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Abstract

Applications such as animation and scientific visualization demand high performance ren-
dering of complex three dimensional scenes. To deliver the necessary rendering rates, highly
parallel hardware architerfures are required. The challenge is then to design algorithms and
software which effectively use the hardware parallelism. This paper describes a rendering al-
gorithm targeted to distributed memory MIMD architectures. For maximum performance, the
algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is
examined both analytically z.nd experimentally. Its performance for large numbers of processors
is found to be limited primarily by communication overheads. An experimental implementation
for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide
range of scene complexities. It is shown that minimal modifications to the algorithm will adapt
it for use on shared memory architectures as well.
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1 Introduction

Applications such as real-time animation and scientific visualization demand high performance

rendering of complex three-dimensional scenes. While the results achieved on current hardware

have been impressive, major improvements in performance will require the use of highly parallel

hardware and scalable parallel rendering algorithms. This paper describes one such rendering
algorithm for MIMD architectures. Although the algorithm is designed for distributed memory

message passing systems, straightforward modifications will adapt it for use in shared menory

environments.
in the following section, we introduce the traditional rendering pipeline and consider the issues

involved in parallelizing it. Next, we present our algorithm and give a theoretical analysis of its
pcrformancc. We then describe an implementation on the Intel iPSC/860 1 hypercubt, and compare
the experimental results with analytical predictions. Finally, we examine how the algorithm can
be adapted for shared memory MIMD architectures.

2 The Rendering Problem

We assume thit we are given a scene consisting of objects described as collections of 3D triangles,
some light sour -es, and a viewpoint. The goal is to produce a 2D representation of the scene taking
into account the lighting and perspective distortion (Fig. 1). For simplicity we assume the lights
are all point ligLt sources and the triangles possess only a diffuse coloring attribute. The addition
of other material properties, such as specularity and textuie, do not really affect the main structure
of the algorithm.

There is now a fairly well established pipeline for the fast rendering of such three dimensional
scenes [10]. The standard pipeline may be represented as shown in Figure 2. The exact sequence
is not fixed, for example shading may be done after transforming (indeed, an essential portion of
Phiong shading must be done in the rasterizing step [3]), or clipping may be delayed until after the
rasterization step.

One way to parallelize the rendering process is to map the various stages of the pipeline directly
into hardware [2]. This approach has been very successful, and has been adopted 1) a numwr
of graphics hardware vendors. But the ultimate performance attainable )y direct lv exploitilng thie,

pipeline is limited 1)y the ii in1ber of stages in the pipe. To achieve a greater (legree of para Ilelisi.
other strategies must be examined.

As is well known [11]. there are three main steps in the ren(ering )rocess which acconni for

most of the co, put ation time. These are

1. The floating point operations performed on objects, such as I ransformiing. lighling. and clip-
ping.

2. The rasterization of primitives transformed into screen coordinates.

3. Writing pixels to the fraime buffer.

(We ignore here tle problein of traversing the database prior to rendering.) The rendering time, will

be limited by the slowest of tliese three steps. Moreover, in cirretil serial and pilj,,lined iarldware

i In p(....c.il tdions, eat h of Ilw.,( three steps is operating at its limiit [11]. Thus to obtain significant

imnprovements in performance, it is necessary to niap the rendering Ipipeline onto a hardwa re arch i-

tecture in which each of these three steps can be parallelized. p'fvra Idy by replicating >n(e basi'i

if'Sc, 1l'.;(,'/2, uSC8CO, ...... ' ,6, are tradci, arks of I iitl (,orportaI ii.
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type of processing element. We refer to parallel computations in step 1 as object parallelism, and in

steps 2 and 3 as image or pixel parallelism. A system with a high degree of object parallelism is de-

scribed by Torberg in [12]. A system with a high degree of pixel paralleism, the classic Pixel-Planes

system of Fuchs and Poulton, is described in [6]. Finany, a system incorporating both object and

pixel parallelism is described by Fuchs et al. in [7]. In all these cases, tie algorithms for 3D render-
ing are mapped onto specific hardware, more or less constructed for that purpose. In our case, we

map the rendering algorithm onto more general purpose parallel architectures. This allows us to
experiment with the algorithm at a high level and with a high degree of flexibility. Once the critical
performance parameters and tradeoffs are thoroughly understood, then special-purpose hardware
can be designed to achieve maximum performance. As we will show, the algorithm described in

this paper achieves both object and pixel parallelism, and will run on mc ntain;g from I

to p processors, wnere p is bounded by the number of scanlines. For an excellent discussion of the
various approaches to object and pixel parallelization, see [11].

