
DTIGAD-A237 905 CT E1111111 11M 1 IIIIII IIIII I1IIII II Ill! IIII

IMPLEMENTATION OF AN EXACT
PENALTY FUNCTION FORMULATION TO

SOLVE CONVEX NONLINEAR
PROGRAMMING PROBLEMS

By

Christopher W. Fowler

A Project Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

Approved:

Joseph G. Ecker
Project Adviser

Rensselaer Polytechnic Institute
Troy, New York

--STR--UTONSTAT TA April 8, 1991

Approved for pu1c r*1ea".; (For Graduation May 1991)

Distrtbution Unlimited

91-04025



REPORT DOCUMENTATION PAGE F ___ ______

='-r _-= N o. " ; !r. P .-.-

1. AGEN.CY USE rCflL ILZV &3if-q) E. PE_ R Z;A rE 3 EPP f'tPE ANQ,7 7AT; S CV

April 1991 Final

4. TrrL AND SL TLE 5. FLNGNG ,Y . zE S
Implementation of an Exact Penalty Function Formulation to
Solve Convex Nonlinear Programming Problems

CPT Christopher W. Fowler

7. PE. F ,iVG CPG.. ,ZA FCN NAMES) AND ACCPESS ES) 8. 2 FC 4Y G ;C:4
Masters Project PEPCTM-Y E
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY 12180

9. S ;NSC N ;-,.'CN Ir7CRIG AGE'JCY .N iYES) AND ACORESS ES) '... . .. •.. ..
Department of Mathematical Sciences FEPCqT Nl,.A-EE
United States Military Academy
West Point, NY 10996

'
2

a cs '5 ur ' C 'AVAIL ;-8L: ;!~ S AEME ' T 
"j .C:T.L,[C' C

UL

V3 8 --. - - #, -) A convex nonlinear programming problem can be reformulated

using an exact penalty function. One such reformulation is proposed by Zangwill in
[11]. The result of this reformulation is an unconstrained problem. Unfortunately,
this nonlinear, convex function is not a continuously differentiable function. Most
computer based algorithms operate on the condition that the functions involved are
differentiable. One exception is the Ellipsoid Algorithm, EA3, by Ecker and Kupfer-
schmid [9]. This algorithm, though demonstrating only linear convergence, is rpbust
in solving problems with nondifferentiable functions. This project examines wh;ther
it is better to solve the original constrained problem or the reformulated unconstrain d
problem, where better is defined as more accurate and faster. After showing that the
reformulated problem can always be solved for a convex situation, comparisons are made
using the ellipsoid algorithm of accuracy of solution and solution time for several
example problems.

____ ___ ___ ___ ___ __ ___ ___ ___ ___ ___ ___ __ - S. N0 .18E. CF PAGES
4. S &-b T -E M, NONLINEAR PROGRAMMING .. .ELLIPSOID ALGORITHM 3 6a-

EXACT PENALTY FUNCTIONS.. .OPERATIONS RESEARCH
OPTIMIZATION.. .CONSTRAINED OR UNCONSTRAINED PROBLEMS

7 .EAYCLASS 'CA iZCN 8. 2 FT LS.i~.NE ZPC'C AP~:A
C F £= C R T C F - t .; P A G E : F . -

Unclassified Unclassified Unclassified ULg..°



ABSTRACT

A convex nonlinear programming problem (NLP) can be

reformulated using an exact penalty function. One such

function is the Li exact penalty function examined by Zangwill

[11]. The result of this reformulation is an unconstrained

optimization problem. Unfortunately, this nonlinear, convex

function is not a continuously differentiable function. Most

computer methods/algorithms are based on the condition that

the functions involved are differentiable. One exception is

the Ellipsoid Algorithm, EA3, by Ecker and Kupferschmid [9].

