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SUMMARY

The proposed research is divided into two phases. The first intorduces the PUTD
(Pseudo- Uptriangular-Decomposition) to reduce the governing equations of motion of artic-
ulated mechanical systems. Performance of such systems is based greatly on the assumptions
and models nsed ta genorate +h- sroper control algorithms. This luvesigation proposes a
new method, which allows the constrained systems to operate in the presence of singularities.
This is achieved by a regularization technique which makes use of a new representation of
the kinematical and geometrical constraint equations at singular positions. This method of
stability analysis is compared with the asymtotic stability presented by Baumgarte. The
PUTD is extended to accommodate the dynamics of such systems. An illustration of the
utility and effectiveness of the method proposed is shown through a two arm planar robot
undergoing large motions and driven through singularities. The driving torques are then
compared to check for discontinuities and jerks.

The results show clearly that without the regularization and stability of the dynamics
of the system through the proposed method, large peaks for driving forces and discontinu-
ities of the velocities and accelerations are attained. The latter could hamper seriously the
performance and the mission of the system.

The second phase of the research project set the stage for the testing of the proposed
method when the articulated structures are composed of flexible bodies. The complete
matrix formulation of the equations of motion is presented based on the finite element.
modal analysis. Kane's equations and the PUTD method. Exploitation of the pipelining
feature of the IBM 3090’< vector processor by implementing the code on this machine and
subjecting it to suitable vectorization in the computationally intensive areas. This cuts
down the CPU time drastically needed for the dynamic simulation of multibody dynamical

systems.




2. Introduction

The handling of the constraints in multibody dynamics could be done in two different
ways. First by introducing the so-called Lagrange undetermined muiltipliers then the dynam-
ics of the system is found by solving the equations of motion together with the constraint
equations which are expressed at the acceleration level. This approach leads to solving more
equations than needed, hence it is computationally expensive. The second alternative is to
reduce the governing equations by eliminating the undetermined multipliers through pre-
multiplication by a matrix, orthogonal complement to the constraint Jacobian matrix. This
approach is best suited for the case when the constraint forces are no object in the analysis.

At special configurations, the constraint Jacobian matrix may become less than fell rank.
hence serious difficulties arise in extracting the orthogonal complement array and inverting
the generalized mass matrix. Therefore at such instances, the constraint equations need to
be modified in such a way to avoid singularities in the numerical method of solution. We
propose a new representation of the constraints when this situation occur. These modified
equations should be valid at the neighborhood of the special configuration where the Jacobian
matrix changes its rank. and therefore they are useful only if the system is in motion when
the special configuration occurs. In addition. to avoid the accumulation of the numerical
errors in integration. Baumgarte's method (1] of numerical stabilization is also included.

The systematic reduction of the equations of motion could be achieved through several
approaches {1-61. Those methods while their computational schemes differ. their objective
is to extract the orthogonal complement array to the Jacobian constraint matrix. In this
paper we propose to address the issue of numerical stability resulting from the constraints
when they become less than full rank. The intention of this research is to highlight and
further demonstrate the utility of the method proposed through a comprehensive analysis of
a planar robot in motion passing through a singular position.

This report is divided into several sections. The first is summary. The second section is
the Introduction. The development of the equations of motion for constrained mechanical

systems and Baumgarte's stability method form the subsections one and two of section 3.




In section four we will present a new method for the stabilization problem when some rows
of the constraint Jacobian matrix vanish at the neighborhood of singular position, and when
some of them become linearly dependent. An illustrative example is given in section 4. The
stability oi the flexible systems is discussed in section 5. Section 6 forms the conclusions and

the future directions.

3. Theoritical Development
3.1 Equations Formulations for Constrained Systems

The governing e juations of motion of a multibody system could be obtained using Kane's

equations

fi+fr=0 1=12,...6N (1)

where f; is the generalized active force array and is given by

| 8]
—

f[ = ‘k-Fk - wka (

whereas f; defines the generalized inertia force array

i = VWF —wT; (3)

in both equations (2) and (3) V; and wy. are the corresponding partial velocity (see Amirouche
and Jyla, 1987) associated with the mass center velocity and angular velocity of By in a
reference frame K. In equation (2) F, and T} are the 7n,,, components of the vector force F
and the torque Ti. (Note that a force acting on a body B, could be replaced by a force and
moment acting at the mass center of By)

In equation (3). however, the F¥ and T} are the #,,, components of the inertia forces Fy

and T;. where




F = —mpag (4)

and

TI: = "ik'&k - G)kx(ik":)k) (5)

In equation (4) m; denotes the mass of body By, and a; is its mass center acceleration.
I, is the inertia dyadic of By relative to its center mass and expressed with respect to the
fom components in R; &y is the angular velocity of By and & its corresponding angular
acceleration.

