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1. INTRODUCTION

Optical bistability refers to the existence of two stable states of

an optical system for a given set of input conditions. It is interesting

physically because it represents a new kind of nonlinear system in optics.

The typical characteristics of an optically bistable system are

illustrated in Fig. 1. A gradual increase in input power produces a

steady increase in the output power or intensity until reaching a critical

value where the output jumps up. On decreasing the input, the output does

not immediately fall sharply but remains on the upper branch of the curve

until the input is reduced to a lower critical value, at which the output

jumps down again. In the region between these two critical points, there

are two stable states for a given incident power. In addition to being

hysteretic, the system also shows switching transitions, usually at both

edges of the bistable region. Also, the state the bistable device

actually assumes depends on the direction in which it traverses the

hysteretic curve, i.e., it has memory.

Now, the diffraction of light by sound has traditionally received a

lot of attention not only because of its physical finesse, but also

because of its effectiveness in modulating a light beam with an electrical

signal, and its versatility in applications of image and signal

processing. For a general understanding of the basic principles of

acousto-optics, the reader is referred to Appendix A, which was developed

in conjunction with the main investigation reported in this writeup.

For about a decade, however, researchers have been investigating other
0

innovative applications of acousto-optics, one of them being the hybrid

acousto-optic (AO) device. Essentially, this is the conventional AC
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device but with a positive feedback incorporated in it. This rather

fascinating application came at a time when engineers and physicists began

to be interested in bistable optical devices in general, namely the

nonlinear Fabri-Perot etalon, the linear/nonlinear interface and multiple

quantum well semiconductor devices.

In what follows, I will first present a short summary of the various

bistable devices mentioned above, with emphasis on the AO bistable device.

In Section 3, the difference equations describing the AO system will be

defined along with numerical simulations to study the system dynamics.

Section 4 will contain a summary of the experimental work done by us to

verify some of the effects of hysteresis and bistability. In Section 5,

we will study some of the characteristics of the underlying dynamical

system using conventional methods, give an alternative explanation of

hysteresis and indicate how to study the behavior of the system for time-

varying inputs.

2. OPTICAL BISTABILITY AND CHAOS

Optical bistability is a field of ever-growing interest because of its

potential applications to all-optical logic requiring a threshold device.

In fact, a large amount of work has been done in the design of

architechtures performing a variety of arithmetic functions in an all-

optical environment (see, for instance, ref. [1]). The first obser ation

of optical bistability was in sodium vapor (2]. Since then, bi.tability

has been observed in different materials and in several types of

configurations. Notable amongst this is the work done in connection with

absorptive and dispersive optical bistability in a nonlinear Fabri-Perot
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etalon (for an excellent analysis, see ref. (3)). While the first effect

is observed when the operating frequency is close to the resonant

frequency of the atoms constituting the Fabri- Perot, dispersive

bistability is noticeable for large frequency detuning in a medium having

a Kerr-type nonlinearity. Optical bistability has also been observed in

nonlinear interference filters made from semiconductors using the

nonlinearities of a ZnS intermediate layer [4]. Theories have been

advanced on bistability and hysteretic behavior of the transmission and

reflection coefficients during optical transmission across a

linear/nonlinear interface, both for grazing incidence [5,6) and for

normal incidence if the nonlinear medium is dispersive as well [7].

Observations of optical bistability have also been reported in multiple

quantum well structures consisting of thin alternating layers of GaAs and

GaxAl1 .-xAs [8]. Other novel bistable devices include one based on beam

self-trapping which eliminates the commonly used optical cavity, thus

removing cavity build-up and decay time constants, and relaxing the

bandwidth requirements on the laser [9].

The phenomenon of AO bistability and hysteresis forms a sub-class of

such effects observed in hybrid optical devices. Notable amongst these is

an electro-optic modulator with external feedback [10). Feedback, whether

extrinsic or intrinsic, is essential to bistability; in a hybrid device,

it is an external electrical signal. Any optical phenomenon that leads to

an output signal that is a nonlinear function of a parameter will exhibit

bistability in the presence of a positive feedback. The AO bistable

device works on a similar principle, and is shown in Fig. 2. If the

diffracted light from an AO device operating in the Bragg or near'- Bragg

regime (see Fig. 2a) is detected by a photodetector, amplified and fed
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back to the transducer driving the AO device in unison with the external

electrical input, a bistable device results (see Fig. 2b) . In Fig. 2,

Vinc, 0vo and WI denote the incident, zeroeth order and first order

electric fields; B is the Bragg angle defined as

B = K/2ko (2.1)

where K, ko denote the propagation constants of the sound and light

respectively in the AO cell, and & is indicative of the sound pressure

through the cell, with &o being proportional to the external electrical

input. A denotes the gain constant of the feedback amplifier. A block-

diagrammatic representation of the experimental setup is discussed later

in Sec. 4.

From a historical perspective along our lines of interest, one of the

first contributions in the area was the demonstration of AO bistability

and the design of an optically-controlled two-channel switch by

Chrostowski and Delisle Ei1]. Self-pulsing and chaos in AO devices, both

bulk and integrated, was later investigated by Chrostowski et al (12] and

Jerominek et al (13] respectively. Optical multistability and

oscillations in hybrid optical bistable systems in the presence of a

delayed feedback was analyzed by Martin-Pereda and Muriel [14]. The onset

of period-doubling bifurcations leading to chaos was also explained by

Hopf et al [152 and Derstine et al (16] for a hybrid bistable system in

the regime where the delay time of the feedback signal is nmuch larger than

the response time of the device. Concurrent with the work on hybrid

bistable systems, there have been an enormous amount of research on chaos

in optically bistable systems in general, and on the nature of dynamical
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systems that can predict chaos. Examples to quote for the former are, for

instance, observation of chaos in laser systems (17,18) and their analysis

[19). As for the latter, work mainly started out in the analysis of the

quadratic map (an excellent reference is the book by Devaney [20]), and

was generalized to other dynamical systems (see, for instance, Grebogi et

al [21] and references therein). Periodic maps, which are pertinent to

our case. having what is called a "topological degree" 0, as well as other

maps having a topological degree 1, have been also studied [22,23],

although approximations to the periodic function have sometimes been made.

