about rotating
stars will restore sweet reason.

2 Large Scale Structures

Our vision of the the universe has gone through many revisions over the past few mil-
lenia. In the decades of the forties and fifties it was generally assumed that the universe
is homogenous and isotropic. That people were uncomfortable with this idealization is
attested by the name they gave it: the Cosmological Principle. Today, though wider pos-
sibilities are considered and the situation seems more confused, there is real improvement
as the outlook has become more Copernican. We are not going to discuss cosmology here,
but it seems worth saying just a few words about some of the salient features to place the
stellar situation in context. '

It now seems reasonably certain that the visible matter in the universe constitutes only
a few percent of the total mass. This visible mass is concentrated in galaxies that appear
to be arranged in a hierarchical distribution. A simple way to think about the distribution
of galaxies is to imagine that they lie on a fractal set, as has long been conjectured (see
the books of Peebles or of Mandelbrot). Such a set has lacunae, voids where there are no
galaxies, and the galaxian distribution is rather filamentary. The dimension of the fractal
is a matter of debate (see Thieberger, et al., in “The Ubiquity of Chaos”, AAAS 1990, S.
Krasner, ed.). What matters is that the galaxies appear to be markers in a cosmic flow
about which our only knowledge is that locally (in space and time) it is an expansion.
What happens elsewhere in spacetime is not known except by speculations that form a
sort of mathematical theology of some charm. We do not know the nature of the invisible
matter.

The galaxies themselves consist of stars, gas and dust in differing mixtures. They have
diverse morphologies that are matched to these melanges. Our galaxy, the Milky way, has
a mass of approximately 10'> Mg, of visible matter where Mg is the sun’s mass ~ 2 x 10%
gm. Much of this is in a disk that is suspected of being embedded in an invisible halo of
ten or a hundred times this mass. We are not going to worry about the cosmic flow nor
about the circulations in galaxies. Our attention is to be focussed on the fluid dynamics
within stars. Before we get to that, let us review briefly the fluid dynamics itself.

3 Fluid Dynamics

The work usually discussed in this course has to do with GFD, andA that is only a special
case of AFD. So although many in the audience know fluid dynamics, we still ought to
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set down a simple version of it in a somewhat general way. It will not be necessary,
however, to derive the Boussinesq approximation. Still, we ought to mention a question
that does occupy astrophysicists wanting to think about cosmic fluid dynamics. Isa simple
continuum a valid description of the astrophysical plasmas with which they generally have
to deal? There is a lot of discusion of this point and it involves comparing mean free paths
to the scales of motion. In fact, even when those comparisons do not seem to support the
use of the fluid picture, it has often been used with the defence that collective interaction
resulting from long range em and gravitational forces makes for fluid behavior. Let us
skip all that dreary stuff and simply adopt the fluid model to describe motions in stars.

Another point that must be mentioned in the interests of respectablity is that, in
most astrophysical circumstances, length scales are so large that the Reynolds number is
generally astronomical. Hence turbulent flows are the rule in this subject. In the face
of that remark, sensible people would change subjects, but we are not among them and
have been here for thirty years and more trying to work around this dilemma that natural
scientists face in thinking about fluid motions. But this problem may make it clear why
we are sometimes schematic in AFD.

So consider this simple equation for the momentum balance of a fluid:

du
= = F
where the velocity field u depends on x and ¢, d/dt = 8, + u- V is the material derivative
and F is a body force per unit mass. For the simplest case, we take F to be conservative.
Then we have a special case of inviscid fluid dynamics with F = —-VV.
Consider some simple models for V:
(1) V = V(x,t) — specified potential only;
(2) V = V(x,t) + h(p) — includes local coupling of the fluid with itself (k is a point
function of p);
(3) V = V(x,t) + h(p) + Hlp] — with both local and nonlocal couplings of the density
field (H is a functional of p).
For a conservative force, as assumed, Kelvin’s Circulation Theorem gives the perma-
nence of irrotationality. Hence, if the flow is initially irrotational, there exists a function
¢ such that u = V¢. It follows that

¢ + %(V¢)z +V=0.

This is Bernoulli’s Theorem in fluid mechanics and the Hamilton-Jacob equation in clas-
sical mechanics.

We shall also assume the kinematic condition that mass is conserved:
pt +V.(pu) =0.

For an irrotational, barotropic fluid we have H = 0. Then, on letting p = R? and
- % = Re*®, we can write the equations of motion and continuity concisely as

Vz
iy = —;}v’v: +(V +h(p) + —ﬁRw.

14




Other interesting cases exist, such as the choice H{p] = ~V?R/2R, which leads to the
nonlinear Schrédinger equation

e =~ 9% + (191 + V(x, 0] .

4 Expanding Coordinate System

Most people in this audience know all about transforming to rotating coordinates, so

instead of going back over this, let us look at another transformation that is common

in astrophysics — the transformation to expanding coordinates. This is a device that

has been much used in cosmology and also in the study of fluid dynamics in pulsating

stars. Flow in an expanding system is a pleasant introduction to AFD since this choice

of coordinates leads to fictitious forces in complete analogy to those of rotating fiuids.
Inspired by Hubble’s law, we set u = H(t)x with

dp
— - V -1
at = ”?
and obtain, for a homogeneous system,
£ =-3m.
p

Hence, H = D[In(po/p)}], where D, = d/dt. We introduce the scale factor R(t) defined
by R™3(t) = p/po where p, is the density of a fiducial epoch. Set x = Ry and let v = Ry,
where the dot means time derivative. Then it is possible to show that v = x — Hx
(where H = R/R) and vR(t) = const, which is the analogue of the conservation of
angular momentum. That is, R(t) increases with time, causing |P| = |mv| to decrease.
Qualitatively, the image is that the wavelength conjugate to P increases. The analogous
effect for photons is called the cosmological red shift.

The possibilites for R(t) (in the simplest Newtonian models) are shown in figure 1
for various energy densities. Against this background, we want to write the equations of
motion. However, we shall follow the order of the lectures as they were given and defer
those equations to Lecture II since the questions at this point caused a non-negligible
deflection in the direction of Lecture I.

5 The Sun

“The sun is round like a ball or an orange,” is what first graders were taught fifty years
ago. Later, it was necessary to make this statement more quantitiative, but we need not
go into that. Let us consider a spherically symmetric hydrostatic sun. Then an estimate
of the central temperature can be derived:

15
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Figure 1: Scale factor as a function of time.

where g = GM/r? and, for a perfect gas, with R as gas constant and u as mean molecular
weight, we have

pRT
p=—"1:
@
Hence in order of magnitude, we have p ~ GMp/R, where R is the star’s radius, and so

pPRT GMp GMyu
m ~ R = RT ~ 7

up to factors of order unity. For the sun this gives T ~ 10’K at depth.

Then from the measured rate of emission of luminous energy per unit time — the lu-
minosity — we can determine the thermal time of the star, the so-called Kelvin-Helmholtz
time scale. From the balances already given, we see that the petential energy has the
magnitude GM?/R and that this is comparable to the thermal energy in the star. Hence
the thermal time scale may be estimated as

GM?
T*E = RL -

For the sun, Ly = 4 x 103 ergs/sec, so Txx = 30 million years. Since the time scale for
adjusting any hydrostatic imbalance is short compared to rxg— the acoustic travel time
across a solar radius is about an hour — the assumption of hydrostatic balance is well
justified.

Simple considerations explain the global (dare we say structural?) stability of the sun.
The heat source is provided by nuclear reactions in the core where hydrogen fuses into

16




helium. For particles to have sufficient energy to overcome Coulomb repulsion so that the
nuclei can interact strongly, the temperature must be high enough. If the temperature
increases, the energy production by nuclear fusion correspondingly increases and the star
expands and cools. A temperature is reached at which the energy loss matches that
produced in the core. However, at the small scales, there may be instabilities that do not
profoundly modify the mean structure.

6 Radiation

In hot stars, we must allow for the effects of the pressure of the radiation, prea = %aT‘,
where a is a constant. The radiation pressure is comparable to the gas pressure when
aT* ~ RpT. This occurs for T?/p ~ R/a. On the other hand, we have already seen that
RT ~ GM/R and p ~ M/R®. We combine these estimates and find that the mass at
which radiation pressure and gas pressure are of the same order is M ~ 40Mg. Above
this mass, radiation pressure dominates, but we never see any stars with masses much in
excess of about 60My. Some think that this is a result of vibrational instabilities related
to radiation pressure,

Radiation coming up from within a star may be compared to a fluid fowing through
a porous medium. The radiation produces a force of levitation on the stellar material
and, in the hot stars, this force may compete with the gravitational force. The situation
resembles that in a fluidized bed. There a fluid flows through a porous medium made of
particles that are not attached to each other. When the drag per particle equals the mean
weight of the particles the bed of particles expands and turns into a fluid. In the stellar
case, the porous medium is already a fluid (a gas or plasma) but there is also a critical
case where the levitating force of the outflowing radiation compensates the weight of the
particles.

The bolometric luminosity of a star, L, is its total rate of emission of light. When
this luminosity is in excess of a cerain critical value, the Eddington luminosity, Lg, the
radiative force per unit mass of stellar material exceeds the gravitational force in the
outer layers. It is generally presumed that the material in a star that found itself in
this situation would be blown away. This does not happen when a bed of particles is
first fluidized since the drag force per particle diminishes when the density of particles
decreases. In the stellar case, normal stars with masses in excess of about 60Mg exceed
the Eddington limit,

7 Surface Properties

From the hydrostatic picture we can derive a number of observable properties of stars.
Because of the complexities of the microphysics, these derivations require numerical in-
tegrations. But we can at least see what is involved physically. Let us leave out rotation
and magnetic fields for this purpose.
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Knowing the central temperature of the star, we can estimate that the outward radia-
tive flux, in the absence of convection, is ~ KT /R where K is the radiative conductivity
and R is the radius. Here we are supposing that the surface temperature is much less
than T, the temperature in the deep interior. If we assume simple dependences of K on
the state variables, such as power laws, we can derive the dependence of the luminosity
on the bulk properties such as mass and chemical composition.

Notice that these derivations require no statements about the source of energy. If the
source were turned off, the qualitative aspects we have just discussed would hardly be
changed. However, if we want the static state to last for much more than a thermal time,
we do need an energy source, and that is provided by thermonuclear reactions. These
tend to be energy sensitive, so there is some fine tuning in the central conditions as the
hydrostatics comes into accord with the nuclear reaction rates.

Another delicate problem in the hydrostatic stellar structure theory is the determina-
tion of surface conditions. This theory tells us the luminosity and the radius of a star,
given its chemical composition and a few plausible simplifying conditions. If the star
radiated like a blackbody of radius R and temperature T, (e for effective) then

L = 4rR%*T!.

The actual surface temperature is not far from this. Indeed the operational definition
of temperature is ambiguous in the surface layers, which are clearly out of thermal equi-
librium, so T, could provide one definition of surface temperature. By the way, we have
just passed into the subject called stellar atmospheres, as distinct from stellar structure
theory, which we have been discussing so far, however loosely.

The meshing of these two main topics of stellar physics is like the interaction of
oceanography and meteorology and the key observation that must be explained by this
joining of forces is the so-called H-R diagram. This is a plot of log L vs. some observed
spectral property of stars that measures T,. We shall not have time to go into this
spectral lore, even though it is the backbone of classical astrophysics. When I was a
student, we often were handed spectra on exams and asked to read off (in effect) the
surface temperature. We shall bypass this process so, in figure 2, the abscissa is T,
straightaway, with T, decreasing to the left in accordance with astophysical tradition.

The full calculations show that, for a given chemical composition, assumed uniform
throughout the star, and with no rotation, the equilibria form a one parameter family of
solutions, with the mass as parameter. The locus of this family depends on the values of
parameters such as the chemical composition, but for reasonable choices, one finds that
a large majority of stars lie on a curve like that shown. Of course, the real observations
show some revealing additional details (many of which are understood in terms of stellar
evolution and the development of chemical inhomogeneities), but the main point is that
newly born stars do fall on this main sequence, as it is called. The maximum mass is at
the upper left and it decreases downward along the sequence. At the upper end, L goes
like a large power of M, 5 or so. The development and verification of all this is the stuff
of stellar evolution theory, which we shall not go into here.
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Figure 2: Schematic H-R

We have shown only a section of the theoretical main sequence in the figure, which
corresponds to what is actually oberved. As we have suggested, the upper cutoff is
probably connected to radiative processes, such as the Eddington limit. In any case, for
large masses, the lifetime on the main sequence is small, as is easily estimated. The energy
available from nuclear reactions is some slight fraction of the rest energy Mc?. Divide
this by L and you get a time which is millions of years at the top of the main sequence.
This is very short compared to the similar estimate for the sun, which runs to tens of
billions of years.

Another feature of the observations that is not really understood is the so-called
luminosity function. This is the number of stars at each luminosity and it increases
with decreasing L. This is a direct consequence of the mass spectrum of newly formed
stars. For small enough masses, the central temperature is so low that there are effectively
no nuclear reactions. That Kumar limit is somewhere below 0.1Mg. Those unproductive
stars include the so-called brown dwarfs. Their numbers remain a mystery that the space
telescope was suppposed to dispel.

8 Convection

In computing the main sequence shown in figure 2, there are already a lot of difficulties
to be surmounted. Not only do we need to deal with the microphysics of ionization, opac-
ity, energy generation and radiative transfer, we have .o do something about convection.
When we write the hydrostatic equation, since the stars are typically composed of perfect
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gas, this is coupled to temperature and to an energy transport equation. So we need to
compute the radial temperature gradient. Once we have this, we can check for convective
instability. A static model is locally susceptible to convection when the radial gradi-
ent of specific entropy (essentially what metcorologists call the potential temperature) is
negative. That is, for constant molecular weight,
dS C,(dT ¢
=T (z: * a’) -
Here we are assuming that we are in the outer layers so that the gravitational attraction
is constant. When this gradient is negative, we confront convective instability.

In stars, when the the gradient is convectively unstable, the resulting Rayleigh number
is typically astronomical, because of the great length scales involved. In fact, it is very
hard to obtain the static solutions for stars before convection is allowed for, unless you
compute them yourself, since astronomers never publish them. It is therefore not a simple
matter to find out what the conventional Rayleigh numbers in stars really are. In any
case, stars are so nonBoussinesq that the meaning of the Rayleigh number has to be
thought about a bit as well.

When astronomers do encounter unstable entropy gradients, they frequently replace
them by zero gradients, the neutrally stable value, and compute the model that way. This
use of the notion of convective equilibrium goes back to the last century and it has not
greatly wavered. The problem in putting the whole region of convection onto a simple
adiabat is that some stellar models, such as that for the sun, are sensitive to which adiabat
is chosen. So algorithms have been devised for the purpose. Whether you regard this as
science or voodoo depends on your background and goals. As you can readily imagine,
the main delicacy hinges on the treatment of the boundary layers. Let us leave this
astrophysical skeleton in its closet.

What is found theoretically is that strong convective instability occurs in the outer
layers of stars in the lower half of the main sequence. For example, it is believed that
the outer one third (in radius) of the sun is vigorously convective. That convection
occurs largely because of the high opacity (low thermal conductivity) of partially ionized
Lydrogen and to some extent because of its high specific heat.

In the upper half of the main sequence, the hydrogen is fully ionized, so convection
is not strong at all, though almost all stars do have some surface convective instability.
On the other hand, these hot stars have interior nuclear reactions which are temperature
sensitive. This promotes strong temperature gradients and convective cores are the rule in
the upper main sequence. We shall not have time to get much involved in thermonuclear
convection. Our interest will be confined to the fluid dynmics of the outer layers of stars.

Observations suggest that there is strong fluid dynamical activity in the envelopes
of both hot (“early”) and cool (“late”) stars. The cool stars have vigorously convective
envelopes. But in the very hot stars, which tend to rotate rapidly (RQ? ~ g), the profiles
of spectral lines show the evidence of line broadening (through Doppler effects) by motions
with speeds that may even be supersonic. All sorts of other clues point to vigorous activity
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in those hot stellar envelopes, and we will offer some suggestions about the causes in
lecture 3. In the intermediate case of the so-called A-stars, the fluid dynamical activity is

relatively low. This permits certain peculiarities, as astronomers call them, to manifest
themselves.

Notes submitted by N. Platt and R. Kerswell.
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Lecture II

1 Expanding Flows

Our opening example of AFD is the study of a fluid in expansion. The simplest case is
that of a uniform, unbounded medium such as cosmologists study. Even for cosmology,
this is an oversimplification. The universe is filled with radiation, which is observed to be
extremely isotropic with an almost perfect black body radiation spectrum at T ~ 3 K.
According to standard big bang cosmology, this radiation consists of photons emitted from
the early universe as orginally predicted by Gamow’s students Alpher and Herman in the
1940’s. We shall leave out the effects of this radiation, which were pronounced in the early
days of whatever cosmic event we are going through just now. But we note in passing
that the great degree of isotropy of this radiation attests to the great homogencity of our
universe out to large distances. That is the basis for thinking that a uniform Eulerian flow
makes a good model. However, the seemingly fractal distribution of the visible galaxies
points to a chaotic Lagrangian flow.

We return to the description of expanding coordinates begun in Lecture I and consider
a fluid with velocity u = H(t)x. From conservation of mass we have, for homogeneous
density, '

% =-pV.u (1)
which gives .
§=-V-u=-3H. (2)
Thus,
d 21712
-2 l2 3
dt a Po] ()

and we define R(t) = (p/p,)~'/?, which is called the scale factor. Two objects initially
separated by a distance r, at time ¢ = ¢, will have a separation at time t of » = R(t)r,,
where we have set R(t,) = 1.

Now consider conservation of momentum in an isentropic self-gravitating fluid:

u+u-Vu=-VV, (4)

where V is the gravitational potential. There is no term corresponding to pressure or
entropy gradients because the fluid is homogeneous. Substitution of u = H (t)x yields

(H + H)x = -VV. (5)
On taking the divergence of the above equation and using Poisson’s equation we get

3(H + H?) = -47Gp, (6)
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which also gives an equation for R(t),

R= —%ﬂ'Gp,/Rz. (7)

To obtain the peculiar momentum of a particle, such as a galaxy, we introduce the
coordinate transformation

x = R(t)%. (8)

We differentiate this and solve for
RX = % - Hx, (9)

which is the velocity relative to the expanding background. Multiply this by R and

differentiate to obtain .
d [ ,- . R
5 (B°%) = R(x—-ﬁx). (10)

From equation (7), we see that, if the gravity of the uniform background was the only
force acting on the particle, then the right hand side of equation (10) would be zero. Then
we would get R?X = constant and so the peculiar velocity (for a particle of constant mass)

decreases like R='. Thus, with respect to an expanding background, the momentum (P)
will decrease,

=4
This result clarifies the way an expanding gas cools by analogyg with the way an expanding
gas loses angular momentum. Thus, R?% is like the angular momentum of a particle and
the coordinate velocity X is analogous to an angular velocity.

The Boltzmann distribution is f(P) ~ e~Z/*T where E is the energy, given by E =
(P? + m?)!/? (the speed of light has been set equal to one), k = Boltzmann’s constant
and T = temperature. Thus, for a non-relativistic particle, E ~ m? + P?/(2m) and so for
the momentum distribution to be time independant (recall equation (11)), we must have
T ~ R~?. For relativistic particles (in particular photons), m << P, hence E ~ P. Thus,
for f(P) to be time independant we must have T ~ R~!. We see that relativistic and
non-relativistic particles in the universe cool at different rates. Therein lies the means to
understand why the background radiation is at only 3K. On the other hand, there is no
explanation here for the large peculiar motions in the gas of galaxies (a few hundreds of
km/sec).

For more general motions, we want to go into coordinates sugested by this simple flow.
Starting from the usual Euler equation

(11)

pDwu = —Vp~pVV, (12)
where D; = 3, + u-V, we may transform into the expanding coordinates given by (8).

We set @ = X, whence Rii = u — Hx. Again, the quantity i is a coordinate velocity,
analogous to an angular velocity, so the physical velocity is Rii.
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We may also transform p, p andV, but we shall not take time for this here. The main
point is that the left hand side of the Euler equation, in expanding coordinates, becomes

D, +2Hi+Hzx+ 9 (%H’i’) (13)

where D, = 8, + @-V and V = RV. We have three fictitious forces in this transform
of the inertial term, in the sense that a fictitious force is a real force that cannot be
felt by an inertial observer. There is the cosmic drag, Hi, the expanding analogue of
the Coriolis force. However, it is antiparallel to the peculiar motion, and represents a
dissipative term. The other two terms are also familiar looking to students of rotating
fluids: there is a term like a centrifugal potential and an analogue of the Euler force which
comes when the rigidly rotating frame you go into has a time dependent rotation rate.
This kind of dynamics has not been much explored as yet, but it arises in stars as well
as cosmology. For example, in a radially pulsating star, we have a periodic R(t) and can
ask what happens to the criterion for the onset of convection (Poyet and S., Astron. J.,
1979).

2 Stars

2.1 Stellar Evolution

There are several stages in the evolution of a star. For most of its lifetime, a star burns
hydrogen in its core, converting it into helium. This permits a simple estimate of stellar
lifetimes. For example, the Sun has a total mass of 2 x 10% g, 10% of which is in a
core hot enough for burning. The amount of energy released per gram of hydrogen is
approximately 1% of its rest-mass energy, mgc?. Thus the hydrogen-burning lifetime of

the Sun is
_2x10% x 0.1 x 0.01 mge’

~ 10%%r. 14
I, yr (14)

7

where Lo = 4 x 10% erg/sec.

After the hydrogen in the core is exhausted, the core slowly contracts until the tem-
perature increases to the point where the helium begins to burn. The star will go through
successive burning and contracting stages, each time burning heavier elements. The final
stage reached depends on the total mass of the star. The highest mass stars are able to
convert silicon into iron. As no exothermic nuclear reaction involving iron is possible, no
further central nuclear reactions occur. Continued contraction heats the core until iron
breaks down endothermically. The temperature drops, and so does the pressure. The star
collapses supersonically until the core density becomes large. The envelope rebounds and
the star becomes a supernova, according to one version of the story. There is a lot of fluid
dynamics in this but most of it is in the minds of the Crays.
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Figure 1: Schematic diagram of the Sun

2.2 The Solar Atmosphere

In the outer layers of the Sun, hydrogen is partially ionized, hence there are free electrons
which can be captured by a neutral hydrogen atom. As the binding energy of the second
electron to H is only 0.7 eV, a passing photon can be easily absorbed in a free-free
transition. This makes for very high opacities. So radiation is an inefficient means of heat
transfer in the solar atmosphere and convection must occur.

However, within 1000 km of the surface (the place where the depth measured in photon
mean free paths is of order unity), the sun’s atmosphere is convectively stable. This place
of transition roughly defines the photosphere where most of the sunlight we see originates.
From there outward, the temperature increases and we go into the hot (2 x 10° K) corona
that envelops the sun. The corona is not hydrostatic; it is expanding to feed the solar
wind. A schematic diagram of the Sun is shown in figure 1, which suggests that a 13 layer
model (as in the ocean) might be useful for analyzing the solar atmosphere.

2.3 Equations of a Simple Stellar Atmosphere

Let us charactereize an atmosphere as the portion of a star where the gravitational ac-
celeration (g) can be safely considered to be constant. In a cartesian coordinate system,
where z is in the vertical direction, the equation of hydrostatic balance is

dp '
- 15
dz -gp ( )

where p = pressure and p = density. Assuming an ideal gas, we have

k’
= —pT 16
P iﬁp (16)
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where M = mean molecular mass, usually written umg, where mpg is the mass of unit
atomic weight. We sometimes write the gas constant as R = k/mg, which permits us to
leave the mean molecular weight, 4, in evidence. For the purposes of this discussion we
shall assume constant u, though it may in reality depend on the state of the material or
its age.

Thus, we have two equations in three unknowns (p, p and T). In the simplest case,
we assume T = constant and obtain

p = pe*/® (17)
p = pe /B (18)
where
H = E (19)
Hg

Thus, in an undisturbed atmosphere that consists of an ideal gas at constant temperature,
the pressure and density decay exponentially with height.

To investigate the time-varying pressure and density fields, let us consider each field
as having a static component and a much smaller time-dependent component:

P = Po(z)+p(x) (20)
p = po(z)+p'(x,t) (21)

where p, and p, are given by the static solutions shown above in equations (17) and (18).
These perturbations are assumed to evolve isentropically and since § = coin(p/p?), we

have
_.L P_ 3__1:” 22
Dt € Dt’ (22)

where ¢ = YPo/po = (7kT,)/T, 7 = ¢»/c, and we are still assuming the ideal gas law. Sub-
stituting these pertubations into the momentum and continuity equations and neglecting
second order terms yields:

o _ & W w_ W

pOat 827 pOat 8y, p.at 8z pg ( )

and |
80"  [pou) , 8(pov) , Boow)| _ ’
9t + { Oz + Sy + 0z } =0 (24)

where 4, v and w are the velocities in the z, y and z directions respectively. From equation
(22) we also have

8p' _ P[00 %)
&—p°gw—7p,(8t+w8 . (25)

Now we can eliminate u, v and w from equations (23), (24) and (25) to yield the following
equations in p’ and p’ only:

3o’ 2./ 8y’
8t V= 0z (26)
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Figure 2: Dispersion relation for Lagrangian perturbation with T = constant

and 62 ’
Let us look for solutions of the form
(;)=(;)~exp[i(ng-x—wt+:cz)-z/2H] (28)

where 7 and P are amplitudes, kg is a two-dimensional horizontal wave number, x is
a two-dimensional position vector, w a frequency and « is a vertical wave number. We
have choosen the exponential variation in z to conserve wave energy. Substitution into
equations (26) and (27) yields the following dispersion relation (Lamb 1924):

wt - [(n}, +x?)e? + w,’] Wbl =0 (29)

where w} = vg/(2H) and w? = ""% This yields two sets of relations between w and
g, as shown in figure 2. In group I, w? = (k) + x%)c? + Wi, so that |w| > wy and in
the limit as [xg| — oo, these high frequency waves have w = +xgc. Thus they are just
non-dispersive sound waves, and are referred to as p-modes in astrophysics. In group II,
? = Arqwp/[(xh + #*)? + W), so that |w| < wy. In the limit as [xg| — oo, we have
w = *uwy, which are simply gravity waves (called g-modes).
We have considered only isentropic perturbations to the static state, neglecting thermal
effects. Since S = ¢,Inp - ¢,71np, 22 = 0 implies that

Dp_ _pDp _ _po+p¢ Dp

Dt=1,Dt ="+ Dt (30)
To first order, then we have
DP zDP
De (31)
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This is a Lagrangian perturbation and it yields two families of solutions as discussed.
A rough and ready approach that gives just the sound waves is %% = 0 (an Eulerian
perturbation).

As we are also interested in the velocity of such wave solutions, we could have elim-
inated p’ and p’ from equations (23), (24) and (25). Rotating the Z axis into the di-
rection of propagation (i.e. letting v = 0) and introducing w = vorticity = V x u and
X = compressibility = V . u we obtain (Lamb, 1924)

P*x de? ox .
W = CZV§X+(7;—7Q)5;+QZ'VXQ) (32)
and
ow dc? .
7 = — | t(r=1e| YV x(x) (33)
where
, 8 &

=5t e (34

In the case of an isothermal atmosphere, these equations can be solved to yield hori-
zontal traveling wave solutions of the form u = e("-1¢%/¢ f(ct — z) and w = 0.

Remaining issues which may be important are the effects of non-linearity and dissi-
pation which have been neglected in this discussion. A further complication is the con-
sideration of a polytropic atmosphere in which temperature varies linearly with height,
T(z) = Bz. In this case we find two familes of solutions which are somewhat similar to
the isothermal case, as shown in figure 3.

This is a very superficial introduction to these matters and more details can be found
in Lamb’s book. In the case of the sun such waves are now being observed and the
measured frequencies are used in connection with some knowledge of the radial amplitude
distribution to learn much about the internal structure and rotation of the sun. Yet we
still know rather little about these modes. How and when do they go unstable when
dissipation is included? Why do they seem to be so weakly nonlinear? How do they
couple to the turbulent convection?

References
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Figure 3: Schematic dispersion relation for T = Bz




Lecture ITI. Photogasdynamics

1 The equations of photohydrodynamics

The picture to be built up involves thinking of the outward diffusion of photons
through the outer layers of the star as a fluid of photon particles moving outward through
a porous medium. The radiation field might be derived from the full equations of electro-
magnetism. However, quantum fluctuations and relativistic effects are not important in
a typical stellar atmosphere, and a corpuscular picture where the radiation is represented
as a fluid of photon particles will be described here. We will also ignore polarization,
that is spin.

The matter field is described by the velocity u, the density p, and the pressure
p, while the radiation field is characterized by the flux F, the energy density E, and the
pressure tensor P. The equations of momentum, continuity, and thermal energy of the
field of matter are (i.e. Hsieh and Spiegel, 1976; Mihalas and Mihalas, 1984)

Du k4o
—_— = =Vp - 2

F (1)

. c
Dp
Dt

DT Dp

Pcv-bT ~3 = —PKC(S ~ E) : (3)

where x is the mean absorption coefficient and o is the scattering coefficient. The velocity
of the matter is measured with respect to an inertial frame, preferably the one in which
the star is at rest, call it the star frame. Then F, 5, and E are the radiation flux, source
function and energy density of the radiation field measured in the local rest frame of the
matter. These are simply related to F, S, and E, the same quantities measured in the
star frame, and which are the flux, source function and energy density that are normally
referred to in the radiative transfer theory of a static medium. The transformation
equations relating these quantities measured in the two frames are (to leading order in

= —pV.u (2)
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luij/¢),

F = F-Eu~7P-u, (4)
E = E-T5T, ()
§ = S=aT* (6)

In addition, the equations governing the field of matter (1)-(3) require an
equation of state,

R
P= pT (1)

and the specification of the absorption and scattering coefficients o(p,p) and x(p, p).

The final term in the momentum equation (1) represents the momentum im-
parted to the matter per unit time from the radiation field, i.e. a radiation pressure
gradient.

The fluid equations fo: the radiation are derived by taking frequency integrated
moments of the transfer ,-_cion. The radiative equations of motion are:

[ k-0

—at—-f'V-F = P"(S"E)"P( c )u'F' (8)
1 F K+o ~
;;37+V-'P = -p( )F-}-%—(S—E)u (9)

The source function § simply represents the emission of radiation by the fluid, and E
the absorption. The final term in equation (8), which governs the evolution of the energy
density of the radiation field, is the rate of work done by the radiation upon the matter
field. Equation (9) expresses the evolution of the momentum density of the fluid (and
is the counterpart of conservation of momentum for the matter field). The first term on
the right hand side of (9) represents the force of matter upon the radiation fluid, whereas
the second term indicates how a net loss of energy by absorption creates an additional
force upon the radiation fluid, through the concomittant momentum exchange.

The system of equations for the radiative fluid are completed when an approx-
imation or closure for the pressure tensor P is specified. Here we shall use,
1

1
p=§EI+c3

uF + Fu- 2(u-F)I| +T (10)
[ ;
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where T is the identity tensor and 7 is the radiative viscosity tensor satisfying Tr(7) = 0.
The quantity in square brackets in (10) is a transformation correction due to the motion
of the material.

The isotropic part of P provides the dominant contribution to the pressure
tensor in regions where the photon mean free path is small, i.e. the medium is optically
thick. Neglecting all but this term yields

\

P= -?I;Er (11)

This isotropic approximation to P is known as the Eddington approximation. When
the photon mean free path is large, the medium is “optically thin™ and the anisotropic
components of P may become important.

When the region where the radiation and matter fields interact is plane parallel
and the particle fluid is motionless, the equations reduce to what has been called the Milne
problem (Chaadrasekhar, 1960). In this case the full radiative transfer equations can be
solved exactly.

The derivation of the photohydrodynamic equation suggests that there may
be a more natural approximation to the problem than the Eddington approximation.
Essentially, the Eddington approximation assumes that the pressure tensor P is isotropic
in the rest frame of the star. The derivation of the equations takes account of the trans-
formation between this frame and the rest frame of the moving matter. There may be
a different frame, which one might call the “radiative frame”, in which, if one assumes
P to be isotropic, the exact solution is better approximated. If one considers general
transformations in the Milne problem, and subsequently implements the Eddington ap-
proximation in these frames, one finds that there exist two frames, one subsonic and one
supersonic (with respect to ¢/v/3) in which the exact solution for a particular moment,
is produced by this means. However, whether this result is unique to the Milne problem,
and whether either choice of one of these frames is sensible is not evident.

2 Hydrostatics and linear stability

As an example, consider a plane—parallel atmosphere in hydrostatic balance

]

F=F: ; S=E=aT*' ; p=RpT (12)
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f = -pg+(—-'°+")Fop=—pg- (13)
P4 c

dE K+0

£ . (o) o

A simple solution is obtained by neglecting variations in ionization (so that R = R/pu is
constant) and supposing that the atmosphere is hot enough that o (scattering) dominates
x (absorption). The distribution of temperature with height is illustrated in Figure 1. As

T

z

|

Figure 1: The temperature distribution with height for the idealized model atmosphere.
At depth, the structure is polytropic while, high in the atmosphere, the temperature
declines exponentially to T, (note that the scale height is approximately RT/g.).

the radiation pressure gradient increases, the effective gravitational constant g. decreases.
The case g. = 0 corresponds to the Eddington limit. Beyond this point the atmosphere
levitates. The hydrostatic solution for g, < 0 has a density which increases with height.
A star above the Eddington limit would presumably have its surface layers blown off by
radiation pressure. Yet rare stars exist that appear to exceed the Eddington limit.

The stability of this solution may be examined by perturbing the hydrostatic
equilibrium and solving the resulting linear equations for the perturbation. In this ex-
ample, instabilities occur when we omit the viscous terms and absorption. Though dissi-
pation may push such linear instabilities to nearly the Eddington limit, they may occur
nonlinearly in stellar conditions and produce fluid dynamical activity, such as “photon
bubbles”, to be discussed shortly.
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3 The heat equation in the absence of fluid motion

If the material velocity vanishes, the photohydrodynamic equations for the ther-
mal energy of the matter field, and the radiation field, become

ar
P = -pxc(S—E) , S=aT*, (15)
oFE
§+V.F = pre(S - E), (16)
10F 1 K+0o
aw t3VE = »(*)F ()

Since the travel times for light across the distances of interest are large for stars (one
says that ¢ — o), this can be simplified. We see, first of all, that E ~ S. Moreover,
the term ¢~2F, is small. In first approximation it may be neglected and this gives an
approximation for F, which we use to approximate F, in this equation. Then we obtain
the radiative heat equation for T (Unno and S., P.A.S.J., 1966), which, after we take
certain liberties, becomvs

(40.T3 +PC‘,) 9_1:_ Co 38T 4acT?

—_—— Y-V 18
ot 3p(c+o)x St 3p(x+0) T (18)

In the limit where the photon mean free path is large — that is, p*x(x + o) € 1 —
equation (18) reduces to

% x —(T - To) _ (19)

where To is a constant of integration chosen as the equilibrium temperature. In this
optically thin (or transparent) limit, disturbances decay according to Newton’s law of
cooling.
When the mean free path is small (p?x(x + o) > 1), (18) reduces to
oT

e viT (20)

In the optically thick or opaque limit, the decay of disturbances is governed by a diffusion
equation.
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4 Photon Bubbles

4.1 The analogy with fluidized beds

Consider a collection of small particles (e.g. sand) resting on a porous plate. A

fluid (e.g. air) is forced up through the plate and particles.
When the flux of fluid through the plate is low, the particles are relatively
unaffected, and act like a porous medium. This can be thought of as analogous to the

diffusion of a photon gas through a stellag atmosphere. In fact, the equation governing
the motion of the fluid is of the form

where p is the fluid pressure, A is the porosity of the particles, and F is the vertical fluid
flux. This is just D’Arcy’s law, and it is qualitatively similar to the equations that result
in certain problems in radiative transfer.

As the flux of fluid increases, the drag on each particle due to the diffusing
fluid also increases. When the drag per particle exceeds the weight of the particle the
whole bed is levitated. Levitation expands the bed, allowing the fluid to move more freely
between the particles which diminishes the drag. The bed is then said to be fluidized
(Davidson and Harrison, 1963). Quicksand is a familiar example of this phenomenon.

If the fluid density, p,, is much less than the density of an individual particle, p,,
bubbles of fluid appear and rise through the bed of particles. These bubbles presumably
are generated by instability of the fluidized bed.

The bubbles can ascend to collapse at the surface of the bed, which has the ap-
pearance of a boiling liquid. The bubbles in fluidized beds are kidney-shaped (see Fig. 2)
in vertical cross section. Overall, the motion of the bubbles mixes the particles. However,
the particles with the highest drag are carried upward with the bubbles. This process is
called elutriation, and may be exploited in industrial applications for separating particles
with different drag coefficients. Perhaps in stars we can think of photoelutriation.

4.2 Photoconvection

The analogy with fluidized beds $uggests that there be bubbles filled with photons perco-
lating through a stellar atmosphere. Even without the benefit of the analogy, astrophysi-
cists have sneculated on this possibility in radiatively dominated situations. Indeed, the
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Figure 2: A kidney shaped bubble in a fluidized bed.

analogy is not perfect; the instability of a fluidized bed is caused by the density depen-

dence of the drag coefficient. This is not usually a significant process in the astrophysical

cases. Moreover, the bubbles in the fluidized bed are maintained by fluid that typically

cannot be absorbed by the particles, which is not the case for photons in the stellar case.

Numerical calculations suggest that linear instabilities in hot stellar atmo-

spheres are suppressed by dissipative processes except for stars near the Eddington limit

(Marzec, 1976). If linear instability may occur for £ = L/Lg in excess of some critical

value, £, it is possible that the bifurcation is subcritical and nonlinear instabilities may

“occur for some reasonable stellar conditions with £ < £, that would give rise to bubbles,
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4.3 Bubble theory

For the simple theory of photon bubbles we consider the fate of a spherical hole
carved out of a stellar atmosphere. For the case of pure scattering in the Eddington
approximation, we have F « VE and, for radiative equilibrium, we assume, V - F = 0.
For a coordinate system centered on the center of the hole and with § measured from the
vertical symmetry axis, we find

F = F,V [cosa (r - r_f,’_)] (22)

where 7 is the radius of the sphere. We are here assuming that the Eddington approxi-
mation holds also within the bubble, where the photons scatter from the surface and are
isotropized. We have neglected absorption.

The radiation field about the hole is distorted in much the same way as an
electric field is affected by a conducting sphere in electrostatics. The originally uniform
flux F = Fy: suffers a dipole distortion. The distorted field lines produce an additional
force on the matter. The external force density f is

f=—pgz+ p{F = —pg.2 - pV¢ (23)

where g. is the effective gravity defined by (13) and ¢ is the potential of the dipole

distribution
- Foc z

=5
Figure 3 illustrates the distorting field V¢. :

The force f produces a fluid circulation which causes the bubble to rise, and to
deform. If V2 is the velocity of the bubble, let v = u — V2 be the flow field around the
bubble in a frame of reference translating with it. If we assume that the bubble remains
nearly spherical, then we may take v to be the incompressible flow around a spherical
obstacle. Thus,

(24)

v=Vv[z(1+5':-,-)] (25)

The flow v is irrotational, and satisfies Bernoulli’s Law. This may be used to
estimate the upward speed V of the bubble. Bernoulli’s Law specifies that

h=-gz—¢— %lvl’ (26)
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Figure 3: The field lines for the additional dipolar force caused by the presence of the
bubble.
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is constant along streamlines. Taking into account the relevant boundary conditions
(Spiegel, 1976) gives the result ’

V= g\/g;; (27)

On the lower half of the bubble, the fluid dynamical pressure |v|?/2 must be balanced by
an accompanying distortion of the bubble. This distorted shape is indicated in figure 5,
and in the fluidized beds, gives rise to the kidney shaped bubbles.

At the surface the bubble will burst with an effluence of the photons contained
within it. Thus excess flux from bursting bubbles may produce shot noise in the stellar
luminosity. The atmospheric vortices that we shall describe below could even produce
bright spots. When the bubble bursts, particles may become supersonically ejected. Such
phenomena may be the basis for the intense hydrodynamic activity of these early stars.
The problem is to confirm the existence of photon bubbles.

5 The effects of rotation

Hot stars are fast rotators and the interplay of rotational and radiative dynami-
cal processes is likely to be central to understanding their fluid dynamics. Rotation alone
is already a significant modulator of stellar fluid dynamics. Its effect upon an initially
spherical object is to decrease the polar radius Ry, and increase the equatorial radius
Req- The difference between these radii is

R, R,  @+Gp

where p is some mean density.

The rotation induces a distortion of the surfaces of constant temperature; the
pole and equator exhibit a temperature difference of approximately

AT/T ~ AR/R.

From the perfect gas law, we estimate the pressure difference to be

Ap ~ RpAT ~ pA—:. (29)

~* This must drive a.n'“.astrostrophic” zonal flow u, such that

Ap ~ pufl. (30)
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Therefore the magnitude of this thermal wind is

gAR 31
“™~ QR (32)

where the surface pressure p has been replaced by pgR according to estimate based upon
vertical hydrostatics.

When the rotation is very fast, as in many hot young stars, equatorial cen-
trifugal accelerations compare to g. Thus g/Q ~ RQ = V.. Therefore the flow produces
an equatorial acceleration and, since the Reynolds numbers of such flows are large, in-
stabilities are likely. We expect vortex formation, as on major planets. Because of the
complications invloved in the radiative flows, these vortices may may serve as conduits for
rapid escape of radiations from within and produce powerful emergent beams (Dowling
and S., in press).

5.1 Vortices in hot atmospheres

Consider a vortex in a polytropic atmosphere. If the vortex is strong enough, we may
for a qualitative first look, ask what it will be like without the effect of rotation. Under
hydrostatic balance the vertical and horizontal pressure gradients of a steady vortex
satisfy \

% = pg, '—g = ”—;—, (32)
where z increases in the downward direction. If the specific enthalpy is h, then

h(r,z) = gz + f(r), , (33)
where f(r) must satisfy
4 _ 2: (34)
dr ¢’

For a standard vortex of the form

v = ver/re if P < 7o
vore/r if P> 1o ’

we have .
o, s rewd -1 i r<m a5
f=v { —r3j2r? if r>r (35)
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Figure 4: The isotherms in a vertical section through the axis of an atmospheric vortex.
The dotted lines indicate the streamlines of the radiative flux as it is focussed into the
vortex.

The vortex deforms the stellar surface from the plane z = 0 into

z__vg r/2rd-1 i r<n
) -r2/2r2 i P>y

Therefore there is a depression of the surface. The maximum depth of the depression is
v3/9-

The isotherms h = constant in a vertical section through the axis of the vortex
are shown in figure 5. The fluid at the center of the vortex is now cooler than that outside
it. The radiative flux is now focussed into the vortex and consequently the depression of
the surface appears bright. Thus it forms a “starspot”. The focussing of the flux is also
shown in figure 4. Therefore, upon the surface of hot stars there may be bright spots, in
contrast to the dark spots observed upon cooler stars such as the sun.

Finally, we note that this mechanism may allow a star to exist above the
Eddington limit: the vortices channel photons along their axes and therefore reduce the
pressure of radiation over the remainder of the surface.
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Lecture IV. Solar AFD

1 Introduction

A good white light photograph of the sun reveals that the solar surface is covered with
a time-dependent pattern of granules, a cellular arrangement of bright patches. The
sizes of these granules range down to the resolution limit of observations, about 300
km. Individual granules may last ten minutes or more, depending on how deformed
they are allowed to get and still be considered to be the original granule. Spectroscopic
observations show that the brighter (presumably hotter) portions of the granules are
rising. The granulation is normally thought to be a manifestation of thermal convection.

The films are the best way to get some feeling for the phenomenon. They were made
at the Pic du Midi Observatory (thanks to T. Rouddier for providing that one) and from
the observations made in space (blessings on G.W. Simon for that one). They have been
processed to bring out the granulation by the group at Lockheed (Alan Title, and his
colleagues), which means, in particular, that the vigorous acoustic oscillations of the solar
atmosphere have been filtered out. The speeds of the granules themselves (a few tenths
km/sec) are well below the local sound speed of close to 10 km/sec. The morphological
details of the granulation are too complicated to repeat in these notes.

Spectroscopic observations showing the velocity component toward the earth at each
point on the solar surface reveal other structures. The most significant are the super-
granules. These are cell-like structures about 20,000 km across consisting of horizontal
motions flowing from central upwellings. The outflow velocity is about 0.5 km/sec, com-
parable to the equatorial rotation speed of the whole sun. But the lifetime of one of these
supergranules is about a day, compared to the rotation period of one month.

Another sort of observation made of the solar surface is the magnetic field, which
tends be quite ropy. The main concentrations of field are at the vertices where the
supergranules meet. It is believed that the intersticial field strengths run to 1700 gauss.
The magnetic field thus forms a large pattern outlining the supergranules. Moreover,
emission by ionized calcium is particularly strong where the field is strong (probably
because of plasma affects generated by the fields) and a calcium emission network clearly
outlines the supergranulation.

There is a wealth of further structure in the solar observations, but there is no time
to go into such details. This particular selection was made because of the belief that the
phenomena I have mentioned are direct manifestations of the strong convection that is
thought to power various signs of fluid activity on the sun. One other observed process
ought to mentioned — the sunspots.

That same white light photograph of the sun, exposed to bring out the granulation,
will often show dark spots (comparable in size to supergranules). -Other observational
techniques reveal that in these spots there are fields of a few thousand gauss. Such fields
can inhibit the convective motions and lower the emergent heat flux. That will already
cause some darkening, but there is more to the story of spot structure. The degree of
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Figure 1: Solar Granulation

spottedness of the sun varies on a time scale of 11 years, perhaps chaotically. We shall
come back to this at the end of the lecture.

2 Solar AConvection

Energy is generated in the core of the sun (as in most stars) and it appears largely in
the form of radiation. It takes a photon about 30 million years to escape from the deep
interior of the sun. The hydrostatic equations, together with the transport equation
for the radiation, then lead to a static model that gives the march of the state variables,
temperature, density and specific entropy, through the star. For a perfect gas, the specific
entropy is

P
S = C.log;

where C, is the specific heat at constant volume and v the ratio of specific heats. So, if
we use the equation of state for a perfect gas, we get

5 _G(dL g
¢ ~ T \dr G,

where ¢ = GM, /r? and M, is the mass interior to a sphere of radius r.

This can be understood by displacing a parcel of fluid in the vertical direction by an.
amount dr. Its energy change consists of an internal energy perturbation of C, dT plus a
change of potential energy amounting to gdr. So the total energy change agrees with TdS
and, when it is negative, we have instability. This criterion for the onset of convection is
called the Schwarzschild criterion, after one of the many who derived it for themselves,
going back at least to the middle of the nineteenth century.
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Starting from the center, the entropy gradient from static models is positive most
of the way out to the edge of the sun, where it goes strongly negative, and stays that
way nearly to the edge. The final reversal back to a positive entropy gradient occurs at
about one photon mean free path from the outside. This is schematically shown in the
figure. I can produce only a schematic figure since I know of no modern calculation of
the specific entropy distribution of a static solar model. It appears that all programs that
calculate solar models contain an algorithm that replaces the unstable region and some of
the underlying stable region by an effectively neutral region. Any reasonable algorithm
that replaces the static entropy portions that are either stable or neutral is bound to
produce a model in which the neutral zone is larger than the original unstable zone.

All stars with T, less than about 8,000K have extensive outer zones of convective
equilibrium. The cause is the ionization of hydrogen, the major constituent of stellar
material. In the hot stars, hydrogen is completely ionized throughout. In the cool stars,
there is nearly neutral hydrogen close to the surface. The relatively few atoms that are
ionized release electrons that find themselves in a sea of hydrogen atoms. An electron
near an atom polarizes it so that there is a weak attraction between them. The spectrum
of interaction energies is almost always continuous. So any passing photon can cause a
change in this energy and thus be absorbed or deflected. In other words, partially ionized
hydrogen is very opaque. A strong temperature gradient is therefore needed to force the
radiation through it. At the same time, the ability of the material to soak up energy into
jonization causes C, to be large. So we get convection zones in the outer regions of cool
stars. .

There is no means of calculating a conventional Rayleigh number without a good static
model, but estimates from the fully convective model suggest that the Rayleigh number
is truly astronomical, probably in excess of 10*°°. So when the convection starts, it is
certainly turbulent. That is why only the local criterion is considered. The idea then is
to replace the unstable region by one of convective neutrality where the entropy gradient
is locally zero. As I have already said, this device is bound to make the convective zone
deeper than the original unstable zone. The thickness of this zone (fixed by the choice of
a free parameter in the algorithm) is adjusted to make the solar radius come out right.
Recent developments in acoustic sounding of the sun have permitted fine tuning of the
models and there is now some confidence that the depth of the solar convection zone is
300,000 km. Presumably, there will be boundary layers on this zone, especially at the
top. Estimates of the depth of the upper boundary layer are of the same order as the size
of large granules.

In fact, there is no general agreement on what physics determines the length scales
and time scales of the granules and supergranules. It is not even certain that the granules
are primarily driven by buoyancy. The large scale shears in the supergranules may play a
role in their formation. Magnetic feedbacks may have a role in determining the preferred
sizes of either supergranules or granules. We do not know how these processes couple
to the large scale circulation seen on the solar surface. We can reach for analogies to
laboratory convection or to numerical simulations, but even those are not really under-



stood. However, at this moment, the simulations, experiments and solar observations are
all moving forward quickly, so this is a good time to be thinking of these things.

3 Solar Rotation

Observational evidence suggests that stars condense out of the interstellar medium. As
the protostar contracts, it spins faster. The object is probably turbulent and the angular
velocity is roughly constant throughout its bulk. To become something resembling a star,
it must shed considerable angular momentum. This it does through a combination of
magnetic stresses and mass expulsion. There may be an ambient disk left behind in the
contraction from which a solar sytem may form. In the end, if there is to be an object
resembling a main sequence star formed, it ought not to have an angular velocity too
much in excess of \/2GM/R3, corresponding to a rotation period of about a day for the
sun. It is a problem to get rid of the excess angular momentum, so that most newly
formed (single) stars will be pressed up against this limiting azgular velocity. However,
most aged, cool solar-type stars have rotation periods significantly longer than a day and
it is concluded that they must have lost angular momentum since arriving on the main
sequence.

There is a mass flow of about 10~**Mg/yr. The deeper causes are not understood,
but something is heating the very outer, highly tenuous solar layers to a temperature of
2 x 10°K. The leading candidate is plasma instability. In any case, the material is so
ionized that it emits inefficiently and has trouble getting rid of the energy, so it is forced
to expand to avoid thermal runaway. In fact, it expands right off the sun and makes a
thermal wind. The magnetic field lends a certain rigidity to the flow and it therefore
decouples from the sun at a greater angular velocity than that of the surface. This makes
the solar wind efficient at removing angular momentum.

Suppose you had a bucket of water suspended by a rope and spinning. If you put some
holes in the side of the bucket how fast would it slow down? Suppose that you stuck some
pipes into the holes so that the water had to go out a distance before leaving the system.
The water would leave at a greater distance from the side of the bucket and, even if the
rate of loss of mass were the same as before, the rate of angular momentum loss would be
greatly enhanced. That may give you some qualitative notion of how the magnetic field
works in making the sun slow down more quickly. If the sun were to somehow maintain
rigid rotation, then the half life of its angular momentum would be about 5 x 10°yr. This
agreement with the age of the sun may not be a coincidence.

If the sun is approximately rigid, we can derive the law of its angular velocity. Suppose -
that the outflow remains nearly rigid out to some distance R4. This distance has to do

with the strength of the magnetic field that is pulled out with the flow and is estimated
to be about 100Rg. Then '
dv

z e—

MR, %

where V = RpQ. Though M ~ -10-3Mg/yr today, we do not know whether it is

= MRV
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constant. It is almost surely affected by the magnetic field strength. The magnetic field
is likely to be produced by dynamo action that is dependant on rotation. So other things
being equal, we assume that

MR, (VA"
Mr: - ® (V)
where a has dimensions of [time]~!. This gives
-

" l+ant

This law of angular velocity has a couple of free parameters, but for large t, we see that
it suggests that the half life of stellar angular velocity is n/¢. This explains the agreement
we have already noted for the solar case if n = 1.

Of course, the sun is not rigid. So we have a classical sort of spin down problem with
the surface layers being slowed down, including the highly turbulent convection zone.
The remaining question is whether the momentum can be extracted from the interior
layers at the required rate. This stratified spin down problem with its attendant stability
problem has not been solved. Not even the formulation is generally agreed upon. But
now, with new solar soundings, we have measurements of zonal flows, so theories of the
solar circulation now have some reasonably hard facts to confront. The main issue, one
that still is not decided, is whether the whole sun has spun down to the surface rotation
rate. This question was the center of controversy twenty years ago because a rapidly
rotating core could result in a small quadrapole moment to the sun’s mass distribution.
This would modify the sun’s gravitational field and have a small effect on the precession
of the perihelion of Mercury. Thus the rotation rate of the sun’s core might be relevant
to tests of the theory of general relativity. This is not a lively possibility today, but there
are other interesting questions that are affected by the possibility of fast rotation of the
solar core (a possiblity still defended at Yale), such as the prospect of dynamo action.

Vﬂ

4 Solar Cycle

In 1843 Schwabe suggested that the sunspot number varied with a period of about ten
years. The sunspot number as officially defined is a measure of the coverage of the sun by
relatively dark areas associated with strong magnetic fields. The solar magnetic variation
is complicated in its details, but the main feature is that the total varies on a time scale
of eleven years in a way that looks rather chaotic. If this is a chaotic process, it is also
spatio-temporal. Active regions of spottedness first appear at solar latitudes +37 and
these peaks of activity drift equatorward.

The latitudinal bands of activity are dominated by large spot groups typically about
10°km apart. The groups are mainly pairs of spots with opposite magnetic polarities as
if they were simply the two feet of an enormous magnetic arch. Throughout each band,
the leading spots will tend to have the same magnetic polarity, so we can imagine that
each band is the trace of a huge magnetic serpent girding the sun. The polarity of the
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Figure 2: The annual mean sunspot number in the Bracewell style

leading spots is different in the northern and southern bands. About seven years after
these first appear, at about the same time in the north and south, and they have drifted
about a third of the way to the equator, the bands from the previous cycle arrive at the
equator and apparently disappear. The bands at midlatitude continue their equatorward
drift for another four years or so, when their successors appear at +37°. Again the new
wave continues equatorward, and so forth, and the new bands have the opposite polarity,
with respect to leading and following spots, from their predecessors. The cycle could
be therefore said to have a twenty-two year time scale. On the other hand the waves of
activity take eighteen years to go from the latitude of first appearance to the equator. If (as
Proctor and I suspect) there are only four solitary waves, which are virtually indetectable
when they move away from the equator, the cycle consists of simple round trips in which
a wave of solar activity takes eighteen years to go to the equator and four to return.

There are a number of questions that this zeroth order characterization raises about
the solar activity waves. What is their nature? What happens to them when they reach
the equator? What generates them? What determines their characteristics, speed, width,
amplitude? These are questions about dynamo theory and they are at the heart of solar
research. In this introductory spirit, I shall not pursue further details, but turn to the
lumped case, which is the study of the temporal variation of the total sunspot number,
leaving the spatial behavior out of accouat.

In figure 2 we show the annual mean sunspot number since 1700 in a representation
designed to allow for the magnetic cycle, where the negative of the number of spots is
shown on every other cycle, after a suggestion of Bracewell. If we use information from
before 1700, as Eddy has done, we get another view, that of figure 3.

We see that during the time of Newton there were virtually no spots. A confirmation
of this result of historical scholarship comes from the study of the abundance of C'* as a
function of time using tree rings and cores from the poles. The idea is that, in times of
strong solar activity, the solar wind pulls out magnetic field with it. This reaches out to
the earth and shields it from cosmic rays, which would otherwise make C!*. So the periods
of high C'* abundance are times of low solar activity. At any rate, the data, so interpreted,
confirm the Maunder minimum, or Newton intermission. More than this, they suggest
that such intermissions are recurrent, that is, that solar activity is intermittent.

Naturally, there are some attempts to model such things, though the number of care-
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Figure 4: Projection of the three-d phase portrait of the solar cycle

fully observed cycles seems a bit too small for the purpose. The most direct way to
proceed is to attempt to construct a phase portrait of the solar cycle. This can be done
from N(t;), the number of spots as a function of time. Using a tabulation of these data,
kindly provided by J.A. Eddy, A.N. Wolf and I used the reconstruction trick proposed by
Ruelle and others, This is done by taking the column of N; and making making a copy
of it displaced by about three years. A third copy displaced by the same amount then
gave us a listing of triplets, loosely analogous to N,N,N, which could be plotted as a
trajectory in a three-dimensional phase space. Such a plot, projected onto a plane, looks
like nothing more than a scatter diagram. But put it into a computer and rotate it around
(in three space) till it looks like something, and you get figure 4. There does seem to be
some structure; indeed too much to model. The daily variations in these data are too rich.
The idea is to try to model a simpler version, by smoothing the data. Indeed, you can
smooth the thing till it looks like a limit cycle. But, with somewhat less smoothing, say
on a time scale of a. year and half, using the Bracewell trick, you get something that has
the general shape of a Lorenz attractor as shown. This does not have any intermittency
of the solar kind. .-
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The simplest reasonable kind of model seems to be one with about dimension five,
such as Childress used to model dynamos some years ago. But here is one that has the
bowtie look of a Lorenz attractor and gives the right kind of intermittency:

[, 1]

= -z’ - 2zy + Iz —evz
-y -2+ Ay -evy
= ~dA+a(z +y7 1)

e 2y

The idea of this model for the solar cycle goes back to discussions with D.W. Moore. We
thought that there could be two dynamo processes in the sun. One is a general solar
dynamo going on continually, with a second, subconvective dynamo generating the solar
activity, but strongly coupled to the convective zone. This model is a loose representation
of that picture. For vanishing z and z the system is just the well-known Lorenz system
(transformed to the Walsh Cottage version). The reason for that was Malkus’ suggestion
that a dynamo could nicely be modeled that way (see alsc Ruzmaikin’s discusion of solar
dynamoes). The other two degrees of freedom are meant to represent a subconvective
oscillation. At any rate, we get from this primitive idea some strong intermittency and
some healthy chaotic oscillations (see the report by Platt, in this volume).
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Lecture V. Rotating Stars

1 Observations

The sun forms the best known example of a rotating star. Galileo was the
first to observe the drift of sunspots on the solar surface in the 17th century.
He noticed that a spot took about 14 days to cross the solar disc, and that
this was roughly the same whether the spot passed through the center of
the disc or along a shorter path at some distance from the equator. The
rate of rotation also seemed non-uniform with motion appearing to slow as
the spot approached the solar limb. Galileo recognised this as an effect of
foreshortening which would result if and only the spots were near the solar
surface.

Scheiner, a Jesuit priest, observed that the sun took 27 days to complete a
rotation. He discovered the differential rotation of the sun by more accurately
mapping the passage of sunspots at different latitudes. Spots farther from the
solar equator were found to move with a slower velocity. It was also known
that the sun was tilted by ~ 5% to the earth’s axis. In 1643-48, Hevelius
managed to map the surfaces of the moon and the sun by engraving their
projected images on a tinplate. Such were the accuracy of these mappings
that modern techniques can be used to analyse the differential rotation. The
results differ from present day readings.

For other stars, however, more sophisticated techniques are required. The
most commonly used is the analysis of spectral lines. For a non-rotating star,
the presence of certain elements in the stellar atmosphere will produce dark
absorption lines in the stellar emission spectrum.

If the star is rotating however and radiation is sampled from both receding
and approaching sides of the stellar disc, then the absorption line will be both
red and blue shifted. As a result the absorption line will broaden and flatten.

The width of the band is proportional to vsini where 1+ = inclination of
the stellar axis to the line of vision and v = equatorial velocity. Unfortunately
i is unknown. If the stellar surface is uniformly illuminated the absorption
line would have an elliptical shape. However the flattening at the bottom
indicates the darkening at the stellar limb.
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There are ways to obtain more information about the stellar rotation if the
surface exhibits non-uniformities. For example tracking a patch of different
chemical composition (or other irregularities that appear periodically ) across
the surface can yield more specific information about the rotation speeds at
particular latitudes. However this approach is not without hazards. Care
must be taken to ensure that variations are not a result of luminosity changes
or of stellar pulsations. Sometimes frequency splitting due to the Coriolis
force may be seen, much like the zeeman effect.

Equatorial velocities tend to have two orders of magnitude; either fast
at 200kms~! or slow below 20kms=! (e.g. the sun corresponds to 2kms=1).
Massive stars all are fast rotators whereas low mass stars are slow rotators.

It appears all star loose most of their angular velocity as they age via
combination of magnetic braking and direct mass loss. For our sun, it was
suggested earlier that the process had been predominantly mass loss in the
form of orbiting planets. The solar angular momentum consists of ;3-th of
the total solar system value. If the sun was to retrieve the total angular
momentum of the solar system it would be a fast rotator. But observations
of stellar clusters do not support this explanation.
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A star cluster allows a large number (10%/10%) of stars, of similar ages,
to be studied. A plot of vsin ¢ versus an indicator of mass yields fig. 4 for a
cluster of average age 10® years.

Notice the high degree of scatter although there are the beginnings of
accumulation at vsini & 20kms~!. An older cluster, with average age =~
5 x 10® years exhibits considerable slow down (note the change of vertical
scale).

It seems that the “slow down” time scale is ~ 500 x 10® years. Nothing
can be said about the direction of rotation. The formation of stars is thought
to be such a turbulent process that any large scale galactic vorticity is lost
and hence no uniform star rotation direction should be expected. Calcium
emission lines can be used to infer direction however this requires much effort.
The orientation of the stellar axis to the line of sight seems such that sin is
randomly distributed.

Stars are found to reach a state where their rotational velocity is depen-
dent only on their mass, regardless of initial conditions. A star typically loses
most of its angular momentum in its pre-main sequence period.

The above Hertzsprung-Russell diagram demonstrates how well stellar
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evolution can be predicted purely from the mass. In particular the final or
long time (10° years) value for the equatorial velocity is independent of the
initial angular momentum. The main process thought to produce this effect is
the braking by magnetic stellar winds. Kawaler in “Angular Momentum loss
in Low-Mass stars” astrophysical journal vol 333 p236-247 (1988) produces
a simple expression of angular momentum loss by this process, and applies it
to evolutionary stellar models. The basic assumption in magnetic braking is
that escaping matter does not possess the angular momentum corresponding
to the stellar surface but to a distance, called the Alfven radius r4, far above
the surface. In a simplified view, the magnetic lines of force act as a lever
arm, which out to ry4, forces the escaping material to rotate rigidly with the
star. Beyond r4 the field becomes too weak to enforce rigid rotation and the
angular momentum of the escaping matter is conserved. The loss of angular
momentum dJ corresponding to a spherical shell of mass dM crossing r4
during the time interval dt is

dJ _ 2dM 2 TA
-Et- = §~‘R Q[( )radml]
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Figure 1. Rotational velocities of low-mass pre-main sequence stars in the H-R diagram. Open
and dark circles represent T Tauri stars with Hg equivalent widths smaller and greater than 10 A,
respectively, and the circle area is proportional to wsini in the range from less than 10 to about 100 km
s-1. Solid lines: theoretical pre—-main sequence evolutionary tracks for stars in the mass range from
0.35 to 3 Mg (from Cohen and Kuhi 1979). Dolted lines: isochrones corresponding to an age of 10¢
snd 107 years, respectively. Dashed line: theoretical zero-age main sequence.

Figure 6: Hertzsprung-Russell diagram
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for a radial field geometry and

dJ _2dM .,
& T 3a ROl )‘*"”“]

for a dipole field geometry. Here R is the stellar radius and r4 is the Alfven
radius to which corotation of stellar wind is maintained. The field strength
determines the value 74 while the field geometry at r4 governs the power of

4 in the equation. Kawaler uses:-

ﬂ 2dM
dt 3 dt

where n = 2 is radial field geometry and n = 3/7 for a dipole field. He also
assumes the simplification that the total field strength is proportional to the
rotation rate to some power.