If a :uultibody system is subject to some constraints which might result from mechanical

joints. closed loops or prescribed motions. then equation (1) becomes

L+ f+Bi=0 [1=12,...,6N (6)

where ); is the so-called Lagrange multipliers and By; is the transpose of the constraint

Jacobian matrix (see Huston and Wang.1986). Equation (6) 1s simply

~1
—

+ff+f=0 1=12... . 6N (

where f{ are the generalized constraint forces.

The constraint equations could be expressed at the velocity level as

where G is a function of time, y defines the generalized speeds. Further differentiation of

eq(7.a) yields

By ~ By = G (7.5)
In the dynamic simulation of multibody systems, equation (7.b) is most useful since

it forms a set of m differential equations which can be combined with equation (6). To




bring the equations of motion to a minimum dimension, we premultiply equation (6) by the
orthogonal complement to matrix B. This results in an n-m equations, which together with
the m equations given by equation (7.b) yields the governing equations of motion.
Orthogonal Complement Matrix. If there are m constraint equations in a mechanical
system which has n generalized coordinates, then the constraint Jacobian matrix B will be
an m x n matrix. Consider the transpose of the constraint matrix denoted as BT, it is
known that an n x m matrix BT can be reduced to an upper triangular form. say U/, either
by Gauss-elituinaiion row operations [12] or by Pseudo- uptriangular decomposition method
2. BT and U are row equivalent with same rank and the row equivalence transformation

can be expressed as

PBT = [ (8)

where P is an n x n nonsingular matrix obtained by applying the same row operations which
transform BT to U.
Let I, and I, denote matrices composed of respectively, the first m columns. and the last

th order identity matrix. therefore. I, is orthogonal to I;. Since

(n — m) columns of the n
the columns of U7 are a linear combination of the columns of Iy, I, is also orthogonal to .

Then. using equation(8). we obtain

LTU = ,TPBT = 0 (9)

or

LTPBT = (CBT =0 (10)

where (" = ITP is a (n — m) » n matrix. Since P is nonsingular. the n — m rows of (" are
linearly independent. Therefore in R™ dimensional space. the n — m rows of ' form a basis
of vectors orthogonal to the m columns of the transpose of constraint matrix. i.e. C is a

complement matrix to BT.




Premultipling equation (6) by ' and applying equation (10). a reduced form of the

equations of motion of a constrained multibody system is obtained as

K, + K, =0 (11)

where

K,=Cfi K,=Cff (12)

in equation (11), we have n — m reduced equations. In order to solve for the dynamics of the
system. we must combine the m constraint equations at their acceleration level with those
of equation (11) to obtain the time history response of the system. More details are given

1n next section.

3.2 Baumgarte Stability Method

In oraer to solve the governing cquations, we usuaily represent the constraints at their
acceleration level. For instance. if we have m constraint equations (holonomic). they could

be represented by

hi(ql'q2*"'qvnt):0 1 =1.2---m (13)

the g's are the generalized coordinates and t denotes time. Equation (13) is said to be a
representation of the constraints at the position level. Further differentiation will lead to its

representation at the velocity level. where

: ® Oh;dg Oh; &
Ry =N L L2 =Ny ~g, =0 14)
= Bq, dt ey 2 i~ 9 {

where by is the (1.1) element of the m ~ n constraint matrix B defined by




dq1 Oq2 Oqn
Ohy  Ohy Ok
B=1y=| % % 9qn (15)
L a1 e oqn
y; is the I*M element of the matrix Y defined by
T d
= | do dgz  dg =
and g; is the i** element of the m x 1 matrix G given by
'l T
G:[_%.ﬁ%_“._%g (17)
at ot 2t |