Besides exploiting both types of parallelism, a good algorithm must ensure that all large data
structures are distributed among the processors without wasteful duplication. In our case there are
two such structures: the list of triangles and the frame buffer. We distribute these structures evenly
among the processors, allowing the algorithm to scale to more complex scenes and higher resolutions.
Note that distributing the triangles corresponds to object parallelism, while distributing the frame
buffer corresponds to pixel parallelism.

3 Algorithm Description

To describe the algorithm we first specify how the data struct ures are divided among the processors:

* The triangles are (list ril)luted evenly in round-irobM fashion to all processors.

" The frame buffer is divided among the processors by horizontal stripes (Fig. 3).

" Small data structures, such as the lights and viewing parameters, are replicated on each
processor.

The distribution of the frame buffer can be modified considerably without affecting the basic struc-

ture of the algorithm. Essentially all that is needed is a regular geometric division. We have

implemented only a division into horizontal stripes, which seems appropriate for rendering into

a frame buffer of size 1024 x 1021 using from 2 to 128 processors. The effect on performance of

different splittings of the frame buffer is an interesting topic for furthmer research.

WithIi the above distribution of data., the following strategy is use(l:

* The shading, traisforinug, and clipping stel)s are p)erformed )y each processor on its local

triangles.

Before rasterizinog a triangle, it, is first transforiied into screii coordinates, then split (if

necessary) itit tralpezoids along local frame Ih)rer )oumlaries (Fig. 1). Each trapezoid is

then sent to tihe processor which ownus tie segient of the frame buffer in which it lies.

" Upon receiving a trapezoid, a given processor rasterizes it ilo its local frame buffer using a

staii(lard z-buffer algorit hmi[,1] to eliiiiiat, hidden surfaces.

For simplicity, triangles whicl lie fully within a. single frame buffer segment and triangular pieces

of split triangles are treated as degenerate tralpezoids in wlhichm two of tie vertices happen to be
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Figure 3: The frame buffer is distributed across processors by horizontal stripes.
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Figure 4: In general, triangles must )e split. at frame buffer boundaries and the pieces sent to the
correct processors for rasterization.
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the same point. To reduce communication overhead, trapezoids destined for the same processor
are buffered into larger messages before sending. The choice of buffer size, which can significantly

affect performance, is discussed more fully later.
The algorithm may be summarized as follows. Each processor performs the loop:

Until done {

If local triangles remain {

Select a local triangle
Shade the triangle

Transform, back face cull, and clip
Split into trapezoids

Put the trapezoids into outgoing buffers
When a buffer fills up, send its contents

If this is the last local triangle {
Send all non-empty buffers

}
}

If incoming messages exist {

For each incoming message {

Rasterize all of the trapezoids in the message
}

To avoid having to store large numbers of trapezoids in nmory, the algorithm alternates between

splitting triangles into trapezoids and disposing of incoming trapezoids by rasterizing theni into
the frame buffer. It is not obvious what the proper balance is between these two activities. If a

processor concentrates on rasterizing incoming trapezoids, it may starve other procssors by not
generating enough work to keep them busy. Alternatively, if incoming messages are not flushed
quickly enough, message queues will fill up and outgoing buffers will be delayed. Experiments have
shown that there is a slight advantage in processing at least a few triangles before checking for

incoming data. Beyond that, the algorithm is relatively insensitive to this choice.
A significant feature of this algorithm is the absence of a synchronization point in the loop.

Processors will start off with nearly the same number of triangles, but several factors will tenid
to unbalance the workload. First, the culling and clipping step requires a (lifferent number of

operations for different triangles, and may cause triangles to be thrown away, or to be sul)(livid(ed

into several smaller triangles. Next, the time required for splitting into trapezoids varies with the
orientation of the triangle and the number of frame buffer boundaries which are intersected. The
number of trapezoids in turn affects the buffering and communication times. Similarly, varving
numbers of incoming trapezoids, along with differences in their size and the results of z-buffer
comparisons, will cause variations in the rasterization time.