Rz [( T4 )radml]"

R
Bo = kg(F)’zﬂ“

Combining

dJ

dt kwﬂl+4an/3( )2-n(m )1 2»/3( )—n/s

Here 4 = %’— in units of ~10~*M_,yr-?, and ky, ky, kp,n&a are free pa-
rameters allowing fitting of the model. He uses a = 1 & allows n to vary. To
relate J to v, he uses 2 cases A & B. In case A the star is assumed to be
uniformly rotating i.e. the angular momentum is evenly distributed, whereas
in case B a convective layer is assumed steadily rotating and below this each
spherical shell retains its own angular momentum. The asymptotic result
Veg ~ t=3"/4 is achieved for long time . His results are as follows:-

The most interesting plot is, however, below.This clearly shows the in-
dependence of the final equatorial velocity on the initial angular momentum
for both cases.

Kawaler shows that the simple formulation of angular momentum loss by
the magnetic winds, when applied to evolving pre main-sequence and main-
sequence models, is adequate qualitatively to explore the spin down of low
mass stars. The rotation velocity, at times & 10° years, is independent of

the initial J.
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In summary the evolution of a star appears to be adequately characterised
by only the mass for most of its lifetime (ABCD). One would expect depen-
dence on the angular velocity . However as illustrated above, after the star
has lost most of its angular momentum (at the beginning of its lifetime on
the main-sequence)  settles to a value which only depends on the mass M
and not on the initial conditions. Thus if evolution depends on M & §Q then
Eevotution = E(M,Q) = E(M,Q(M)) = E(M). Eventually the star leaves
the main-sequence having burnt most of its H; to He. The resulting loss of
homogeneity produces a subsequent evolution too rich to be described simply

by the mass.
Low mass stars consist of a radiative interior, which is unmixed and where

nuclear burning takes place, and a surrounding mixed convective zone. At-
tempts to model the radiative interior as a 1-D problem ( depth as the in-
dependent variable ) have proved inadequate. It appears that differential
rotation, which is intimately coupled to the magnetic field, is a crucial pro-
cess in the dynamics and must be included in any description.
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2.1 General Properties and The Virial Theorem
In an inviscid, self-gravitating fluid with no associated magnetic field, the equation of
motion is

D
PpY = VP~ pV¢ (1)
where ¢ is the gravitational potential, that is
g=-V¢.

We define cartesian and cylindrical frames of reference in the following way

’
>

F; 3
o Y Y

~

A

wy

|

!

1
3.
y ¢S4
]

fig. 2.1: Cartesian and Cylindrical Coordinate Systems.

i.e. the z; are the cartesian coordinates, and s, z, and ¢ are the cylindrical polar coordi-
nates with unit vectors as shown. We can also define

x = (z1,22,23)T

In terms of cartesian coordirpates, (1) is

D 0
PDi% = 5P pazJ¢ (1a)

We multiply this equation by z; and integrate over the volume of interest, e.g. the whole
volume of the star. Considering the right hand side of (1a), we see

D D D D
i=v.dV = | Z(pz;v; _ —zv;dV — i—(pdV
/pa: Dtv,dV /Dt(pz v;dV) /th:c vjd /zv,Dt(pd ),

dV = dzldzzd:cs .

where

By definition,

—z;, =7,

Dt
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and, by conservation of mass, since the mass of a parcel of fluid cannot change as it moves
with the fluid,

D

D D
, D oziw; dv) — [ vivipdv
/pz DthdV /;/Dt(pz vJ ) ‘/;vva
=d;"t / zvipdV — 2K |
v

Thus

where K is defined as
1/2/ vivjpdV .
vV

(Note that K = K;; is the kinetic energy of the system).
Now, if the volume of integration V contains all the ,mass of the system, which we

assume is the case if the volume contains the entire mass of the star, then

vIx— xﬂ

where G is the gravitational constant, and dV’ is analogous to dV above. Thus,

/Pz.—¢dV G/ / ”(x’t)"(x D225~ 3) gy ayr

- x'|

Now, if we define

t t 3 - i—Z
Wi = -1 ozveTZG//P(x (=, )z (= = =)@ = %) gy gy

xl|3

then
62:, 1%

W being the grawtatlonal potential energy.
Finally, the last term we need to consider is

0 0
i—pdV =~ | —(z;p)dV - &; dv
/zaj d /aj(zP) bij [ p

’
= —/ zipn;jdS + 6;; [ pdV
S |4

by Gauss’ Divergence theorem, where n is the unit normal to the boundary S of the volume
V. But by definition p is zero there. Therefore, collating all the terms of the integration
of (1a), we see that

d
I ‘/‘;zg‘v,‘pdV =2K;; + W; + bi; /;pdV (2)
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where all the tensors on the right hand side are symmetric over their indices. Thus, if we
multiply across by the alternating tensor ¢;;i, we see that the right hand side of (2) is zero,
and the left hand side, in vector notation, becomes

d
EAxxvpdV—O. (3)

Physically, this equation states that angular momentum is conserved globally.
In the presence of a magnetic field, there is a Lorentz force, and so (1) becomes

-g-V—VP—PV¢+jXB, (3)

where j is current and B is magnetic field. In this case

T x x vpdV = / x X (jxB)pdV , (4)

i.e. in general there may be a nonzero torque, depending on the magnetic field structure.
Returning to (2), from the symmetry over the indices of the right hand side, we see

that d 4
7 /; zvjpdV = 7 /V zjvipdV .
Therefore
d D d D 1d%
&/, Dt‘v,pdV ) zjl—ﬁv.-pdV = fd_ti/ zizjpdV
Thus, if we define the tensor
I,'J' = / a:,-szdV 3
\ 4
we see that
Li=I= [ xPpav,
v
the moment of inertia. Thus (2) can be written in the form
1d°
2 dtzI 2K,J -+ WgJ + 6|J pdV N (5)
which is known as the Virial equation.
If we take the trace of (5) we obtain
ld_2[—2K+W+3/ v (6)
2 diz pars

which expresses the energy balance of the system. We assume that the system of interest
is made up of an ideal gas in a steady state. In the stellar context, deviations from the
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ideal gas law are often quite small, and the evolution of inertia is quite small compared to
timescales of kinetic energy such as the rotation period. Thus these assumptions are often
quite reasonable. For a perfect gas

p/p:RT,

where R, the gas constant, is defined as k/m, where 7 is the mean mass of the particles.
Also, in terms of specific heat capacities at constant pressure (cp) and volume (¢,)

¢p—cv=co(cp/cv—1)=co(y—-1)=R.

Thus (6) may be written as

&
] =2K +W+3(y-1)Ur, (7)

[T

where

UTE/ c,,TpdV
v

is the total thermal energy, which must be a positive quantity. In the case of an approxi-
mately steady state, the right hand side of (7) is assumed zero, and so

9K +W+3(y-=1)Ur =0. (8)

This equation shows the balance of energy in the star system. W is negative, and the
other two terms are positive (¢, > ¢, always). If we initially ignore macroscopic kinetic
energy, we see that, under contraction, gravitational energy must change into thermal en-
ergy. However, in fast rotating stars, Uz may be considered small, yet positive. Clearly
K can never be greater than W/2. But, under contraction, conservation of angular mo-
mentum requires the star system to spin faster. Thus excess kinetic energy must be lost
in some way, i.e. radiated. Nevertheless, this is a gross simplification of the true picture.
An increase in thermal energy causes an expansion that will vary both W and K. So a
parameter of inierest is the ratio of kinetic energy K to the absolute magnitude of the
gravitational potential energy |W/|.

A rough measure of this for a star of radius Ry and rotation rate Q is IQ?/|W|. Now

Ro
I~ 41rp/ ridr =3MR3/5 (M =4/3npR}),
0
and

|W| ~ GM/2R, .

Thus

IN?/|W|~Q*R}/GM
the oblateness of the star. This is usually quite small (in the case of the sun the value is
~ 2% 107%) but may approach higher values (of about 0.1) in fast rotators. If we include
a magnetic field,we also see that, in stellar terms, the magnetic energy is small compared
to the gravitational energy.
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2.3 Hydrostatic Equilibrium

Let us thus investigate the implications of the following assumptions:
i) the star is isolated in space, and rotates about a fixed axis (which, without loss of
generality, we assume to be the z axis) with angular velocity (s, z);
ii) the system is stationary in an inertial frame, i.e. we have purely rotational motion
(often referred to as hydrostatic motion);
iii) dissipative forces may be neglected;
iv) no electromagnetic force is acting on the star.
With these assumptions, the equation of motion becomes

0= —-:;Vp Vo + 8s0%(s, 2) . 9)
If we now take the curl of (9), we eliminate the gravitational term and so
0= -—V-:;XVp + V[sQ%(s, 2)] x5 . (10)

Thus, if Q is purely a function of s the second term in (10) is zero. Thus, for (10) to be
satisfied, surfaces of equal pressure (isobars) and equal density (isopycnals) must coincide.
This is referred to as a barotropic state. In a barotropic state, since {} is purely a
function of s, we may rewrite (9) as

0= —-:;Vp -Vé+ V/ s'0%(s',z)ds' (9a)
0

where

/ s'Q%(s',z)ds'
0

is referred to as the centrifugal potential. Now we see that we can define a “total” or
effective gravitational potential ¥ that takes into account the effect of rotation, where

U=¢ -—/ s'Q%(s',z)ds' (10)
0
and

ge = -VV¥

is called the effective gravity.
(As a sideline, in the absence of a barotropic assumption, an effective gravity is often
defined as
ge = V¢ +830%(s,2) .

In this case, we see from (9) that effective gravity, defined in this way, is always orthogonal
to isobars.)
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2.2 Differential Rotation and Kinetic Energy

We have already alluded to the effect of the principle of conservation of angular momentum
on the evolution of the rotational energy. Let us now consider this more closely in the case
of a spherically symmetric rotating star of given mass and radius. If we consider this star
in a cylindrical coordinate frame as defined above, the angular momentum J is given by

J =/ s2Q(s,z)pdV .
\ 4

If we now perturb an initial constant rotation rate £ to
(s, z) = Qo + 8Q(s,2) ,

we see that the kinetic energy of the new configuration is given by

K = 1/2/ s2Q%pdV = 1/2/ szngpdv+1/2/ 32592pdV+Qo/ s26QpdV .
v |4 \ 4

1
But
J =/ szﬂopdV+/ s26QpdV = Jy
14 , v
thus
/ s26QpdV =0
v
and

K =K, + 1/2/ s26Q%pdV .
v
Thus any perturbation to uniform angular rotation can only increase kinetic energy, and
differential rotation may be considered as a storage of kinetic energy. This has an important
consequence, since any dissipation within the system will tend to reduce the kinetic energy,
and hence we have a tendency to uniform rotation.
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Now, in the barotropic case, we have

iI'-V'p =-VV¥ (11)
p
1
ie. —dp= -d¥.
Sdp

Now, since on a surface of constant ¥, d¥ = 0, we see that dp = 0 there, i.e. the surface is
also a surface of constant p. We have already demonstrated that the surfaces of constant
p and p coincide. These relationships are usually signified by writing p and p purely as
functions of ¥, though of course, ¥ as a function of p conveys the same information.

Alternatively, if we allow the rotation rate to vary along its rotation axis (i.e. let
be a function of z as well as s) we have what is known as a baroclinic star. The curl of
(9) becomes

0=-vi pr+ ¢ [.s’ﬂ(s z)] . (12)

The second term quantifies the effect of differential rotation on the hydrostatic equilibrium
of the fluid. In this case, isobars and isopycnals are orientated at an angle, which is a
characteristic of baroclinicity.

In summary, barotropes are distinguished by 52 ‘m =0, p(¥), p(¥), where ¥ is defined
by (10).

2.4 The Von Zeipel Paradox

In the stellar context, variations of rotation rate along z are often relatively small, and so,
as a first approximation, we investigate the implications of a state of thermal equilibrium
on a barotropic star. If we assume that a barotropic star is in strict radiative equilibrium,
the radiative flux F and the nuclear reaction rate ¢x are related by

V.F = pen . (13)

(This is just the evolution equation for specific entropy in thermal equilibrium.) We will
also assume that we are deep enough in the star so that it is optically thick. Then F is
given by the Eddington approximation, i.e.

F=—xVT, (14)

where x = x(p,T) is the radiative conductivity. Let us assume that the star has uniform
chemical composition, so that the temperature is a function of p and p. Thus in such a
star, all dependent variables can be expressed in terms of ¥, the effective gravitational
potential defined by (10). Thus (13) can be rewritten as

0= (BT + pen (15)

S B o] [(F) ] o
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If we now make the further assumption of uniform rotation, (i.e. assume = {2, acon-
stant), we see that the right hand side of (16) is purely a function of ¥, and hence is
constant on level surfaces of ¥, since by definition,

V¥ =202 — 4nGp . (17)
However, effective gravity g. (= —V W) is not a constant on level surfaces in general, and
thus (16) can only be satisfied if

aT

_— = 1

X3y C  a constant, (18)

and, from (17),

—4ngC (1- B (19)

N =T 21Gp )

This solution is highly unphysical, since €x required to maintain radiative equilibrium is
virtually depth independent except near the surface, where it is a function of the rotation
rate. Also, the model breaks down in the limit of a surface of zero density. This is known
as Von Zeipel’s Paradox, who first studied this problem in 1924. Various extensions of
this paradox to more general rotation laws have been made, and so it is necessary to allow
a barotropic star to depart from thermal equilibrium, i.e considering the specific entropy
equation,

pT (%?— + u.VS) = —=V.F + pen
=pea #0. (20)

The rotztion thus acts as if it generated sources and/or sinks of energy, with an energy
generation rate eg per unit mass. The presence of this source term on the right hand side
of (20) iriplies either that the specific entropy will be locally modified or that motions will
occur, or indeed a combination of these two effects.

Notes submitted by Richard Kerswell and Colm-cille Caulfield.
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LECTURE VI

1 Governing Equations; Characteristic Time-Scales

As shown in the previous lecture, we cannot have a rotating star in thermodynamic and
hydrostatic equilibrium. Therefore, we must solve the full set of equations:

p %+(6-V)i)’] = ~Vp—pVp+V.7 (1)
dp
Ll (p?) = 2
5t TV (p?) =0 (2)
pT [%—f +7 VS] = V .xVT + pe, + [viscous dissipation of heat) (3)
O0c; .
iy +v-Ve| = sources+ sinks+ V.DVg (4)

where ¥ = 3-dimensional velocity relative to an inertial frame (i.e. including velocity due
to rotation of the star), 7 = viscous stress tensor, x = conductivity, €, = nuclear reaction
rate, D = diffusivity, and ¢; = concentration of substance i. (Thus there will be an equation
of the form (4) for each substance.) In addition, we have Poisson’s Law, describing the
gravitational field:

Vip = 4nGp (5)
and finally, we have the equation of state:
p=p(pTc) (6)
and likewise:
en = €a(p T, i) (7)

To solve these equations, we need to separate scales, both spatially and tempcrally.
Spatially, we have two natural scales: microscopic and macroscopic. For instance, in the
convection zone of a star, diffusion of energy occurs primarily on a microscopic scale (and
a fast time scale) and is governed by the following flux equation:

-

F. = pC,D,T - VS. (8)

Temporally, there is a wide range of scales, as illustrated by Fig. 1. The smaller
time scales correspond to hydrostatic balance, rotation, and convection. We are interested
in the larger time scales, corresponding to large scale thermal and nuclear adjustments.
Thus we can neglect terms in the above equations which correspond to fast time scales,
i.e. Op/0t and 37/0t. This is because density and velocity changes are much faster than
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Figure 2: Axisymmetric Coordinate System

entropy and concentration. (Entropy changes are related to average temperature changes
and concentration changes are due to nuclear reactions, both of which occur on slow time
scales, as shown by Fig. 1.)

Therefore, let us rewrite the above equation set. We assume hydrostatic balance and
axisymmetry (on these large time scales; see Fig. 1) and we make the anelastic assumption
(8p/0t = 0, as explained above). Furthermore, we split the velocity into meridional (%) and
azimuthal components: 7 = @(s,z) + ¢ (sQ + u4), where 2 = average rotation rate of the
star (considered constant). Using these assumptions we arrive at:

—2Qpugs = ~Vp-—pVi+ (V . ;’)m (9)
0 = 2 | _ 2 (Yo
p E(sud,) +4-V (s Q+ sud,)- = V. [pus \Y (T)] (10)
v. pd’ =0 (11)
T [—— +u- VS = V. (xVT)+ pen + visc diss of heat (12)
66,’ - ] .
p [ o +@-Ve| — sources + sinks + V- (DV¢) (13)
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where ¥ = ¢ — $5?Q? and (V . 1::’) = viscous stress in the meridional plane.

This set of equations has only three time-derivatives and thus should be relatively easy
to solve if the transport coefficients of mass (D), momentum (v), and energy (x) plus the
nuclear reaction rate (¢,) are prescribed. However, identifying these coefficients can be
difficult, because they must quantify transport in turbulent motion.

2 Waves

Before solving the set of equations for long time scales, let us investigate the effects of
leaving 8p/8t and 87/t in place. The momentum equation then is:

ou

1
+20xd=-=Vp-V 14
YT SVP-V¢ (14)
where @ = 3-dimensional velocity relative to a rotating reference frame and ) = rotation
rate of the star. Note that we have neglected the stress term V - 7 of (1) because the
viscosity is assumed to be small.

Now, taking the curl of (14) yields:

0 0i 29
E-(Vx %) — 295-——(11 Vp)z=-V (p) x Vp. (15)

We have used the anelastic assumption dp/0t = 0 to give V-4 = —% (% - Vp) and the vector
identity:
Vxfixi=4.Vi-0.va+3(V-9)-2(V.q) (16)
where the first and last terms vanish because we consider {3 to be spatially constant.
In the special case of zero stratification (Vp = 0), equation (15) describes so-called
inertial waves. When Vp # 0, there is a strong coupling between those waves and gravity

(or internal) waves. Only purely horizontal waves do not feel the stratification (since then
% - Vp = 0); we consider them next.

Writing (14) in spherical coordinates, projecting everything onto a horizontal plane (see
Fig. 3) yields:

a‘u,o _ 1 ap

——at - 2QC080 Uy = —;% (17)
Ouy 1 Jp

E—+2Qc050 Ug = —prsinogﬁ (18)
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Figure 3: Spherical Coordinate System

Eliminating the pressure then yields:

_gf -36—0 (sin 8 ug) — %%f —2Q,sin20 ug =0 (19)

Now we look for toroidal solutions in terms of Legendre Polynomials and Fourier modes in
the form:

im P (cos 6

ug = ——:i-n(—o—)exp[i(maS—at)] (20)
OP™ (cos @

u = ~ZEES0 i (mo— ot) (21)

(Note that this velocity field is divergence-free.) The solutions obey the following dispersion
relation:
[on(n 4+ 1) + 2Qm] P (cos8)exp [i (¢ — ot)] = 0 (22)

or:
o 20

= wave speed = —ml—)-

These solutions are analogous to planetary waves in oceanography.

(23)

3 Convective-Type Instabilities

Returning once more to the case of long time scales (where we disregard 0p/0t and 07/0t),
we recognize that we have the following feedback loop: Instabilities, then, play a key role
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large time scale evolutions
(approx. 1E8 years)

transport of average quantities;

instabilities feeds back to
(hours, days) large scale motions
turbulence

(small scale motions)

Figure 4: Feedback Loop of Instabilities

in the long time scale motions of a star. Let us therefore consider the different kinds of
instabilities which can arise in the system.

3.1 Double Diffusive Instabilities

First, consider a positive entropy gradient in a non-rotating star. (See Figure 5.) If a
parcel of matter is disturbed from its original position A to position B, then it tends to go
back to A, since the surrounding environment has higher temperature and lower density.
Thus an oscillation develops in the system. If the star is homogeneous then the parcel will
oscillate with a buoyancy frequency:

_1dS _ g 0T InT

Nz = 5 I\ a1 Jadiabatic — 53 —
cp dr Hp[(alnp)d bat alnp]

(24)

If N? < 0 then we have instability (negative entropy gradient), while if N? > 0 then the
system is in a state of stable equilibrium. If the medium is chemically stratified (i.e. we have
a gradient of a molecular weight which acts as a restoring forcz) the buoyancy frequency
has two components

N? = Nj + N} (25)

where N7 is as before and N2 = g/H,(81n p/31n p). Here, p is the molecular weight.

Let us examine the effect of dissipation. In a system with entropy stratification, insta-
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Figure 5: Positive entropy gradient
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Figure 6: Stable oscillatory state

const
t.ty

N*< — (26)

where t, is a viscous diffusion time and ¢4 is a thermal diffusion time. If N2 > 0 and Nj
is negligible then there are two cases according to t4 3> & or ta ~ . If t4 > L then the
system is in a stable oscillatory state. (See Figure 6.)

Ifty ~ % then the oscillations tends to die out. (See Figure 7.) Thus, if thermal diffusion
is fast enough (i.e. t4 small enough ) then it weakens the restoring force, damping out the

motion.

The case when N? > 0 and N} and N? have opposite signs is interesting because time
scales for diffusion of matter and temperature are quite different. This leads to a double-
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Figure 7: Oscillations die out

Salty warm

Fresh cold

Figure 8: Salt warm water on top of cool fresh water

diffusive instability well known in Geophysical Fluid Dynamics, but generally ignored in
Astrophysical Fluid Dynamics.

First consider N2 > 0 and N2 < 0. As an oceanographic example, suppose we have
salty warm water on top of cool fresh water. (See Figure 8.) If the salinity exceeds some
threshold value in the top laye: then we have the famous salt fingers instability. There is
a stellar analogy with a binary star system in which one member, having burned all the
hydrogen in its core, throws off helium-rich matter to its partner. The companion star gains
heavier matter and experiences double-diffusive instability.

If N} < 0 and N? > 0 (for example a destabilizing thermal gradient and a stabilizing
salinity gradient) then oscillations grow in the system and we have thermohaline convection
or overstability; in astrophysics this may occur in the convection zone of massive stars, and
is called semi-convection. (See Figure 9.)
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3.2 Baroclinic Instabilities

Now, let us add rotation to the system. First consider an angular momentum gradient
(by analogy with the entropy gradient in the non-rotating case). (See Figure 10.) If we try
to displace a parcel of matter as shown above, the conservation of angular momentum will
act as a restoring force. Similarly to the case of a non-rotating star, we define the Rayleigh

frequency by

Nz = L2 q) (27)

07 s3ds
As before we have stability if N3 > 0 and instability if N3 < 0.

Now, we turn our attention to a system which has both rotation and stratification.
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Assume § = (s, z). Then taking the curl of hydrostatic equation:

0= -1vpP 4 vetisn?) (28)
P
we arrive at .
0=-V(=)x VP +V(sQ?) x 5 (29)
p
For a perfect gas we have J
Tds = ¢,dT — -2 (30)
P
Thus,
TdS = ¢,dT — Zdin P (31)
p
This implies
1 R
—dS=(1-——)dIlnP ~dlnp (32)
S %

Substituting this last equation into equation (29) yields:

1vs x VP =V(sQ?) x & (33)
& P

We can approximate the above equation by

1 dS, dP 0
cppldn”dnlsma 5,50 (34)
. . .. dP )
where n is outward normal and a is a baroclinic angle between I and I Using
n
hydrostatic balance we obtain
Nisina = —a—(sﬂz) = —’Lﬁsina (35)
0z cp dr

Note that if ) increases towards the equator then VS points outward as shown in Figure
11. Rotating this picture and choosing surfaces of constant entropy and pressure we obtain
Figure 12. Two possible scenarios for the displaced parcel of matter are displayed. In case
(1) we have stability because dS/dr > 0. In case (2) the displaced parcel of matter is
warmer and lighter than its environment and tends to move away due to buoyancy. Thus
the shaded region in Figure 12 is unstable. However, for the case of an axisymmetric
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Figure 11: Rotation and stratification
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Figure 12: Rotation and stratification
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Figure 13: Coordinate system

displacement, the system is still stable if N3 > 0, since type (2) displacements are ruled
out by the conservation of angular momentum.

If we add dissipation with v < «, the system is unstable when N < £N?, where N? is
a buoyancy frequency described earlier.

Another instability occurs in axisymmetric system when N?¥ < ls%z—l. This instability
is called the Goldreich-Schubert-Fricke instability.

For non-axisymmetric displacements, the necessary condition for linear instability is
that OII/0y = 0 in the domain where II is the potential vorticity:

I=(20+V x u)_v;g (36)

and 3% is the derivative in the latitudinal direction’ (see Figure 13). Thus, we have insta-
bility if there is an inflection point in the longitudinal direction of the velocity field. It can
be shown? that

on U, 18 f*, 8u

) 0N PT;

5 =65 (37)

where g = Q—%"—o, J = Qsin . Thus, the necessary condition for instability dII/dy = 0 is
analogous to the Rayleigh criterion for parallel shear flows.
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Lecture VII.

Shear Instabilities

1 Introduction

Upon the main sequence, where they spend most of their life burning hydrogen, stars can
be roughly divided into two classes. The low mass stars (with masses less than 1.6 Mp)
have convective envelopes and mostly rotate slowly. Higher mass stars have convective cores
and usually rotate comparatively quickly. Within these convection zones, the velocity of
the flows can become quite large, and in some cases approaches the speed of sound. Conse-
quently the timescale upon which quantities are advected throughout the convection zone is
very short (of the order of months) in comparison to the typical times upon which thermal
or evolutionary adjustments take place. In the radiative regions of the star, motions gener-
ated by the rotation are much slower. These motions (instabilities) can, however, transport
chemical elements and momentum and are therefore important for the slow adjustments and
evolution of the star. In fact their effect can be embodied within the transport coefficients
(such as viscosity and diffusion) that occur in the fluid dynamic equations governing the
adjustments of the star.

Our primary concern are shear flows, since these are common in differentially rotating
stars. Instabilities in shear flows were first investigated by Rayleigh (1880). He showed that
a necessary condition for the existence of a linear instability within the mean flow of an
inviscid fluid is simply that there be an inflexion point in the velocity profile in the direction
of the shear (as illustrated in figure 1). This result was extended by Fjortoft (1950) who
showed that if there was a shear in the background flow, then for linear instability, the
vorticity must be locally enhanced at the inflexion point.

Y

Y

5—
Cross-stream velocity, UJ dU/dy

Figure 1. An unstable shear flow. Shown are the cross-stream velocity profile and the vorticity.
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Figure 2: The range of linearly unstable horizontal wavenumbers as a function of the
Reynolds number of the flow Re. The background flow has no shear.

This flow is unstable to small perturbations. If the perturbation has the dependance
e'** upon the coordinate in the direction of the fiow, z, then the perturbation is unstable
provided kd < O(1) where d is the characteristic scale of the velocity inflexion, and the
mean flow has no background shear. That is, there exist long-wave instabilities.

When the fluid is viscous, then the instability must also compete against dissipation.
The range of linearly unstable wavenumbers as a function of the effective Reynolds number
Re = |dU/dz| d®/U, is shown in figure 2. (In this example there is no background shearing
motion.)

2 Poiseuille Flow

Plane Poiseuille flow describes the flow of fluid between two plane-parallel plates. The mean
velocity profile is parabolic and is strongly influenced by the presence of the boundaries. In
fact it is the presence of these boundaries that causes the flow to become linearly unstable
at a Reynolds number of R ~6000. Experimentally the onset of instability occurs at critical
Reynolds number of R, ~ 1000. This is indicative that there are finite amplitude instabilities
at lower values of R. Such instabilities can be examined by developing the velocity potential
of the perturbation to the mean flow U(y,t) as a set of discrete modes:

u=xU(y,t) = V x 2¥(z,y,t), (1)
with
N .
Y(y,t) = D_ dhaly,t) €. (2)
n=1]
This expansion has the advantage that the variation of the perturbation in the direction
of the shear can be analyzed in detail at the expense of retaining only a few modes to

describe the variation in the direction of the mean flow. Of course one still has to specify
the wavenumber k, but it can be treated as a free parameter and varied to estimate its effect
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Figure 3:

upon the solutions. A reasonable choice of its value might be that value that corresponds
to the critical Reynolds number. The nonlinear system derived for the case N = 2 was
investigated by Zahn et al. (1974). They found that this system does indeed exhibit finite
amplitude instabilities at Reynolds numbers below the critical value for the onset of linear
instability. In fact the critical Reynolds number was found to be reduced to ~ 3000. The
range of unstable solutions with a given amplitude as functions of the wavenumber k and the
Reynolds number is indicated in the three-dimensional plot shown in figure 3 (taken from
Zahn et al., 1974). The nonlinear solutions that figure 3 is derived from can in some cases
be described by stationary waves in some Galilean frame moving in the direction of the flow
with speed c. These are, however, not observed in the experiments, suggesting that even
these are unstable to some other solutions. A further analysis by Orszag and Kells (1980)
seems to confirm this; These two-dimensional solutions are unstable to three-dimensional
perturbations. This reduces the critical Reynolds number even further and brings tolerable
agreement between theory and experiment.
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Cross-stream velocity, U du /dy

Figure 4: Couette flow and a peruturbed Couette flow containing an inflexion point.

3 Plane Couette Flow

Couette flow describes the motion of a fluid with a uniform shear transverse to the direction
of the flow (figure 4). Theoretically this flow is linearly stable, but it is found to be unstable
in the laboratory. When the flow also contains a superposed inflexion point, as illustrated

in figure 4, the flow unsurprisingly becomes linearly unstable.
Lerner and Knobloch (1987) has considered the inviscid case and finds unstable wavenum-

bers with k < ¢/d, where ¢ is the fractional increase in the vorticity. Since the growth rate
of the instability must exceed the rate of viscous dissipation one expects instability for

o~ |dU/dyle > kv/d. (3)

If the characteristic scale of the perturbation is L = x/k then these conditions can be
rewritten in terms of the effective Reynolds number of the flow,

Re = |dU/dy|e L [v > (L/d)?,

and md/L < e. These conditions define a region of the plane ¢ — (d/L) in which instabilities
exist (figure 5). There exists a critical value of € for the flow which scales as Re~*/3 (Dubrulle
and Zahn, 1990). A finite-amplitude analysis of Couette flow has yet to be performed.

4 Stabilization through Stratification

Under certain conditions shear flows can become stabilized. When the fluid is stratified in
the direction of the shear, a necessary condition for linear stability can be written in terms

of the Richardson number
N2

B = g

> %, (5)
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Figure 5: The range of linearly unstable perturbations with a characteristic scale L shown
as a region in the ¢ — (d/L) plane.

where N is the buoyancy or Brunt-Viisalli frequency and the fluid is stratified in the
direction of y. Therefore stratification can loosely be thought of as providing a stabilization

(but see Thorpe, 1969).

However, stratification is not always felt by the instability. If the characteristic timescale
upon which the disturbance is smoothed out by the diffusion of heat, x/d* (where & is the
diffusivity), is shorter than the characteristic timescale of the perturbation, |dU/dy|!, then
the stratification is not felt by the perturbation. Therefore some criterion concerning the
diffusion timescale must be introduced into equation (5). If the Peclet number is written as

Pe = |dU/dy|d?/x,
then the necessary condition can be written as

N2

B= o

[Maz(1, Pe)]™! > O(1).

If we introduce the Reynolds number R = |dU/dy|d?/v, then where the Peclet number
exceeds one, the condition becomes

N2
W(V/K)R > 0(1)
Since instability will only occur when the Reynolds number exceeds a critical value R., the
complete condition for stability is

N2

W(V/K)Rc > O(l)
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Another possible restoring force that may cause stabilization in stars is that provided by
rotation. The analogue to equation (5), the necessary condition for stability in the rotating
fluid would be

Ng

Ri=—"—o
' T U] dyT?

> 0(1),

where Ng is now the Rayleigh frequency. However, in contrast with a stratification, it
appears that the coriolis force is not capable of stabilizing the flow.

References

1.

I

Dubrulle, B., and Zahn, Z.-P. (1990). Submitted to J. Fluid Mech..
Fjortoft, R. (1950). Geofys. Publ., 17.

Lerner, J., and Knobloch, E. (1988). J. Fluid Mech., 198, 117.

Orszag, S.A., and Kells, L.C. (1980). J. Fluid Mech., 96, 159.

Rayleigh (1880). Scientific Papers, 1, 474 (Cambridge university press).
Thorpe, S.A. (1969). J. Fluid Mech., 38, 673.

Zahn, J.-P., Toomre, J., Spiegel, E.A., and Gough, D.O. (1974). J. Fluid Mech., 84,
319.

Prepared by N.J. Balmforth and Brian Chaboyer

87




Lecture VIII.

Shear Flow Instability
and the Transition to Turbulence

1 Taylor—-Couette Flow

The Taylor-Couette experiment provides another example of shear flow instabil-
ity. In a classic paper, G. I. Taylor (1923) described experimental and analytical results
concerning the flow between two coaxial cylinders of radii R, and R,, with Ry, < R,, ro-
tating with angular velocities {}; and 2;, respectively. We begin our analysis of such an
experiment by looking for steady solutions. We will use cylindrical coordinates where s de-
notes radius, ¢ azimuthal angle and z displacement along the axis. The radial symmetry of
the problem suggests that we look for solutions where the pressure p and angular rotation
rate 2 depend only upon s, and where the other two components of the velocity are zero.
The 3 and ¢ components of the Navier-Stokes equations then simplify to

dp 2
E PSQ ’ (1)
1d{ ,d0
—_ —_— = . 2
s2ds (3 ds) 0 )
Equation (2) has solutions of the form s". The general solution is
k
Q(s) = 8—; +ka (3)

where the constants k; and k; are determined by the boundary conditions Q(R;) = Q, and
Q(R;) = Q. In particular

Q,R: — O\, R?
ky = —=——— . 4

1.1 The Rayleigh condition for linear inviscid stability

If we ignore viscosity, there is a simple condition for instability of the flow (3) to
small perturbations. This condition is the analog (in a cylindrical geometry) of the well
known Rayleigh inflection point criterion for planar shear flows. If the angular momentum
|s2Q(8)| incieases with increasing s, then a fluid parcel displaced in radius experiences a
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restoring force, otherwise it is pushed further away from its initial radius. Mathematically,
the Rayleigh condition (necessary for stability) is that

n% (s?) = 25Qk; > 0, for all s in the interval By < s < R; . (5)
Since vorticity w = d/ds(s?Q)/s, this condition is equivalent to the statement that w(s)
and (s) have the same sign everywhere in the flow.

If the cylinders are rotating in opposite directiors, then §(s) changes sign be-
tween them, and since k; is constant (5) is not satisfied and thus the flow is unstable. If
the cylinders are rotating in the same direction (; > 0,2, > 0) the Rayleigh condition is
satisfied if and only if k; > 0, or

QzRi > QlRf . (6)

Therefore, when the inner cylinder is at rest (; = 0), the Rayleigh condition is satisfied
whereas if the outer cylinder is at rest (Q2; = 0), the Rayleigh condition is not satisfied and
the flow is unstable.

We note two important limitations of the above analysis. First, the Rayleigh
condition (5) is not sufficient for stability. The above analysis applies only to axisymmetric
disturbances, and the flow may be linearly unstable to more general types of disturbances.
Second, the Reynolds number of the flow was assumed to be infinite, and nonzero viscosity
may stabilize flows that do not satisfy (5). Despite these limitations, the Rayleigh condition
proves a simple rule of thumb for stability in the case of large Reynolds number.

1.2 Two types of instability

Figure 1 summarizes the stability regimes for Taylor-Couette flow. The Rayleigh
criterion (6) gives the inviscid linear stability boundary Q,R2 = Q; R?. The region of linear
instability, including viscosity, was calculated from theory by Taylor (1923). This region
is eventually entered as the velocity of the inner cylinder increases. Experimentally, when
the flow enters the region of linear instability it undergoes a transition into a different type
of steady flow. Taylor vortices appear, which are radially symmetric circulations similar
in appearance to convection cells (Figure 2). The agreement between the theoretical and
experimental linear stability boundaries is excellent. As the velocity of the inner cylinder is
increased further several more transitions occur until the motion is three dimensional and
eventually turbulent.

By deriving a bound on the total energy of the flow, Joseph & Munson (1970)
showed that in the hatched region of Figure 1, the flow was stable to perturbations of
arbitrary amplitude. However, the flow is not stable to finite amplitude disturbances in
the entire region of linear stability. In fact, as early experiments demonstrated (Wendt,
1933), a completely different kind of instability from that seen by Taylor can occur. Wendt
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Figure 1: Summary of stability regimes for Taylor-Couette flow.

conducted an experiment in which the inner cylinder was at rest (in this regime the flow
(3) is always linearly stable). At he increased the speed of the outer cylinder, he observed
a transition near Reynolds number R = R, to a turbulent flow which was intermittent in
snace. When the outer cylinder was then slowed down the instability persisted until R
dropped below R., where R. < R;. From this we can deduce that the instability requires
a finite kick, or is a subcritical instability, although Wendt himself did not give such an
explanation.

Coles (1965) obtained the cubcritical instability by starting in the linearly un-

D re=—")
J £

Figure 2: Taylor vortices between coaxial cylinders.
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stable region and then slowly varying the rotation rates {2; and {2, in such a way that
the instability was always present yet the inner cylinder eventually was brought to rest.
Experimental results support the hypothesis that the subcritical instability is found only
above the critical Reynolds number R., which has been estimated experimentally as

_ %Ry(R; — Ry)

v

R. ~ 2000 . (7)

It is interesting that this value is close to the critical Reynolds number for plane Couette
flow.

2 Geostrophic Turbulence

The standard view of three dimensional turbulence is that the energy of the
flow moves from large scales to small scales where it is eventually dissipated by viscosity.
However, the large scale motions of planetary atmospheres and oceans are to leading order
two dimensional and geostrophic (i.e. horizontal pressure gradient balanced by the Coriolis
force). The energy cascade of geostrophic flows differs greatly from the energy cascade
characteristic of three dimensional turbulence, and in this section we examine the relevance
of the theory of geostrophic turbulence (Rhines, 1975; Pedlosky 1987) to stellar dynamics.

In a two dimensional geostrophic turbulence, the peak of the energy spectrum
shifts in time towards a wavenumber 1/R4, where Ry is called the Rossby deformation

radius and is defined by
_NH

R 7 (8)
Here N is the Brunt-Viisild frequency and H is the pressure scale height. The parameter
f = 2Qsin 6, called the effective Coriolis parameter, is the component of the planetary
vorticity )2 normal to the planetary surface at latitude 8. The Rossby deformation radius
is very large near the equator and approaches zero at the poles, but for the mid-latitude
regions of the earth, Ry ~ 100 km for the oceans and Ry ~ 1000 km for the atmosphere.
For many stars, the Rossby deformation radius at mid-latitudes is on the order of the
radius of the star r (if the stratification is felt, i.e. Péclet number much larger than unity).
Thus the :oramon oceanic and atmospheric approximation that f is constant (or linear)
over a small portion of the surface will be invalid in general, and evidently we must include
from the start the full spherical geometry of the problem.
The argument of the last paragraph leads us to believe that if geostrophic eddies
exist in stars, their horizontal length scale L may be comparable to the stellar radius r.
Let U be a typical velocity in such an eddy. If the turnover time of the eddy U/L is greater
than a rotation period, the eddy can excite Rossby waves—the characteristic low frequency
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waves common in the earth’s atmosphere and oceans. Presumably if U/L is comparable to
the frequency of a Rossby wave, the eddy will disperse as a packet of Rossby waves. Thus,
a persistent geostrophic eddy must satisfy

U Bl

I Tint (L/Ra)? ’ ©

where [ and n are the horizontal wavenumbers of the Rossby wave. The parameter 3 is
defined by
ﬂ=2ﬂc050=l%j0_‘ ' (10)
r r
When R4 < r, B is approximately constant in a region around the latitude § = 6, (this is
the case in atmospheric and oceanic situations). However, for a star Ry ~ v, and 3 varies
considerably over the problem. In particular, B goes to zero at the poles, which are regions
where Rossby waves cannot exist. Once again, a complete treatment of the problem is
more complex as it must take into account the sphericity of the star, but the analysis here
at least gives us an idea of what may be expected.

2.1 Dissipation of Energy

We now address the problem of the dissipation of energy in the horizontal modes.
It is clear, though that eddies and waves dissipate energy differently. Where there are
eddies, one can form a diffusivity from the largest length and velocity scales and reasonably
expect this diffusivity to damp out the eddies. In waves, which can transport momentum,
however, dissipation is much weaker, and may also occur in wave breaking. Thus in order
to know how energy is dissipated at any given point in the flow, we must know in which
regimes to expect eddies and in which regimes to expect waves.
A clue is given by the Rossby number Ro = u/2Q)l. The momentum equation
for a rotating fluid contains the sum of advection and Coriolis terms:

(u-Viu+22 xu

Letting [ be a characteristic length, we can estimate the magnitude of the advection term by
u?/l and the magnitude of the Coriolis term by 2Qu. Their quotient, the Rossby number,
then tells us the relative importance of advection vs. Coriolis forces for the flow. For
example, on small length scales Ro > 1 and we expect the Coriolis force to be negligible.
In these regimes, then, the flow should exhibit three-dimensional character and an inertial
cascade leading to viscous dissipation. When Ro < 1 rotation is important and the flow
should posess anisotropic character and presumably waves. Hopfinger, Browand, and Gagne
devised an experiment which demonstrates these different flow patterns on different scales
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Figure 3: Schematic of the experimental set-up of Hopfinger, Browand, and Gagne with
results.

in a rotating fluid. Their set-up, diagrammed with their findings in Fig. 3, consisted of a
circular cylindrical tank which could be rotated about its axis. They introduced energy
into the system by oscillating a grid close to the bottom end of their tank. They found
turbulent eddies near the oscillating grid and oscillatory disturbances toward the other end
of the tank, since the turn-over rate scales as u/l ~ z~%, the Rossby number decreases
with height. The transition from eddies to waves occurred at the critical Rossby number
Rog;, = 0.2, with eddies in the region where Ro > 0.2 and waves in the region where
Ro < 0.2 which agrees with our previous arguments.

2.2 Stabilizing Effect of a Composition Gradient

Before we resume our discussion of stars, let us briefly discuss an experiment by
Stillinger, Mellard, and van Atta. They maintained a salinity gradient in a rectangular
tank which they disturbed at one end with an oscillating grid (Fig. 4). Recall that for our
purposes in stars, a salinity gradient has the same characteristics as a molecular weight
gradient provifded by elements heavier than hydrogen.

Fig. 5 summarizes their results with the following scales also plotted: dissipation
scale, characteristic length scale, and the Ozmidov scale, which is the scale for which
u/l = N, where N, is the buoyancy frequency. Their results show the usual progression
of eddies near the grid, a transition region with fewer and fewer eddies and more and more
wave characteristics, followed by waves only beyond a certain point. What is surprising,
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though, is that the eddy-only turbulent region is so short, and that the wave-only region
begins so soon. Thus, the experiment shows that a salinity gradient (i. e. mass gradient
in stars) has an anisotropic effect on the flow. Indeed the group reports that the velocity

u ~ z~! which means that (since length I ~ z) u/l ~ 272,

2.3 Vertical Diffusivity in Rotating Stars

Let us now use these ideas to begin to build a theory of rotating stars. We
will begin by determining the eddy diffusivity. Fig. 6 is a graph showing the distribution
of eddies of size I and velocity u. Line a, along’ which ul = v, we will call the viscous
dissipation line. We are interested in the region above the viscous dissipation line where
Re > 1. Line b, along which u/l = , we will call the Rossby line. The Rossby line
divides the region above the viscous dissipation line into two regions: region A above the
Rossby line where Ro > 1, and region B below the Rossby line where Ro < 1. In region
A we expect three-dimensional turbulence obeying u®/l = ¢,, where ¢ is the generation
rate of turbulent kinetic energy. This relation, which is equivalent to Kolmogorov’s k=5/3
law, is in Fig. 6 as line e, which we will naturally call the Kolmogorov line. In region .,
where Coriolis forces make the motion two-dimensional, we expect geostrophic turbul_.nce,
or waves. It is clear from the above that the velocity v and the length [ are the important
parameters. The eddy diffusivity should be their product when they are largest in region
A. This is clearly at the intersection of the Rossby line with the Kolmogorov line which is

marked as a in Fig. 6. At a, u = {/¢,/Q and | = /¢, /3. The vertical diftusivity, D,, is

thus ¢
t
D, = 0

95




In the presence of a molecular weight gradient, the Rossby line is replaced by a similar line
where u/l = N2, when N2 > Q?, and the vertical diffusivity is then

€t

D, = <.
N

3 Thermal Imbalances in a Barotropic Stars

Now that we understand how rotation affects instabilities, let us begin to consider its
effect on the star as a whole. Recall that although rotating stars can be in hydrostatic
equilibrium, since rotation acts as if it generates sources and sinks of energy, radiative
equilibrium cannot be achieved, and therefore

pT(%—f—+u-VS’) = —V.F +pe, (11)
= peg # 0
where F = —xVT is the heat flux and ¢q is the energy generation rate per unit mass.

We will compute ¢ in the manner we have done before, except that we will restrict our
attention to the barotropic case since this is the only case in which we can express ¢q in
closed form.

For a barotropic star, the Laplacian of the total potential ¥ is

V¥ = —4xGp + %%(stz)

(Recall that in the barotropic case S, p, x, €n, etc. are functions of ¥ only). Furthermore

F=-x (j—g) VT.

Recalling that Q is a function of s only (see Lecture 1, Hydrostatic Equilibrium), we now
split the rotational term aboveinto a mean part (22) over a level surface, which is a function
of ¥ only, and its fluctuating part (Q2)’, which depends also on the latitude:

%-j—s(msz) = 2(0?) + 2(0?)".

In the same way we shall expand the square of the effective gravity:

(VE)* = (g°) +(¢%). (12)
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Likewise, the right hand side of eq. 11 can be written
~V-F+pe = (-V-F+pe)+(~V-F)
d ; dT
<dw( 79+ (del:)( 4rGp +2(2%)) +P‘n>

+ ()@ + 20y () ) (13)

Note that the x(dT/d¥), which was constant before, is now in the barotropic case a function
of ¥, which we will call ¢(¥). We thus deduce the vector equation

x(¥)VT = ¢(¥)V¥

of which we take the flux over an equipotential surface £(¥). The integral of the left hand

term is /A x(¥)VTdS = —L(%),

where L(¥) is the luminosity, i. e. the total energy traversing that surface, and that of the

right hand term is
2
() / / v/ Vév dv

o(¥) [[ve.- as
b
= o(¥)(—4rGM(¥) +2(Q)V(T)),

where M(¥) and v(¥) are the mass and the volume contained by the equipotential surface.

Hence
1

o«¥) = 41rGM1 A

where L, M, and A = A—GL (the oblateness) are functions of ¥. With this value for ¢(¥),
and reca.lhng that the mean part of eq. 13 is zero, we get the following expression for the
energy generation rate en which is due to the rotation:

() (L (1- 2wcp) Q)Y L 1
~{e?) (_ 1-A "‘) T 2GpM1-A (14)

Let us examine the sign of ¢ in a uniformly rotating star ((2)'). In most of the star the
nuclear reaction rate, €g, is negligible. The sign of eq. 14 is then governed by two terms:
the (¢?)’ term which is varies with latitude, and the 1 — (Q2)/2xGp term which is a function
of depth alone. Since gravity is stronger at the poles and weaker at the equator, it is clear
from eq. 12 that (¢?)' > 0 near the poles and (g?)' < 0 near the equator (since (g?) is
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Figure 7: Regions of sources (+) and sinks (—) of rotational energy within a rotating
barotropic star. At r., (Q2%)/2xGp = 1.

constant). Thus, at a fixed depth, eq changes sign as one moves from pole to equator.
Deep enough within the star the term (Q%)/27rGp is small, and so 1 — (Q2?)/27Gp > 0. As
one moves outward to the star’s surface the density decreases, and at a certain distance
from the center, r., (2%)/2xGp = 1. For r > 7., 1 — (2?)/2rGp < 0. This is summarized
schematically in Fig. 7 where “+” represents sources and “—” represents sinks. Since the
radial component of the meridional circulation is proportional to eq, the star is divided into
two separated circulation cells: an inner one and an outer one. This separation is indeed
exhibited in the results of a numerical study conducted by G. G. Pavlov and D. G. Yakolev
(Fig. 8).

And finally, let us remark that the term, (22)/2xGp, whose sign was responsible
for the division of the rotating barotropic star into inner and outer circulation cells regions
(eq. 14), gives rise to a singular perturbation: It is inversely proportional to density p, and
is second order in the oblateness A. Since (¢?)' is first order in A, the 1/p dependence of
€n means one must be extremely careful at the star’s edge, since a first order theory in A
will not exhibit the outer convection cell. It is unfortunate that a whole literature missed
this phenomenon. z

FIG. 8. Merdlonal circulation in a
tar in the upper part of the main se-
quence with Q = coast. The dash—~dot
line denotes the flow interface p = p;
at the “"dead” points heavy marking)
the flow velocity equals zero; C) con-

vective core,
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Lecture IX.

Flow Between the Sun’s
Convection and Radiation Zones
and Transport of Chemicals

1 Introduction

In the last lecture we started the discussion of the large scale behavior in space
and the long time behavior of stars and pointed out that their basic driving mechanism is
the Stokes term and that we deal with a situation of nonthermal equilibrium. Here we want
to discuss the influence of stress where we have in particular the sun in mind. Remember
that in the convection zone nearly all heat transport is carried by convection. Radiation
plays a negligible role. The differential rotation (i.e. that the equator rotates about 30%
faster than the poles) in the convection zone is enforced by Reynolds stresses. We know
today from helioseismology that differential rotation goes through the whole convection
zone and that in contrast the radiation zone appears to rotate uniformly. This information
comes from measurements of the eigenfrequencies of acoustic waves. The splitting of the
eigenfrequencies due to Coriolis forces can nowadays be measured with depth and latitude.
The latter indicates that no differential rotation takes place in the radiative core of the
sun. Thus between the convection zone and the radiation zone there must be a layer
in which the switching to differential rotation in the sun’s convection zone takes place.
Within this boundary layer, which is just below the convection zone, additional circulations
have to compensate the jumps in angular momentum. Since the of the convection zone is
slower than of the radiation zone over most latitudes, one has to expect Ekman layer like
circulation between both similar to Taylor vortices as shown in Fig.1.1.

From observations follows that in this boundary layer seems to be a jump in
the angular velocity, but that the average angular momentum varies smoothly. Thus there
seems to be no net torque, only a differential torque imposed by by the convection zone. In
this lecture we first discuss in more mathematical detail the processes leading to flows in
the boundary layer between radiation and convection zone. After that we shortly discuss
the transport of a chemical and close the lecture with an application of these results to the
Lithium transport.
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Fig.1.1. Convection and radiation zone and meridional circulations between
both.
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2 Circulations below a Convective Envelope

As before, we make the following assuinptions:
i) the fluid is in hydrostatic equilibrium;
ii) the fluid motion is axisymmetric (i.e. motion is independent of azimuthal angle);
iii) the anelastic approximation may be made, i.e. the partial time derivative of the
density in the equation of mass conservation may be neglected, so that it becomes

V.(pu) =0;

iv) the Rossby number of the fluid motion is much less than one. (The Rossby number,
Ry, is a measure of the effect of rotation on a fluid motion of a certain scale The
simplest case to consider is that of a body of fluid rotating with constant period Q7.
A fluid motion scale L and characteristic velocity U has a natural timescale, or period,
L/U. If this timescale is much less than the timescale of the rotation (1/2), then the
rotation will play a very important role in the evolution of the system. Thus, if we
define Ry as the ratio of these two timescales, i.e.

U
2QL°

then in the case of Ry < 1, rotation effects are likely to be important).

Above we described the flow in a cylindrical coordinate system. A perhaps more
natural system is that of spherical polar coordinates r, 8, and azimuthal angle ¢ (see fig.
2.1).

We assume that the oblateness of a spheroid of interest (e.g. the sun), is sufficiently
small to allow us to treat the radial direction as perpendicular to horizontal surfaces
without introducing significant errors. We are interested in stationary solutions. In this
case, we split all the dependent variables into two parts, one part that is a pure function
of r, that we know a priori, and an (assumed) perturbative part that is a function of both
r and 4, i.e.

RoE

p(r,8) = po(r) + epa(,6) ,
p(r,60) = po(r) + epa(r,0) ,
Qr,0) = Qo(r) + Q4(r,0) ,
T(r,0) = To(r) + €Iy(r,9) ,
(ex1).
In a steady state of constant rotation, the fluid velocity is defined by the relation

u=rxfl,

and since

0 = £(Qcos8) — §(Nsin b) ,

then the unperturbed velocity has only one nonzero component, which is in the azimuthal
direction and is given by the following relation:

g =rilsinf .
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Thus, in the perturbed case, if we wish to consider small deviations from solid body
rotation, we consider a velocity vector

u= e(u,.,ug,u¢)T ,
and we assume that, to first order, uy has an analogous form to the unperturbed flow, i.e.
ug = rQy(r,0)sin b .

We now consider, in spherical polar coordinates, the axisymmetric equations of motion
for such a small velocity perturbation. Remembering that we have assumed axisymmetry,
and hydrostatics, the equations of motion and mass conservation, assuming viscosity re-
mains constant, can be expanded in powers of e. We make the further assumption that
the scale over which the vertical velocity changes is very much smaller than the scale over
which the density changes. In this case we treat density as constant except in the buoyancy
term in the momentum equation. This is known as the Boussinesq approximation. The
only zero order terms in € occur in the radial component of the momentum equation, and
express hydrostatic balance, i.e.

o
3P0 = g - (2.1)

For simplicity, we shall ignore all terms except the V2u terms in the viscous drag, and
we assume that the viscosity v is constant. In this case, the governing equations, reduce
to a linear set. The momentum equation, when decomposed into r, § and ¢ coordinate
directions respectively, becomes, remembering that all terms are independent of ¢,

—200011’ sin 0 = —'l—ﬁpl +g Pl (22)
poor T 9pg
v([ad ?—u + 1 8 P
or or " sindog \" 98" )|’
. 1 4
—200Q11‘ sin @ cos b = _E%PI (23)
v|[o(,0 1 0
= [5 ( 7“9) YY) (S‘“"%“")] ’
sinf 9 ([ ,0
20 (upsinf + ugcos ) = u[ = 5 (r -5;[91]) (2.4)
1 9/(.,;,0
g 0=
* rsin? § 06 (sm 09 )]
The equation for the conservation of mass becomes
10
-——(r pottr) + (sln Oug) = (2.5)

060

For closure, we also require a balance of heat. We assume that conductivity or opacity
is constant, and also that we can ignore the effect of €y, the nuclear reaction rate as a
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source of heat. If furthermore, there are no sources or sinks of heat of any kind, there
must be a balance between the advection and diffusion of heat. We define a characteristic
lengthscale of entropy advection

_ dlnT dlnT\]™*
#=5|(5mr).,~ (amr)] -
where subscript ad denotes an adiabatic motion, and Hp is the pressure scale height.
Then, to first order in ¢, heat balance requires

Tou, [0 [(,0 1 0(. ,0
= | = il _— 0——-T; . 2.6
H r? [31' (r or h)+ sn6og \" " 06" (26)
Equations 2.2-6 constitute a set of five equations in the five unknown perturbative parts
of the dependent variables, i.e. py, T1, 2, u,, and ug. We then look for separable solutions

for r near to R but within the radiative zone (i.e. » < R) of the form (in the example of
pressure)

P, x P(8) exp(—k¢) ,

where

E=R-r,

and k, the inverse of a “scale height” is assumed “large” in some sense, defined as
REk>1. (2.7)

In general, for a variable V of this form,

(%V =kV .
We see simple scaling for balance in (2.5) implies that
Rku, ~ ug .
Thus
Up K UG . (2.8)

We now investigate the implications of scalings (2.7) and (2.8). In (2.6), since Rk is

large, we may ignore the second term on the right hand side, and so we have a balance

Y _ 202

T = xk T, - (2.9)
Now, if we have a perfect gas, to first order we may approximate p;/po as T} /Ty. Since in
(3), the effect of differential rotation must be sufficiently strong to balance the latitudinal
pressure gradient, the effective balance is

1 9

—2Qoﬂlein0c050 = -—;o—REEPI . (210)
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Therefore, the Coriolis term is negligible in (2.2), which thus reduces to simple hydrostatic
balance, i.e.

1 T
—kPy =g—. 2.11
2 1 gTo ( )

Only in the equation in the azimuthal direction (i.e. (2.4)) is viscosity important at
this order. Remembering (2.7) and (2.8), we see that the most significant balance in (2.4)
is

2ugp cos 0 = vk*Q, Rsin 6 . (2.12)

Collating all these results, we see that the problem reduces to solving the mass con-
servation equation for the § dependence of ug, i.e.

1 8,
Rku,. + sin_é%(s“l ouo) =0 , (2.13)

with the scaling relations (2.9-12). Now (2.9) and (2.11) imply

kk3H
pPog

Uy = P] . (214)

If we differentiate (2.13) with respect to 6, and use (2.14), we see that the terms in u,
cancel, and

xk‘RH
P =0 (2.15)

611 9
06 | sin 8 06
But, using (2.10) and (2.12), we see that

(sin Ouo)] +

EPI = 2po0 N R? sin B cos b

06
_ 2 . 2Qpug cos b
= poR* sinf cos § (——_—ukzﬂleino
4p902 Rug cos? 8
= -F¢ ouk2 ) (2.16)
Thus combining (2.15) and (2.16),
o1 a,. 4xk*R2HO? 2
90 [m%(sm 0uo)] + [—V—g—-—} cos” Bug =0,
. 9 9
26 [;%0- %(sin 011.9)] + A cos? Oug =0 (2.17)
where

s _ MKRPHOD [ 200kR )’
- vg ~ \NPr1/2
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and Pr is the Prandt] number, (the ratio of molecular to thermal diffusivities), and N is
the Brunt-Vaisila frequency.

If we make the substitution cos8 = z, and sin fug = f(z), we see that we impose the
boundary conditions that f(+1) = 0 and

d 1 d 1 d
dz =~ sinfdd (1 -z2)1/2d6°

and (2.17) reduces to

d d A2g2
—(1- 1'2)1/23; (—E‘f) + '(TT:;)lﬁf =0,
or d2 AZ 2
rethds _"z,)f =0, (2.18)
with
f(£1) =0. (2.19)

Now, (2.18) is an equation for the § dependence of uy. We have already assumed that
the r dependence is of the form exp(—k¢), (¢ = R —r). So, from (2.12), we obtain an
expression for the differential rotation ;, namely

z
1-—22

_ 2ugfdgcosd
" vRk2siné

o, = A exp(—kE)—— f(=) , (2:20)

using (2.18) and defining 20
0

vk? '

AQ = (2.21)

the scaled “variability” in the rotation rate.
Now from (2.13), we see that

1 9
" ksinf 60
1d
= 'l;afexp(—kf) )

_ u(I;R) ( é{%) exp(_ke)d% f, (2.22)

2 3 d
- ZEEACR) (‘;‘;") exp(—kE)f , (2:23)

using (2.17) and (2.21). Similarly, we may write

Rsin fug = Rexp(—ké)f(z) ,
(kR

- 58 () em—korf(a) (224)

_ 2Q%Hk(kR)® (AQ

- gA? Qo

Ru, = (sin bug) ,

) exp(—kE)f(z) (2.25)
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Let us now consider the physical implications of this solution. Firstly, the entire
solution is driven at ¢ = 0, and by the definition of £, we only consider solutions penetrating
downwards into the radiative interior. This model does not attempt to describe the complex
motions in the convective zone, although if the porosity is large, matching with models
utilising such concepts as eddy viscosity is at least consistent along the boundary, since
from (2.24-25), radial velocities can be considered to be driven by either viscosity, v, or
thermal diffusivity, .

If we turn our attention to the form of the solutions for f i.e. the 6 dependence of the
velocity field satisfying (2.18-19), we start from the assumption that there is an equatorial
plane of symmetry. In that case we investigate odd solutions for f. Without going into
the full solution, we see that, for small z, the solution approaches

A2gS
f(Z) ~T— 20
We may roughly sketch the solution curve thus:
>
z
-\ +1

fig 2.2: Sketch of Solution Curve.

Thus we have a circulation near the interface with the convective zone, which may be
considered to be a thermal boundary layer. However, closer to the core, motions driven by
heat siLks and sources ( see the Eddington-Sweet circulation above) overcome the effects
of differential rotation. We can compare timescales for the two separate circulations. We
already know that the timescale for the Eddington-Sweet circulation can be taken as

GM)

tes ~lky (?22_}2—3

where tx, the Kelvin-Helmholtz timescale is R?/k. Thus

gR N?RH
tps ~ ~ .

pTep 0 (2.26)
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From (2.23), a typical timescale of the motions due to differential rotation is

1 gN AQ\™ d
Ru,  202Hx(kR) (no) exp(=kO) 2 f
5 (N"'RII Qo exp(—k¢) d f)

xQ? )(An(kR)mHE ’

~t (QoeXp(—kf)i)
BS\AQkRyPRHdz" ) ~

In the Sun AQ
—9— ~ 0-3 .

Thus, when ¢ is small, this process due to differential rotation may be important. But
in the above equation, kR is large (as assumed in the model), and hence the effect of
the circulation driven by the differential rotation rapidly drops. Higher modes, i.e. those
modes that occur with larger A, have even narrower shells of effect. Thus a cellular rotation
structure will be restricted to a region very close to the interface between the convective
and radiative zones. At larger depths, the Eddington-Sweet circulation must dominate.
However, this model is extremely simplistic. The differential rotation is unstable, and
the turbulent motions generated by such instabilities give rise to an eddy viscosity which
depends on depth. This problem is then no longer linear. Although the 6 dependence
can still be obtained by the above method, the full equations must be solved in r for the
vertical dependence, assuming, as usual, that viscosity does not vary with latitude. This
approach is, nevertheless, beyond the scope of these lectures.
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3 Transport of a chemical

When inhomogeneities develop in a star, one can ask for the effects of varying
chemical composition. The mass balance equation for a chemical with concentration c
reads

%(pc) + V- (pcU) = V - (DpVe) (3.1)

Here the second term on the left hand side represents the advection of the chemical, the
right hand side the difussion with D, being the total diffusivity. A concentration flux due
to advection through the surface

¢=/Epcu-dS (3.2)

can only be nonzero if ¢ varies over . Let ¥ be a horizontal surface at radius 7. Then the
total concentration at a radius r can be decomposed in the mean concentration co(r) and
fluctuations §¢(r,8)

c(r,8) = co(r) + 8¢(r,9) (3.3)
representing the vertical changes of ¢(r,8) at radius r. In general, horizontal and vertical
anisotropies due to concentration are possible. In the sun the horizontal transport is likely
to be much more effective than the one in the vertical, due to the instabilities generated by
differential rotation. The basic problem in the following will be to estimate §c. We follow
along the lines of G.I. Taylor in his discussion of the diffusion in a pipe, but in contrast to
that work we have here no mean velocity. The equations for the mean vertical transport
equation following from concentration field equation is given by

0 1d 1d
7iPe0) + 57 (pUbe) = ==

Here d, denotes the vertical diffusivity and the brackets denote averaging over a level
surface. The second term on the right hand side of eq. (3.4) represents the advection
controlled by the transport of éc. We know from Lecture 8 that
€t
Du ~ m
where ¢, is the turbulent viscous dissipation,which depends on the amount of differential
rotation 8f). To estimate the strength of the advection term in eq. (3.4) we need an
estimation of §c which can be obtained as follows:

One multiplies eq. (3.1) written in terms of §c and carries out lateral averaging.
Then one finds

%%(p(acm +{6cpUs oco) + (5epU - V6e) = {6cV - (D,pVic) (36)

Assuming that

dco
2
D, pr I ) (3.4)

(3.5)
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e horizontal diffusion is very strong, i. e. that D, can be replaced by Dy,
o | 6c|< dco/dr, and
e quasi-stationarity holds,

the second term on the left hand side of eq. (3.6) is equal to the right hand side of eq. (3.6).
Replacing V by £ leads finally to

deo R?
~—|U, | ——— 3.7
EISEAR-a (37)
where | ... | denotes the maximum. The important point is that | §c | is proportional to
the radial concentration gradient. Inserting the above formula into the advective part of
the mean vertical transport equation gives

1d, 1d,_, ,dc

with
|U, |* R?
Dz

Thus the transport of a chemical can be written in form of a diffusion equation with a
diftusion constant D*, which shows that the Eddington Sweet circulation actually becomes
a diffusive process. For more details concerning the estimation of the maximum value of
dc we refer to the fellow contribution of Brian Chaboyer.