If we further differentiate equation(14). we can get the acceleration representation of the

constraints as

hi=3 bagr — S bayr — g = 0 (18)
1=1 =1

one thing we should keep in mind is that A, = 0 implies h, = 0. h, = 0. but h, = 0 (which
is what we use in equation (18)) does not necessarily vield fz, = 0 and h; = (1. Therefore
it is imiportant to know that Jduring the integration of the equations of motion we must
try to satisfv all constraint conditions. In the event we don’t. It is possible to accumulate
numerical errors which might cause some serious stability and control problems. To overcome
this difficulty, Baumgarte introduced a method to assure ‘asymptotic stability” by replacing

h,‘ = 0 Wlth

hi + ach; ~ 3hi =00 i=1,2.---m (19)

where 3; = 0 for nonholonomic constraints. a; and 3; arbitrary constants chosen to sufh-
ciently fast decay of the errcrs (Baumgarte. 1972). For example. let us consider th» constraint

equations h; = 0 where A; = 0 is a holonomic constraint. In addition. assumc that. in the




h step. the computer yields

process of the integration of the equations of motion after the n'
the values A = § h = € which deviate from the exact values A = 0, h = (1. According to
the differential equation h = 0. the computer should produce the value i = ¢t — 4. Thus the
holonomic constraint is not satisfied in a linearly stable fashion. It is unhkely that subsequent
numerical errors will compensate for this behavior.

By virtue of the initial conditions h(0) = 0, H(O) = 0. equation( 19} leads to h =10

as before. such that the new constraint is analvtically equivaient to A = (). But from the

numerical point of view. the situation is different. In order to achieve asvmptotical stability.

a; - 0 (209

and

al — 43,0 (21)

must be satisfied. We usually choose Baumgarte. 1972’

-

a; =43 (22)

Note that from equation (20-21). we have an infinite set of a’s and .7's which could be used

In equation (19).

3.3 Proposed Stability in the Presence of Singularities
a) Regularization of Vanishing Constraints

It is common 1n the course of a mechanical systems motion that for By . [ = 1.---n. the
St constraint equation coefficients may become all zero at some instantaneous special con-
figurations. In this case. the procedures we mentioned in previous section fail in determining

the orthogonal complement array because the rank of B hecomes less than m. In addition

the augmented system 1nertial matrix becomes singular.

10




Since the generalized constraint forces due to the S™ constraint. \,By [ = 1.---n.
are zero, the constraint do not havc any effect on the system at that configuration and
one possible procedure is deleting the §** row of B. findiug the corresponding orthogonal
complement matrix C'. and then proceeding with the normal coordinate reduction technique.
As we mentioned before the constraint at the acceleration level could be expressed as

h, = Buyt ~ Bayi — g; = 0 r=1.-m {231

where y denotes the generalized speeds. Suppose for the 1 = s. By = ). then we can write

jz‘n:Bnlyl_g,:O 12‘1‘

Equation(24) must be satisfied by selecting the initial conditions for y; such that

Bay = g, (25}

in order to achieve the consistency of the equations.

When the §™ constraint equation is removed in this manner. the resulting equations can
be used in the neighborhood of the special configuration. The drawback of this approach 1»
that the assumption of zero constraint forces in the neighborhood results mn fast deviation
of the simulation from the constrained behavior.

To capture the effects of the actual constraint forces in the neichborhood f the vamshing
constraint. we differentiate further the S constraint equation. This will provide further
information on the constraint. hence a modified form of the constraint equation will be used
instead of 1ts deletion. To illustrate this approach. consider the time derivative of equation
(23). when{ = s

/I, = B,(y'l - '-V-)leyl - é,[y[ - []'_, =0 ! =1... n 1200

To sunplify the representation of equation(26). we express B, as

11




Since

gn = Thjy; (28)

where T is a matrix relating ¢ to y. In the light of the above. we can write equation(27) as

By = o45y; + Ua (29)
where
anl
Ostj = ———1Th; (30)
J aqh ¥
and
3B,
gl = - (31
Wyl 5 )
Stmilarly. g, can be expressed as
9s = falYt — 7 {32)
where
Aag, dg.
R TR (33)
Hatl aqh ht p ot

Further differentiate of equation (29) and (32) gives the B and g terms as

B.«I = bsl]yj - o.uljy] - h“,[ (34)

s = /1,1311 - /lszyt ~ T

33)

Substituting equations (29), (34) and (35) into equation (26). we get

12




Bayi+ Gapr +J, =0 l=1,...,n (36)

where

Gal = 2B.~l T d’splyp — Hal l,P =1,...,n (37)

and

Jn = Q'snlpypyl + d’slyl — Kyt — T, (38)