This algorithm, while demonstrating only linear convergence,

has been shown to be robust in solving problems with

nondifferentiable functions. The problem reduces to the

following question. Is it "better" to solve the original,

constrained problem, or the reformulated unconstrained

problem? Here, "better" is defined as faster and more

accurate. After demonstrating that the exact penalty

formulation will always solve the convex NLP, comparisons are

made, using the ellipsoid algorithm, of accuracy of solution

and solution time for several example problems.
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CHAPTER 1: THE EXACT PENALTY FUNCTION

The convex nonlinear programming problem seeks to

minimize an objective function, f(x), for the n-dimensional

vector Y, subject to a number of constraints, gi(x) for

i=l,2,...,m. Written in standard form, the problem appears

as:

minimize f (x)

s.t. g.(x)0 , i-1,2, m

where f(x) and each of the g,(x) are convex functions.

This constrained nonlinear programming problem can usually be

solved by one of several algorithms. This process, however,

can be difficult and time consuming. An apparently simpler

problem would be to minimize an objective function, subject to

no constraints. A transformation of the constrained problem

can be made, resulting in an unconstrained optimization. One

such reformulation is the exact penalty function presented by

Zangwill in [11]. The NLP reduces to:

min p(x,c) , xER n

where the following functions and terms are defined:

p(x,c) - f(x) +cP(x)

f(x) - original objective function

c - penalty multiplier

P(x) -M m max[g(x) ,O , the exact penalty function



Penalty Function Theory

The penalty function formulation introduces an increase

in objective function value for infeasible points, the

"penalty" added to the minimization problem. So, given a

particular solution point, Xk, if a constraint is satisfied,

gi(Xk)<=O, then the max[g1 (xk),0]=0, and the resulting penalty

to the objective value is (c)*(O)=O. On the other hand, if

the constraint is violated, gi(Xk)>0, then a positive

component multiplied by c is added to the objective function.

The constrained problem has now been reduced to a single
unconstrained minimization. However, this single function has

become complicated and nondifferentiable. A method will be

presented to solve this reformulated problem. First, it must

be shown that this unconstrained problem can be solved, and

the solution of the problem is the same solution as for the

unconstrained problem. Two assumptions are required for the

theorem:

1. x* is the optimal point for the constrained nonlinear

programming problem.

2. SO ( o , where So is defined as the interior of the

feasible set.

The penalty function theorem can then be stated as follows:

THEOREM: Let x* be the optimal point for a convex nonlinear

programming problem and the interior of the feasible set be

nonempty. Then, the convex problem can be solved by a single

unconstrained minimization.

The proof of this theorem can be found at appendix 1. In this
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proof, the penalty multiplier is defined so that convergence

to the optimal solution is guaranteed. The multiplier is

defined as follows:

c- - where:

V z E SI, (z is a strictly feasible point):

- f(x*) -f(z) a - max i [g i (z)I

Since x', the optimal point, is the solution being

sought, an estimate for f(x*) must be made in the calculation

of the penalty multiplier.

Estimation of the Penalty Multiplier

The reformulated unconstrained problem is:

ran f(x) c M min [gi (x) , 0]

However, c cannot be calculated directly. The following

method can be used to make an estimate of the penalty

multiplier:

step 1: find a z, s.t. gi(z)<0, ie: z is strictly feasible.

step 2: calculate a = maxi[gi(z)]

step 3: estimate 0 with:

P1-f'-f(z), where fl - a lower bound on the true objective value

step 4: the estimate for c becomes:

a
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Now, any lower bound on the true objective value will yield

a c larger than the true value of c. The proof of the penalty

function theorem in appendix 1 demonstrates that any value

larger than the true value of c will also cause the penalty

function formulation to converge to the optimal point.

Therefore, the estimate for c as calculated above, will be

sufficiently large to cause the problem to converge to a

solution.

An Illustrative Example

The exact penalty function formulation and solution will
be illustrated by the following example

min (xi-4) 2 + (x2-4) 2

s.t. x1 -2:0

x2-2e0

-x1 , -x 2 0

Graphically, this example can be depicted as shown in figure 1

on the next page. The solution to this simple convex problem

can be taken right from the graph or solved manually using the

KKT method described in [6]. Obviously, the optimal solution

to the minimization of the radius of the circle centered at

(4,4) is x*=(2,2) with optimal value of f(x*)=8. Solving for

the Lagrange multipliers yields the vector: IT-[4 4 0 0]

4



8,2

2,0 Xl

Figure 1

To solve this problem using the exact penalty function

formulation, the problem will be rewritten as an unconstrained

minimization:

min (x-4) + (x2-4) 2+F 4 . max [gi(x) ,0]

and substituting each of the four constraints into the penalty

function. The remaining problem is to find a value for the

penalty multiplier. To begin, select the strictly feasible

point, z=(l,l). Calculations yield f(z)=18 and a- -1.

