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SUMMARY

The proposed research is divided into two phases. The first intorduces the PUTD

(Pseudo-Uptriangular-Decomposition) to reduce the governing equations of motion of artic-

ulated mechanical systems. Performance of such systems is based greatly on the assumptions

and modeks , ,ed +- 5er tcr "- ̂  proper control aigorilnms. Tim ivebLi'gatioll plupobeb 't

new method, which allows the constrained systems to operate in the presence of singularities.

This is achieved by a regularization technique which makes use of a new representation of

the kinematical and geometrical constraint equations at singular positions. This method of

stability analysis is compared with the asymtotic stability presented by Baumgarte. The

PUTD is extended to accommodate the dynamics of such systems. An illustration of the

utility and effectiveness of the method proposed is shown through a two arm planar robot

undergoing large motions and driven through singularities. The driving torques are then

compared to check for discontinuities and jerks.

The results show clearly that without the regularization and stability of the dynamics

of the system through the proposed method, large peaks for driving forces and discontinu-

ities of the velocities and accelerations are attained. The latter could hamper seriously the

performance and the mission of the system.

The second phase of the research project set the stage for the testing of the proposed

method when the articulated structures are composed of flexible bodies. The complete

matrix formulation of the equations of motion is presented based on the finite element.

modal analysis. Kane's equations and the PUTD method. Exploitation of the pipelining

feature of the IBM 3090', vector processor by implementing the code on this machine and

subjecting it to suitable vectorization in the computationally intensive areas. This cuts

down the CPU time drastically needed for the dynamic simulation of multibody dynamical

systems.
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2. Introduction

The handling of the constraints in multibody dynamics could be done in two different

ways. First by introducing the so-called Lagrange undetermined multipliers then the dynam-

ics of the system is found by solving the equations of motion together with the constraint

equations which are expressed at the acceleration level. This approach leads to solving more

equations than needed, hence it is computationally expensive. The second alternative is to

reduce the governing equations by eliminating the undetermined multipliers through pre-

multiplication by a matrix, orthogonal complement to the constraint Jacobian matrix. This

approach is best suited for the case when the constraint forces are no object in the analysis.

At special configurations, the constraint Jacobian matrix may become less than full rank.

hence serious difficulties arise in extracting the orthogonal complement array and inverting

the generalized mass matrix. Therefore at such instances, the constraint equations need to

be modified in such a way to avoid singularities in the numerical method of solution. We

propose a new representation of the constraints when this situation occur. These modified

equations should be valid at the neighborhood of the special configuration where the Jacobian

matrix changes its rank. and therefore they are useful only if the system is in motion when

the special configuration occurs. In addition, to avoid the accumulation of the numerical

errors in integration. Baumgarte's method I1l of numerical stabilization is also included.

The systematic reduction of the equations of motion could be achieved through several

approaches il-6. Those methods while their computational schemes differ, their objective

is to extract the orthogonal complement array to the Jacobian constraint matrix. In this

paper we propose to address the issue of numerical stability resulting from the constraints

when they become less than full rank. The intention of this research is to highlight and

further demonstrate the utility of the method proposed through a comprehensive analysis of

a planar robot in motion passing through a singular position.

This report is divided into several sections. The first is summary. The second section is

the Introduction. The development of the equations of motion for constrained mechanical

systems and Baumgarte's stability method form the subsections one and two of section 3.
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In section four we will present a new method for the stabilization problem when some rows

of the constraint Jacobian matrix vanish at the neighborhood of singular position, and when

some of them become linearly dependent. An illustrative example is given in section 4. The

stability o lhc flexible systems is discussed in section 5. Section 6 forms the conclusions and

the future directions.

3. Theoritical Development

3.1 Equations Formulations for Constrained Systems

The governing e luations of motion of a nmultibody system could be obtained using Kane's

equations

f L: fl- = 0 l = 1,2,...,6N (1)

where fj is the generalized active force array and is given by

f, = I'Fk - wkTk (2)

whereas f1" defines the generalized inertia force array

f-* = I "F: - -kT; (3)

in both equations (2) and (3) Vj and ,wk are the corresponding partial velocity (see Amirouche

and Jyia, 1987) associated with the mass center velocity and angular velocity of Bk in a

reference frame R. In equation (2) Fk and Tk are the f-,,, components of the vector force 1f7

and the torque T.. (Note that a force acting on a body Bk could be replaced by a force and

moment acting at the mass center of Bk)

In equation (3). however, the Fk and T are the fho, components of the inertia forces lf/

and T ., where
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= -mkak (4)

and

= - .k - kX(ikWk) (5)

In equation (4) Mk denotes the mass of body Bk, and ak is its mass center acceleration.