D (3.9)

4 Transport of Lithium

Let us finally discuss an experimental result which supports the existence of
transport below the convection zone. Lithium is burned typically at temperatures around
210°K, thus well in the radiation zone of the sun. If there would not exist a motion below
the convection zone, whose bottom is at temperatures of 108K, would keep its original
abundance. But the observations show that it is depleted by a factor of about 103. The
same mild transport seems to occur in other stars. In Fig. 4.1 the abundance of Lithium for
Hyades dwarfs is shown as function of the surface temperature ( or the mass of the stars).
Also there Lithium is transported to the surface—probably due meridional circulation. The
deep well for T,ss about 6700K is one up to now not well explained feature.
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Fig- 4.1. _tithium abundance [on the scale of log N(H) = 12.00] for the Hyades dwarfs as a function of effective temperature. The open circles ana;‘le:rﬁ‘:

triangles correspond to detections and upper limits. respectively. The crosses are the G dwarf data of Cayrel er al. (1984). The small open squ
abundances {rom equivalert widths of Duncan and Jones (1983) from spectra taken at Lick Observatory.

Notes submitted by Stefan Linz and Colm-cille Caulfield.
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Lecture X. Vibrational Instabilities

1 Unstable Stars

Though most stars are changing slowly and can be considered hydrostatic, they also
fluctuate about the hydrostatic state with diverse time scales and amplitudes. Probably,
every star h;s some variability that can be detected by sufficiently careful and extensive
observations. Astronomers have qualitatively classified many kinds of variability, and the
members of each class are called X-type variables, where X is the name of the star that
is the prototype of the class of variables. We would require too much time to go into all
the classes and what they do, so we will simply mention some of the favorites. These are
best indicated by their place in the H-R diagram.

Figure 1 is a sketch of the H-R diagram showing the zero age main sequence (ZAMS)
which represents the end of the contraction phase and the start of nuclear burning in the
core. The point 1, the Kumar limit represents the lowest possible mass (~ 0.05Mg) for
which the temperature at the core is hot enough to initiate nuclear burning of hydroges.
There may exist stars below this limit, and their possible existence is suggested by the the
dashed line, which possibly continues on to JUpiter. Point 2 marks the place on the main
sequence where stars first encounter the Eddington limit. At the critical mass represented
by point 2, (~ T0Mg) the outward radiative force on the matter at the surface of the star
balances the gravitational attraction. If more matter is added to the star, the luminosity
is raised and the excess matter is thought to be blown away by the radiative force.

The most important stellar variability occurs in the nearly vertical strip shown in
the figure. This is called the Cepheid instability strip, after the Cepheid variables that
lie in the upper portion of the instability strip. These stars vary nearly periodically
in luminosity and surface velocity, as a result of an instability that we shall describe
presently. The Cepheid variables, whose periods are measured in days and weeks, have
played a very important role in the subject because their luminosities are well correlated
with their periods of variation. They can be used to gauge the distance to any stellar
system in which they can be observed, once the period-luminosity law is calibrated. That
turned out to be a difficult matter because the stars in the lower part of the strip, with
shorter periods, are not the same as the classical Cepheids, but they were the only kind
near enough to us for a luminosity to be well determined. There were some false steps
made on this account that had ramifications for estimates of the scale of the universe. It
is also interesting that the strip reaches down to the location of the sun in the diagram.
Indeed, the sun also is subject to overstabilities but, the sun’s gravest modes are not -
unstable, in contrast to the case of the classical Cepheid variables.

The stars well above the main sequence and cooler than Cepheids also tend to be
variable, but they are not periodic. Much less is understood about these semi-regular and
irregular variables than about the Cepheids. There are several other kinds of variation
throughout the diagram. For example, the stars in the neighborhood of the Z in ZAM S
vary for unkown causes. These § Canis Majoris stars are especially interesting in GFD
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Figure 1: The H-R digram and the instability .strip

because they have an oscillatory double-diffusive instability in progress, with helium as
the slow diffuser.

Another evident kind of variability is that associated with the solar cycle, and it is
interesting in having a time scale measured in decades. Hints of similar variations have
been detected in cool stars. It is not yet clear what fixes the time scale of the solar
variability. This is in stark contrast to the simpler variation of the Cepheids, whose time
scale is the travel time of a sound wave across the star. The solar variability has a time
scale that may be set by the travel time of the wave of activity that moves from mid-
latitudes to the equator. Proctor and I believe that this wave is an envelope of overstable
dynamo waves, which suggests that its propagation speed is controlled indirectly by the
turbulent processes that produce the subconvective dynamo.

]
2 The sk-mechanism.

When a star expands a bit, it cools, but it is not clear whether the increased area or the
decreased temperature wins in determining its modified emergent radiation. Depending
on thermal effects or phases, this could go either way. If the star radiates more when it is
cool, the perturbation will die away, but if energy is put in during the hot phase, that is
destabilizing. Of course such remarks are too vague to be of help in understanding stellar
instability, and there is no very simple physical argument for explaining it. We shall
instead summarize a pedagogical model of N.H. Baker (1966) that clarifies the physical
mechanism responsible for the pulsational overstability in Cepheids. The mechanism
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arises in fluctuations in the opacity x and was proposed by Eddington.

In a spherical distribution of matter, the mass M, contained in a sphere of radius ris
a monotonically increasing function of r. If the star remains radial, M, isa Lagrangian
coordinate and we will use it as independent variable with 0 < M, < M. The equation
describing how r varies with M is

or 1

— i 2.1
M, ~ 4mrip’ (2.1)

where p(M.,,t) is the density. The equation of motion for a thin shell of mass dM, is

dp 1 (GM,. 821')

M, TR\ TeE 22

where p(M.,,t) is the gas pressure. For an ideal gas, the energy equation for the fluid
between M, and M, + dM, is

8L oT §8p
e T —— w— ———— 2-3
- wm T (23)

where L(M,,t) is the luminosity, T(M,, ) is the absolute temperature, C, is the specific
heat per unit mass at constant pressure and

5= ( 3Inp)
dinT )
The condition for radiative equilibrium is

64n3aco’T® 8T
- 3x M,

where a,c,o are fundamental constants and x is the opacity. Equation (2.4) is a good

approximation only in the optically thick region of the star and under conditions of local

thermodynamic equilibrium. We will assume (2.4) to be valid even in the outer envelope

as we are only interested in a qualitative understanding. Lastly, we have the ideal gas law
k

= —pT (2.5)
P=p

where the mean molecular weight y is assumed constant and k is the Boltzmann'’s constaat.

L= (2.4)

2.1 One-zone approximation

Equations (2.2) to (2.5) can be solved under suitable boundary conditions when 2=0
and this gives the static state(s) of the star (po, o, To, 7o), With the luminosity Lo. We
assume small perturbations from the static state:

r=ro(l+7) (2.6.1)
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Figure 2: The one-zone model.

T="Te(1+7T) (2.6.2)
p = po(l + /) (2.6.3)
p=po(1+7) (26.4)
L=Lo+1 (2.6.5)

Normally, these equations are solved by finite differencing, each element in that scheme
corresponding to a shell of mass of the star. In Baker's qualitative model, one simply
writes the equation for a single mass shell as if it were the whole envelope. The instabil-
ity mechanism in Cepheids arises due to opacity variations in a relatively shallow outer
envelope containing a very small fraction of the total mass of the star. Since the motion
is almost entirely in this envelope we write our equations only for the envelope, assum-
ing that the region below the boundary 1 is motionless. Also, the variation of p/,p’ and
T' with M, is neglected in the envelope. We cannot however neglect the variation of !’

because 3%';—’ is really the term that drives the osciliations. Therefore we will make the
approximation

ol -4
—_— i — 2.7
oM, 2m (2.7)

where ' is the luminosity fluctuation at some “halfway point” in the envelope, ; is the
value of I’ at the boundary 1 and m is the total mass in the envelope. Since the core does
not participate in the oscillations, the luminosity at the boundary 1 does not change, so
that I, = 0 . Therefore (2.7) becomes

al' U
M,  2m (2.8)
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2.2 Perturbation equations

On substituting equations (2.6) into (2.2) and retaining only terms linear in the primed
quantities we get
d*r’

- = (4r' +p") (2.9)

where g = %ﬁ and we have used the fact that the static pressure vanishes on ro. This says
Qg
that the dynamics of the envelope is driven by pressure fluctuations and perturbations of

gravitational potential. To understand how this works, we need to look at the coupling
to the thermodynamics.

In the one-zone approximation (2.7), linearization of (2.3) gives

! ar  _dp’ '
_ _ —_ 2.10
2 T,C, a +46 7] ( )
Linearization of (2.4) gives
14 Ky Kr .
= ey (_ -4) T (2.11)
Lo Ko Ko

where

Ko = K(po, To).
The linearized form of (2.5) is
P=p+T (2.12)

and of the continuity equation (2.1) is
3 -p =0 (2.13)

If nothing else, this set of equations shows why it is not simple to characterize the
conditions for vibrational instability of a star. The thermodynamic interdependences are
just too rich. However, (2.11) is the key; it shows how the couplings are mediated by
the dependences of x on p and 7. There is a certain loose analogy to instabilities due to
negative differential resistivities in all this.

Let 7, be the the characteristic radius of the envelope, and set

v /2 (2.14)
where r; is the outer radius. Similarly (2.13) gives

' 3r,

= — 2.15
=3 (2.15)
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Equations (2.15), (2.12), (2.11), (2.10) and (2.9) can be combined into a single equation
for r{:

d®r, d?r dr,
N 48T pon "2 0 2.16
s TAgE t B ten (2.16)
where L
A= 20 (ﬁ _ 4)
2m(6 = ToC,) \ xo
_ 85 - 11TyC,
T 2(6 - ToCy)
LO L% Kt
o= gy (% (-9
4m(§ — T, C,) (SKQ +11 Ko 4 )

If we look for solutions in the form r; ~ e’ then (2.16) gives
s’+As’+Bs+C =0 (2.17)

Equation (2.17) has three roots. As one crosses the Cephied instability strip due to the
specific way the opacity derivatives x,, oy change, the two complex roots move across the
imaginary axis to the real positive half of the complex plane . This represents the onset
of overstability as envisioned by Eddingten (1925). However, for a reliable numerical
solution of the Cepheid instability problem, forty years were needed.

3 Convective Overstabilities

The onset of overstability is usually a subtle process, but the one that is crucial to the
Cepheid instability is too complicated to be real fun. A simpler case of overstability occurs
when the energy source is differential buoyancy. The first instance was magnetoconvection
(studied by W.B. Thompson and by S. Chandrasekhar) and later came the rotating case
(Chandrusekhar). The simplest example is in double diffusive convection as suggested
by Melvin Stern and demonstrated by George Veronis. The mechanism in this kind of
overstability is generic in convection with restoring forces (Moore and Spiegel, 1966); the
irreversiblity of the oscillations that Cowling spoke of in the mhd case plays a role in all
cases.

Consider a fluid parcel of mass m moving through the star, but neglect the effect of
the parcel on the star. Assume that there is a mechanism such as Coriolis force or a
stable concentration gradient that makes for an oscillatory behavior. If we allow for this
mechanism by a generic restoring force, » per unit mass, the equation of vertical motion
is

m%:; = —g(m — mg) + mr(z). . (3.1)

where the mass displaced by the parcel is

mg = mpy/p (3.2)
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and po(z) is the prescribed background density.
We use the Boussinesq equation of state,

p=pll-a(T -T.) (3.3)

where p. and T are constants. After some manipulations using the Boussinesq ideas and
setting

0 =T - To(z) (3.4)
we reduce the equation of motion to the form
d*z
—_—= . 3.5
-7 = 908 +7(z) (3.5)

This is somewhat easier to grasp than the equivalent equation for stellar pulsation (2.9)
partly because there is less going on in this case, but also because of the simplifications
allowed in the Boussinesq case. For a fuller treatment, we should include friction.

We adopt Newton's law of cooling to describe the thermal effects:

aT

- = —UT - To). (3.6)
We have T d d 26 d
Z
— - ™~ — R — 3.7
| 7 dt(T L+T) = dt(o +T) 7 7, (3.7)
where —((z) = dT,/dz. Then (3.6) becomes
dé dz
_—= e — 3.8).
% ﬂdt q0 (3.8)

The third order problem posed here has the same linear structure as that for the stellar
pulsation case. However, in this simpler case, we have included nonlinear effects in the
z-dependences of 3 and r. Using the leading order terms in their Taylor series, we get a
nonlinear model for the development of instability. With suitable choices of parameters,
we find a chaotic behavior (Moore and Spiegel, 1966). In a similar way, the analysis of
the previous section can be extended to the nonlinear regime (Baker, Moore and Spiegel,
Astron J., 1966) with chaotic results. Thus the occurence of aperiodic stellar oscillations
may have a natural explanation. But we need to be able to extract the nonliear equations
more reliably. We turn to that question next.

4 Amplitude equations

Let the state of the star be denoted by a column vector U whose elements are the density
p, the temperature T, the components of velocity and whatever fields are necessary to
uniquely specify the conditions in the star. The general equation describing the star can
generally be written in the form

8,U = F(U,9) (4.1)
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where t is time, 3 denotes spatial derivatives and F expresses the full stellar dynamical
behavior — it is a flow in state space. It is understood that boundary and initial conditions
are attached to F and §,, respectively.

A steady state of the star is given by Uy(x) where

F (Uq(x),8) = 0. . (4.2)

4.1 The linear problem

The perturbation equation about the static state can be written in terms of the new
variable

u(z,t) = U(z,t) - Ue(z). (4.3)
We split the right hand side of (4.1) into linear and strictly nonlinear parts:

deu = £(8,A\)u + N (u) (4.4)

where £ is a linear operator and A is a nonlinear operator (which can in general depend
on space derivatives) and ) represents all the parameters describing the star (such as its
total mass). It is useful to first study the associated linear problem obtained by omittng
N (u) from (4.4):

O,u = Lu. (4.4a)

We look for solutions of the form
u(x,t) = v(x)e*. (4.5)
Then (4.4a) gives an eigenvalue problem for determining s and v.
Lv = sv. (4.6)

We assume here that (4.6) has a discrete spectrum s,, 33, . . . with eigenvectors ¥, %»,.. .. If
L is selfadjoint then the eigenvectors form a basis. (In case of degeneracy one can construct
an orthogonal basis in the subspace corresponding to the degenerate eigenvalue.) However,
L is in general not selfadjoint and there may exist a root(s) of algebraic multiplicity n,
with m, the number of eigenvectors corresponding to it, less than n. In such a case, we
need additional vectors to span the subspace (Friedman, 1956).

To find additional basis vectors, we look for solutions of the form

u(z,t) = i ¢,.(z)t"c“A;. (4.7)
h=0

where | < n. Asillustration, consider a case with n=2 and m=1. Suppose we have already
found the one eigenvector ,(z) such that £y, = s;. We look for a solution in the form

u(z,t) = do(z)e" Ao + 1(z)te” 4y (4.8)
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where ¥1(z) is unknown. Substituting into the associated linear equation we find

(s = Log)Ag — ArtLyo =0 (4.9)
AgLoy + Ay(tLy —ts =1) =0 (4.10)
where
(Loo Lo )
LlD Lll r

is the matrix representation of £ in the basis (1, ¥1)-

The terms with different powers of ¢ vanish separately, so from (4.9) we find Loo = s
and Ly = 0. Similarly, from (4.10), we get Ly; = s and Ay = AgLg. Therefore thereis a
solution (4.8) of the form

I.l(:, t) = AOC“('#OI + Loﬂd’l):

which, on substitution into the linear equation, gives us the additional information that

AoLlips = Agstho + A1¥1.

The matrix representation of £ is then of the form

(6 ¢)

where g = 4,/4,. .

This procedure has an obvious generalization to the case m,n > 1. If one succeeds in
applying this procedure to each degenerate subspace then the matrix representation of £
is in general

B, 0 O
0 B, O
0 0 B,

where By, B; etc. are blocks each having the form

o A 0 O
0 o B O
0 0 o C

One can find another representation of the above matrix called the companion form
or the Jordan-Arnold form, that is sometimes more convenient. In the 3 X 3 case it has

the form
010
0 0 1
a B 7
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Figure 3: Distribution of eigenvalues at marginality
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4.2 Center manifold theory

If you have a mix of reacting chemicals or nuclei, the rapidly reacting species go quickly
to the equilibrium abundances dictated by the local instantaneous conditions. This equi-
librium -is then evolved according to the behavior of the slowly reacting species. In the
case of instability theory, a similar situation prevails. If you expand the state vector U
in terms of the normal modes, you get a set of ordinary differential equations for these
modes and these are of the form of reaction equations. The slowly evolving modes will
control the situation here just as the slowly reacting species dictate the nature of the
equilibrium. ' ,

The slow modes in this case are those with low growth rates and low damping rates.
These are modes that are nearly marginal. This statement can be made precise when we
have modes that are exactly marginal for some values of the parameters. Suppose that
the distribution of eigenvalues s in the complex plane has the following special structure
for some value(s) of the parameter(s) A = )o: a finite number n of the modes are on the
imaginary axis while all the others are bounded away from the imaginary axis for small
|A = Ao)- The modes away from the imaginary axis can, for many purposes be on either
side of it, but we shall consider the simplest case here where there are slow modes with
R(s) = 0 and fast modes with R(s) < —~a, where a > 0.

We denote the fast modes by ¢; and the slow modes by 1;, and make the decomposition

u(z,t) = ¥ Bidi(z) + 3 As(t)¥i(=)- (4.11)
i J
Substituting (4.11) into (4.4) we find the equations for 4; and B;
% = MyA; + f{(A,B) (4.12)
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dB;

7 = K;;Bu + gi(A,B) (4.13)
Here the matrices M and K are given by linear theory and f; and g, are strictly nonlinear
functions of the amplitudes in the expansions. By the very construction of this situation,

we know that X is invertible, so (4.13) can be rewritten as
B =K"'B-K-'g(A,B). (4.14)

We expect that, after a short transient, the fast modes will have equilibrated and
thereafter the system will change slowly. Hence, we take advantage of this to construct a
series of approximaticns based on (4.14). In first approximation, we have

B =0. (4.15)

This is called the Galerkin approximation. To get the next order we put B =0 on the
right hand side of (4.14). Then

B = -K'g(0,B). (4.16)

This is called the adiabatic approximation. One can continue this iteration procedure
substituting (4.16) into (4.14) to get the next order of approximation, and so on. We can
then in principle determine a function

B = B(A). (4.17)

This function defines an invariant subspace of the state space (coordinatized by the coef-
ficients in its expansion in eigenfunctions) in which the system moves after the transients.
This is the center manifold.

If we substitute (4.17) into (4.13) we have

A = MA +f(A,B(A)). (4.18)

Thus, the dynamics of the system is reduced from an infinite dimensional state space
down to motion in a subspace of finite dimension. This is what we did in the previous
section, but the present approach is more reliable. Equation (4.18) is sometimes called
an amplitude equation.

4.3 Normal forms

The linear portion ¢f (4.18) is determined only by the number of instabilities and their
degeneracies. In each case, we want to use (4.18) for a neighborhood of parameter space
near to Xo. The forms of the matrix M for each case are standard, so we need only to
compute the nonlinear terms. Can we not also find a standard form for the nonlinear
amplitude equation? If so, for each configuration of instabilities, we shall have a single
equation to study to get some idea of the temporal behavior.




Supose that after the reductions to the center manifold, we have derived an amplitude
equation like (4.18) with conceivably complicated nonlinear terms as in (4.18). Suppose
that this can be written as

B = MB +I'(B) (4.19)

where [ is arbitrary, but we shall assume that it is analytic.
We want to put (4.19) into a standard or normal form by means of transformation

B =X+ ¥X) (4.20)

where ¥ is a strictly nonlinear function. This will not change the linear part of (4.19),
but it will modify the nonlinear terms. Let us assume the new equation is

X = MX +G(X) (4.21)

where G is some standard form of the nonlinear terms. We will see that the forms that
are allowed are determined by the linear theory.
Substituting (4.21) in (4.19) we find

F¥=0(X+¥)-Ga¥-G (4.22)
where
F = MX8x - M. (4.23)

The operator F is determined by the linear problem and it is in fact the Lie derivative
with respect to the vector field MX.

We shall not give details (sce Spiegel, 1985) but sketch the main idea, which is that
if we want a particular G we can see whether that choice makes (4.22) soluble so that
there is a ¥ that does the job. To check this we need the so-called solvability conditions
on (4.22). For this we need an inner product on state space, which we shall assume has
been defined. Then we can define an adjoint operator F! by

(F,®) = (¥,F19) (4.24)
where (-, -) denotes the inner product. Now any ¥ such that
Fg=0 (4.25)
is orthogonal to the left side of (4.24) and we conclude that
(O(X + ¥) - Goz¥ - G,¥) =0. (4.26)

The conditions (4.26) (there will generally be several adjoint null vectors) can be used
to fix G. Normally, one proceeds perturbatively, expanding in X and gets G and ¥ term
by term. Thus, for any stability configuration, provided the degree of instabilty is not
pronounced, the form of the amplitude equation can be studied.




4.4 The end

For the case of convective instabilities such as we encounter in cool star atmospheres,
these amplitude expansions will not be very helpful by themselves. The instabilities are
too strong and the linear modes are far to the right of the imaginary axis. We have to
imagine that the turbulence has renormalized the situation back to a slightly unstable
state, in the large. Then the motions that develop against the turbulent background can
be studied with amplitude equations.

The simplest situations have only one instability, the direct instability that givas the
so-called pitchfork bifurcation and overstability that flowers into the Hopf bifurcation. For
double instabilities, there are four simple possibilities: two direct instabilities, two over-
stabilities, one of each, and an overstability whose frequency can vanish as the ma~ginal
condition is approached. This last gives rise to what may be called the Bogdanov bifur-
cation. All these cases produce either periodic or quasiperiodic behavior.

When three instabilities occur, then chaotic behavior can develop as in the example of
the oscillating fluid parcel. The normal forms for these cases have all been written down

to leading order. Buchler and collaborators have been systematically applying them to
stellar studies.
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An introduction to solar MHD (Summary)

Stephen Childress

1 Basics

Astrophysical fluid dynamics must generally include the possibility of elec-
tromagnetic fields since the fluid is often in the plasma state, currents can
flow, and magnetic and electrostatic forces may be important. Astrophysical
systems are also large, so that Reynolds numbers of the form UL/n, where
U and L are characteristic velocity and length scales and 7 is the diffusivity
of some physical quantity, are typically very large. The turbulent phenom-
ena which result involve complicated interactions between fluid and magnetic
field, solar magnetism being the most directly observable product of these
interactions.

The solar magnetic field is characterized by two complementary prop-
erties: On the one hand, there is a global structure connected with the
well-known 22 year cycle. Every period of roughly 11 years produces a new
round of magnetic activity (most notably in the appearance of sunspots) and
culminates in a reversal of polarity. This periodicity implies an active pro-
cess of renewal of magnetic activity, with production of fresh field (at least in
the observable surface layers) its main consequence. We note that this solar
dynamo cycle is only roughly periodic, and indeed essentially turned off for
the 70 year “Maunder minimum” beginning in 1645, and in other similar
epochs.

On the other hand, the magnetic field is, in the small, “rough ” and
intermittent. Perhaps the most expressive adjective is “fibrillated”. Instead
of being a smooth vector field, the magnetic field B(x,t) in the photosphere
(and presumably also in the convection zone) has a filamentary structure
where intense tubes of flux are embedded in regions of much smaller field.
As a result, peak fields on the Sun reach several thousand gauss, while the
spatially-averaged field is only about one gauss.
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We thus see two lines of enquiry into solar magnetic phenomena, one in
the large and dealing with the cycle as a whole, the other in the small and
focusing on specific magnetic features such as the fibril structure or definite
objects such as sunspots, flares, and prominences. Solar flares, in particular,
are noteworthy for the energy released. Flares are apparently magnetic in
origin and have a variety of configurations. Parker has suggested that smaller
versions of flares, in the form of tangential discontinuities in the magnetic
field, may play a significant role in the heating of the solar corona up to 108
degrees Kelvin.

The minimal system needed to discuss these phenomena mathematically
are the equations of one-fluid, ideal magnetohydromagnetics (MHD). These
equations describe a perfectly conducting, generally compressible gas. To
allow for resistive effects (such as solar flares), we can relax the condition of
infinite conductivity. Then Ohm’s law takes the form, in the simplest MHD
model,

J = o[E + u x B] (1)

where we have introduced customary symbols for current, electric, and ve-
locity fields, and o is the electrical conductivity of the material. We also
have the equations of Ampére and Faraday, and the solenoidal property of
the magnetic induction field:

V x E = —9B/dt, (@)
pJ=VxB,V.B=0. 3)

Here p is the magnetic permeability. For most problems of interest in astro-
physics the displacement current may be neglected in Ampére’s law (the time
scale of events being large compared to the transit time of light across the
system), an approximation we have already included in equation (3). This
has the effect of filtering out the electromagnetic radiation.

These equations combine to yield, for any given velocity field u(x,t), a
kinematic equation of the magnetic field,

dB/8t — V x (u x B) —1/RmV?B = 0. (4)

Here we have gone over to dimensionless variables and introduced the mag-
netic Reynolds number Rm. In the solar photosphere and generally in astro-
physical MHD, Rm is a large parameter ( with values generally greater than
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10%). Here we refer to estimates based upon the molecular, not the turbu-
lent value of the diffusivity. Thus equation (4), which is the MHD induction
equation, is in astrophysical problems highly singular in the distribution of
resistive effects, and indeed, and we have already noted, one sees this physi-
cal property in the fibrillation of the solar magnetic field. We may take the
existence of flux ropes and sheets as evidence of small dissipation.

In MHD the principal new dynamical effect is the Lorentz force which
appears on the right of the momentum equation

p(du/dt) + Vp=J x B. (5)

Using a vector identity, we see that this new force is a sum of a pressure
gradient and the effective tension in the lines of force,

JxB=y"![B-VB-VB?/2. (6)

This effective tension results in new wavelike phenomena, typified by the
shear Alfvén waves.

If diffusive effects are expelled from equation (4) (by setting Rm = o) we
then recover the kinematic equation for a magnetic field carried by a perfect
conductor. One usually then refers to the magnetic field as “frozen” into
the conductor; indeed it is only in this ideal case that one has a firm grasp
of magnetic lines of force as entities which are moved about in a prescribed
manner. In this case the evolution of the magnetic field reduces to the geom-
etry of material lines under the Lagrangian map determined by the velocity
field u. Lagrangian coordinates x(a,t) are defined by

dx/dt = u(x(a,t),t), x(a,0) = a. (7

If J;;,= 0z;/0a; is the Jacobian of the Lagrangian map, then the magnetic
field transforms according to

Bi(x(a,t),t) = J;;B,(a,0). (8)

A consequence of this is the conservation of flux: if § is a material surface,
then

djdt / B.dS =0. (9)
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This allows field intensity to be increased by compression or by stretching of
fluid elements. In two dimensions, such stretching also leads to folding and ul-
timately to highly sheared magnetic structures which are rapidly dissipated.
In three dimensions, however, models such as the “stretch-twist-fold” map
suggest that field reinforcement can occur and a dynamo process realized.

Even for systems with a large Rm the effects of dissipation thus remain
locally important. A good example of this is the “Aux expulsion” from 2-D
eddies and from other (even 3-D) fluid motions which tend to produce highly
skeared structures.

Most models of solar processes rely heavily on the approximation of
frozen-in fields. The early work by Babcock on the solar cycle, and sub-
sequent improvements by Leighton, suggest a global geometry for the solar
magnetic cycle, but a detailed understanding of the dynamo process is lack-
ing, owing primarily to the ambiguous status of certain physical mechanisms
(especially the “alpha effect”) which are often invoked in kinematic dynamo
theory, but can be mathematically analyzed only in a few models.

2 Fast dynamos

The Lagrangian viewpoint is useful in describing unsteady kinematic dy-
namos consisting of sudden fast movements interspersed within epochs of
zero fluid motion. The epochs of “stasis” allow diffusion to smooth out the
field up to some small length scale. Using this technique for maps of the unit
cube into itself, we ~an construct “fast” dynamos which amplify magnetic
field exponentially at a rate which, for large Rm, is independent of Rm and
therefore of the order of the “eddy turnover time” L/U.

These fast dynamos are also thought to occur in steady three-dimensional
flows containing regions of Lagrangian chaos. The reason for this is the
exponential line stretching which occurs in the chaotic parts, as measured e.g.
by the Liapunov exponent for the flow. This stretching amplifies magnetic
field in the ideal limit. The question then arises: is the folding up of the field
so severe that shear dissipation cancels the amplification process? In one
example, Andrew Gilbert has found that dynamo action survives robustly.
This example utilizes a “chaotic web” to extract a simple map along the
separatrices of a periodic array of eddies. Equation (8) is used to compute
the flux of field through a small element of the chaotic region, as a function
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of time. Exponential growth is observed in the chaotic region but not in
the regions of integrable flow. The field becomes highly intermittent and
fibrillated as time progresses and there is thus good reason to suppose that
true turbulence will always generate a field such as we see on the Sun.

In summary, there are some special cases where we can compute the evolu-
tion of magnetic fields in the kinematic sense, which suggest that a magnetic
field such as we see on the Sun is very likely in astrophysical turbulence.
However little is known about the physics of small-scale structure, about the
corresponding dynamical problems, or about the global organization of these
weakly dissipative processes.
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V Observing volcanic eruptions on the porch of Walsh Cottage
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Relativistic Fluctuation-Dissipation Theorems, Radiative
Hydrodynamics and Galaxy Formation

James L. Anderson
Stevens Institute of Technology
Hoboken, New Jersey, -07030

ABSTRACT

The origin of structure in the universe continues to be a major subject
of research., The original suggestion of Newton that Structure arose in an
initially uniform distribution of matter from gravitational instability, now
called Jean's instability, 1s still considered to be the basic underlying
source of this structure. The main difficulty with applying this idea to the
problem of galaxy formation is that, in an expanding universe, 1nstabilities
grov only as a power ( roughly 2/3) of the time rather than exponentially due
to the competition between the collapse of a fluctuation that exceeds the
Jean's mass and the expansion of the universe. Thus thermal fluctuations that
arise after the era of decoupling of matter and radiation will not have enough
time to evolve into galactic concentrations in the time between decoupling and
the present. At the same time, it was difficult to see how the significantly
larger density fluctuations (on the order of percents) needed to make galaxiles
on that time scale could have arisen naturally. One possibility which has
been put forward is that density fluctuations arose in the very early universe
due to quantum fluctuations in the Higg's field present during a hypothetical
"inflatlonary" phase of the unlverse's evolution. However, that proposal has
run into the difficulty that the fluctuations predicted by the Coleman-

Welnberg potentlal used in the "new inflationary" scenario are 4-5 orders of
magnitude too big.

An alternate proposal was put forth by Saslaw (1968) who suggested that
there might be a slgnificant enhancement of thermal fluctuations due to the
long~-range nature of the gravitational interaction. In particular, Saslaw was
able to show, using thermodynamic arguments, that these enhanced fluctuations
have a pronounced peak in theilr spectrum at the -Jean's wavelength. Following
on Saslav's suggestion, Simon (1970) made use of a fluctuation-dissipation
theorem for the Navier-Stokes equations derived by Landau and Lifshitz (1963)
to show that such a spectrum would arlse if one added fluctuating forces to
these equations. However, both Saslaw's and Simon's treatments were non-
relativistic and hence could not be applied to fluctuations that would have
arisen before the era of decoupling. While such fluctuations might have had
enough time to evolve into galaxies at the present time, they would have had
to survive a period of acoustic damping just prior to decoupling. Weinberg
(1971) investigated this damping and found that if the density of the present
universe 1s 10°°° g/cm™ then galaxy sized fluctuations would be damped by a
factor of 10””* and that only cluster sized fluctuations and larger would
survive through the decoupling era. In a somewhat denser universe however,
galaxy sized fluctuations might just manage to survive if they were

sufficiently large to begin with, However, Weinberg offered no mechanism for
such fluctuations prior to decoupling.

As a preliminary to an investigation of the origin and growth of
fluctuations prior to the Jecoupling era, we have developed a relativistic
generalization of the Landau-Lifshitz fluctuation-dissipation theorems for a

131




one-component relativistic fluid (1990). In particular we have determined the
relation between the fluctuating forces that have been added to the
relativistic Navier-Stokes equations and the coefficients of bulk and shear
viscosity and thermal conductivity appearing in these equations. Since
however, prior to decoupling, radiation played an important role, it is
necessary to extend these results to a multi-component system. We have used
the equations of radiative hydrodynamics derived by us (1976) for this
purpose. We hope to use these results to study vhether the density

fluctuations produced by these fluctuating forces could have survived beyond
the decoupling era to become galaxies,
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SOLAR ACOUSTIC OSCILLATIONS

N.J. Balmforth

Institute of Astronomy,
University of Cambridge,
Madingley Road, Cambridge, CB3 OHA,
England.

The measurements of the oscillations of the sun have now reached con-
siderable precision: literally thousands of individual oscillations have been
identified and many of their frequencies have been determined to accuracies
of less than a percent.

Theoretical modelling of the linear, adiabatic pulsations of solar mod-
els has reproduced these frequency measurements to a surprising level of
accuracy. There are small, but nevertheless significant differences (e.g.
Christensen-Dalsgaard, 1989). This seems to suggest that these theoretical
adiabatic pulsations describe solar oscillations fairly well. Indeed, it appears
that the differences between the observed frequencies and the theoretical
adiabatic pulsation frequencies are largely caused by differences between
the basic structure of the sun and that of the theoretical model intended to
represent it.

The formulation of the linear, adiabatic pulsation problem can be used
to develop inversion techniques to infer how the structure of a particular
theoretical model differs from that of the sun. This has been very successful
in helping to refine the modelling of solar structure. Using these methods,
the agreement between observed and theoretical pulsation frequencies has
been improved. The observed frequencies, however, do not compose a com-
plete mode set. This leads to resolution and uniqueness problems in the
theoretical inversion. The observed frequencies also correspond only to pul-
sations that do not propagate substantially into the central regions of the
sun. This severely restricts the depth to which information can be extracted
about the sun. Extensive observations are planned in the coming decade and
may alleviate these problems (for example, the “SOHO” space mission and
the “GONG” ground-based observatories). Another theoretical problem is
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the error that is introduced when the pulsations are treated as adiabatically
propagating waves in the turbulent super-adiabatic boundary layer of the
solar convection zone. In fact, this is probably where much of the remainder
of the discrepancy between observation and theory has its origin.

Inversion methods can also be applied to infer information about the
rotation rate of the sun. In a spherically symmetric star the axial symmetry
gives rise to a degeneracy in the azimuthal order of the pulsation modes. Any
non-axially symmetric phenomenon that affects the oscillations will break
this symmetry and remove the degeneracy. This is exactly analogous to the
instance where a magnetic field lifts the degeneracy of the energy levels of an
atom and produces Zeeman splitting. The rotation of the sun is responsible
for lifting this degeneracy in the solar oscillations and produces a splitting
of the mode frequencies. Since the extent of the splitting depends in some
integral fashion upon the depth-dependent rotation curve, the information
contained in the pulsations that penetrate to different depths inside the sun
can be used to measure some features of this rotation curve.

The power of the solar oscillations is concentrated within an envelope in
frequency about 3 mHz. This envelope appears to be largely independent
of the horizontal wavenumber of the modes (with the possible exception
of modes that propagate predomantly horizontally throughout the sun -
Christensen-Dalsgaard and Gough, 1982; Libbrecht et al., 1985; Rhodes,
1990). This suggests that oscillations are generated where the modes prop-
agate almost vertically, i.e. near the surface of the sun in the turbulent con-
vective boundary layer. Under the conditions that prevail in these regions,
it is extremely difficult to model nonadiabatic linear pulsations, principally
because there exists no reliable description of turbulent convection. Never-
theless, there are indications that the acoustic oscillations are intrinsically
stable, but driven stochastically and nonlinearly by turbulence (Stein, Nord-
lund and Kuhn, 1989; Kumar and Goldreich, 1989; Balmforth and Gough,
1990): the modes become the manifestation of acoustic noise, generated by
turbulent convection, in a resonant acoustic cavity. If this is true, then
the modes react like damped simple harmonic oscillators under the influ-
ence of a temporally random forcing. The power spectrum of the oscillators
is approximately Lorenztian, and the half widths at half maximum of the
peaks are just the damping rates of the modes. These line widths have been
measured for the sun (Libbrecht, 1988), and are qualitatively similar to re-
cent theoretical nonadiabatic linear pulsation calculations (Balmforth and
Gough, 1990).

Most recently it has been discovered that the solar oscillation frequencies
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are changing with the solar cycle. The dependence of the frequency change
upon the absolute frequency of the modes is indicative that the oscillations
are being affected by changes in the turbulent convective boundary layer
(Libbrecht and Woodward, 1990). Therefore the frequency change may be
used as a direct probe of the principal effects of the solar cycle upon the
stratification of the sun. This effect is surprisingly superficial. It can also
be modelied by simple theoretical calculations that change the efficacy of
convective energy transport, which is a potential consequence of the build up
of magnetic flux in the convection zone. However, these calculations directly
contradict the observations of the change in the solar luminosity over the
solar cycle (Woodward and Hudson, 1983). Thus the solar structure does
not appear to be undergoing a global (latitudinally invariant) change over
the solar cycle, unless the direct effect of the magnetic forces is responsible
for changing the pulsation frequencies.
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Inviscid models associated with vortex
reconnection

Stephen Childress

The question of global regularity of 3D Euler flow has implications for
the kinds of mechanisms available for viscous reconnection of vortex lines.
Conversely, studies of vortex reconnection might be suggestive of the most
singular Euler flows. A simple model equation studied by Constantin, Lax,
and Majda has the form w, = wH(w) where H is the Hilbert transform
and w is a function of z,¢. This equation, whose initial-value problem may
be solved exactly, supports “dipole-like” singularities across which w changes
sign. Thus in this one-dimensional analog the singularity is closely associated
with viscous cancellation described by w, = w?/2 + vw,., where w = H(w) +
w.

In real 3D Euler flows no clear evidence of a singularity exists. Using
the vortex-reconnection criterion, the Taylor-Green initial condition is not
especially appropriate, since the early phase of the motion compresses vortex
lines connecting the eddies into layers of one sign. Vortex reconnection would
be enhanced for the initial velocity (1, —%.,0) where ¢ = sin z sin y f(z) near
a double zero of f(z). On the other hand the work of Pumir and Siggia on
singularity development from anti-parallel vortex tubes deals with essentially
a vortex reconnection geometry. The inviscid development of the vortices
involves considerable 2D distortion of the cores. Their recent computations
utilizing mesh refinement have found at most exponential growth of vorticity,
however. Viscous simulation of reconnection at tube Reynolds numbers of
order 1000 shows /brid a weaker compression of the vortices toward thin
cores. The “bridging” process occurs in a layer formed by the compression
of the cores onto the plane of symmetry. Saffman has devised a model for
the “snap-back” of the bridged or rejoined tubes, which accounts for the
enhanced straining induced by the axial flow along the tubes away from
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the reconnection region. This nonlinear feedback is caused by the viscous
annihilation of the axial low-pressure cores. The time for viscous reconnection
depends upon the flow causing it. Simple straining-flow models of viscous
reconnection suggest that, with at most exponential of vorticity, the time
grows with Reynolds number Re like log Re. For singularities consistent
with the Beale-Kato-Majda estimate e.g. maximum vorticity growing like
(t* — t)7?, reconnection is complete by time ¢*.

A model for singularities/reconnection utilizing evolution of a bilayer of
anti-parallel vorticity has a certain attraction since core distortion tends to
eliminate tubes as discrete objects with well-defined circulations. A thin-
layer model based upon evolution from perturbations of a triangular jet
(u,v,w) = (0,V(2),0),V(z) = wo(—|z|/e + x0) was developed. The thin-
layer limit involves fixed O(1) variables z/¢,z/e for small €. Lettirg z,z
now denote these stretched variables, and u,w similarly denoting stretched
velocity components, the resulting system is

Dv=0, u.+v,+w,=0, (1)

D(w; — u;) + vow, — vyw, + u,v, — vyu, = 0. (2)

On the boundary z = £x(y, z,t) of the vortical region we have

u=x:+sz7u=¢z,v=0’w=¢n (3)

where ¢ is harmonic in z, z in the exterior and vanishes at infinity. The two-
dimensional version of this problem leads to the well-known nonlinear wave
equation for x: x¢ + woxXxy = 0. Various thin-layer initial conditions have
been considered. Two anti-parallel elliptic patches were simulated, using
contour dynamics, by David Dritschel. The patches develop into a highly-
distorted “T”-shaped structure, resembling the distorted vortex cores in the
Pumir-Siggia model.

The 3D structure of the above thin-layer model is still intact, and we have
focused first on a truncation which assumes

v = w(y, z,t)(—|z| + x(y, z,t)),w = w(y, z,t), (4)

and that w = H(u) on the boundary, where H is the Hilbert transform in z.
This model reduces to the system describing volume conservation,

xt + (Vx)y + (wx): =0, (5)
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where V = wyx/2 is the average y-velocity over the layer, an assumed equation
for w,
w + Vwy + ww, = ww,, (6)

and the Hilbert connection between u on the boundary and w. Since the
last two equations imply V; + 2VV, + wV, = 0, we see that the system
admits an integral V = V, =constant. By examining the linear stability
of the triangular jet in the various approximations, we find that the thin
layer model perserves the “varicose”, neutrally stable waves, but that the
simplified model, restricted to the integral surface V = V4, expels the 2D
Kelvin-Helmholtz waves which distort the cores of vorticies. We thus obtain
a system

xe + (wx): = 0,w = —H(xw: + Vox,)- (7)

David Olson has studied the evolution of pertubations of xo in this model.
Although the results are preliminary and have been obtained only at modest
resolution, the indication are that high-low pairs form and propagate. The
low steadily deepens while the high remains at about fixed amplitude. Since
2V = wy is fixed, singularities now correspond to zeros of x. We think of
the vicinity of such a point as a “hot spot” were reconnection is heightened.
We thus envisage introducing in such a region a local viscous boundary layer
on the plane of symmetry, where the extent of reconnection can be assessed.
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Rossby Wave Radiation from Strong Eddies
Glenn R. Flierl
MIT

Models of steady nonlinear eddies in geophysical flows often require conditions which
seem not to match well with eddies which have been studied in the atmosphere or ocean.
For example, consider a two layer quasigeostrophic model with mean flows U, , U3 in the
upper and lower layers respectively. For a steadily propagating eddy, the motions in the
far field are a linear combination of the solutions to

V2® = (K?/R%)®

with the two values of K? satisfying the equation

1+46

K2 4 BRA= (T2 =9)/0 +8)) 1 | BRE - (Ts = )6/(1+96) _ ( 6 )
U] —C U2 —-C

with § being the ratio of the upper layer depth to the lower layer depth. Analysis of
this equations shows that solutions are confined (both K? values positive) for ¢ > U,
and ¢ > U;. Thus isolated eddies must travel eastward with respect to both mean flows.
This is not generally observed. Also, isolated eddies must satisfy have vanishing angular
momentum [ [ér X vy +r X v, = 0. Again, it is hard to justify this as applying to Gulf
Stream Rings or features such as the Red Spot.

Thus, we must consider cases in which one or more of the exterior fields have a wave-
like or radiating character. We then would not expect to find steady state solutions, but
we can look for situations in which the exchange of energy between a strong eddy and the
Rossby wave field is relatively weak. Then the eddy would be relatively long-lived and
might be thought to be a steady state solution. It is important to understand the rate
at which energy is lost from the eddy structure and how the wave field might affect the
evolution of the eddy.

As a first example, we consider the case in which one mode is trapped and one wave-
like — in the absence of mean flows, this would correspond to a situation in which the eddy
is moving westward with a velocity ¢ < —fBR2, so that the baroclinic mode is not wave-
like, but the barotropic mode is. We look first at just the baroclinic mode in isolation.
The vanishing net angular momentum theorem implies that either the speed is exactly the
long wave speed or the baroclinic angular momentum must vanish ([ [ épc = 0). In the
former case, there is a solution with streamfunction decaying as r~? sin § which includes a
strong axisymmetric monopolar component. (This solution has, of course, no net angular
momentum because the flow is purely baroclinic and therefore vy + v; = 0.)

But this eddy does not satisfy the two layer equations exactly: the nonlinear interac-
tions generate barotropic flow and that, in turn, alters the baroclinic flow field. Analysis
of the equations in the limit where § is small show that the barotropic streamfunction
satisfies

1 B

(V2 - '€‘I¢BT =[V? - B :]¢BC
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which is the equation for topographically forced waves. The right hand side vanishes in
the exterior (streamlines connected to infinity) but not in the interior. Since ¢ < 0, the
barotropic equation has radiating solutions; therefore, we must satisfy radiation conditions.
This leads to an asymmetry with most of the barotropic field extending to the east of
the eddy. The asymmetric part of the field has a southward flow near the eddy (for an
anticyclonic baroclinic circulation), forcing the eddy to move southward. In addition, the
baroclinic energy decays as

%%//“V¢BC|2 +|¢8c|®/RY) = —z-l—_{‘s—);//(;%tﬁm*)[ﬁ —¢V? + (¢/Ra4)*|éBC

The right hand side has no contribution from the exterior part of the eddy, but has a
negative contribution, proportional to the energy itself, from the interior region. Thus we
have decay of the baroclinic eddy on a time scale inversely proportional to the layer depth
ratio, 6.

As a second example, consider a barotropic vortex pair oriented so that it will move
westward. In this case, the only mode present is radiating, rather than trapped. When the
flow speeds in the vortex pair, which are proportional to the eddy velocity, U, are large
compared to the Rossby wave speed, 3£2, we can solve by expanding in a small parameter
€ = B€2/U. We solve by matched asymptotic expansions: in the far field, the flow varies
on a large scale, X = ¢!/%z, and the dominant balance is linear. We look at the solution
which is singular near the origin (and therefore will match with the decaying field of the
interior dipole) together with the free waves necessary to satisfy the radiation condition.
As we approach the eddy, the far field reduces to the »~! sin 8 characteristic of the dipole
plus a weak r2 sin 20 strain field arising from the Rossby wave field.

The interior equations are then examined at various orders in € — in particular, the
order 1 and € terms lead to a steadily propagating solution which can be matched to
the singular part of the far field. The €%/2 terms bring in a slow time dependence and a
linear equation for the perturbation to the dipole streamfunction. We use two solvability
conditions to demonstrate that the enstrophy in the dipole is conserved in the presence of
the strain field, while the energy decays. We add an assumption that the eddy maintains
the form of a Batchelor/ Lamb modon; this seems necessary because we cannot solve the
perturbation equation in detail. Presumably a full solution would allow us to determine the
evolution of the functional relationship between the potential vorticity and streamfunction.
With this assumption, we can show that the speed is fixed, but the radius decays and the
amplitude decreases as t~1/2,

Finally, we consider the problem of an equivalent barotropic monopolar eddy. Here,
neither of the approaches above works. The eddy is radiating in the only available mode,
but is not coupled weakly. Nor is the wave scale significantly different form the eddy scale;
both are order of the deformation radius. The integral theorem suggests that the speed
should be near the long wave speed, as do numerical experiments. If c = —8R32, the system
is at the boundary between trapped and wavelike; however, it can still radiate because of
adjustment to the initial state. Analysis of the resultant radiation pattern (using an ad-
hoc and unjustifiable linearization) suggests that an anticyclonic vortex should have a
southward velocity proportional to t for small times and to 1/t for long times as the wave

field is gradually left behind.
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In summary, we have explored a number of models of strong eddies which decay
because of loss of energy to radiating modes. In some cases these losses could be made
up for by other mechanisms, such as the absorption of incoming waves or vortices; in
other situations, the waves simply provide a natural (and non viscous) decay mechanism.
While steady state solutions provide much information about the dynamics, these unsteady
solutions may be more relevant to many strong oceanic and atmospheric phenomena.

CONVECTION AND CHAOS

Andrew C. Fowler
University of Oxford

Abstract. We discuss two types of chaotic behaviour exhibited by
high Prandtl number convection, that is 'phase chaos' and plumes.
In mantle convection, these differing aspects of the motion find
their expression in the migration of subduction zones and hot
spots, respectively. The analysis of plumes in a single
convection cell can be attempted in the framework of Howard's
‘bubble’ model of convection, using an asymptotic analysis based
on a similar method applied to the Lorenz equations. In the
partial differential equation case, this leads us in principle to
an approximate Poincare map for the flow. However, we find that
Howard's assumption of differing time scales for the processes of
growth and flow instability is in error, and (for a single
developing plume) the thermal regime is likely to be periodic.
For the case of a large aspect ratio, where multiple plume
development can take place, the corresponding Poincare map should
lead to a chaotic distribution of plumes in space and time.

For cellular convection, we give a synopsis of the recent
scaling theory of the Chicago group. There is a mean flow in the
cell, fuelled by thermal plumes which erupt from the boundary
layer as they are advected across the cell. The theory is
strictly applicable, however, only to Prandtl numbers of O(1l).

Cellular ('phase’') chaos at large Rayleigh number can be
modelled using a set of ordinary differential equations for
variables which describe the size and location of slowly varying
convection cells. The differential equations are parametrised
using quasi-stationary boundary layer theory. The same method
can in principle be extended to three dimensions, and represents
a paradigm for the study of time-dependent motions of the earth's
lithospheric plates.
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On thermonuclear convection

Sandip Ghosal

Abstract

Dilke and Gough (1972) suggested that some g-modes in the sun might be over-
stable, triggering periodic mixing of the solar core. This according to the authors
might account for the observed deficiency of neutrinos coming from the sun and also
explain the ice ages. Unno [6], with the help of a quasiadiabatic analysis using the
work integral, concludes that [ ~ 3 or 4 and n ~ 1 are the modes most likely to be
unstable. Instability of these modes have been looked for numerically but no firm
conclusion has yet been reached. Unno’s quasiadiabatic analysis is valid provided
the time scale of g-mode oscillations is much shorter than the thermal time scale.
This condition is clearly satisfied for the low 1 low n modes. However, for the low
1 high n modes, the horizontal wavenumber is small and the g-mode oscillation pe-
riod approaches zero. We consider a two layer model with the lower layer containing
temperature-dependent heat sources (representing the layer of He? in the solar core.)
This model should always be stable according to the quasiadiabatic analysis. But
it is found that in the limit of large horizontal scales, thermal instability affects the
spatial structure of the g-modes (which in this limit have long time scales) and induce
a monotonic instability.

The degree of the temperature dependence of the heat sources is described by a
parameter E. The critical E for the onset of thermonuclear convection depends on
the boundary conditions assumed, but it is found to be in the same general range
as the values of E in the solar core. A nonlinear analysis is made and it is found
that the onset of thermonuclear convection is described by a subcritical bifurcation
in E. This kind of qualitative analysis suggests that there might be long and narrow
“shellular” convection patterns in the solar core confined mostly in the region of
the He? layer. If this is true, it will have the following effect on our calculation of
the neutrino luminosity of the sun: the rate of generation of heat in the layer we
are considering can be represented as < T™ > where m is some integer ~ 5 and
< > denotes horizontal average. < T > is the temperature distribution computed
from the spherically symmetric standard solar model. Now < T™ > is greater than
< T >™, therefore the luminosity of the new model with the shellular convection is a
bit larger than that of the standard solar model. In order to bring the luminosity into
agreement with the observed luminosity the central temperature of the model must
be decreased. Since the neutrino luminosity L, of the high energy neutrinos come
from a region very close to the centre, L, ~ T where T, is the central temperature
and n ~ 16. Therefore a small change in T, produces a significant change in L,. A
numerical estimate shows that in order to reduce L, to half its value one needs about
a 40 percent variation of the temperature over the length of a cell (for the 1=1 modes.)
The possible effects of rotation have not been studied yet. It is important to know
whether this kind of convection that has been demonstrated qualitatively is really
present in the sun even if it turns out that the solar neutrino problem has a different
origin; complete understanding of the macroscopic aspects of the problem is essential
if one for example wants to set some bounds on the neutrino mass.
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ON FAST DYNAMO ACTION IN STEADY CHAOTIC FLOW

A.D. Gilbert, D.A.M.T.P., Cambridge University, U.K.,
S. Childress, C.I.M.S., New York University, U.S.A.
& U. Frisch, Observatoire de Nice, France.

It is now understood how the motion of a conducting fluid can amplify weak magnetic
field (see, for example, Moffatt 1978 for a review). Although kinematic dynamo theory is
generally believed to explain the existence of terrestrial and solar magnetic fields, many
fascinating questions remain. One interesting problem is to understand the rapid rate of
magnetic field generation in the sun. This led to the following distinction (Vainshtein &
Zeldovich 1972): a dynamo is called “fast” if the magnetic energy grows on a convective
time-scale when the magnetic Reynolds number is very large, as is the case for the sun.
If the growth of the field occurs on a diffusive time-scale, which is very large in the sun,
or on some intermediate time-scale, the dynamo is called “slow”. Chaotic flows are prime
candidates for fast dynamo action since they stretch vectors exponentially; in the absence
of magnetic diffusion, the magnetic energy grows exponentially on the convective time-
scale. However a chaotic flow folds as well as stretches field, and this generally leads to
intense dissipation of field when weak diffusion is introduced. This can dramatically reduce
the growth of field and even kill it completely, an example being when the flow is planar.

We have considered dynamo action in a steady chaotic flow which is modelled on the
ABC flow for A = B =1 and C < 1 (see, for example, Dombre, Frisch, Greene, Hénon,
Mehr & Soward 1986). The model flow is constructed in such a way that the motion of
particles and magnetic field vectors can be calculated exactly when there is no diffusion
(Gilbert & Childress 1990). The model flow contains a chaotic web and field is stretched
exponentially. We calculated the evolution of field and found evidence that field is folded
constructively in the sense that the average field in a volume grows exponentially in time.
This provides evidence for fast dynamo action since the principal effect of weak diffusion is
to smear field over space, destroying fine structure while leaving mean field behind (Finn
& Ott 1988). We have also obtained preliminary results for the original ABC flows for the
case A = B = C = 1, which indicate constructive folding of magnetic field and suggest
fast dynamo action. Research is now underway to include the effects of weak diffusion in
our calculations.
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ARTIFICIAL BOUNDARY CONDITIONS
FOR WAVE PROBLEMS IN UNBOUNDED DOMAINS

by
Dan Givoli
Dept. of Aerospace Engineering
Technion, Haifa 32000, Israel

ABSTRACT: When solving numerically a wave problem in a
unbounded domain, one first has to make the computational
domain finite by introducing an artificial boundary. Then an
appropriate boundary condition must be imposed on this
artificial boundary, so that waves coming out of the
computational domain are transmitted through the boundary
without giving rise to spurious reflection. A considerable
amount of work has been done to devise such non-reflecting
artificial boundary conditions. In this talk the various
approaches are reviewed, usually leading to local approximate
boundary conditions. Then a new method is presented, which is
the result of joint work with Joseph B. Keller. 1In this method
we choose the artifcial boundary to be a circle or a sphere,
and we derive an exact nonlocal boundary condition on this
boundary. Thus, the original problem in the unbounded domain
is replaced by another problem in a finite domain which has
exactly the same solution there. The finite element presented
which demonstrate the superiority of the exact nonlocal
boundary condition over approximate local ones.
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Very High Resolution Solar X-ray Imaging

Leon Golub

Smithsonian Astrophysical Observatory
60 Garden Street, Cambridge MA 02138 USA

1. Magnetic Fields and Coronal Emission

Study of the solar corona has a relatively short history — only 150 years — with a handful
of major milestones along the way (Table I). Briefly, following the rather late recognition that
the Sun has a corona at all, the big breakthrough came with the realization that the coronal
temperature is of order 10® K. This high temperature explains the possibility of a corona extend-
ing to heights of several Solar radii above the photosphere; it also has the further implication
that, because thermal conductivity is so efficient, an unconstrained corona will expand outward,
producing a solar wind; this was subsequently observed when satellites were placed into orbit
and could measure the particle flux directly. The last major milestone was the realization that
there exists a close connection between regions of enhanced emission in the lower corona and
locations on the solar surface at which strong magnetic field regions have emerged from the
interior.

Table 1. Milestones in Coronal Physics

1842: Total eclipse across S. Europe - first serious study of corona

1850’s: Photography of corona and its spectrum

1930: Development of coronagraph

1939: Identification of 16374 A as Fe X

1940’s: Solar radio astronomy begins

1946: Availability of UV, XUV and x-ray observations from space

1958: Unconstrained hot corona will expand - solar wind

1960’s: Connection between enhanced coronal regions and magnetic fields

The connection between coronal activity and magnetic fields is most easily seen when the corona
is viewed on-disk, as can be done in X-rays (Figure 1). It is clear that the corona is brightest
when there is newly emerged magnetic flux and weaker when the field has diffused across the sur-
face. The open, unconstrained corona, which is connected with high-speed solar wind streams,
Bartels M-regions, and recurrent geomagnetic substorms, is associated mainly with coronal holes
(Krieger, Timothy and Roelof 1973), which are large areas of the Solar surface dominated by a
single magnetic polarity and within which the magnetic field is open to interplanetary space.

The relation between B and X-ray emission is more than just qualitative; the view which
developed out of the Skylab analysis was that the magnetic field played an active role in the
coronal heating process (Rosner et al. 1978). From this view it is possible to obtain scaling
relations among observable quantities (Golub et al,, 1980) which can then be compared to the
actual data. There is, however, no unanimity about this view, and theories which consider the
B-field to have a more passive role are still being explored. For instance, a popular idea in the
60’s was that closed loops would trap Alfven waves, and this view is once again being explored
in a quantitative manner today.
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Figure 1. Skylab soft x-ray image of the corona compared with KPNO magnetogram
on the same day. Bright regions of enhanced coronal emission are clearly associated
with the surface locations at which strong bipolar magnetic fields have emerged.

No matter what heating mechanism is invoked, it must explain the strong correlation be-
tween the intensity of coronal emission and the strength of the magnetic field. However, the
correlation is not a simple one because, as we will show below, high temperature plasma is not
seen above sunspot umbrae, which are the strongest magnetic field regions. Clearly. there is
more involved than just the strength of the magnetic field or the length of the loop. and we must
consider the footpoint boundary conditions as well when we attempt to model the formation
and heating of coronal structures {Rosner and Golub 1990).

2. X-ray Detection and Recording Methods

The two basic instrumental challenges involved in X-ray observations of the corona are forma-
tion of an image and recording of the image. Each of the tasks can be divided into two major
methods: N-ray imaging has been accomplished for many years by grazing incidence optics,
which have the advantage that they are proven reliable, that thev can be used at short wave-
lengths and that they work over a broad wavelength range. The alternative technique which we
are using. 1s multilayver coating of figured optics, which permits X-rays to be reflected at nor-
mal incidence. This techmque has the advantage that image quality. in terms of optical figure
quality. aberrations and scattering, is substantially improved. Also. the optics are relatively low
cost and lightweight. and they work over a narrow wavelength band. thereby providing some
spectroscoplie capability free of charge,

For image recording one can either use photographic emulsions or electronic (TV-type)
array detectors. The latter have progressed significantly in recent vears (Kalata and Golub
1988). but for an object like the Sun they still are not wholly adequate. This is because the
Sun has a large angular diameter and we are now achieving subaresecond resolution. In order
to fully utilize the information in a 1/2 arcsecond resolution image, one needs a pixel size of 1/4
arcsecond (actually 0.22 areseey. With an angular diameter of >~ 2500 arcsee if we want to image
portions of the corona projecting above the limb, the number of pixels needed 1s 10.000x10.000.
e, 108 pixels per image or 10% bits per image,




There are some methods available by which this large image format could be achieved.
but their costs far exceed the budgetary constraints of a rocket program or even most astron-
omy satellite missions. We are therefore using film to record the image, while also developing
an electronic X-ray imaging detector which operates at broadcast-quality TV resolution. For
photographic emulsions, the sensitivity is roughly inversely proportional to the square of the
resolution; there is thus a tradeoff between resolving power and exposure time. In a rocket flight
the observing is about 5 minutes, so that exposure time is a ™ajor consideration; the number
of photons per second reaching the focal plane translates directly into a limiting resolution for
the experiment.

Figure 2. X-ray image of the Solar corona obtained by the NIXT sounding rocket

payload. 11 September 1989: data are recorded at 63.5 A in the coronal emision lines
of Mg X and Fe XV,
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The NIXT payload uses a 25 cm diameter, {/8 mirror at prime focus, coated to reflect
63.5 A x-rays. The passband includes coronal emission lines of Fe XVI and Mg X, formed at
temperatures of 3X10% and 1X10% K, respectively (Golub et al. 1990). This passband permits
imaging of the quiet corona as well as active regions; also, as we describe in sec. 4 below, plasma
at flare temperatures is recorded by this instrument in a particularly effective manner.

3. Loop Atmospheres

The new high resolution data (Figure 2) reveal three major features of importance for models
of coronal formation and heating (Golub et al. 1990): i) the coronal loops which were observed
in previous grazing incidence studies are now resolved into more numerous thinner, i.e., higher
aspect ratio ("spaghetti” model) loops; ii) the x-ray loops seen in the corona maintain a fairly
constant cross-section for most of their length, then taper rapidly at their endpoints, terminating
in small patches of bright chromospheric emission, either in regions of enhanced network or in
penumbral brightenings; iii) there are no hot loops terminating within sunspot umbrae: the
corona directly above sunspots is dark and is surrounded by hot, bright loops which originate
in strong magnetic field regions outside of the spots themselves.

4. Flares

The multilayer coated mirrors which we used in obtaining the new data have the property
that they will reflect and focus any 63.5 A x-rays which enter the telescope. The central
passband wavelength was chosen because of the Fe XVI emission coronal emission line, so that
active regions will be most effectively imaged. However, the high temperat-ire (107 K) plasma
produced in flares will emit continuum at all soft x-ray wavelengths, and the portion of this
continuous spectrum which falls within the NIXT passband will be imaged just as are any other
63.5 A photons. We are thus able to observe not only the active regions which produce flares,
but also the flares which occur in those regions.

Moreover, the fact that it is continuum rather than line radiation which is imaged has,
by chance, the desireable property that the amount of radiation in the multilayer passband
is, per unit emission measure, sharply reduced. This effect largely cancels the observationally
problematic fact that, in a flare, the emission measure is greatly enhanced at all wavelengths,
reaching a maximum at the higher temperatures. However, because the NIXT response is lower
at high temperatures, the flare is only an order of magnitude brighter in our images than are
active regions, even though the emission measure in the flare is over a thousand times greater
than that of active regions. We are thus able to observe both the flare and the surrounding
fainter regions in the same image; in this we are also helped by the extremely low scattering of
multilayer mirrors, which keeps the bright emission localized away from the fainter features. It

is for these reasons that flares have the beneficial property of looking distinctly unspectacular
in the NIXT data.
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There are two striking new features visible in the x-ray data: the main body of the flare
consists of a single bright arch of emission, comprising about most of the total; a 3-D display of
the flare intensity is shown in Figure 5 to illustrate this point. The second feature is that there
is bright x-ray emissior: at the location of the two Ha ribbons, and each of the x-ray ribbons
contains structure within it. Examination of the development of the flare in Ha explains the
latter observation: each of the flare ribbons is itself observed to be a small two-ribbon event,
so that what we are observing is a pair of two-ribbon flares within the larger two-ribbon event.
Since we have only this one observation it is too soon to tell whether this type of complication
is characteristic of flares in general or peculiar to this one event. However, the Ha development
of this flare was not particularly unusual, so it appears that our new ability to see the fainter
x-ray structure simultaneous with the brighter structure is really yielding a new view of flares.