The same is true in the analysis of chaos in AO bistability [12), where a

sin2 map has been approximated by a quadratic map.

3. DIFFERENCE EQUATIONS AND NUMERICAL SIMULATION

Referring to Fig. 2a, the interaction process between light and sound

for ideal Bragg interaction may be described in terms of the coupled set

of ODEs

dy 0/dk = -j(&/2)Wl,

d~i/dk = j(&/2)W0 , (3.1)

where 4 (=z/L) is a normalized distance in the direction of propagation of

the light and & is the peak phase delay encountered by the light in the AO

interaction region [24]. The amplitude of the light at z=l ( =1) is then

given by
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'1I = -JVinc sin(&/2), (3.2)

where the assumption made is that the sound pressure (c a) remains

constant during the interaction. If, now, the first-order light is

detected by a photodetector and the resulting electrical signal amplified

and fed back in unison with the external bias &o (Fig. 2b), the effective

scattering the light may be written as

& + & + 2  (3.3)

where is the product of the gain constant 0 of the amplifier and the

conversion efficiency of the photodetector.

Under the feedback action, note that & can only be treated as a

constant if the interaction time, given as the ratio of the laser beam

width and the bulk speed of sound in the AO modulator, is much less than

the delays incorporated by the finite response time of the photodetector,

the RF sound cell driver and the feedback amplifier, or any other delay

that may have been purposely installed (e.g., an optical fiber or a

coaxial cable) in the feedback path. We will consider this case only.

Corresponding to a fixed input (- &0 ), this means that the output W, (or

iy1 1
2 ) will undergo a series of iterations at every instant & is updated

through feedback action. The value of I' 1V 2 4 y after n iterations may

then be written as

Yn+l = sin 2 (&o0 + OYn)/2], (3,4)

where we have assumed Winc = 1 for convenience.
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The steady-state behavior of (3.4) (n-*o) is governed by the relation

y - sin2 [(&0 + oy)/2], (3.5)

and is plotted in Fig. 3 for different values of f. Note that there

exists a minimum value of 0 for the steady-state curve to acquire an S-

shape when plotted as a function of &o. This can be readily found by

differentiating (3.5) w.r.t. &o and setting the derivative to infinity.

It may easily be shown that

> 2 (3.6)

for the steady-state curve to assume infinite gradients. That this

corresponds to the onset of hysteresis may be shown either from the

rigorous theory of dynamical systems (see Sec. 5) or by simple numerical

simulation of (3.4) suitably modified to increase &o in infinitesimal

steps of A&:

Yn+l = sin 2f[((n+l)t& + 1Yn)/2] . (3.7)

This is shown in Figs. 4a,b for 0 = 2.3 and 2.9 respectively. Note that

the accuracy of the simulations critically depends on A&. The area under

the hysteresis curve algo increases with increasing 1, with a reduction in

the values of both the upper and lower thresholds, defined in terms of &o"

We rema:k also that technically speaking, (2.4) denotes an autonomous

dynamical system while (2.7) is an example of a nonautonomous dynamical

system. However, inferences about nonautonomous dynamical systems can be
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made from the autonomous models, to be shown later.

For 0 > 3.0, the plot of Yn vs. n (according to (3.7)) clearly shows,

in addition to hysteresis, controlled oscillations which, as will be seen

later, are due to period-doubling bifurcations (see Fig. 5). Also, the

onset of oscillations depends on the value of A&. Fig. 6 shows a plot of

vs. &o for different values of A&, from where the oscillations commence

[26].

For those familiar with circuit theory, the equivalent circuit of the

bistable device in terms of an electronic Schmitt trigger is shown in Fig.

7. It is easy to recognize that the transfer characteristic of the

Schmitt trigger exhibits bistability and hysteresis when the loop gain is

greater than 1. The differential gain of the AO bistable device may be

defined as Ay/Ac and may be calculated to be

Ay/Ac = (l/2)sin & /[l - (l/2)0sin &1 J A/[l - A01. (3.8)

In terms of circuit analysis, (3.8) denotes a system with positive

feedback, and the system becomes unstable for Aj>l.

We comment, at this point, that in a practical AO system operating

in the so-called "near-Bragg" regime, the interaction between light and

sound occurs in a fashion more complicated than the model set forward in

eq.(3.1). For instance, there are other diffracted orders present at the

output of the AO cell even at Bragg incidence, due to the finite Q of the

cell. The Q paramter is defined as

Q = 2nX 0L/A 2  (3.9)
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where X and A are the wavelengths of light and sound in the AO cell -nd0

L is the width of the AO cell. Typical values of Q range from 5 to 20 in

near Bragg operation. The general interaction equations may be written

as

dn/dt - -j(&/2) (exp [-j(Q4/2) [ inc/ B)+(2n-l)J]}Vn_l

+expj(Q4/2) [ inc/0 B n+(2n+l)-] i n+l ] . (3.10)

where inc is the incident angle; 0B is the Bragg angle (see 2.1)) and

the n's refer to the various diffracted orders.

The steady-state behavior of such a system with positive feedback is

given by the simultaneous solution of (3.10) (with proper boundary

conditions] and (3.3). Note, however, that (3.10) is an infinite set of

coupled differential equations. We restrict ourselves to four diffracted

orders, e.g., -1 < n < 2 and assume inc = -*B" Fig. 8 shows, for

instance, the numerically computed hysteresis curves for the first order

light by changing I and with Q = 20. Notice that hysteresis starts when

> 2, as predicted from (3.6). With increasing 3, the area under

hysteresis loop increases.