Ik is the inertia dyadic of Bk relative to its center mass and expressed with respect to the

i, components in R; L-'k is the angular velocity of Bk and &k its corresponding angular

acceleration.

If a aiultibody system is subject to some constraints which might result from mechanical

joints, closed loops or prescribed motions, then equation (1) becomes

fj + f + BjjA = 0 1 = 1,2,..., 6N (6)

where Ai is the so-called Lagrange multipliers and Bli is the transpose of the constraint

Jacobian matrix (see Huston and Wang.1986). Equation (6) is simply

f + f1 -4- f[ = 0 1 = 1.2..... 6N (7)

where ff are the generalized constraint forces.

The constraint equations could be expressed at the velocity level as

By = G (7.a)

where G is a function of time, y defines the generalized speeds. Further differentiation of

eq(7.a) yields

By - By = G (7.b)

In the dynamic simulation of multibody systems, equation (7.b) is most useful since

it forms a set of m differential equations which can be combined with equation (6). To
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bring the equations of motion to a minimum dimension, we premultiply equation (6) by the

orthogonal complement to matrix B. This results in an n-m equations, which together with

the m equttions given by equation (7.b) yields the governing equations of motion.

Orthogonal Complement Matrix. If there are m constraint equations in a mechanical

system which has n generalized coordinates, then the constraint Jacobian matrix B will be

an m x n matrix. Consider the transpose of the constraint matrix denoted as BT , it is

known that an n x m matrix Br can be reduced to an upper triangular form. say U, either

by Gauss-ellitiuiion row operations [12] or by Pseudo- uptriangular decomposition method

'2]. B T and U are row equivalent with same rank and the row equivalence transformation

can be expressed as

PB T = (8)

where P is an n x n nonsingular matrix obtained by applying the same row operations which

transform B T to Ut.

Let I, and 1, denote matrices composed of respectively, the first rn columns, and the iast

(n - m) columns of the n"' order identity matrix, therefore, I2 is orthogonal to I. Since

the columns of U are a linear combination of the columns of 11, 12 is also orthogonal to U.

Then, using equation(8). we obtain

I'T 12 pBr = 0 (9)

or

I 2TPB r = CBT = 0 (10)

where C = ITp is a (n - in) x n matrix. Since P is nonsingular. the n - m rows of C are

linearly independent. Therefore in R" dimensional space, the n - m rows of C form a basis

of vectors orthogonal to the m columns of the transpose of constraint matrix. i.e. C is a

complement matrix to Br



Premultipling equation (6) by C and applying equation (10), a reduced form of the

equations of motion of a constrained multibody system is obtained as

K'p + KP- = 0 (11)

where

KP = C f t' = C f1 (12)

in equation (11), we have n - m reduced equations. In order to solve for the dynamics of the

system, we must combine the m constraint equations at their acceleration level with those

of equation (11) to obtain the time history response of the system. More details are given

in next section.

3.2 Baumgarte Stability Method

in oraer to solve tihe goeraing cquiLtiuu, we usI.,,jl; represent the constraints at their

acceleration level. For instance, if we have n constraint equations (holonomic) they could

be represented by

hi(q,q 2 - .q,,,t) = 0 i= 1.2. m (13)

the q's are the generalized coordinates and t denotes time. Equation (13) is said to be a

representation of the constraints at the position level. Further differentiation will lead to its

representation at the velocity level. where

h i = N "  - - - ' = bilgl - gi =  0 (14)
t Oqj dt Ot b =

where bii is the (1,I) element of the m x n constraint matrix B defined by
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oh, oh_1  ... 1h_
Dqi Oq Ohl

Oh. Ohh

B (b] oq1  oq, (15)

Oh,,, Oh, Oh,
OqI Dq2 Oq,

YJ is the Pth element of the matrix Y defined by

y= 4q d 12 dqj (16)
dt dt dt dt

and gi is the z'h element of the m A 1 matrix G given by

G= - o -o Ohl Dh (17)