These considerations suggest that any synchronization points in the ioop will introduce signtii-
cant amounts of idle time, since each iteration of the loop would be bound 1 by I he slowest processor.

Instead, our strategy is to let individual processors )roceed as asynchronously as i)0ssiblh. (f

course, some coordination is necessary to ensure that in.ssag, buffers are correctly passed iroin

one processor to the next. But the use of an asynchronous inessage-passing protocol, colibield
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with dual send and receive buffers, has proven effecive in minimizing idle time spent waiting for
messages.

However, the lack of a synchronization point leads to difficulties in deciding when to exit the
loop. Even after a given processor completes work on it local triangles, it has no way of determining
by itself when it has received the last incoming message from another processor. We use the
following algorithm to detect termination:

1. Each processor maintains a list of all other processors to which it sends trapezoids. We refer
to these as neighbors of the sending processor. Note that a processor may be a neighbor of
itself.

2. After the last local triangle is processed, a processor sends a Last Trapezoid (LT) message
to each of its neighbors, indicating that there will be no more work forthcoming from that
particular source. The message passing protocols must preserve message order so that LT
messages do not precede the trapezoids to which they refer.

3. When a processor receives an LT message, it replies with a Last Trapezoid Complete (LTC)
message. Receipt of an ITC message from a neighbor indicates that the neighbor has finished
rasterizing all of the trapezoids sent to it. The processor records this fact.

4. When LTC messages are received from every neighbor, a processor knows that all of its
neighbors have finished all of the work that it gave to them. The processor then produces a
Neighbors Complete (NC) message which it sends to a specific processor, which we arbitrarily
choose to be processor 0.

5. When processor 0 receives an NC message fron every processor (including itself), it knows
that each processor has finished all of the work sent to it by all of its neighbors, and that the
local frame biffer segments now contain the final image. Processor 0 then broadcast a Global
Completion (GC) message to all processors. Receipt of a GC message notifies a processor
that rendering is complete and that it should drop out of the loop.

From the time it generates LT messages for its neighbors until the lime it receives a GC message, a
processor must continue to check for incoming trapezoids and process them. Note that for a given
number of processors p, the NC messages can be accumulated in time O(logp) using a parallel
merge algorithm, rather than using the O(p) method described above. Similarly, the GC broadcast
can be done in time 0(logp), or even 0(1) if the architecture directly supports broadcasts.

4 Performance Analysis

To analyze the performance of the algorithm we will break it down into the following steps:

" Shading, transforming, culling, and clipping.

" Splitting into trapezoids.

" Sending trapezoids.

" Iasterizing trapezoids.

" Storing pixel data.

" Wait time.
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e Termination algorithm.

For each of these steps, we will break down the running time into a general linear part and an
explicit nonlinear part. The linear component is that part which parallelizes perfectly, and thus
will speed up linearly as the number of processors increases. The nonlinear component contains
overheads which do not decrease linearly with increasing numbers of processors, and which therefore
detract from perfect speedups. Before proceeding we introduce the following notalion:

p = number of processors
n = number of triangles
y = height of the frame buffer (in scanlines)
h = average height of triangles (in pixels)
d = trapezoid buffer depth (in trapezoids)

T = number of trapezoids generated per processor
v = average number of trapezoids generated per neighbor

We assume that y and h are fixed, y is a multiple of p, n > p, and that the triangles comprising
the scene are uniformly distriluted with respect to our splitting of the frame buffer. Note that h
is the average triangle height on the projection plane, rather than in world coordinates. The linear
part of the running time is a term of the form

CnC- (1)
P

where the constant C is machine- and scene-dependent, but independent of n p, and d. This is
the contribution to the running time that parallelizes perfectly. The nonlinear part of the running
time will be everything else. We will attempt to determine this as explicitly as possible in terms of
-the above variables and machine dependent constants.

4.1 Shading, transforming, culling, and clipping

Since the triangles have been distributed evenly to the processors, and these operations may be
performed independently on ,, clh triangle, this part of the algorithm conlributes only a linear term
to the running time.'