The usefulness of equation (36) stems from the assumption that. when the elements
of the constraint By, | = 1,...,n are zero at the special configuration and small at its
neighborhood. B,y is negligible compared to the other terms in equation(36), so dropping

that term in the equation will yield

h;:Gsly'I_LJszo (qg)

It is seen that G,; and J, are. in general. functions of ¢, y; and t. Equation(39) is liner
in accelerations ¥ and has the form of the constraint at the acceleration level. If one :
interested in computing the generalized constraint forces at the neighborhood of singularity.

then all we have to do is replace in F¢ = ABT, the S constraint by

B.«l = Gsl (40}

In most cases. G, doesn't vanish while B, does. The governing equations of motion will
then be subject to the constraints given by equation (39).
To further assure the numerical stability of the constraints. we can make use of Baumgarte

technique where equation (39) takes on the following form

Gslyl - J.- - Q,-(B.-tyl e g-} - 3.-(3.-1.‘11 - gv) =0 (41)
which reduces to

13




Galyl + Ja + as(Balyl - g,) - 1339; =0 (42)

where
Gsli/l =-J, - as(leyl - 9,) + /3;9.9 (43)
and
55 = _Js - a.v(B.'Iyl - 93) + .3.19.1 (44)
Note that A, = 0 1s automatically satisfied since B, =0, [ =1..... n.

b) Regularization of Linearly Dependent Constraints

In a similar fashion to the case of vanishing constraints. the linear dependency causes B
to be less than full rank. In this case, it is known that an n x m matrix BT can be reduced
to Gaussian form [ by Gauss elimination row operations. where the rows 1..... r are the
nonzzaro rows of [’*. and the loftmust nonzero entry of row ¢ occurs in column A;, 1 =1,....7
then ky < ko < -+ < k..

BT and ['* are row equivalent with same rank r and the row equivalence transformation

can be expressed as

PBT =[ (43)

where P is the corresponding n x n nonsingular matrix.

It is seen from the definition of [’* that the columns with indices k;. ¢ = 1....,r are lin-
early independent columns. whereas the remaining m — r columns whose indices are denoted
as d;. i = 1....,m — r, can be expressed as linear combinations of the former set. The d!*
columns of BT can also be written as linear combinations of the kt* columns of BT. To show

this. we can write equation(45) as

14




PV =’ j=1,...,m (46)

where & and u’ denote the j** columns of BT and U*, respectively. For the columns of U*,

we have

udJ: jiuk‘ i:l,...,'l‘ j:l,...,m——r (47)

where Zj;,i = 1,...,r are the linear combination constants for the d;-h column. Substitution

of equation (46) into equation (47) for u® and for each u* leads to

Pde = ud’ = Z_,,-iuk' = Zj,'Pbk' (48)

S0,

b =Zpbh =10 j=1,....m—r (49)

representing equation (49) in a matrix form. we obtain

By~ ZjiBry =0 (50)

we can write the constraint equations in these following forms

/.14, = By — g4, =0 (51)
h, = Bray — gi, = 0 (52)
ha, = By + Bauy — ga, = 0 (53)
hi, = Beay ~ Bray — e, = 0 (54)

we can use equation (54) to generate our constraint equations at the acceleration level.
but we can't use equation (53) because B, 1 is linearly dependent to By, as shown in equation

(50). Since

15




ha, = Zjihe, = [Bay — ZjiBuly ~ 94, — Zjig,] = 0 (55)

and using equation (50), equation (55) becomes

].ldi - Zjihkl = —{gd] - ZJ!gk;] = O (56)

1ts differentiated form yields

ha, = Zsihy, = (Bay — Z;By )y + (Bay — Z3iBit)y — (94, — Zsidw,) = 0 (57)

J
making use of equation (50) once more. equation (57) reduces to

ha, = Zjihi, = (Bay — Z5iBra)y — (34, — Zisgr,) = 0 (58)

)

Note how the y term 1s not explicit in equation (58). If we further differentiate equation(57),

we get

"t Hi

hy = Zsihy, = (Bayi— Z5Br1)j+2(Bayji— Zji Bt )y +(Bay— Z;iBi )y — (94, — Zisgr,) = 0 (59)
equation (59) reduces further to

e e

hy, = Zjihy, = Q(Bd,z ~ Z;iBri)y + (Bd;l — ZiBia)y - (ga, = Z5igx,) = 0 (60)

by dropping the term that multiplies § by virtue of equation (50). The representation of the

constraint equations given by equation (53) are now represented by equation (60). as

il;, = 2ABa, — Z; By + (B — ZsiBra)y - (9a, — Zjigr,) = 0 (61)

equation (61) and equation (54) are linearly independent and form a consistent set of con-
straint equations to be used when the linear dependency of the constraints occurs. This

stability procedure could be further enhanced by applying Baumgarte's method to stabilize