If we further differentiate equation(14), we can get the acceleration representation of the

constraints as

- z Yj - Zbilyl gj (18)
/=1 l----

one thing we should keep in mind is that h, = 0 implies h, 0, h, .= but h, = 0 (which

is what we use in equation (18)) does not necessarily yield h, 0 and hi Therefore

ii- m rtant to know that -',urng the integration of the equations of motion we must

try to satisfy all constraint conditions. In the event we don't. It is possible to accumulate

numerical errors which might cause some serious 'tallilitv and control problems. To overcome

this difficulty, Baumgarte introduced a method to assure 'asymptotic stability' by replacing

0 with

hii -- oihi - 3ihi = = 1,2.--m (19)

where 3i = 0 for nonholonomic constraints, ci and 3, arbitrary constants chosen to suffi-

ciently fast decay of the error: (Daumgarte. 1972). For example, let us consider th- constraint

equations hi = 0 where hi = 0 is a holonomic constraint. In addition, assumc that, in the
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process of the integration of the equations of motion after the n' step, the computer yields

the values h = 6 h = c which deviate from the exact values h 0. h = 0. According to

the differential equation h = 0. the computer should produce the value h = et - (S. Thus the

holonomic constraint is not satisfied in a linearly stable fashion. It is unlikely that subsequent

numerical errors will compensate for this behavior.

By virtue of the initial conditions h(0) = 0. h(0) 0, equation( 19) leads to h = 0

as before, such that the new constraint is analytically equivalent to h =. But from the

numerical point of view, the situation is different. In order to achieve asymptotical stability.

0,0 20)

and

3 -4 0 (21)

must be satisfied. We usually choose 'Baumgarte. 19721

43, '22)

.Note that from ecquation (20-21 we have an infinite set cf a's and .,s which c,uld he used

in equation ( 19).

3.3 Proposed Stability in the Presence of Singularities

a) Regularization of Vanishing Constraints

It is common in the course of a mechanical systems motion that fc,r B, I = 1. n. the

,4"°h constraint equation coefficients may become all zero at some instantaneous special con-

figurations. In this case, the procedures we mentioned in previous section fail in delermininc

the orth,Lunal coruplement arrav because the rank of 13 becomes less than 71. In additicn

the augmented system inertial matrix becomes sintilar.

10



Since the generalized constraint forces due to, the St' constraint. A,Bl 1.n.

are zero, the constraint do not havc any effect on the svstem at that configuration and

one possible procedure is deleting the S5FL row of B. finding the corresponding orthogonal

complement matrix C. and then proceeding with the normal coordinate reduction technique.

As we mentioned before the constraint at the acceleration level could be expressed as

h = Bjl] - Bily, - i i - 1,''" m ( 23

where y denotes the generalized speeds. Suppose for the i s. B.., I). then we can write

h., = B.,Tyj - 1, = 0 24 41

Equation( 24) must be satisfied bv selecting the initial conditions for y9 such that

B, =, 25,

in order to achieve the consistency of the equations.

When the 5'°' constraint equation is removed in this manner. the resulting equations call

bie used in the neighborhood of the special configuration. The drawback of this approach i -

that the assumption of zero constraint forces in the neighborhood results in fast deviatikii

of the simulation from the constrained behavior.

To capture lhe effects oif the act ual constraint forces in the neighborhood of he vaishiiiz

constraint, we differentiate further the 5"° constraint equation. This will provide further

information on the constraint, hence a modified form of the constraint equation will be used

instead of its deletion. To illustrate this approach. consider the time derivative of equation

(23). when i = s

h., = /,.1Y - 2B, IyI - 3,1y ,' ......

To simplify the representation of equation!26), we express B., as

11



- aB,. aB(,
9qh at (27)

Since

qh = Tj,1 y (28)

where T is a matrix relating q to y. In the light of the above, we can write equation(2 7 ) as

B.11 = ,tjyj -- (29)

where

aBm,
aq ., Thj (30)Osl 9 qh

and

3Bt =(31)
at

Similarly. g., can be expressed as

.3 - .

where

19gA ag,
1. (33)P.I = L TI, - = -)

89qh O

Further differentiate of equation (29) and (32) gives the B and j terms as

B.,= o-tjyj - osijgj - 4,, (34)

g, /. ,IY. - t 7, (35)

Substituting equations (29), (34) and (35) into equation (26). we get

12



B 1 + G1 + J,, = 0 1,...,n (36)

where

G., = 2B.,1 -t obpL p - y,1 = 1,...n (37)

and

J, : LpYpYIt = 6'sLYL - I.LYL - T (38)