Substituting all of the intermediate terms into the penalty

multiplier equation yields:

- f-f(z)-1, f'-18-1.19-fl
a -1

To complete the calculation of the penalty multiplier, a lower

bound is needed on the true objective value.
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Duality to Solve for the Penalty Multiplier

One method of obtaining a lower bound on the true optimal

value is to find a dual feasible point. Using the gradient

method in [1] to solve the Lagrangian Dual Problem will yield

a lower bound for the primal problem being solved. For the

example problem, the Lagrangian function is:

L (x, u) -f (x) E . ujg (x)

Then, set up the dual problem:

max O(u), u20

where:

8(u)- infimum L(x,u), X E n

Fortunately, all that is needed for the primal problem is any

lower bound on the optimal value. Therefore, the dual can be

initialized with u=(O,O), thus reducing L(x,u)=f(x). So, to

get a lower bound for the convex primal problem, one needs

only to minimize the original objective function without any

of the constraints.

For the example problem, initializing u=(0,0,0,0), will

result in the problem: min f(x) - min (x1-4)2+(x2-4)2

which has the solution X^-(4,4) with f(R)-f'-O

A value for the penalty multiplier can now be established:

c-19-f'-19
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with the final formulation for the new unconstrained

minimization:

min (x 1-4) 2 +(x 2-4) 2 +19 4.1 max[g,(x) ,0]

NOTE: Knowing that the optimal value for this problem is 8

allows calculation of a smaller multiplier equal to 9. In the

next chapter, both of these values will be used to solve the

problem.
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CHAPTER 2: METHODOLOGY

In [5], [6], and [9], Ecker and Kupferschmid develop and

implement an ellipsoid algorithm for solving nonlinear

programming problems. For a given n-dimensional NLP, the

ellipsoid algorithm generates a sequence of shrinking

ellipsoids. Each of these ellipsoids contains the optimal

point. The volume of the ellipsoids continues to reduce, thus

the algorithm converges to the optimal solution. The version

of the algorithm used in these computations was EA3, which can

be found in [9].

The Ellipsoid Algorithm

The ellipsoid algorithm starts with an initial center

point and initial ellipsoid:

- [ xERI I (x-x° (xx 0 ) 1

where x° is the center point of the initial ellipsoid and Q0

is a symmetric positive definite matrix. This initial

ellipsoid contains the optimal solution (guaranteed if this

ellipsoid contains the entire feasible set). The algorithm

generates sequentially smaller ellipsoids through what is

termed either a phase 1 or phase 2 iteration process.

A phase 1 iteration occurs if the center point of the

current ellipsoid is infeasible. A cutting hyperplane

calculated from the gradient of the first violated constraint

is used to generate the next ellipsoid. A phase 2 iteration

occurs if the center point of the current ellipsoid is

feasible (there are no violated constraints). For this

iteration, the cutting hyperplane is calculated using the

gradient of the objective function. The general form for the
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equation of the cutting hyperplane (where k is the index for

the current iterate) is:

Hk - [xl-Vfi(xk) T(x-xk)-]

where: i= index of violated constraint for a phase 1 iterate

m+l (objective fcn gradient) for a phase 2 iterate

In both cases, the current ellipsoid is cut in half and a
new ellipsoid is generated which includes the half of the

previous ellipsoid containing the optimal point. The volume

reduction on each iteration is dependent on the number of

variables and can be expressed as the ration of volumes of two

successive ellipsoids:

Vol(Ek1) n-i n n

VoI(Ek) - - (n2-1)'1/2

Some example values for the amount of volume reduction on each

iterate are:

n= # of variables qn= volume reduction

2 .77

10 .9511

100 .9950

As the number of variables in the problem increases, the

volume reduction for each iterate decreases. In general, the

fewer the variable that exist, the faster the convergence is

to the optimal solution. In its current form, the ellipsoid

algorithm, EA3, will continue to run until either the optimal

point is found or the current matrix, Qk is no longer

numerically positive definite.
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Function and Gradient Routines

Specific routines exist for coding nonlinear programming

problems to be solved by a specific algorithm. For solving

general constrained problems, the NLP is coded into two

fortran routines, FCN (for function calls) and GRAD (for

gradient calls). These two routines are then passed as

parameters to whichever algorithm/program is being used. For

the example problem started in chapter 1, the function (FCN)

and gradient (GRAD) routines can be found in appendix 3. Each

of the problems examined were likewise coded.