We remark that hysteretic behavior is also observed numerically if

the second order light (n=2) is detecued instead. More on this will

follow in the next Section.

4. EXPERIMENTAL OBSERVATIONS

Fig. 9a shows a detailed setup of the hybrid AO bistable device. The

diffracted light is detected by the photodetector of the feedback circuit.
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The feedback comprises a photodetector (see Fig. 9b) and a variable

scaling adder (see Fig. 9c). In order to show the hysteretic behavior of

the system, a unipolar sawtooth signal with a peak-to-peak voltage of 5

volts at a typical frequency of 1 kHz is injected into the scaling adder

after the input buffer stage. This adds in phase with the detected signal

from the photodetector and, as shown in Fig. 9a, modulates the 40 Mhz

signal of the frequency generator which, in turn, drives the transducer in

the AO cell. We may mention that after the detector circuit, a high-pass

filter is employed to block any spurious DC voltage and noise signals (see

Fig. 9b). The DC blocking is required since it otherwise impedes the

useful gain of the feedback signal in the OP AMP amplifier.

For an operating frequency of 40 Mhz for the sound, the effective Q of

the cell, which is a figure of merit for defining the operating regime of

the AO device [24], works out to about 20, which signifies the so-called

near-Bragg regime. This means that, strictly speaking, higher order

diffraction would occur. Figs. lOa-c show the detected output VD from the

first order and the modulation on CO as a function of time, with the

corresponding hysteresis curves VD vs. &o for increasing values of the

feedback parameter 1, which was varied by changing the amplifier gain.

For low values of 1, there is no hysteresis as predicted from the

Lissajous figure in Fig.10a. A slight wrapping (or figure of eight) was

observed in the Lissajous pattern because of distortion in the output

owing to finite-amplitude inputs. As P increases, hysteresis develops,

resulting in clipping of the output. The exact points denoting

transitions in the output (see Fig. 10c) are determined by the threshold

values on the corresponding hysteresis plots. Notice the asymmetry in the

output with respect to the input due to the upper and lower thresholds of
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hysteresis. Fig. 11 shows a plot of the width of the hysteresis curves,

measured as the maximum between the up and down transitions,.as a function

of the feedback parameter 0. Results depict a linear region in which the

device could be operated as a programmable thresholding device.

Fig. 12 shows the hysteretic behavior if the second-order diffracted

light were detected and fed back instead of the first order. A

theoretical discussion of the effect starting from the multiple plane-wave

formalism has been presented in the previous Section. We also monitored

the width of the hysteresis curve as a function of 0 for this case.

Results, plotted in Fig. 13, show an improvement over the first-order case

(see Fig. 11) by an approximate factor of 2, leading us to speculate that

the second-order operation may be more advantageous than first-order

operation for certain applications.

At the moment, we are limited to values of &o for which we cannot

observe the oscillations mentioned in the previous Section, because of

limitations on the maximum RF output from our signal generator.

5. DYNAMICS OF AUTONOMOUS SYSTEM AND EXPLANATION OF HYSTERESIS

In this Section, we will first briefly describe some of the results

from the theory of autonomous dynamical systems with special reference to

eq. (3.4) which describes the AO system with feedback but for a fixed

input &o. We will then present an alternative explanation of hysteresis,

and indicate how to study the response of the system to time-varying

inputs.
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5.1 The Autonomous System

From (3.4) and with the definitions

B - /2x, 0 = &0 /2x, Un+1 = (0/2f )Yn+l, (5.1)

we get

Un+1 - B sin 2 C(O+u n ) 4 f(un) (5.2)

where B and * are parameters. Technically speaking, (5.2) is an example

of a periodic map of topological degree 0 (22, 23].

A point u* is a fixed point of f(u) if f(u*) = u*. Furthermore, u*

is a fixed point of period a if f(m) (u*) = u*, where f(m) (u) denotes the

m-th. iterate of u under the map f(-)

f(m)(x) - fo .... of(x), fog(x) f(g(x)). (5.3)

The ?eriodic fixed point u* of period m is stable if I f (m)] I(u*) I < 1

[20]'. The periodicity and the stability of the fixed points may be

conveniently studied graphically as follows. Fig. 14 shows plots of f,

f( 2 ), f( 4 ) and f(100) over [0,1) with B=O.6 and 0=0.6. The horizontal

axis is indicative of the initial conditions u0 . It is clear that A is the

unstable fixed point of f, and A, B and C are the unstable fixed points of

f(2) The points A through G are the fixed points of f( 4 ), of which D

through G are stable. Thus, f(n) (u 0), 0<u 0<l, will tend to either of

these four points as n gets larger, as shown by the plot of f(100) . The
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points D through G are stable fixed points of period 4.

The dynamics of (5.2) also depends critically on 0. Fig. 15 shows

plots of f, f(2 ), f(4 ) and f(100) over (0,1] with B=0.6 and 0=0.7. Note

that while once again there are four stable fixed points of period 4,

their values are considerably different from the previous case.

In general, the periodicity of the fixed points may increase as B

increases. For instance, for the map (5.2) with B=0.4 and 0=0.2, there is

one stable fixed point and f(n) (x0 ) tends to this value as n-)Ca for all x0 .

The same map for B=0.5 and 0=0.2 has one unstable fixed point for f and

f(2 ), and two stable fixed points for f(2 ) . Thus f(n) (x0 ) for this case

tends to either of these values as n-4o. Thus, the case B=0.4 has a fixed

point of period 1, while B=0.5 has stable fixed points of period 2 for

0=0.2. We remark that for B=0.5 and 0=0.1, f has only one stable fixed

point.