4.2 Splitting into trapezoids

Each triangle must first be split at its middle vertex (see Figure 4). Since this can be performed
independently for each triangle, it contributes only a linear term to the running time. As a side
effect, this split effectively doubles the number of triangles to 2n while reducing their average height
to h/2. Next, there is a certain setup cost before actually dividing the triangle into trapezoids.
Although this cost would not be incurred in a serial version of this algorithm, in the parallel version
it still contributes only a linear term to the total running time. This cost may be regarded as part
of the paiallel overhead of the algorithm. Although we are not explicitly isolating the parallel
overhead in our analysis, it does in fact contribute very little to the running time, so that the
performance of the parallel algorithm running on one processor is virtually identical to that of a
serial version.

2Strictly speaking, back face culling and clipping can introduce local variations in workload which will dctra

from perfect speedup. But since w(e are assuming a uniform scene for purposes of analysis, we can ignore this (ffe(t.
Similar variations can be introi.,, iii I), r 5t,'-;''' arid z-lIfr,,r 'ompitalions .,ill likt-wisv he ignord. In

practice, the impact of these variations is scene-d(pendtnt.



A nonlinear contribution to the running time results from actually splitting the triangle. In
loose terms, the more processors we have the more we must split the triangle, so that adding
processors increases the number of trapezoids in the system. To quantify this, one easily computes
that a triangle in the projection plane crosses a local frame buffer boundary line on average hp/2y
times. Since back face culling will, on average, eliminate half the original triangles, the nunber of
resulting trapezoids per processor is

_ ( nih u
7- =- + -(2)

p 2y p

and the time to split n triangles among p processors is sim)ly rtsptit, where tsplit is the lime for
one split. We can further analyze 1, tt by coUnting the arithmetic operations performed. T'IIIi
actual time will of course depend on tlie precise assembly code generated and the (hara(t ,riltlcs
of the processor. In our current implenientation, one split re( gires 15 integer adds and 10 int,'egr

compares.

4.3 Sending trapezoids

To a first approximation we assume that

* A single processor sending several messages must (t1 so one at a time.

* Multiple processors can be sending simultaneously.

* A processor does not incur communication overheads for messages to itself.

hle second assumption in particular is somewhat questiona)le edge content ion among ctompet -
ing sends can seriously impair message passing performance, as shown in [I]. This point will be
discussed more fully in later sections.

Communication time can be divided into two independent parts, a fixed overhead, or lat(fny, tj.
and a transfer cost it. The latency includes various software overheads and hiard ware dela vs, efTe ct s
from network contention, etc. This is incurred on a per message basis. The transfer cost is just t lie
inverse of the network bandwidth multiplied by the total number of bytes to )e communicated.

A proCsSor will, on average, gerr:te v = r/p trapezoids for each of p (desti nations, inclum(tiig
itself. If t6 is the per-byte transfer cost and s is the size of a trapezoid in bytes, then

it = (p - 1)vStb (3)

Taking into account buffering, the number of messages m generated by each processor is

andi the total time for sending trapezoils is siml)ly

tIs?,d i iti + It - (p- I) ( j + , (



4.4 Rasterizing trapezoids

Since each pixel of each trapezoid is rasterized exactly oili-c. anid I his work is split equally aiing
the processors. it would appear that this part of thle algorit Iiin is linear. However. by splitillfg

the triangles into tra pezoids we incuir ani overhead for each t ra pf.'iid pior to (Iastotrl/at ,iia.Ilt

rasterizat ion step essentially conisit s of several ap~plicat ions 4 1 lhe B rt-,enhaiii Iinvricarin'rpiai
algorithm [.51, onice inl the vertical direction and onice per scaiime inll' hw Inl-/outa iii lio on

The overhead is intcu rred lin the( vertical application of lie Bresen haiti algi tnt hni. which itt tst he
Performed for every trapezoid. Thierefore the nonlincar conitribu tion to thle rimlling Ilime,[ is -

where t H is thle startup cost for thle hiresenhani alIgorithm i. Ili termns of inlteger a ri thi ut c operatioiit>
tE is .5 divides, 10 multiplies, and 20 adds.

4.5 Storing pixels

The z-buffer compare and conditional store operation,, are perfectly (list rihuteil amnotg thfi eproce-.

sors, so this computation contributes only a lincar term to the running timle.

