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Summary

Slemrod's research in 1990-91 centered on two issues: (1) the kinetics of colg .lation
processes, (2) behavior of discrete velocity models in the kinetic theory of gases. In the first
area Slemrod has (a) given a new method for solving the special class of coagulation equa-
tions which exhibit gelation and (b) derived and proved existence of similarity solutions
for coagulation equations with diffusion. In the second area Slemrod has used his "relaxed
invariance principle" method to prove weak decay to equilibrium for the Broadwell model
of gas dynamics in the case of specularly reflective boundary conditions.
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In the last year Slemrod's -esearch has centered on two issues: (1) the kinetics of
coagulation processes, (2) behavior of discrete velocity models in kinetic theory of gases.
Below an outline of progress in each area is given.

1. Kinetics of Coagulation Processes

Models of cluster growth appear in a wide variety of applications. One well known
example is the Smoluchowski-Flory-Stockmayer theory of gelation where it was found that
all concentrations decrease in time and the quantity represcnting mass density is conserved
for only a finite time after which it decreases.

The models themselves are coupled infinite systems of ordinary differential eauations:
L c,(t) > 0, j = 1, 2, ... denote the expected numbers of clusters consisting ofj particles
per unit volume. The discrete coagulation-fragmentation equations are

dc, j-1
=_ Za,_.k ,kckck bj-k, Cj]

00k=1
k~l (1)

-ZajkcjCk - bj,kcj+kI for j= 1,2
k=1

The coagulation rate aj,k and fragmentation rate bj,k are non-negative constants with
aj,k = akj, bj,k = bk,j.

In paper (1), Slemrod considered the case of pure coagulation for which bik _ 0 and the
special case ask = jk. In this case the Smoluchowski-Flory-Stockmayer system becomes

dc_ 1 j-1 00

dc= 1>(j - k)kcj-kCk - jcj E kCk. (2)

k=1 k=1

For simplicity monodisperse initial data was chosen ci(0) = 1, ci(O) = 0, 2 < j < c0.
A solution of (2) has been given by McLeod (J. B. McLeod, On an infinite set of

non-linear differential equations, Quarterly J. Math. Oxford Ser (2), 13 (1962), 119-128).
McLeod's solution was valid on 0 < t < 1. It was based on the fact that on 0 < t < 1 the

00

mass density p(t) = E kck(t) is conserved (and equals one). However as McLeod noted
k=1

the desired conservation of density breaks down for t > 1 and his solution is not valid past
the critical "gelation" time, t = 1.

The first resolution of the problem was provided by Leyvraz and Tschudi (F. Leyvraz
and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A. 14
(1981), 3389-3405). Their method was to introduce the generating function G(z, t) =

00

E qk(t)zk where 0j(t) = jcj(t) exp(j fo p(z)dz). A computation shows G satisfies the
k=1
quasi-linear hyperbolic partial differential equation

aG GOG
-- 5 O <z<1,t>0 (3)
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with initial data G(z, O) = z. They integiated (3) via the method of characteristics and
then recovered cj(t). The end result (after long computations) was that

j 1 -3 e- 1
c) (j )! t> 1Uj - 1)!_ t (4)

- e- it 0 < t < 1.

(j -)!

In this case the density p(t) satisfies

p(t) =1 0 < t < 1

1 (5)
t

indicating a decrease in density after the "gelation" time t = 1.
In [1] Slemrod reconsidered resolution (2) based on McLeod's original ideas with some

subtle changes. He was able to show the density p(t) satisfies the singular ordinary differ-
ential equation

-t) = u, (0(6)

which immediately yields (5) and thus (4). Hence no recourse to complicated use of
characteristics and generating functions is needed and a clear picture of the evolution of
the density is provided.