For large n, the trajectory of a certain initial condition may be

readily tracked on the basis of the knowledge of the fixed points and the

graph of f. For instance, it can be easily shown that an initial

condition in the range BE (see Fig. 14), for instance, will assume the

values corresponding to the coordinates of F, D, G and E for n = 101, 102,

103 and 104 respectively. For n = 105 - 108, the process will recur, and

so on.

5.2 Explanation of Hysteresis

The dynamics of the autonomous map as in (5.2) may be used to explain

hysteresis and bistability. As shown in Fig. 16, the curve B sin 2(itu) has

been sketched along with various straight lines at an angle of 450 to the
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horizontal axis. Given a certain value of &( 0 o) in (5.2) corresponding

to a particular input, it is clear that the fixed point can be determined

either by shifting the sin 2 (nu) curve to the left and finding its

intersection with the straight line at 450 passing through the origin, or,

alternately, by appropriately shifting the 450 line to the right. Note

that a certain initial condition, e.g., uo = 0, will settle at the lower

stable fixed point marked A since it is to the left of the unstable fixed

point X. This will continue till &0 (and hence *) is large enough such

that there is only one stable fixed point marked B. This defines the

upper threshold and establishes a new fixed point. When & is slowly

reduced, the output y will be at the point marked C since the new initial

value is to the right of X. This will continue till &o is low enough so

that there is, once again, one stable fixed point marked D. This defines

the lower threshold and the hysteresis is complete.

5.3 Analysis of Time-varying Inputs

In the simplest case, assume that the input (& or 0] is not longer a

constant but a square wave of a certain duty cycle. This case may be

studied on the basis of the maps for 0 = *l and 0 = 02 where *i,2 are the

two levels of the square wave. The procedure involves drawing the maps

(similar to Figs. 14, 15) for each 4 and then finding the "composition"

of the two maps. The result of this composition indicates the nature of

the fixed points, which, in turn, provides evidence of the behavior of the

system when a square wave is applied as the input.
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6. CONCLUSION

In this report, I have tried to summarize some of the aspects of AO

bistability and chaos, putting things in perspective of other advances in

the area of nonlinear optical bistable devices in general. Some of the

experimental, numerical and theoretical work done by us in the area have

been summarized, along with appropriate references to the work of others

and existing theories. I hope that this overview serves as a starting

point for the interested researcher, and as a summary for the experts.
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6. APPENDIX

The ability to modulate light waves by electrical signals either through the

acousto-optic or electro-optic effect provides a powerful means for optically processing

information. In fact, some of the key components in modern optical processors usually

consist of a spatial light modulator. such as an acousto-optic or electro-optic modulator.

which is capable of spatially modulating the light beam. In this chapter. we deal with the

acousto-optic and electro-optic effects. We shall also include some applications of these

devices in signal processing.

6.1 Acousto-Optics

6.1.1 Qualitative Description and Heuristic Background

The interaction between sound and light is usually termed acousto-optic

interaction. An acousto-optic modulator comprises an acoustic medium (such as glass or

water) to which a piezoelectric transducer is bonded. Through the action of a piezoelectric

transducer, the electrical signal is converted into sound waves propagating in the acoustic

medium with an acoustic frequency spectrum which matches, within the bandwidth

limitations of the transducer, that of the electrical excitation. The pressure in the sound

wave creates a traveling wave of rarefaction and compression. which in turn causes

analogous perturbations of the index of refraction. Thus. the acousto-optic device as

shown in Fig 6.1 may be thought to act as a thin (phase) grating with an effective grating

line separation equal to the wavelength .A of the sound in the acoustic medium. It is well

known that a grating splits incident light into various orders (see Problem 13. Chapter 3).

It may be readily shown thar the directions of the diffracted ]iht nside the sound cell are

governed by the following grating equation:

si!Il C , in c + i 0, 11. = 0 . ± 1 = - • 6 . -"mc o .. .

where o: is the angle of ie m h-order diffracted liht beam. C) is the arZi, of
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Figure 1: Basic Acoustooptic device
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incidence, and Ao is the wavelength of light, all in the acoustic medium.. Hence, the angle

between neighboring order as shown in Fig. 1 equals Ao/A in the cell. When measured

outside the medium, these angles are increased through refraction and can be found by

multiplying (6.1-1) by the refractive index n0 of the material of the sound cell. In all

figures in this chapter, pertinent angles are assumed to have been measured inside the

sound cell. Since we really have a traveling sound wave , the frequencies of these diffracted

beams (except the 0th--order beam) in Fig. 1 are either downshifted or upshifted by an

amount equal to the sound frequency due to the Doppler effect, as will be seen later.

Through the relationship between sound wavelength A and sound velocity Vs in the

acoustic medium (A = 21r Vs/11), we can readily see that by electronically varying the

sound frequency 1, we can change the directions of propagation of the diffracted beams. It

is this feature that makes it possible to use an acousto-optic device as a spectrum analyzer,

as we shall see in a later section. The frequencies S1 of the "sound" waves produced in

laboratories range from about 100 KHz to 3 GHz, and these sound waves are ultrasound

waves whose frequencies are not audible to human ear. The range of the sound velocity in

the medium lies from about lkm/s in water to about 6.5 km/s in some crystalline material

such as LiNbO3 .

As it turns out, the phase grating treatment of acousto-optic interaction is

somewhat of an oversimplification in that the approach does not predict the required angle

for incident light in order to obtain efficient operation, nor does it explain why only one

order is generated for a sufficiently wide transducer (L large in Fig. 1).