During the brief flight of the NIXT payload, a second flare started in an active region at
the west limb. In Ha the flare is seen as a small spray of material beginning at about 16:36
UT. As often happens in such events, the material observed in the Ha ejection disappears as
it leaves the Solar surface; however, since the event is transverse to the line of sight, it is not
likely that the material is Doppler shifted out of the passband. Instead, we are now able to
establish through the x-ray observations that the material disappears from Ha because it is
heated: in x-rays we observe an event which is co-spatial and nearly co-temporal with the Ha
event. The main difference is a small time delay between the two, in that the evolution of the
event in x-rays is about 1/2 minute behind the Ha event. Moreover, the x-ray ejection appears
to be a hollow cone of hot material, as would be the case if a layer on the outside of the ejected
chromospheric material is being heated as it rises. A detailed study of this event is currently in
progress (Herant et al., in preparation).
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Coherent Structures and Statistical Theory of Turbulence

Jackson Herring
National Center for Atmospheric Research®, Boulder, Colorado 80307, U.S.A.

The statistical theory of turbulence (in the form of equations of motion for the two-
point covariances, such as Kraichnan’s, 1959 DIA) may be viewed as the logical avenue
to single-point equations for Reynolds stress and energy dissipation (Leslie, 1973; Her-
ring, 1973; Yoshizawa, 1980). For example, far from boundaries a typical closure for the
Reynolds stress (u;u;) = R;;(x,t) is (Hankalic and Launder, 1972):

DRij/Dt = —(CI/T)(Rij —(2/3)511E) +CDBk(E/5){(Rkn Rij.n +RjnRik,n + Rinlec.n} 4o
(1)

In (1), D/Dt = 0, + (u;)8;, E is the kinetic energy = (1/2)R;;, and 7 the turbulence

time-scale E/¢, ¢ being the energy dissipation whose equation of evolution begins as

De/Dt = —cee/T+ -+ (2)

Equations (1) and (2) lead—in their simplest form—to mixing length, or kK —e¢ estimates
for heat and momentum transport. Coeflicients (cy, cp,c.) specify rates at which the state
of homogeneity (cp), isotropy (cy), and time-scaling (c.) are approached in the absence
of forcing. They may be “derived” from two-point closures by making the usual WKB
approximation, assuming R = x; + x2) slow. and p = (1/2)(x; — x2) fast. Effects of the
fast variables then show up in (1) and (2) in determining the coefficients that are in reality
spectral integrals (see Yoshizawa, 1980). Hence, it is important to assess under what
conditions such equations may have sufficient validity to be useful guides in inferring heat
and momentum transport. Generally, consolidating of the flow into isolated structures is
inhospitable to the underlying neair Gaussian assumptions made to arrive at the two-point
formalism. This talk, then, mainly concerns some examples of flow in which such structures
may play an important role.

We examine first the simple problem of the decay of isotropic turbulence starting
from initial conditions in which the energy (and enstrophy 2 = f0°° p?E(p)dp) is mainly
at large scales and for which viscous effects are negligible. The question is whether the
flow will remain of bounded variation for a finite time, or will-—as predicted by some of
the simpler statistical theories (such as the eddy-damped Markovian quasi-normal theory,
e,g., Lesieur, 1988, pp.92-94)—explode, with  — ~ at a time t. ~ 6{(0). Recent
numerical simulation results for random initial conditions are discussed, which suggest
that {2 increases only exponentially. We argue that such regularity suggests quasi-two-
dimensional small scales (d la Pumir and Siggia, 1990), and that the tendency is toward
an exotic state unrelated to real turbulence. For example, an exponential growth of Q(t)
implies an exponential decrease of ((Au/8zx)%)/({(8u/0x)*))*’? = S(t). This follows from
the simple isotropic relation (see e.g., Lesieur op. cit. p. 93. equation (7-5)):

dQ(t)/dt ~ S(t)Q*/? (3)

* The National Center for Atmospheric Research is sponsored by the National Science
Foundation.
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Experimentally § ~ .5, for developed turbulence. The explanation of the failure of the
closure in this case lies in the spacial separation of regions of strong vorticity (w) from
strong strain S. This is readily seen from (3), and the relation (see again Lesieur, op. cit.
p. 93, equation (7-2))

dQ(t)/dt = ((wiSi;wj)) (4)

Some numerical data is presented that illustrates these points.

Next, we examine the question of “Eulerization”, by which we mean that there exist
patches in the flow in which the nonlinear terms are strongly reduced from their nominal
Gaussian value. (The discussion is drawn from Chen et al., 1989). Such “Eulerized ”
regions are thought to be related, but perhaps not synonymous with, coherent structures.
One measure of the importance of such a region is

((Bu/8t)*)/{(8u/8t)*)}c

where {-}¢ means that the moments of u entering (J;u)? are evaluated as if u were
Gaussian. The comparisons of DNS with closure (in the form of the DIA, Kraichnan,
1959) are in reasonable agreement, both predicting a reduction by about a factor of 2 in
the mean-squared Eulerian acceleration, as compared to its Gaussian evaluation.

Finally we consider two-dimensional turbulence, which exhibits an extreme tendency
to organize itself into isolated vortices if left to decay. We examine such structures and
the failings of the statistical theory, as described in Herring and McWilliams (1984). We
may get at the issue of separateness of vorticity and strain by examining—in the mean
field approximation—the short time development of the two-point Reynolds stress in the
presence of a structured mean field, which represents—in an-admittedly vague way—the
large scales of the flow. The spectrum of the Reynolds stress is specified in a compact
representation in which R;;j(k) = {(| uq + 1u; |?) = Up(k), ((uy — 1uz)?) = Uz(k)}. (These
are just ~ the first two angular harmonics of the stream function, Herring, 1975). Then

for Uy (k), Usz(k):

(D/Dt + 2u(k))Uo(k) = S*(1 + k8/3(4k))Ur (k) + - - - (5)
(D) Dt + 2(k)Us(k) = icUs + (1/2 + k8/(4k))Uo - - (6)
S= (—-6]11.] + 62u2 + i(82u1 + 6]‘".2)) (7)

¢ = (—82u; + Oyuy) (8)

If we now assume an additional term in the RHS of (6) representing a linear return
to isotropy (—uU,(k)), and that this term balances the mean vorticity “tumbling” term,
we may eliminate U;(k) in (5), and find:

(D/Dt + 2v(k))Uo =| S [* p/(p* + C*)(1 + kO/D(4k))(1/2 + k3/B(4k))Us(k)  (9)

We remark that setting the RHS of (9) zero = Eyo(k) = 27kUs(k) ~ k3. Notice that
regions of excess strain S (over vorticity ¢ imply rapid transfer (to ever smaller scales),
whereas regions where | { |>>| § | are stable. This is similar to the “Weiss” criterion
(Weiss, 1981) for discriminating zones of stability in two dimensional flow, Weiss’ criterion
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is simply §? < (?) implies stability. In three dimensions, it is the second invariant of S,
proportional to the pressure variance: this point has been explored by Hunt (1988) and
by Nelkin and Tabor (1990).

If we now try to integrate (7) into homogeneous turbulence theory, we huve a funda-
mental problem in that for homogeneous flows, there is no way to discriminate between
strain and vorticity, at least at the level of second-order moments. Thus, the mechanism
for discriminating between stable and active regions is lost, unless we have equations that
involve more than second-order moments and associated Green’s functions.
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A MODAL ¢x*-DYNAMO IN THE LIMIT OF
ASYMPTOTICALLY SMALL VISCOSITY

Rainer Hollerbach

Inst. of Geophys. and Planet. Physics
Scripps Institution of Oceanography
La Jolla, CA 92093 USA

The macrodynamic equilibration of u?—dynamos in the limit
of asymptotically small viscosity is considered. 1In the mom-
entum equation, the primary balance of forces is between the
Lorentz force and the Coriolis force. However, 1f one con-
siders the integrated Lorentz torque on geostrophic contours,
the Coriolis force is incapable of balancing this torque, and
so if there is such a net torque it must be balanced by vis-
cosity. As a result, in the limit of asymptotically small
viscosity, the geostrophic flow induced by this torque can
become quite large. The resulting scaling of the field,
namely as some positive power of the viscosity, means that in
the limit of vanishing viscosity one has no dynamo.

Taylor (1963) proposed that there simply is no such net
torque, that the flow distorts the field in precisely such a
way that there is no torque, and showed that this requirement
in fact uniquely determines the flow. Thus, viscosity is not
relevant or even present in this framework, and so the equili-
bration is inviscid, as geophysical scaling arguments suggest
it ought to be. The difficulty with this approach is that in
general, that is for most choices of (X, the linear kinematic
eigensolution does generate a net torque, and so at least for
some small range of supercritical forcing viscosity must be
important.

However, as the forcing becomes more and more super-
critical and hence the nonlinear coupling between the flow and
the magnetic field becomes more and more important, it is
conceivable, as hypothesized by Malkus & Proctor (19%75), that
the flow will tend toward just the "eigenflow" required in
Taylor’s development. That this approach to the Taylor state
does in fact occur, at least in an infinite planar geometry,
was subsequently verified by Soward & Jones (1983). It is
this transition from the viscously controlled regime to the
inviscid Taylor regime, and the subsequent equilibration, that
we explore in this work, this time in a spherical gecmetry.
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The dynamo presented here is an expansion in the free
decay modes of the magnetic field. The momentum equation is
expanded as an asymptotic series, making use of a simplified
functional form for the dissipation, and yields explicit
expressions for the leading order geostrophic and next order
ageostrophic velocities. With these expressions substituted
back into the induction equation, a set of modal amplitude
equations is derived and solved for a variety of choices of X.

All OX’'s investigated yielded Taylor solutions. For some
choices of €4 the Taylor state is approached in a smooth pro-
gression starting from the linear eigensolution, but for other
choices it requires a finite amplitude jump. In the latter
case the solution track leading to the Taylor state can be
either stable or unstable, and this affects where the transi-
tion from the viscous regime to the inviscid regime takes
place. In the asymptotic limit the subsequent equilibration
is indeed independent of viscosity, as envisioned by Malkus &
Proctor, and depending on the choice of X it can be either
steady-state or oscillatory.
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DYNAMICS OF LOCALIZED STRUCTURES
WITH GALILEAN INVARIANCE

Christian Elphick, G. R. Ierley, Oded Regev and E. A. Spiegel

ABSTRACT. We consider a nonlinear partial differential equation
having both translational and Galilean invariance arising in the
Kapitza problem (Benney, 1964). Under suitable conditions, Hopf
bifurcation in extended systems , to leading order, is
represented by this phase equation. We study the interaction of
the localized structures that are formed in such systems both
numerically and by means of an effective particle approach. The
dynamics of a pair of interacting localized structures produces
an interesting scattering problem with the possibility of capture
into one of an infinite number of discrete bound states. For the
many-body problem the localized structures organize themselves
into patterns displaying spatial chaos.
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Fast reaction, slow diffusion,
curve shortening and harmonic mapsi

Joseph B. Keller
Departments of Mathematics and Mechanical Engineering
Stanford University

Abstract

The reaction-diffusion. problem
u, = eAu— eV, (u), u(z,0,e) =g(z), Opu=0on N

for a vector u(z,t,¢) is considered in a domain € R™. An asymptotic solution is con-
structed for € small. It shows that at each z, u tends quickly to a minimum of V(u). When
V has several minima, u tends to a piecewise constant function. Boundary layer expan-
sions are constructed around the resulting surfaces of discontinuity or fronts. Each front is
found to move along its normal with a constant velocity determined by the discontinuity
[V]in V across it. When [V] = 0, the front’s normal velocity is ex, where & is its mean
curvature. The motion of fronts in this manner is studied for arcs in the plane which are
normal to 39 at their endpoints, and for fronts which are closed curves. It is shown a front
can shrink to a point in a finite time or tend to a locally shortest diameter of . In the
latter case, a nonconstant steady state u(z, oo,e) results.

Then the asymptotic behavior of u is determined for ¢ small when f(u) = 0 on a
connected manifold M of stable equilibrium points. It is found that u tends rapidly to
M, being driven by reaction. Then u evolves slowly by diffusion restricted to M. It tends
ultimately to a limit that is a harmonic map of Q into M. Next, the case where f(u) has
stable equilibrium points on two manifolds M; and M, is treated. In this case a front
develops in 2. It separates the regions where u is close to M; from the regions where u
is close to M. For f(u) = V,(u) a boundary layer solution is constructed for u near the
front, and the velocity of the front is found to be proportional to the jump in V across it,
to leading order in €. When V(u) has the same value on M; and M;, this term is zero
and the front velocity is € times its mean curvature. The case of a spherically symmetric
potential V(|u|) and the case M = S? are presented to illustrate the results.

1 This lecture is based upon the following two papers which were published last year:
Jacob Rubinstein, Peter Sternberg and Joseph B. Keller, SIAM J. Appl. Math. 49, 116-
133, 1722-1733 (1989).




POLYTROPES AND THEIR PERTURBATIONS

Norman R. Lebovitz
The University of Chicago

The classical theory of polytropes is that of spherically symmetric,
self-gravitating figures of equilibrium in which the pressure-density
relation is given by the formula p=Kp'*!/". This theory is summarized and
the limitation to the range 0<n<5 is derived in a simple manner via an
identity due to Pohozaev.

For n—5 the figures tend to infinite central condensation, i.e., the
ratio of central density to mean density becomes infinite. This limit
therefore models the late stages of stellar evolution. For this purpose a
perturbation theory based on e=5-n as the perturbation parameter, wherein
the singular model of infinite central condensation is the unperturbed
solution, is described. The formal theory is shown to have certain
convenient properties, but the relation of the formal, asymptotic solutions
to the exact solutions remains unsettled.

Rotational perturbations of polytropes have been discussed in the
literature o'ver a long period of time. Here the idea is that of using the
angular velocity as a small parameter to ubtain approximate solutions of
the equations governing rotating stars. First some generalities regarding
axially symmetric rotating masses are discussed, and then the theory of
rotating polytropes is summarized. Defects in this theory are noted and
certain possible modifications are suggested to try to correct them.
Among these are a coordinate stretching, as implicitly employed in
Clairaut theory, and a systematic version of an idea of Monaghan and
Roxburgh employing different approximations in inner and outer regions,
which might be abie to extend the perturbation theory to large rotation
rates.
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Interface Dynamics: Playing with Symmetries

A. Libchaber
The Research Institute
University of Chicago

Abstract. The directional growth of a nematic phase into the isotropic one of a liquid
crystal is presented. Three lengthscales define the problem:

Ip=D/V , diffusion length, where D is the impurity diffusion coefficient and V the
velocity of the interface. This is the destabilizing term.

I7=(m AC)/G, thermal length, where G is the thermal gradient in deg cm-1 and

mAC the temperature jump across the solidus--liquidus region (m is the slope of the
liquidus).

Ic=YL, capillary length, where 7 is the interface tension and L the latent heat.

It and I are stabilizing terms. The onset of a wavy pattern corresponds to Ip I7.
When Ip or IT become comparable to Ic the interface restabilizes. One thus defines and
measures a stability tongue.

Y
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For small velocities the bifurcation to a cellular interface is supercritical. Secondary
instabilities develop beyond this critical velocity. They correspond to a spontaneous
breaking of translational invariance, leading to travelling waves with sources and sinks.

For larger velocities, drops of tilted cells appear, breaking the parity invariance x— -x. For
even higher velocities time symmetry is broken.

We have presented an overview of this problem, where a rich variety of
bifurcations can be studied. A simple model with two coupled modes of wavenumber 9
and 29 mimic the observations.
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Some Aspects of Convection in Binary Fluid
Mixtures

Stefan J. Linz
FR.11.1 Theoret. Physik, Universitaet des Saarlandes
D-66 Saarbruecken, West-Germany

The onset of convection and the weakly nonlinear convective behavior of binary fluid
mixtures in a Rayleigh-Benard setup has attracted growing interest in the last few years.
In this seminar we reviewed some of our results [1-8] obtained in the last years. The system
we consider is a horizontal layer of a binary fluid mixture enclosed between two parallel,
impermeable plates. The gravitational field acts vertically. The system is described by
the field equations for velocity, temperature, and concentration of the lighter component
of the mixture. Temperature and concentration field are cross-coupled via the Soret effect
(temperature fluctuations can drive concentration fluctuations) and the Dufour effect (con-
centration diffusion currents can drive temperature fluctuations). Between the boundaries
there is a vertical temperature gradient.

Focussing on liquid mixtures (where the Dufour effect is ignorable) we derived a gen-
eralized Lorenz model [1] assuming idealized free-slip boundary conditions for the velocity
field, but realistic impermeable boundary conditions for the concentration field. The model
based on a Galerkin approximation allows two-dimensional standing and propagating roll
patterns. The stability analysis [1,2] shows that, near the codimension-two point where
stationary and oscillatory instabilities compete, there is a gap in the critical wave numbers
and consequently the zero Hopf frequency limit cannot be reached. The weakly nonlinear
solutions were discussed: steady overturning convection [1,2,4], traveling wave solutions
[3,4), standing wave solutions [4] and their stability. Beyond that, transport properties
of traveling wave solutions were elucidated [3,4]: they generate heat, concentration, and
mass currents and—via Reynolds stresses—a mean flow in the horizontal direction. These
properties were later confirmed in a numerical simulation [9]. The changes of the stability
thresholds caused by realistic no-slip boundary conditions were presented [7).

The influence of non-Oberbeck-Boussinesq effects for small Soret coupling and the effect
of barodiftusion on the stability of the conductive state [5] were discussed.

We estimated that in gaseous mixtures the Dufour effect is no longer ignorable [6]. As
an aside we presented a slightly different system where the temperature at the top and
bottom boundary are equal and a vertical concentration gradient is applied. There the
Dufour effect can generate stationary and oscillatory instabilities for large enough Dufour
coupling [6]. This seems to be possible in gaseous mixtures. Returning to the Rayleigh-
Benard like system we studied the changes of the stability of the conductive state caused
by the additional influence of the Dufour effect in gaseous mixtures [8].

Finally we reviewed briefly some of our results [4] on the convective behavior if there is
in addition a porous medium between the boundaries. In particular we showed that there
are no supercritical traveling wave solutions.
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HYDROMAGNETIC INSTABILITY DUE TO ELLIPTICAL FLOW

David W. Hughes
Department of Applied Mathematics and Theoretical Physics
University of Cambridge

and
Willem V. R. Malkus
Department of Mathematics
MIT

An unbounded region of elliptical flow gives rise to three-dimensional instabil-
ities which are exact solutions, (Bayly, 1986). The simplest and fastest growing
of such solutions is the “spin-over” mode, (Waleffe, 1988, 1990). This “spin-over”
mode is observed to be a principal instability in bounded laboratory flows (Gledzer
et al., 1975, Malkus, 1989). The search for hydromagnetic consequences of these
instabilities include the G.F.D. study by Brazell 1987 and the work of Craik 1988.
In both of these latter papers it was concluded that an initial magnetic field was not
amplified by the growing three-dimensional mode, but merely advected. An appar-
ent exception to this finding was the special case of constant electric current parallel
to the constant vorticity of the elliptic flow. This basic state permitted exponential
growth of both the fluid spin-over mode and its magnetic counterpart, for any de-
partures of the basic state from magnetic-kinetic energy equipartion (Bush 1988).
The energy sources and equilibration of this unique solution are considered here.
The complete equations for the disturbance vorticity w and disturbance current j
are written

w=D:(w—aj)
. . 1 .
J=R:(J—aw)+§(wx1),

where D is the elliptical strain matrix, R the rotation matrix, and a is the value
of the ratio of current to vorticity of the basic state. Bush showed that parallel
disturbances, w and 5 which were orthogonal to the basic vorticity are exponen-
tially growing, exact solutions to the above equations. It is found here that this
special solution is unstable to slight variations in the parallelness of w and j. The
figure below exhibits the growth and equilibration in time of the component of j
antiparallel to the basic current. In contrast to the initial exponential growth of
the other j components, the antiparallel component grows super-exponentially, due
to the non-linear term, until it cancels the basic current. Although the disturbance
vorticity continues its growth unabated, this study establishes that the disturbance
magnetic field has drawn its energy from the basic magnetic field and has not ex-
hibited dynamo action. Further studies should include the role of boundaries. The
effect of a bounded domain is known to couple the spin-over mode to its basic field,
and may couple it to the magnetic field as well.

162




[\
o
()
(o

[\
wn
(oY

200
0 00 d A A A 1 n A - A l o L A A l A A " A J

t 1
®
— o
(o] (8]

llllleLLxlAlLl

!
o
wn

A A

-0.20
-0.25
]

-0.30 - W‘Wm

-

-.35 -

The super-exponential growth in time of the disturbance magnetic field, Z, anti-
parallel to the basic state.
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The Free Energy “Principle”, Negative Energy Modes
and Stability

P. J. Morrison
Department of Physics and Institute for Fusion Studies
University of Texas at Austin
Austin, TX 78712

The Free Energy “Principle” 1is a conjecture about stability in
Hamiltonian dynamical systems’', such as those that describe the motion
of ideal fluids and plasmas2. The conjecture proceeds from &2F, a
functional that measures the energy difference between a dynamically
accessible perturbed state and an equilibrium state. This quantity is
easily derived for all equilibria of ideal fluid and plasma models, e.g.,
Euler's equation, the ideal magnetohydrodynamics equations, and the
Maxwell-Vlasov equations®. When 8§2F is definite an equilibrium is
stable. This is a generalization of the Lagrange-Dirichlet theorem of
mechanics, and differs from previous work regarding Liapunov stability4:2
in that 82F is the energy difference restricted to the constancy of ail of
the kinematical or Casimir invariants. When 8%F is indefinite, either the
equilibrium is linearly unstable, or we have the interesting situation
where a linearly stable equilibrium does not correspond to an energy
extremum. In the latter case the system possesses a negative energy
mode . This definition of a negative energy mode (NEM) is a
generalization of that commonly used in plasma physics that is based on
the dielectric function®. Finite degree-of-freedom Hamiltonian systems
have NEM's when the linear normal form is stable with indefinite
signature; for example, when the linear Hamiltonian in action-angle
variables (J,8) has the form 82F = £ w,J;, where some of the frequencies

w; are negative. It is conjectured that systems with NEM's are

generically nonlinearly unstable to infinitesimal perturbations, in spite
of the fact that they are linearly stable. This is exemplified by an
example due to Cherry®, which due to linear resonance demonstrates
explosive growth. Three or more degree-of-freedom systems with NEM's
are thought to be unstable without linear resonance, due to a mechanism
known as Arnold diffusion. It is tempting to speculate that generically,
infinite degree-of-freedom systems with NEM's are also unstable. In
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addition to nonlinear instability, systems with NEM's are often
structurally unstable when dissipation is added to the dynamical system.
Physically this is an appealing intuitive idea since when energy is
removed from an NEM its amplitude must grow. This is a generalization
of the Kelvin-Tait theorem. In summary, the Free Energy “Principle” is
the conjecture that systems with NEM's are generically unstable, either
nonlinearly or structurally.
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Radiatively Driven Stellar Winds

Stan Owocki
Bartol Research Institute
University of Delaware
Newark, DE 19711

The massive winds from hot, luminous stars are thought to driven by
line-scattering of the star's continuum radiation flux. This
summary emphasizes the physics of this line-driving mechanism and
what it implies for basic wind properties, as well as for wind
structure and variability. Linear perturbation analyses of the basic,
CAK model for a steady line-driven wind indicate that such winds
are in fact highly unstable. Numerical simulations of the nonlinear
evolution of small amplitude (1 %), periodic perturbations at the
wind base show that this instability leads to high speed
rarefactions which terminate in strong reverse shocks. Subsequent
work indicates that such variability can have an intrinsic character
that persists even in the absence of explicit perturbations, and it
now seems that this is a direct consequence of a degeneracy of the
steady-state solutions. Current efforts are aimed at determining
how this degeneracy and intrinisic variability are affected by
including the dynamical effects of the diffuse, scattered radiation
field. Future work will focus on generalizing the model to 2-D (or
3-D) with rotation, and on modeling the unsteady flow energy and
ionization balance with radiative terms.

A more complete discussion of these points can be found in my
recent reviews, "Winds from Hot Stars" (1990; Reviews of Modern
Astronomy, Vol. 3., Springer: Berlin) and "Theory Instrinsic
Variability in Hot Star Winds", (1990; Proc. of IAU Colloq. #143, K.
Van de Hucht, ed.)
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CHAOS AND NOISE IN DYNAMICAL SYSTEMS WITH SLOW
INVARIANT SUBSPACES.

Michael R. E. Proctor
Dept. of Applied Mathematics & Theoretical Physics,
University of Cambridge, Silver St., Cambridge CB3 9EW, England

ABSTRACT. There are many dynamical systems of interest in
mathematical physics which possess the feature that there is an
invariant subspace in which one or more of the variables
vanish. If parts of this subspace are attracting and parts
repelling with respect to orthoginol perturbations, then the
trajectory may return repeatedly to a neighbourhood of the
subspace. If in addition the dynamics in the subspace takes
place on an asymptotically long time scale, then it is possible
to represent the dynamics by compositions of maps, all of which
are independent of the time scale ratio. The method is
particularly useful when the slow subspace is one dimensional.
A particular example is given for the equations describing
three-wave resonance, and it is shown that the dynamics may be
reduced to a map of the interval, given in simple analytic
form.

During the evolution the orthogonal variables can becone
extremely small, and so any small perturbation that destroys
the invariant plane has a dramatic effect on the dynamics. In
particular, if the ratio of time scales is ¥ (<< 4) then
perturbations have an 0(1) effect when their size € 1is such
that 1 5&n € 1200 ), 1f € is larger than this the dynamics is
dominated by the noise, and the evolution takes the form of a
‘noisy periodic orbit’ whose (mean) amplitude and period depend
crucially on €. Dynamical systems of this type may provide a
new paradigm for intermittency in disordered flows.

References: D.W.Hughes and M.R.E. Proctor 1990. A 1low-
order model of the shear instability of
convection: chaos and the effect of noise.
Nonlinearity 3,127-153.

D.W.Hughes and M.R.E. Proctor 1990. Chaos and
the effect of noise in a model of three-wave
mode coupling, Physica D, in press.
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Calculating Transient Coronal Loops

David W. Rose
12 July 1990

Magnetic flux tubes, which emerge and then re-enter the photosphere, occur
on a wide range of length scales in the corona of the sun. Most are fairly stable
and persistent, lasting on the order of days to weeks. In 1972, E. N. Parker pro-
posed a mechanism by which the extraordinarily high temperature of the solar
corona could be caused by Ohmic heating of electrical currents contained within
these flux tubes. In order that sufficient heat to produce the temperature differ-
ential be produced, based upon rough measurements of magnetic field strengths
and flux tube volumes, it was necessary that very intense concentrations of cur-
rent be formed in these flux tubes. Parker surmised that very strong and highly
local current sheets would form as the magnetic flux lines became twisted up
through motions in the photosphere. He argued that while the magnetic field
would be driven to a force-free state within the corona, that the condition of
its flux lines tied to photosphere plasma motions would cause an increase in
the amount of line braiding until force-free fields would cease to exist. Then
current sheets would form, causing local reconnection of the magnetic field, and
simultaneously coronal heating.

The second part of this hypothesis, that current sheets would form, is still
unknown. The difficulties are that the mathematical system is difficult, being
inherently a three-dimensional non-linear problem. Analytically, there is no
theory for the formation of singularities from such boundary motions, and while
it is true that force free fields cease to exist, there is no theory of what happens.
Even numerically, the task is difficult. One may reduce the MHD equations
into a simpler system which presumably retains the essential terms necessary
to determine current sheet formation. This simplification was performed by H.
Strauss in 1975. In its simplest form, it is obtained by renormalizing the MHD
equations with the density and rescaling the velocity and magnetic induction as

B ~ 2+¢eB(z,y,¢z¢€t) (1)
u — eu(z,y,e2,6) (2)

and taking as equal the coefficients of powers of €. The effect of this is to
decouple components tangent and transverse to the z-axis. It also has the effect
of enforcing incompressibility on the transverse flow velocity.
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At present, I have produced a numerical code which performs pseudospectral
approximation in the transverse space variables and centered finite differences in
z. With time advance using a two-step method , a numerical instability results
in the transverse direction originating at the location of maximal gradient of
the magnetic potential. For a simple case, this instability is effectively of the
type due to decoupling in space, coupling in time. A proposed solution to this
problem is to ”split” the Jacobian terms of the form [A,U) = AU, - AU
so that the second term occurs implicitly in the next time step, while the first
occurs explicitly.

Blocking A Barotropic Shear Flow

Melvin Stern
Florida State University

The “upstream influence” on an inviscid shear flow around a semi-circular cape (ra-
dius=A) is computed for an undisturbed (x = -00) velocity profile: u,(y)=y (for 0 < y
<), uw(y) =14+ Gy-¢{ (forl £y < o), where -(; is a constant vorticity. Linear
theory for A — 0, (2 = 0, Time = t — oo gives a “weak” upstream influence, in which the
upstream area of the boundary layer (vorticity = -1) increases as t!/2. For A > 1 contour
dynamical numerical calculations for the piecewise uniform vorticity flow show “strong”
blocking or “complete” blocking, in which either a fraction or none of the boundary layer
flux passes around the cape. A semi-quantitative critical condition on ({,, A) no upstream
influence is developed. The relevance of this simple barotropic model to the control of
oceanic coastal and strait currents is suggested.
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A Fluid Mechanicist's Introduction to
Lie Symmetry Groups and Partial Differential Equations
by Rick Salmon

Symmetry group methods are attractive because they apply to general nonlinear
equations. Good references include the books by Bluman and Cole (1974), Olver (1986),
and Bluman and Kumei (1989). The lectures summarized below are a gentle introduction
to Olver's chapters 2 and 3.

Lecture 1. Symmetry Groups

Given a differential equation, the idea is to find transformations of the dependent and
independent variables for which the equation is unchanged. For ordinary differential
equations, each such transformation leads to a reduction, by 1, in the order of the
differential equation. That is, applied successively, transformation groups can lead to
quadrature. For partial differential equations, the transformation groups lead to a general
family of invariant (similarity) solutions.

Given a partial differential equation of (say) second order in u(x,t),

F(x,t,u,u,u, g, u,,u,) =0 (1)
we want to find a solution,
G(x,t,u)=0 ()

Here, F and G are ordinary functions of their respective arguments. The general situation
is that F is a given function and G must be found. From a geometric viewpoint, (1) is a
7-dimensional surface in the 8-dimensional jet space with coordinates

X, b, Uy U, Uy Uy, Uy, U, (3)
A solution (2) is a 2-dimensional surface in the 3-dimensional base space with coordinates

X, t, U (4)

The generalization to more variables and higher derivatives is obvious.

We consider transformations of the variables from "old" coordinates (x,t,u) to "new'
coordinates (x’,t’,u’). Under certain assumptions such transformations form a group. If
the group depends continuously on a parameter s , then it is called a Lie group :

x'= f(x,t,u;s)
I'= g(x,t,u;s)
u'= h(x,t,u;s) 5)

It is conventional to let s=0 correspond to the identity element of the group. Then
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x=f(x,t, u;0)
t=g(x,t, u;0)
u=h(x,t, u;0) (6)

One way to generate such a group is as the solution to equations of the form

‘fix—s'= E(x',t',u'), x'(0)=x

%s_'=77(x',t'.u‘), 1(0) =1
du'__ ' ' ' ' =
Go=o(x ), w(O=u )

It is then useful to think of (x’,t’,u’) as the "location" at "time" s of a particle initially at
(x,t,u) that moves always with the "velocity"

=[&(x,t,u), n(x,t,u), (x,t,u)) @)
The simplifying feature is that the "velocity field" (8) is "steady”, i.e. s -indepenaent.
Thus, (8) is everywhere tangent to the base-space trajectories that define the
transformation.

The "velocity field" (8) determines a corresponding "velocity field"

d(u,) d(u) d(u,) du,) du,)
pr V=[§, n, ¢: ds " ds * ds * ds ' ds ]

€))

in the jet space with coordinates (3). (The notation pr v stands for "prolongation of v," a
good terminology.) The first three components of (9) are the same as (8). The last five

components of (9) can be expressed in terms of £, 17, ¢ and their derivatives. It is obvious
that such expressions must exist, from the simple fact that the formula for the tranformation
of a function implicitly determines formulas for the transformations of all its derivatives.
As an example, we will calculate d(u)/ds.

The Taylor expansion of (7) is

x'=x+sE(x,t,uy+ -
t'=t+sn(x,t,u)+- -
u= u+s¢(x,t,u)+--- (10)

and (10a-b) revert to

x=x'-sE(x',t',u')+-
t=t'"-sn(x',t',u)+--- (1

So
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0;‘ =(g‘xgx + 55 )u+ s(x,t, w]+ 0(s?)
=% _ 2
\ 3 * s{Dgp - u,DE -~ u,Dn}+ 0(s? (12)
where
R
D,= x + u,au (13)
Therefore
dw) DE - ub
ds - D¢ ul 6 ul tn (14)

Returning to our differential equation (1), we seek transformations of the form (7) for
which the equation takes the same form in new variables as in old, i.e.

F(X' ’t"u. ’u' x'? u.c" u' x'x"? u' x1'? u': 't') =0 (15)
where F( , , , , ) is the same function of its arguments in (15) as it is in (1). For small
s, (15)is

F(x+ E(x,t,u)s +0(s), e+ n(x,t,u)s + 0(s?), ........... ) (16)

Thus, subtracting (1) from (16) and Jetting s—0,

d) oF _
o, an

E(x, 1, u)‘%;—+ nix,t, u)égt—+. C et

(provided that the partial derivatives of F are not all zero.) By changing the definitions (8)
and (9) slightly to

vaé(x,t,u)-gx—+ n(x,t, u)g-+ ¢(x,:,u)% (18)
and
d(u,
prvs §(x,t,u)§ax—+ n(x,t, u)%-a— ¢(x,t,u)-g‘—+—g§l§%+
+ d(4y) 9
ds au,, (19)

we can rewr..: (17) in the compact form

(prv) F=0 (20)
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The tangent vectors (18) and (19) are simply the "advective derivatives" associated with
the "velocity fields" (8) and (9). Equation (20) just states that the jet-space "trajectory”
must lie in the hypersurface (1) corresponding to the differential equation.

We can now solve (20) and (1) to determine the components of the "velocity field" that
defines the transformation. This involves equating the coefficients of like -0 wers of (3) to
zero in (20), after using (1) to remove one of the coordinates. There resulws a set of linear

differential equations in the functions &, 7, and ¢(x,t,u). These equations, which are called
the determining system of the transformation, are linear (cf. eq. 14), even when the
original differential equation (1) is nonlinear. This is what makes the method so useful.
For high-order nonlinear equations, the determining system may contain hundreds of
equations. Fortunately, there now exist symbolic manipulation programs that do nearly all
the work of setting up and solving these systems.

As a simple example, we consider the heat equation,
F=u-u,=0 Q1)
for which the general solution of the determining system turns out to be
E(x,t,u)=c,+ cx + 2t +4cxt

n(x,t,u)=c,+2cy +4c6t2
o(x,t,u)=(c;— ¢,x —2¢¢ — cxu + a(x,t) 22)

where the c; are arbitrary constants and a(x,?) is an arbitrary solution to the heat equation.
We thus say that the heat equation is invariant to the transformations generated by

v ='6%’ v =g-, v =u‘—9ua—, v4=x—aa?+21-‘%

v5=2t%—xu-gu—, v6=4tx—§7+4t2%—(x’+2t)u5ua—,

ve = a(x,t) J
a ou (23)

The transformation generated by v is

xX=x+s5, t'=1, u'=u 24)
Let

u=f(x,1) (25)
be a particular solution of the heat equation. The vj-transform of (25) is

u'= f(x'- s,t) (26)

But we already know that the primed variables also satisfy the heat equation. We therefore
conclude that if f(x,z) is a solution to the heat equation, then so must be f(x-5,t) for any
constants. Repeating this logic for all of the generators in (23) we conclude that:
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f u= i Jution h ion, then so m

v u=f(x-s,t)

v, u=f(x,t—s)

v, u=¢ef(x,t)

ve u=flex, e*r)

v u=e"“’z'f(x—2st,t)

Ve u= \/1:43, ex 1_+?;t )f( 1 +x4st ’ 1+t4st )

Vo u=f(x,t)+sa(x,t) 27

where s is an arbitrary constant and a(x,t) is an arbitrary solution to the heat equation.

The ability to transform solutions into other solutions is sometimes useful by itself; the
transformation of even trivial solutions (e.g. constants) can yield nontrivial results.
However, it is in the determination and classification of invariant solutions that symmetry
group methods really show their muscles.

Lecture 2. Invariant Solutions

In the first lecture we drew an analogy between a transformation group of a differential
equation and the particle trajectories in a steady flow. The generators of the group are
analogous to the velocity field of the flow. Knowing the generators is equivalent to
knowing the transformation group, but, as the fluid mechanical analogy would suggest, it
is usually much easier to deal with the generators than it is do deal with group.

The generators form a Lie algebra with mathematical properties that reflect the
underlying group. The most interesting of these properties is this: If v, and vy, are any
two generators, then their Lie bracket defined as

[Var Vo] =VaV, =V, Va (28)
is a linear combination of all the generators. For example, consulting (23), we find that
[V Ve]=4v,—2v, (29)

This closure property of the Lie algebra is a consequence of the correspondence between
generators and transformation groups: It can easily be shown that the commutator (28) is
the generator of the composite transformation consisting of an infinitesimal displacement
along the trajectory corresponding to v,, followed by an infinitesimal displacement in the
direction of vy, followed by backwards displacements in the directions of v,, and then vy,
This composite transformation is certainly a member of the general group of
transformations, and therefore its generator, (28), is some linear combination of the basis
vectors v;.

We now turn to invariant (similarity) solutions. Recall that (pr v) is, by hypothesis,
tangent to the solution surface F=0 in the eight-dimensional jet-space. However, v is not
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necessarily tangent to an arbitrarily chosen solution surface G=0. That is, (pr v) F=0 but

vG# 0. In fact, it is the "flow" across solution surfaces that carries solutions into other
solutions, as in (27).

Now let v be a particular generator and consider the special solutions for which vG=
0. The generator v in (23) offers a trivial but prototypical example. vj has a component
in the x-direction, but no components in the z- or u- directions. Thus vj G= 0 only if
G=G(t,u). Thatis, solutions invariant to v; take the form u#=u(t) and are independent of x.
(These solutions turn out to be trivial indeed: they are just constants!)

For an arbitrary generator v, the invariant solutions are found by a method that
amounts to finding the special coordinates in (x,t,u)-space for which that generator takes
the canonical form (24). This is most easily done by the method of characteristics: one
determines the functions pj(x,t,u) and pp(x,t,u) , called differential invariants, whose iso-
surfaces intersect to form the trajectories of v. The similarity solution then takes the form
U1 =g(u2) where g is a function to be determined by substitution into the original
differential equation.

As an example, we calculate the similarity solutions corresponding to the generator
cvi+vs of the heat equation, with ¢ an arbitrary constant. The characteristic equations

dx
2t+¢

du
xu (30)

a __
0

yield the differential invariants

()
Hh=1t, H,= W eXA 2+ ¢ (31)

so that the sinilarity solution takes the form

(52
u= g(t) (&4 m) (32)

with g(#) left to be determined by substitution in the heat equation.

To study the most general similarity solution of the heat equation, we must use the
general generator

V=V + 6V, + 0V, + vV, + VitV +V, (33)

where ¢; are arbitrary constants. Unfortunately, the characteristic equations corresponding
to (33) are very difficult to solve. However, this task can be circumvented by a procedure
that forms the slickest part of the whole theory.

The essential idea is very well illustrated by the example (30-32). To obtain (32) we
can use a combination of v; and vs as above; or we can use vs by itself to obtain (32) with
¢= 0, and then use the property (27b), obtained from vs, that any solution can be time-
translated. That is, we can use a morc restricted generator to obtain our similarity solutions
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if we combine the results with the rules for transforming solutions into solutions. It can be
shown, in fact, that if cs #0 in (33), then we can have ¢;=0 with no loss in generality.

The special geometrical relationship between vj, v2 and vs that allows this can be
explained as follows: If the trajectories tangent to vs are subjected to a coordinate
transformation corresponding to vs, then the transformed trajectories are tangent to a linear
combination of vs and vi. We can regard the trajectories as material lines in a perfect fluid
with velocity v2. The material lines are carried along by the fluid, and the tangents to these
lines are Lie dragged by the velocity field v, in the same way as the vorticity or magnetic
field vectors in a perfect fluid. In complete analogy with the vorticity or induction
equations, the evolution equation for the tangent, v, is

dv _
as V2Vl (34)

with initial condition v(0)=vs. The Taylor-series solution of (34) is

V(s)=vV +s[V,V,] +%s2[vz,[V2,V5]] +- -
=V, +S5(2V) 435V, 2v ]+ - -
=V s +25v . (35)
Thus, a transformation ("advection") by va drags vsinto v5 +2s v).

Starting with the general generator (33), we employ all possible draggings to eliminate
as many components of (33) as possible. Each elimination requires an assumption about
the arbitrary constants in (33) (typically, that a particular c; is nonzero), and the converse of
each assumption must be separately examined. The final result is an optimal subset of
generators, each very much simpler than (33). All the similarity solutions obtainable from
(33) can then be obtained from this optimum subset (whose characteristic equations are
much easier to integrate) plus the rules for transforming solutions into solutions.

For the heat equation, the optimal subset and corresponding forms of the similarity
solutions turn out to be:

¢ X
v,+tcv, u= tg(-\—/t——-)
-1/4 " X

V,+V_+ ¢cv =(1+4t2) ex {———t——--?—arctan(?l)} —_——

2 : PL"1+a 2 8 V1+42
v,-V, u=exp{xt +2°}g(x + 1)
v,+cv, u=-e'"g(x)
v, u=glt) (36)

All the other similarity forms can be obtained from (36) by the transformations (27). The
various cases in (36) yield ordinary differential equations for g whose solutions can be
written down as parabolic cylinder functions, Airy functions, or trigonometric functions.

Rainer Hollerbach and I have applied the above methods to the thermocline equation, a
particularly gruesome fourth-order nonlinear partial differential equation of interest to
oceanographers. The results, which include many previously unnoticed similarity forms,
will be reported in a forthcoming publication. These lectures were a precursor to our
summer on "Geometrical methods in fluid dynamics" in 1993.
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VORTICES IN TIGHT EMBRACE

by
E. L. Schucking, Department of Physics, New York University
d

an
E. A. Spiegel, Department of Astronomy, Columbia University

ABSTRACT. We study simple flows of an incompressible fluid of density p and

constant kinematic viscosity v in a hypersphere $3 of radius . The $3 is imbedded into
a Euclidean space of four dimensions and described by the equation

|21|2+|Zz|2= A% z=x+iy, z,=z +iu.
We divide the $3 into the three regions I, II, and I1I by

L 0< 'le i
1L A < |31| <rA
1L Ar, < zlls A.

The regions I and III are solid tori which show at time =0 the velocity field of rigid
rotation:

dz, . dz,
Poa) T g =0
dz, _ dz,
IIL | Sz, v =0
t =0 t=0

with @y and @3 constant, i.e. independent of r=1z;/A.

In region Il between the two vortex cores we assume at t=0 a pseudo-potential flow
which has vanishing divergence of its shear with velocity field

dz,

dt

. dz2
=iw(r), r

=0 t=

=0, O(n) =0, O =0,

All three flows are stationary solutions of the Navier-Stokes equations at =0 for a
continuous velocity field. The jumps in velocity gradients at r; and r» lead to a time-

dependent solution of the Navier-Stokes equations for w(z,r) in terms of Jacobi
polynomials in r with time-dependent coefficients.

Flows in §3
The $3 of radius A is given by the equation

2 2 2
2| +]z| = 4 (1)
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with
z=x+1iy, ,=z +iu 2)

where x, y, z, and u are Cartesian coordinates of a Euclidean R4.

We paramet=rize the S3 by the coordinates 7, ¢ and y such that, with r ranging from 0
to 1,

zl=),re“, 0< ¢,y <2rm, z,= AV 1-r2 . 3)

2

The differentials are

dz = A(dr +ir dp)é®, dz,= A{—‘l‘i’— +i/1- rzdw)e‘ v

A1- 7 4)

We get then for the line element

_ 2 2,2 dr? 2 _ 2
dsz—ldzll +|dz,] —2.{1_ r2+r2d¢ +(1- Ady } )

We shall study flows for which r and y are constant. This gives for the velocity v

ds _ . _ .9 _
dt—v—lrdt_/'lra). ©)

The angular velocity @ may be a function of the two variables r and ¢,:
w=w(r?t). )

We first write down the condition that the flow has vanishing divergence. If we

number coordinates r, ¢, ¥ as x/, x2, x3 the velocity vector v has the components
(=1,2,3)

dx’ _ i i de i
7:—= VI— (082 —762 (8)

The formula for the divergence of a vector field W is given by

. . 1 ,
i =4 = /o v/
Ty \/?( v ).j ©)

where the semicolon denotes the covariant derivative with respect to ¥/ (j =1,2,3) and the
comma the ordinary partial derivative. The determinant of the metric tensor is called g. In
our case we have from (9)
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B 0
lex]= 21 o r 0
0 0 1- (10)

and thus

g = detfg,|= 47"

(11)
The flow has vanishing divergence if
v/ =div v=
1} (12)
Since we assumed that @ did not depend on x2=¢ the divergence vanishes.
The shear tensor for the flow is defined as
=1 =1
Sie=2(Via ¥ Vay) L=t V) (13)
where the last equality follows from the vanishing of the divergence in (12).
According to the definitions
v,=gyt v.=v, -T,v,=v, =T, v
A ik jok jk ik N A
F a= 2(3,1 k + gu i~ jk,l) (14)
one derives that
=28+ o'+ ) (15)
With (8) we get
1
Sa=2(8u, 0% 8,0, +8;,0,) (16)

As the first term vanishes since the metric is independent of ¢=x? , the only non-vanishing
term of the shear for our flow (8) is

o’ ¥))

With an @ independent of r we obtain thus rigid rotation.
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The viscous stresses enter the Navier-Stokes equations through the divergence of the
shear tensor. We calculate

x k 1 x 1 Y
& ik ,/g(vg i )'k 28u,; 18)

from the definitions of covariant derivatives. The last term in this expression is zero since
g2 vanishes.

We have from (10) for the contravariant (inverse) metric

1-r 0 0
1
; 1{ 0 = 0
le*l= -5 r
L 0 1
1-r (19)
Thus from (17)
5= 5,87 = %‘?7’ 5, = 558" =3r(1- ’2)(23:—' (20)
All other components vanish. We obtain thus from (18)
1 2 ow
Slk;k =0, s3k;k =0, SZk;k =-2—r;{r3(1— rz)s‘—]- (21)
The divergence of the shear tensor vanishes if
o0 2B (1+ r’ r )
=- =-2B + , B = const.
or r*(1-r?) rooo1-r (22)
This integrates to
r 1 _
0= w,+ B(—ln-l_—7 + ?), @, = const. 23)

The flow consists of a rigid rotation with constant angular velocity ay and the "pseudo-
potential” flow given by the angular velocity

w=B(lnl_Tzﬁ+—r17) 24)

The expression”pseudo-potential” derives from the fact that in the limit A —eo the
logarithmic term goes out and we obtain the potential flow

1 -
v~ L= A 25)
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where L denotes the distance from the axis of rotation. However, while the potential flow
in R3 has vanishing vorticity we have for the pseudo-potential flow in S3 with (24)

1- 2 _ _282°
r r(1-r)’ (26)

Vo= V= — A rza))'l= - Blzg_—-ln

while the other components of curl v vanish.

Going back now to the expression for the pseudo-potential flow in (24) we observe that
@ becomes singular on the axis at =0 and also at the largest distance from the axis at r=1.
For positive B the angular velocity @ decreases monotonously from +ee at r=0 to -eo at

r=1.

A model flow

We want to study the development of a Couette flow without any free or rigid surfaces
that is finite and has no singularities. To this end we sandwich the pseudo-potential flow
between two rigidly rotating vortex cores.

W A L,
5 |'ﬁ id
motakion
o] ' q-,

Figure 1. Initial distribution of angular velocity at time ¢ =0 for B>0.

This eliminates the singularities at r =0 and r=1. The angular velocity -- and thus also the
velocity -- is a continuous function of the radial distance r. At time ¢ =0 we start with a
stationary solution of the Navier-Stokes equations that has been pieced together at r=r; and
r=r;.. Atthese two surfaces we have finite jumps in the radial velocity gradients. These
discontinuities will create a time dependence of the flow and it is to be expected that for

t—e2 a uniform rigid rotation will result with an angular velocity determined by the initial
(conserved) total angular momentum.

The Navier-Stokes equations are given by

Dt [ ‘L (27)
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where p is the constant density of the fluid, p its pressure and v its kinematic viscosity
which is assumed to be constant here. The left-hand side of the equation is given by

Dv. ov.

D = a tUeY =gt (e vt H )| (28)
Since we take
b=y, =0 (29)

for our flow we let the pressure p depend only on r and ¢ . The "3"-component of the
equation is then identically fulfilled as we see from (21) which also tells us that the "1"-
component becomes

B-v—=-v WV +—(v21v A )=—/’L w’——-b--g’_ﬂ

Dt (30)

This means that the pressure gradient will balance the centrifugal force. The "2"-equation
becomes with (21)

Dv, o,
— T — — 3 -—
o= a = A= s, =R gl ra- mg] (31)
We introduce now a new dimensionless time variable 7 by
o
A (32)
and indicate partial derivatives with respect to 7 by a dot
_dw
©=5 (33)
Our equation (31) becomes
e L 9T 0 1 d0
Pio =5 - 5] (1= )5S0 ] (34)
Instead of r we introduce
§=1r (35)

as a new variable also ranging from zero to one. We denote partial derivatives with respect
to € by a prime

do _ 1 dw
0 U o (36)

III

w'
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Equation (34) becomes then

¢ =[£(1- D= £(1- Ho+ £(2-38)0". 37
This gives the partial differential equation

w=E1- 8w+ (2-38)w'. (38)
Separation of variables gives

w = f()g () (39)
and

Lota- o8 +0-1%)=-a 0

with constant a. We obtain thus the equations

f+af =0 §(1-8)g"+(2-35)g'+ ag=0. (41)

The second equation poses an eigenvalue problem with eigenvalue a in the interval from 0
to 1 with the boundary conditions that g should be finite. The solution is given by the

Jacobi polynomials J,(2, 2, x) which solve the hypergeometric differential equation

E(Q-&E)g'+(2-3)g'+ n(2+n)g=0 (42)
This means the eigenvalues a are given by

a= n(n+2), n=012,.... (43)
We write here

J(22,x)= ¢,(x) (44)

and have as general solution

© = Dcu(x)e™ D0
n=0 45)

The eigenfunctions ¢y, are given by!

= (n + D'.ﬁ:_ A+l "
1 A simple formula is ¢(x) = —% dx"[x (1-x)].
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n

¢.(x)=1+';—1_—1'§(— Dt(:)(n+k +1)xk.

(46)
The first ones are given by
=1 ¢=1-3x, ¢,=1-4x +3x’
o=1-5x +15x2- T x> @

The ¢,(x) form a complete system of orthogonal polynomials on the interval from zero to
one with weight function x. We have

1

[ x0u(x)0u(x)dx = Gu—T—

o 2(n+1)3. (48)

To solve the initial value problem we have to determine the coefficients ¢, . We have from
(45) for =0

Cm

1
J.xa) 0,x)¢.(x)dx = 3
o 2Am+1) (49)

The function «X0,x) is given by

0(0x)=wm for 0<x < ’12

®(0,x)=w, for rfoSl (50)

with constants @w; and @y . In the range
2 2

we have

w(0,x)= B(L++ml1z%)

(52)
with
1- r? 1-r}
= B(l2 +1In 2’ ] Q,= B[Lz+ In 22 J
n n I r (53)

All integrals in (49) are elementary. A full discussion of the problem is still needed.
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ol W ~ GALACTIC DYNAMOS

A.M. Soward, Department of Mathematics and Statistics,
The University of Newcastle upon Tyne, NE1 7RU, U.K.

ABSTRACT. A simple representation of a galactic dynamo
consists of a thin disc of electrically conducting fluid with
the region external to it a vaccuum. Differential rotation in
the disc provides the W-effect which stretches out meridional
magnetic field into the azimuthal direction. Small scale
turbulent motions are responsible for diffusion but more
importantly the W-effect, which produces meridional magnetic
field from the azimuthal field so completing the dynamo
process. When the of -effect is antisymmetric about the
equatorial plane, modes of two symmetries can be distinguished
namely even (dipole) and odd (quadrapole). As the magnitude of
Dynamo number, which provides a dimensionless measure of the
product of theel and@-effects, is increased the growth rate of
modes generally increases. Dynamo action often occurs when the
real part of the complex growth rate vanishes. Four marginal
modes can be distinquished. The are the steady dipole, steady
quadrapole, oscillatory dipole and oscillatory quadrapole.

The galactic disc is characterised by two length scales,
the disc radius R and the disc thickness b. Together they
define the aspect ratio€ = b/R. The dynamo modes themselves
have a length scale L, which is generally intermediate between
the disc radius and its thickness; b<<L<<R. In this limit the
dynamo can be modelled 1locally by a slab model, first
investigated extensively by Parker (See Parker, 1979). In this
lecture multiple 1length scale procédures are described, which
use solutions for the slab model as the first approximation to
the complete solution. A test for the validity of the
procedures is obtained by comparing results with Stix’s (1975,
1978) numerical results for a particular model in an oblate
spheroid. The asymptotic results of Soward (1977) for the
first steady dipole (sometimes called the "forgotten" mode) are
described. It is explained how the exterior potential magnetic
field 1is a more potent mechanism for linking field amplitudes
at distant parts of the disc than lateral diffusion within the
disc, contary to the assumption made by some authors. New
results are described for the oscillatory dipole. This model
is unusual in as much as the radial dynamo length scale L is
comparable to the disc width b. A comparison is made with
Stix’s results. Local results for the oscillatory quadrapole
have been obtained. 1In this case the most unstable mode occurs
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on a long length scale L(>>b). As yet, however, no
satisfactory solution of the amplitude modulation problem on
that length scale has been found.

REFERENCES:
Parker, E.N., 1979, Cosmical Magnetic Fieilds,
Clarendon. \
Soward, A. M., 1977, "A thin disc model of the

galactic dynamo", Astron. Nachr. 299, 25-33.

Stix, M. 1975, "The galactic dynamo", Astron, &
Astrophys. 42, 85-89.

Stix, M. 1978, "The galactic dynamo", Astron. &
Astrophys. 68, 459.

THE CATASTROPHE STRUCTURE
OF THERMOHALINE CONVECTION

Olivier THUAL
NCAR, Po Box 3000, Boulder, Co, 80303

We apply a surface forcing to the 2D Boussinesq thermohaline convection in a reci-
angular box, by imposing a fixed cosine temperature and salinity flux. Multiple steady
states are found numerically, allowing the competition between a thermally and a salinity
driven symmetric circulations, as well as a one cell asypumetric circulation. Iu the control
space of the two forcing parameters these equilibria form a double cusp catastrophe. This
catastrophe can be mimiced on simple box models connecting stirred reservoir through
pipes. These low order models might give hints for an asymptotic expansion which could

catch the catastrophe phenomena on the Boussinesq equations.
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Simulations of Solar Convection

by Bob Stein and gke Nordlund
Michigan State University

We have developed a three-dimensional hydrodynamic code for studying solar
convection. The code is written in modular form. It solves the equations of mass,

momentum, and internal energy conservation using In p, u, and e as variables. This
increases the accuracy of vertical hydrostatic equilibrium (since In p is nearly linear while

p is nearly exponential). Derivatives are calculated using cubic splines and FFT's. The
bottom boundary is a node for horizontally uniform motions (to facilitate analysis of p-
mode driving). Inflowing material has a uniform entropy and the pressure is uniform
across the boundary layer. An extra large zone is placed at the top, across which the
vertical derivative of the velocity and departure from hydrostatic equilibrium is zero and at
the top of which the energy is held fixed.

A realistic, tabular, equation of state is used and radiative energy exchange is
calculated by solving the non-grey, LTE transfer equation using a four-bin opacity
distribution function.

The code has been tested for advection. Discontinuities less than six gridpoints
produce ringing. An artificial viscosity, proportional to the fluid velocity, is used to spread
such discontinuities and eliminate ringing.

Shock tubes with a pressure jump of 10 (Mach number 1.55) were run. A
viscosity proportional to the velocity jump is used to spread shocks over four grid zones
and dissipate their energy. Excellent agreement between numerical and theoretical profiles

for velocity, energy, and In p show that the code has good conservation properties.

Linear waves driven by a piston show that there is little damping and very small
phase speed error for wavelength greater than four grid zones, and the damping and phase
speed error increase sharply for smaller wavelengths. Two-dimensional acoustic and
internal gravity wave pulses in a stratified atmosphere are dispersive, and we are checking
the group and phase velocities against theory. Wave reflection is noticeable, but small.

Finally, we are comparing the results of a simulation of three-dimensional
convection in a box of an ideal gas using our code and a ppm code. Preliminary results
show that the spectrum of various quantitics are the same at large scales, but our code is
more diffusive at scales less than five grid zones.

We have found that the flow topology for convection in a stratified medium (sun)
consists of a warm, smooth, slow upflow with embedded cool, filamentary, fast,
downdrafts. This can be seen from the velocity field in two-dimensional slices, from
following fluid parcels in time, and from transparent views of the vertical kinetic energy
flux.

The horizontal flow pattern is cellular. At the surface the upflow breaks up into
granules. Overpressure in the centers drives the flow horizontally, cooling radiatively as it
goes. Eventually it runs into the expanding flow from neighboring granules and is
stopped in intergranule lanes. In the process it has lost entropy, so gravity pulls it back
down into the interior. As the downflows descend they converge into narrow filaments at
the vertices between granules.

The horizontal flow at large depths is also cellular but with a larger scale --
corresponding to meso-granule scales. There is often a swirling motion about the
downdrafts, so there is vertical vorticity and helicity We compared two runs, one with
twice the number of gridpoints as the other, both starting from the same initial state after
1.5-2 largescale turnover times. The large scale upflow and downdraft structure is similar
in the two runs and the high resolution run developed much more small scale structure.
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Finally, we have compared the emergent surface intensity with observed solar
granulation. The size spectrum has similar shape. However, the simulation which has
been smoothed by atmospheric seeing and a telescope modulation transfer function has
more power at small scale than the observations. A video with superimposed observations
from Pic du Midi and simulation results was shown, as well as a video showing how fluid
parcels move tracking the changes in the granulation pattern.

Instability of Flow with Temperature-
Dependent Viscosity:
A Model of Magma Dynamics

J. A. Whitehead and Karl R. Helfrich
Woods Hole Oceanographic Institution
Woods Hole, MA. 02543

ABSTRACT: In a material whose viscosity is very temperature
dependent, flow from a chamber through a cooled slot can
develop a fingering instability or time dependent behavior,
depending on the elastic properties of the chamber, the
viscosity temperature relationship, and the geometry of the
slot. A laboratory experiment is described where syrup flows
from a reservoir through a tube immersed in a chilled bath to
an exit hole at constant pressure. Flow is either steady, or
periodic, depending on the temperature of the bath and the flow
rate into the reservoir. A theory indicates that the
transition from steady to periodic flow depends on
nonlinearities in the steady state relation between pressure
and flow rate and a general stabililty criterion is advanced.
Parameters governing the oscillation period are determined.
Theory also indicates that flow through a slot would develop
finger-like instabilities under certain conditions.
Qualitative laboratory experiments with paraffin spreading over
a cold plate reveal the fingering.
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A LONG LABORATORY SALT FINGER
by George Veronis
Kline Geological Laboratory
Yale University

ABSTRACT: The initiation of salt fingers from an initial two-
layer configuration is well understood and the essential physical
balances necessary to maintain long quasi-steady salt fingers are
also known. However, the evolution from linear stability to long
fingers has received 1little attention, primarily because the
process 1is very strongly non-linear and therefore not amenable to

analysis. The best hope for developing a model for this
evolution is to study the case of weakly driven salt fingers in
the presence of strongly stable stratification. In two layers

this case corresponds to R=«<AT/ 84S >> 1, where ~ is the thermal
expansion coefficient, 8the salinity contraction and 4 T, AS the
imposed temperature and salinity differences across the
interface. AS must be small enough so that shear instabililty of
adjacent rising and sinking fingers does not occur. this model
is currently being analyzed in order to understand the evolution.

During a recent visit with Jorg Imberger at the Centre for Water
Research of the University of Western Australia, I learned about
a simple 1laboratory experiment, originally proposed by G. I.
Taylor, which seems to be a simpler version of the same problem.
A long tube filled with water opens up into a reservoir of salt
water at the top. Taylor predicted that a long salt finger would
penetrate downward to a finite depth and then stop. Except for
slow molecular diffusion there would be no further penetration of
salt. Imberger’s experiment confirmed Taylor’s prediction.

This seemed to be a nice simple problem for a project for one of
the summer fellows at this year’s GFD program but the latter
had all started on their projects by the time that I arrived. I
ended up talking to Joe Keller about the problem and out of
curiosity we wrote down the basic balances and derived a solution
for a long quasi-steady 2D finger. The model is very similar to
the one for infinitely long steady salt fingers in Howard and
Veronis (1987) with modified boundary conditions. We also
reproduced Imberger’s experiment.

A model for the downward penetration of the salt tongue assumes
that the horizontal salt balance is between horizontal diffusion
of salt and vertical advection of the mean salt gradient but that
the amplitude of the concentration (or vertical velocity-the two
are proportional) is a slowly varying function of time and the
vertical coordinate. Two equations for this t,z dependence
emerge from the horizontally integrated vorticity balance and
salt conservation. The horizontal structure in these integral
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balances is taken to be the same as in the zero-order model.
Numerical integration of the equations leads to a relation
between time and the vertical penetration of the salt tongue that
is qualitatively the same as the behavior observed in the
laboratory experiment, viz., a rapid penetration is followed by
balance between penetration distance and the 1logarithm of the
time and finally the tongue slows and stops.

REFERENCES :
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Applications of compactly supported wavelets
to
the numerical solution of partial differential equations.

John Weiss
Aware, Inc.
Suite 310
124 Mount Auburn Street
Cambridge, MA 02138

Introduction

Compactly supported wavelets have several properties that are quite useful for rep-
resenting solutions of PDEs. The orthogonality, compact support and exact repre-
sentation of polynomials of a fixed degree allow the efficient and stable calculation of
regions with strong gradients or oscillations. For instance, we have applied wavelets to
problems of shock capture and turbulence. The general method is a straightforward
adaptation of the Galerkin procedure with a wavelet basis. Among the equations
studied so far are Burgers equation, the equations of Gas dynamics, and the Navier-
Stokes/Euler equations for an incompressible fluid in two dimensions.

The compact wavelets have a finite number of derivatives and the derivatives,
when they exist, can be highly oscillatory. This makes, say, the numerical evaluation
of integrals difficult and unstable. We have found methods for the evaluation of func-
tionals on wavelet bases. Comparison with standard numerical results demonstrates
that these procedures are critical for the wavelet methods, especially as applied to
nonlinear problems.

Compactly supported wavelets

Ingrid Daubechies defined the class of compactly supported wavelets [1,2]. Briefly,
let ¢ be a solution of the scaling relation

N
p(z) = Y awp(2z — k).

k=0
The a; are a collection of coefficients that categorize the specific wavelet basis. The
expression ¢ is called the scaling function.
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The normalization [ ¢dz = 1 of the scaling function obtains the condition

Zak =2,

The translates of ¢ are required to be orthonormal

/cp(a: — k)p(z —m) = bgm.

From the scaling relation this implies the condition

N

akk—2m = Oom.
k=0

For coeflicients verifying the above twc conditions, the functions consisting of trans-
lates and dilations of the scaling function, p(27z — k), form a complete, orthogonal
basis for square integrable functions on the real line, L¥(R).

If only a finite number of the a; are nonzero then ¢ will have compact support.

Smooth scaling functions arise as a consequence of the degree of approximation of
the translates. The conditionm that the polynomials 1,z,---,2P! be expressed as
linear combinations of the translates of p(z — k) is implied by the condition

2:(—1)"1<:"‘a;c =0
form=0,1,---,p—1.

The Wavelet-Galerkin Method

For a PDE of the form
F(U,Ut,"'aUz’sz"") =0

define the wavelet expansion
U =Y Ukp(z — k).