Some additional subroutines are required to solve the

exact penalty function formulated NLP. By it's construction

the reformulated problem has no constraints, yet the

constraint components are included in the objective function.

Also, the ellipsoid algorithm searches for a violated

constraint function before turning to the objective function.

In the case of the reformulated problem, the algorithm need

only look directly to the gradient of the objective function

(since there are no constraints to violate, hence no gradient

evaluation for a violated constraint).

Two additional subroutines FCNX and GRADX were written to

take advantage of the existing FCN and GRAD routines, yet

perform only the calculations needed for the exact penalty

function formulation. FCNX prompts for the original number of

constraints and the penalty multiplier to be used. The

routine then uses the FCN routine for the specific problem to

construct the complete unconstrained exact penalty function.

GRADX uses the gradient information provided in the problem

GRAD routine and constructs the gradient for the unconstrained

objective function. The listings of FCNX and GRADX can be

found at appendix 4.
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Error Analysis

Error versus effort curves are generated for each of the

various problems to trace the accuracy of a solution against

time. The horizontal axis is the effort axis. Effort is

measured by problem state central processing unit (PSCPU)

time. The only time counted in solving the problem is during

the steps of the actual algorithm execution. For the penalty

function problem, since no constraints exist which could be

violated, then there is no need to calculate function values

during iteration. The gradient of the objective function is

required on every iterate so only those calculations are

counted for time.

The vertical axis of the error versus effort plot is

titled "Log Relative Combined Solution Error." The combined

error for each iterate, xk, is calculated as follows:

e(xk) - XI f(xk)-fo(X*) I + Xi I fi(x) I

where x* is the optimal point and the X* are the Lagrange

multipliers at optimality. These error terms are then

normalized to obtain relative combined error terms:

E(xk) e(xk)

e(x 0 )

The logarithms of these E(xk) error terms are then plotted

against the PSCPU times. The error versus effort curves for

the example problem is at appendix 2, page 2.
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CHAPTER 3: RESULTS AND CONCLUSIONS

Sample Problems

Each of the problems examined were first solved as

constrained NLP's using the ellipsoid algorithm, EA3. Then,

using the calculations demonstrated for the example problem in

chapter 1, a penalty multiplier for each was determined. The

problem was then solved as an unconstrained exact penalty

function. The problems examined were:

Table I: Problem Summaries

PROBLEM n= # VARIABLES m= # CONSTRAINTS REF

Example 2 4 N/A

Colville 1 5 15 [3]

BBZ 3 16 13 [2]

Powell 19 2 20 [4]

Fukushima 5 11 [8]

For the example problem, the strictly feasible point used

was z=(l,l). Two lower bounds on the optimal objective value

were calculated for use in determining a penalty multiplier.

The first bound was based on the unconstrained minimization of

the objective function (initial iteration of the gradient

method for solving the Lagrangian Dual Problem). The second

was based on knowledge of the optimal solution. Two

corresponding penalty multipliers were then calculated. The

same procedure was followed to calculate penalty multiplier

values for the remainder of the sample problems. For each of

12



the other four sample problems, the procedure is only

complicated by the larger number of variables in each problem

and the larger number of constraint equations. The

calculations for z and the lower bound on the objective

function were simplified through the use of a Fortran program

by Mike Kupferschmid, AM46:FEASTEST. This program examines a

given point, x, and determines if any of the constraint

equations in the FCN routine are violated. The program also

lists the constraints in order, from closest to being violated

to farthest. From the screen output, the x being investigated

is clearly strictly feasible or not. Also the a value can be

picked right from the rank order of constraints. Results for

these preliminary calculations are shown here:

Table II: Penalty Multiplier Calculations

PROBLEM Z=STRICT FEAS PT F'=LOW BND C=PEN MULT

Example [] 0 and 8 19 and 9

Colville 1 [.1 .1 .2 .6 .5] -61.448 443.56

BBZ3 [.1 .6 0 -1.5 30.62331 41
-3.7 -2.5 -.8
.7 5 0 .6 .2]

Powell 19 [-.5 -.5] -1.9999987 7

Fukushima [0 1 2 -1 10] -353.0495 11

Optimal Value Results

The sample problems were solved using the ellipsoid

algorithm on each of the two forms of the problem (constrained

and penalty function). The best feasible solution point was

13



then found for each solution process and these results were

then tabulated for comparison:

Table III: Optimal Value Results

PROBLEM CONSTRAINED SOLUTION PENALTY FCN SOLUTION

Example 8.000000000000009 8.000000000000000

Colville 1 -32.34867896572270 -32.34867896572270

BBZ 3 30.62330955021475 30.62334552248174

Powell 19 -1.414231127874633 -1.414231127874633

Fukushima -43.99999999999998 -43.99999999999998

The best solution is shown in bold for each of the

problems. In the case of the simple example problem, the

penalty function formulation solved the NLP to the exact

solution of 8. Solution of the constrained problem yielded an

optimal value within 10-15 of the exact solution. For the

problems Colville 1, Powell 19, and Fukushima, both

formulations yielded the same result for the optimal values.

In the case of BBZ 3, the solution of the exact penalty

function formulated problem yielded a solution within 10-5 of

the solution to the constrained problem. These results

indicate that for convex problems, the solution of the

reformulated NLP achieves basically equal results with the

constrained solution.

Time to Solution Results

The other part of the comparison of the methods of

formulation is to see if the reformulated problem can be

14



solved faster. Intuitively, the solution to an unconstrained

problem would be easier or faster to achieve as compared to a

constrained problem. After each problem was solved in each of

the two formulations, the largest time difference between

iterations was calculated, and the results are presented here:

Table IV: Solution Time Results

LARGEST TIME DIFFERENCE (% FASTER)
PROBLEM CONSTRAINED PROBLEM PENALTY FCN SOLUTION

Example 14.6 %

Colville 1 23.9 %

BBZ 3 54.2 %

Powell 19 14.6 %

Fukushima 6.4 %

These results show that in four of the five problems, the

constrained formulation converged to a solution faster than

the penalty function formulation. Only the Fukushima problem

was solved faster in the unconstrained formulation. The error

versus effort curves in appendix 2 support these results. The

plots for Colville 1 (pg 2-3), BBZ 3 (pg 2-4), and Powell 19

(pg 2-5) all show steeper, hence faster, convergence for the

constrained formulation. Only the Fukushima plot (pg 2-6)

shows the unconstrained penalty function formulation

converging at a faster rate.

The solution time results run counter to the intuitive

expectations as to which formulation of the problem should be

faster to solve. An explanation for these results comes from

the manner in which the ellipsoid algorithm solves a problem.

A standard NLP has "Im" constraint equations with the objective

15



function labelled as the "m+l"st equation. Recall, the

ellipsoid algorithm evaluates the constraints until one is

found which is violated.' The corresponding gradient for that

constraint is then evaluated. These function and gradient

evaluations are the timed segments in the effort portion of

the plots. The number of overall function evaluations can,

therefore, vary on each iteration:

1. Best Case: the first constraint examined is violated.

The result is that only a single function and its gradient are

evaluated. Total function evaluations: 2.

2. Worst Case: all of the constraints are satisfied (the
current point is feasible). So, all m constraints are

evaluated. The objective function and its gradient are

evaluated. Total function evaluations: (m+l)+l= m+2.

3. All Others: an intermediate constraint is violated, so

greater than two evaluations but less than m+2 evaluations are

needed.