In a second paper Slemrod [21 following ideas of Binder (K. Binder, Theory for the
dynamics of clusters, 1I. Critical diffusion in binary systems and the kinetics of phase
separation, Phys. Rev. B 15 (1977), 4425-4447), considered the incorporation of diffusion
in the classical discrete coagulation-fragmentation system (1). Again the restriction was
made to pure coagulation (bik = 0) but now the added difficulty of diffusion (as given by
Stokes' law) is considered.

The equations now are for quantities cj(., t) _ 0, j = 1, 2... which denote the expected
number of clusters of j particles/unit volume at position x E IR"(n = 1,2, 3) at time t > 0.
The discrete coagulation-diffusion equations are

aci  1 i-1 00
D c i E j..k,kCjkCk - >3 a3 ,kCjck (7

-oDc, = 2_ '_,

k=1=, (7)

Dj -, j- 1 l (Stokes' law).
In [21 Slemrod considered a variety of problems: Existence of steady states, finite time

gelation, and diffuse interfaces. A particularly interesting 2 oint is that system (7) admits
an exact similarity form ci(R,t) = Ci( )/t where = R/svt, R = JZi. The functions €j( )
satisfy the infinite systems of ordinary differential equations

Dj(Of.' + n-F + 1¢ + ¢
~ '2'

1 j00o (8)
= - 3a,_k,kqj-kOk + ci (8 aj,)j

k=1 k=1
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In [2] Slemrod also provided some preliminary existence theorems for solvability of (8).

2. Discrete Velocity Models of Gases

Discrete velocity models are finite velocity approximations of the Boltzmann equa-
tion. They provide a mathematical simplification for the true Boltzmann equation hence
often allowing more complete analysis than can presently be done for the true Boltzmann
equation. One sucb discrete velocity model is the Broadwell model which describes a gas
of particles with identical masses moving along three perpendicular coordinates with same
speed c. Results of a particular collision have the same probability with only binary colli-
sions allowed. Let Ni = Ni(x, y, z, t), i = 1, 2, ..., 6, denote the density of particles moving
in the six allowed directions. Then N1 ,..., N6 satisfy the Broadwell system

ON 1  ON 1,+c -"" =o (N 3 N 4 + NsN 6 -2N 1 N 2 ),

ON ON
OF c- = a (N 3N 4 + NsN 6 - 2N 1 N2 ),

ON3 ON3a3 + c og = o(NiN 2 + NsN 6 - 2N 3 N 4 ),

ON4  ON45i- = cy (NN 2 + N5 N6 - 2N3N 4),

ON5 ON5c+ C-" = 5 (NN 2 + N3 N 4 - 2N sN6),

ON6  ON6
'5 c- -- = a(NIN 2 + N 3N 4 - 2N5N6 ),

where a/2c is the cross section for binary collisions.
For flows which are independent of y, z and for which N3 = N4 = N 5 = N the above

six velocity model reduces to the simpler form

ON + cON 1 _ 2a(N3 - N N2),

ON2  ON2 = 2a(N3- NN 2 ), (10)
at O

aN3 _).
Ot

An open prohern concerning (10) has been the asymptotic behavior (as t - oo) of
(10) with initial conditions

N,(x,0) = No(x), N 2 (x,0) = N2o(x), N 3 (x,0) = N 3o(z), 0 < x < 1 (11)

and boundary conditions of specular reflection type

N(x,t)=N2 (x,t) for t>0, x=0,1. (12)

5



In [3] Slemrod gave a resolution fo this problem via his "-relaxed" invariance principle based
on dynamical systems in infinite dimensional state spaces and Young measures. The main
result is that as t -- oo the unique solution of (10), (11), (12) tends to traveling waves
fi(x - ct), f 2 (x + ct), f 3(x) satisfying the collision inequality

fj (XCt) f2(X + ct) <5 f3 (X)2 a.e. x e[0, 1], t > 0.

Convergence to fl(x - ct), f 2(x + ct), f 3 (x) is in the weak* topology of an appropriate
L 1logLI Banach space.
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