Another, more accurate, approach considers the interaction of sound and light as a

collision of photons and phonons. For these particles to have well-defined momenta and

energies, we must assume that classically we have interaction of monochromatic plane

waves of light and sound, i.e., we assume that the width L of the transducer is sufficiently

wide in order to produce plane wavefronts at a single frequency. In the process of collision,

two conservation laws have to be obeyed. namely, the conservation of energy and
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momentum. If we denote the wave vectors of incident light, scattered light, and sound in

the acoustic medium by Ro , R+1, and K as shown in Fig. 2, we may write the condition

for conservation of momentum:

l1J+1 =Til o +K (6.1-2)

vV hereI = h/2,r and h denotes Planck's constant. Dividing (6.1-2) by h leads to a more

convenient expression:

+I = ]i0 
+ K. (6.1-3)

The corresponding conservation of energy takes the form (after division by h)

W+I= w +  , (6.1-4)

where w0 , 12, and w+ are the radian frequencies of the incident light, sound, and scattered

light. The interaction described by (6.1-3) is called the upshifted interaction. Fig. 2 (a)

shows the wave vector interaction diagram, and Fig. 2 (b) describes the diffracted beam

being upshifted in frequency. Since for all practical cases I KI<< IRo1, the magnitude of

is essentially equal to l o , and therefore the wave vector momentum triangle as shown

in Fig. 2 (a) is nearly isosceles.

Suppose now that we change the directions of the incident and light as shown in

Fig. 3. The conservation laws can be applied again to obtain two equations similar to

(6.1-3j and (6.1-4). The two equations describing the interaction are now

K1 =k 0 -(K. (6.1-5)
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Figure 2: Upshif ted diffraction. (a) vavevector diagram
(b) experimental configuration

(a) (b)

K ____

(b,3 "

Figure 3: Downshif ted diffraction. (a) vavevector diagram
(b) experimental configuration
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and

where the subscripts on the LHS indicate the interaction is downshifted.

There is some interesting physics hidden in (6.1-3)-(6.1--6). It may be shown that

(6.1-3) and (6.1-4) refer to phonon absorption and (6.1-5) and (6.1--6) to stimulated

phonon emission. Indeed, attenuation and amplification of a sound wave have been

demonstrated for these cases (see Korpel, Adler and Alpiner (1964)).

We have seen that the wave vector diagrams [Figs. 2 (a) and 3 (a)] must be

closed for both cases of interaction. The closed diagrams stipulate that there are certain

critical angles of incidence (*-B) in the acoustic medium for plane waves of sound and

light to interact, and also that the directions of the incident and diffracted light differ in

angle by 2 0B . The angle OB is called the Bragg angle, and this form of diffraction is called

Bragg diffraction, analogous to X-ray diffraction in crystals. From Fig. 2 (a) and (b),

the Bragg angle is given by

sin OB = K/2ko = Ao/2A. (6.1-7)

In actuality, scattering occurs even though the direction of incident light is not

exactly at the Bragg angle. (However, the maximum diffracted intensity occurs at the

Bragg angle.) The reason is that we do not have exact plane waves. The sound waves

actually spread out as they propagate into the medium. As the width L of the transducer

decreases, the sound column will act less and less like a single plane wave, and in fact, it is

now more appropriate to consider an angular spectrum of plane waves. For a transducer
A

with an aperture L, sound waves spread out over an angle • , if we use the heuristic

approach to diffraction (see Chapter 3). Considering the upshifted Bragg diffraction and

A
referring to Fig. 4 we see that the K-vector can be orientated through an angle ± due

to the spreading of sound. In order to have only one diffracted order of light generated
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Figure 4: Wavevector diagram illustrating condition for defining
Bragg regime
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(i.e., +1), we have to impose the condition:

A 0 >> A
No A

or

*3-' (6.1-8)

A0

This is because for ]R- to be generated, for example, a pertinent sound wavevector

must lie along K'; however, this is eitl er not present, or present in negligible amounts, in

the angular spectrum of the sound, if the condition (6.1-8) is satisfied. Similar. arguments

may be advanced for other diffracted orders. If L satisfies the above condition, the

acousto-optic device is said to be operated in the Bragg regime and the device is commonly

known as the "Bragg cell."

In the case where L is sufficiently short, we have the second form of diffraction

(scattering) called Raman-Nath (or Debye-Sears) diffraction. The condition

A A2 (6.1-9)
L << X- 1 6o-9

0

therefore, defines the Raman-Nath diffraction regime.

In Raman-Nath diffraction, 1+1 and R 1 (i.e., positive and negative first order

diffracted light) are generated simjiltaneously because various directions of plane waves of

sound are provided from a small-aperture transducer. So far we have only considered the

so-called weak interaction between the sound and incident light. i.e., the interaction

between the scattered light and sound has been ignored. Scattered light may interact with

the sound field again and produce higher orders of diffracted light. Whenever the

rescattdring process is considered in the analysis, we are well into the so-called strong

interaction. [In Bragg regime, for strong interaction, scattered light K+i may rescatter

back into the zero order light.] In the Raman-Nath regime, many orders may exist
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because plane waves of sound are available at the various angles required for scattering.

The principle of the generation of many orders by rescattering is illustrated in Fig. 5.

K+ 1 is generated through the diffraction of K-o by K +1 and K +2 is generated through the

diffraction of 1E+1 by K+2 and so on, where the K p's denote the appropriate components

of the plane wave spectrum of the sound. Again, the requirement of conservation of energy

leads to the equation wm = wo±mQl with wm being the frequency of the mth-order

scattered light.

6.1.2 The Acousto-Optic Effect

General Formalism

The interaction between the optical field Eo (r,t) and sound field S(F,t) may be

generally described by the Maxwell's equations. We assume the interaction takes place

in a homogeneous, isotropic medium, characterized by permeabilitya 0 and permittivity co.