The exact penalty function formulation requires no

function evaluations from FCN to solve the problem. The

cutting hyperplane is determined based on the gradient of the

only function present, the objective function. However, since

the objective function includes a sum of all of the

constraints (the p(x,c) penalty function), the gradient of all

"Im" constraints plus the original objective function gradient

are calculated on each iterate. The result is "m+l" function

evaluations on each iterate. No variations occur from

iteration to iteration. Graphically, the number of

evaluations per iteration can be shown as:

2 Exact Penalty Forrulation M 1

Figure 2: Function Evaluation Requirements
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Conclusions

The exact penalty function formulation provides an

alternative means to solve convex nonlinear programming

problems. The theorem has been proved (appendix 1) to always

converge to a solution for convex problems, achieving the same

optimal point as when solving the standard constrained NLP,

when analytic solutions are possible. Differences in the

solution can occur due to numerical methods in the solution

algorithm, as seen in the optimal solution results for the

problems examined.

Zangwill presents a method to calculate a sufficient

penalty multiplier to guarantee convergence to the same

optimal point. The theorem also guarantees convergence for

any multiplier greater than the one calculated. However,

this penalty multiplier is not necessarily the minimum

multiplier which will guarantee convergence. For the simple

example problem worked throughout this project, two penalty

multipliers were calculated (9 and 19). The error versus

effort plot showing these two convergence trajectories is at

page 2 of appendix 2. The multiplier 9 was based on the true

objective value of 8 for the problem. However, lower penalty

multipliers will also cause the solution to converge until a

multiplier of 3 is chosen. The plot for convergence using a

penalty multiplier of 3 is also shown on the same error versus

effort plot. The plot shows that the solution diverges from

the true optimal value, while the plots for multipliers 9 and

19 basically follow the same path.

In four out of five test problems, the reformulated

unconstrained problem was solved at a slower rate than the

original constrained problem. Only in the Fukushima problem

was faster convergence achieved by the penalty function

formulation. As shown in figure 2, the penalty function

17



formulation requires that m+1 functions be evaluated on each

iteration. Meanwhile, each iteration of the constrained

problem requires evaluations in the range: [2, m+2].

Therefore, for the reformulated problem to converge faster,

the ellipsoid algorithm must demonstrate worst case behavior

(every iterate, xk, is a feasible point). This worst case

behavior is demonstrated in the Fukushima problem where

virtually every iterate is feasible. In this case, the

ellipsoid algorithm solves the reformulated unconstrained

problem faster. However, this type of behavior in the

solution process is more the exception rather than the norm.
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APPENDIX 1: PROOF OF ZANGWILL THEOREM

In [11], Zangwill states and proves his penalty function
theorem for the concave nonlinear programming problem.
Restated, the theorem for the convex nonlinear problem is as
follows:

THEOREM: let x* be the optimal point for the convex nonlinear
programming problem:

minimize f(x)

s.t. gi(x) 0 , i=l,2,...,m

where x e R" and f and the gi's are convex

and, let S°={xl g(x)<0, i=l,2,...,m) -- interior of the

feasible set
and, assume: S0 is nonempty, and S°=int(S)

then, the convex NLP can be solved by a single unconstrained
minimization

PROOF:

1. define: p(x, c) -f(x) +c M max(g(x),0

then, minimizing p(x,c) yields unconstrained NLP

2. find a c , so that D min [p(x,c)]

ie: p(x*,c-)-minx[p(x,C-j where x*- optimal point

and:

3. by assumption, S° is nonempty so let: z E SO,

s.t. gj(z)<O

define: a-maxi[gi(z)] <0

4. let x' be the optimal point, then define:

P-f(x*)-f(z) and .- i

APP 1, PAGE 1



5. now, given any point w , which is infeasible, finding a

point v , feasible, where: p(v,c)<p(w,c) , is sufficient to

prove the theorem.

ie: minp(x,c-) on S-p(x',c-)-f(x)

-now, for any w infeasible, show
that there exists a v feasible,

V s.t.: p(v, c) <p(w, c-)

-this implies that the minimizing

point for p(x,c over R" must be
Vigure 3.1 in the feasibl set.