An approximation to the solution is defined by
~ N A
U= Z Urp(z — k).
k=-M
In effect, the solution is projected onto the subspace spanned by

O(M,N)=A{p(z—k):k=-M,---,N}.

To determine the coefficients of this expansion we substitute into the equation and
again project the resulting expression onto the subspace ®(M, N). This uniquely
determines the coefficients Uy.




The projection requires Uy to verify the equations

A a

/°° o(z = BYF(U,0,,0,,--)dz = 0

for k = —M,--.,N. To evaluate this expression we must know the coefficients of the
form

Je@es(z — k) puale = ko) - -de

Our original expansion is over the space dependence of the solution. If the equation
has a time dependence the resulting equations for the U, will be a system of ordinary
differential equations in &.

Burgers’ equation
Burgers’ equation is
Ut + UUx = UU:J:J:,

where U(z,0) = Uy(z) and o is the viscosity.

We use the exact formula [3] to check our numerical results. The dynamics of the
Burgers’ equation for small viscosity cause the formation of steep gradients and, in
the limit of null viscosity, jump discontinuities or shocks [3].

To apply the Wavelet-Galerkin method to Burgers’ equation we use the D6 scaling
relation

o(z) = 3 erpl22 = )

and the scaling function expansion
X M
U= ) Uwp(z —k).
k=—-M
The differential equations for Uy
Uk,t - O'Ak,mUm + Bk,m,lUmUl =0

are defined from the coeflicients

n= /_: Yzz(z — k)p(z — m)dz

By = /j: vz — k)p(z — m)p(z — l)dz.

The semi-implicit time differencing for Burgers’ equation

(Un+l - Un) /At + UnUn-H.:r = aUn+1.zz
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is used throughout and the Wavelet-Galerkin equations are
(Uk,n+1 - Uk,n) /At - O'Ak,mUm,n-}-l + Bk,m,lUm,nUl,n+l =0

Here Uy, is the wavelet space and semi-implicit time discretization of solution for
Burgers’ equation.

We compare the finite-difference, spectral and wavelet-Galerkin methods. Each
has the semi-implicit time differencing and 64 modes. These results were presented
by Latto and Tenenbaum in reference [4].

After calculation the solutions are smoothed with a three point averaging

Uin = (Ukorm + 20Uk + Uig1) /4.

We compare the numerical solutions, smoothed and unsmoothed, with the exact
solutions evaluated using the Cole-Hopf transformation.
In summary the results are [4]

1. The Wavelet-Galerkin (WG) method appears to be stable for all viscosities,
including null viscosity.

2. The WG appears to be close to exact for large times and small viscosity.

3. The three term smoothing of the oscillatory WG appears to be close to the exact
solution for all times and small viscosity.

4. The WG method appears to handle error in a way that the information content
(the exact solution) is not destroyed and can be recovered from the approxima-
tion.

Acknowledgement

This research was supported in part by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the Air Force Office of Scientific
Research under Contract No. F49620-89-C-0125. The United States Government is
authorized to reproduce and distribute reprints for governmental purposes notwith-
standing any copyright notation hereon.

References

1. I. Daubechies, “ Orthonormal Bases of Compactly Supported Wavelets”, Commun.
Pure Appl. Math, 41 (1988) 909-996.

2. G. Strang, “ Wavelets and Dilation Equations: A Brief Introduction”, SIAM
Review, 31, (1989), 614-627.

3. G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New
York, NY (1974).

4. A. Latto and E. Tenenbaum, “ Les ondellettes a support compact et la solution
numérique de ’équation de Burgers”, Aware Tech, Report AD900307.1.2, March
(1990). To appear , Compte rendus Acad. Sci. France.

194




Traveling Waves and Oscillations in Compressible Magnetoconvection

Nigel Weiss
Department of Applied Mathematics and Theoretical Physics
University of Cambridge, England

Sunspots are dark owing to partial suppression of convection by a strong vertical
magnetic field. A large sunspot occupies only 0.1% of the visible disk but starspots
may cover 50% of the surface of more active stars. These features have motivated
studies of Boussinesq and (more recently) compressible magnetoconvection (Proctor
& Weiss 1982; Hughes & Proctor 1988). The pioneering paper Hurlburt & Toomre
(1988) dealt mainly with steady motion: this lecture describes studies of time-
dependent convection carried out by Derek Brownjohn, Neal Hurlburt, Michael
Proctor and myself (Hurlburt et _al.1989; Weiss et al. 1990).

We consider two-dimensional convection in a compressible layer with an imposed
temperature difference AT in an initially uniform magnetic field Bo. The relevant
parameters are the Rayleigh number R o AT, the plasma § = p/(B, 2/2u,) « Q!
and the ratio ¢ of the magnetic to the thermal diffusivity. The system is assumed
to be periodic in the horizontal direction with a dimensionless wavelength A. As R
is increased the static solution may lose stability either in a pitchfork bifurcation
or (if ( < 1 and Q is sufficiently large) in a Hopf bifurcation. In the latter case
branches of standing wave and traveling wave solutions emerge from the bifurcation.
Normal form equations indicate which solution is preferred but stability may be
transferred from one branch to the other via an intermediate branch of modulated
wave solutions. With a horizontal field, for example, traveling waves are preferred
in the Boussinesq limit but we find for 8 = 32 that standing waves are stable near
the Hopf bifurcation at R, while modulated waves appear for 4 R(® <R< 16 R
(©) and traveling waves eventually gain stability at R=32R().

In a shallow layer with a vertical magnetic field magnetic pressure fluctuations
become important when 8 = O(1). We find that standing waves are always stable
near the Hopf bifurcation but for A=2 and 32> § > 6 there is a transition from
a 2-roll standing wave solution to a 4-roll traveling wave solution. The traveling
waves have a triangular structure with a prograde jet-stream and propagate with
a velocity va 1/2 A Va as in the Boussinesq limit. Apparently the motion builds
up fields so strong that magnetic pressure has to be balanced by inertial terms
rather than gas pressure. For A = 1 there is a straightforward transition from
standing waves to traveling waves but for A=2 the change of scale is achieved via
an intermediate mixed-mode solution that is quasiperiodic. At higher values of 3
the steady solutions are unstable and periodic solutions with large-scale streaming
motion can be found.

Traveling waves only appcar when ¢ = 0.1. In a sunspot there is a transition
from photospheric layers, where { & 0.003, to levels below 2000 km depth where ¢
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= 30. We expect oscillatory behavior above and steady overturning motion below.
This can be modelled by taking a deep stratified layer with a density contrast
*bottom/ptop = 11 and setting { o p. For 0.2 < { < 2.2 and A = 4/3 we find that the
initial bifurcation is a pitchfork leading to steady 2-roll convection. As R is increased
counter-rolls appear and grow. Eventually a complicated sequence of secondary and
tertiary bifurcations leads to stable periodic oscillations. In these solutions there
are four rolls which are modulated periodically in space. At the base of the layer
the sense of motion is unchanged throughout the oscillation but the velocities at the
top reverse as alternate rolls become prominent and penetrate towards the upper
boundary. This form of modulated oscillation provides a natural explanation for the
sporadic bright features, called umbral dots, that are observed near the center of
sunspots. Time-dependent convection of this type must be responsible for supplying
the energy radiated from sunspots, which remains significant in spite of the magnetic

field.
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Modeling Mesogranules And Exploders On The Sun

Nigel Weiss
Department of Applied Mathematics and Theoretical Physics
University of Cambridge, England

Observations reveal three different scales of convection on the surface of the sun.
Supergranules, with a characteristic diameter of 30 Mm, have horizontal velocities
of around 0.5 Km s~! which are correlated with the magnetic network. Granules
have a typical diameter of 1 Mm and velocities of 1km s~!. By tracking the proper
motions of granules it has become possible to derive intermediate-scale velocity pat-
terns and the existence of mesogranules, with diameters around 5 Mm and velocities
of 0.5 km s~1, has been confirmed (Simon et al. 1988). High-resolution white-light
observations also show exploding granules (exploders); these are granules that ex-
pand rapidly to a diameter of about 3 Mm, forming a ring-like structure with a dark
core and then fragmenting. Nearby granules are swept aside with velocities of order
2 km s™!. The fact that exploders occur preferentially near the center of mesogran-
ules raises the question: Are mesogranules just the time-averaged consequence of
recurrent exploders (Title et al. 1989)7

George Simon, Alan Title and I have used a simple kinematic model of the hor-
izontal velocity in the photosphere in an attempt to answer this question. Sources
are represented by axisymmetric outflows that can be derived from potentials of the
form

¢(r)=} VR exp [-(r/R)?] (1)

It has already been shown that such sources provide a good description of meso-
granular flows observed from Spacelab 2 (Simon & Weiss 1990). We now suppose
that a mesogranule can be represented by sources distributed with a probability

P(r,)=(m p )7 exp[-(r/p)?] (2)

that there is a source distant r, from the origin. Then the expected value of the
potential has the same form as (1) with a radius R=(R?+p?) /2 and a velocity
V=(R/R)® V.

We have compared mesogranules (R,,.= 2 Mm, V,,=1 km s™!) with exploders
(R;=1 Mm, V,=8 km s~} lifetime At=10 min), distributed normally about the
mesogranule center. As diagnostics of the flow we introduce passive test particles
(corks) travelling with local fluid velocity. Then we compare the cork patterns pro-
duced by different flows after periods of 1-6 hr have elapsed. In addition we obtain
a quantitative description of these patterns by computing their factal dimensions.
Figure 1(a) shows cork patterns generated by randomly distributed mesogranules.
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The region shown has dimensions 40” x 40” (30 Mm x 30 Mm) and the average
distance between mesogranule centers is 7 Mm. After 2 hr the mesogranul> centers
are cleared and corks move gradually into a network which is clearly apparent after
5 hr. The corresponding patterns produced by explodes are shown in Figure 1(b).
The network forms more rapidly but has a ragged appearance. The patterns are
qualitatively similar and it is not possible to distinguish between them from the ob-
servations. However it is possible to rule out other models, with exploders dropped
randomly over the region or distributed randomly about their predecessor so as to
follow a random walk.

Figure 2 illustrates the effects of combining mesogranular and supergranular ve-
locities. We deposit these supergranules (R,=10 Mm, V,=1 km s™') in the region
and allow mesogranules to travel with the local supergranular velocity; if meso-
granules approach too closely or escape from the region they are replaced and the
cork supply is replenished to compensate for those escaping from the region. The
patterns produced by mesogranules in Figure 2(a) can be compared with those gen-
erated by exploders in figure 2(b). The magnetic network between the supergranules
is distorted by the small-scale motion.

These results can be compared with a 3-hour observational run made at the
Pic-du-Midi (Frank et al. 1989). This sequence shows mesogranules drifting across
supergranules, with an apparent lifetime of 3 hr. A preliminary inspection suggests
that exploders develop from granules that appear at the center of mesogranules
and drift outwards as they expand. This supports a picture in which a systematic
outflow combines with random exploders to provide the averaged mesogranular
velocity. Further work is needed to relate these surface features to the underlying
three-dimensional dynamics.
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Fluid Mechanics and Melting.

Andrew W. Woods,
Scripps Institution of Oceanography.

In this presentation, we considered the role of melt convection upon the melting of
a solid into a binary melt. At a horizontal interface six different convecting regimes may
arise, depending upon the relative composition of the melt and the solid and whether the

melt underlies or overlies the solid. These are summarised in the figure below.

First we considered the case of purely diffusion driven melting described by Woods
(1990a). When the melt temperature far exceeds that of the melting temperature, the solid
melts at a rate determined by the thermal diffusivity; in contrast, when the melt is of the
same temperature or colder than the solid, but of a different composition, the solid may
dissolve into the melt at a rate determined by the compositional diffusivity. The crucial
difference between these two regimes is that in the melting regime, the compositional
boundary layer becomes embedded in the melt, while in the dissolving regime, it is always
located at the melt/solid interface; this difference can lead to some differences in the style

of convection that results.

Next, we reviewed the situation in which the liquid which is melting the solid is in a
state of thermal convection, as discussed by Huppert and Sparks (1988). This situation
arises when the liquid underlies the relatively buoyant melting solid; owing to the density
difference due to composition, the molten solid remains above the liquid, and each layer

may convect thermally, as in a double-diffusive system (Turner, 1979).

We then considered the problem of melting a relatively buoyant solid by an overlying
layer of dense liquid (Woods (1990b)). The molten solid is buoyant and rises into the
liquid, producing vigorous convection whicii mixes the melt uniformly. A global model of
the melting is able to predict the evolution of the melt temperature and composition as a
function of the depth of melted solid. Experimental data suggest that in this well-mixed
convection regime, the flux of solute at the interface scales as F. ~ AC%2. This is a
result of the complex coupling of the convective heat flux, which drives the melting and

thereby drives the convection; this non-linear coupling produces a compositional flux which
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exceeds that which would arise due to Raleigh-Benard type compositional convection, in
which the convective flux would scale as AT*/? when the boundary compositions are
fixed. The difference arises because the convection is driven by the compositional flux at

the boundaries whose magnitude is determined by the rate of melting.

We considered application of these results in the geological context of magma cham-
bers; hot, dense molten basalt may intrude a crustal chamber and melt the walls, floor
and roof. Typically the molten crust is less dense and therefore compositional convection
in the chamber due to the floor melting will arise, in conjunction with thermal convection

from the melting at the roof.
References.
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CONVECTIVE PENETRATION IN STELLAR INTERIORS

Jean-Paul Zahn

1. Introduction

It has long been recognized that the penetration of motions beyond the classical
boundary of a convective core set by the Schwarzschild criterion (i.e. where the
temperature gradient becomes subadiabatic again) would have a crucial impact on
stellar evolution. Such penetration would also modify substantially the temperature
profile at the base of a convective envelope. But siellar structure models rarely
include that effect, and there is still debate on whether such penetration even occurs.

One reason is that astrophysicists too often neglect to confront their problems
with those of their colleagues in geophysics and fluid dynamics, who study similar
cases, and often decades ahead. Another reason is the failure of the mixing-length
treatment, which proved so powerful when dealing with convective envelopes (largely
because it reduced one’s ignorance to a single parameter), but cannot come to grips
with penetrative convection.

Our purpose (in a Paper submitted to Astron. Astrophys.) is to convince the
astrophysicists that convective penetration indeed exists, by recalling the relevant
observations, experiments and computer simulations that are available. Further-
more, we give an estimate for the extent of penetration that is inspired by such
observations and calculations, and does not rely on the mixing-length treatment.

2. The evidence for penetrative convection

There is overwhelming evidence for penetrative convection: in the atmosphere,
the oceans, the laboratory. The dynamics of the planetary boundary layer, for
instance, is entirely governed by it: every morning the nocturnal stable stratification
is replaced from below by a growing unstable layer due to surface heating.

In the laboratory, penetration has been observed whenever a convectively
unstable layer is imbedded in a stable stratification of fluid. One famous example
is the ice-water experiment, which uses the peculiar property of water having a
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density maximum at 4°C; it was suggested by W. Malkus and performed here in
Woods Hole by Furumoto and Roth (1961), and was later repeated by Townsend
(1966) and by Adrian (1975). In all experiments, one observes a substantial amount
of penetration, sometimes comparable with the thickness of the unstable layer.

What are the theoretical predictions? According to linear theory, some weak
overshooting should occur outside the unstable region, but that result cannot be
extrapolated into the non-linear regime, since the functional form of the solutions
is deeply modified by their feed-back on the thermal stratification. This has been
recognized already by Veronis (1963), who did the first non-linear analysis of pen-
etrative convection (and published it in the Astrophys. Journal)! Since, various
fully non-linear simulations have been carried out. All those which are based on
firm physical ground confirm that there is indeed much more penetration than
what could be inferred from the linear theory (Musman 1968; Moore and Weiss
1979; Zahn, Toomre and Latour 1982; Massaguer, Latour, Toomre and Zahn 1984).

The early investigations dealt with severely truncated equations, and as a
result the solutions were stationary. The penetration depth was found comparable
with the thickness of the unstable layer; it dependcd on the degree of stability of the
outer medium and on the aspect ratio of the cells. Furthermore, three-dimensional
cells were seen to penetrate much more than horizontal rolls, in the direction of
their net kinetic energy flux.

More recently, penetrative convection has been simulated in two dimensions
with much better spatial resolution, in a compressible fluid (Hurlburt, Toomre and
Massaguer 1986). The solutions are no longer stationary, and they show vigorous
concentrated downdrafts which penetrate rather deep into the stable region below.
Those incursions strongly couple with gravity waves, as was observed by Townsend
(1966) in the laboratory. Such downdrafts appear to be a genuine and important
property of stratified convection, since they are also present in all three-dimensional
simulations (Graham 1977, Nordlund 1984, Stein and Nordlund 1989, Cattaneo,
Hurlburt and Toomre 1989), where they behave more like long-lived plumes than
as thermals which would just traverse the domain.

To summarize, all numerical simulations exhibit substantial penetration of
the convective layer into its stable environment, irrespective of the approximations
made, provided the stratification is almost adiabatic in the unstable zone; that
nearly adiabatic stratification extends well beyond the limits of the unstable region.
Moreover, the flows show very similar behavior in the two parts of the domain: the
only obvious manifestation of the change in the entropy slope, from an unstable to
the stable one, is the reversal of the correlation between the vertical velocities and
the temperature fluctuations, which switches the direction of convective heat flux
from upwards to downwards.
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3. Subadiabatic penetration at the bottom of a convective envelope

We consider convection that is efficient enough to establish an adiabatic stratifica-
tion and to transport most of the thermal energy produced in the core of the star.
This requires that the Péclet number wé/K be substantially larger than unity (£
and w are the typical size and velocity of the convective motions, K = x/pCp the
thermal diffusivity, and x the radiative conductivity).

A

dT
dz

(%)
d: [y

F, rad

F(atal

depth

Figure 1

The structure of a star at the bottom of a convective envelope is sketched
in Fig. 1. Due to the increase of the conductivity with depth, the radiative flux
F,aq rises until it equals the total flux Fioea at the level zp. If there were no
convective penetration, this would be the edge of the convection zone, as predicted
by the Schwarzschild criterion; below, the energy flux would be carried only through
radiation, and the temperature gradient would then be (dT/dz);qd = Ftotat/x. But
the motions penetrate into the stable region and they render it nearly adiabatic,
provided their velocity w is larger than some critical value (given below in Eq. 5.5).
The motions decelerate through buoyancy until thermal diffusion becomes more
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important than advection, in a thin boundary layer where the temperature profile
settles from the adiabatic to the radiative slope.

We thus identify four regions at the bottom of the convection zone. The first
two have a quasi-adiabatic stratification: the superadiabatic domain, which is the
seat of the convective instability (A), followed by the stable subadiabatic region
(B). Below, after a shallow thermal boundary layer (C), heat is transported only
through radiation in the radiative interior (D).

We now use this schematical picture to estimate the extent L, of the subadia-
batic penetration region (B). In that region, the convective flux is, to a fairly good

approximation,
dx dT
conv — — | 7 e ) 1
E. (dz)o(dz)adz (3.1)

where z is counted from the depth z; where the F.onpy = 0 (the subscript o refers to
that level).

We shall assume that the fraction f of the area is occupied by downwards
directed motions which transport most of the convective flux, as observed in the
laboratory and in the computer simulations. We express that convective flux to
lowest order in terms of the horizontal temperature fluctuations and the vertical
velocity of these motions, which we assume strongly correlated:

Frony = —fpCpW 8T . (3.2)

To estimate the penetration depth, we follow the downdrafts from z = 0,
where their velocity is Wy, until they stop at the base of the penetration zone, at
z = Lp. Their deceleration is described to first order by

1dW? ¢ §T
5= 97” = -9Q=, (3.3)

with the usual assumption of pressure equilibrium, and Q = —(dlogp/dlog T)p
being the expansion coeflicient at constant pressure. Elimination of 8T yields the
following expressiun for the depth L, of the subadiabatic region

Ly

3 -1/2
= W:/zfl/z "'gQKXP Vad ’ (34)
Hp 2

with xp = (Ologx/0log P)ad. We can go a step further by using the property
that in all convection theories the velocity scales as F.on, = const pW3, in the
fully developed regime; the proportionality coefficient is of order unity, and several
prescriptions are available for it, which are roughly equivalent. Ours is

2f* Hp pW?

Fconv = )
3 A Qvad

(3.5)
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involving again a filling factor f* (which could a priori be different from that in
the penetration zone), and A being the mixing-length. Since the convective flux
nearly equals the total flux over most of the unstable zone, we may approximate it
by Fiotai- We thus obtain an alternate form of expression (3.4):

1/2 1/2
B[ e
Hp laf* xp XP

with a = A/H, and ¢ = f/af*. Let us stress that this estimate can only be applied
to stars possessing a deep enough convective envelope, in which most of the heat is
carried by convection.

As could be anticipated, the penetration depth (in units of the pressure scale
height) only depends on the steepness of the conductivity gradient xp, and on
the ratio of the efficiencies of the convection in the unstable and stable regions, as
measured here by ¢ = f/af*. Judging by the computer simulations that have been
performed, this parameter ¢ should be close to unity, reflecting the similar behavior
of the flows in the stable and unstable parts of the convective domain.

Much in the same spirit, it is possible to evaluate the thickness of the thermal
boundary layer (C):

Ho\ /2

L, =~ (¢xp)_l/s (th)l/2 with {4 = (?P-) . (3.7)
Below the solar convection zone, where the dynamical time scale is t4 =~ 300s and
the thermal diffusivity K = x/pCp = 2 107cm?/s, the thermal boundary layer
which terminates the penetration zone has a thickness of the order of 1 km. That
thin boundary layer plays no role in the dynamics: the convective motions have
already been slowed down to a velocity Wy =~ 1m/s when entering the layer. Thus
the boundary of the whole convection zone (regions A and B) is sharply defined,
although it probably ondulates somewhat due to the velocity dispersion of the
impinging downdrafts (as illustrated in our planetary boundary layer when it is
delineated by clouds).

4. Penetration of a convective core

The derivation of the extent of penetration of a convective core into its stable
surroundings is very similar to that for a convective envelope. The only difference
is the cause of the convective instability: in a stellar core, it is the steep increase
of the nuclear energy generation rate ¢, as one approaches the center of the star,
which is mainly responsible for the onset of convection.

The penetration length scales as

—LL—W“/’f"’(zr")l/2 QK Va2 -2 1 Lip > o 4.1)
HP— 0 QHP g9 ad p’_p_e 3XPHP ) (
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with the same notations as before, and p, p¢ being the mean p, pe in the superadi-
abatic core of radius ry.
We shall again use the value of Wy given by the mixing-length treatment
(Eq. 3.6), with
A =ro min(l,aHp/7y), (4.2)

and assume that most of the energy is carried by convection in the superadiabatic
core. Then the alternate form of expression (4.1) is

L, (¢ . 1/2 o pe 1 ro -1/2
= = (E m.ln(l,aHp/ro)) 5 — = + —-xp , (4.3)

To

@ = f/f* being here the ratio between the filling factors in the stable and unstable
regions. It predicts an increase of L,/Hp with the size of the unstable core, and
such a trend has actually been noticed by Maeder and Mermilliod (1981).

5. The temperature gradient in the subadiabatic penetration region

In our derivation of the penetration depth, we have assumed that the convective
motions are efficient enongh to enforce a nearly adiabatic temperature gradient when
penetrating into the subadiabatic domain. We shall now establish the condition
which must be fulfilled for this to occur.
We start from the specific entropy equation
Os Os Ou; OF;

T i = Mijp— — )
P 6t+pTu Bzg n’azj 62:,'

(5.1)

where u; is the velocity field, F; = x0T /8z; the radiative heat flux and the first
term on the r.h.s. represents the heat produced by viscous friction, which we shall
neglect from now on. We restrict ourselves to quasi-stationary motions, i.e. to flows
whose organization lives longer that the travel time across the penetration region,
and we linearize the variables around their horizontal mean

$=38+43;, T=T+T1 and F,'=F,-¢d+(F.')1.

Assuming again that the fluctuations T}, s; of temperature and entropy are strongly
correlated with the vertical velocity w, at least in the downdrafts which occupy a
fraction f of the area, we get after some manipulation and horizontal averaging

d dT dT d? 1
—-c Iz'Frad‘f'CP [(d—z)ad—g] pW—x(:i-z—z—;) 6T . (5.2)

Here W is the r.m.s. of the vertical velocity in the downdrafts, and ¢ the triple

correlation coefficient pw? = 2¢ pw? (wz)l/z.
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Depending on the strength and of the geometry of the motions, the temper-
ature fluctuations will be controlled either by diffusion or by advection. In the
advective case, the r.h.s. of Eq. (5.2) is negligible, and we have

d ( dT aT dT
& (%) - o |(2) % e

Assuming that the temperature gradients V = dInT/8In P are approximatively
constant, we obtain the following approximate expression for the subadiabatic gra-
dient in the penetration region:

v [ WHp

= 5.4
Vaa—V  cxp K (54)

We see that, although the temperature gradient is less adiabatic when it is
achieved by downdrafts that do not fill the space, as one may expect, the departure
from adiabacy will still be negligible as long as

f WHp
cxp K

>1. (5.5)

This defines a critical value which the vertical velocity W must exceed to enforce
such a quasi-adiabatic stratification.

At the base of the solar convection zone, where WHp /K = 210¢ and xp = 1.3,
a filling factor of about 10~% is sufficient for quasi-adiabatic penetration to occur
(for ¢ =~ 1/10).

At the boundary of the convective core of a 9 Mg ZAMS star, where the Péclet
number Wry/K is of the order of 3 108, filling factors larger than about 10~5 will
again ensure such quasi-adiabatic penetration.

6. Conclusion

Our main result is that the conditions for subadiabatic convection are certainly
fulfilled in the interior of star, both at the bottom of a deep convective envelope
and at the edge of a convective core, due to the high efficiency of the convective
heat transport. Even if that flux is carried by a rather sparse network of plumes,
as suggested by the recently performed three-dimensional simulations, the stratifi-
cation is nearty adiabatic throughout the convection zone, including the region of
subadiabatic penetration, and the departures from adiabacy are confined within in
a very narrow thermal boundary layer.

This property allows the use of the integral constraint that has been proposed
by Roxburgh (1978, 1989) to calculate the size of a convective core. He showed
that, provided the departures from the adiabatic gradient are sufficiently small, one
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can integrate Eq. (5.1) (divided bt T') over a whole convective core, to reach the
condition

1 dT
/ (Lvad = Liota) g - =0, (6.1)

(with L = 4wr?F). The applicability of his result to actually predict the extent of
penetration was seriouly questioned on the ground that the entropy gradient is not
necessarily small everywhere (Baker and Kuhfu 1987). But since the departures
from adiabacy are restricted to a very thin boundary layer, provided condition
(5.5) is fulfilled, the integral condition above is satisfied to a fairly good degree of
approximation.

It is more problematic to use Roxburgh’s prescription to predict the extent
of penetration below a convective envelope. The reason is that the integral above
would have to start at the surface of the star, that it would include a region where
the departures from adiabacy are high and whose weight would be very large in the
integrant, due to the strong temperature contrast between top and bottom. It then
seems preferable to use our - admittedly much cruder - estimate of Eq. (3.6), and
to turn to the observations for the calibration of the parameter ¢.

Let us stress that our results have been obtained by making several simplify-
ing assumptions. An implicit assumption was that we ignored the Coriolis force,
although it plays an important role in all convective cores and at the base of the
convective envelope of most stars. It is not clear whether our basic scalings will be
affected by rotation; presumably the law F.ony &< pW?3 still holds, but the propor-
tionality coefficient will be somewhat modified by the rotation, and hence also the
penetration depth.

We believe that stellar structure theory has matured to a point where convec-
tive penetration must now be taken in account when constructing interior models.
One may object that this would require yet an other parameter ¢, which cannot be
derived from first principles. But with the advent of helioseismology, the diagnostic
of the solar interior has improved so much that one will be able in the near future
to evaluate the extent of penetration at the bottom of the convective envelope, by
measuring the value of the temperature gradient at the edge of the adiabatic zone,
and to derive from it the value of ¢, which should not vary much from star to star.
In the case of a convective core, the situation is even simpler, since one can use
Roxburgh’s prescription to predict the depth of penetration.
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THE STRUCTURE AND STABILITY OF RAPIDLY ROTATING POLYTROPES

N.J. Balmforth

Galaxies such as the Milky Way appear to have a very thin disc-like structure. In many
instances this disc is the setting for very beautiful spiral features. These “spiral arms” seem to be
the location of amplified star formation and presumably have an enhanced density over the rest
of the disc.

For the Milky Way itself the disparity of the radius of the disc with its thickness is typical:
the disc radius is of the order of 10,000 parsecs, whilst its thickness is only about 500 parsecs. If
we take the ratio of these two numbers and call the result the dimensionless number N, then we
find

N ~ 20.

For bodies that are infinitely thin N — oo, whilst stars and elliptical galaxies are characterized
by values of N that are of order unity. We have defined this parameter N in anticipation of
a characteristic, large parameter that shall occur in the equations governing the structure and
stability of the disc. We shall exploit the magnitude of this parameter to develop the solution by
an asymptotic technique.

If the disc of a galaxy contains all of its mass then the highly flattened aspect of the galaxy
must indicate that the gas has been spun out by rotation and that there is a balance between the
self-gravity and the centrifugal acceleration. In the direction of the rotation axis, however, the
effects of the centrifuge are not felt; the structure is determined by the stratification of the gas
under the balance of self-gravity and pressure. This leads to a characteristic thickness that is the
Jeans length, k3! = 47Gp/c?, of the configuration, if it has the density p and sound speed c.

The Jeans length is more well known from studies of the instability to gravitational collapse
of large expanses of gas (termed the Jeans instability; Jeans, 1928). There, the gas is unstable to
disturbances with wavelengths that exceed the Jeans length. In fact, this forms the basis for the
idea that the mass will undergo a successive hierarcy of fragmentations until the characteristic
length scale is less than k3!. This illustrates how localized clumps of matter could form in an
initially uniform universe.

The Jeans length is therefore singularly important for the structure and breakup of self-
gravitating gaseous masses.

Clearly this conclusion is modified when one introduces angular momentum into the gas, and
as we have noted, the gas can be spun out and become extremely elongated in the directions
perpendicular to the axis. This is presumably the reason why many galaxies form discs.

The detailed equation of state of the matter in the disc will presently be considered unimpor-
tant. Instead a barotropic, and in particular a polytropic equation of state,

p= Kpb = Kprs0in, (1)

where p is the pressure, p is the density, and K and I’ are constants, shall be assumed.

The work here is based largely on an unpublished manuscript by Howard and Spiegel (1970).
That paper develops the asymptotic technique and solves the equations for the equilibrium struc-
ture of the disc. Since this paper is unpublished, section 1 gives a brief account of the work, and
illustrates some of the results. The linear stability analysis of these structures is then detailed in
section 2.
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1. THE EQUILIBRIUM STRUCTURES

1.1 The equations of galactic structure
A disc is characterized by two different kinds of dynamical balance. In the vertical we have
hydrostatic balance between the pressure support and the self gravity. If we use cylindrical coor-
dinates then this balance is
dp 0%

Ly === 1.2
az + P az 0 ? ( )
where & is the gravitational potential. Horizontally this is modified by the centrifugal acceleration
dp 0% V?
% TP =P (1.3)

but at leading order, the pressure gradient must disappear. V is the swirling velocity. Finally we
have Poisson’s equation
V% =4xGp . (1.4)

We now nondimensionalize the equations of motion. We let p., the central density, be the unit
of density, and Kp.I' the unit of pressure. As a unit of speed we adopt ¢ = (I'p./pc)}/? and as
a unit of length, we choose the radius of the disk, a. With these units equations (1.2) and (1.3)
remain unchanged except for the appearance of a factor I'? in the pressure derivatives (though
strictly a different notion is called for). Equations (1.4) becomes

2% 10% 09 2
o el A (1.5)
where oy
77 o TG Pe o
Pv = —c-z-—a (1.6)

This is just the parameter tha: we have already alluded to: the radius of the disk measured in

units of a Jeans length k!, where
4xGp,

2 _
K= —= (1.7)

The equations of motion have the integral
npt/™+ & = F(r) , (1.8)

where F(r) is the centrifugal potential, and, in terms of F, the swirling velocity is given by

Vi=rF'(r) . (1.9)

1.2 Solutions for N — oo

We shall now consider asymptotic solutions for large N. Since the disc is thin, vertical changes
must occur very rapidly. Therefore, it is the vertical derivatives in Poisson’s equation that balance
the right hand side of equation (1.5) at leading order. This simply reflects the fact that a is not
a natural unit for z and so it is convenient to introduce the stretched coordinate

(=NZ , (1.10)
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where ( is O(1) inside the disk. Equation (1.5) then becomes

9’H H~" 1 4 8(F H)
ac tw SN " or ] (1.11)
where the enthalply, H, is given by
H=np'"=F - 8. (1.12)

Our notation here might at first seem a little strange. In particular the specific enthalpy is
normally referred to as h. To avoid confusion, however, we have chosen to use upper case lettering
for the quantities describing the equilibrium structure and lower case lettering to represent the
perturbations to it. The density and pressure will be the only exceptions.

We now consider the asymptotic expansions

1
H=H + N—Hz +.,8=N&+..8+...,.F=NF+Ff +.. . (1.13)

The leading order terms in equations (1.12) and (1.11) give
Fo =& (1.14)

+ — O . .

The boundary conditions are that Hy(r,0) = Hjo(r) and (8H1/8¢)¢=0 = 0, where Hyyp is
an arbitrary function whose importance in characterizing the structw.. of the disc shall become
apparent. A first integral of equation (1.15) is then

2
(a;?) T +21)n" (Bf - ;) (1.16)

The solution of this equation can be obtained by elementary quadratures or it can be expressed
as incomplete Beta-functions. It is convenient, however, to express it in terms of a function C,

defined by
1
z= / ds . (1.17)
Cn(z) 8—(1 e )1/2
Then,
P1(rs¢) = p1o(r)Calx(r)¢] (1.18)
where
n-11/2
2 n
x(r) = {—3%91—} . (1.19)

The value zg such that C,(z¢) =0 is

1 ds nxl/?\ T(77)
o _ _ _ n 1.20
0 -/o $%H (1 - s® 2 (""‘1) Ny 0
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The matching conditions then give

Fo = / > wo(k)Jo(kr)kdk (1.29)
0
and 12
2n LY g
() P ) == [ bva(k)o(kr)eds . (1.30)
Eliminating the function 1o from these equations leads to the integral equation reiating Fo(r) and
p1o(r), . 12
2n
Fo = —./o (n N 1) p;’:_(s)K(s,r)sds, (1.31)
where the kernel o
K(s,7) = / Jo(kr)Jo(ks)dk (1.32)
0

is expressible as an elliptic integral. For future reference we also note that

oo 2
K(r,0) = L0k + DMP(VI= DBu(VIZ), = [(7('1—’2,'?] S am)

where the Pyi(z) are Legendre polynomials.
At leading order, then, we are left with only one independent arbitrary function, which may

be either py or Fp.
The surface density of the dis. is

B =2 [ pi(r, 0 = JReV el (1.34)

+1

which is just twice the function in the integrand of equation (1.31). We shall choose to use this
quantity instead of p;o to parameterize the radial structure of the disc.

4. Some illustrative density and rotation laws
The solution can be characterized by the surface density, X;, and the function Fy, which are
related by

Fo(r) = —-;— /01 Z1(s)K(r,s)sds (1.35)

where the kernel, K(s,r), is given by equation (1.32).
The models we shall consider here have the form

B = A - M (1.36)

where M is an integer. Near r = 0 this form gives £, ~ 1 — (M + %)r"’ and so M is a mcasure of
the central concentration. For this surface density
(M+ 1)’

Fo(r) = —(= 2F1( —(M +1); 1577 (1.37)

n+1

The surface density and rotation rate o = V/r for the indices M = 0, 1, 2, 3, 4, 5 and 10 are
shown in figure 1.
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where I’ is the Gamma function. Therefore the half thickness, © of the polytropic disk is

I(s) [ ixn V2
- n+l 2 T

Typically p1o will decrease from the centre to the edge of the disc, and from equation (1.21)
we see the curious shapes of polytropes of different indices. For n = 1 (I’ = 2), the models are
discs of uniform thickness; for n > 1 (T' < 2) they flare toward their edges, while for n < 1 (T > 2)
they are lenticular.

1.3 Matching to the external potential field
To complete the solution to leading order we must consider the potential outside the polytrope,
&$<xt, This satisfies Laplace’s equation

Vigext =0 . (1.22)
The solution of this equation must match smoothly onto the potential in the interior, hence
#t(r,N-10) = &(r, N"10(r)), & (r, N-10(r)) = &.(r,N10) (1.23)

where subscript z denotes differentiation with respect to z.
The asymptotic sequences for the interior solution suggest that we seek further sequences of
the form

3t = N§F + 9 +..., ©0=0,+ 'JIVO’ + (1.24)

hence, at the upper edge of the disc,
$(r,N-10) = N&(r,0%) + O1 852 (r,0%) + &5*(r,0%) + ...
3 (r, N-10) = N&5*(r,0%) + O, 35 (r,0) + ST4(r,0%) + ... (1.25)
The potential in the disk is given as a function of {, and at { = O, since 8/3z = N3/0(, we have
® = N&y(r,0,) + O280¢(r,01) + 21(r,01) + ...

and
P, = N2§o¢(r, 01) + NOBg¢(r, 01) + N@y¢(r,01) + ... (1.26)

According to equation (1.14), we have &, = Fp, and so the leading terms of the matching give
Fo(r) = 8*%(r,0%),  &y¢(r,0) = 5(r,0%) . (1.27)

To complete the matching we need only to solve equation (1.22) whose general axisymmetric
solution for z > 0,

o0
Fext = / Y(k)e* To(kr)kdE, (1.27)
(]
where we may write the unknown function ¥ as

¢=N¢O+¢l+-n . (128)
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In figure 2 the shapes of the equilibrium configurations are illustrated for four different values
of the polytropic index (n = 0.5,1,1.5 and 3) and for the model with the surface density index
M=2. The edge evidently flares outwards to infinity for the models with the larger values of n as
the density in the midplane becomes vanishingly small. This irregularity occurs because towards
the disc’s outer edge, the radial derivatives in the Poisson equation (1.5) become large and so the
asymptotic expansion breaks down. This indicates the presence of a boundary layer at the edge
that, when treated correctly, will modify this singular behaviour. Nevertheless, to some extent
the flare will still survive. An alternative method to avoid this flare is to recognize that outside
the disc the density may not be zero, just very small. The edge then occurs at a finite density
at which the flare is less pronounced. The external gravitational potential is stili approximately
given by equation (1.29), and so the explicit form of the solution is not appreciably modified.
This procedure bears some resemblance to the “patching” technique of Monaghan and Roxburgh

(1965).

Model surface densities Model rotation rates
1.0} 1.8 l~
1.6
0.8
1.4+
o6} 1.2
= = 1.0fF M=0
0.} \
0.8
0.6} M=10
0.2}
0.4+
00}
‘ . 0.2+¢
1 1 1 J L 1 1 ] 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rodius r Radius r

Figure 1: The surface density and rotation rate of polytropic models characterized by the index
M of the surface density law given by equation (1.37). The six curves correspond to the indices
M =0,1,2,3, 4,5 and 10. Since the polytropic index n appears only in a multiplicative factor
in the surface density and rotation laws, the curves are exactly those for any polytropic index
provided this factor is included. The curves are drawn for the case n = 1.
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A very different way to avoid this behaviour is to introduce an external, halo potential of a
parabolic form }aN?(?, where a is an arbitrary parameter (it is actually the ratio of the halo
density to the central density of the disc), at the outset. This modifies the stratification from that
predicted by equation (1.18) to

P1(r2€) = pro(r)Salx(r)Gs #(r)] (1.38)

where the integral

. /1 ds u(r) = a [(n + 1)] Y2 (1.39)

Sa(2in) s-_:l[l -t pu(l - .9?‘-‘)]1/2’ P1o(r)

defines the function S,(z; ). This changes the shape of the polytrope and substantially reduces
the flare. The dotted and dashed lines in figure 2 indicate the shape of the polytropes for the
values of a of 0.1 and 1.

Vertical structure of the n=0.5 polytrope Vertical structure of the n=1 polytrope
Vertical structure of the n=1.5 polytrope Vertical structure of the n=3 polytrope
';—-;—_._--—'—"— —_———mTmTTTETSs- : j::" ——ar

Figure 2: The shapes of the polytropes of index n =0.5, 1, 1.5 and 3. The index of the surface
density law is M = 2. The dotted and dashed lines indicate the shapes when an external potential
field 1aN?(? is also present. The dotted line has a = 0.1 whilst the dashed line is for a = 1.
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2. LINEAR STABILITY ANALYSIS

Spiral arms seem to be the manifestations of local enhancements of density and amplifications
of star formation within the disc of the galaxy. They are not material arms since radial spokes of
matter become very quickly sheared out and wound up on short timescales because of the relatively
large shearing flow of rotation. Therefore they may be rotating patterns of gravitationally induced
instabilities at finite amplitude. Such speculations have been asserted in the past, notably by
Goldreich and Lynden-Bell (1965) in the context of gaseous discs, and by Shu (1970) in the theory
of the stellar dynamics of sheets. Toomre (1969) has pointed out that such linear instabilities
simply propagate towards the centre or edge of the disc and become anihilated very quickly. Here,
however, we take the point of view that this may not happen at finite amplitude; nonlinear waves
may form a steady rotating structure without dissipating. This view seems also to have been taken
by Norman (1978), Qian, Spiegel and Proctor (1990) and Qian and Spiegel (1990).

2.1 The equations in the limit of rapid rotation
The linear, non-axisymmetric perturbations of the disc satisfy the equations of motion,

a . 7]
(E + zmﬂ) u—2Qv = ~% (¢+h) , (2.1)
9 tim@)v-2Bu=_-"(p1h 2.2
(b—t+zm )v— u~—-T(¢+ ) (2:2)
and P 8
(E'*'imﬂ)w:—‘—?—z-((ﬁ-l-h) ) (2.3)

where the velocity of the perturbation is (u, v, w), the fluctuations in the enthalpy and gravitational
potential are h and ¢ and the angular dependance e™® has been assumed. The angular velocity
of the mean undisturbed motion is  and

1 dQ
B=Q+ —r— 4
+ 21- dr (24)
is one of Qort’s constants.
The continuity equation is
a . , 10 im d
(a + 1m9) P+ oy (rpu) + P + 72 (pw)=0 , (2.5)
and Poisson’s equation becomes
10 ( 3¢ m? ¢ 2 4
rOr ('ar)_75¢+a_zf’1v" . (25)

The density fluctuation p’ is related to the enthalpy perturbation by

(E)"—l h=p. (2.7)

n
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The equations of motion (2.1) to (2.3) can be combined to yield

=— [(:t + zmﬂ) + 493] [ —+ tmﬂ) g‘: 2‘Tnf] ) (2.8)
v= [( gt + zmﬂ) + -mB] [23— - ? (% + imﬂ) f] (2.9)
= w=- ( gt +i n)—l %, (2.10)

where f = h + ¢. When these equations are substituted into the continuity equation, this new
equation and Poisson’s equation become two coupled, second-order equations for the perturbations.

In accordance with the asymptotic solution of the equlibrium model, we again rescale the
vertical coordinate z = N(. Moreover, it is evident from the equations of motion (2.1) to (2.3)
that, if the time derivatives are not to vanish at leading order, the characteristic timescale for the
motions is just the rotation period, which is short in the limit of rapid rotation. Therefore we
shall use the rescaled time 7 = N1/,

We shall consider the normal modes of the disc, for which the dependance on time is of the form
e, where 7 is the characteristic growth rate. The two equations determining the perturbations
are then

82 - (%) (f - 8) = ~35 | 20:(r0.4) - —¢] (2.11)

and

N?3c(pdcf) = No%p' - 29, { [ 8, f + Zm -mmf]} ided 4 [2(N-1/=B)a f- f]

2 . -1/2 2
= No'p' - 22 {-}0,(r8rf) +8, (log ) 8.f + [31"1(1—:;—9)0, (log %’21) - ’:‘—2] f} , (2.12)

where

o =n+imN-1/2q, (2.13)
If  were purely imaginary, the motion would have the charactistic epicyclic frequency ix, with

k2 = 0? + AN-1QB = v + A, (2.14)

where A is what could be described as the Rayleigh discriminant of the mean flow of rotation.
Provided 7 is real, x does not in general vanish exactly.

2.2 Asymptotic expansion and solution

The asymptotic development of the variables into a series follows simply from that used for
the equilibrium state: we set

¢=Noo+h+.. f=Nfo+thHi+..
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for the perturbations,
n=m+Np+., T=mn+Nlv+.,
for the characteristic growth rate and its square, and
Q=NY3(Qe+ N0, +...), o=01+Nloz+..,

and
K,=I€1+N‘1K,2+..., A=4N-IQB=A1+N—1A2+...

for the other subsidiary variables.
If we introduce these expansions into the equations (2.11) and (2.12) then the leading order
equations are trivially satisfied by

fo=fo(r)  ¢o=¢o(r)  ¢o=fo (2.15)
At next order equation (2.12) gives
8((p18(_f1) =0, (2.16)

which has the integral p19¢ fi = constant. However, p, vanishes at the edge of the disc, and so if
f1 is bounded, then

fl = fI(T). (2.17)
The equation of the corresponding order from equation (2.11) gives
8%’11 + (Hl/n)"‘lhl = 0. (2.18)

This equation can be reduced to quadrature. For the moment, however, we shall ignore the vertical
structure of the disturbance since we are more interested in its linear stability.
The O(N) terms of equation (2.12) give

2 2 0 2
(P10 f2) = o2py — 22 {3- (rpl 3rfo) + [ ", ( Dfl) - leT] fO} ’ (2.21)
o K k2r

r k2 1 2

Integrating this equation vertically, from the centre to the edge of the disc gives,

o? r® 2im (179 m?
[pla(_fz]gl =ol%| - Tl {8, (T%‘-a,fo) + [ - 8. ( :2 1) - EIE] fo} , (2.22)

1 1

where X; is once more the surface density of the disc, and

! ©: /
I = 2/0 prd(

is the perturbation induced in it.

A thin layer of fluid, symmetric about the plane z = 0, can support motions that are either
symmetric or asymmetric about this plane. The latter are sinuous modes and correspond to
corrugations of the layer. A simple corrugation does not lead to a local enhancement in the
density, and consequently the destabilizing effect of self-gravity is smaller for these modes than
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for the symmetric or varicose modes. If we particularize to the varicose modes, then d¢f2 = 0 at
¢ = 0, and so the left hand side of equation (2.22) vanishes. Thus

1 z 2i o 2
5 = =0, (r LY fo) [;l':af (—r:1 1) -5 %{] fo (2:23)

Moreover, integrating equation (2.18) over the vertical extent of the disc gives

[O¢trlcze, = ;2' (2.24)

These two equations, together with the formula derived from the boundary conditions upon the
perturbed gravitational potential (see the following section), constitute an eigenvalue problem for
oy, with the eigenfunction fo(r).

We can derive analogous equations to (2.23) and (2.24) for the terms of O(1). These give the
O(N~1) corrections to the eigenvalues. Explicitly they are

r _ l [(?_2 8r.f1 _ 72 + Az) 1'218 ]
¥ = rar 21 + 3,.fo K;{ 2 fo

2imfl (Il_ﬁ 91) (2190) [(2190 _}__72+A2)]}
+ or { fo 0‘1+90 & 3 +o (s, n0 K2

_m?%, (f1 Z; 72+Az)
—_—, 2.25
Tznl fo t3 K,% ( )
and 1 o
[8{¢2](=el = 52'2 - ‘r—lar (rarfO) . (2'26)

2.3 Matching the solution

Outside the disc the perturbation to the gravitational potential ¢°** is once more a solution
to Laplace’s equation:

o0 .
oot = / D' (k)T (kr)e~*s+m0 k., (2.27)
0
To match this solution to the perturbation inside the disc we develop the function %' into a series

of powers of N—1, just as in the case of the equilibrium model. The continuity of the potential
perturbation and its derivative then yields

fo= /0 % (k) (kr)kdk (2.28)

and o
(Bctrlcae, = = [ Ha(E)Im(r)EdE, (2:29)

at leading order.
Eliminating ¥}(k) results in the equation

folr) = — /o ” [0c61) o, Knm(r,s)sds, (2.30)
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where the kernel is now .
Kum(s,7) = / T (k7)o (ks)dE. (2.30)
0

At the following order, we have

fl(r) == /01 [ar¢2](=e1 K,,.(s, r)sd.s

+1 [elz' / sds / Lt (£)01 (8)Km(s, 7) / k’kom(kt)Jm(k-')] (2.31)

If ©, were independent of s (as it is in the case n = 1), then the final term in square brackets
would vanish exactly.

2.4 The eigenvalue problem
Equations (2.23), (2.24) and (2.28) can now be combined to give an integral equation for fo:

fo= ——/ 1K m(s,r)sds, (2.32)
or . ,
fo= _/o {a . 3213 fo] [1m 9021 '21:2?;%] fo} Kon(s,7)sds. (2.33)

These equations are clezi.y aaalogous to equation (1.55) of the static problem, and reflect the
leading order balance ",e' ween the galactic centrifuge and the self gravity of the configuration.

Equation (2.33) is an integral, eigenvalue equation. The eigenvalue 7, is explicitly contained
in oy and k1, and fo is the eigenfunction. These correspond to the varicose normal modes of the
disc.

In principle, the O(NN —1) corrections to the eigenvalue and eigenfuction (2 and f;, respectively)
can be derived from equation (2.30). In practice, however, it is difficult to treat such a complicated
equation for general polytropic index and nonaxisymmetric disturbances. The final term on the
right hand side appears to be an unnecessary complication: It vanishes for n = 1 and must be
small for high-order modes (for which ©, =~ constant). If we assume that it is negligible, that
equation becomes

1 01(8)

f(r) = _%/01 5(8)Km(s,7)sds +/o 0,(30,fo) K (r, 8)sds, (2.34)

with equation (2.25) determining the O(IN~!) correction to the perturbation to the surface density
5.

2.5 Axisymmetric modes

If we particularize to the axisymmetric case, m = 0 and equation (2.30) becomes somewhat
easier to analyse. We have

fo(r) = - / A ["E‘a f"] Ko(s,r)ds. (2.35)
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where Ko(s,r) is identical to the kernel considered in the static model. This kernel can be decom-
posed into an infinite sum of Legendre polynomials and so

folr) = Z M(4k + 1) Pou(VI = 77) / ["218 f“] Pu(VI—af)ds.  (2.36)

In addition
=} + 4QBo = 11 + A;.
If we define the function
(1~ r2)1/28, fo(r)
7 + Ba(r)

and change variables to z = (1 — r2)}/2 and y = (1 — s2)!/2, then the eigenvalue equation can be
written in the more obvious form,

gi(r) = (2.37)

(11 +8(@)Gx(2) = Z Mtk + D)P4) [ S0 w)Pht)ar, (238)

where Z(y) = E(s), G1(z) = g:1(r), 6(z) = A(r) and P}, (z) is an associated Legendre polynomial.

In the previous section, a selection of equilibrium models were computed with the surface
density law ;(r) = (1 — r2)M+1/2| If we introduce this parameterization of T; into equation
(2.38) then the eigenvalue equation equation becomes

[ +6:(2)]Ga(z) = Z Ar(4k + I)sz(z)/ y*MG1(y) Py(y)dy. (2.39)
k=0

If we further decompose the functions G1(z) and 8, (z) into a sum over the even associated Legendre
polynomials,

Gl(z) = E G1,jP2:lj(z), 61(2) = f:&l,,-ng(z), (2.40)
j=0

j=0

then equation (2.34) is reduced to an infinite-dimensional matrix eigenvalue problem:

[- <] [ <JE. ]
1Y, G1ePhi(2) + Y. G161, Pi(2) Py(z) =

k=0 1=0 =0
00 fad 1
- M(4k+ VPR Y Gus [ 1™ Ph() Ph(w)dy. (241)
k=0 3=0

Setting Pj;(z)P};(z) = Y720 aijr P} (2), and comparing the coefficients of P}, (z) yields

711Gk + Z Z athG1.151.1 = z Ar(4k + I)GI,J/ .'/szz,;( )P,,,(y)dy (2.42)
i=0 j=0 J=0

This is an equation that is of the form

11G1 = 411Gy, (2.43)
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where
Avws = 2tk +1) [ MPLOPL)Y - S ainbis (244)
=0

(cijk can be seen to be the third rank tensor that describes the coupling, in the presence of a
mean differential rotation, between the eigenfunctions of a uniformly rotating disc.)

This final equation can be solved explicitly in the case of the rigid rotator (M = 0), and this
is detailed in the following section. It can also be solved numerically.

When m = 0, the O(N~1) corrections determined by equation (2.34) satisfy the simpler

equation
pir=— [ o (Bg0) . (3 242) o]

+ [ 0:0,(s0. o) K (s, r)ds. (2.45)
0

The correction to the surface density £,(r) is determined by specifying the equilibrium config-
uration. If there are to be no corrections to the surface density law £ = (1 —r2)M+1/2 3t O(N-1),
then this function is identically zero. Thus

ftry=-[ o (,z,a £1) K(syr)ds + / [(Z522) o] K (s,
1
1
+ / 018,(30, fo)K (s, 7)ds. (2.46)
0
Just as for the leading order equation, we shall define the function
(1 - #2)1/23, fi(r)
G = = . 2.47
Z(z) gZ(r) 1+ A1(1‘) ( )
Then equation (2.46) becomes
(71 + 61)Ga(z) = Y A(4k + 1) Py (2)
k=0
! ! +6 0
{[[ve:mpnty- [ [ (252) + 2o 46| uPhtvian), (248
0 0 1+ 6 y

with 6,(y) = 0,(s). Decomposing the functions Gy, G5 and the 6, on the left hand side of equation
(2.48) into sums of the P}, (z) gives

(11~ A1)G2 = (42 +72B)G1, (2.49)
where

§ 0
Azpj = M(4k +1) / [ Lk -yl('n + 61)] Py;(y)Pyi(y)dy

and
2M

1
Bu; = M(4k +1 / Y Pl (y)PL(y)dy.
kj k( + ) o 71+6l 2k(y) 23(!/) Y
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The matrix 4, can be symmetrized by using the vector G} ; = V(&k + 1)A,G, ; instead of Gy ;
as teh eigenfunction. Therefore there must exist a vector G} that satisfies the equation

(G1)T A1 = (G) ™. (2.50)

Taking the product of this vector with equation (2.49) gives an expression for the O(N 1) correc-
tion to the eigenvalue
_ _(G)T4:G
= TG)TEG:
In fact, since there is an infinite spectrum of these eigenvalues, there is an infinite set of equations
(2.51).

(2.51)

2.8 Axisymmetric instabilities of the rigid rotator
In the case of a rigidly rotatirg disc, M = 0 and §; = 7. In this case the eigenvalue equation
(2.43) becomes

0 1
(114 M)Gri = 3 M4k + G [ Phi()Phlu)dy

=0
= Ae2k(2k + 1)G1,k. (2.52)

Thus the kt* eigenvalue is

Vik =Me =" {2k(2k +1) [-(éz—:')—;;] - 1} . (2.53)

This eigenvalue increases monotonically with k, and so it appears that, at this order, there is no
high wavenumber cut-off to the range of unstable modes. This is not true of the Jean’s instabilities
of an infinite, plane, polytropic slab of gas (Ledoux, 1951; Qian, Spiegel and Proctor, 1990).
Therefore, it is clear that there must be some stabilizing effect that enters into the equations at
O(N-1) and eventually, for large enough k, dominates the instability determined at first order to
create a finite range of unstable wavenumbers. This is physically plausible since at next order the
effects of pressure support must enter, and these oppose a local collapse of the disc.

The eigenfunctions of the uniformly rotating disc are simply the associated Legendre poly-
nomials P}, (V1 —r?). The k£ = 1 solution is a toroidal perturbation of the disc, whilst higher
order solutions will look like concentric annuli of finite thickness. For asymptotically large k, the
eigenfunction is

4k\'/?
Gr ~ (;) cos(2ksin™! r + 7 /4) (2.53)

well away from r = 0. As the order increases, the amplitude of the mode becomes concentrated to
the centre of the disc; towards the edge, it oscillates strongly. Some eigenfunctions are sketched
in figure 3. Equation (2.51) determines the O(N-1) correction to v;. For the rigid rotator this
equation becomes

_(4k+ 1)(n + 7)?

2k(2k + 1) /01 [oliy) o ff&l)z] Pyie(y)Par(v)dy, (2.54)

T2,k =

for the correction to the i** eigenvalue.
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Eigenfunctions of the rigidly rototing disc

k=5

Amplitude

0.0 0.2 0.4 0.6 0.8 1.0
Raodius r

Figure 3: The axisymmetric eigenfunctions or ring modes of the rigidly rotating disc. In particular
the modes of radial order &k = 1, 5 and 10 are shown.

The function §,(z) can be expressed as a sum of the basis functions P}, (z). Nevertheless,
when 7; is large (k >> 1) it is a small correction. If we ignore it, then

)2
B ey AT A (2.55)
For the polytrope with n = 1,0 = x/2 and so
- a9
where
_ [ 1 P () 3Y = o [(2k - DY 1 (=k)i(=k)i(k + 3)i(k + 3)s
= | PLOIPAS S )3 Z_j +7 -0+ EGME- DG - D)

(2.57)

and (2k - 1)" = (2k - 1)(2k - 3)...3.1.
The lowest eigenvalues, to O(N~2), for various values of the large parameter N are plotted in
figure 4 for the polytrope with this value of n. It is clear that as the rotation of the disc grows
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it becomes increasingly susceptible to instabilities. This is not because rotation promotes the
instability, but rather that as the rotation increases, the effects of pressure support which provide
the stabilizing influence become more and more negligible.

Eigenvalues for M=0

S0F
N=1000
o I~
-50f N=200
>~
o
3
2
>
c
o
2 100
]
~150F N=100
~200}+
1 1 1 1 L 1

0 5 10 15 20 25 30
Mode order

Figure 4: The axisymmetric eigenvalues for the rigid rotator. The eigenvalue to first order,
11, is indicated by the dashed line and the O(N 1) correction to it, 2, by the dotted lines for
three values of N. The solid line is the eigenvalue correct to O(N~2), i.e. 11 + N~17,.

2.7 Nonaxisymmetric Instabilities
For the nonaxisymmetric modes, the analysis presented above becomes more complicated. In

particular, the kernel K,,(r,s) no longer has the eigenvectors P,,(z). Instead we have

00

Kum(r,8) = 3 ATen(2)en(y) (2.58)
n=0
where the orthonormal eigenvectors
' 1 1/2

2 * T(2n+2m+1)
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and )

A = = _T(2n+2m+1) [ [(n+3) (2.61)

(2 ) I'(n+m+1)
The functions C™(z) in equation (2.59) are Gegenbauer or ultraspherical polynomials of index m
and order n (e.g. Magnus, Oberhettinger and Soni, 1966).

The construction of the matrix eigenvalue equation now proceeds as before. For the rigidly
rotating disc the matrix is once more diagonal indicating that the eigenfunctions, G*, are just the
functions ¢P(z). The dispersion relation is now more complicated. It reduces to a pair of cubic
equations for every oy i, and each cubic in the pair corresponds to one of the two possible choices
for m, namely +|m|. The solutions to these cubics are

o) = 42 [¥(m, k)~ = sinhp,
agzis) = +4/¥(m,k) — 7 coshB [1 + \/L:.}. tan.hﬁ] , (2.62)

where
11712
W(m, k) = 2(2k(;-k§'m') fé': '*'m'z')g] [2k(2k + 2m + 1) + m] (2.63)
and
1 AmQ
8 = X tanh-! k 200 ) 2.64)
3 [\/(w - 7)3/27 + (,\;:mno)Z] (

When [(¥ — 7)/3]3/2 >> [AP'mQy|, these become
(1) szmmﬂo

V(@ -7
(2,3) ~ — i/\;,"mﬂo
o V¥ -7 [1 + _—_\/ﬁ(\ll mpnr7e (2.65)
These is related to the growth rates by
) = o) — imQo. (2.66)

The modes now oscillate in time in addition to the exponential growth or decay. This oscillation is
caused in part by the simple precession of the mode (as indicated by the second term in equation
[2.66])) and also because of the azimuthal motion itself (which leads to the imaginary parts of
equation [2.65]).

The presence of six eigenvalues is not inconsistent with the results of the axisymmetric case in
which we have noted only one eigenvalue. For the m = 0 case the eigenvalue that we have plotted
in figure 4 is actually a pair: o) = +|yk|'/? = £|¥(m = 0, k) — 7|/2. In addition, we have omitted
a possible solution y = 0. In actual fact all three of these eigenvalues are doubly degenerate, and
when m # 0 all six modes appear with nontrivial time-dependence. This is shown in figure 5.
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Im

Figure 5: An illustration showing the double degeneracy of the eigenvalues for m = 0, and how
this is lifted when m # 0. The picture is an “energy level diagram” showing the real and imaginary
parts of oy ; for the six modes.

3 CONCLUSIONS

We have constructed models of polytropic gaseous masses using an asymptotic technique in
which the disparity of the vertical and horizontal length scales led to a characteristic, large param-
eter that was exploited to develop the asymptotically valid solution. These models have intriguing
shapes and vary substantially with the polytropic index.

Our analysis of the linear stability of the normal, varicose modes of the disc takes account of the
global nature of the disturbances, instead of treating the perturbation purely locally. Moreover, by
constructing the equilibrium structure initially, the linear stability analysis is completely internally
consistent.

It is clear that we have uncovered a wide range of instabilities in the rotating disc. Fortunately,
the disc is probably not catastrophically unstable, and the stabilizing influence of pressure support
destroys the instability quickly at moderate wavenumber, provided the rotation is not excessively
large. For the Milky Way, with N ~ 20, only the lowest order modes may be unstable.

The ring instabilities found here may not be purely mathematical artifacts: some galaxies do
indeed possess ring-like structures, suggesting, perhaps, the presence, at finite amplitude, of these
m = 0 modes.

The detailed analysis of the stability of the non-axisymmetric modes is currently underway.
Perhaps this will shed light on the selection mechanism behind spiral structure.

Acknowledgements: I would like to thank Prof. E. A. Spiegel without whom this project would
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The Nonlinear Evolution of a

Perturbed Axisymmetric Eddy

George I. Bell

Woods Hole Oceanographic Institute
Woods Hole, MA 02543

1 Introduction

Numerical simulations of two dimensional and geostrophic turbulence (Babi-
ano et al. 1986; McWilliams, 1984) demonstrate that an initially turbulent vorticity
distribution evolves into one where the vorticity is concentrated into approximately
circular patches surrounded by regions where the vorticity distribution is filamentary
and on average an order of magnitude lower. Robust eddies, relatively isolated from
the surrounding fluid, are also commonly observed in geophysical flows (eg. Gulf
Stream rings), as well as laboratory experiments.

The problem of the linear and nonlinear evolution of a nearly axisymmetric
eddy is therefore of considerable interest. This research is motivated, in part, by
the numerical simulations of Carton & McWilliams (1989). In the context of a two
layer model, they considered an initially axisymmetric eddy with potential vorticity
in the i’th layer, g;, a given function of radius. The evolution of a slightly perturbed
and linearly unstable eddy was calculated using a pseudospectral numerical code.
They found that the instability was often nonlinearly stabilized at finite amplitude,
and that the eddy appeared to undergo a complicated oscillation about a nonlinear,
steadily rotating eddy which was approximately elliptical. The suggestion that the
nonlinear dynamics of a perturbed axisymmetric eddy are quite complex, possibly
even chaotic, is the driving force for the present research.

Before we embark on our search for chaos we should remark about the recent
discovery of Polvani & Wisdom (1990) about one type of chaos which occurs in the
vicinity of a Kida vortex. A Kida vortex is simply an ellipse, filled with a uniform
distribution of vorticity and placed in a background strain field. When the strain
is zero, the ellipse rotates uniformly, a fact that was discovered by Kirchoff (1876).
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When a straining flow is added, Kida (1981) showed that the problem is still solvable
exactly. For small strain rates the ellipse merely oscillates periodically. Although
the flow at any fixed point is also periodic, particle trajectories outside the ellipse
may be chaotic (Polvani & Wisdom, 1990). This type of chaos has been termed
chaotic advection (Aref, 1984), or Lagrangian chaos. In contrast, our search is for
a vortex whose actual dynamics are chaotic. By this we mean that the ellipticity
of the vortex (or some measure of its degree of distortion from the axisymmetric
state) varies chaotically with time. Since the ellipticity of any stable Kida vortex is
a periodic function of time, clearly Kida vortices do not have chaotic dynamics.