The usefulness of equation (36) stems from the assumption that. when the elements

of the constraint B,,,, - 1,... ,n are zero at the special configuration and small at its

neighborhood, B.,41 1 is negligible compared to the other terms in equation(36), so dropping

that term in the equation will yield

h' = G, 1* 1 - J, = 0 (39)

It is seen that G.,1 and J, are, in general, functions of q1, Y, and t. Equation(39) is lint.,r

in accelerations Yl and has the form of the constraint at the acceleration level. If one .

interested in computing the generalized constraint forces at the neighborhood of singularity.

then all we have to do is replace in Fr = ABT. the Sth constraint by

B,1 = G,1 (40)

In most cases. G, 1 doesn't vanish while B.,1 does. The governing equations of motion will

then be subject to the constraints given by equation (39).

To further assure the numerical stability of the constraints, we can make use of Baumgarte

technique where equation (39) takes on the following form

G,1y - a,(B,y - .,) - .3,(By - 9.,) = 0 (41)

which reduces to

13



G -,t + J. + a,(B.jyj - g3- 3,g, = 0 (42)

where

.,,yi = -J, - a,(BIyl - g+) +, (43)

and

S, = -J, - a.,(Bqyj - 9,) + 3 .,g, (44)

Note that h, 0 is automatically satisfied since B,j = 0 , I = 1..... n.

b) Regularization of Linearly Dependent Constraints

In a similar fashion to the case of vanishing constraints, the linear dependency causes B

to be less than full rank. In this case, it is known that an n x m matrix BT can be reduced

to Gaussian form U - by Gauss elimination row operations. where the rows 1 .. r are the

nonzero rows of U . and the leftmust nonzero entry of row i occurs in column ki. = 1.r

then k, - k, < . - kr.

BT and U' are row equivalent with same rank r and the row equivalence transformation

can be expressed as

PBT = U (45)

where P is the corresponding n x n nonsingular matrix.

It is seen from the definition of U* that the columns with indices k,. Z = 1. r are lin-

early independent columns. whereas the remaining m - r columns whose indices are denoted

as di. i = 1.... m - ?, can be expressed as linear combinations of the former set. The d"'

columns of BT can also be written as linear combinations of the k" columns of BT. To show

this, we can write equation(45) as

14



Pb 3 = u= 1,...,In (46)

where b3 and u denote the Jth columns of BT and U*, respectively. For the columns of U*,

we have

udj = Zjiu k, I = 1,...,r =1,., -r (47)

where Z i, i = 1,..., r are the linear combination constants for the d'h column. Substitution

of equation (46) into equation (47) for ud, and for each uk', leads to

Pbd, = U , = Zjuk= Zji Pbk. (48)

so,

bd, =Zjibk'  i=1. r j= m-r (49)

representing equation (49) in a matrix form, we obtain

Bd,1 - Z3,Bk.I = 0 (50)

we can write the constraint equations in these following forms

h, = Bd, y - 9d, =0 (51)

hk, = Bk, - gk= 0 (52)

hd, = bdly Bdl - gd, = 0 (53)

hk, = Bk, Y Bk,l ' - 9k, = 0 (54)

we can use equation (54) to generate our constraint equations at the acceleration level.

but we can't use equation (53) because Bd.11 is linearly dependent to Bk,I, as shown in equation

(50). Since

15



hal, - Zihk = [Bdl - ZjiBk,]y - 1gd, - Zjigk,] 0 (55)

and using equation (50), equation (55) becomes

h td, - Zjihk = -[gd, - Zjigk,] = 0 (56)

its differentiated form yields

hd, - zjihk, = (Bd,l - ZjiBk,)Yi + (Bd, - ZjiBk,j)y - (g*d, - Z3jgk,) 0 (57)

making use of equation (50) once more, equation (57) reduces to

hd, - Zjihk. = (B,l - ZiBk.I)Y - (id, - Zjigk,)= 0 (58)