6. define v as follows (see figure 1.1): zES 0  w$S

which implies that gve8(S) , and v lies on the line segment

joining z and w

now: vEUJ(S) implies ] set A-[i I g1 (v)-0]

and Vi (EA, gi(v)<O

7. define a function: t (x) -f(x) +FiCA gi (x) , convex

so, since: gi(v)-O, ViEA - t(v)-f(V)+EiEAgi(V)-p(Vc-)--f(V)

8. at w: gi(w) O, ViEA (because w is infeasible)

so i iw) max [gi (w) ,O 01 .i Mmax [gi (w) ,O]1

or: t(W) !p(w,c-)
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* The proof began with premise of showing that p(v,c<p(w,c-)

but: t(v)-p(v,c-) t(v)<p(w,c-)>t(w)

therefore, to complete the proof, it is sufficient to show
that: t(v) < t(w)

10. first show t(z) < t(w):

t (Z) -f (Z) 4EiEA gi (Z) -f (z) + PI Ea gi (Z)

t(z)<f(z)+ - I maxi[gi(z)] , because g1(z)<O for all i

t (Z) <f(Z) + f(x*)-f(z)-ima [gi(z)]
maxj[gi(z) aig

t (z) ff(x*) -1

t(z)<f(v) , since v is feasible, z is strictly feasible

'.t(zt(v) , since t(v)=f(v)

11. now show t(v)<t(w):

rewrite v as: v-Iz+(l-X)w, XE(o,1) , and t(x) convex

-t(v) Xt(z)+(1-X) t(w)

t(v)<Xt(v)+(1-X)t(w) , since t(z)<t(v)

(1-X) t (V) < (1-X) t (W)

*. t (V) <t (W)

12. then x* is the optimal point and the theorem holds

V ca
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APPENDIX 2: ERROR VS EFFORT PLOTS

On the following pages are the error versus effort plots

for the convex nonlinear programming problems examined during

this study. They are included as follows:

1. Simple Example Problem ...................... 2-2

2. Colville 1 .................................. 2-3

3. BBZ 3 ............................ ........... 2-4

4. Powell 19 ................................... 2-5

5. Fukushima ................................... 2-6
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Error vs Effsrt
U., pow 19

Ellipsoid Rl~oriT-h Eq3:COnjS-r3'nqd

l~k~iPrpi 1

LU

LO

0

cu.
PenalUy,

-ini
C3

CrUftj 1r

Contrane

0.00 ~ ~ ~ ~ ~~] 3.804492204 .
T0131 PSCPU T~ime(ec XI1

APP 2, PAGE



Platzil Ica 13 c 1 ~~;- 3=-F4'; -:R

Error vs EFFort
Fukushima

Ellipsoid. RlgoriThm ER3 -Cons tr ained

L.J

c

-r4

--

.00 S02 ~ 505 .509

Total PS3CPU Time (sec)

APP 2, PAGE 6



APPENDIX 3: FUNCTION. GRADIENT ROUTINES

C
Code by Christopher Fowler RPI Troy, NY 12180
C

DOUBLE PRECISION FUNCTION FCN(X,N,I)
C This routine computes a function value for the example
C problem used in the masters project.
C
C variable meaning
C
C I index of function whose value is wanted
C N number of variables (=2)
C X point at which the value is wanted
C

REAL*8 X(N)
C
C--------------------------------------------------------------
Calculate the required constraint function value
C

IF(I.EQ.I) FCN= X(l)-2.DO
IF(I.EQ.2) FCN= X(2)-2.DO
IF(I.EQ.3) FCN=-X(l)
IF(I.EQ.4) FCN=-X(2)

C
Calculate the objective function value
C

IF(I.EQ.5) FCN=(X(l)-4.DO)**2 + (X(2)-4.DO)**2
C

RETURN
END

C
Code by Christopher Fowler RPI Troy, NY 12180
C

SUBROUTINE GRAD(X,N,I,G)
C This routine computes a gradient vector for the example
C problem used in the masters project.
C
C variable meaning
C
C G gradient vector returned
C I index of function whose gradient is wanted
C J index on the variables
C N number of variables (=2)
C X point at which the gradient is wanted
C

REAL*8 X(N),G(N)
C
C ------------------------------------------------------------
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C
C start with the gradients of the constraints
C