A source free optical field is assumed to be incident on a time varying permittivity. The

time-varying permittivity is written as

C(r,t) = f + I(r,t), (6.1-10)

where c'(r,t) = c C S (r,t), i.e., it is proportional to the sound field amplitude S(F,t) with

C the proportionality constant, dependent on the medium. Hence ('(i,t) represents the

action of the sound field. The analysis presented below closely follows the work by Korpel

(1972).

We shall assume Einc (?,t) satisfies the Maxwell's equations in (3.1-1) to (3.1-4)

with p = 0 and JC = 0. When the sound field interacts with Einc (,t), the total field 7Fr,t)

must satisfy the following set of equations:

V E)) H(U~t (6.1-11)

0 Ot

V 1 l(?.t)= __ [(,t) E(it)], (6.1-12)
at

A-9



Incident light :5ki W,
(k, AI~ wj,

k U (w -3)

Sound
(K, A, )

Figure 5: multiple scattering in the Rman 
Nath regime

A- 10



V •[c(,t)E(:,t)] -- 0, (6.1-13)

V H(i:,t) = 0, (6.1-14)

where E(r,t) = Einc(it) + E'(i,t) with E'(r,t) defined as the scattered field.

Taking the curl of (6.1-11) and introducing it into (6.1-12), the equation for E(i:,t)

reads
- ---- - -2-

VxVxE(,t)=V(V. E)-V E

- -to -t[ f(rt) E(r,t) 1 (6.1-15)

Now, from (6.1-1$), we have

V EE= V. E+E .V=0 (6.1-16)

Assuming a 2-D (xz) configuration with E polarized along the y-direction, it can be

readily shown that E • Vc = 0; hence (6.1-15) reduces to

i2 E ( ,t) =,uo W- f( ,Q E (P-t01, (6.1-17)

where p is the position vector in the xz plane, and E (,t) = E(p,t)ay. The term on the

right hand side of (6.1-17) may be written as

E -2( + 2 O a + ca 2 E (6.1-18)
o -a--, a t at

Since the time variation of c(p,t) is much slower than that of E (p,t), we may only retain

the last term in (6.1-18) to get, using (6.1-10) and (6.1-17),

V2 E (p.t).) = (Pt) (6.1-19)bt2 t) t 2 '

Eq. (6.1-19) is the one most used to investigate strong interaction in acousto-optics.

We shall now introduce harmonic variations in the light and sound in the form of
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E inc(,t) = Einc(T)eJ0t + c.c., (6.1-20)

and

= -) C S(P) eJQt + c.c., (6.1-21)

where c.c. denotes the complex conjugate. Since we have harmonic fields, we may

anticipate, as seen in the simplified analysis before in Section 6.1.1, frequency mixing due

to the interaction. We shall then cast the total field E(P,t) into the following form:

0 1 j(wo +mrl)t
E(Pt) = m(p)e + c.c. . (6.1-22)

Substituting (6.1-20) - (6.1-22) into (6.1-19) and assuming Q<<w0 , we obtain,after some

straightforward calculations, the following infinite coupled-wave system:
2 k2E 1 2 DEm 1k 2CS

V Em() o +kCS(p _(p)+koCS (p-)Em+l(p)=0, (6.1-23)

where k0 =w woo oT is the light propagation in the medium, and the asterisk denotes the

complex conjugate. Note that Em(p-) is the amplitude of the mth-order light at frequency

w +mQ.

Sound Field Configuration and Plane Wave Interaction Model

We shall now consider a conventional interaction configuration depicted in Fig 6.

As we can see, a uniform sound plane wave along z of finite length is often used and we

shall represent the sound by

S(p) = S(z,x) =Ae- j K x ,  (6.1-24)

where A, in general, may be complex. The incident plane wave of light by may be

represented as

Einc(P) = ince-JkozcosOinc e-jkoxsin~inc, (6.1-25)

where Oinc is the incident angle. We look for a solution of the form

Em(P-) = Em(zx) = 'in(x'z)e-JkoZCS0m-Jkoxsinm (6.1-26)

with the choice for 6 m given by (6.1.1):

A- 12



Light

~Sound

0 L

Figure 6: Conventional light-sound interaction configuration
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A 0  1K
sinom = sininc + m T = sinn c + m (6.1-27)

Substituting (6..1-24), (6.1-26) and (6.1-27) into (6.1-23), we obtain, after some algebra,

a m a2 Om Jkm -2jk CoSem
ax z2 & 2 0 x 0 az

+ e-jkoZ(CoS~m+1-cOSm) + 1 o em-jk z(cos mo. - ..

(6.1-28)

From (6.1-28) we see that Om is a very small quantity if Oinc<<' justifying the

assumption pm(zX) r M(z). Also, we assume that within a wavelength of light, 40¢m/z

does not change appreciably; hence b2Om: 2z can be neglected when compared to

2jkcos4mOVIm/Z. Eq. (6.1-28) then becomes

dkm -jkoCA -jk 0 Z(CoSemk l--CostkM )
- - Om-1 e
dz 4 cos m

+ -jk 0 CA* M+iejkZ(C°S r+ -Cos 0m)  (6.1-29)

4cos 0 m

with the boundary conditions

Om = incbmo at z<0, (6.1-30)

where Imo represents the Kronecker delta function.

The physical interpretation to (6.1-29) is that there is a mutual coupling between

neighboring orders in the interaction, i.e., 0m is being contributed to by Om-1 and Om+l"

However, the phase of the contributions varies with z, and the exponents with arguments

ko(COSOm-%-ocOs5m) and koz (COSOm+ 1 -cOSm) represent the lack of phase synchronism

in this coupling process.