Note how the y term is not explicit in equation (58). If we further differentiate equation(57),

we get

hp - Z-hi" (BdI - ZjBk,)P +2(B'dl- ZlBk)y +(B ,/- ZB )y-(,, - Z , ) = 0 (59)

equation (59) reduces further to

d, - Zjhk 2(BdL - zjBk) (Bd - ZjiBk,)y - (", Zjik ) 0 (60)

by dropping the term that multiplies by virtue of equation (50). The representation of the

constraint equations given by equation (53) are now represented by equation (60). as

h' = 2(Bd, - ZjiBk,l)* + (BdI - Z,.Bk,I)Y - (9d, Zjijk,) = 0 (61)

equation (61) and equation (54) are linearly independent and form a consistent set of con-

straint equations to be used when the linear dependency of the constraints occurs. This

stability procedure could be further enhanced by applying Baumgarte's method to stabilize
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the numerical error due to the integration of the equations of motion. Employing Baumgarte

technique we further obtain a form of the constraint as

2(BdjI - Z 31Bkl)y + (Bj - ZjiBk, ) - (id, - Zjijk,)

+Ct,[( Bdl - ZjiBkl)y -(9'd, - ZjiPk,) + 3d,[-(gd, - Zjigk,)] = 0 (62)

writing the above equation in a compact form we get

Gd,, Y1- Sd, = 0 (63)

where

Gd, = 2 (BdL - ZjiBkdl) (64)

and

Sd, ( d, - Zjiik,) - Yj(Bd, - 0 d, B 1, ) - Zji(,Bk, -
0 d, , )

-(Cdjgd- 3d, gd,) - Zji(Oatk, - 3 d,gk,) (65)

4. Procedure Verification and Applications

4.1 Two-Arm Robot with Specified Motion

Consider a two-bar linkage, L, = 1. L2 = - m2 = m- m, = 2m, 2m . as shown

in figure 1. Assume that point p follows the horizontal line y = with a constant velocity

along the -x axis. We know that for q, = 0, q2 = ,r, the system becomes singular. This

is a perfect example to check our stability method and further compare it to Baumgarte

technique. In the sequel we will show how our stability is completely independent of the

asymptotic stability due to the ill representation of the constraints at the acceleration level.

17



The constraint equations for the problem given are

hi(qj,q 2 , t) = lsinqi + 1 sin(q, + q2) - 0 (66)
2 2

h2(ql,q 2,t) = lcosq, + -cos(q + q2) + vt - xO = 0 (67)

where x0 denotes the initial position of the x coordinate. Their first order differentiated

forms yield

I
hi Cy, -r -C12(y1 -T- Y2) = 0 (68)

2

h2 = -SIy1 - -S 1 2 (y1 + y2) + v = 0 (69)
2

where S, = sinql, S12 = sin(qi + q2), CI = cosqj, C12 = cos(q1 + q2), YI = q1 , Y2 = q2. Using

the above equations and expressing the constraint equations in a matrix form, we obtain

ICI + L2C12 2112 (70)
-iS 1 - LS12 --S2 Y

differentiating equations (??)(??) once more, we get the constraints at the acceleration level

as

it, = (IC1 C12)' 1 q12(Y1 Y2 )) 0 (71)

2 Y 2 Y1 2-

1 1 2 1 2 0h2 = (-ISI - -S 2 )l - S12 2 - (lC1y 2 + -C 2(y -2)) 0 (72)
2 2 '2

which can be written in matrix form as[C -' ]C2 LC1 I ] [ yE -c C,2  C2 1 Sy S12(YI -Y2) 2  (73)
l t S , 2 )2

-IS1 - i$12 -S 12 ,] lCjyi C ; 12(yl + Y2

introducing Baumgarte method, equation ( 73 ) takes on the following form

18



IC, 201!2 C12 1K' _
-I S1 - S12  Y22 -2 y

sly, !S1 2(yl + Y2) - cly, L 4C12(yI + Y2)] - 3(ISI- 12 4) ]
1Cy + C(1u -- 2) - -Sy S 2 (Y1 + Y2)+ vj C t -o)

(74)

From equation ( 70,73 or 74 ) the Jacobian constraint matrix is seen to be

B =2C + , 2 (75)
-1S1-LS12 -I SI

From Kane's equation. i.e. F -- F - BTA 0 . we write the equations of motion for the

system as

[2nl 4- ml'C 2 -;- 12 1F1 - ml 2y2(y1 + y2)S 2 - 2rngIS1
1M1C2 71 LM1-m 2 j 12 2 1 [ 1m2y 2 i ml

10 42 251 (76)

4012 mIS12 A,C12 1.