IF(I.NE.1) GOTO 2
1 G(l)=1.DO

G (2) =0 DO
RETURN

2 IF(I.NE.2) GOTO 3
G1) =0 DO

G (2) =1.DO
RETURN

C
3 IF(I.NE.3) GOTO 4
G(1)=-l.DO
G(2)= O.DO
RETURN

C
4 IF(I.NE.4) GOTO 5
G(1)= 0.DO
G(2)=-1.DO
RETURN

C
C now calculate the gradient of the objective fcn
C

5 G(l)=2.DO*X(l)-8.DO
G (2) =2. DO *X(2) -8. DO

C
RETURN
END

This is file CONVEX
It contains FCN and GRAD for an example nonlinear programming
problem for the masters project.
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APPENDIX 4: FCNX AND GRADX SUBROUTINES

I. Function Call (FCNX):

BLOCK DATA
COMMON /BOUNDS/ XHIN,XLIN,NIN,MIIN,MEIN
REAL*8 XHIN(50)/50*Z8181818181818181/
REAL*8 XLIN(50)/50*Z8181818181818181/
INTEGER*4 NIN/Z81818181/,MIIN/O/,MEIN/O/
END

C
Code by Michael Kupferschmid and Chris Fowler
C

SUBROUTINE GET$IN
C This routine gets the penalty mult at start of a run.
C
C Variable Meaning
C
C CBAR penalty multiplier
C FREAD system routine for free-format input
C MEPF number of original constraints
C PROMPT routine prompts for input from the terminal
C
C send the penalty multiplier from common

COMMON /EPF/ CBAR,MEPF
REAL*8 CBAR

C
C
C
C prompt for and read number of original constraints

CALL PROMPT('original constraints=',21)
MEPF=O
CALL FREAD('GUSER','INTEGER*4:',MEPF,&l)

C
C prompt for and read the penalty multiplier

1 CALL PROMPT('penalty multiplier=',20)
CBAR=I.D+06
CALL FREAD('GUSER','REAL*8:',CBAR,&2)

2 RETURN
END

C
Code by Mike Kupferschmid and Chris Fowler
C

DOUBLE PRECISION FUNCTION FCNX(X,N,I)
C This routine computes the function value for a
C penalty function problem

C
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C Variable Meaning
C
C CBAR penalty multiplier
C DMAX1 Fortran fcn gives larger values REAL*8's
C FCN original function routine for problem
C I unused; index of the pen fcn objective(=l)
C II index of original fcn whose value is wanted
C MEPF number of original constraints
C N number of variables in problem
C X point at which fcn values are wanted
C

REAL*8 X(N),FCN
C
C receive the penalty mult from common

COMMON /EPF/ CBAR,MEPF
REAL*8 CBAR

C
C
C
C compute the value of the exact penalty function
C objective function

FCNX=FCN(X,N,MEPF+l)
C
C constraints

DO I II=l,MEPF
FCNX=FCNX+CBAR*DMAXI(l.DO,FCN(X,N,II))

1 CONTINUE
RETURN
END

II. Gradient Call (GRADX):

C
Code by Michael Kupferschmid and Chris Fowler
C

SUBROUTINE GRADX(X,N,I,G)
C This routine computes the gradient vector for the
C penalty function problem
C
C Variable Meaning
C
C CBAR penalty multiplier
C FCN original function routine for the problem
C G gradient vector returned
C GC gradient vector of a constraint function
C GRAD original gradient subroutine
C I unused;index of pen fcn objective(=l)
C II index of orig fcn for which gradient needed
C J index on the variables
C MEPF number of original constraints
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C N number of variables in problem
C X Point at which function values wanted
C

REAL*8 X(N),G(N)
REAL*8 GC(50),FCN

C
C receive the penalty multiplier from common

COMMON /EPF/ CBAR,MEPF
REAL*8 CBAR

C
C
C
C compute the gradient of the exact pen fcn objective

CALL GRAD(X,N,MEPF+1,G)
C
C constraints

DO 1 II=l,MEPF
C check whether the constraint is satisfied at X

IF(FCN(X,N,II).LE.O.DO) GO TO 1
C
C constraint is violated; add in CBAR*(natural
C gradient)

CALL GRAD(X,N,II,GC)
DO 2 J=I,N
r, 7, =G (J) +CBAR*GC (J)

2 CGNTINUE
1 COhITUE
RETURN
END
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