4.6 Wait time

The rendering algorithm as -;twed by a single processor consists of two distinct phases. During
the first phase, the processor alternates between processing triangles and rasterizing trapez7oids.
If no trapezoids have arrived (luring a loop iteration. thle proces;sor c-an keep biisy by process ,itt.
more triangles dlurinug the subsequent iteration. Ini t hu second phase. all local t riarilgles halve Iteenl
processedl anti the prcso polls for incoming t rapezoids nult il at Gl;obal (o~ ohilet ionl ( (;( ' nIeae

arrives. D~uring t his secondu p~hase, the processor will be Idle if t rapvezoiths fatil to) arrive at leata-

fast as they, (-an be rasteri/.ed. Flirt h IerIto re. no processor can II tertunt t 011nt i1 1 t li sowKCSt IoIm10o'~

fiIIshIted.

Aprecise t reatI nieit oI t ifIIii>% ,It iit Oii) req iIres a t exeirsiotif ito (I itewitu t lov.wIc heol

ie sco pe of th Iis p:!per. Inste;id, w~e liriehit an airgitinient baswil ()i Ieo cap;icit Idf Ih lie !IW

iicatiion network whOich appr,,xiiats ie( oh.~erved 4eftitac of14 t lie Iii iii. Oil' r ;ing il

asuies tha 1uu'foritiatnci is cortutiumijat ionl hoitnil tat her than (iilii hotimid. Ionorpo'
of expositionl we will use a livpt'riiube artiteit tre. A\ sInilkir anililss cid im I h ;t pplie c t i

comtrini micat iot net works.

Wblin a processor coimple'tes It., last t riallgle, it titlist fItli its pantillvk 1tilled t aeitlufcers.

Since one( oftI lie goals of oilr algor It ht is to conIserve unenuorY. wewllsumtitihat d ,~ u' 2. in ii ik

case outgoing kutffers will cotuain i on avvraog.' 4/2 t rape/oills rlniatiniig to) le -iit. 11 ' -assume

a uniforum scene. I lien processo(r,, will rea-ch Iis state 4 at 11nore, or less I Ie sal111e t ime14. I1141-14(iti

the entire s ystetit contains- jp(p -I )nesigo- of avrave licigth d12 wich wi he iuu1c -i'l IiituI lif.

network at abouit thle saine timue. etae if ''thee cotuteittioi. thtes''tti'se cmititot all het oell

simtult aneoiislv. For ;I It ypenctihe oIf slive It = Itle avimgE' lst altie .I 1ti'.a 1' ti

travel. andu thierefoure I hiiiilhler of edges it Ies. ip, is k/l'2( p I ). Sinwe t in' total nminl-i o)telihe

* in a hypercithe (assunting iidliectional cotinitticut kilt IIs jik,1'2 we( htiiv ai huatnwiuht i lhil A,!

t lie, ordler

2

ITius wait Itinn',fq. is rttighlY hirtiprt iutil fio Ii hirai tf oii1i1tti4i i'll capacut vif
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Ini a subsequent section, we will determine a empirically for a particullar ifiiplelintat ion.

4.7 Termination algorithm

irhe termination algorit liiii requires each pair of neighbors to exchange iiiessages. f tllowtcl b) a

global mnerge step and a broadcast. Tho timie required for these last. two olperat ionsdeds(li(l5o) it
architect tire of thle i nterconnection net work. If we assume a livpercu be. thlen

t quit -- 2 R(P - 1) + log 2 p] tl

There is no per-byte cost, since these miessages are used only as signals and contain no data. 3

4.8 Total time

Combining all of the above contributions, we find the total running time t for tile algorithmn:

t = Cn + Tt3,Plit + lqcnd + TIB + twait + t quit()

Substituting and rearranging, we get

In section (6 we present thle experimental results for a particular implemnenital ioul of this lniuIit

and comnpa re t hose results withI predlict ions fromt the anal'Ytical miode!. Fi rst, we det'siie 'i

pertinent (letails of our imiplemient at ion.