16




the numerical error due to the integration of the equations of motion. Employing Baumgarte

technique we further obtain a form of the constraint as

2(Ba,t — Z;:Bra)y + (Bay ~ Z5Bri)y — (Ja, — Ziigw,)

+ag, [(Ba, — ZiiBra)y — (94, — Ziigr,)) + Ba, [~ (94, — Zsige,)] = 0 (62)

writing the above equation in a compact form we get

GdJy-f-SdJ =0 (63)
where
G, = 2Bay — ZsiBry) (64)
and
Sa, = (94, — Zjigr,) — yi(Bd,z + ayq, Bd,l) ~ Z;i(Bra - ad,Bk.l)i
~(a4,94, = 34,9a,) ~ Zjilaq, gk, ~ 34,9k, ) (65)

4. Procedure Verification and Applications

4.1 Two-Arm Robot with Specified Motion

Consider a two-bar linkage, L, = [, L, = %, m, = m, my = 2m, = 2m . as shown

in figure 1. Assume that point p follows the horizontal line y = % with a constant velocity
along the -z axis. We know that for ¢; = 0, ¢, = 7. the system becomes singular. This
is a perfect example to check our stability method and further compare it to Baumgarte
technique. In the sequel we will show how our stability is completely independent of the

asymptotic stability due to the ill representation of the constraints at the acceleration level.

17




The constraint equations for the problem given are

l

. [ .
hi(q,q2,t) = lsing + §sm(ql + @) — 7= 0 (66)

l
h2(q1,q2,t) = lcosqy + §c05(q1 +q)+vt—xzo =0 (67)

where z, denotes the initial position of the z coordinate. Their first order differentiated

forms yield

. l
hy = 1Cy, + §C12(y1 +y2) =0 (68)

- l
hy = —1S1y1 — 5512(311 +y2)+v=0 (69)

where §; = sing, Sz = Sin(‘h +q2), €y = Cosqy, Cia=cos(qi+ @), 11 = qQ1, Y2 = Q2- Using

the above equations and expressing the constraint equations in a matrix form, we obtain

[ ICy + %012 %012 i} 0 (70)

L -15, - {;512 —%512 Y2 —v

differentiating equations (7?)(?7) once more, we get the constraints at the acceleration level

as

. [ . { . { -
hy = (ICy + 5012)3/1 + 50121/2 - (1513/3 + 5512(!/1 - 92)2) =0 (1)
- l . l ) , ) -
h, = (=15, - 5512)3/1 - 55123/2 — (ICy; + §C12(y1 ~y2))=0 (72)
which can be written in matrix form as
ICy +35C 5Cn | [S1yf + §S1(y ~ ¥2)° (73)
=15 — 15512 —%512 Y2 1Chyi + %012(!,/1 +42)°

introducing Baumgarte method, equation ( 73 ) takes on the following form

18




ICy + ;012 %Cn N

1S~ 480 —48u | | dx |

lSlyf + é’Sl?(yl +¥2)° - o[lCyyy + %Clz(yl +y2)] — 818, + %512 - é)
1Cry; + %012(3/1 +y2)? —a[-1S1y — éSlz(yl +y2) +v] — 3(IC, + %C’lz + vt — zo)

(74)
From equation ( 70.73 or 74 ) the Jacobian constraint matrix is seen to be
Ic, + i Lc
B - 1 3012 500 (75)
-5, — é512 —5512

From Kane's equation. i.e. F* < F + BT)A = 0 , we write the equations of motion for the

system as
%mlz ~ I, + ]2 %mlng + I, yl ; —%mlzyg(yl + y2)52 - nglsl
i—mlzcz T 12 11—677112 - 12 yZ %mlzy;"SQ + imglslg
ICy +1Cn —18 - L8 | [ A i
= z (76)
3C12 —%512 | A

The governing equations of motion for the two bar system are given by equation ( 73 and
76 ) for the case when Baumgarte method is not used and by equation ( 74 and 76 ) with
Baumgarte representation of the constraints.