The governing equations of motion for the two bar system are given by equation ( 73 and

76 ) for the case when Baumgarte method is not used and by equation ( 74 and 76 ) with

Baunigarte representation of the constraints.

We can easily deduce, from equation ( 73 and 74 ), when singularity occurs. i.e. q=

q2 = -,, the first row of B vanishes. Employing the method proposed, the new representation

of the constraints is given below.

-31 (y2iyj) j [ zj [ y:- -§,(y :
C

: J (77)
Introducing Baumgarte's method, equation ( 77 ) becomes
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[31Sly - I512(yl + Y2) Y12) ] [)yi
2 $2 2 - 2

_IS - !S1 S2 Y2[ cly + iC12(Yl -r-+ C12 (yl + y2)] - 3(1S 1 - -S12  1
lCyj + C12(yl + y2)2 - a[--!SlYl - Y12(Y1 + Y2) + v] - 3(lCI -i- -r1 + vt -o)

(78)

Assume the two-bar links are slender rods, and

m 1 -= 2 kg, m 2 = 1 kg, 1l 1m,

1 1 1 )2
= 0.167 kg - m2 12 = 1M 2 ( 2 = 0.0208 kg -

the initial angular positions for link 1 and link 2 are, respectively, 1.047198 rad and 4.41466

rad. while the initial angular velocities are given to be 1.4252 rad/s and -3.51724 rad/s.

As we approach singularity we should experience the necessary jumps if one proceed with

the standard technique where the constraints are not eliminated. To test this problem we

have run a simulation and found some very interesting results. The cases are labelled as

with and without the modified B. The first one being the B at hand and its corresponding

constraint forces and the second one corresponds to the proposed stability method with

the modification of B. In addition, we have run our simulation for the previous two cases

with and without Baumgarte technique to further see whether there were any gains in the

stability procedure. Figure 2 and figure 3. display the constraint forces at the neighborhood

of singularity. It is very clear that the stability method proposed ( solid line ) assures

smoothness of motion. The constraint forces do not experience any jumps as is the case

when B is kept unchanged.

This is further illustrated by figure 4. where the jumps in velocity is seen to yield

largc peaks. The latter could hamper the system performance. In figure 5-6-7 the same

simulation is repeated introducing Baumgarte technique. We can easily conclude that at

singular position BaU,,garte technique doesn't provide any stability. This is quite excepted

since the B matrix if kept unchanged the vanishing of the constraint will cause the jumps

we are seeing. The results also show that the stability provided by the method in this paper
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is not altered when adding Baumgarte technique to it. We believe that the combination of

Baumgarte technique and the proposed method herein could serve as a unique feature in

conducting simulations of articulated mechanical systems.

4.2 Discussion

In this investigation we introduced a stability method needed to regulate the motion

when we op,,aLe in the presence of singularity. The constraint forces (driving forces) are

shown that they can be kept smooth and continuous by using the proposed technique in

handling the constraints at singular positions. Detecting and modifying their corresponding

constraint equations could be done during the process of the evaluation of the orthogonal

complement array to B. Baumgarte technique is seen that it can be extended to incorporate

stability method proposed to further provide a more robust control forces in the dynamics

of constrained multibody systems. We envisage some important finding if this method is

applied to flexible multibody systems.

5. Stability and Control of Large Scale Flexible Articulated Sys-

tems

5.1 Equations of motion based on recursive formulation

The inter-connection between two flexible bodies Bk and B is shown in Figure S. yk

and N' are the floating reference frames for Bk and Bj located outside the bodies, with

respect to which the associated elastic deformations are evaluated. These are transformed

to the inertial reference frame R, through the local reference frames nk and ni for the two

bodies located at Qk and Qj. The rigid body rotations/translations of the bodies are with

reference to r " . The bodies could be discretized using suitable finite elements, based on the

geometric configuration, each element i having its local reference frame n . Further details

of the relative and floating reference frames and the the different associated vectors has
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been explained in the reference [ 11 ]. Concepts of the indices of reference arrays have been

incorporated in the kinematical equations, which were shown to improve the computational

efficiency.

The mathematicl equations describing the vectors q and d. which describe the position

of a particular point on the body and the body vector respectively, and the angular velocity

Q, could be written in terms of the shape function matrices denoted as N" and M ( for the

linear and rotational elastic deformation ), which includes the necessary transformations as

q i A I'k? -k k-

=ki _ k-k (79)

dk Akiik* -V f (80)
",j n k . m k*u-' M -3

Ur -, (81)

nkfN ~ r kk (82)

where it, represents the identified and extracted vector, containing the exact kinematical

quantities associated either with the element or the flexible body.