In Section 2, we introduce the simple two-contour eddy, and in Section 3 cal-
culate it’s linear stability properties. Finite amplitude behavior is calculated using
a contour dynamics code (courtesy of Steven Meacham). In Section 4 it is demon-
strated that an eddy which begins in a linearly unstable region of parameter space
either breaks up catastrophically or equilibrates. In Section 5 we document the be-
havior of large amplitude perturbations to a linearly stable eddy, and by focussing
in on a specific example we demonstrate that it is possible to duplicate the nonlin-
ear interactions using a four degree of freedom Hamiltonian system. This reduced
Hamiltonian system appears to show chaotic behavior in this parameter regime. The
implications of this work are presented in Section 6, together with the suggestion that
by uncovering the Hamiltonian structure of contour dynamics it may be possible to
derive the nonlinear theory directly from the contour dynamics algorithm.

2 The two—contour eddy

The problem may be simplified considerably by supposing that the distribution
of vorticity with radius is piecewise constant. The geometry of our model is depicted
in Figure 1. For the unperturbed problem, let the potential vorticity be ¢; + g, inside
an inner circle of radius 1, ¢; inside an outer circle of radius r,, and zero outside
the outer circle. The reason for including two circles, or contours, is that it is the
simplest model which allows for linear instability.

Flierl (1988) showed that a barotropic two-contour eddy with ¢ > 0 everywhere
is always stable to elliptical (m = 2) perturbations. This suggests that a two layer
model is necessary for the complicated dynamics observed by Carton and McWilliams
(1989) near an unstable m = 2 mode. However, we can avoid the complication of a
two layer model by allowing the lower layer to be infinitely deep and stationary (a so
called equivalent barotropic model). The reason for using such a model, as we shall
see, is that the elliptical mode can be unstable (even when g > 0 everywhere).

If the circular contour 7 = r; is perturbed into 7(8,t) = r; + 7;(6,t), then the
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Figure 1: The perturbed two-contour eddy.

stream function 9 for the flow in the upper layer is given by

L= 3 ¢;0(r; +ni(6,t) —r) (1)

=12

where © is the Heaviside step function and £ = V? — 1 is the operator connecting
the stream function and potential vorticity distribution. Equation (1) is in nondi-
mensional form, where time is measured in units of g~! and distance is measured in
units of Rossby deformation radius.
The motion of each contour is specified by the kinematic condition
oy _ 1 4

8t 1+ a5 V(7 T 1i(4:),6,t) (2)

which specifies that the contour 7; moves inward or outward in response to the radial
fluid velocity at its location.

3 Linear theory

The linear theory for problems of this type has been performed for similar
specific cases (Childress 1984; Flierl 1988). The perspective presented below was
chosen because it extracts the mathematical structure of the general case (with n
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potential vorticity interfaces), and contains most previous results as special cases
involving other choices for the operator L.
We suppose first that the perturbation is small (compared to r;)

1;(6,t) = O(e) (3)
this implies by (1) that ¥ may be written as
¥ = Yo(r) + egu(r,6,1) (4)
Substitution of (3) and (4) into (1) and (5) leads to.
Lo = > ¢;0(rj — ) (5)
=12
Ly = j;2 gin;6(rj — 1) (6)
r,-% = —%(U) ~ %% r5) (7

A further reduction is achieved by Fourier transforming 7; in azimuthal angle,
in other words looking for normal modes

1;(6,t) = Bje™=+) (8)

The unperturbed azimuthal velocity Vy = 04,/8r and perturbed stream function ¥,
can then be written in terms of similar operators:

(C - T—I,) Vo=— )" qjb(rj—r) (9)

i=1,2

(C - %2-) Y= gmib(r; —7) (10)

=12

while the kinematic condition (7) reduces to

wrin; = Yi(r;) + n;Vo(r;) (11)

Let G,u(rj,7) be the solution to

(c - ’:—:) Gom(rs,7) = §(r; — 7) (12)
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From the form of equations (9) and (10), we can see that V; and 9, can be represented
as sums over the Green’s functions G,,. Substituting expressions for V, and 9, in
terms of the Green'’s functions into (11) yields an eigenvalue problem for the frequency

w. The possible values of w are the eigenvalues of the matrix M, where the elements
of M are defined by

i =12 i j=1,2

~

M;; = % [Z quI(r,-,r.-)} —% Y 4iGm(rs, ™) (13)

s

Vo(ri)
Note that for the equivalent barotropic case we are considering, we have

~a I, (b)Kpm(a) ifb<a

Gnla,0) = { —al(a)Kn(b) ifb>a (14)

where I,, and K,, are modified Bessel functions of order m. Because the matrix M
defined in (13) is 2 by 2, it is easy to write down a criterion for the stability of a
particular azimuthal perturbation.

Figure 2 shows the regions of linear instability for azimuthal modes m = 2, 3
and 4. Higher modes have similar instability regions which pile up against the line
72 = 1 = r;. Perturbations in the m = 0 mode are not allowed because they change
the area enclosed by one of the contours, violating vorticity conservation. The m = 1
mode is equivalent to a displacement of one of the initial circles, is always linearly
stable here and gives rise to translations of the eddy (see Flierl 1984). If both of the
potential vorticity jumps have the same sign, or ¢2/q, > 0, then a form of the well
known Rayleigh stability criterion may be invoked to verify that the perturbation is
neutrally stable (we’ll not discuss the dynamics of such eddies further).

One interesting aspect of Figure 2 is that there are large regions of parameter
space where the eddy is linearly stable to all modes. This is rather surprising if
one considers the analogous planar problem—a barotropic shear layer with nonzero
vorticity within a strip —d < y < d. Such a shear layer is always unstable to a
perturbation of wavenumber O(1/d). In the limit where r; is near r, we would
expect that the curvature of the two interfaces is negligible compared with (r; —r;)"!
and the planar shear layer would be approximated. From Figure 2, we can see that
in this region, the eddy is likely to be unstable to a perturbation with a large m,
confirming our intuition that it must always be unstable. As r, increases, it is the
quantization of m that leads to the linearly stable regions. For large d, unstable waves
in the shear layer have very long wavelengths and an integral number of wavelengths
do not fit around the perimeter of the circular eddy. This explains why the eddy is
linearly stable to all modes when =, is large enough.
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Figure 2: Regions of linear instability for the perturbed two-contour eddy (r; = 1).

4 Finite amplitude behavior in the region of lin-
ear instability

The weakly nonlinear calculations of Flierl (1984), for the barotropic case,
indicate the type of bifurcation that occurs when the parameter r; moves from a stable
region into an unstable region. Although Flierl proved the result for the barotropic
case, and only at specific points in parameter space, from simulations of the full
equations of motion (2) and (1) using the method of contour dynamics, the following
hypothesis may be drawn. If the instability region is entered by an increase of r; (and
lg2| > |q1]), then the bifurcation is supercritical, and the solution oscillates around
a finite amplitude, steadily rotating solution. On the other hand, if the instability
region is entered by decreasing r,, then the bifurcation is subcritical, and the weak
nonlinearity further destabilizes the eddy.

What happens when an eddy lying well inside one of the unstable regions is
perturbed? It turns out that there are two basic types of scenario, depending on
whether [g2| > |q1] or |g2] < |q1|. A hint regarding the nonlinear development comes
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from the conservation of angular momentum. In terms of the potential vorticity
g, conservation of angular momentum is equivalent to the statement that (1/2)qr?
integrated over the potential vorticity distribution is constant in time. In other words,

- N R A =1 N N4 gn
22%‘/0 /r: rrdrdO—SZq,/o (r; +m;) ridf=c (15)

j=1|2 j=1,2

The idea i1s that for large deformations which have grown from small perturbations
the integrals in (15) are positive, while c itself is small. In order that the sum in (15)
nearly cancel, it is necessary that the deformation of the interface with the smaller
value ~f |g;| be greater. If the linearizing assumption of small 7; is made together
with the decomposition into normal modes (8), equation (15) may be rewritien

e?™ st Y gri|Byl* = ¢ (16)
j=1,2
where w; is the imaginary part of the frequency w. If the mode is linearly unstable
then the left hand side of (16) will grow exponentially unless the expression in the
sum is identically zero. Evidently, ¢ = 0 and

|71 B | _ q2

[r2 B3| B —El- ()

Equation (17) is an exact identity satisfied by any linearly unstable mode, and spec-
ifies that the perturbation of the weaker vorticity interface is proportionately larger.

Dritschel (1988) has extended (17) into the nonlinear regime by looking at a
linear combination of the conserved quantities angular momentum and area. Essen-
tially, he is able to derive a conserved quantity similar to (15) where the integrand is
positive definite in each 7;. His result demonstrates that even in a nonlinear sense,
the deformation of the weaker contour must be greater than the deformation of the
stronger contour.

4.1 Break up of a two-signed eddy

Unstable eddies with |g2| < |¢1| are composed of potential vorticity of both
signs, and the potential vorticity jump across the outer contour is weaker. In the
linearly unstable region of parameter space, by (17) we expect that the perturbation
in the outer contour will be of larger amplitude than the inner, and will filament first.
This is confirmed by a full numerical simulation (Figure 3), showing the break up of
an eddy into a tripole-like structure. For some recent experimental results on the
formation of tripoles and dipoles from nearly axisymmetric vorticity distributions,
the reader is referred to the fascinating photos in Kloosterziel & Van Heijst (1989).
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Figure 3: Nonlinear evolution of a linearly unstable eddy with |g;| < |q;|. Parameters
= 1, T = 20, Q1 = —1 and Q2 = 9.

Figure 4: Equilibration of a linearly unstable eddy with |q3| > [q;|. Parameters :
rn=1,7r=27q =-1and ¢ =2.
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4.2 Equilibration of a linearly unstable eddy

The behavior of linearly unstable eddies with |g2| > |q1] is quite different. Such
eddies have an annular vorticity distribution, with potential vorticity gradients of both
signs, but are composed entirely of potential vorticity of ore sign. Since the inner
contour is weaker, we expect filamentation to occur first in that contour. Figure 4
shows the evolution of such an eddy. The inner contour filaments and these filaments
are then wrapped around the center of the eddy. In Figure 4, contour surgery has
clipped off these filaments where they drift into the region between the two primary
contours. The outer contour, in contrast, does not filament.

One can think of the behavior of Figure 4 as a relaxation of the eddy into
a parameter regime where it is linearly stable, or at least marginally stable. The
filamentation of the inner contour has two important consequences. First, it reduces
the area of the inner contour. When », decreases, by recalculating Figure 2 it may
be shown that the instability regimes move upward. The effect is to move the eddy
toward a parameter range where it is marginally stable. Second, if we imagine viscos-
ity mixing the filament into the annular region between the contours, both |¢;| and
|g2| will be reduced and by the same amount. Since |g;| > |qi|, this will cause the
ratio |g;/q1| to increase. This also has the effect of moving the eddy into a region of
parameter space where it is linearly stable.

5 Finite amplitude behavior in the region of lin-
ear stability

The calculations of the previous section lead us to believe that an eddy which
begins in the linearly unstable region with |g2| > |g1| will evolve (in an approximate
sense) into the linearly stable regions between the instability “spokes” of Figure 2. In
this section we use the contour dynamics code to investigate finite amplitude behavior
of eddies in this linearly stable region.

We initialize the run with a fairly large (10% to 20%) perturbation in both
the m = 2 and m = 4 modes. As the evolution proceeds the inner and outer contours
deform, sometimes appearing nearly elliptical (m = 2 mode) and at other times more
square (m = 4 mode). To view the nonlinear interactions, we decompose the result
at each time ¢ into the normal modes dictated by the linear theory:

["‘(O’t)}—imﬂ (Yt + Arr() ) €7 (18)
e _m=1 1t )um: 2(t)um2

where u,,; and u,,; are the eigenvectors corresponding to the two normal modes (the
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eigenvectors of M as defined in (13)). We then plot the amplitudes |A;;| versus time.
If the linear theory were exact, the amplitude of each mode would be constant in
time. Thus, any osdillations of the modes result from nonlinear interactions.

Figure 5 shows a typical plot of mode amplitudes versus time for a fairly large
initial perturbation. The area enclosed by each contour (which should be constant
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Figure 5: The nonlinear interaction between modes calculated from the output of the
the contour dynamics simulation. Here ¢y = —1, ¢ = 2, 7y =1 and r;, = 2.3. The
eddy turnover time is about 16 time units, so the entire run represents about 54 eddy
turnovers.

by vorticity conservation) was monitored to ensure the accuracy of the calculation.
In order to keep the changes in area under 1% over the course of a run, a small time
step (At = .03125) was necessary and the run of Figure 5 required nearly 24 hours of
cpu time on a Sun Sparkstation. The primary interaction is between the two m = 2
modes and one of the m = 4 modes. However, one of the m = 6 and m = 8 modes
are excited nonlinearly (and, as we shall see, cannot be ignored). The odd numbered
modes are all nearly zero as there is no way they can be excited from even harmonics.
Despite appearances, none of the curves in Figure 5 represent noise, as a reduction of
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the time step and increase in the number of nodes per contour produces only slight
differences in every curve at the end of the run.

Although the evolution of the mode amplitudes in Figure 5 is complicated, it is
difficult to determine if they are in fact chaotic. The Fourier transforms of the signals
are quite broad banded, however the problem does not appear to be very sensitive
to initial conditions. After shifting the initial phases of the modes by 10%, the new
mode amplitudes are still highly correlated with their old values through the entire
run, with amplitude changes of only about 10% at the end. Surfaces of section may
be produced from the output, however they contain at most 50 points which is far too
few to uncover the dynamics. Effectively, we are solving a system of 500 differential
equations (125 z and y coordinates for each of the two contours). What is evidently
needed is a reduction in the number of degrees of freedom in the problem.
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1| U
0.00 ==+ : 0.000
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Figure 6: Mode amplitudes versus time where only the 22 and 41 modes are nonzero
initially. Parameters are the same as in Figure 5, and initial amplitudes of .05 and
.025 are shown.

We begin by simplifying the number of interacting modes in the contour dy-
namics output. In Figure 6, we begin with only the 22 and 41 modes (it is evident

242




in Figure 5 that these modes interact strongly). Note that in Figure 6, if the initial
amplitude of the modes decreases by a factor of two, the nonlinear oscillations de-
crease by a factor of four. Such a decrease indicates that the oscillations are due to
a quadratic nonlinearity. A Fourier transform of the 41 mode (Figure 7) shows that
four frequencies predominate, which may be written as sums and differences of the

linear frequencies (see Table 1).
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Figure 7: Fourier transform of the 41 mode of Figure 6 with initial amplitude .025.
Dotted curve is the Fourier transform of the 41 mode in the approximating Hamilto-
nian system (30) (Figure 8), displaced downward by a factor of 10.

Mode | Frequency eigenvector Mode | Frequency eigenvector
l_] wij 31 Bg lj Wy 31 Bz
21 131104 | .853079 | .521782 22 .223434 | .988270 | .152718
41 111897 | .999946 | -.010361 42 .636545 | .108970 | -.994045
61 -.066436 | 1.000000 | -.000851 62 1.318470 | .008994 | -.999960
81 -.249875 | 1.000000 | -.000107 || 82 2.040765 [ .001094 | —.999999

Table 1: Frequencies and eigenvectors for the normal modes for the linearly stable

eddy ¢y = -1, =2, =1and r; = 2.3
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5.1 A low order nonlinear theory

Although it would be nice to derive a ncalinear interaction theory directly from
the equations of motion, we adopt a cruder approach by writing down the form of
the nonlinear interaction, and choosing the free parameters to match the output from
the contour dynamics program.

Consider the two normal modes Az,(t)e*® and Ay (t)e*® with small amplitude
(l4i;| = O(€)), as in Figure 6. A quadratic nonlinearity may be introduced by
multiplying pairs of normal modes together. However, there is only one product
for each mode that has the proper phase (since the m = 4 mode is an azimuthal
harmonic of the m = 2 mode). This suggests that a first approximation to the two
mode interaction of Figure 6 is

Ay = iwpdy +oAnds, (19)
Ay = iwg Agy + ag A3, (20)

where a; and a; are arbitrary complex constants. Equations (19) and (20) may be
thought of as an asymptotic expansion in mode amplitudes (|A4;;] = O(e)) which
is truncated at order €. Note that we make no assumption about the size of the
constants a; (in fact, they will turn out to be O(1)).

Since the 2D Euler equations have a Hamiltonian formulation (Morrison 1982),
it is reasonable to require that the equations (19) and (20) form a Hamiltonian system.
The conversion to Hamiltonian form may be accomplished by the substitution

A5 = ()5 (21)

In terms of the J’s, the system may be written

. 0H . OH
Jag = ~6, 62, 7ms
. 6H : OH
Jau = ~ B, ; 0a = s
where
H = waJn + waJa + €1 Jazy/Ja1 cos(fa1 — 2023 + ¢1) (22)

The complex constants a; and aj are related to the real constants ¢, and ¢, by the
relations:
a1 = |ay| = 2|ay| (23)

-

gilortn/z) - 41 % (24)

|011| |az|
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Effectively, the requirement of a Hamiltonian system restricts the choices of the con-
stants a;.

For |J;;(0)] small, the solution to the Hamiltonian system (22) is J;;(t) = J;;(0)
and 6;;(t) = wijt. As |J;;(0)| increases, the effect of the third term in (22) is to
introduce a modulation of |J;;(t)| with frequency wy; —2w,;. Note that this frequency
is exactly the dominant frequency that appears in Figure 7. From Figure 6, we can
see that J,; = 0 at ¢ = 0, which implies that ¢, = 0. The constant ¢, determines the
amplitude of the modulation in |J;;(t)|, and we calculate from Figure 6 that ¢; = .35.

With ¢, = 0 and ¢; = .35, the Hamiltonian system (22) reproduces perfectly
the nonlinear modulation of the 22 and 41 mode amplitudes. The system (22) admits
an invariant,

I = ng + 2J41 (25)

and thus the two degree of freedom Hamiltonian system is integrable. To reproduce
the higher order modulations present in Figure 6, we must include higher order non-
linear terms. This will lead to a more complex Hamiltonian system which is not
integrable.

5.2 A higher order nonlinear theory

The idea behind the higher order nonlinear theory is simple: we proceed in
our amplitude expansion (assuming Aj;, Ay = O(¢)), but now include terms up to
order €. Unfortunately, there are a very large number of possible terms of order €.
However, by looking at Figure 6, we can see that many of these terms are small. For
example, we see that the 21 mode is excited to a much lesser extent than the 61 and
81 modes, and the 42, 62 and 82 modes do not appear to be excited at all. The reason
that these last three modes are not excited is that their eigenvectors are skewed very
strongly towards the outer contour, while the 22 and 41 modes are skewed towards
the inner contour (see Table 1). Thus, it seems reasonable to include only those O(€?)
terms involving the 22, 41, 61 and 81 modes. Such a truncation yields

Az = wypdn + ajAniy, + azde Ay,
+ Azz(Ol4|Azz|2 + a5|A41]2) + B As1 Ag, (26)

/i-u = wada + azA§2 + agAe1 A7, + arAg1 Ay

+ Ag(ag|An® + aglda|?) (27)

Ael = we Ae + 010A2Ag + BrAn A, (28)

Asl = twgdea + auA:l + B3AnAa (29)
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Note that the forced modes 61 and 81 have amplitudes O(e?). The terms f;, although
formally of order €*, are included because they link the 61 and 81 modes together,
and (with hindsight) the coefficients f; are large. Applying the transformation (21)
we find the associated Hamiltonian

H = wpnldpn+wala +weada +wsids + a1J222 + 02J421 + azJaaJa
+ ¢ Jzz\/ Jg1 cos(641 — 2632 + ¢1)

+cy Ja22J41 Je1 cos(fg1 — 041 — 022 + &2)

+ c3 Ja1/Ja1 cos(fs; — 2641 + &)

+ ¢4 \/ J22Je1Js cos(fs1 — 0g1 — 022 + ¢4) (30)

where once again the real constants a;, ¢; and ¢; are all related to the complex
constants a; and B;. The terms involving a; result in frequency shifts of the primary
modes. The terms involving ¢; are responsible for the additional frequencies shown
in Figure 7. The values of ¢; and ¢; may be determined by the amplitudes of the
forced 61 and 81 modes. Figure 8 shows the result when we numerically integrate the
Hamiltonian system (30) with a; = ¢; = 0, ¢; = .35, c2 = 1.0, c3 = .8 and ¢4 = 2.1,
and use the same initial conditions as Figure 6. Pictorially, the agreement with the
contour dynamics results (Figure 6) is excellent, and their Fourier transforms (the
two curves in Figure 7) are nearly identical.

6 Conclusions and suggestions for additional work

We have shown that for a certain amplitude range the nonlinear dynamics of
the two—contour eddy can be very closely approximated by a four degree of freedom
Hamiltonian system. Effectively, we have been able to reduce the number of degrees
of freedom from 250 (for the contour dynamics algorithm) to 4.

The next logical step is to investigate whether or not the Hamiltonian system
(30) contains chaotic dynamics. The investigation into this question has just begun,
and we present only some preliminary results. It has not known even if the system
(30) is integrable or not, but there is strong evidence that it is not. As before, the
system admits an invariant (possibly related to conservation of angular momentum),

I= Jzz + 2J41 + 3J61 + 4J31 (31)
however, it would appear that even the case c3 = ¢4 = 0 is not integrable. To

demonstrate this last statement, in Figure 9 we show two surfaces of section for
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Figure 8: Mode amplitudes versus time for the Hamiltonian system (30) with a; =
$i=0,c, =.35, ca =1.0, cs = .8 and ¢4 = 2.1 (compare with Figure 6)

slightly different initial amplitudes. The first case appears to be integrable, while the
second does not.

One interesting aspect of the nonlinear theory of Section 5 is that it involves
modes all of which have much higher amplitudes in the inner contour. In fact, a
barotropic eddy consisting of but a single contour probably obeys similar dynamics.
If in fact the Hamiltonian system (30) exhibits chaotic behavior in the parameter
range of interest, then the ingredients for chaotic vortex motion are simpler than
were thought at the beginning of this paper.

The nonlinear ansatz presented in Section 5 could be applied to a general
nonlinear interaction between a wave and its spatial harmonics in any Hamiltonian
system. For this particular case, however, the hole in the theory which needs to be
filled in is a calculation of the coefficients in the Hamiltonian from first principles.
This could be achieved by completing two steps. First, the equations of motion for
the contours ((1) and (2)) must be written as a Hamiltonian system. As this report
was being written, Phil Morrison completed this step for the case when () is sin-
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Figure 9: Two surfaces of section Jy; versus 8, strobed by 83; = 0 for the Hamiltonian
system (30). (a) ¢; = .4, c3 = 1 (all other constants zero), A22(0) = .1, A,(0) = .05,
Ag (0) = .05. (b) As in (a) but with A4, (0) = .07.

gle valued (this is always the case for the eddies of Section 5). Second, () must
be expanded in normal modes and through knowledge of the Hamiltonian structure,
action—-angle variables extracted. This step is in process, but it must be that the
nonlinear theory presented in Section 5 will emerge as some part of the Hamiltonian
formalism. A Future project suggested by the Hamiltonian nature of contour dynam-
ics is the investigation of negative energy states and resonances, and their possible
connection to filamentation.
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The Rise and Fall
of Buoyant Plumes
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Abstract

We generalize the theory of Morton, Taylor, and Turner (1956) to plumes of nonzero
initial mass flux. We classify plumes with respect to the balance between their initial
mass and momentum fluxes. We explain the effect first described by Morton (1959) of
a reduction in plume height in a stratified environment with increased momentum flux
in terms of unstratified behaviour. The Morton effect does not occur for all initial mass
fluxes. However, for any initial mass flux, there exists an initial momentum flux with
minimum height of rise. The behaviour of a plume rising from a source of fluid that
exhibits nonmonotonic density variation with mixing is investigated as a model for volcanic
eruptions, and a condition for collapse is found.

1 Introduction

Localised sources of fluid with density different from the density of the ambient occur in
a wide range of geophysical, astrophysical and industrial contexts. Flows generated from
such sources are modelled using the entrainment assumption, first discussed by Taylor
(1945) (see Turner (1986) for a comprehensive review). The inflow velocity of ambicat
fluid into the fluid rising from the source is assumed to be proportional to some charac-
teristic vertical velocity of the source fluid. The constant of proportionality is assumed
to be the same at all heights above the initial release height. This steady state model
assumes that the turbulence and velocity structures are preserved at all heights. Though
this model is very simplified, since it assimilates all the effects of turbulence into one con-
stant of proportionality (see List (1982) and Turner (1986) for discussion), the description
and predictions of the model appear to be valid in many situations, and the results of
interest are relatively robust with respect to variations in the exact value of this constant
of prportionality.

Using this model the evolution of the behaviour of the fluid from a source can be
modelled by considering the conservation of three quantities , namely mass flux, momentum
flux, and buoyancy flux, i.e. the flux of density deficiency of the input fluid. Following the
seminal paper of Morton, Taylor, and Turner (1956), we define the halfwidth of the plume
arising from a source of buoyancy at a certain height as b and its reduced gravity g¢',

' = Pa-Pp)
g _g( Pref ’
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where p, is the density of the ambient fluid, p, is the density of the so{xrce, and pres is 8
characteristic density of the system. We also identify a characteristic vertical velocity w
at each height, and assume that

Uinflow = QW ,

where a is known as the entrainment constant. The equation describing the evolution of
mass flux is

d 2

—(prbw) = 2prbaw . 1

dz( bw)=2 (1)
This equation reflects the fact that the rate of increase of mass flux with height is balanced

by the entrainment of ambient fluid. The rate of increase of momentum flux is balanced
by the gravitational acceleration of the source fluid due to density differences, i.e.

d
E(pwbzwz) = pg'nb® . (2)

The rate of change of buoyancy flux with height is balanced by the entrainment of fluid
with density characteristic of that height, a balance described by

¢ d
Pres dz

[rb2w(paco) — pp)] = —nN*Pw , (3)

where N? is the Brunt-Vaisala frequency, defined by

2_ =9 d
N —p,.e,dzp“’

and p,(0) denotes the ambient density at z = 0. If we make the further assumption that
the Boussinesq approximation applies (i.e. pa — pp K Pre #) then the equations reduce to

2 @ = 2002, (4)
dz
d FQ
EM =37 (5)
d 2
d—zF— -QN*, (6)
where
Q="btw, (volume flux)
M =¥w?, (momentum flux)
F =g¢'buw, (buoyancy flux)
and we see that
o @ M _F
—Ml/z' w—a, an g—a.
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In the absence of stratification, Morton (1959) demonstrated, that since F’ is constant,
(4) and (5) may be combined as

M3 2 d
F dz
which implies that
580: M2 o= Qz (7)
where
c=@Q2- g;.M:ﬂ : ®)

Thus (4-6) reduce to F = Fj ( constant), (7), and
d
9 = (20a*F)/5(Q@* - o)/* . (9)
In the ca.ée of initial mass flux and momentum flux zero, ¢ = 0, and (8) reduces to
£Q = (0a* )o@ (10)

A similarity solution may then be found for b, w and g’ (see Turner (1973) for details), of
the form

b= gaz , (11)
579 13 _

w= s—a- (l—d'aF) z 1/3 ’ (12)
5F (9 -3

/=5 (o) 1)

These initial conditions characterize a well known and extremely common phenomenon in
geophysics, namely the buoyant (pure) plume. We note, that in an unstratified environ-
ment, buoyant pure plumes rise without limit, with their mass flux and radius increasing
with height as described by the similarity solution. However, in the geophysical context,
ambient stratification is usually present. This has also been considered using this model
(see Morton, Taylor and Turner (1956) and Morton (1959)), but care must be taken since
energy may be radiated away in the form of internal waves when an intrusion occurs in a
stratified environment (see List (1982)). In this case, N is no longer zero, but we can still
reduce the governing equations to two by noting that (5) and (6) combine:

d 1 d

—M?2 = —_— 2
& =WF=-mgF
that is -
M’+-N—,—c.. (14)
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If the ambient stratification is statically stable, (since buoyancy flux decreases with
height) (from (6) and see fig. 1), there will be a particular height at which the plume
fluid density equals that of the ambient. At such a height, from (14), the plume will have
maximum momentum flux. This is progressively,(and quite rapidly) lost, until at some
later height, referred to as the final height of rise, the upward velocity goes to zero (see
fig. 2). The final height of rise of a pure plume predicted by this model has been shown
to apply very well to both experimental and geophysical plumes (see Turner (1973)), and
indeed geophysically it appears that the pure buoyant plume is in some sense selected as
a natural structure. Morton (1959) found that increasing the initial momentum flux from
zero actually decreased the final height of rise for point source plumes of zero initial mass
flux and finite buoyancy. Only plumes with very large momentum flux rose higher than a
pure plume, which has zero initial momentum flux, an apparently paradoxical result. This
report considers the effects of deviations from this classical simple model to more realistic
source conditions.

In Section 2, we generalize this theory to arbitrary imitial conditions of mass flux
and momentum flux in the unstratified envoironment. We classify various plumes by the
initial balance between momentum flux and mass flux quantified by the constant ¢ in (7),
adopting a system of Lane-Serff et al (1989). We find that all plumes ultimately asymptote
to a solution with ¢ = 0, that we call the pure plume solution. However, the effective origin,
defined as the point at which the asymptotic pure plume similarity solution would have
zero radius, is determined by the constant c.

In Section 3, we generalize the model to stratified environments. Although no simi-
larity solutions exist, pure plumes (i.e. plumes with zero initial mass flux and momentum
flux but finite buoyancy flux) have a well defined balance between momentum and mass
flux at all heights. Also, for any initial mass flux @, there is a particular associated mo-
mentum flux, M = M(Q), that causes a minimum final height of rise for a plume with
fixed initial buoyancy flux. For small initial mass flux, this minimum has an associated
initial momentum flux greater than that of a pure plume, and this explains the Morton
effect. For sufficiently large iritial mass flux, this minimum has a momentum flux less
than the pure plume. In this case, all jetlike sources penetrate further than a pure plume,
and the Morton effect does not occur.This is likely to be important when a well developed
plume passes through a region of varying stratification.

In Section 4, we consider the behaviour of a plume of fluid that exhibits nonmonotonic
density variation during mixing. Such plumes may be considered models for the behaviour
of several geophysical phenomena, e.g. volcanic eruption clouds, rain clouds etc. In the
case where an initially dense fluid becomes buoyant after a certain amount of mixing, we
derive a condition on the initial momentum flux such that the initial density difference is
so large that the plume collapses at some height, which is calculated for several situations.

Section § presents conclusions, and details further work.




2 Unstratified Theory

The governing equations are (7) and (9) above. We nondimensionalize on initial mass and
buoyancy fluxes, nondimensional quantities having asterisks. Thus

Q=QOQ.1

20a4F\ ",
""( @ ) °o
c=Qic".

Dropping the asterisks, (9) reduces to

‘;iz =(Q*-c)'/5. (15)

Note that the plume with My = Qo = 0 has ¢ = 0. Now, modifying the concepts of
Lane-Serff et al. (1989) we classify the plumes arising from all sources of buoyancy with
initial mass flux and momentum flux in the following way:

i: if ¢ = 0 the plume is a pure plume;
ii: if ¢ < 0 then the plume has excess momentum flux, and is a je?;
iii: if ¢ > 0 then the plume has momentum flux deficiency, has too large initial radius,
and is a distributed source.
By definition ~o00 < ¢ < 1, thus from (15) we see that mass flux always increases, and
eventually, the behaviour must asymptote to

d 2/5
dz Q Q R

the solution for a pure plume.
The radius b evolves according to

db=-6-a Fe

dz 5 2M®si? (16)

Thus the rate of spread for a pure plume is 93“-, and increases for a jet, up to the well
known maximum of 2« initially, when Qo = 0. For a distributed source, the spread is less

than that of a pure plume, and indeed if

daM?
2 0
Qo Z 5F

the fluid actually initially contracts. Care must be taken in such cases (see Fischer et al.
(1979) and List (1982) for a fuller discussion of the jetlike behaviour), since the actual
value of the entrainment constant varies, and the assumptions of similarity in turbulent
and velocity profiles may become more questionable, as does the assertion that mixing
takes place all the way across a wide distributed source, right from the outset. However,
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a reduction in the intial entrainment in the case of a distributed source will increase the
effect of the contraction described above. These effects are shown on fig. 3, where the
evolution of radius for three different values of ¢ (-0.999, 0.0, and 0.999) are plotted. Since
each source has the same Q = 1, the variation in c is reflected by a variation in b9, with
the jet narrower, and the distributed source wider. The nondimensionalization is such
that the pure plume solution has by = 1 and angle of spread 3/5. We see that the jet
radius increases faster from a smaller by, and eventually crosses the pure plume solution,
while the distributed source starts from a larger by, contracts and eventually crosses the
pure plume solution also. Eventually, however, we see that all three asymptotically spread
linearly with slope 3/5, i.e. like pure plumes.

This approach to plume behaviour can also be seen in fig. 4, where the evolution of @
with height for these three different plumes is plotted. Note the larger increase in the jet’s
mass flux since its momentum flux requires a larger mass flux to balance it. The reverse
is true for the distributed source.

The approach to a pure plume solution may be studied asymptotically. However, due
to the nature of the problem, a numerical approach has been used. Since eventually the
evolution of a source with arbitrary initial conditions is approximated by the evolution
of a pure plume, we search for the “equivalent pure plume solution” of any plume. In
dimensional terms, if we define the point where Qo = Mp = 0 (i.e. the point source) as zo,
then the pure plume similarity solution for the mass flux Q is, from (11-13),

1/3
=5 (foF) =" a7
or nondimensionally,
3 5/3
Q = [g(z - 20)] . (18)

For the pure plume, which follows this evolution from z = 0, where Q = 1, we see
the effective origin is —3/3. For all source conditions we can identify an effective origin
similarly since eventually the mass flux evolves as above. Calculations of effective origin for
the three values of ¢ are shown in fig. 5, with the associated equivalent pure plume solution.
Note that the distributed source approaches its equivalent pure plume from outside, with
larger radii, while the jet approaches from inside, with smaller radii. Also, the effective
origin of the distributed source is ahead of that for the pure plume, which is in turn ahead
of that for the jet. The variation of effective origin with c is shown in fig. 6.

In summary, in an unstratified environment, sources with arbitrary initial conditions
ultimately converge to a pure piume. However, the radius of an originally jetlike plume is
larger than that of a pure plume, which in turn is larger than that of a distributed source,
after an initial adjustment where the situation is reversed. This is a trivial consequence of

the positioning of the effcctive origin. The implications of this in the stratified environment
are investigated in the next section.
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3 Stratified Theory ‘
To recap, the equations that govern the behaviour in the stratified environment are

1/4
-;;Q =2« (c. - 1—?;) y (19)
2F=-qN?, (20)
and 2
Cy = Mz + ﬁ ’ (14)

where ¢, is a constant.
We nondimensionalize these equations on the ambient stratification N? and the initial
buoyancy flux FZ. As before, starred quantities are dimensionless.
F= FoF. ’ .
M=2"PFNM*,
Q= 95/8,1/2 1;-:/4 N"/‘Q‘ .
z = 0-5/8,~1/2 F:/‘ N-3/4 ,

and the equations reduce to (once again dropping asterisks),

EQ = (cy — §F2)1/4 ) (21)

d

—F=-q, (22)
Cy = M: + %Foz . (23)

The point source pure plume solution has ¢, = 1/2 in this nondimensionalization.
Since it only reaches a finite height (see fig. 2) a similarity solution analogous to that
described in Section 2 does not exist. Nevertheless, there is a clearly defined evolution of
mass flux and momentum flux. We generalize the approach of Morton (1959) to allow for
the possibility of initial nonzero momentum flux. We define two parameters, op and oq
as follows, with nondimensional quantities being asterisked:

N2M?

M= NP (24)
2M*?
= M P (25)
5/2)2
N3/2Q2 4 28/4F; /2m
=(1+g¢"H)™! (27)
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These parameters are, respectively, a measure of the importance of momentum flux and
mass flux compared to the natural momentum and mass flux scales determined by the
initial buoyancy flux and stratification. The evolution of oqg and ogu for a point source
pure plume is shown in figs. 7 and 8. Initially oy and oq are zero, and then they increase
to a maximum (which is 1) when the plume ceases to be buoyant. Subsequently, they

decrease, op to zero, when w goes to zero (cf. fig. 2), and oq to a finite value, since the
model breaks down, and b — co. ‘

Combining these data, we obtain a locus in op~0q space for a pure plume solution of
the equations, which is plotted in fig. 9. From fig. 7, we know that every oq is associated
with a specific height. Therefore, each point on the locus may be considered to specify
a height, k. For given initial mass flux, a plume from a source with momentum flux and
buoyancy flux calculated from op and oq at that point on the locus subsequently rises
like a point source pure plume that had started from z = —h.

Thus in this context, we define pure plumes as plumes arising from sources that lie on
this locus, for arbitrary initial mass fluxes. For a given mass flux, all points to the right
of this curve correspond to sources with too much momentum flux, whose plumes shall
be described as jets, analogously to before. Similarly, all points to the left correspond to
sources with too little momentum flux, whose plumes shall be called distributed sources.

Morton (1959) considered the behaviour of plumes with g = 0 and oy # 0. He
found that the height of rise actually decreased for op > 0, reaching a minimum at
around oy ~ 0.7 and reaching heights higher than the pure plume for ox 2> 0.99 (see
fig. 10)." We investigate this counterintuitive behaviour, which we shall refer to as the
Morton effect, for general initial Qo. For oq = 0.12 (see fig. 11), there is an essentially
similar progression. In this case we see that the effect is generalized into the distributed
source region of parameter space. Distributed sources go higher than the pure plume
solution (which is marked with a cross) and there is a minimum rise height in the jet
region. However, on increasing g further to 0.27, (sce fig. 12), the plume solution rises
to a height greater than all distributed sources with finite initial area, in the jet region the

height of rise monotonically increases with oy, and there now is a minimum rise height in
the distributed source region. ‘

Fig. 13 shows the locus of minimum rise height for all possible o) and oq, and the
region where the generalized Morton effect (i.e. jets go lower, distributed sources go higher
¢han the pure plume) takes place. This effect may be explained as follows. If the evolution
is largely unaffected by the stratification, the unstratified behaviour dominates until such
time as g’ /b becomes small enough relative to N2 to allow stratified effects to be significant.
Thus if g'/b vemains large compared to N? for a sufficient height, jets will cross the pure
plumes in radius, and asymptote to a pure plume with effective origin behind that of a
pure plume with the same initial mass flux. If the stratification becomes important after
this crossing event, the jet will rise to a lower height, provided that its momentum flux is
not too much larger than that of a pure plume. (But we remember from figs. 1 and 2 that
after g’ goes negative, M and w rapidly decay to zero.) Similarly a distributed source will
cross to a radius less than that of a pure plume, and provided that its momentum flux is
not too much smaller than that of a pure plume when ¢’ goes through zero, it will rise
to a greater height. There is thus a balance between the competing effects of increasing:
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momentum flux “pushng” the effective origin further back when stratification is “weak”,
and yet, when stratification is strong, “pushing” weakly buoyant or even dense fluid higher.
We thus obtain a minimum rise height where the relative effect of receding effective origin
is strongest.

If the stratification is very strong, any source with nonzero initial mass flux will have
a plume whose height of rise is substantially determined by the ipitial momentum flux of
the source. (In this case, one is high up the op—oq curve.) Solutions of this type can
occur when a pure plume solution, rising through a region of low stratification passes into
a region of high stratification. If the transition occurs at a height where g'/b is relatively
small, the change in N2 may trigger a significant displacement from the pure plume locus,
and hence quite large variation (from the simple pure plume model prediction averaging
the stratification in some way) in the final height of rise. This is the subject of further
investigation.

A further effect, that must be remembered at all times, is that a nonzero initial mass
flux may change the value of oq significantly. In the classical Morton, Taylor, Turner model
of point source pure plumes, Qo = 0 and Fp is finite (which without loss of generality we
take to be O(1)), and so, at z = 0, ¢', w — oo (see fig. 2). Formally, we have the scaling
fore<K1, '

gs,w~o(é), bo ~ofc) = Fo , My ~O(1), but Qo~ofe),

and

90 2

o > N*.
We also see that the initial intrusion height is infinite, and the Boussinesq approximation
breaks down. On the other hand, if Qo is finite, g is also finite, and decreasing as Q
increases, thus increasing Qo decreases initial intrusion height. In fig. 14 we show that this
effect, (equivalent to moving vertically in op-0g space in fig. 15) can quite dramatically
reduce final height of rise.

Thus, in certain situations, it appears to be important to take into account finite initial

mass flux from a source, especially when the initial density difference between source fiuid
and and the ambient is small.
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4 Nonmonotonic Density Variation during Mixing

In several geophysical situations of interest, fluids exhibit nonmonotonic variation of den-
sity with mixing. In a plinian-style volcanic eruption, the eflux from the volcano is hot
but dense, due to the particulate suspension within the cloud. As the very hot erupted
material entrains and heats the ambient, the bulk density decreases, and eventually the
column may become buoyant. In this case we have a density that evolves with tmxmg as
shown in fig. 15. A different nonmonotonic density variation (see fig. 16) arises in moist
convective clouds (see Squire and Turner (1962) for a fuller description).

We can model the essential fluid mechanical effects of both of these situations using
a simplified model. We assume that the density of the fluid can be described by

Qo)2 (Po = Pezt)
= - =) == 28
Thus, when Qo/Q = A, p = p.s, the extremal density, and when Qo = @, p = po, the
input density. A may be considered to be a measure of the structure of the nonlinearity of
the fluid mixing. In the limit Qo/Q = 0, the fluid is so we]l mixed that it must tend to
the density of the ambient. Thus

2(pg —
Pa = Pest + A_-(Z%-_lﬂ);’—‘) . (29)

If we now concentrate on the situation shown in fig. 15, we see that

Pezt = Pmin ,

and the following regimes exist:

i: A=0= pa = Pmin,

ii: 0 <A <1/2= pmin < pa < po;
iii: A =1/2= pmin < po < po;

ivi A= 1= p; — oo.

We see that .
gl - g (PO - Pmin) 20Qo _ 92 (30)
presf \ (A-1)2 Q @)’
and the other two governing equations are
2Q=20002, @
and y 'Q2
mM=5r (30)

As in the unstratified case, the system may be integrated to reduce the order. We arrive
at

d 40atF,
Q= ( 0

He 1/5
2
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where
4a(2) - 1)M5/?

=102 - - , 32
Cm AQ QOQ 5F0 ( )
and

(22 = 1)/Fo = (22 —1)/(34Q0) > 0
at all times, by the definition of A above. Once again cm is a constant.

Now let us make the following nondimensionalization
. 2,
Q=22 L O =1; cm=B.
A A

Then 52

¢ =Q'-Q- 4ar(2)\ - 1)M (33)

5F0Q3

We now obtain a condition to determine when w = 0..Clearly, from initial conditions
c<AA-1), , (34)

Q increases initially,and A(A — 1) goes through a minimum when A = 1/2. Thus if ¢m <
—1/4, M will be positive always. Also, since Q is initially increasing, if A > 1/2, Q*(Q*-1)
increases also, and thus M can never be zero in this case either. This is to be expected,
since A > 1/2 corresponds to fluid that remains buoyant at all times. However, if A < 1/2,
increasing Q actually decreases Q*(Q* — 1), and thus if ¢,y > —1/4, we will always have
at some height, (which may be calculated)

Cm = Q‘z -Q°,
i.e. M =0. Thus the condition for stopping of the plume is

Y
’ ((1 B M(zgpocle)oM: )

We see that this occurs for small initial momentum flux, and large initial density anomaly
or mass flux, all of which require that large amounts of mixing must take place before the
plume can become buoyant. The height of rise for several different values of A are plotted
in fig. 17. We note that the curves go off to infinity when —~cmn = 1/4, and that the solution
is only defined for —c,, > A — A\2. We must remember that after these heights, the simple
model of entrainment, with similarity of velocity and turbulence structures, breaks down.
The process of mixing is likely to be extremely complicated about such a height. However,
jump conditions on mass flux and radius may be applied across such a region between two
areas of approximately plumelike behaviour. This is the subject of further investigation, as
is the behaviour of a plume of fluid that starts off buoyant, and then becomes dense. This
is analogous to the behaviour in a stratified environment, and preliminary results suggest
that in this situation, for given initial mass flux, there also exists a well defined minimum
height of rise with associated initial momentum flux.

< i . (35)
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5 Conclusions and Future Directions

In this report we have described a generalization of the classical Morton, Taylor, Turner
model to nonzero initial mass flux, and investigated the effect of this generalization on
the final height of rise in a stratified environment. The relatively large variations pre-
dicted occur if the initial mass and momentum fluxes are finite when the stratification
becomes important. This model is likely to be applicable to the behaviour of plumes that
pass through a region of varying N2. As an example volcanic eruption clouds can rise to
heights of tens of kilometres. Since the Brunt-Vaisala frequency approximately doubles
at about 10km, i.e. at the tropopause, (the boundary between the troposphere and the
stratosphere), where the plume would be likely to have low ¢'/b and large M, Q, per-
turbations from a pure plume balance may have significant effect on the final height of
rise, according to this model. The more realistic complicating factors of nonmonotonic
mixing behaviour should be included, especially the interaction of nonmonotonicity with
an ambient stratification. The limitations, and assumptions of the model should also be
investigated more deeply, and to this end, experiments should be conducted to test its
predictions.

6 Acknowledgements

This work was suggested by, and done with Andy Woods, who brought new meaning to
the word collaboration. His unfailing enthusiasm, penetrating insight and availability for
discussion (particularly while driving) were greatly appreciated. I would like to thank the
Steering Committee, and in particular Rick Salmon, for organising such a stimulating and
enjoyable summer, Jack Whitehead and W. H. O. I. for giving us access to their laboratory
for some preliminary experiments, and Bob Frazel, for all his varied help. Finally, I would
like to acknowledge the support of H. S. E. Sheffield, U. K. and the contributions towards
my travel 2xpenses of D. A. M. T. P. and Churchill College, University of Cambridge.

7 Refereuces

Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mizing in
Inland and Coastal Waters. Academic. 483pp.

Lane-Sert!, G. F., Linden P. F., & Hillel, M. 1989 Forced, Angled Plumes. private commu-
nication.

List, E. J., 1982 Turbulent Jets and Plumes. Ann. Rev. Fluid Mech. 14, 189-212.
Morton, . R. 1959 Forced Plumes. J. Fluid Mech. 5, 151-163.

Morton, B. R., Taylor G. I. & Turner, J. S. 1956 Turbulent Gravitational convection from
maintain. 4 and instantaneous sources. Proc. R. Soc. Lond. A 234, 1-23.

Squires, F. & Turner, J. S. 1962 An entraining jet model for cumulonimbus updraughts.
Tellus 14. 422-434.

Taylor, G. . 1945 Dynamics of a mass of hot gas rising in air. U. §. Atomic Energy
Commiss: n MDDC 919. LADC 276.

Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption,
and its application to geophysical flows. J. Fluid Mech. 173, 431-471.

261




3.0r

g
w»

(25 a* N6 /Foz)l/az.)

1.0

0.5

Nondimensional Height { 2

0.0

0, M, and F in a Stratified environment

] l. L ]

-1.0

!\)
w
T

g
o .
¥

(20a%F /Q3)1/52%)

Nondimensional Height ( 2z
o w
T L

o
()
T

-0.5 0.0 0.5 1.0 1.5 2.0
Point Source Plume (F°=1, Mo=°o=°)

FiG |

Rodius agoinst Height for vorious ¢

D.S. :

0.0
0.0

0.5 1.0 1.5 2.0 2.5 3.0
Nondimensionolized Raodius

FiG. 3
262

(25 at NS /FOZ)I/GI')

Nondimensional Height ( z

(20a*F/Qg%)"/%2%)

Nondimensional Height { z

b, w, ond 0.5¢' in o Strolified environmen,

3.0r
25¢ b
2.0
1.5F
1.0+
0.59’
05
w
oo 1 A J 1 1
0.0 1.0 2.0 3.0
Point Source Plume (Fu=1, My=Qy=0)
Fle. 2
Mass Flux against Height for vorious ¢
1.0
0.8
0.6 i

0.4

0.2}

i ol

0.0
0.0

0.5 1.0 1.5 2.0
Nondimensionaiized Mass Flux (initiatly 1°

Fleé. 4




Nondimensicol Height ( z2=(20a*F/0,%)1/32*)

Rodius oganst Meignt lor Distributed Source (c=.999)
6¢

a

-

~

o

-2

Virtugl Origin (—1.42)

i

Initiol Rodius (2.67)

n J

[¢] '

2 3
Nonaimensionolized Radius

Rodius agoinst Height lol‘ Pume (c=0)

Virtuai Ongin (=1.78)

ot kadius (0.88)

"

Rodivs cgoinst Height for Jet (ce~ 999)

6pr

Sr st
=~ ¢ = 4}
3 53
P £
g g
v V
~ ~
: 2r : : 2F
& : 5
z : :
g it l § '
. ‘|
€ vau i R " X €
|- D Baiandh e SR £ of----
3 2
] ]

-1 ,/ PSR
Virtual Origin (=1.67) ’
-2 . ; ; ; -2
o t 2 3 . °
Nondimensionalized Rodius
Varigtion of virtual origin with ¢
Jets Distributed Sources

i b 1 1 J

4 b
-1.4r
-15F

::-1.s~

>

a

o

N -1L7F

™

-

[+]

(o]

Ao

T -1.8}

N

£

.?-1.9'

o

°

2

s -20}F
2.1
~2.2

0.0

0.2 0.4 0.6 0.8 1.0

1/(2-c) (¢ defined os 1~ 8aM°5/2/[5 F Q2D

FlG. ¢
263

1

2 3
Nosdimensionolized Radwus

4




30r

N
n

N
o)

(25 of NE& /F,2)1/82°)

)

o)

o
w

Nondimensional Height ( z

Variction of gy with Height

. i) 1

0.0
0.0

1.0¢

bt
(o]
T

o
o

(o]
N
———

0q = [Q2/(Qg2+2%/%aN-3/2F 3/2)]

o
N
—

0.2 0.4

0.6 0.8
0g = [Qu2/(Qp2+25/4aN-5/2F 3/2)]
Fl&¢.

varigtion of og with o, for a Plume Solution

Locus of Plume balance

L L

1.0

0.0
0.0

0.2 0.4 0.6
oy = [NMZ,/(N2M2,+F2;)]

Fle. 9

0.8

(25a4N6 /F ,2)1/85+)

Nondimensional Height { z

Varigtion of ¢,, with Heignt

1.0

3.0r
~N25F
=
&
u_O
~
o
Zz 20
s
1]
o
I
o 1.5r
=
2
LY
T
S 1.0F
R
0n
[«
Q)
£
2
° 0.5
z
0.0 . : . .
0.0 0.2 0.4 0.6 0.8
o = [N2MZo/(N2M2,+F2)]
Fle: 8
Varigtion of Fingl Height of Rise with o ,,
3.0 M
289+
2.8
2.7%
2.6
2.5
24}
2.3F
2.2 4 - | . )
0.0 0.2 0.4 0.8 0.8
oy (= NIMG2/[NIM2+F 2]y
Fie 10




variaticn ¢f final Heighi of Rise with o

2.6

o 2.5
>
&
h-O
N
o
Zz
[
‘é 24¢F
"
~
r
e
2
= 2.3p
=]
=
.0
0
[ =4
g a Plume
‘6 -
5§ 2.2} O"Q =012
z
2.1 - L 1 \ ,
0.0 0.2 0.4 0.6 0.8 10
o (= NIMGZ/[NIMg2+F2])
Fl&. 1)
Height of Rise relotive to Plume Solution
1.0 F
0.8 Locus of Plume baolonce

Minimum
Rise

O < [002/(0,,7-»25/‘aN-5/zFos/z)]

0.2

0.0 0.2 0.4 0.6 0.8 1.0
oy = [NMgZ/(NMg2+F?)]

FlG 13

265

variation of Finol Height of Rise witn 0

- - _. _.
C o o @
3 ] > o
T T T 1

—
[+)]

Nondimensional Height ( z=(23a*N®/F,2)'/82")

oy for o Plume

0';2=0;Z7'

| ) L

1.60
0.0

Height of
20r

(2504N6/F02)l/81o)

Nondimensiona! Height ( 2z

0.1 0.2 0.3 0.4
o (= NZMGZ/[N?MG2+F2])
Fre. 12

rise ogainst Q for. vorious initicl congitic:

I H

2 4 6 8
0 ( = (275a~*N'0F,"6)1/8Q")

Fie. 14




Vurigtion of Density with Mixing, for A=1/4

Variation of Density with Mix'ng, for x=1/4

1.0 1.0
0.8t Pmin 0.8}
0.6 0.6 Po
buoyant buoyant
0.4+ 04}
0.2 . 0.2F
£ o
< <
~ S~
< 00 o 00
Io Io
G S
~0.2} -0.2}
-0.4}+ ~0.41
dense dense
-0.6 Po -0.6F
-08F -0.8 Prmax
-1.0 L . L —L J -1.0 L L 1 L )
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.C
Q,/Q Qo/Q
Fle. 1§ Fle. )6
Height of Rise in Nonlinear regime for vaorious A
1.4F
1.2F
1.0
N
©
S
i 0.8}
€
©
£
©
c
2 0.6
0.4
0.2
0.0 )
0.00 0.05 0.10 0.15 0.20 0.25
-c
Fle. 17

266




Transport of a Chemical

in Stellar Radiative Zones

Brian Chaboyer

Abstract In this report, we examine under what conditions it is appropriate to treat
the transport of a chemical in a stellar radiative zone due to a large scale velocity field as a
pure diffusion process. We obtain an expression for this diffusion coefficient in terms of this
velocity field and the turbulent diffusivities. This diffusive transport may be slower than
the transport due to advection by the velocity field. We show that our results are consistent
with observations of Li in the surface of stars, and may explain the work of Charbonneau,
Michaud and Proffitt (1989) who found that some process was inhibiting the advection of
Li by Eddington-Sweet circulation.

1 Introduction

In the convectively stable regions of a star, chemicals can be transported by large spatial
scale (slow time scale) circulations and by molecular diffusion. Large scale meridional circu-
lations, such as Eddington-Sweet circulation, are induced in a star by thermal instabilities
(Eddington 1925, Sweet 1950) and may be the dominant cause of the transport of chemicals
within a star, as the molecular diffusion coefficients are very small.

In attempting to model the evolution of a rotating star, the transport of chemicals due to
the large scale motions is sometimes treated as diffusion process with a turbulent diffusion
coeflicient determined from the advection velocity, (see, for example Endal and Sofia 1978,
Pinsonneault et al. 1989, Charbonneau and Michaud 1990) even though the equation which
describes the transport of a chemical (see equation 1) includes an advection term. In this
paper, we outline under what conditions it is appropriate to treat the vertical transport of a
chemical as a simple diffusion process, and find an expression for that diffusion coefficient.

Another motivation for this work are the results of Charbonneau, Michaud and Proffitt
(1989) who examined the depletion of Li in giant stars due to the advection of chemicals by
Eddington-Sweet circulation on the main sequerce (MS). The effects of turbulent diffusion
were neglected. For the youngest cluster they studied, no Li depletion is observed, contrary
to what would be expected from the Eddington-Sweet circulation. In order to account for
this fact, Charbonneau et al. stated: ‘one must investigate mechanisms that could have
reduced the ezpected transport through meridional circulation’. An obvious candidate for
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such a mechanism is horizontal turbulent diffusion, which hinders the meridional advection.
Such turbulent diffusion may also be able to account for observations of Li in field dwarfs
by Boesgaard and Tripicco (1986b).

In section 2 of this repcrt, we show under what conditions it is valid to treat the transport
of a chemical as a diffusion process. Our approach is very similar to that used by G.I. Taylor
(1953) who examined the dispersion of a chemical in a pipe with a shear flow. Section 3
compares our work with that of Charbonneau et al. and uses observations of giant stars in
open clusters, and of field dwarfs to estimate the average diffusion coefficient which appears
in our equations. Our conclusions are presented in section 4.

2 Transport of a Chemical

The transport of a chemical with concentration ¢ by both advection and diffusion is given

by 5
27(p0) +V - (peil) = V- (oD - Ve) (1)

where p = density, D = turbulent diffusion tensor, and # is the velocity. The microscopic
diffusivities are very small, and so do not enter into our equations. We are assuming that
the turbulent diffusion is due to small scale, turbulent motion which is excited by the strong
differential rotation within a star which is induced by the large scale laminar velocity field u.
We are using a tensor for the turbulent diffusion in order to take into account the possibility
that the small scale motions are anisotropic. We will assume that p and D are functions
of the radius only (in spherical polar coordinates). This assumption is valid for stars (such
as the Sun) in which the rotation does not introduce a significant departure from spherical
symmetry. We shall expand take the radial velocity component in spherical functions

U, = ¥ Un(r)Pa(cos 6) (2)

where P,(cosf) are the Legendre polynomials of order n, with n non-zero. The classical
Eddington-Sweet circulation (Eddington 1925, Sweet 1950) is described by a single P,(cos 8).
We will assume axial symmetry, so there will be no dependency on the longitudinal direction.

It is convenient to express the concentration as
¢ = ¢o(r) + bc(r,8) (3)

where the horizontal average of éc (denoted by < §c >) is zero and the horizontal average
of a function f is defined as:

<f>5%/:fsin0d0. (4)
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Equation (1) may be expanded as

0 ad o
Papce + pa& + PUr o -Co + pu - Vée
= V.[pD -V (e, + é¢c)) (5)
where we have assumed that p does not vary in time, so **it
. Oc, |
V - (pctd) = PUr 5=+ pU- Vée. (6)

Taking the horizontal average in spherical polar coordinates of equation (5) we obtain

9,.,198
Pot ™ 72y

r’p < §cu, >] = —— [r*pDy (7)
r

where .ve have separated the diffusion tensor into vertical (Dy) and horizontal (Dy) com-

ponents.

In order to calculate the advective flux < éc u, >, we need to determine éc. Assuming
that
dc,

Or
then the term pw@ - Véc may be ignored in equation (5). Essentially, we are assuming that
the concentration of a chemical varies much more strongly in the radial direction than in
the horizontal. This will be true if the horizontal diffusion coefficient is much greater than
the vertical diffusion coefficient (see equation (10) and discussion thereafter). Subtracting
equation (7) from (5) yields

>> |Véc| (8)

£6c+ U a_co. —_— i a 2666
Pot TP T o UV ar
1 a déc
— — |siné —1.
t e sn000 [‘““ Dup aa] ©
We now assume that P
Dy >> Dy (10)
v

where £y (¢v) is the distance over which dc changes in the horizontal (vertical) direction,
so that the first term on the right hand side of equation (10) may be ignored. As Dy and
Dy are turbulent diffusion coefficients, equation (10) requircs that the small scale motions
are much more vigorous in the horizontal than in the vertical. This will be easily satisfied
within the radiative regions of a star, in which the vertical velocities are inhibited by the

gravitational force (Zahn 1983). In addition, we will assume that we are in a steady state,

which is established when

1 D
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Under the above two assumptions, and replacing u, by expression (2), equation (9)

becomes 1 8 86
¢
P, 0 inf—|. 12
X,,:[D U.(r) 5 ] neosd) = 55 [s“‘ aa] (12)
The Legendre polynomials are solutions of the equation
—n(n + 1)P.(cos §) = 511110:9 [sm0 9 P,(cos 0)] (13)
thus, the solution of equation (12) is
—r2U,(r) dc,
be=) —————0P, g 14
¢= ¥ o g Palcost) (14)
where we have imposed the condition < éc >= 0.
We may now calculate the average advected flux
<ébcu, > = /" bc u, sin 9 dé
0
r2U2(r) B¢, (™
- nV /- P, 8)|*sin 8 d9
; on(n + 1)Dg Or / |Pa(cos 6)]" sin
> -1/2 r2U%(r) 8c, (15)
 “a(n+1)n+1/2) Dy Or

Thus, subject to the conditions given in equations (8), (10) and (11), the transport of a
chemical within the radiative region of a star can be described as a pure diffusion process:

9 19 e, |
with
D,=Dy + D, (17)
where 1 203 (r)
1 T r
D, = = 18
;n(n+l)(n+l/2) Dy (18)
In particular, if we consider Eddington-Sweet circulation (n = 2 only), we see that
r2U2(r)
=D —,
D, v+ 30D5 (19)

3 Comparison to Li Observations

In order to complete this work, it is necessary to obtain expressions for the turbulent dif-
fusion coefficients in the vertical and horizontal lirections. Unfortunately, this is a difficult
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problem, for which we have not been able to obtain a solution based on the principles of
fluid dynamics. The only path left to us to estimate the diffusion coefficients is to consider
observations of the surface abundances of stars.

Lithium is an important probe of stellar transport processes as it is destroyed when
T > 2.6 x 10® K and this temperature is generally located in the radiative region of a star.
Thus, a star which has an initially homogeneous chemical content, will arrive on the zero
age main sequence (ZAMS) with a radial Li profile which is essentially a step function and
defines a Li front. Below some critical radius (ry;) there will be no Li, above ry; there will
be the initial, so called cosmic Li abundance. This critical radius occurs in the radiative
zone of most stars. If no chemical transport processes occur within the radiative zone of a
star, then the amount of and location of Li in the star would remain constant at its ZAMS
value.

Let us examine the effects of a large scale meridional circulation. Advection by Eddington-
Sweet circulation, if it occurres, distorts the Li front. At the poles (where u, is positive), the
Li front will be moved upward. Near the equator (where u, is negative) Li will be carried
below 7; and so will be burned. Thus, Eddington-Sweet circulation will cause a continual
decrease in the total amount of Li present in the star. However, as the star evolves on the
MS, the radius at which Li is destroyed will move downward (in mass fraction) (Charbon-
neau, Michaud and Proffitt 1989, hereafter CMP), with a velocity of uy;. Thus, only when
|u.| > |uLi| will Li be progressively destroyed on the MS due to advection by Eddington-
Sweet circulation. The velocity of Eddington-Sweet circulation depends critically on the
rotation rate, u,o:; u, ox u?,. Assuming solid-body rotation, CMP (who studied stars with
1.2 < M/Mg < 2.0) found that no MS Li depletion occurres when u,,; < 20 km/s. When
Uyot > 35 km/s, essentially the full amount of Li depletion due to advection by Eddington-
Sweet circulation will occur. For the mass range of interest here, rotational velocities are
typically 100 km/s, and so the full amount of Li depletion is expected for most stars.

If the Eddington-Sweet circulation penetrates the surface convection zone (as appears
likely and was implicitly assumed by CMP), then the full amount of Li depletion will occur
rather quickly. From Figure 3 in CMP, we see that a 1.5 Mg with u,,; = 50 km/s, will
have no Li at its surface after just 0.286 Gyr. However, Balachandran (1990), who observed
199 F dwarfs, found numerous stars with vsin: > 50 km/s in which the Li abundances
were near cosmic. This is a sign that the destruction of Li on the surface of a star due
to Eddington-Sweet circulation is being inhibited. CMP suggest that a boundary layer
may form between the radiative zone and the surface convection zone, which prevents the
Fddingio 1-Sweel circulation from reaching the surface, so that no Li depletion will occur
on the MS. The formation of such a boundary layer is unlikely, as there is no physical
reason for its existence. If it did form, this would imply that no MS Li depletion would be
observed. This is contrary to many observations of MS F stars (e.g. Balachandran 1990
and Boesgaard and Tripicco 1986b) which show significant Li depletion.