5 iPSC/860 Lmiplernentation

W\e have lilt pleliietil le abovc rendeItrinig algorit lini inl thle C langiuag.e oni thle hl el liS( :2 ill,
1

l"S(/S8(i( hvperciih compuflters. All of t he experimients (describedl 1)10w were pt'rforiei onthle

ltte(r s , steini. Hie( actujal iniphlenientation (differs slightly fromi Ilhe algolit liiii (lescriliedl above, ill

that Aliadiiig calculations are pulled out of tilie mnain loop anid (lne ats a preproce,-shing step. Hp
is aldvant agevolis if a shaded scene will be dlisp~layed repeatedlY using (lilierelil viewinghl rii(l H

Coisequent lY, tie( rendlerinig rates quoted below do not include ti( lie m ne for hladinpg. Rot'iiieiil'

that tie( shiadinig step parallelizes ;)erfect lv and so would only iiiiproveI ilie observed prc"T
it ilizat ion. \Ve should allso note that liet il1 S( sysi emis do not curreltl prov'ide at -rapiiicail dlipav

device, so relllerilig rates (do iiot reflect. tie( fiiial (lislplaY Ste(p of t lie pipeline li Viguire 2.1
Oursarupl iuiplziiiitatiouiicorporates a st aidar] scaiiiie-based. Z-liu fered t .i;11itg4e ititldter.

Thel( shading calcuilat ions take into at cotiit (diffuse anld amlbient lighting coliihoniieii s att Ilie trialue

vertices, and~ thle rasterizat ion purocess siiioot lily interluolates thlese values across tie( 1viaitg-le. We
utse 8 flits for each of thle redl, greeni, andl blue color chianinels, 2-1 bits. for t ie( z biifhl'r. il( pixel
p~ositionis are miainitainedl to a su bpixel accurac:- of one part liti 6i. '[lie, ciirieiit Impijuemiii'ihl ni

mnakes little attemlpt to optimize the graphics codle for thli iS6O p~rocessor chip cmp1ii~ Iyell Illie

l'SC/830. The code is writ ten enitircly ili a sc alar (as op)posedl to veil or) St vle. a i 1 nio liste Im a

tAetiahyv, the( inessaige muust at Ieast tt.iiv its ivpc, bitl We assriffict hat all irissagvs t ('1iiaoi hvi p trriu

whidl we incliutt as part oif the tL.'ii, It.
4 Otir cuirrenit pr~ice is to Iierg, thc fiiiislirth t'.1ts of the locat frami tittfr s~wit.'is liit', a fit, 1, hl,r I

viewing otthiire. Our vtnphais hcrc is (i Ow lit havittr )f toe ;arali r'.htring aigmili ii, i, hr i- -mi tll 11- -

Ithe iPSC a~s a reiideriig engn.
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Figure 5: Buffer busy ratio vs. buffer depth.

been made of the built-in graphics features of the i860. In addition, the compilers available to
us exploited few of the high performance capabilities of the i860, such as pipelining and dual
instruction mode. With better compilers and some tuning, the performance of the graphics code
should increase substantially, leaving communication and I/O as the limiting factors on rendering
speed.

In contrast to the graphics computations, we have gone to some lengths to optimize message
passing. The iPSC operating system provides asynchronous routines for both message sending
and receiving, which can be used to overlap message transfers with other computations. We have
taken advantage of these, in conjunction with a double-buffering scheme, to hide most of the
overhead associated with message transfer time (it) as well as much of the edge contention delays.
One measure of overlap is the number of times processors must wait when inserting trapezoids into
outgoing buffers because the buffers are still busy from a previous send. Figure 5 shows this number
expressed as the ratio of total buffer busy-waits to the total number of trapezoids generated across
all of the processors. The values plotted are for buffer sizes ranging from 2 to v/2 with varying
numbers of processors, using our standard test scene, described in the next section. 5 Each data
point is the mean across five runs. It can be seen that the overlap strategy is very successful. In
all cases, for d > 3, more than 99.5% of the trapezoids generated were able to be placed in buffers
immediately.