The generalized speeds Y are written as

-QT' T, . T (83)

where Q. ), rl are the vectors of the components of the angular velocity of the bodies in

the system, derivatives of the components of translational velocities and the derivatives of

the components of modal co-ordinates of the flexible bodies in the system, respectively. The

relationship between the derivatives of Euler angles Oi or the Euler parameters 0i are given

by

k = f)Qk (84)

Ok =_p~k(85)
i i

where D and f are the related transformation matrices.

The use of component mode sysnthesis lies in expressing rotational elastic deformation

€ and translational elastic deformation '. in terms of nodal-modal-tranformation matrix ',



and the modal co-ordinate vectors 77, associated with the selected mode shapes as
@ki i ,ki -ki ki

vt .A 77  (86)

-ki ki -k77 ki(87)

where the subscript e refers to the index of reference array edof [ 12

A more detailed explanation of the kinematical matrix representation could be seen in

the reference [ 12 1. Let us now discuss in brief, the kinematical equations involved herein.

The partial velocity vectors C and ( associated with the rigid and flexible motions respec-

tively, could be utilized to express the angular velocities of any body k of the multi-body

system in R as

n=k- kq(88)

nk* = - q (89)

where

- k (90)

% - S. ~ 1

Once more k and ,* refers to the unit vectors, fixed at the inter-connected elements of the

adjacent bodies Bk and Bj ( see Figure 8 ). The subscripts cb refers to the indices connected

with both the reference arrays cdof and bdof " 12 . The velocity and acceleration of an

arbitrary point, in a similar fashion could be written as

v'k i Jki ki "_ + Vt k -- 3ki (92)

A '  k V+f - i+ + 3+' -i k+in + k+ T _ 3 ki (9,3)

where 7, v and 3 are again the partial velocity arrays. associated with Q2. T and ' respectively.

v is same as the partial tiigular velocity matrix. , and 3 could be written in a recur.ivelv

computed form as:

ki k . -ki k
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3 k 3 k~ k(ik -kk 1 1 (95)
LQKV XbX \eb

where

.k = . TkV+d-v, (96)

and

b -% k - S ,eb (97)

It is worth mentioning at this point the recursive nature of the computation of kinematical

quantities as indicated by the superscripts j and k for the lower and upper bodies respectively.

The process of computation starts at the lowest body level, where all the quantities are known

and through subsequent recursive substitution into the expressions. the quantities required

ultimately for the point under consideration are evaluated.

The details of the equations of motion in a matrix representation form based on Kane's

equations .is given in reference " 12 , which after simplification yields

- 0 --Aj = T (98

where Al. -. . J. .T and P represent tle co-efficients matrices for the zeneralized co-

ordinates accelerations. quadratic velocity vector, the c dimensional vector of undetermined

multipliers, constraint jacobian matrix. generalized external forces and stiffness due to strain

energy ,f the flexible bodies in the system respectively. These matrices are Emven by Al=

T Odl fkT k,103k t- Ik1T', I - , k, , k, .k, "

W Y k, Al T.d 3k' r-- I' ,~k ,yi ) Yd ; .3 ol 7- Yz" z .fi k,,kz ,- " ,'yd . -.~ j *( ) 1 /k, Tu , l , ydl * v pz fk,'I , -1 !9

where p is the mass density of the material used. \ is the sumniation 'f the vxouine ,i
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the element V over all the elements of a body and all the bodies in the systemi.

~Vki kT ~~i ,j ii

Q - k1 T ~ki~v T 3k 1  O

ZZfki 0,3 kiT { -tQ ,k 3 ki

Z f , lktTfkld .kT~k

Sk Nf LkfzdS f kl i~Jkj 101

7-Z f~k 3kiTfkzd JkJbky

where fkl and bki are the surface traction and body forces associated with the idlohal bounidary

of the finite elements and their weights respectively.

and

where K and G (ire thle block diagonal matrices. whose diagonal suib-iat rices, irt' A" :wi
(kbeing refered to the structural stiffness and geometric sifesfrbd