We can easily deduce. from equation ( 73 and 74 ), when singularity occurs. i.e. q; =

[SEE}

q; = =. the first row of B vanishes. Employing the method proposed. the new representation

of the constraints is given below.
=318y, ~ %Slz(yl + Y2) —%1512(91 + Ya) Y1 ICyy3

—15; ~ é512 -%512 Y2 1Z07

Introducing Baumgarte's method. equation ( 77 ) becomes
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=381y — i2!512(!/1 + Y2) *%512(91 + y2) Y1
~18, ~ L8y, —3S12 Y2

IChy7 + %Cm(yl +y2)* — a[lC1y1 + %Cu(m + y2)] — B(IS: + %512 - %)

1Chyf + ’%012(3/1 +y2)° — a[--1S1y; — 71_3'512(y1 +y2) +v] = B(IC; + %012 + vt — o)
(78)

Assume the two-bar links are slender rods, and

my =2kg, my=1kg, [=1m,

1 , 1 [ .
I = 1—2-771112 =0.16T kg —m* I, = ﬁm2(§)2 = 0.0208 kg — m®

the initial angular positions for link 1 and link 2 are. respectively, 1.047198 rad and 4.41466
rad. while the initial angular velocities are given to be 1.4252 rad/s and -3.51724 rad/s.

As we approach singularity we should experience the necessary jumps if one proceed with
the standard technique where the constraints are not eliminated. To test this problem we
have run a simulation and found some very interesting results. The cases are labelled as
with and without the modified B. The first one being the B at hand and its corresponding
constraint forces and the second one corresponds to the proposed stability method with
the modification of B. In addition. we have run our simulation for the previous two cases
with and without Baumgarte technique to further see whether there were any gains in the
stability procedure. Figure 2 and figure 3. display the constraint forces at the neighborhood
of singularity. It is very clear that the stability method proposed ( solid line ) assures
smoothness of motion. The constraint forces do not experience any jumps as is the case
when B is kept unchanged.

This is further illustrated by figure 4. where the jumps in velocity is seen to yield
large peaks. The latter could hamper the system performance. In figure 5-6-7 the same
simulation is repeated introducing Baumgarte technique. We can easily conclude that at
singular position Bauiugarte iechnique doesn't provide any stability. This is quite excepted
since the B matrix if kept unchanged the vanishing of the constraint will cause the jumps

we are seeing. The results also show that the stability provided by the method in this paper
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is not altered when adding Baumgarte technique to it. We believe that the combination of
Baumgarte technique and the proposed method herein could serve as a unique feature in

conducting simulations of articulated mechanical systems.

4.2 Discussion

In this investigation we introduced a stability method needed to regulate the motion
when we ope.ate i the presence of singularity. The constraint forces (driving forces) are
shown that they can be kept smooth and continuous by using the proposed technique in
handling the constraints at singular positions. Detecting and modifying their corresponding
constraint equations could be done during the process of the evaluation of the orthogonal
complement array to B. Baumgarte technique is seen that it can be extended to incorporate
stability method proposed to further provide a more robust control forces in the dynamics
of constrained multibody systems. We envisage some important finding if this method is

applied to flexible multibody systems.

5. Stability and Control of Large Scale Flexible Articulated Sys-

tems

5.1 Equations of motion based on recursive formulation

The inter-connection between two flexible bodies By, and B; is shown in Figure 8. .\

and N7 are the floating reference frames for By and B; located outside the bodies. with
respect to which the associated elastic deformations are evaluated. These are transformed
to the inertial reference frame R. through the local reference frames n* and n’ for the two
bodies located at Qx and @;. The rigid body rotations/translations of the bodies are with
reference to n*". The bodies could be discretized using suitable finite elements, based on the
geometric configuration, each element ¢ having its local reference frame n*'. Further details

of the relative and floating reference frames and the the different associated vectors has
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been explained in the reference [ 11 |. Concepts of the indices of reference arrays have been
incorporated in the kinematical equations, which were shown to improve the computational
efficiency.

The mathematicl equations describing the vectors ¢ and d. which describe the position
of a particular point on the body and the body vector respectively, and the angular velocity
Q, could be written in terms of the shape function matrices denoted as N and M ( for the

linear and rotational elastic deformation ), which includes the necessary transformations as

qki _ ,’\/"L;ﬂf" i A/kﬂ: (79)
dt = Nre gkt _ Afigd (80)

n @nt _ M"‘ﬁi _ M.’iﬁi (81)
N Akt (82)

where i, represents the identified and extracted vector. containing the exact kinematical
quantities associated either with the element or the flexible body.