After a star has exhausted the H in its core, it evolves off the MS onto the giant branch.
During the rapid post-MS phase of evolution, a very deep convective zone will develop.
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This will mix Li depleted matter with Li rich matter, causing a dilution of the surface Li
abundance, which is easily observable. If Eddington-Sweet circulation has caused Li to
be destroyed on the MS, then the observed abundances in giant stars will be lower than
that due to dilution during the post-MS evolution. CMP compared observations of Li in
giants in three clusters (M67 age =~ 5 Gyr, turnoff mass ~ 1.3 Mg, NGC 752 age =~ 2.2
Gyr, turnoff mass = 1.6 Mgy and NGC 7789 age =~ 1.6 Gyr, turnoff mass ~ 1.8 M) to
that which would would be expected from standard stellar evolution with the advection of
chemicals due to Eddington-Sweet circulation (diffusion was ignored). A major difficulty
with this work is that the MS rotation velocity (and its evolution) for a particular star is
not known — there is a spread in rotation velocities for stars with the same mass. Thus,
one must examine a large enough sample of stars in order to use statistical arguments.
CMP found that Li observations of M67 and NGC 752 were consistent with theoretical
values computed including the effects of advection. However, in NGC 7789, there appeared
to be no Li depletion in giant stars as would be expected from advection by Eddington-
Sweet circulation. Furthermore, observations by Pilachowski (1986) found normal (comic)
Li abundances in stars near the turn off in NGC 7789 .

We may take this as a sign that horizontal diffusion is inhibiting the effects of the
advection. This will occur when the time scale of advection is less than the time scale of
the diffusion, i.e. we are in a steady state, which requires that equation (11) be satisfied.
The time scale of diffusion is given by tgiq¢ = L2/ D;, where L is the distance over which Li
must travel in order to reach the surface, while the time scale of advection by Eddington-
Sweet circulation is tyavec = L/Ugs, where Ugs is the Eddington-Sweet velocity. Hence, we
require that D; < LUgs, which, from equation (19) implies that the horizontal diffusion
coefficient must satisfy
1 UgsR? 1 R?

Du> =1 =m0t

(20)

By assuming that Li is being diffused in the radiative zones of F stars, we are able to
estimate a time scale for the diffusion for stars with 1.6 < M/My < 1.8. Clearly, the effects
of diffusion must show up somewhere between 1.6 Gyr and 2.2 Gyr. For our rough estimate
of the total diffusion coeflicient, we shall take the time scale of diffusion to be 2 Gyr. Note
that by postulating that diffusion is the principal means of transport of Li on the MS, we
require that the depletion of Li be observable on the MS in stars which are older than 2
Gyr. Further evidence that the time scale for diffusion is about 2 Gyr may be found in
Boesgaard and Tripicco (1986b) who observed Li in 75 field dwarfs. They found that 62%
of stars younger than 2 Gyr had the cosmic abundance of Li, while 64% of stars older than 2
Gyr were Li depleted, with log(c/co) ~ —2. This is in agreement with Pilachowski’s (1986)
observations of no Li depletion at the MS turn off in NGC 7789. In addition, Hobbs and
Pilachowski (1986) found that stars near the turnoff in NGC 752 (age ~ 1.7 Gyr) had not

suffered any depletion in their surface Li abundance.

In order to illustrate the expected behaviour from diffusion, we will solve the simplified
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— =0, for all time
dx

C =0, for all time
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Figure 1: Initial conditions on the Li concentration

equation (c.f. equation (16)) via
92

%c = D-a—r—z—c (21)
where we have ignored the effects of sphericity and of a variable diffusion coefficient. We
have the initial condition that the Li concentration is ¢ = ¢, when r; < » < R,. The
boundary conditions are that Li gets destroyed at r = ry;, so that ¢ = 0 when r < ry; and
that there is no loss of Li at the surface of the star, so dc¢/dr = 0 at r = R,. A illustration
of these conditions is shown in Figure 1. Although ry; is a function of time, we will assume
it to be a constant. This is a fairly reasonably assumption, as for a 1.5 Mg star, L will

change by less than 3% in 500 Myr.

The solution of equation (21) may be found by fourier decomposing c:

c=cozﬂ:a,,(t)sin [(%+mr) ( M )] | (22)

R. — TLi

which leads to

60,,; _ 7l'2 D )
7 = —Tm(z’l + 1) ap. (23)

The solution for ¢ is

c= co%;@—nlmexp [—:;(Zn + l)z(R‘—l_)tW] sin [(% + n7r) (ﬁ)] . (24)

Observers determine the abundance of a chemical on the surface of a star on a decimal
logarithmic scale. After a short time, the abundance at the surface will be given by the
slowest decaying mode, n = 0 and so the surface abundance will be given by

r?
log(c/¢,) ~ log [% exp (—T%t)] (25)
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Figure 2: Expected Li depletion due to the transport by turbulent diffusion

where L = R, — rp;. When ¢ = 2, log(4e~%/x) ~ —0.76, which is the level at which
observers consider Li depleted. Thus, we may associate the time scale of diffusion (2 Gyr)
with 2 p
T
2=——1ip. 2
TP (26)

From the Yale evolution code (Prather 1976, Seidel, Demarque, and Weinberg 1987), a
1.5 M, star with the Hyades metallicity will have L ~ 4 x 10® m and so we may estimate
D for a 1.5 M star as

D ~ 6.5 x 10" m?/yr ~ 2 m?/s. (27)

A plot of the surface Li abundance (as given by equation (21), with the diffusion coefficient
given above) as a function of time is shown in figure 2.

It addition, it is also possible to obtain a lower limit to the value of Dy from the fact
that the time scale of diffusion must be greater than the time scale of advection. From
equations (20) and figure 3 in CMP we see that for a 1.5 M star with u,, = 50 km/s

Dy > 2 m?/s. (28)




4 Conclusion

In this paper, we have shown under what conditions a pure diffusion equation (as opposed
to an equation which included an advection term) may be used to model the transport
of chemicals due to large spatial scale, slow time scale motions, such as those induced
by thermal instabilities in the radiative zone of a rotating star. Thus, we have given
a theoretical justification for the work of such people as Pinsonneault et al. (1989) and
Charbonneau and Michaud (1990) who use a pure diffusion equation to model the transport
of chemicals by Eddington-Sweet circulation in a stellar evolution code. However, we are
unable to sbtain an expression for the turbulent diffusivities which occur in our diffusion
equation.

In addition, we have shown that including the effects of turbulent diffusion may explain
the results of CMP, who found that Li was transported on a slower time scale than would
be expected from Eddington-Sweet circulation. As horizontal diffusion inhibits the effect of
vertical advection, we can explain this result by assuming that the transport of Li was due
to turbulent diffusion, as given by equation (16). This allows us to an averaged diffusion
coefficient (c.f. equation (21)) to be D = 2 m?/s for early F stars. This requires that
the horizontally turbulent diffusion coefficient be greater than 2 m?/s. These value are
consistent with the observations of Boesgaard and Tripicco (1986b) who found Li depletion
occurred in dwarf stars older than 2 Gyr, and observations by Pilachowski (1986) who found
no Li depletion in MS turn off stars in NGC 7789 (age =~ 1.6 Gyr). The Li gap present
in the Hyades cluster (Boesgaard and Tripicco 1986a), which occurres for stars slightly
less massive than those considered here, clearly shows that the diffusion coefficient is very
sensitive to stellar parameters.
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MAGNETIC FLUX TUBES AND CONVECTION
Richard Kerswell

August, 1990

Abstract

Three-dimensional cellular convection concentrates magnetic flux into ropes and
sheets when the magnetic Reynolds number is large. We examine the equilibrium
axisymmetric flux ropes sustained by cellular convection. The case of a compressible,
electrically conducting fluid is studied and boundary layer analysis is found to yield
a self-consistent solution for an externally driven convection field. Both kinematic
and dynamic regimes may be examined and a scaling for the maximum value of the
amplified field may be deduced.

1 Introduction

Magnetoconvection is a complex process common in the astrophysical context. Here
a particular aspect is explored, motivated by observations of the solar surface. On the
sun, photospheric granules seem to concentrate the magnetic flux into regions with
intense local magnetic field. These flux tubes tend to form at granular boundaries
where local downflows exist. This expulsion of magnetic field lines from convective
eddies is a well known consequence of large magnetic Reynolds number flow (Parker
1963, Weiss 1966 & 1967, Clark & Johnson 1967, Busse 1975). When the total flux
is small, concentration is limited only by magnetic diffusion. As the field strength-
ens, further effects become dynamically important and both induction equation and
the equation of motion must be solved together. Galloway, Proctor & Weiss 1978 [1]
construct a model of this process in the case of an incompressible fluid and via bound-
ary layer analysis are able to examine the transition from kinematic to the dynamic
regime. Here the sole opposition prodiced by the field buildup in the rope is the
Lorentz force. In an idealised example driven by horizontal temperature gradients,
they observe a maximum field strength in the rope proportional to the square root
of the ratio of the viscous to magnetic diffusivity. This study endeavours to extend
their model in order to capture more of the “physics” of the actual process. The
Sun is a complex mixture of partially or fully ionised gases and hence as such rep-
resents a highly compressible fluid. In addition it is clear that the energy equation,
and hence the temperature field, requires a more careful treatment. Although the
precise structure of sunspots is unknown, it is clear that they consist of one or many
flux tubes erupting through the photosphere together. The observed cooling within
a sunspot is suggestive of a more generic cooling inside flux tubes. This is confirmed
by compressible magnetoconvection simulations conducted for example by Weiss and
coworkers.

As a consequence of including these aspects of the observed process, additional
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forces play a role in the dynamic regime. The magnetic pressure, produced by the
field lines, causes a localised drop in the fluid pressure. As a result the density tends
to decrease and the fluid experiences an increased buoyancy—magnetic buoyancy. This
is found to reduce the magnetic field in the rope. In contrast and as a consequence of
downwellings in the tube, the temperature is found to decrease in the presence of the
field and as a result amplifies the flux concentration. The crucial coupling between
magnetic and temperature fields occurs via a magnetic-field-dependent thermal dif-
fusivity. This produces cooling within the rope and forces the presence of a thermal
boundary layer enclosing the flux tube The net effect is to produce an enriched self-
consistency relation (cf [1}) for the axial velocity as well as a backreaction equation for
the axial temperature field. The model assumes scalings which ensure that the mod-
ifications to temperature, pressure and density in the tube are all small. While this
undoubtedly oversimplifies the structure ( particularly in pressure and density ) it is
a reasonable starting point for assessing the effects of compressibility in an analytical
model. That such perturbations can be dynamically important is a consequence of the
axis being a singularity in the equations of motion. Normally the regular solution is
chosen, however the presence of a boundary layer around the axis allows the possibility
of matching onto the singular solution. It will be shown later that this can allow small
perturbations in the tube to produce O(1}) effects.

It should be noted that in pursuit of this self-consistent model, the main assumption
made is that the tube is only slightly evacuated by the magnetic field. The model
suggests that an equilibrated state is reached long before the alfvén speed within the
tube reaches the sound speed. This is contrary to the findings of numerical simulations
and observations of the above speeds on the solar surface. However so little is known
about the magnetic field strengths below the photosphere that such a scenario may
indeed exist deeper within the sun. On a similar note, the Boussinesq approximation
is used when it is only sensibly applicable in the solar interior. The flux tubes are
envisaged as extending at least 3 photospheric depths into the convection zone.

2 The Sun

The basic convective unit on the solar surface, a granule, has a length scale of =~ 103km.
It’s aspect ratio is unknown but commonly supposed to be O(1). The photosphere
has a depth of 500km and hence granular convection can be taken as entering the
convection zone which makes up the outer third of the sun and extends =~ 2 x 10%m
radially. Supergranules are coherent structures commonly comprising of = 30 gran-
ules. Their scale is 3 x 10%m and are thought to exist mainly in the convective zone.
Sunspots have dimensions of supergranules and are thought to extend at least 10*%m
deep. On the solar surface the temperature is 6000K giving an acoustic speed of
~ 12kms~!. In the flux tubes, field magnitudes are 1000 — 2000G producing surface
alfvén speeds of order >~ 5kms=! and an Alfvén Mach number = 0.5. Typical fluid
velocities are observed as &~ 2kms~! and the acceleration due to gravity at the sur-
face is 274ms—2. For calculation of dimensionless parameters the following scales are
adopted:- L = 2000km , T =~ 6000A & v = 2kms~!. This gives estimates for the
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Peclet and Magnetic Reynolds numbers as follows:-
Lv

R, = .= 2x 1072732y 108 (1)
L
Taking « = 10° Pe = Tv ~ 10* (2)

Hence 1 € Pe € R, The thermal and magnetic diffusivities are shown below
(Priest 1982 p 312 [2]) —all figures are subject to debate (main source Priest 1982).

3 Problem Formulation

3.1 Exterior Flow and Scalings

A cylindrical convection cell of aspect ratio 1 is considered and a steady flow sought in
which the magnetic and velocity fields are assumed purely meridional and azimuthal
dependence is ignored:-
g = (¢:(r,2),0,q.(r, 2))
The magnetic Reynolds number R,, is taken as large and as a result the field is
assumed concentrated in a central rope of radius RY 2.( The magnetic field is also
flung outwards to the cell perimeter forming a true boundary layer. However in terms
of magnetic field intensity this layer is dominated by the central rope and may be
ignored.) The region outside the rope is labelled the exterior and is considered free
of flux. Implicit in the formation of the flux tube is the presence of convection eddies
sweeping the field into the axis. These are envisioned as toroidal with downflow at the
centre. The external boundary conditions are assumed such as to produce this flow
and no attempt is made to solve the exterior problem. Convection is assumed highly
turbulent and this is modelled using a turbulent viscosity. Inertial terms are neglected
in preference to the viscous terms. The Energy equation is considered in its simplified
form of the steady temperature equation. The efficient turbulent mixing present in the
exterior allows temperature advection to be replaced approximately by an adhanced
thermal diffusivity i.e. @.VT = k,, V2T becomes 0 ~ (K, + &.)V?T where k., is the
molecular thermal diffusivity and k. > k., represents an eddy diffusivity. The fluid is
taken as a perfect gas whose state of ionisation remains constant.
The relevant equations then become for the exterior:-

0 = -VP+pj+pvp(Vii+1/3VV.40) (3)
P = pRT (4)
0 = V.(p1) (5)
0 = VT (6)

The exterior flow is scaled by balancing pressure and viscosity:-
2

c o e
7 p TL2
giving an estimate for the velocity
iy
Ve ~ —
vr
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The magnetic Reynolds number is then B, = Lv./7n. If the initial constant magnetic
field permeating the cell is By, conservation of flux requires the field in the rope to
have size O(Rm Bo). The alfvén speed is then v, = Rmﬁﬂz. Therefore

Va _ £ BQ
Ve M VHp

3.2 The Magnetic Flux Tube

Assuming the exterior flow field is given, the Induction equation is now solved exactly.

—

V x (i x B) = nV?B
Define x such that
x(ri2) v _ & Xz o Xr
VX(O, " ,0)—B—( T’O’T)
Non-dimensionalizing

Z.Vx = RnD%*x (7)
0. 10 0?
. 2 — I Sl .
with D = ra-(05, )+ 3 (8)
as \72({9) = ax(vX(-’:-é) (9)
Introduce the boundary layer variable £ = R},{ %,
J ,19x
LVxx=l—=(=-%
AAFRET

Assume an asymptotic form for @

T~ (%rg(Z),O,f(z))

Then . X
595)(( + fx: = 6(—§£)€

It is helpful to adopt the Von-Mises coordinates of incompressible boundary layer
theory. Here the temperature and magnetic field equations are linear for the given
velocity field and the utility of these coordinates is to remove the variable coefficients.
Let ¢ = 1/26%F(z) be a modified streamfunction and then choosing gF + f%’; =0
leads to

\: = Q(F/f)¢>>(¢¢

This has solution

\ = xofl - e /ARG (10)
with o = 1/26%F(z) (11)
Fz) = e J 91t (12)
F(z)
M) = SE s (13)

Thus the magnetic field has Gaussian structure.
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3.3 Temperature

Intense magnetic field within the tube can be expected to reduce turbulence and in
these circumstances a diffusion-dominated temperature field is unrealistic. We are
forced to incorporate the effects of advection near the flux tube due to the highly
anisotropic velocity field there. However rather than return to the exact temperature
equation with only molecular thermal diffusivity, we imagine that the diffusivity is still
enhanced by isotropic turbulent mixing. This allows us to speculate that the thermal
diffusivity depends in some inverse way on the field strength which provides more
intense coupling between the fields. Due to the strongly unidirectional field in the
rope we should expect the thermal diffusivity to be anisotropic, however for simplicity
this is ignored and x is written as k(B).

@.VT = V.(k(B)VT)

The exterior temperature field is unaware of the flux tube and may be expanded
asymptotically for + — 0 as follows:-

Tezt = TO(Z) + T‘2T1(2) +

and the interior perturbation field T;,,(£, z), which does feel the field, is superimposed
on this. Defining the Peclet number as Pe = Lv,/K,, -he above equation becomes,
after dropping small terms:-

dT dTm d*T, 0 dT, T
Pe[f(z ——0+f( L= (d20+4T1)-r,—K|{\g£+-—az—t)
8Ttnt 1 a aTxnt
+1/26g(2)—F 9€ vl +Rm 505(5'{ 3¢ ) (14)

Where & is now non-dimensionalized by its value at infinity. The exterior temperature
field does not see a spatially dependent thermal diffusivity and must therefore satisfy
the reduced equation:-

dT, d*T,
Pe f(z) z” = dz;’ + 4T,
It is the interior perturbatlon field which adanm to the variable dlffllﬁlVltV
(9Tmt oK dTO aTmt 1 0 ()Tmt
Pe[(1 - s 9% o Oy p 10
el(1 - k) f(2) +f( 9 eyt 5, ) Bnggelén )
oT,
+1/2€g(2) E’”} (15)

Here the ordering of parameters | « Pe € R.,, adopted above, is motivated by
solar observations and the equation then naturally describes two regimes. Within the
interior, « is differept from 1 and hence the dominant balance is between first and last
terms. In contrast, outside the flux tube x = 1, and the second term replaces the first
in importance. To allow progress, we postulate a simple structure for x(B).

l-x = aB’ (16)
or rather l-n = a(\(‘))‘je'l/”fzh(” (17)
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with xo = Xx3/Rm and a dimensionless although proportional to Bg. This choice
conveniently allows immediate integration.

dT, 2 1
A () T2 (1 - 112800 = g Tt

using the boundary condition £ = 0 = leem = 0. Notice the LHS is +ve, therefore
Tint increases as it leaves the tube—as desired. Also note that as § — oo

a Pe 'ﬁhﬁ 1de0 In€

Tine ~ 55—

B B <°

Such logarithmic behaviour is impossible to match directly with the exterior where
the perturbation field must decay to zero. An intermediary layer is necessary and
naturally appears from within the equations:-

aTmt 1 3 ({aTint
E 6™ o€

Outside the rope x = 1 a constant and (£%) < 1. Rescaling v = (£%)"/%¢ and
defining y = [Z,,, dq/ f(q) gives

6T,~n¢ _ 1 a aTmt)
9y wvdv' v

( Recall f(2) < 0 and so z € [~1,0] maps onto y € [+00, —~0]). A solution is needed
of this equation which can match onto a logarithmic singularity as v — 0 and which
decays to zero as v — oo. Explicitly a solution T'(v,y) is required such that

2

Pef(z) )

T(v,y) ~ A(y)lnv as v—0 (18)
T(v,y) — 0O as v — 00 (19)

The inner condition represents a distribution of sinks along the y axis. Hence the
thermal layer is the adjustment region in which fluid flowing downwards accommodates
the inner cool tube. The well-known fundamental solution

T(ny) = s~

represents the effect of a 6—fn source of heat placed at v = 0. Hence the required
solution is a convolution over the source distribution with the fundamental solution:-

T=-1 /y AW) -2 4ty-w) gy,

o Y- w

Notice the lower limit is w = ~o0o0 which corresponds to z = 0 i.e. the top of the cell.
For convergence we assume A(w) — 0 as w — —oo which is clear physically and can
be seen to hold later.

We proceed to match these layers to leading order. Call T inside the thermal
boundary layer T, to distinquish from that within the flux rope Tyn:. For leading
order matching

lim Tin, = lim Tint
E~—00 v~0
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Pe 5.5 .dT:
> A(y) = =——x"h Ve~ (20)

ﬂan.
ar l1a Pe - v pA-1 w) dT e~? —w
= Tk, ‘= “33 R, Xoﬂ/ ————y (w) du? 2[4y-w) 4oy (21)

The superscript part (-particular integral) is used to indicate a solution forced to exist
by the dynamics as opposed to ¢f (-complementary function) which exists as a con-
sequence of boundary conditions. In the case of the temperature field, there exist the
complementary solutions F(z) and it is this degree of freedom which accommodates
boundary layer matching. Above we have deduced the form 775, however full match-
ing must take into account the complementary functions generated. In the exterior
the perturbative temperature is zero and hence T, = Tf:t" via matching at v — oo.
Turning attention to the v — 0 matching we have in the Interior:-

BT,M dTo Pe

- R 22
fEs ) = (1-m) m (22)
T,‘:&" ~ de “’h" ‘f ~ In€ as §— oo (23)
T = F(2) (24)
In the Middle layer:- .
1 3(V3Tmz) aT‘i'nt
vov: dv Jdy

Asymptotically as v — 0, Ti,; can be written most generally as

Tint ~ a(y)lnv + By} + v(y) P Inv + §(y)o* +

In terms of £ = (g—;)'l/zu
Tint ~ a(y)ln( )‘/25 +8(y) +. (25)

~ o(y)lné+ a(y)ln(E;)‘“ +B8(y) +... (26)

The first 2 terms dominate and must match onto Tj,; such that

a Pe dT
a(y) = JRx“"f 0

As a consequence T"{, = a(y)ln(np—; }!/2 and a temperature change is induced in the
inner boundary layer of size In(£%)!/2 larger than the original temperature perturba-

tion. Explicitly in the rope T”‘"' = o(T

int in¢)- The complete temperature field can be
written

Tint ~ af [ln Pe )1/2 +In E]

as £ — oo with the first term dominating. The self-consistent relation for the tem-
perature field can now be derived. Writing T(z) as the axial temperature, the back

reaction is Tmf, =T -Tpi.e.




Notice the backreaction is negative indicating tube cooling and that the order of the
backreaction is O(a%ln(%)”z), where O(a) = AK/Keo.

3.4 The Equations of Motion

We now turn attention to the equations of motion. Ignoring the inertial terms reduces
the problem to a linear one and allows decomposition of the velocity field into its basic
and perturbative components. We non-dimensionalize P with pooc?, B?/up with v?
external velocity field @y by v. and interior solution @; by v,.

Lc " Vq 25‘2 ~ gLL - L‘Ua - = P - — e
(P +(2y) = LX)+ Z2F v B+ V(g + i)
+1/3V" [”°"T @+ VT (27)

Here * represents a non-dimensional quantity and is hereafter dropped. The dimen-
sionless parameter Q = I(%2) is introduced,

232

QRA(Z)V(P +(2)5

—) = QRn pz+QR BVE

vz[”" Tuo + @] + 1/3V[ZL v g, + V.73,)(28)
VoV VoV

This represents only two equations due to the absence of angular dependence and
swirl components in @ and B. The radial component is as follows:-

Vg )2 B?

QRm(—)z—(P + (7 )~ QR.B.VE, +

{vz[”c L o+ @] +1/3V(= Z TV G0+ V. ul]} (29)

The Alfvén speed is that in the tube and hence B,=0(1). As a consequence of
V.B=0,B, O(R'ln) and then the scale of terms in the above equation reads

O(QRY*) + O(QRY?* + O(Rm) ~ 0

Clearly the first term must vanish

B2

2

P+ 2T =0

:P(Ew- = Prt(rﬁz)—(v—a)z_B—z
c’ 2

P = P = 5527

-

we use the ideal gas equation of state P = pT to produce

Pery Va 2 e=€*h(2)

I T 5(‘) (xh)? T.zt + Tint
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Using the earlier assumption that T;,; <« T, and neglecting second order changes in
the density allows the two distinct density changing processes to be separated:-

Pzt Tine 8—€2 h(z)

P = Pext — Tt ' T (

) - 1/2(%2 =) (xgh)*

ext Tezt

The second term represents the buoyancy due to the temperature perturbation and the

third term is the magnetic buoyancy. The vorticity equation ( §.Vx the momentum
eq.) reads as follows

d(x, FD*x) 1 paf, ot

a(r, z) + r VgV

Substitution of the density expression into this gives

L 3
0~ QR.Z (a”) QRn

——wp + rw]

/2
1 27, VelT - gl 8Pezt er'n Pezxt 0Tin,
T b [7‘ VoV wo + ’l'w]] - QRm v2 or + Tezt af

a

1/2 N
(Va2 e2;3Bm” o _ean(sy O(x,#D*%x)
R + Okt a(r, 2) (30)

ext

This divides naturally as follows:-

Exterior : — Dz[r bebr wo] = (3Perz (31)
aV v
Interior Correction : — *D2[1'w1] = Q ng Rl Pezt OTint
r a Tez:t af

1/2
_(Yavz e2p3Bm” o _c2n(s
( ¢ ) Xo h T Ee

ert

d(x, = D?*x)
e 2
+QR a(r3) (32)
Upon simplification the interior correction equation reads
0,10 L A3 —€2h(z
ge(ege(Een) = —QRIPGIR + G lee h
gL pezt 3Tmt

+Q Ry — o Tom aE (33)
which can be integrated twice and with the boundary condition w; = 0 at £ = 0 yields

= lopn 2 e~y 4 9L

Ewl QR X [“‘( f +1 ]h"' 22Tezt

L er {
QR 2 [ (T, o) (34)
ext
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3.5 Vorticity Matching

The perturbation vorticity can be divided into two parts which are clearly distinct in
structure and generating process. The first arises from Lorentz and magnetic buoy-
ancy forces and as a consequence sees only the flux tube. In contrast the vorticity due
to perturbative cooling sees both magnetic and thermal layers. To clarify notation &
is used to indicate vorticity in the flux rope, @ in the thermal layer and & loosely to
describe vorticity in the exterior. (Notice the subscript 1 is dropped as only perturba-
tion vorticity is considered.) Consider the Lorentz and magnetic buoyancy generated
vorticity.

L h
-~ 2 Al 2)€2 e~y + 9
™ Qx[(Z§+1 I(h + F T
This generates a velocity field @2°™ via
_ a.&;rmrt aﬁ;zmrt 0&;;011
A T "y =

The complementary velocity field corresponds to some arbitary function of z to be
later specified by matching requirements.

il = F(z)

Outside the flux rope, the vorticity experiences no forcing and hence satisfies the
homogeneous equation
D¥(rd) =0

Near the axis r — 0, this vorticity can be expanded generally by

O~ a(z)+5(z)r21nr+-,( w24l (35)
2

~ a(e) + AN 4 lnR‘/2 Ig 1n£)+7(z)f . (36)

We match vorticity fields at the flux rope boundary to leading order

lim ro = lim ro

Emco r—0
which produces
ofz) = éQ 2p +92L27'f - 37)
LI VR R S (38)
R 2 ¢ 2Tz
All the expansion functions a,3,... can be taken as being the same order in R,, as

they are implicitly coupled in the expansion. If @ = O(Q) then this implies A(z) =
—1/2
O(l"—%ﬂr). The A(z)€? term is therefore subdominant to 1 within the rope and the
vorticity can be taken as radially independent to leading order.
gL h

R SN
~ Oy YR + 12
o~ 3@ h + T o

) as r—=0
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This drives a motion just outside the flux tube of

Pt~ —~Qx5i(h + )inr

02 2Tert

The complementary function 4/ = f’ (2) is subdominant to the driven flow as r — 0
and hence can be neglected during the axial velocity matching. Continuity demands
gL

c? 2T
When the rope vorticity is expanded asymptotically as £ — oo only integral powers

of R, can arise. Certainly no In R;,l/ ? terms are available and so the driven velocity
field can only accommodate the In £ term. Hence we must have

elim (@8 + 4y = ——Q o3k + = ——)(Inr = In€ - In R;/?)

)In R/

1 '
lim u"f =45 of = §Qx52(h + g

{—o0 2Tezt

This represents the backreaction at the axis due to Lorentz and magnetic buoyancy
forces. The complementary solution has an order O(ln R Y % larger than the driven
flow. This boundary layer magnification mechanism is crucial to the existence of the
self-consistent model presented here. Such magnification allows backreaction forcing
to be treated as perturbative, but ensures that the resulting flows in the rope are O(1)
and hence capable of equilibrating the system.

For the temperature-forced vorticity two layers must be fitted to each other and
to the exterior. In the Inner flux layer, the vorticity is forced by a functional of the
temperature along the axis.

. L p.
er gzg-vm/ CTmt(C)z)dC
ezt

At the edge of the flux tube, in the limit as f — 00
a Pe

Tt ~ FE-X "’h""f(Z) [ln( )""’+1 3 (39)
il o~ QL b e ) LR (g )] )

i~ QL T () S Sen (P ©)24me)]  (a)

el ~ FT(2) (42)
In the Middle thermal layer

-T _ gl Rm Pezt
ol = @iyt [M (e o) (43)

(z) RA-1
-5 Pe v wge%’/‘i(y-wdw (44)

and  Tine(G, 2) 55 o R y-w dw

Vorticity matching at the inner edge of the boundary layer is automatically accom-

plished by ensuring correct temperature matching treated earlier. Matching axial
velocities as ¥ — 0 trivially produces
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We look for boundary layer magnification at the external barrier of the thermal bound-

ary layer.
Asv—-
T gL pect. .a/ /”") RO (w)dT _c2/a(yu)
W 2ﬂ 2T( ) —_ w dw (45)
T gL Pcrt / _pB-1 il
=> W Q 2 T(z) X0 h (Z) dz (46)

In the exterior, as before, the unforced vorticity has the general asymptotic expansion,
asr—0

raT ~a(z) + B(z)r’Inr +y(2)r? + ...
Matching r&T and r@T in the respective limits reveals that

L eTr -
a(z) = - 3 121[:: a/ RB- l(z)

The resulting axial velocity has asymptotic form #2*™* ~ —a(z)1lnr and dominates the
complementary field 4¢/ for r — 0 . Matching to this leads to

%"~ —o(z)lnv (47)
! = a(z)lnPe'/? as v — 00 (48)

As a result the backreaction flow at the axis due to the temperature cooling is:-

i =gl = ——QgL In pel/2.Lezt "’/ hP- l(z)—dz
T(2)X
This velocity is negative and thus the temperature effect is amplifying on the convective
flow. Within the dynamic regime the axial velocity backreaction is O(1) and if this is
not to disrupt the asymptotic form of the flow field within the tube, the backreaction
must possess the same limiting form i.e.

@ = (571(2),0, (2))

This requires the condition
£0p
p OE
within the tube via the continuity equation V.(p#) = 0, and motivates our restriction
that density changes in the tube are small.

<1

3.6 Self-Consistency Equations

The self-consistency relations are

_ — [ gL 1/2 Pezt ..a/z B=1/= dl _
(f- fo)ve = | 6(2 In Pe Ty Wl (2) - dz
L h
+.'QX In RM2(h' + 92 QTC“)]U,, (49)
Pe  Pe'l? dT
T-Ty = %R_e]nﬁe' Xaahﬁ—lf(Z)E (50)
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Recall

A e~ J 9l 1dz
(2)= 3T F/7ds
And from continuity
o(z) = —(pf)
p
h>0 = /zp(z”)dé<0
Then we solve
2 [y Pext(2)d2 _ a, gl 1/2 Pezt _op /z g-1,.T ;.
ot(2) (h=ho) = [—ﬁQ m In Pe T(z)xo A hP=%(2) dzdz
1 -2 1/2 ! gL h Vg
- -k b2
+2QX0 In R, °(h + 2 2Teﬂ)]vc (51)
o Pe Pe'l? 5,5, dT
T-To = EEIY!K Xo h f(z)gz‘ (52)

over z € [—1,0] with boundary conditions A(-1) = 0 and h(0) < oo.

3.7 Scalings
We now list all the scalings implicitly taken in the model

¢ For density changes in the tube to be small
(%) <1
e Velocity backreactions to be O(1)
1. Temperature L
O(a:—': In Pel/2Q‘1—g) x1
2. Magnetic buoyancy
O(Z—‘:an R},{ZZ—:) ~1

3. Lorentz ’
O(U—"Q InRY*) =~ 1

and for the driving effects to be small

1. 0(aQ%) < 1

2. 0@Q)x1
3. 0(Q¥) <« 1
e With regards Temperature backreaction
O(aln(Rm) Rm)~1




o The exterior flow should be O(1)

L vy,
O(QRm“i—Z—T—:) ~ 1

o The form taken for the thermal diffusivity 1 — x = aB® imposes the restriction
a = 0(1)

A typical set of parameters which allow all effects to be felt by the system except
the temperature backreaction is

L
-"c—2 ~ 1 (53)
N 1 o
@ = lnR},{ZI (54)
Vg In Pel/?
(2)? = O ——r (55)
¢ In Rys
v aln Pel/?
_— N - 56
T . (56)
% = o(ln Pe'/?) (57)
a

Within this model, as a = O(1), the temperature backreaction is always negligible.

4 An Illustrative Example

In order to analyse the Self-Consistency equations ( eqns 51 & 52 ), the functional
forms of the leading fields p.z:, To & fo are required. Ideally we would like to consider
asymptotic forms of realizable exterior flows, however this is another problem in itself
and will not be attempted. Rather, we take the simplest forms possible and just
demand that they satisfy the appropriate limiting exterior equations.

0 ~ -Vp-pZ+ V34 (58)

0 = V.(pd) (59)

0 ~ VT (60)
These lead to the restriction that

d d? fo

z(ToPeu) + Pezt = )

The simplest double-zeroed function is fo = z(z + 1) ( the axial velocity must vanish
at top & bottom of the cell ) and an associated linear family of fields.

1
T0=C—-2'Z
-1a
and pez‘=A+£2___2_£

C

291




In what follows we have taken A=6 and C=1 so that both Ty and p., increase with
depth.

To =

1- =z (61)
& Pezt = 6—

(62)

NN

We concede that, with the model as it stands, the temperature backreaction is negli-
gible and so T(z) = To(z) is taken. Equation 51 becomes:-

-12712:- 22

[t - z(z+1)]
1 z 1-1z/dh hd
_ 2 10 6-1 2 2% (adh
= sab /0 B (q)dg + eb? L (dz+2_z) (63)
subject to h(-1) = 0 (64)
& 3—’:+% Oat z2=0 (65)
Here
Lx
a—dlnPe”Zﬂg—- 0
vov? B
_1 1/2 2 BmL
e-2ln 4 oip
_9L
=l
b=Bo

This parameterization is chosen to isolate the initial flux By. By varying this and only
this parameter, we can examine the equilibrium state reached in both kinematic and
dynamic regions. The value of d is largely unimportant in the solution and so is set
to 1. The solution for h can then be written as

— p(al/By _€
h = h(a'/%b, —5)

and hence the natural dimensionless parameter to adjust is aw"-;, and the plot to
examine is a'/Pbh vs a'/Pb. However in keeping with the original paper by Galloway,
Proctor & Weiss, we plot bh vs b which represents the magnetic field at the axis ( at
some z value-we take z=-1/2 ), divided by R,, verses the initial uniform field. We
consider various sizes of the control parameter =75 Which allows the relative effects

of Temperature and Lorentz backreactions to be studied, small values implying small
Lorentz forces.

4.1 Results

The first 3 plots show the effect of varying 8 on the solution. All have the same
qualitative form:- a linear kinematic growth of magnetic field followed by a maximum
as the dynamic regime is reached. The effect of the Temperature term governed by
a is to amplify the flux tube compression and hence increase the axis field. The 4th
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plot shows the field on the axis as a function of z. Note that the field is strongest near
the top of the cell, modelling the field entering the Photosphere and decreases to zero
at the base. That the maximum is slightly displaced into the cell is a consequence
of the magnetic buoyancy. Plot 5 reiterates the similarity between various powers
of 3 > 1. The last two plots show the effect of gradually letting the temperature
backreaction dominate. We expected to find qualitatively the same results as before
but with perhaps increased maxima, and indeed this is what is observed for e > 1 (
The bottom curve, e = 6, is that in plot 2 with a = 1 ). However for e < 1 there
are runaway solutions i.e. the solution does not equilibrate and the model appears to
break down. In this case no solution exists for an initial field exceeding some critical
finite value.

4.2 Scaling Results

From the plots, we see that a maximum magnetic field strength is achieved for a finite
value of the initial field. Typically

B = O(R., Bo)

R
Q)

The scaling of Q depends on the dominant backreaction. If the Lorentz force provides
the balance

B = O(

n
>Q~ |———
VlnR,lnjz

~B.. =08 [Hvp
ar:s L lnRjn/z

which agrees with Galloway, Proctor & Weiss 1978 (1). If the temperature backreac-

tion dominates then
N R )
ez L ¢\ alnPel/2gL

Note that
Bl of s | In Ri® e
Bazis ¢ Valn Pel/2 gl

and on the sun this seems O(1). Using the first estimate of order with the following
parameters:-
Biz.s = 2000Gauss = 0.2Tesla

po= 1257 x 107 Hm™!
y = 109/—[3/27“25—1
I = 10°m
T =10/
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gives

p=3x10"%%gm™3

Taking R.» ~ 10% implies Re ~ 50C0.

5 Comments

We feel that the energy equation requires a still more careful treatment. Mod-
elling Eddy diffusivities invoives entropy gradients as opposed to the rather sim-
plistic approach adopted here of using only temperature gradients. Introducing
entropy will complicate the system by coupling the energy equation and equation
of state. The effect is to be investigated.

The stability of the flux rope equilibrium state is an obvious point of interest and
one which we would like to study. However a lack of an exterior convective flow
solution to base the analysis upon severely limits the utility of any such effort.
Moreover, interaction with this flow would appear to be an essential point of this
stability problem.

The model, as it stands, can accommodate only small perturbations of pressure
within the flux tube. We would like to extend this to finite amplitude modifica-
tions as seems more appropriate in the solar context.

Plot 7 appears to show that the model merely breaks down for sufficiently small e.
However one can’t help speculate whether this might indicate a critical bound
on the initial flux for such a convective state to exist, which might provide a
selection mechanism for the size of flux tubes. It is not out of the question that
such a breakdown mechanism could be associated with fibrillation of flux.
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PLOT]1: Effect of reducing the Temperature Backreaction d=1,e=6 beta=3/2
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PLOT?2: Effect of reducing the Temperature Backreaction d=1,e=6 beta=2
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B/Rm at the axis z=-1/2
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PLOTS3: Effect of reducing the Temperature Backreaction d=1,e=6 beta=3
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PLOT4: A Typical solution for field along the axis
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ABSTRACT:

We consider convective motion in a tilted porous layer which is driven by a
vertical temperature gradient and an additional temperature gradient between
the boundaries of the layer. We find an exact stationary flow solution
in that system. We discuss Taylor dispersion of passive particles in this flow
and emphasize its geophysical implications. The existence of azerowave
number instability in this system is shown.We discuss the stability of
the no flow solution in the system without the additional temperature
gradient between the boundaries . For the vertical layer we derive nonlinear
evolution equations determining the behavior above the convective threshold.

1 INTRODUCTION

Convection in layers of fluids enclosed between impermeable boundaries
seems to be one of the most fascinating aspects in fluid dynamics (cf. the book
Platten and Legros (1984) for a recent review). The paradigm of these systems,
the Rayleigh-Benard system (a horizontal fluid layer subject to a vertical tem-
perature gradient) and its geophysical modification ( porous layer filled with
fluid) have be discussed in the past in great detail (see e.g. Chandrasekhar
(1961) and for the porous medium case Beck(1972)).However little attention
has been given to the situation in which the layer is inclined . In the case of
porous media Caltagirone and Bories (1985) and Riley and Winters (1990) dis-
cussed fixed temperature boundary conditions while Sen et al (1988) studied
fixed heat flux boundary conditions acting on the tilted layer. This report
forms a generalization and extension of their work.

Our work is motivated by the following geophysical situation: Suppose
there is an inclined sandstone layer between layers of shale. The gravita
tional field acts vertically downwards while a geothermic temperature gradient
acts upwards. If the thermal diffusivity in shale and the porous medium filled
with fluid would be the same the isotherms would be horizontal. However,
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in practice the thermal diffusivities can differ. Continuity of the normal
component of the heat flux requirs a declination of the tsotherms at the
boundaries between shale and sandstone which is analogous to an additional
temperature gradient between the boundaries. To model this situation we
study convection in a tilted porous layer which is subject to two driving
forces: (i) a lateral temperature gradient along the boundaries and (1) a
temperature difference between the boundaries.

Our report is organized as follows: In section 2 we describe our model
system. Section 3 contains the basic hydrodynamic equations in nondimensio-
nalized form . In Section 4 we present the most simple solutions of the system
and in particular we discuss the structure of the non-trivial flow solution.
A study of the "mean” motion of injected passive particles in this flow (Taylor
dispersion) and its geophysical significance will be given in Section 5. In
Section 6 we find an infinite wave number instability of the flow solution. Up
to that point the full system with both gradients is discussed. Section 7
contains some linear and nonlinear results if no additional forcing between
the boundaries is present. In Section 8 we discuss the flow solution in the
geophysical problem mentioned above. Section 9 summarizes our findings.

2 THE SYSTEM

We consider a porous layer of thickness d enclosed between two parallel
boundaries. Gravitational acceleration acts vertically. The porous layer is tilted
about the horizontal axis with tiiting angle ¢. The layer is subject to a vertical
temperature gradient T,G which varies linearly with z. T is the reference
temperature at the origin of the frame of coordinates (cf. Fig.1 ). In addition
there is fixed temperature difference AT between the boundaries.

Z

ool

Fig.1 The geometry.
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We assume that the lateral extension is very large in comparison to its
thickness. By the way one should not be worried about the fact that for large
enough negative z the temperature may become negative. This Is only an
artifact of our model. In practice this problem does not arise since the layer
is long but not infinite. We also require mass conservation in the layer.

In principle there are three parameters which can be varied independently:
The gradient along the boundaries, the temperature difference between the
boundaries, and the tilting angle.

3 BASIC EQUATIONS AND BOUNDARY CONDITIONS

Following D.D. Joseph (1972) we use the generalized Darcy equation to de-
scribe the evolution of the seepage velocity u of the fluid inside of the porous
layer given by

(po/€)O¢u = Vp +pog - (W/K)u , (1)

where u is the viscosity of the fluid, ¢ the porosity ( i.e. the ratio of void
volume to the total volume of the porous medium), p the pressure field,
g= -gez the downwards acting gravity acceleration, K the permeability of the
porous medium, p the mass density field of the fluid and pg=p(x=0,2=0).
Note that Darcy's equation is linear in @ and is valid only if u is small.

The evolution equation for the temperature fleld reads

(3¢ + w.V)T = x V2T, (2)

where x is the thermal diffusivity in the porous medium (Joseph 1972). We
assume the density varies linearly with temperature

0=00[1-alT-To | &)

where o is the thermal expansion coefficient, T, the temperature at x=0 and
2=0, and pg = p(T=Ty). We also assume incompressibility

Vu=0. 4)

We have used the Oberbeck-Boussinesq approximation,that all thermal
and transport quantities are assumed to be constant and density variations
enter only via bouyancy. We non-dimensionalize as follows: length with d,
time with d2/x, velocity with x/d, temperature with xv/agdK and p/og with
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x2/d2 to arrive at the following set of nondimensionalized equations

(0g +€o)m = -eVp -elp/og) § €7 5)
V.a=0 (6)
(0¢ +a.V)T = V2T )
0/00 =1 - (/@) (T - Ty). (8)

Here ?) corresponds to the nondimensionalized ratio (p/pg), 0=vd?/xK is the
Darcy-Prandtl number which differs by d2/K from the buik Prandtl number,
and E = gcls/)t2 is the nondimensionalized gravity acceleration. e; denotes
the unit vector in z direction. We impose are fixed temperatures, i.e.
T=To(1+Gz) at the lower and T=To(1+Gz)+AT at the upper boundaries. ToG
denotes the temperature gradient along the boundaries. There is no flow
through the boundaries; a consequence of this and the constraint of incom-
pressiblity is that there is no mean flow through the cell. Since the friction
in the Darcy equation is proportional to u we have no boundary condition on
the @ component along the boundaries.

For convenience in the present study we use a tilted coordinate system
(C,n) (compare Fig.1). In that system z={sinp +ncos¢ and e,=sinper+cospe,.
Thus we can write the boundary conditions as

T(C1=0) = T, (1 + Gsiny) 9)
T =1 = To( 1+ GCsinp) + ToGcosy + AT a0
w(n=0) = win=1) =0 . 341)]

Writing V =(ac,an),u=n(c,n)=(u.w). and T=T({n) the governing equations
of our system in the tilted frame read

(0¢ + eolu = -svf, - e[g - o(T - To)](sin‘pec + coscpen) (12)
(8 + V)T = V2T (13)

Vua=0 . (14)
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These equations are the starting point of the following work. Let us note
several special cases which have been discussed already by other authors:
1)No tilting, =0: Our system reduces to the Rayleigh-Benard problem in a
porous medium with an effective temperature difference ATqff=-(AT+T(G)
between the boundaries. This case was already studied by Lapwood (1948).
2) No lateral gradient, {.e. G=0,but AT# 0 and ¢ arbitrary: This corresponds
to a tilted Rayleigh-Benard system which has been discussed just recently by
Caltagirone and Bories (1985) and Riley and Winters(1990).

3)Vertical layer without lateral gradient, i.e. G=0. In that case Gill (1969)
proved that the basic flow solution cannot be destabilized by any AT.

To our knowledge the system we consider has not been studied before.

The Darcy-Prandtl number: If the porous medium consists of closely packed
sphere-like objects with a mean diameter do, e.g. sand, then Kozeny's formula
(Joseph 1972) gives an empirical relation between porosity € and permeability K

K= e3[150(1-¢12]143 . as)

Typical values of ¢ for porous media are £=0.35 implying that K is about
6.7 1074 d% .Thus the Darcy-Prandt! number is given by

o = 1500 opyx (d/do)?. (16)

The bulk Prandtl number of the fluid, opyjk. is typically of the order 1. Since
we use the seepage concept for the structure of the velocity fleld eq., do
must be very small in comparison to d, for sand dg is about 10-2 cm.The
layer widths d we focus on are typically of the order 1cm or much bigger.
Thus 0>1.5 106 oy and the limit 0 -> 00 seems to be a reasonable appro-
ximation. Beyond this we note that for fixed do the thicker the layer the
larger the Darcy-Prandt! number.

4 BASIC SOLUTIONS

We now derive simple stationary solutions of the equations (12) and (13).
4.1 No Flow Solution

The purely conductive solution has a stationary horizontally uniform

temperature field and no fluid motion, i.e.
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everywhere in the layer. Here the index ml refers to the motionless state. The
temperature field equation reduces to

2 2

(a§+an)Tm|=0. (18)
Using the boundary conditions we easily find the temperature profile in the
layer

Tmi(Cn) = To + ToG {sing + (ToG cosp + AT)n . (19)
Inserting this profile into the velocity field eq. again a condition

(ToGcosy + AT)sing = ToGcosy sing . {20)
Hence the conductive solution can only exist if either (a) there is no tilting,
i.e. p=0 or ¢=7, one recovers the Lapwood (1948) result, or (b) there is no
boundary forcing, i.e. AT=0 and for fixed z the temperature variations at the
plates are the same.Thus as long as there is only a lateral temperature
gradient at the boundaries the conductive solution is the “trivial” solution

of our system.

4.2 Stationary Unidirectional Flow Solution
Let us next try to find a stationary flow solution of the field equations
(12) and (13) supposing that there is only a flow solution in { direction. i. e.
dtlg = 9¢Ts = 0 and ug = ug(f,n) = (ug,0). (21)
Incompessibility implies that ug can depend on 1 only. Thus we have to solve
dnug = sing InTg - cose 9T (22)

usacrs = (ag + 6%,)'['3 R (23)

where the index s refers to the stationary flow solution. To find this solution
we write the temperature field as

Ts(Tn) = Ty (4n) + Fx) (24)
where f(n) is the " disturbance” of the temperature field caused by the nonzero

velocity ug(n).Insertion of this ansatz into eqs. (21) and (22) leads immediately
to the following relations between the velocity field and f(y):
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us = (ToGsino) 1 o3 ¢ (25)
dqus = AT sing + sing oy f. (26)

Both can be combined to an inhomogeneous third order equations for f(n)
which takes the form

33f-as,f=b, (27)
where a=TGsin?p and b= ToG AT sin2g.The general solution of (27) is

f(n) = fyexp(yn) + fgexpt-yn) + (b/a)y + c/a.
f1, f2, and c are determined by the three boundary conditions

1
fn=0) = f(n=1) = [dn o5F = 0
0

corresponding to no temperature fluctuations at the boundaries and no lateral
mean flow. After some algebra one finds

£(n) = (1/2)AT exp(y/2)-exp(-v/2) | [exp(yin-1/2))-exp(-vin-1/2)) ]

+ AT (n-1/2) (28

where the abbreviation y2 = TOGsinzp was introduced. Note that depending on
the sign of G, 7 is real or imaginary. Combining this solution with (25) and (26)
one obtains the desired flow solution as

ug(n) = (1/2) AT sin ¢ H(y,n) 29

Ts(Cm) = T + ToG({sine + ncose) + W/DAT(1+ Hiyw) (30
where  H(y,n) = sinh(y(n-1/2)) /sinh(v/2) if G >0

Hlym = sin(ivln-1/2)) /sin(lyi/2) i G < 0.
Let us note the following properties of H(y,n)

D H(y=>0,m) = 2(n -1/2)

2)H(y,n=0) = -1

3) H(y n=1) = 1

4) Hiyn=1/2) = 0
5) antisymmetry of H about midplane: H(y,1-v) = - H(yn) .
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Since the basic flow is stationary ug and Ts do not depend on the Darcy-
Prandt] number. In the limit AT->0 we recover the no flow solution (17) and (19).
Thus the flow solution grows continuously from the no flow solution
when AT is increased from zero and grows linearly with AT.In the limit Y0
(G>0) we recover the solution of Caltagirone and Bories (1985).

An interesting property of our solution is that variation across the layer
is determined by the sign of G, the flow direction in the upper/lower half
of the layer is determined by the sign of AT: There is upflow in the part
bordering on the hotter boundary and downflow in the other part.

In Fig.2 we sketch the velocity profiles for different G and AT. Positive
G lead to a suppression of flow near to the midplane in comparison to the
case G=0. As G increases the flow becomes more concentrated near to the
boundaries (boundary layer flow).In contrast if y is negative the flow
becomes enhanced near to the middle of the layer. For negative G the flow
solution shows anomalies whenever Iyl is an even multiple of ©.Then ug
diverges inside ofthe layer. This seems to indicate that our flow solution is
unphysical near to these points and that the flow solution is unstable below
the first divergence. We attribute this phenomenon to a breakdown of the
validity of the Darcy's equation which holds only for small velocity fields.

Hipy) - Ayh(oT)
| + - L
6<0 :
— 0
1
&TLO
-4 - -\
A o
I G<OJL \ < 701_
>"
AT> e AT>0

Fig.2 H(y,msgn(AT) as function of 1 for several combinations of G and AT.
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5 TAYLOR DISPERSION IN TILTED LAYERS

In a seminal paper G.I. Taylor (1953) discussed the the motion of passive
particles injected in flows. In particular he considered the long time behavior
of dye in a Poiseuille flow and showed that due to the combined action
of molecular diffusion and shear a pa icle distribution initially
concentrated at a fixed position diffuses about the center of mass as a
Gaussian and is advected with the mean flow.

Following the approach of G.I. Taylor, we now derive the dispersion associa-
ted with this flow. Note however the differences from Taylor's case :
our flow is generated by the boundary conditions on the temperature field
ditions on the temperature field and there is no mean flow.

The diffusion equations for the tracer particles in our flow solution reads

9tc + ug(n) ogc = DV2¢, (31

where D is the molecular diffusivity (for reasons of nondimensionalization
scaled with x). Let us assume that variations of c in time occur slower than
variations of c caused by diffusion and advection, as will be the case for enough
downstream from the initial state. Then

ug(mage = Dodc . (32)

Splitting ¢ into a mean concentration E—(O which is nothing but the average
of c over the layer width and 2 fluctuating part c'(C,n), i.e.

e = c@ + ¢y (33)

and noting that one can neglect [ variations of the fluctuations c' if these
are small in comparison to the { variations of mean concentration, one arrives
at

o2 = Dl ugmoge. (34)

With these approximations, in the spirit of G.I. Taylor,we have transformed
the fully nonlinear advection-diffusion problem to a linear inhomogeneous
differential equation for the concentration fluctuations which can be solved
analytically. Inserting of our flow profile and using that

2

oy Hly,m) = Y2 Hiy,n) (35)

yields
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a% [¢-AQY2HGOW]=0 (36)

where A(O=(AT/2D)6§€ sin¢ is not n dependent. This differential equation
can be readily solved to give

c = A(C)Y‘2 [:H('{,Y]) - (a,,H(m)) on + const] (37)
n=

where we have imposed impermeable boundary conditions (no transport of
tracer particles through the boundaries): dyc'=0 at 1=0 and n=1.
The constant in ¢’ is in general undetermined and will drop out in the fcllowing
calculation.
The mean concentration flux in { direction is given by

1 1 1

Je = fcus dn = fé(Ousdn + fc'us dy. (38)
0 0 0

Since our flow has no mean flow, the first term on the r.h.s. vanishes.Inser-
ting ¢’ into the second term on the r.h.s. yields

Jo = (1/74D) AT2 7_2 sin2<p F(Y)aa;;
where F(y) is given by

Fiy) = fdn [ H2rm - (ann(y,n)zl o Hovm ]

and has to be calculated for both types of the flow profile.
The mean concentration obeys a diffusion law in the long time limit, since

—_ 9 _
9tcfD = - dagJc = DT o c(D. (39)
From (39) we can read off immediately the value of the Taylor dispersion

coefficient which looks formally like a diffusion constant, but is in fact
caused by advection of the tracer particles. One finds

Dr = - B(o.AT) v2 Fiy) (40)
where

Blo.AT) = (174D) ATZ sin¢
and  Fly) = -[2ysinh?(y/2) ]! (2y + ycoshy - 3sinhy)  if G>0

F(y)

[2ivisinZayiz2) ]! (2ivt + iylcosiyl - 3sinivl) if G<0.
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Dy / Dy C620,p:T/z)

Fig.3 Variation of DT/DT(G=O,up=1t/2) with tilting angle ¢.the curves are
for y=3,y=0, and v=3i.
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Fig.4 Variation of D1/DT1(G=0) as function of v2~G. Here ¢=1/3.
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Thus the Taylor coefficient consists of a part determined by tilting and AT,
i.e. Blp,AT) and a part which describes changes of DT due to the temperature
variation at the boundaries. One reads off immediately that tilting and tem-
perature gradient across the layer are necessary for a nonvanishing of DT.
Beyond this Dt is invariant with respect to AT~ -AT, depends only
quadratically on AT and is symmetric about ¢=n/2.In the limit y—>0 (G>0)
both branches approach the value

DT = (1/120D) ATZ sin . 41)

Here the maximum value of D is reached for the vertical layer.

As in Taylor's case DT is proportional to the inverse of the molecular diffu-
sivity. Let us now study the ¢ and G dependence of DT. In Fig.3 we present the
the variation of DT normalized by D-(0) which represents the value of Dy with
G=0 and =1/2. Of course D7/DT(0) drops to zero quadratically with ¢ if
¢ —>0. For nonzero G the reduced Taylor coefficient is similar as shown in
Fig.3. The main difference is that negative G enhances its magnitude whereas
positive G lowers its magnitude. This behavior can be understood physically
by remembering that the r.m.s. flow is bigger (smaller) in comparison to
G=0 if G<0 (G>0). The bigger the mean flow in a layer half the more effective
is dispersion. This behavior can also be seen from Fig.4 where we present
DT/DT(0) as function of +y2. For positive Y2 the Taylor dispersion
coefficient decreases to zero in the limit y=>oo, for negative ¥2 it grows
rapidly and diverges at y2=-4n2. This divergence is caused by the singular
behavior of the flow field for that y value.As we shall see in the next section
~his 7 value is the lower bound of stability of our flow solution (29).

Geophysical implications: To estimate the order of magnitude of the
Taylor dispersion coefficient we return to dimensional quantities
D=Dx and -13-1-= Dy x. For G= 0, the Taylor dispersion coefficient with dim-
ensions 1s

Dy= (1/1200x2 D! AT? sin20 . (42)
Since in general AT is of the order 1 or smaller the Taylor dispersion coefficient
is typically

DT ~ O( x (x/D) ) . (43)
Here x/ D is an inverse Lewis number being typically bigger than one.
We deduce from (43) that the Taylor dispersion coefficient is of the order

of the thermal diffusivity of the transporting fluid. This seems to be the
main result of our theory. Since in general D is much smaller than the
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thermal diffusivity x (typical values B=10'5cm2/sw. x=10"3cm2/sec ) it
follows that the Taylor dispersion coefficient is much bigger than the
molecular diffusivity. Our theory can also be applied in the following ways:
1) The molecular diffusivity of a given passive tracer can be determined by
experiment using the above theory.

2) Given the molecular diffusivity one can estimate the amount of material
which would be transported by Taylor dispersion through the layer. Assuming
that at time t=0 all particles are concentrated at (=0 the solution of the
"diffusion” equation (39) is a Gaussian with respect to { of the form

CGo) ~ (4nDT 0712 exp(~r274DT0)

Here we have already used that D1» D. _
The width of the Gaussian is given by 1=2(DT /2, Thus assuming a AT of
order 1, »=10"3 cm?2/sec, and D=10"5 cml/sec one can estimate the spread
of the particles due to dispersion: Supposing ¢=n/2 after th 1=3.3cm.
after 1d 1=16.6cm, and after 10a l=tkm.
The final question is the non-dimensionalized value of the temperature differ-
ence ATdijm between the boundaries corresponding to AT. Since we scaled
temperature by xv/0gdK the value of AT4;, depends on fluid properties and
layer width. For water (x = v » 10"3cm2/sec, a~3 10'41/grd) in sandstone
{ K=2 1075 cm?) one finds that ATgim= (1/6d)AT [grdem). Thus the thicker
the layer the smaller the external temperature difference necessary to obtain
a fixed AT.

A final comment to our theory: We have assumed that the porous medium
is homogeneous and isotropic and ignored changes of D due the structure
of the porous medium.

6 BOUND FOR THE STABILITY OF THE FLOW SOLUTION

If the layer is horizontal, =0, the results of Lapwood (1948) can be reco-
vered: There is an stationary instability at Cs(k)=- (AT +ToG)= -(n2+k2)2/K2
where the critical wave number (which minimalizes the absolute value of Cg)
is k=7 and the critical temperature gradient there is Cerit =472, In that case
there is no instability present if k=0. These results are concerned with the
stability of the conductive solution.

The situation is different if the layer is tilted. Then the linearized equa-
tions for disturbances u- (ug,0) and ©= T- T of the basic flow solution read

(at~eo)V2‘P= -eo(sinoana-coswace) 44)

(of - 72)@ = - (0, Tg or¥ - ocTgon¥ + ugar®). (45)
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Here we have introduced the stream function ¥ which is related to the velocity
field by @ - (u5,0) = (-34¥,or¥) if the flow is two-dimensional and incom-
pressible. The general solution of the above stability problem is difficult,
in particular since via Tg and ug these equations are explicitely n depen-
dent and for arbitrary tilting angles ¢ there is a crosscoupling of
derivatives. However we can find an upper bound for the instability of the
basic flow solution analytically . To do this we consider the k=0 limit of

the above equations at the stability threshold Cip = ToGeh which are given
by

(o¢ + so)ag]‘i’ = -¢cosinp 048 (46)
(og - a% )© = Cyp sing oy Y. 47)
Exact eigenfunctions of these equations are

¥{n,t)

a(t) + bit) sinAy + e(t) cos\n (48)

0(y,t)

c(t) + d(t) sinin + f(t) coshn 49)

where the boundary conditions ¥=0=0 at n1=0 and 1 imply that A\=27n, e=-a,
and f=-c. Here n is positive and integer . Note that A=7n with odd n do not
fullfil the boundary conditions. This is significantly different from the
nontilted case. The time dependence of a, b, c, and d at Cgp is exp(At) with
Re(A)=0 and in general Im(A)=w.

Inserting these expressions into the k=0 equations leads to a characteristic

equation

~wl + (4n2n2+ce)iw + 472n2oc + oeCthsinZ@ =0. (50)
Equating imaginary and real parts implies that w=0. Thus the instability is
stationary and there is no oscillatory instability for k=0. From the real parts
one finds that stability thresholds are located at

Cth = - 472n2 sin~2¢ (51)

for n=12.... . The stability threshold with the smallest absolute value is the
one with n=1. Thus a lower bound for the the instability of ug is given by

Cs(k=0) = - 472 sin2¢, (52)

Whenever C< Cg(k=0) our flow solution is unstable at least against infinite
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wave length perturbations. Note that the stability threshold is independent
of the applied AT. This is caused by the fact that all terms containing
AT enter via T derivatives which drop out if k=0 instabilities are discussed.
Thus the lateral gradient is the only destabilizing force. The zero wave
number instability exists whenever the tilting angle is nonzero.

From (52) it follows that in the limit ¢ >0 this instability vanishes.
Its minimal value is reached if the layer is vertical. Gill (1969) has shown
that if G=0 the basic flow solution cannot be destabilized by any AT
if the layer is vertical. We have shown with (52),that an additional lateral
gradient can destabilize this solution. We present Cg(k=0) reduced by its
maximal value as function of the tilting angle ¢ in Fig.5.

0 . . .
A:’ S5t J
2 basic slake
=~ S
e 10} ki - \

) {etisiabie see ,
i e
G -15¢ | 2=-0 puhulslious -
05 1 15 2z 25 3

Tilting angle (p)

Fig.5 Variation of Cg(k=0)/4n< with ©

Up to now we have not discussed the arbitrary wave number case. A search
for exact analytical eigenfunctions would be difficult. Thus numerical
investigations based on a Galerkin method have to be performed. This is
planned in the future.

7. THE LAYER WITH AT = 0
We discuss in this section the stability of the the no flow solution with

AT=0 and develop nonlinear evolution equations. We suppose that the Darcy-
Prandt! number is infinite.
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7.1 Stability of the conductive state for a vertical layer

Here we want to calculate how the stability threshold bifurcates out of
the k=0 instability.Thus we have to study the stationary case only. For the
vertical layer ( ¢=n/2) the equations linearized about the conductive state
read after insertion of a lateral Fourier ansatz ~ exp(ikQ at threshold

9

2 12y = -
(c)Tl k<)¥ = ane (53)
2 _12ve = -
tof - k°)@= Csan‘!’. (54)
or up to the second order in k
4 2 2 -
[o3 - (2x? + Cs)dn]‘*’ =0 (55)

where the boundary conditions ¥=0=0 have to be fullfilled. Since these equa-
tions are invariant with respect to k = -k the following perturbation ansatz
of ¥ and Cg holds

¥ =¥, + ¥a kY + Okh (56)
Cg = Cy + Cq k% + O(KY . (57)

S

The order k=0 solution was found already in Section 6. In order k2 we have to
solve the equation

2 2 2
(05+ 4n2) ¥y = (Cq+2) 87 ¥,
= 4n2 (Cg + 2)[a cos2nn - bsin2nn | (58)

where C = -472 and Yo in form of eq.(48) was used. The inhomogeneous
solution of ¥g is given by

¥9 inh= Ky n(1-cos2nm) + Kg 1 sin2ny

with K; = (b/4m)(C2 +2) and K9 =-(a/41)(Cy+2). A solvability condition follows
from the boundary condition on 9. One finds

9, ¥o

1 =(Cqg+2)(-a/4m)= 0. (59)

o..__l-.

Thus Co =-2 and the stability threshold up to order k? reads

Cotk) = -an2[ 1« k27222 + Okh . (60)
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From eq.(60) we infer that C, is in fact at least for small k the critical value
of the stability threshold. Beyond we note that ¥, is zero.

7.2. Stability threshold for the tilted layer
In the tilted case things are somewhat different. The equations linearized
around the conductive state read

(af, - k2)¥ = ik cosp © - sing 3,8 (61)
(02 - k2)@ = IkC cosp ¥ - C sinpd, ¥ (62)

which are in general no longer invariant with respect to k> -k. Thus the
the perturbation ansatz in that case must also incorporate terms proportional
to k

¥ =¥, + ¥ k+Okd , =064+ 01k + Ok?)