5.2 Derivation of the Constraint equations:

IUse of Partial velocity arrays in the recursive formulat ion of the tHie dynamical teqna-

ions of miotion. renders a notewortlhv benefit of the automatic generation .4 the co.nstraint

e-quations. B~asically. thle various co(nst raints c'uld b~e broadly classified as:

1, Closed loo--ps
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2. Prescribed motions

3. Contact between inter-connected bodies.

Closed loops are a common type of constraint, found in various mechanisms. The joining

point, where the closed loop occurs, could be reached in two ways, from the fixed inertial

reference frame. Denoting these two ways by p and q, the constraint equation could be

written in a compact form as

77

The specification of the kinematical quantities such as speeds and angular velocities form

the second prescribed motions. T'ie later are based on the linear and angular velocity, as a

function of time, say, G(t) and h(t), where the constraint equation take the following form

ri Vr 3 iI G(t)(14
S" [ = h(t) (105)

where r refers to the position vector C' of a point .4. which has the specified velocity, in

local reference frame of body K.

In a similar fashion. the third type of constraint mentioned above, is defined by the

number of points used to describe the contact between a gear,/shaft and a gear gear type of

bodies. It will be shown in the following sections of the paper, that the jacobian matrices

associated with the generalized co-ordinate derivatives. could be generated automatically.

for the cases of both the rigid and flexible gears/shafts.

The Holonomic and Non-holonomic constraints at the velocity level could be written in

a compact form as

JY = G(t) (106)
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where, , is the jacobian constraint matrix of order c by n, c being the number of the

constraints in the system and n, the number of generalized co-ordinates.

Differentiating the above equation once more and combining it with equation ( 98 ) after

the elimination of the undetermined multipliers, we get

£Y=1Z (107)

where

I2C fcTM1 (108)

and

-R CT [ Q_ p (109)

C in the above equation is the orthogonal-complement to the jacobian matrix J, and is

obtained by Psuedo-uptriangular Decomposition method. Subsequent numerical integration

of the governing equations of motion ( 107 ), would yield the time history of the generalized

speeds or generalized co-ordinates.

5.3 Vectorization and its computer implementation

The above developed algorithmic procedure is implemented on the various supercomput-

ers and mainframes.

The code by its nature of dynamical equations derived on the basis of flexibility and

finite element approach, constitute a substantial part of long vectors/arrays. This feature

makes it a potential candidate for the exploitation of the pipelining technique of modern

Vector-Processor hardware in supercomputers. This technique allows the overlapping of

instructions to a sequence of operands simultaneously, as compared to a single operand in a

scalar processor. Thus. speedup is achieved by a kind of micro-parallelism, in which, different

stages of pipeline work simultaneously cn different data. In general, performance increases

with the vector length upto a limit governed by the section size of the Vector-Pipe. The
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section size refers to the number of elements a Vector-Pipe could hold at a particular point

of time. ( The section size varies with the machine, like it is 256 in IBM-3090 and 64 in the

CRAY).

Effort was made to improve the efficiency of execution of the implemented code by reduc-

ing the CPU time, by vectorizing the code. This was carried out both at the compiler option

level ( outside the code ) and at the Do-loop level ( inside the code ) in the computationally

intensive areas. In particular. the concepts of promoting the scalar variables to vectors in the

left hand side of the expressions, was found to be more effective in certain computationally

intensive areas, which improved the overall speed of execution of the code.

5.4 Proposed Stability and Control for Systems Operating in the Presence of

Singularity

In our future work, we intend to extend the developments of phase I of this project for

large class of multibody systems including those with the elastic bodies. The validity of

the developed method presented in phase 1 will give us a new insight on the basic control

research problems for articulated structures undergoing quick maneuvers and operating in

the presence of singularities,

6 Conclusions and Future Directions

We have demonstrated under the proposed contract how the PUTD could be extended

to handle singularities in the dynamics of articulated structures. A stability method was de-

veloped to regularize the vanishing and linearly dependent constraints that are time variant,

through a new representation making use of higher order derivatives. The continuity of the

motion is demonstrated through an example of two arm robot driven through singularity.

Our goal is to extend this development and results to realistic models of structures with

flexible bodies.
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The second phase has been initiated where an all purpose code was developed and subject

to vectorization in supercomputers to test its ability to achieve real time simulations. We

believe that our efforts, if continued will lead to some major contributions in the control and

stability of constrained multibody systems. In particular quick maneuvers of space structures

and basic ground research of robotics could benefit greatly from the implementation of these

algorithms.
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