The generalized speeds ) are written as :
) T
Y= arqrr | (33)

where . 4, n are the vectors of the components of the angular velocity of the bodies in
the svstem. derivatives of the components of translational velocities and the derivatives of
the components of modal co-ordinates of the flexible bodies in the system. respectively. The
relationship between the derivatives of Euler angles 8; or the Euler parameters O; are given

by :

where D and E are the related transformation matrices.
The use of component mode sysnthesis lies in expressing rotational elastic deformation

o and translational elastic deformation 7. in terms of nodal-modal-tranformation matrix y




and the modal co-ordinate vectors 7, associated with the selected mode shapes as :
Fr = MK hipks (86)
,,—_ki - A/kiis.'n:i (87)

where the subscript e refers to the index of reference array edof [ 12 1.
A more detailed explanation of the kinematical matrix representation could be seen in
the reference [ 12 |. Let us now discuss in brief. the kinematical equations involved herein.
The partial velocity vectors ¢ and ¢ associated with the rigid and flexible motions respec-
tively. could be utilized to express the angular velocities of any body k of the multi-body

system in R as :

QF = *Q — ik (88)
Qk = 3Q - ¢y (89)
where
&= - Skt (90)
=8 ST, - SF ML 101)

Once more &k and &* refers to the unit vectors. fixed at the inter-connected elements of the
adjacent bodies By and B; ( see Figure 8 ). The subscripts b refers to the indices connected
with both the reference arrays edof and bdof 12 . The velocity and acceleration of an

arbitrary point. 1n a simiiar fashion could be written as :

‘,,rki — ‘)’kiQ -~ UkT - dkir'] (9‘2]

B G 7 (R o TR SR L (93)

where 7. v and 3 are again the partial velocity arrays. associated with Q. T and 7 respectively.
v is same as the partial augular velocity matrix. 4 and 3 could be written in a recursively

computed form as:

ki ko ki k (04)




3 = 3w | 8 k- v, | - avd (95)
where
W= s TR L (96)
and
F= I | THO - 6 ] - SINER - SN, (97)

It 1s worth mentioning at this point the recursive nature of the computation of kinematical
quantities as indicated by the superscripts j and k for the lower and upper bodies respectively.
The process of computation starts at the lowest body level. where all the quantities are known
and through subsequent recursive substitution into the expressions. the quantities required
ultimately for the point under consideration are evaluated.

The details of the equations of motion in a matrix representation form based on Kane's

equations . 1s given in reference 12 ', which after simplification yields
MY-P-Q-\J=F (98}

where M. Q. A J. F and P represent the co-efficients matrices for the generalized co-
ordinates accelerations. quadratic velocity vector. the ¢ dimensional vector of undetermined
multipliers. constraint jacobian matnix. generalized external forces and stiffness due to strain

energy of the flexible bodies in the system respectively. These matrices are civen by .M = -

C oy T RAl YV T pyR T Rar a3l T kT 3Rar 53 i
!
SRl 3dv ST kTR aydv S R el aydl o)
|
:ngfmklf.a**m YAV S [ prkT AT ydy T panT et a3y

where p 1s the mass density of the matenial used. © ¥ is the summation of the volume «f




the element 17 over all the elements of a body and all the bodies in the system.

r -

1 ~g'T . s ey 'i'.
EZfl’f p‘yk {‘Yk‘Qfl/kT-f—JkU

1 ¥ ko~ ',.. ()
Q=] T &t [7'”‘Qv-uk'ff-3knj (1001

c1 e e L ks -
] EZL}; p3* { FEQ + kY — 3k

il ks T ki gys
S5 fs, Y S ~ [T b

F = Szfs,‘_lfk‘rfk‘dSAfu'“Tb""dI' (101

i szs‘” jkinkzdS . ’" 3szbkzd" ]

where f* and b*' are the surface traction and body forces associated with the ¢lobal boundary
of the finite elements and their weights respectively.

and
! 0
!
P: | ” ! ,14\'_’
{\TE K -G 1

L J -

where i and G are the block diagonal matrices. whose diagonal sub-matrices are A i

G*. being refered to the structural stifiness and geometric stiffness for body A

5.2 Derivation of the Constraint equations :

Use of partial velocity arrays in the recursive formulation of the the dvnamical equa-
tions of motion. renders a noteworthy benefit of the automatic generation of the constramnt
equations. Basically, the various constraints could be broadly classified as:

1. Closed loops




2. Prescribed motions

3. Contact between inter-connected bodies.

Closed loops are a common type of constraint, found in various mechanisms. The joining
point, where the closed loop occurs, could be reached in two ways. from the fixed inertial
reference frame. Denoting these two ways by p and g, the constraint equation could be

written 1n a compact form as :

Q
-] [m-a] ] 1) =0 (103)

.