Raman-Nath Regime

'As mentioned before, Raman-Nath diffraction is characterized by the simultaneous

generation of many diffracted orders. This implies that the interaction length L must be

short enough such that the accumulated degree of phase mismatch between Om and its
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neighboring orders, as given by the arguments of the exponential terms in (6.1-29) is

small. Assuming small values of K/k o , the phase-asynchronism terms

k0 Z(cos~m i --cosom) and koz(cOsOm+1-COS0m ) in (6.1-29) can be expanded in a power

series by using (6.1-27)

k z(Cos -cos kz[ )K .inc 1 K)2+...] (6.1-31)
o m- m in +(m-2) ('

koZ(COSO l-coso) k o [-(Ko)sinm inc-(m+ ) (Ko)±2 +. (6.1-32)

For Oinc = 0, the accumulated phase mismatch for order m at z=L is negligible if

m(K 2 /k 0)L<1. (6.1-33)

This condition is the criterion for an acousto-optic device operated in the Raman-Nath

regime. It is usually stated with m=1 and is consistent with (6.1-9).

Using the above criterion and assuming 0m<<l, (6.1-29) becomes

dm _ jkoCA jk 0CA* (6.1-34)
- Om-1 - - m+ 1"4 4

For simplicity, let A = A = A 1, where I AI represents the peak strain caused by the

sound field I AI cos(ft-Kx)[See (6.1-21) and (6.1-24)], and we may write for (6.1-34):

d/m -jkoC [ ,, + 0 (6.1-35)
-(z - ---- m-1 DI+l

The solution to (6.1-35) is readily given by considering the recurrence relation for the

Bessel function:

dJI(z) [ Jn-l(Z)-JB+l (z ) ] (6.1-36)

d , kIC A

and writing 4 (-j) mI where = .J ( . . It follows immediately, with

(6.1-30), that the amplitude of the various diffracted orders inside the sound colunin at

z=L is
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koClAIL

Om = (j)m kncJ A ( 2 ) (6.1-37)

which is the well-known Raman-Nath solution, plotted in Fig. 6.8(a)

Bragg Regime

As pointed out before, Bragg diffraction is characterized by the generation of two

diffracted orders. Referring to (6.1-29), we find that for the diffracted orders 0 and -1

(downshifted interaction), the coupled equations read:

d o  -jkoCA e-z(cs -0-s0 (6.1-38a)

and

d_ 1  -jkoCA* o e+jkoZ(COS 0 (6.1-38b)
z 4cos ioi 

0.-
Assuming phase synchronism between the 0th and -1st order, we must impose cos 0-1 =

cos 0 o, implying

0-1 - - o (6.1-39)

as _1 J 00, since different scattered orders must exit at different angles. Hence, referring

to Fig. 7a it readily follows that

o=B=Oinc

0-1 = -OB =-inc" (6.1-40)

Thus, the 0th and the diffracted (-1st) order propagate symmetrically with respect to the

sound wavefronts. Similar arguments may be advanced for the upshifted interaction case.

In light of the above discussion, the coupled equations describing downshifted

interaction become
d o -JkoCAd5 '  : csi 0 -'-l'C (6.1-41)

de:1  -jk 0 CA*= - -4csB0" 61-2

Similarly, the coupled equations
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Figure 7: (a) dovnshifted interaction (b) upshifted interaction.
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dOo - jkoCA*

= 4cos OB 0- 1  (6.1-43)

di,1  -jkoCA (6.1-44)
Te" cosB V(

describe upshifted diffraction (Oinc = -K/2ko= -OB )" Note that these equations are the

standard ordinary differential equations (ODEs) for coupled modes, where the coupling

coefficients are -koCA/4cos¢B and -koCA'/4cosOB. The solutions at z=L, taking the

boundary conditions (6.1-30) into account. and with OB<<I, read

o =inccos(koCIAIL
/ 4 )

*= T sin(koCI AIL/4) (6.1-45)

for the downshifted interaction, and

[o = incCos(koCIAIL/
4 )

TA =incS in(koCIAIL/4), (6.1-46)

for the upshifted case. Eq. (6.1-45) or (6.1-46) are the well-known expressions for the

scattered light in Bragg diffraction.

At this point it is instructive to relate the term C IAI to a refraction-index

variation Ano(p,t) in the acousto-optic cell. Since
S(P-,t) = fvn 2(p't)

= (v[no+ A no(P,)]

_ no[1 + 2Ano(P,t)/no],  (6.1-47)

where n0 denotes the unperturbed refraction index of the medium, we compare (6.1-47)

with (6.1-10) and obtain

C S (p, t) = 2An0 (pt) (6.1-48)
no

or CISI = CIA! = 2(An o)max/no, where (_no)Ia x denotes the peak amplitude of the

assumed harmonic variation of An (P.t). The quantity koC IA I L/2 then can be written as
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koCIAIL/2 = kv(Ano)ma x L = a, (6.1-49)

where a represents the peak phase delay of the light through the acoustic medium and kv is

the wave number in vacuum. Summarizing the solutions to the Raman-Nath and Bragg

regions in terms of a, we have

=inc(-j)m Jm(a), (6.1-50)a/2 -51
and fo = inccos(a/2 (6.1-51)

10±1 = j incs in(a/2),

respectively, where A = A = A has been assumed in writing the above equations. Fig.

8 illustrates the dependence of various diffracted orders on a for the two regimes.