Cg = Cy + Cy k + Ok2).
Performing a calculation similar to the one in Section 7.1. one finds

L2 L) 2

Cy = 327° coto / sin“p. 63)
Thus there are two stability thresholds bifurcating out of C, given by

Cg = - ar sin'ch [1 121/21r'1 coto k ] (64)
where the one with the plus sign is the minimal one for positive k. (64) tells
us in the tilted layer in general the k=0 instability is not critical. The relevant

first correction in k is linear in k and always destabilising with the exception
of the vertical layer. Thus one has to expect a behavior as sketched in Fig.6.

e~ tilted

— vertical

> R

Fig.6 Stability thresholds of the tilted and the vertical layer as function of
k.
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7.3. nonlinear amplitude equations for the vertical layer

Here we want to derive two coupled amplitude equations governing the
convective state above threshold. In the case of the vertical layer we know
from Section 7.1. that the k=0 instability is critical. Thus an approach similar
to the one performed by Chapman and Proctor (1980) can be applied. The
basic difference between their work ( done for Rayleigh-Benard convection
with fixed heat flux at the boundaries) and our work consists in the different
types of scaling.

To study long wave number instabilities one scales length in { directions
with L where L is assumed to be the lateral extension of the layer. L has
to be very large in comparison to d. Defining e=d/L the rescaling is {»¢"1 ¢
and o¢ >e¢ ac.Wave numbers are rescaled according to k >ck. Time will be
scaled with -2 . The time scaling is motivated by the scale on which growth
temperature fluctuations can take place. Beyond this we scale ¥ and © with ¢.

Motivated by the stability analysis of Section 7.1 we set

C=C,+ uel (65)
where we assume that yu = O(1). Thus u measures for a given £ the magnitude
of the the actual temperature gradient C = ToG.

Then the rescaled equations read
232, .2 ¢ - _
(e 6C+dn)‘l’- ane (66)
2,..2 - 2 2 -

(eBag+ 03 - e20p) @ = -(Co+ued)on¥ - 203, ¥ 3@ -3r¥2,0). (67)
Note that the nonlinearities (which appear in the temperature field equation
only) are proportional to ¢2 according to our scaling. Since (66) and (67) are

invariant with respect to ¢ -¢, an appropriate ansatz for ¥ and © in terms
of ¢ is

(¥,8) = (¥,,80) +¢2(¥y,8,) + O, 67)

The zeroth order in € was already calculated in Section 7.1. The only difference

is the interpretation of the amplitudes, which are now in general { and t de-
pendent. We find

Yo €t) = AlGt) (1-cos2ny) + B(,t) sin 2nn (68)
8, Ct) = 2w B(L,t)(1 -~ cos2nn) - 2nAsin2ny. (69)
Here again Co= -4n2. Our intention in the following is the derivation of

evolution equations for the amplitudes A and B. To do this we have to solve
the order <2 which takes the form
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Seans ¥y = -an2{AgcA + BogB) + 2x( aga -9¢B) +

(2
T P 2 o
« (472(Ac(B-BarA) + 2mUA - 4TOTA + 2mayA)sin 2nn
- 4#21AacA*BacB) + 2nvB - 41!ng + ZwatB>cos 2ny (70}
Solving the inhor zeneous contribution of ¥4 and using the boundary cond-
itions ¥o(~=1) - 1 -=0) = 0 and an'{'z(nﬂ)- dqn¥9(n=0) =0, which follow from

the velocity field and the temperature boundary condition respectively, leads
finally to the following coupled amplitude equations

9B (4/3)&EB - (u/3)B - Zﬂ(Ach + Bch) (71

IeA 2:‘%:\ -g4A - 21 (AdCB - BaCA). (72)
Let us discuss some properties of these equations. 1)Setting B=0 the
nonlinearity in the A equation vanishes. The contrary is not true.
2)The equations are invariant with respectto { >-{ , B>-B , A> - A, with
respectto;>-{ ,B>-B,A> A, and with respect to{ > { ., B> B ,A > - A.
They reflect three invariances ) {> - , 121, ¥=2>-¥Y,0->-0 , () (> -7,
>0 . ¥>Y¥ 6>-0 andii) >, n>Um) , ¥ >-¥, 6 06>06
of the basic equations (66) and (67), respectively.
3)The linear stability analysis of the conductive state A=B=0 yields that the
amplitudes A and B become unstable at different control parameter values:
A at a squared reduced wave number q 2= -u/4 and B at q2= -u/2. Going back
to the non-rescaled variables this implies that A becomes unstable at
at Co(k) = -412(1+k%/272) and B at Cp(K) = -412(1+k2/72). Thus for C < C,
the amplitude A becomes unstable first and drives via nonlinearities the
amplitude B to finite values.
Work on the nonlinear solutions of these equations is in progress.

8. ANALOGY TO A GEOPHYSICAL PROBLEM.

Let us now turn to the geophysical problem mentioned in the intro-
duction which is motivated by considerations of Davis et al. (1985):
a tilted water-filled sandstone layer embedded in shale under the influence of
a vertical temperature gradient. Now we show how the difference in the
thermal diffusivities of shale.xg, and fluid-filled sandstone,x, are in the case
of stationary flow analogous to an external temperature difference between
the boundaries sandstone-shale. In that case the temperature gradient along
the boundaries is aCT = T,Gsiny while the one normal to the boundaries is
c)nT = £T,G cosv. Here ¢ = «g/x.These boundary conditions come from the
fact that the temperature and the normal component of the heat fluxes have
to be equal at the boundary standstone-shale.
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Using these boundary conditions and eqs. (1) - (14) one finds the
following stationary flow solutfon

ug(n) = (e-1) cote E(y,n) (73)

where

E (y,0) = v sinh(y(n-1/2))/cosh(y/2) if G>0

(74)

E(y,m) = -yl sin(lyl(n—1/2))/cos(|y|/2) if G<0,
and y2= ToGsindo. We remark that this flow solution vanishes, i.e. ug=0. if
either the thermal diffusivities x and xg of the fluid-filled sandstone and the
shale are equal or the porous layer is vertical.

Comparing this stationary flow solution with the one found in eq. (29)
one finds as condition for equivalence of both flows

AT tang sino -2lyl (e-1) tan(1yl/72) if G<0 (75)

AT tany sinp = 2y (¢ -1) tanh (y/2) if G>0 . (76)
Via (75) and (76) we can map the results for the geophysical problem to the
system with externally applied AT whenever the flow is stationary and the
layer is tilted (¢ nonzero and not equal to n/2). This holds in particular for
our theory of Taylor dispersion. In nature ¢ is typically between .8 and 1.2
(see e.g. Davis et al.(1985). Thus the sign of the equivalent AT depends on the
girection of the geothermal gradient and the value of ¢-1.

9. CONCLUSIONS AND PERSPECTIVES.

To summarize our findings:
1) For the system described in Section 2 we calculated a nonlinear flow
solution and gave an upper bound for the stability of this solution.
2) We studied Taylor dispersion in that flow and found that the dispersion
coefficient is of the order of the thermal diffusivity of the fluid filled porous
medium.
3 We discussed for the case of zero AT the stability of the conductive
solution and found that the vertical layer has a critical zero wave number
instability. This is no longer the case for the inclined layer. Beyond this
nonlinear evolution equations for the vertical layer were given.

To the future work:
1) We have also derived nonlinear evolution equations for the tilted case.
Then a different scaling is used, since the nonlinear basic equations are no
longer invariant with respect to k= -k. These results will be discussed in
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detail elsewhere. In particular the problem of the distinguished limit for
$>7/2 is of interest.

2) The stability analysis of the flow solution for the case of nonzero AT has
to be carried out.

3) An extension our theory of Taylor dispersion to the case of bulk fluids
(without the porous medium) has to be discussed ( Linz and Woods, in prepara-
tion).
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Behavior of a Fifth Order System of ODE’s with
Intermittency

by
N. Platt

Abstract

A fifth order system of ordinary differential equations is studied as
control parameters are varied. The system displays an intermittency
akin to type II interm’ttency. The intermittent behavior of one of the
variables is characterized by random switching on and off of the ac-
tivity. Fixed points of the system are found and their linear stability
is studied both numerically and analytically. Different characteris-
tics of the chaotic attractor are presented through time series, phase
plots and Poincare sections. Numerical study of the statistics of the
intermittency include the average length of the laminar phase near
the intermittency threshold, histograms of the length of the laminar
phases near the onset of the intermittency and the lacunarity of the
autocorrelation function.

1 Introduction

In this presenta‘ on we are interested in a dynamical system which ex-
hibits a peculiar behavior characterized by some variables intermittently
turning themselves off and staying inactive for a considerable amount of time
and later having a burst of activity. In general, intermittency in a dynamical
system is characterized by a random burst of activity in a system already
undergoing some periodic oscillations. Figure 1 shows a typical time signal
obtained in a dynamical system with intermittency. This is to be contrasted

with Figure 2 showing a time signal obtained in a dynamical system under
consideration.
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2 Governing Equations

We follow the presentation given by Spiegel! to obtain a dynamical system
with intermittency shown in Figure 2. Consider a mechanical system with 2
degrees of freedom driven by a force derived from a time-dependent potential
and subject to a drag force. Then equations governing the motion are

. ov

Eo= - v (1)
" v .
o=~y e (2)

where ¢, v are constants. The time dependence of V enters through a time

dependent parameter z, V = V(z,y,2). We take the following differential
equation for z

= —e(z+a(a® +y7 1)) (3)

where a is a constant. We take a special case of the generic potential given
by Thom? and obtain the following parabolic umbilic

1 1
= 1"+ +y2’ - 2" +47) (4)
Thus, we arrive at the fifth order system of differential equations
=D
= —z% - 22y + zzx —evp
= q

= —y’— 2%+ 2y - evq
= —e(z+a(a* +y* - 1))

o =

N . @, 8

9

Here, a, v, € are constants and we restrict them to be positive. If we set
z = 0, p = 0, then the third order system in (q,y, z) separates out. This
system is equivalent to a Lorenz system® under a suitable transformation of
variables®. If ¢ = 0 then the ? equation simplifies to z = const and thus we
have a Hamiltonian system with 2 degrees of freedom where H is given by

1
H=V+;2—(p2+q2) (10)
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3 Fixed Points

In preparation for the study of the linear stability of the system, we look
for the fixed points of the dynamical system. They satisfy

p =0 (11)

g =0 (12)

a(—x? - 2y + 2) 0 (13)
P — ¥+ zy 0 (14)
z+a(z?+y2-1) 0 (15)

Two cases arise:
ase 1: ¢ #0
Then the equations of the fixed points can be written as

r = +/z-2y (16)
z = —a(z?4+y*-1) (17
~(14+2a)y® +3ay’+(2+a)y—a = 0 (18)

These equations were solved numerically using Mathematica for various val-
ues of the parameter ¢ > 0 and four real fixed points I-IV were found with
fixed points I, IV and II, III related by equation 16.

Case2: £ =0

In this case we obtain the following fixed points

a a
= g z = F.' .
(z=0,y T+a’ 1+a) ixed Point V
a a
=0 = — z = Fix int
(z Y \/1+a’ 1+a) ixed Point VI
(x=0,y=0,2z=4a) Fixed Point VII
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4 Linear Stability Analysis

To study linear stability of the fixed points we obtain the Jacobian of the
system

0 -322-2y+2 0 -2z —2aex

1 —ev 0 0 0

VxF=|0 -2z 0 -3y’+z —2aey (19)
0 0 1 —ev 0
0 z 0 y —€

and examine its eigenvalues at various fixed points X,.
If £ = 0 then the eigenvalues X satisfy

(Mev + ) — 20+ 20 (e + A (=342 + 20— A(A+ e»))) =0 (20)
Substituting for the fixed point VII, we obtain

(e+ A)(Mev+Xr)—a)*=0 (21)
Thus,
M = —€ (22)
—ev — Vet +4a
Ag‘a = i 2 (23)
—ev + Vetv? + 4a
Mg = ——— (24)

Hence, for a > 0 fixed point VII is always unstable. Similarly, it can be
shown that fixed point VI is always unstable if a > 0.

Stability of the rest of the fixed points was determined numerically by
Mathematica for various a > 0, v > 0, € > 0 and is summarized below:

o Fixed points II, III are always unstable

o There exists ¢, ¢; with €3 < ¢; such that

€
Fixed Points I, IV unstable ! Fixed Points I, IV stable

Fixed Pt V unstable 162 Fixed Pt V stable
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Numerical experiments on the dynamical system with initial conditions
z = 0.01 and the rest of the variables set to zero produce the following
diagram:

€1 .
Intermittency Fixed Pt I Attracts

€& Fixed Pt V Attracts

Thus, the threshold of the intermittency in the dynamical system is convrolied
by the stability of the fixed point V and the parameter ¢ when the fixed point
V is losing stability is going to be denoted by ..

5 Intermittent Regime

For further studies we fix a = 6.5 and v = 4.125 and study the resulting
system in more detail near the intermittency threshold e..

Numerically, we obtain the following values for the fixed points and crit-
ical values of e:

€ = 0.825
€2 = €. = 0.441279
(r = —-0.82,y = —0.65,z = —0.62) Fixed Point |
(z = ~0.76,y = 0.45, z = 1.47) Fixed Point II
(r =0.76,y = 0.45,2 = 1.47) Fixed Point III
(z =0.82,y = —0.65,z = —0.62) Fixed Point IV
(xr =0,y =0.93,2 =0.87) Fixed Point V
(r =0,y = —0.93,z = 0.87) Fixed Point VI
(t=0,y=0,z=06.5) Fixed Point VII

Table 1 lists the dimensions of the unstable manifolds ot various fixed
points at the intermittency threshold ¢, = 0.441279.
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Fixed Point | Dimension Eigenvalue
LIV,V 2D complex conjugate
IL, 111 1D real
VI 3D complex conjugate + real
VII 2D both real

Table 1: Dimensions of the unstable manifolds at ¢,

Since the threshold of the intermittency is determined by the fixed point V
becoming unstable, and its occurs as a pair of complex conjugate eigenvalues
cross the imaginary axis, we conclude that this dynamical system displays
intermittency similar to type II intermittency. The main distinction is that
in a standard definition of type II intermittency® the limit cycle, not a fixed
point, becomes unstable as a pair of complex conjugate Floquet multipliers
leave the unit circle in the complex plane (This is equivalent to a couple of
complex conjugate eigenvalues moving across the imaginary axis).

Figures 2-4 show the time series of z, y, z and Figure 5 shows the broad
band power spectrum of the signal z. The time series of z is characterized by
the intermittent switching on and off of the signal. Here, x spends approxi-
mately 2/3 of its time in the laminar phase. From Figures 3 and 4 we conclude
that in the y — 2 plane the dynamical system exhibits a Lorenz-type chaotic
behavior, spending most of the time circling around either fixed point V or
VI with random jumps from one to another. Unlike a pure Lorenz system,
we note that fixed point VI has an extra unstable manifold when compared
to the fixed point V with a positive real eigenvalue. Hence, the dynamical
system spends most of its time in the vicinity of the fixed point V.

Figure 6 shows the z — p phase space plot. This plot is especially interest-
ing since it describes the behavior of the system during intermittent bursts of
activity (in the laminar phase, ¢ = p = 0). Figure 7 depicts the y — z phase
space plot. It shows two characteristic Lorenz type ears. Unlike the Lorenz
attractor, one of the ears is traversed by the solution much longer than the
other (see explanation in the previous paragraph). In addition, there are
some extra curves of motion imposed on top of the Lorenz attractor. We
believe that they correspond to the intermittent excursions of the dynamical
system during bursts of activity in the  — p plane. Figure 8 shows the phase
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space plot in the £ — z plane. Here, the laminar phase corresponds to the line
z = 0, and additional curves capture the dynamics of the chaotic phases.

Let us briefly describe the dynamics in the £ — p plane. Treating 2 and y
as free parameters, we find the following governing equations:

z = p (25)
) = —22 4 (2, — 29,)T — evp (26)

Stability of the fixed point (z = p = 0) is determined by the eigenvalues

—ev k /22 + 4(z, — 2

/\1.2 = 2+ ( > yO) (27)
Thus, (z = p = 0) is stable if and only if z, — 2y, < 0. Close to the fixed
point V, z, — 2y, is negative. Thus, fixed point (r = p = 0) is stable. As
the trajectory spirals out of the fixed point V along its 2D unstable manifold
it reaches a point where 2z, — 2y, becomes positive and thus (z = p = 0)
is unstable. As the solution traverses the spiral, the farther away from the
fixed point V the trajectory is located, then the longer z, — 2y, remains
positive. Eventually, the solution either jumps to another ear of the Lorenz
attractor and the process starts all over again, except much faster, or there
is an intermittent burst of activity in the £ — p plane. After that burst of
activity, the trajectory is reinjected back close to the fixed point V (the least
unstable fixed point), and the whole process starts all over again. Thus, the
length of the laminar phase depends on how close to the fixed point V the
solution reinjects itself and the number of times the solution jumps from one
ear of the Lorenz attractor to another without significantly departing from
the fixed point (z = p = 0) in the = — p plane.

Figure 9 shows a natural log-log plot of the average length of the lami-
nar phase vs distance from the critical value of the parameter . The most
surprising feature of this plot is that it seems that the average length of the
laminar phase does not approach infinity as ¢ — ¢, ®%. One possible expla-
nation for that phenomena is that as e — ¢, the total length of the laminar
phase diverges. Hence, it is possible that there is a range in the parameter
space close to ¢, where the average length of the laminar phase stays almost
constant, but the length of the chaotic phase is rapidly decreasing. The slope
of the straight line in Figure 9 is approximately —0.64.
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Figure 10 depicts a projection of the Poincare section of the attractor onto
the z — p plane at € = 0.44. Here, the cutting plane is y = 0.93 and y > 0.
This Poincare section describes the behavior of the attractor during chaotic
phases (z = p = 0 in the laminar phase). Figure 11 depicts a projection of
the Poincare section of the attractor onto the y — z plane. Here, the cutting
plane is z = 0.05 and £ > 0. This Poincare section also depicts the behavior
of the system during chaotic phases. In Figure 12, we show the Poincare
section projection onto the x — p plane. Here, the cutting plane is 2 = 0.87
and z > 0. The laminar phase corresponds to the dots located at the origin.
Figures 13-16 show additional Poincare sections.

6 Lacunarity

We consider a statistical moment, C, on a fractal set that depends on a
separation scale [ 7. A self-similar fractal set may be expected to satisfy the
scaling law

C(l) = o=1C(pl) (28)

where p, o are real numbers. One of the particular solutions is
Co(l) = Al (29)
where A is a constant, d = In o/ In p. The general solution is

C(h) = 'x(2x) (30)

where P = In p and x is a periodic function of period 1.
We apply the above to the autocorrelation function of the time signal z?
given by

C(l) = Jim T/ 22(t + 1)t (31)

Figure 17 shows a In-In plot of the autocorrelation function at ¢ = 0.441279
and Figure 18 is a blow-up of the same. The indicated line has a slope
d ~ —1.1. Also, periodic oscillations are clearly present in the plot, but their
period seems to decrease. Figures 19 and 20 show In-In plots of the autocor-
relation function as parameter € is decreasing. The slope d is increasing as
parameter € is moving away from the critical value ..

327




7 Histograms of the length of the laminar
phase

Figure 21 show In-In plot of the histogram of the length of the laminar
phases vs. number of phases at the critical value ¢ = 0.441279. Smoothing
average have been applied. The slope of a straight line is approximately
—3/2. Figures 22-24 depict histograms of the lengths of the laminar phases
at various values of the parameter ¢, as indicated. It is interesting to note
that the slope is decreasing as ¢ is moving away from the critical value.

8 Conclusions

In this report a fifth order system of differential equations with intermit-
tency has been investigated. The nature of the intermittency (type II) was
identified. All fixed points of the system were found and linear stability anal-
ysis performed. Phase space plots and Poincare sections have been employed
in an attempt to describe the physical nature of the intermittency and the
structure of the chaotic attractor. An interesting feature of the dynamical
system relating to the average length of the laminar phase was discovered.
It seems that the average length of the laminar phase does not approach
infinity as € — ¢, (or at least it has an almost constant plateau for some
range of parameter € near €.). Some analysis of the autocorrelation function
of the signal and histograms of the lengths of the laminar phases has been
performed.

Future work should resolve the point raised about the average length of
the laminar phase near the threshold of the intermittency. Also, additional
work is required for a closer examination of the lacunarity of the autocorrela-
tion function. Another avenue worth investigating is to look for a statistical
model describing the intermittency.

Acknowledgement: I would like to thank Edward Spiegel for his guid-
ance and help in dealing with this problem. Most of the numerically intense
computations were performed at the Center for Fluid Mechanics, Turbulence
and Computation of Brown University, Providence, RI.
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NIFFUSION IN POISEUILLE FLOW

Wendell T. Welch
Department of Applied Mathematics
University of Washington
Seattle, WA 98195
August, 1990

Abstract

Diffusion of a passive additive in Poiseuille flow in a pipe is studied. Exact and
asymptotic equations are derived for €, the average concentration over a cross-section.
The asymptotic equations contain higher derivatives than the simple diffusion equation
derived by Taylor. These higher order terms may explain the asymmetry in the
concentration profile observed experimentally. The asymptotic equations are solved
for ¢ and the results compared with Taylor’s solution.

1. INTRODUCTION

Using physical reasoning, Taylor (1953,1954a) derived and solved the following dif-
fusion equation for €(z,t), the cross-sectionally averaged concentration of a passive
additive diffusing in a laminar pipe flow:

[3, + ﬂ@, - 013:] E(Z,t) = 'q(a:,t). (1)

Here, % is the average fluid velocity in the z-direction, C; is a coefficient and 7 is
a source term. Keller (1989) has rederived this result by a more systematic method
which yields a generalization of (1) containing third derivatives. We shall present this
derivation, evaluate the coefficients which occur in it, and solve it.

The basic mechanism is the combination of radial diffusion with advection due to
a parabolic velocity profile, which spreads out the additive longitudinally. (Longitu-
dinal diffusion is also present, but its effect is very slow.) Taylor assumed that the
radial diffusion happens so quickly that the concentration across each cross-section
could be considered uniform at any given instant, and thus he obtained analytically
a concentration profile which is symmetric about the centroid of the fluid motion (a
point travelling with the mean speed of the fluid). Such a Gaussian profile, however,
is only observed experimentally after hundreds of pipe diameters down the pipe; at
earlier times the profile is distinctly asymmetric. Thus Taylor’s results seem to apply
only at large times.
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By assuming that the time scales of radial diffusion and longitudinal advection
overlap, we have relaxed Taylor’s major assumption and derived an asymptotic equa-
tion governing €. The distinctive feature of this equation is that it contains derivative
terms of higher order than in (1); for example, to order ¢* (where € is an aspect ratio
of the flow) the asymptotic equation is:

[6, + EB, - 018: — Cza:ag —_ 036:] E(:B,t) = a(:c,t). (2)

The coefficients C;, C, and C; depend on the variation in fluid velocity across the
pipe. We have solved (2) for various cases which incorporate some or all of these
higher derivative terms and have obtained an asymmetric concentration profile. This
profile should agree with experiments at times much earlier than Taylor’s solution.

2. FUNDAMENTAL EQUATION

Let us consider a pipe parallel to the x-axis, with a cross-section D of any shape in
the y, z plane. Let u(y, z,t) be the z-component of the fluid velocity within the pipe,
and let ¢(z,y,z,t) be the concentration of a passive additive in the fluid. (Note: we
have assumed that the fluid is incompressible by requiring u to be independent of z.)

Suppose that c satisfies the following diffusion equation and boundary condition:

(8, + ud, — B,ky8, — Ok, 0, — 8,k 8,)c=q, (y,2)€D (3)

(nyky0y + n;k.0,)c=0, (y,z)€ 8D (4)

where ny and n, are the y and z components of the outward normal to D. In (3) ¢ is
the sum of a source distribution ¢, and an initial concentration c,:

q=QJ(zv'!hzvt)+6(t)co(z’y)z)- (5)

where ¢, is non-zero only for t > 0*. We also assume that ¢ = 0 at ¢ = 0~. Here
k2, ky, and k, are the diffusion coefficients in the three directions and are functions
of (z,y, z,t); n, and n, are the components of the unit outward normals to §D. We
denote by f(z,t) the average over a cross section of any function f(z,y, z,t), and by
f' = f — f, the deviation from the mean. We also write f' = Pf, where P is a
projection operator.

We would first like to obtain an equation for ¢, and thus we divide each of u, k, ¢,
and ¢ in (3) into an average and a variable part. Thus we can rewrite (3) as:

(L+V-Ar)(c+c)=q9+4¢ (6)
where L,V , and the transverse diffusion operator Ar are defined by:

L =0, +3d, — 8,k.0., V =40, - 8,k.8,, Ar=08,k,d,+ 8.k 8,. (7)

337




Taking the cross-sectional average of (6) and simplifying yields:
Le+ Ve = q (8)

where the term Ar(g+ ¢') drops out because of the boundary condition (4). We can
then subtract (8) from (6) to give the following equation for ¢':

(-Ar+ L+ PV)d =4 - Ve (9)

(The operator P always operates on everything to its right.) Solving (9) for ¢’ and
substituting into (8) finally gives an equation for &:

[L+V(Ar-L-PV)'V]e=g+V(Ar—L-PV)'¢. (10)

Note that (10) is an exact equation for €. To use it, we make the approximation
(verified through experiments) that L+ PV is small compared to Ar. More specifically,
for a circular pipe of radius @, let [, be a characteristic length of pipe travelled by the
fluid. We are interested in times such that:

€

]

& e

<1 (11)

and we choose length and time scales such that ¢ = O(1) and @ = O(1) (or equiva-
lently, 8, = O(¢)). Therefore, 8, = O(¢) and 8,, 8, = O(1). If we also assume that
kz, ky, and k; are all O(1) and that all perturbation terms are O(§) where § < ¢, we
see that:

L=0(e) + O(e?), V =0(ed) + O(e36) < O(e) + O(¢?), Ar=0(1).  (12)

Thus we can rewrite part of the coefficient of ¢ in (10) and expand it in a binomial
series:

1

V(Ar — L - PV)? =V [(1- LAF' - PVAZY) Ar]”

= VAZ! {1 +(LAF + PVAFY) + (LAF + PVA;‘)2 ¥ } (13)

Substituting this expansion into (10) yields our basic asymptotic PDE. If we assume
that k., = ¢’ = 0 and keep terms only to O(e®), we obtain:

[0 + b, - 8.%.0, + wd, A7 w'o,

+u'0; A7 (0, + 0. ) AT w'd; + wd, Ar' Pu'd. A7’ w'd,| T =7 (14)
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We can simplify this equation further by recalling that v (and thus u') is indepen-
dent of z and by assuming that u’ and k. are independent of ¢ and z, respectively, to

give:
[0 + 78, — (Fz — wAF'w) 82

+(W' AT AT u)B20, + (WA TAL Y + u'A;lPu'A;‘u')ai] T=7

(15)

Because 7 is not affected by A7!, we can pull it outside the first coefficient for 83.
Then, introducing a moving coordinate system, defined by ¢ = z — ut, we can write:

[0 — (R - wiF'w) 82 + (wAF AFW) 820, + (wAF PwAT™W) 8] 2(é,t) =7
(16)
This coordinate system moves with the mean speed of the fluid, i.e. the speed in the
z direction averaged over a cross section.

Equation (16) is our basic asymptotic equation for € in pipe flow. From ¢(z,y,2,07) =
0, we obtain the initial condition:

%(¢,07) = 0. (17)

Then we can solve (16) for ¢ and substitute back into (9) to obtain ¢/, again assuming
L + PV « Ar and expanding as before.

Let us now apply (16) to the specific case of Poiseuille flow in a circular pipe of
radius a. Thus u(r) = ©mqz (1 — 72/a?) and we can calculate all the coefficients in
(16) to obtain:

22 4,2 4,3
o, — E AUz 2 Q@ Uz A2 Q' Upgr a3l - _ -
[' ( * ook, ) % * 258082 %62 * 33,40k ¢ | = (18)

Here we have assumed that:
ky =k, =k., k, independent of z. (19)

As an example, let us calculate the coefficient of the second derivative in (16). We
proceed from right to left, first calculating u':

2 2~ 2
' - r 1 a _ Umaz r
U =U— U= Umqaz (1 — 'a—z-) — w—a; =0 -/;=0 u(r)rdrd0 = —2- (1 - 2;—;) (20)

Now let Az'u’ = w(y, z,t). Thus w is that solution of

Arw =1 (21)
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which satisfies:

Sw

-5;-=0atr=a, and w=0. (22)

The first condition of (22) follows from the boundary condition (4); we require
each of the coefficients in (16) to satisfy (4) so that ¢ will. The second condition is
due to the fact that, by definition, u’ = 0; thus, since w is related to u', it must also
satisfy w = 0.

Using (19), we can rewrite (21) in cylindrical coordinates as:

2
K (6 w law) ! (23)

o trer

Integrating twice yields:

w(r) = { 5[ evcene] dn} +K (24)

where the constant K is determined by imposing the second condition of (22). Car-
rying out this integration yields:

2
—Umaz Umaz Umaz@

_ 2 _ .
() = ook, TR, T T 2dk, (25)
The coefticient of 3} in (16) is thus:
- I — 2 a . u2 az
—~uw=k, — — ! = —mezr__
k: —v'w =k, ) (Mw(r)rdr = k. + 102k, (26)

To simplify (18), let us introduce a new space variable r = (7:: + 5:—5;:1) t. Then
we can rewrite (18) in the form:

& —Z - - q
B = Te + Beger + 8Tgee = 7= — (27)
where we define:
i g, N
T 192k, 0 7 T 288027 T, 4 @lhas’ (28)

192k,
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3. SOLUTION METHOD

We will seek a solution of (27) with g = 0 and with the initial condition

(6,0) = 2(6) = —36(6) (29)

This corresponds to a unit amount of the additive distributed uniformly in a cross-
section of infinitesimal thickness at z =t = 0.

To solve this problem we seek € in the form:
z= / T f(k)eM-or g (30)

Then f(k) is calculated from (29) via an inverse Fourier Transform as follows:

. 1
- 2n2a? (31)

£k = o [ (g, 00 Ml = 5

4. TAYLOR’S CASE

The simplest form of (27) occurs when 8 = § = 0, when it becomes the simple diffusion
equation G.I.Taylor derived in 1953 (€, = T¢¢). Its solution, with initial condition (29),
is

a1 g
o) = YTy (32)
By assuming k. = 0, we can write (32) as Taylor did:
- 1 _£
e(é,t) = Sl ze (33)

aly?

where a = Sodas is the effective dispersion coeflicient of the additive in laminar pipe
flow.

Physically, this corresponds to a Gaussian profile of € vs z, moving with the mean
speed of the fluid and spreading out as ¢ increases. The symmetry of this profile
about the centroid is of special interest. This is due to Taylor’s assumption that
L + PV is negligible in comparison to A7! in equation (10), i.e. that radial diffusion
is much faster than either advection or longitudinal diffusion. He assumed that radial
diffusion would act quickly to smooth out any differential concentration within a
cross-section before advection had a chance to act, or equivalently, that diffusion and
advection occur on such disparate time scales that they can be considered to act
independently. Thus, in this idealized case, we can think of the additive as diffusing
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symmetrically about the stationary point z = 0 with effective dispersion coeflicient a,
and simultaneously (but independently) being advected by the fluid at the mean flow
velocity. This last statement assumes that we can consider all the additive as moving
with the average speed of the fluid. This is because we are dealing only with the
average concentration over a cross-section, and since the radial diffusion is assumed to
be instantaneous, we are effectively reducing the pipe down to a line with infinitesimal
cross-sectional area, in which all of the fluid moves with the average speed of the flow.

Such a Gaussian profile is indeed observed experimentally, but only after hundreds
of pipe diameters have been traversed by the fluid. The asymmetry of the concentration
observed at earlier times can not be explained by formulas (32) and (33); it is precisely
for this reason that we have considered the more general cases which follow, in which
we include the third derivatives in (27).

5. AIRY FUNCTION SOLUTION
Next we solve (27) with # = 0 and § # 0. Thus we must solve the following PDE:
Cr —Cge + 6E££€ = 0. (34)
We note that this case is not motivated by a particular physical meaning, since
in general O(B) = O(§) and thus 8 can not be considered negligible. However, the
solution to (34) can be obtained exactly in terms of Airy functions, and thus we pursue

this case for the qualitative insight it may yield regarding the solution to the more
general equation (27).

Substituting (30) into (34) gives the dispersion relation:
o(k) = k* — i8k® (35)

Thus we can rewrite (30) in the form:

T= 1 ./oo eu‘[k€+ik"r+6k’r]dk (36)

21!'20,2 -00

where we have also used the initial condition (31). This can be transformed to an
Airy integral by letting k' = k — & to yield

1 [de+sa] / ® ilk(e+dr)+6mR) g,

€= 272q?
- L e ) ]
= 227r2a2e ans /o cos |k £+§r + 67k | dk (37)
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where v = . (The sine term cancels out because it is an odd function of k.) Thus,
using the definition of an Airy function, we have:

o€, 1) =2 ] = [f + W] (38)

2r’a (367)8 | (367)%

This solution has been computed numerically and plotted together with Taylor’s
solution on the graphs which follow. These graphs correspond to different values
of time, where time has been measured in terms of the number of pipe diameters
traversed by the mean flow. In each graph, the horizontal axis indicates £ in pipe
diameters, i.e. the number of pipe diameters away from the centroid, so that the
centroid is always at 0. A vertical line has been drawn to indicate the starting point
of the additive (the plane z = 0).

In this computation, the values used for the various parameters were taken from
an experiment Taylor performed using KMnO, in water:

a=.0252cm, k,=k =.7x10° cm?/sec, uUmq, = .527 cm/sec (39)

We can notice several features of these graphs. (All except the last two have been
plotted on the same scale to facilitate comparison.) First, the concentration in the Airy
function solution reaches a maximum to the left of the centroid; this agrees with the
asymmetry we expect from observational data. Second, the maximum concentration
is slightly lower for the Airy case than for Taylor’s. Both of these effects are due to
the fact that we have assumed that L + PV in (10) is small but not negligible in
comparison to Az'. We expect radial diffusion to occur more slowly than in Taylor’s
case, so that advection is felt before radial diffusion has smoothed out all differential
concentration over a cross-section. Thus, in this case, radial diffusion and advection
are not independent, and we do not expect a symmetric concentration profile about
the centroid. (Note that longitudinal diffusion occurs only in the coefficient of G
and has negligible effect, since usually &, < 2 2max 192k, .) We also notice that the profiles
do approach a Gaussian, but only after several hundred pipe diameters have been
traversed by the fluid. This can be seen from the last two graphs at 500 and 1000
pipe diameters, which have been plotted on their own scales to put in perspective
the difference between the Airy and Gaussian solutions. At 500 diameters, one can
still see a difference between the two curves, but at 1000 diameters they are virtually
identical on this scale.

A few comments on the computation are in order. Ai(n) was computed for each

n= —3;{7; by either an ascending series for “small” values of 7, or by an asymptotic

expansion for 5 > 3.7. Since an Airy function oscillates ahove and below zero for
negative values of its argument, the profile of ¢ was ended as soon as it became zero.
The physically meaningless negative concentration given by the solution is possible
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because our original PDE (27) is only approximate (only accurate to order €*), and
thus its solution will not necessarily retain all the physical aspects of the original
problem.

6. GENERAL CASE
Lastly, we consider the full equation
Cr — Tt + Beer + 6T = 0 (40)

(We do not pursue the case &, — T + O, = 0 , because it seems to be no easier to
solve than (40) and does not correspond to a particular physical situation.)

Substituting (30) into (40) gives the dispersion relation:

2 _ ;8k8
a(k) = El'—_[;kz— (41)

Now let us rewrite our general solution (30) in the form:

t= / " f(k)e M dk (42)
Here ke K isk®
] -1 .
(p:d'(k)—T—l_—ﬂkz—‘lkv (43)

6.1 Method Of Steepest Descents

We will first use the method of Steepest Descents to approximate this integral for
large 7. Thus, we will look for stationary points k, of p(k) at which the integrand of
(42) is a maximum. We will then evaluate this integral along a contour on which the
imaginary part of ¢(k) is constant.

To find the stationary points of p(k), we set ¢'(k,) = 0 and solve for k,. This
yields the following quartic equation for k,:

(iB6 ~ i)k} + (2iBv — 3i6)k? + 2k, — iv = 0. (44)

Notice that, for a given physical situation, these values of k, vary only with v; they
do not depend on 7. To simplify matters, we introduce a new variable z, defined by
4 = tk,, and rewrite (44) as a polynomial with all real coefficients:

(B8 — B?v)z* + (36 — 26v)z* + 2z —v = 0. (45)
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Thus in general there will be four complex stationary points for each value of v.
These will be maxima or minima of Re(¢(k)) depending on the contour of constant
Im(p) along which we choose to integrate; that is, each &, will in general be a saddle
point of Re(p(k)).

We could use several methods to solve (45) for z. Although we could use a formula
to solve the quartic analytically, this would be complicated, since so doing requires
decision-making based on the associated cubic and quadratic equations, and this would
have to be done for each value of v. To get around this problem, we look for ranges
of v within which we can solve the quartic easily (without such manual decisions). In
these ranges, then, the four z will have distinctive characteristics (i.e. all complex, or
two complex and two purely imaginary below the real axis, etc). We then develop a
solution for (40) in a piecewise manner, treating each range of v separately.

Once we have solved (45) for the stationary points, either numerically or analyti-
cally, we must investigate the contours of constant Im(¢) which go through these k&,
in the complex k plane. Thus, we must find all values of k for which Im{p(k)} =
Im{yp(k,)}. Using (43) we have:

k? — 6k k2 —i6k3 .
(T—_ﬂ—kT - zk‘v) = (1——ﬂkf- - zk,v) (46)

or, letting k = a + 1b:

B6a® — §a® + 2ab + 386adb? + 286ah? + Bab? —av = kL tk,v (47)
(1 — Ba? + Bb?)? + 43242b2 S\ 1=K ‘

In general there will be two perpendicular contours going through each k,; we
must pick the one to which we can deform the original contour (the real k-axis) of
the solution (42). This will also turn out to be the contour along which Re(yp(k)) has
its minimum value at k, (and hence the integrand of (42) its maximum value at k,).
Further, we may be required to include the effects of more than one stationary point
if two fall on the same contour.

If we know the stationary points and proper contours for a certain range of v, then
we can expand ¢(k) about k, and approximate the concentration in that range by the
following formula from the method of Steepest Descents:

1
- ~ =T(ks)
(¢, ) 7 gk e (48)
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6.2 Results

The zeroes of equation (44) have been calculated for a range of v and are plotted
on the complex k plane on the graph which follows. (This range of v corresponds to
—100 < ¢ < +100 pipe diameters at a time when the mean flow has traveled 100
diameters from the z = 0 plane.) Arrows on these graphs indicate the direction of
increasing v or §.

There are two pairs of zeroes. Stationary points (i.e. zeroes) 1 and 2 are always
complex and have the same imaginary part but opposite real parts. For v < §/8, they
have positive imaginary parts, and for v > §/8, negative imaginary parts.

Stationary points 3 and 4 are more complicated. For v & —6/B, both are complex
and again have the same (negative) imaginary part and opposite real parts. Similarly,
for v »,26/B, both are complex with the same (positive) imaginary part and opposite
real parts. But for the middle range, —6/8 < v < 2§/8, stationary points 3 and 4
are purely imaginary. For —6/8 < v < 0 both are negative; for 0 < v < §/8 one is
positive and one negative; and for §/8 < v < 26/8 both are positive.

The remaining task to calculate an approximate solution for this general case is
to investigate the contours of constant Im(p(k)) for the different stationary points in
each range of v. One should then determine, for each range of v, those k, which are
minima of Re(¢(k)) and thus have contours which are deformable from the original
contour (the real k axis). Stationary points 1 and 2 will in general have different
contours from those of points 3 and 4. Thus they should be investigated separately.
Then, with equation (48), a piecewise approximate solution to (40) can be obtained,
using appropriate stationary points and contours.

6.3 Numerical Integration

The integral in (42) with ¢ (k) given by (43) has been integrated numerically for various
values of 7, and this result is shown together with the Airy and Gaussian solutions on
the graphs which follow. (These graphs are displayed in the same way as the previous
set; all are on the same scale except the last one at 500 diameters, which has been
shown on its own horizontal scale.)

To compute this solution, a cautious adaptive Romberg extrapolation method (also
known as CADRE) was used. As the integrand of (42) will oscillate very quickly for
certain values of v, i.e. those which yield a large magnitude of Im(p(k)), there can be
errors due to cancellation of large terms, and thus these graphs should be regarded as
premliminary only. (Such errors will be most significant at small values of time, when
the exponential damping of the integrand due to —7 x Re(y(k)) is also small.)
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Taking this into account, one can still derive some qualitative insight from the
graphs. First, all three curves agree better as T increases, which is expected, since the
third order terms of (40) decrease in importance as € of (11) decreases (i.e. as time
and 7 increase).

Second, the numerically integrated curve is indeed asymmetric, although this is
difficult to discern from the graphs. For example, the maximum concentration occurs
at approximately -3, -7, and -8 pipe diameters when the mean flow has traversed 25,
100, and 200 pipe diameters, respectively. This asymmetry decreases as 7 increases,
again as expected. ‘

Lastly, the numerically integrated curve lies below both the other solutions for all
7. By conservation of mass of the additive, this means that the additive must spread
out more (i.e. faster) longitudinally than ei.her the Gaussian or the Airy function
theory predicts.

For small 7, then, the Airy function solution has two features which are absent
from the Gaussian profile: it lies under the Gaussian and it has an asymmetry about
the centroid. These features yieid some qualitative insight on the exact profile which
the Taylor theory cannot predict.

7. FURTHER WORK

There are various extensions of this work which suggest themselves. One could per-
form finite differences on the truncated PDE (40) to obtain a numerical solution. A
comparison with experimental data could be performed as well.

In addition to Poiseuille flow, there are other geometries and flows which would
be interesting to investigate. Turbulent flow in a pipe is a natural extension of this
work and was discussed by Taylor (1954b). Laminar or turbulent flow in a layer, in
which the velocity u could, in general, have components in all three spatial directions,
is also of interest and has applications to estruaries. This work could also be applied
to a spherical geometry, with flow radially outward and/or along spherical shells, to
model diffusion of chemicals within and out of a star (Chaboyez, 1990).

Finally, to obtain an ezact solution to a problem with simultaneous advection
and molecular diffusion (as opposed to the approximate solutions found above), a
more simple model could be developed. The solution to such a problem might then
illuminate the physics observed in the more complicated geometries and flows.
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Classification of Similarity Solutions of the
Two-Dimensional Convection Equations

Eric C. Won

0 Introduction and Overview

This project applied a method developed by Sophus Lie for systematically solving differential
equations. E. Galois’ work on solutions to polynomial equations (which started the theory
of discrete groups) served as Lie’s motivation. Well after mathematicians discovered the
quadratic [z = (—b £ v/b? — 4ac)/2a], cubic, and quartic formulas, Abel proved that there
is no general quintic formula. Galois’ work, however, showed how to associate with any
polynomial (of any order) a mathematical object which is now called the Galois group of
the polynomial. The Galois group determines whether or not a polynomial can be solved
“by radicals,” i. e. certain polynomials of fifth degree and higher can be solved ezactly. In
addition to giving a “solvability” criterion, the structure of the Galois group of a solvable
polynomial also tells one how to construct those roots. Galois theory however, is accessible
only after one is quite familiar with the theory of discrete groups and the theory of algebraic
fields.

Lie’s work has led to a theory which is to differential equations as Galois’ theory is to
polynomials: to each (ordinary or partial) differential equation, one can associate a Lie
group which shows one how to, in the case of an ODE (sometimes) reduce the order of the
equation, and in the case of PDE’s:

1. Transform a given solution to another solution, and
2. Find similarity solutions.

We are primarily concerned with similarity solutions to PDE’s. Thus, confronted with
a system of PDE’s, one might naievely use point 2 of the theory to find several similarity
solutions and then use point 1 of the theory to (hopefully) discover new similarity solutions.
This effort would certainly lead one to some similarity solutions of the system of PDE’s,
but if one has not solved all possible similarity equations, how does one know whether or
not one has found all similarity solutions? One might also wonder, since point 1 allows one
to transform a given solution into another solution, whether there is a minimal or optimal
subset of similarity solutions on which one can then use point 1 to generate all possible
similarity forms? It turns out that the structure of the Lie group allows one to find this
optimal subset which greatly reduces one’s work. Thus, the answer to the first question,
roughly, is that if one properly analyses the structure of the Lie group of a system of PDE’s,
then one can find an optimal subset of similarity solutions on which one can apply point 1
to find all others.

Lie’s theory, which is a theory of continuous groups, involves the base manifold of depen-
dent and independent variables and prolongations of the base tangent in the jet manifold of
the differential equation when applied to solving partial differential equations. The theory is
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powerful in the sense that the determination of the Lie group is essentially algorithmic and
one who wishes to apply the theory to find similarity solutions to a system of PDE’s need
not master advanced topics in differential geometry. Writers of several symbolic manipula-
tion programs (MACSYMA, Maple, and REDUCE) have taker. advantage of the theory’s
algorithmic aspects and now have packages available which begin the analysis. These pack-
ages obviate the necessity for one to understand the subtleties of the theory. Rick’s first
lecture gives a brief summary of the theory upon which the packages are based for whose
who do wish to have a sense of what the “black box” does. Part of the algorithm the pack-
ages perform resembles the multiplication of arbitrary polynomials, which is a programming
problem assigned in undergraduate computer science courses.

Nevertheless, let us briefly review a few basics of the theory of Lie groups and Lie
algebras and at the same time give a brief overview of the method before we begin the
discussion of similarity solutions to the two-dimensional convection equations. A simple
example of a Lie group is the z-t plane with vector addition. It is a Lie group essentially
since one can move up, down, left, and right by any amount one wishes and still remain
within the space, and one can also not move at all (+ 0). It is nice to first consider the
plane with addition as a Lie group since it is easy to see its two subgroups, the z-axis
and the t-axis, which are Lie groups as well—on the z-axis one can move up and down
by any amount which includes 0, and likewise for the t-axis. Note that if one allows other
operations, such as rotation or scalar multiplication in addition to vector addition, the Lie
group will have a richer subgroup structure. For the moment, though, let us continue to
restrict our attention to the z-t plane with vector addition.

The transformations described by Lie groups are all finite. It turns out that it is often
quite useful to consider the infinitesimal transformations related to a Lie group’s finite trans-
formations. It is not surprising that whenever derivatives are involved, it is often useful to
consider these related infinitesimal transformations in addition to (and sometimes instead
of) the finite transformations of the Lie group. The infinitesimal transformations for the
Lie group we are considering are 0, and 8,. The mathematical rules this collection of in-
finitesimal transformations obey are no longer those of a group. Instead, these infinitesimal
transformations obey the rules of an algebra. It should come as no surprise, then, that the
infinitesimal transformations related to the finite transformations of a given Lie group are
called a Lie algebra. The infinitesimal transformations which comprise the Lie algebra are
called generators. Thus the generators for the Lie algebra associated to the Lie group we are
considering, the z-t plane with addition, are 8, and §,. It is important to remember that
if one knows a Lie group one can determine its Lie algebra, and vice-versa. If one extends
the operations allowed by our Lie group to include rotations and scalar multiplication, the
generators of the Lie algebra will include {td, — z0,} and {z0,, t0,} respectively.

The Lie group associated with a given system of PDE’s is called the symmetry group of
the system, its related Lie algebra is called the symmetry algebra, and the generators of the
symmetry algebra are called symmetry generators. An arbitrary combination of symmetry
generators will be called a generator.

It turns out that the theory’s algorithm does not directly specify the symmetry group.
Instead, given a system of PDE’s, the algorithm shows one how to compute the symmetry
generators. Thus, we are first given the symmetry algebra, from which we can deduce
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the symmetry group. Let us suppose that a given system of PDE’s has the two symmetry
generators v; and v,. Each symmetry generator gives rise to a way of transforming solutions
to solutions, say ¢, and ¢;. Thus if u is a solution to the system, then so are ¢;u and ¢,u.
So for example, if the system were a single PDE for u(z,t) and v; = 8, and v, = &,, then
tyu = u(z—s,t) and t,u = u(z,t—s) where s is an arbitrary real number. Animportant fact
of the theory is that each possible generator gives rise to a similarity solution. So in general
one would expect that v, gives similarity solution u;, v, gives u,, and the combination
v, + cv, gives u,, where ¢ is an arbitrary constant. Thus since u,, u, and u, are similarity
solutions, ‘

tiug, tiug, tiu,, tuy, tau,, tu, (1)
are similarity solutions as well. The solutions may not all be distinct, though.

The crucial structural property of Lie algebras for the purposes of this project is that
they are closed under Lie dragging, i. e. a given generator must carry/advect/Lie drag any
other generator into some (possibly trivial) combination of generators. Lie dragging, or
equivalently the adjoint of v; by v; is defined by

Adlvi, ;] = v; 4 slvs, Vil + 51, [ve vill 4o (2)

where [+, -] is the commutator or Lie bracket, and s is the arbitrary adjoint parameter. Note
that the adjoint is linear in its second argument, but not in its first. Now typically the Lie
dragging or the adjoint of v; by v; is Ad[v;, v;] = v;, ¢ = 1,2, i. e. Lie dragging or the
adjoint of one by the other has no effect. In this case, the solutions (1) are all distinct, and
one would need to explicitly solve for u;, us, and u,. If, however,

Ad[vy, vi] = v1 + sv, (3)
then one does not need to solve for u, since u, = tou;. This is shown in
Ad[vy, vi+cvy) = (Vi + 8v2) + ovy
since one can pick s = —c which leaves v, only. Thus if (3) holds, then (1) becomes
tiuy, tiuy, titouy, touy, thup, (tru,)

where the group property that the product of two elements of the group is also within the
group has been used. So in this case, one had only to solve two PDE’s to find u; and u,
to obtain all similarity solutions (by using point 1 of the theory on u; and u,;). Adjoint
values like (3), therefore, mean that the optimal subset will be smaller than the full general
set. Indeed in this example with (3) holding, optimal subset is {v;,Vv,} instead of the most
general {vy,vs,v; + cv,}. The adjoint table which displays all adjoint pairs, manifests
most clearly this structure. Thus, the structure evinced by the adjoint table helps one find
the optimal subset of generators. More details can be found in Rick’s second lecture. The
appendix includes an explicit example. We will call this procedure of using the adjoint table
to find the optimal subset of generators whose similarity solutions can be used determine
all other similarity solutions the adjoint reduction and will call a generator belonging to the
optimal subset an optimal generator.
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1 Main Results

The equations of two-dimensional convection are

V¥, + J(¥,V*¥) = —p, + PrV?Vi¥y (4)
pe+3(¥,p) = Vp ()
where ¥ is the stream function and p is the density. We consider an infinite fluid, and there-

fore will not be concerned with boundary conditions. In addition to the general convection
problem, (4) and (5) above, we also examine the high Prandtl number case:

0 = —p,+ VIVIY (6)
pe+J(¥,p) = 0 (7)
and the inviscid case:
Vz\I’t-i-J(‘Il,Vz‘Il) = —pg (8)
p+3(W,p) = 0. (9)

We used the SPDE package which was written for the REDUCE symbolic manipula-
tion program to begin the computation of the symmetry generators for each case. After
completing the calculation by hand, we found the general system, (4) and (5), has five sym-
metry generators and both special cases have seven each. The surprising result, however, is
that the five symmetry generators of (4) and (5) are included in each special case, i. e. five
of the seven symmetry generators of the high Prandtl number case and five of the seven
symmetry generators of the inviscid case are the five symmetry generators of the general
system. Furthermore, the remaining two symmetry generators in each special case are the
same up to a scalar which multiplies the J, part of each symmetry generator.

Table 1 shows our findings for all three cases where a, 3, and v are arbitrary functions
of t. The top five symmetry generators are the five which are common to all cases. The
bottom two, which are enclosed by brackets, “{” and “},” are the additional symmetry
generators for the special cases. Note that the scalars A and B in the 8, term are the
only differences between the high Prandtl number case where A =1 and B = —1, and the
inviscid case where A = 2, and B = 1. The right hand column of Table 1 shows the way to
transform solutions to solutions, which is called the symmetry group action on solutions.

The next step is to perform the adjoint reduction. For the general case, the optimal
subset consists of only two optimal generators: 8, + ¢8, and ¢8, + [B(t)0, + zB(t)0¢] +
[¥(¢)0z — y¥(t)0¢). Their similarity forms and corresponding similarity differential equation
sets are given in Table 2. The appendix gives the details of the computation for the first
generator 8, + c0,.

The adjoint reduction, similarity form, and similarity differential equation for the special
cases are given in Tables 4 and 5 in the same format. The similarity forms are closely
related. The last similarity differential equation set in the inviscid is not included since it
is complicated. All systems in Tables 4 and 5 are nonlinear (except the one not included).
S. Childress reports some colleagues are currently investigating Table 4 case B.1. with ¢=2
numerically with a supercomputer.
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sym. generators group action on solutions
b, ¥ = F(z,y,t —s) p = G(z,y,t - s)
0, ¥Y=F p=G+s
a(t)dy ¥ =F+aft) p=G
B(t)3y + z5(t)0s ¥ = F(z,y - B,t) + 28 p=G(z,y — B,1)
7(t)0: — y¥(t)0e ¥ =F(z~7,y,t) - vy p=G(z —7,y,1)
{ 10, — YOy — Apl, ¥ =2"1F(z,y,A7t) p=A"2G(z,y,27t) }
{ 28, + y0y + 2¥0y + Bpd, ¥ =N NF(\1z,A"1y,t) p=ABG(A~1z,A"1y,t) }

Table 1. Symmetry generators and corresponding group action on solutions. «, 3, and
~ are arbitrary functions of ¢, and X is a real constant. Pr > 1 case: A =1, B = -1.
Inviscid case: A =2, and B = 1.

{ V3, + J(¥, V) = —p, + VIVIY

al
general case pe + 3(T, p) = v,

v = 18; + 20, + a(t)y + [B(t)9, + zB(t)0s] + [(£)0: — y(t)de]
A.l. ¢; #0. Adjoint reduction gives 8, + 8,

{\I, = f(zay)
p =g(z,y)+et

{ I(f,V3f) = —g, + PrV?V3f

c+ J(f» g) = Vzg
A.2. ¢; = 0. Adjoint reduction gives c8, + [3()0, + z8(t)d¢] + [7(t)0: — y¥(t)0y]
¥ =1(82% - Jy7) + f(6,1) . _z
{P =C(§+%)+g(£,y) vhere 4S50 TR
{ Kfee — ndEfeee + Rfee +6 =% — £ 4 Pra?fee
— ¢bge +c(Ffe + €)= ngee
where
1.1 B4
= _— 0 = e = =
~(1) g2 * 72 ®) vy B
d N d,'

o) = Z (B é)= g’

Table 2. Similarity forms and differential equations for the general case.
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Pr > 1 case:

——
I
|
)
+
Y
g
=]

v =00, + 0, + a(t)dy + [B(2)8, + zB(t)0s] + [7(2)8, — y¥(2)Ds]
+ o [t0, — WOy — p0,] + 1[0, + YO, + 2%y — pd,)

A. The cases where ¢; = ¢; = 0 are exactly as in the general case.

B.1. ¢s # 0. Adjoint reduction gives v¢ + cv;
{ — t2c lf(;'- )
pP = +t g(ti- tl)

{ 0 = —ge + V2V?f
0 =—(c+1)g—c(€ge +n9,) + fe9n — fr9e
2. v, alone (c = 0)

C.1. ¢ =0, ¢; # 0. Adjoint reduction gives c8, + v,

{ ¥ = e2ctf(we—ct’ye-—ct)
p =e—-ctg(me—ct’ye—ct)

{0 = —g, + V*V:f
0 = —c(g+£&9: +m9,) +I(f,9)

2. v; alone
{ =y f(2,1)
p =39(2,t)
{ 0 = —g¢+4(1 - 38)fee —46(1+ 4% ) feee + (1 — €*) feeee
0 =g.—feg—2fg;

Table 3. Similarity forms and similarity differential equations for Pr > 1.

360




{ V2, + J(¥, V) = —p,
pe+I(¥,p) =0

v =60, + &8, + a(t)0¢ + [B(£)0, + zB(t)8s] + [7(t)0. — y7(t)8q]
+ ¢4 [td, — WOy — 2p8,) + c1[20, + Y0, + 2%y + pd,]

inviscid case

A. The cases where ¢ = ¢; = 0 are exactly as in the general case.

B.1. ¢; # 0. Adjoint reduction gives v, + cvy

{ ¥ =g f(E, L
p =t"?g(&, k)

—9¢

{_ (_c(£v2f e + 1V fy) +I(f, V) -

¢ —2)g — c(€g¢ +ng,) +I(f,9)
2. v, alone (¢ = 0)

= f(z9)

p = g(:;y)

{ vif—I(f, Vi)
2 _J(f)g)

9:
0

C.1. ¢ =0, c; # 0. Adjoint reduction gives cO, + v,

{ \I, — e2ctf(me—ct’ye—ct)
p = ectg(me—ct,ye—ct)

{ c(gvsz +17V2f'1) - J(f,sz) = 9
c(g — €9¢ —ng,) +I(f,9) =0
2. v, alone
{ ——a:yf( ’ )
P _\/——g(%, )

Table 4. Similarity forms and similarity differential equations for inviscid case.
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2 Shear Flow, Waves, and Instabilities

In this section we briefly solve special cases of one of the similarity differential equation
sets of the general case and interpret the solution. We examine the system A.2. of Table 2
which is rewritten for convenience below:

Kfeee — Kdbfeee + hfee +0 = —% - 5 + Pre? feeee (10)
ge — $ge + C(%f‘ + $€) = Kgg (11)

where &, 8, ¢, and ¢ are also given in Table 2 A.2. We first neglect diffusion by setting
the right most terms to zero and also set ¢ = 0. Recalling the definition of ¢, we see (11)
becomes

d
g: — 7 In(B7)ége = 0.
The method of characteristics suggests the new variable
n= 6 =B(t)z - 1(ty (12)

which is like a transformation to Lagrangian coordinates. If we now use 7 instead of { as a
similarity variable so that the similarity forms are

¥ = l(gzz—iy2)+f(mt)

2 B
z .Y
= cl-+3Z]+
p (7 ﬂ) 9(n,9)
and insert these into (4) and (5), then the similarity differential equation set becomes
- c -
at["'frm + 9] = —Bgy— ; + P"'szmmn . (13)
atdnd 20 = wam (19
By
where & = % + 4. Again neglecting diffusion, we now consider two special cases of this
system.
Setting ¢ = 0 for the first case, we have
Olnfm+0] = —Bgy
g =0

which we can directly integrate. The result is

v o= %[(-’B2 — ) (7) + ay(s - 1)) - S _;(t)y) I’
LHBO)z - 7(t)y) | AC)B(R)z — ¥(t)y)

K K

p = G(B(t)z —~(t)y)

362




where G, H, and A are arbitrary functions of ore argument and we have neglected an
arbitrary function of time in the stream function ¥ which gives no physics. We now set the
arbitrary functions A = G = H = 4 = 0 which gives

¥ = azy
p = G'(ze*)

which describe a shear flow.
If we now restrict 8 and 4 to be constants, (13) and (14) become

c

 Rfpm = _ﬂg,,—:/- (15)
g +2fy, =0 (16)

If we now differentiate (15) w.r.t. ¢ and (16) w.r.i. 7, we have
2
feom=Vim  where =X (17)

which we can integrate to
¥ = AB()z ~ A0 + BAB — 1t + DEBEz ~7(t)) (19
p = —3 4B -2 - BEOz - 1twe+ [ D) + 5y (19)

where again we have neglected an arbitrary function of ¢ in ¥. If we a.djusf the arbitrary
functions A, B, and D properly, they will be zero when ¢ = 0. Thus

2¢
py = "ﬂ" (20)

Now if (20) < 0 then as one moves upwards, density decreases. One would expect this to
be a stable configuration. (20) < 0 by (17) means the system (18) and (19) will exhibit
waves. (20) > 0 similarly shows possibilities of instability.

Appendix The Essentials of Adjoint Reduction by
Example

Here we show how to proceed with part of the adjoint reduction of the general generator of
the two-dimensional convection system. In particular we show how to go from the general

generator
v = a1, + ca8, + £(t)0s + [1(2)3, + 1i(=)s] + [((2)0: — y{(=)04] (21)

where £, 7, and { ate arbitrary functions of ¢, to 8, + ¢d, via the adjoint table, given for all
cases studied in Table A. We will refer to the first five lines of its top two tables.
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v
Vi O, 0, €(t)0w
o, 8, 0p e*d ¢dy
0, 0 9p 0y
a(t)dy 0, — sady 0p §0y
B(t)9, + =H(t)dy 8 — (88, +2f0y) 9, €0y
¥(t)3z — yi(t)de 0 — s(¥0: — y¥0) Bp 37
{ 8, — ¥dy — Apd, : e™*d, ef*d,  e!(1+t0)¢5y }
{ 20z + y0, + 2¥0y + Bpd, o e"B*9, e 2%¢8y }
vj
L 1(2)8y + z7(t)% {()8z — y{(t)0e
O, e*®nd, + ze*% 70y e*?(0, — ye*®(dy
9, n0y + z10% (8. — y(Oq
o(t)0 n0y + 210y ¢8. — y(b.
B(£)8, + z(t)de nd, + =70y (0. — y(dy — 5(B¢)0s
¥(1)8: - ()3 10y +zide + 3(77)de €0, — y(Ba
{  t0,— Wy - 49D, e %nd, + 2t (ti)Bg e (O, — yed (1()By }
{ z0: + y0y + 2¥8¢ + Bpd, - e~*(ndy + z10¢) e~*(¢0. —y(dy) }
Vi
v; t0, — ¥0y — Apl, = ve 20. + y0y + 2¥0y + Bpd, = v7
O Ve + 30, V7
d, ve — 30, v7 —$0,
a(t)0y ve — s{a + ta)0y vr + 5200y
B3, +2B()3s | ve—sthd, +(tB)2Be] i+ (88, +2h0x)
7(t)8z — y7(t)0q ve — s[t38, + (¢7)=04] vr + 3(70z — y70¢)
t0, — ¥ — Apd, Ve V7
z0; + y0, + 2¥0y + Bpd, Ve v

Table A. Adjoint table. General case: omit third table and lines enclosed by {brackets}.
Pr > 1case: A=1, B=-1. Inviscid case: A =2, B =1.
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After first recalling the definition of the adjoint of two generators (2), one should then
study the relevant portion of Table A paying particular attention to where the adjoint
parameter appears. Having familiarized ourselves with the adjoint table, we reason as
follows. Firstly, assume ¢; # 0. Let us drag v by the arbitrary generator 8(t)d, + z3(t)dy
where 3 is an arbitrary function of ¢.

Ad[39, + =30y, 'cl','V]
= [0~ s(88, + zB0s)] + B, + £y + (78, + z7Bs] + [((B: — y(Be) — s(BL)] (22)
= 8 +cB, + (¢ — 3(BO)) + [n8, + =70y — (B8, + z0e)] + [(8: — y(Bs],  (23)
where in (22) we have used the linearity of Ad[-, ] in its second argument, havelet ¢ = c2/c,,
and also have absorbed ¢; into £, 7, and (. Now in (23) let us set the arbitrary function
B=Y=[tp(s0B=n) I we now set the adjoint parameter s = 1 and call E=¢—-(Y0),
then v dragged by Y4, + zY 0y, is '

v=0,+cd, + 0y + (0. — y(dy.
If we now drag v by 20, — yZ9y where Z = [*{ we have
v =3g +c3,, +£a\la.

And if we drag v by Z(t)3y where Z(t) = [*a And adjust s accordingly, we have our
result. Note that the results are unchanged if either ¢, 5, or { were 0. The other optimal
generator for the general two-dimensional convection equations is obtained in a similar
manner, but with ¢; = 0 in (21). Finally, let us remark that it is helpful to have computed
the commutator table before computing the adjoint table.
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