The specification of the kinematical quantities such as speeds and angular velocities form
the second prescribed motions. The later are based on the linear and angular velocity, as a

function of time, say, G(t) and h(t), where the constraint equation take the following form :

Q
[w L 5**‘} T | =6 (104)
7
G 9}*‘(” 0!
) n

where 7 refers to the position vector ('" of a point 4. which has the specified velocity. in
local reference frame of body A .

In a similar fashion. the third type of constraint mentioned above. is defined by the
number of points used to describe the contact between a gear/shaft and a gear gear type of
bodies. It will be shown in the following sections of the paper, that the jacobian matrices
associated with the generalized co-ordinate derivatives. could be generated automatically.
for the cases of both the rigid and flexible gears/shafts.

The Holonomic and Non-holonomic constraints at the velocity level could be written in

a compact form as :
JY = G(t) (106}
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where, J is the jacobian constraint matrix of order ¢ by n, ¢ being the number of the
constraints in the system and n. the number of generalized co-ordinates.
Differentiating the above equation once more and combining it with equation ( 98 ) after

the elimination of the undetermined multipliers, we get

LY=R (107)
where
L=|ctm]| (108)
and
-[e2-5-0]]

C in the above equation is the orthogonal-complement to the jacobian matrix J, and is
obtained by Psuedo-uptriangular Decomposition method. Subsequent numerical integration
of the governing equations of motion ( 107 ), would yield the time history of the generalized

speeds or generalized co-ordinates.

5.3 Vectorization and its computer implementation

The above developed algorithmic procedure is implemented on the various supercomput-
ers and mainframes.

The code by its nature of dynamical equations derived on the basis of flexibility and
finite element approach. constitute a substantial part of long vectors/arrays. This feature
makes it a potential candidate for the exploitation of the pipelining technique of modern
Vector-Processor hardware in supercomputers. This technique allows the overlapping of
instructions to a sequence of operands simultaneously. as compared to a single operand in a
scalar processor. Thus. speedup is achieved by a kind of micro-parallelism. in which. different
stages of pipeline work simultaneously cn different data. In general. performance increases

with the vector length upto a limit governed by the section size of the Vector-Pipe. The

to
-3




section size refers to the number of elements a Vector-Pipe could hold at a particular point
of time. ( The section size varies with the machine, like it is 256 in IBM-3090 and 64 in the
CRAY ).

Effort was made to improve the efficiency of execution of the implemented code by reduc-
ing the CPU time, by vectorizing the code. This was carried out both at the compiler option
level ( outside the code ) and at the Do-loop level ( inside the code ) in the computationally
intensive areas. In particular. the concepts of promoting the scalar variables to vectors in the
left hand side of the expressions, was found to be more effective in certain computationally

intensive areas, which improved the overall speed of execution of the code.

5.4 Proposed Stability and Control for Systems Operating in the Presence of
Singularity

In our future work, we intend to extend the developments of phase 1 of this project for
large class of multibody systems including those with the elastic bodies. The validity of
the developed method presented in phase 1 will give us a new insight on the basic control
research problems for articulated structures undergoing quick maneuvers and operating in

the presence of singularities.

6 Conclusions and Future Directions

We have demonstrated under the proposed contract how the PUTD could be extended
to handle singularities in the dynamics of articulated structures. A stability method was de-
veloped to regularize the vanishing and linearly dependent constraints that are time variant.
through a new representation making use of higher order derivatives. The continuity of the
motion 1s demonstrated through an example of two arm robot driven through singularity.

Our goal is to extend this development and results to realistic models of structures with

flexible bodies.




The second phase has been initiated where an all purpose code was developed and subject
to vectorization in supercomputers to test its ability to achieve real time simulations. We
believe that our efforts, if continued will lead to some major contributions in the control and
stability of constrained multibody systems. In particular quick maneuvers of space structures
and basic ground research of robotics could benefit greatly from the implementation of these

algorithms.
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Figure 3. Labelling position vectors in adjacent bodies.
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Two Link Manipulator Undergoes A Constrained Motion
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