Finally it should be pointed out that the criterion for an acousto-optic cell to

operate in the Bragg regime is the inverse relation to (6.1-33)

(K2/ko)L>>1, (6.1-52)

where the strongest condition is implied (i.e., m=1). [Note that (6.1-52) is consistent with

(6.1--8)]. In physical reality, a complete energy transfer between 0o and ?P. is never

possible as there always exists more than two orders no matter how strong condition

(6.1-52) becomes. This regime is commonly known as the near Bragg region and 10o12 +
2 2

P:I11 20 nc due to the generation of higher orders. In order to establish the Bragg region

more precisely, the so-called Klein-Cook parameter Q has been defined

Q = (g 2/ko)L, (6.1-53)

and the amount of first order diffracted light is plotted as a function of Q at a = r. The

Bragg region is then defined arbitrarily by the condition that I P. 112> 0.90? (i.e., theInc (~. h
diffraction efficiency for the first order light is greater than 90%), which has been shown to

o [2 ,n 2
translate to Q = (K2 /ko) L>7. For Q-,I, j -47 as expected.

6.1.3 Some Applications

a) Intensity modulation of laser beam

A diagram of an intonsity modulation system is shown in Fig. 6.9 . The

acousto-optic modulator is operated in the Rarnan-Nath region and only the zeroth-order
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Figure 8 (a) Amplitude of diffracted orders in Raman Nath regime
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Figure 8(b): Intensity of diffracted orders in Bragg regime
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Figure 9: (a) An acoustooptic intensity modulation system
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diffracted beam is allowed to pass through the aperture stop. With reference to Fig. 9b,

linear operation may be achieved with a bias voltage b corresponding to around 1.3 radian

peak phase shift of the light. Fig. 9b illustrates the relationship between the modulating

signal A(t) and the intensity modulated output of the laser beam. Although in Fig. 9a,

the zeroth-order diffracted beam is used, it is clear that any diffracted order may be used

in principle. In that case the aperture stop should be positioned at that particular beam

used to achieve the modulation. Also, it should be clear that intensity modulation could be

achieved similarly if the acousto-optic modulator is operated in the Bragg region.

b) Light beam deflector/spectrum analyzer

In contrast to intensity modulation where the amplitude of the modulating signal is

varied, the frequency of the modulating signal is changed for applications in light

deflection. Fig. 10 shows an optical beam deflector, where the acousto-optic modulator

is operated in the Bragg region. The angle between the 1st-diffracted beam and the 0-th

diffracted beam is defined as the deflection angle Od. The change in the deflection angle

bod upon a change 6Q? of the sound frequency is given by

bod= b2 0B

=2r A-- al. (6.1-54)
s

The number of resolvable angles N in such a device is determined by the ratio of the

range of deflection angles bod to the angular spread of the scanning light beam. The

angular spread of a beam of width D is of the order of Ao/D, which follows from standard

diffraction theory (see Chapter 3). Hence.

b6d M
N = r (6.1-55)
0 -

where r = D/V is the transit time of the sound through the light beam. Note that

improvement in resolution can be achieved by expanding the lateral width of the light

beam traversing the Bragg cell. Since the relation between the deflection angle and the

frequency sweep is linear, a simple mechanism for high speed laser beam scanning may be
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Figure 9: (b) Relationship between modulating signal and output
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Figure 10: An acoustooptic light beani deflector
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made possible through the acousto-optic effect because no moving mechanical parts are

involved with this kind of scanning mechanism.

Instead of having a single frequency fed into the sound cell, it can be addressed

simultaneously by a spectrum of frequencies. The Bragg cell diffracts light beams into

angles controlled by the spectrum of acoustic frequencies as each frequency generates a

beam at a specific diffracted angle. Since the acoustic spectrum is identical to the

frequency spectrum of the electrical signal being fed to the cell, the device essentially acts

as a spectrum analyzer. Fig. 11 depicts a convenient way to display the frequency

content of the electrical signal s(t). Note that frequency resolution of the analyzer is

determined by N.

c) Demodulation of frequency-modulateC" (FM) signals.

From the preceeding discussion, we recognize the Bragg cell's frequency-selecting

capability. Here we discuss how to make use of this to demodulate FM signals. As seen

from fig. 12 the Bragg cell diffracts light into angles Odi controlled by the spectrum of

carrier frequencies flop where i = 1, 2, etc. t-nd each carrier has been frequency-modulated.

For the ith FM station, the signal's instanta neous frequency can be represented as Sli(t) =

Qoi + Afli (t) which is the sum of a fixed c; rrier frequency Qoi and a time-varying

frequency difference Alli(t), the latter being proportional to the amplitude of the

modulating signal. As a usual practice, the FM variation AfLi(t) is small compared to the

carrier Q oi. Using (6.1-54), the ith FM station is beamed, on the average, in a direction

relative to the incident beam given by

Odi = o .oi/2Vs" (6.-56)

This is illustrated in fig. 12. For each FM carrier, there will now be an independently

diffracted light beam in a direction determined by the carrier frequency. For clarity, only

a few of the diffracted light beams are shown. The principle of the receiver is that the

actual instantaneous angle of deflection deviates slightly from the above angle due to the

inclusion of Afi(t) which causes a "wobble" -10di(t) in the deflected beam. In particular,
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Figure 12: Nominal directions of diffracted beams due to FM sound inputs
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we find, with (6.1-54),

L\di(t) = (Ao/2rVs)Afli(t). (6.1-57)

Since, in FM, the frequency variation Af2i(t) is proportional to the amplitude of the

audio signal, the variation in the deflected angle AOdi(t) is likewise proportional to the

modulating signal. By placing a knife-edge screen in front of a photodiode positioned

along the direction of Odi' the amount of light reaching the photodiode, to first order,

varies linearly with the small wobble Ai(t) and hence will give a current proportional to

- li(t) [see (6.1-57)], i.e., proportional to the amplitude of the modulating of signal. In

fact, by placing an array of knife--edge screened detector, we can monitor all the FM

stations simultaneously. This knife-edge technique has been used previously for surface

acoustic wave detection) (see, for example, Whitman and Korpel (1969)).
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