50n the iPSC/860, different message passing protocols are employed for short messages (< 100 bytes) vs. long
messages (> 100 bytes). Since our trapezoid data structure is 64 bytes long, buffers of depth I have different
performance parameters than larger ones. For simplicity, we limit our analysis to buffer sizes > 2.
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6 Performance Results

In this section we present experimental results from the iPSC/860 implementation of our algorithm
and compare themi to predictions based on our performance model. Our standard test scene is
composed of 100000 10 x 10 pixel triangles in random orientations (Fig. 6). This scene was chosen
since it statistically approximates a uniform scene for purposes of comp~arisoni with the perforniance
model. In all cases, we enable back face culling so that the number of triangles act nally drawn
is about half of the total. The scene is rendered with a framne buiffer resolution of 512 x 512.
The average triangle height on the projection plane ats measured by lte renderer is It 8.3. To
determine the effects of scene comiplexity, we nmodify thme standard scene by varvying the number of
triangles while holding the triangle size, in pixels, constant. Uniiless o1 herwise noted] performaince
figures arc mecan values across five runs.

6.1 Sensitivity to buffer depthi

As men tioned p~revioumsly, the select ion of buff~er dlepthi can hiave at Sign ificanut iniIpa ct on perform anuce.
Figure 7 shows scatterplots of rendering time vs. buffer depth for our stand~ardl scene, xit I 7) ranging

fromt 8 to 128. ( Because of memiory reqluiremenlts, at mininuilim of 8 processors are needed to render
the standard scene.) Again, (I ranges from 2 to v/2. The sensitivity to d can be readily understood

in terms of the performance modlel. If d is smnall, then the ratio av/d in Equation 5 is large and the
costs (lue to miessage latency are high. If (I Is large, latency is reducedl but wait timec due to network

congestion increases (Eq. 7). For sificiently large (1, ou r algorit hini is equivalent to a simpler two-

phIase version in which (1) all triangles are first, spli t, into tra pezoids and the trapezoids are stored
in meniory, then (2) trapezoids are sent, to their destinat ions andl rasterized . It is clear froni t'e

performnice nmodel I hat tlhis siminpler algori tIii not, only wastes iinor * y,1 bt also mna ximnizes edg-
con ten tionm hy injecting all of thbe tra pezoid d ata in to the network at on ce. Bly usi ng sm aller 1)11ffr

sizes and allowinig splitting andl rasterization to p~roceed together, oh r a Igorit Iiin not on lIv% conserves
memory, b~ut spreadls the conimuniiication load over at longer periodl of tiic.

For best p~erformnice, we would( like to be able to predict an opt iin iimi buffer Size, * ',p VI wti11011

having to resort to a long series of test runs. If we knmow somethling about. the sceneV, Such1 as T, Or

n. andl It, then the performiance modlel cani be usedl to dletermuinie a near- opt imial value for d. ( Recall
that v = r/p. ) If we take the derivative of Eq nat ion 10 wit Ii respect to (I ( igmiorintg Ilite ceiling
function) amid solve for the muinimmimmmn, we get

V op

The case where 7 is unknown in discussed iii Section 6.A ill the context of mon-uniform scenes. We
now turn our attention to values for ij and (a.

6.2 Message latency and wait timie

Experimental measurements of message latency on the iPS('/8G0 have typically been (lone under
carefully controlled test condiitions in order to get consistent, results. Because our algorithm is very
(ynamic, and because we include contributiomns (lue to buffer management, published values for

message latenr cN are uot. dIirectly apllicable. III add(itilon, our simnpl ist ic a mualysis of walit trime (does

nol t Yield aI val ue for 11tle propo rtion ality comnstanut a. Th'lese consideratilon-s lead us to (determuine the

values of' tj and~ (t emiiricilly. We recast. Equaition 10) a~s a fiunctionm of d:

CI
() Cu) + ± +(C21 (12)

dI
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Figure 7: Execution time as a function of buffer depth for the standard test scene. d = 2,..., v/2.

where

Co = + "(tplit + lB) + 2[(p- 1) + 1og 2 P1,i (13)P
C1 = (p-1)vt (1,)
C2  - (15)

2

For convenience, we again ignore the ceiling function. Because of the high degree of overlap achieved
between communication and computation in our implementation, we have also dropped the term
for data transfer time from Equation 3. Finally, we substitute tio for 11 in the contribution from
the termination algorithm to reflect the differing protocols for short and long messages. We can
now do a least-squares fit using the data from our standard test scene to determine, approximately,

the values of the coefficients Co, C1, and C2, and then solve for tt and a. The results are shown in
Table 1.
The data suggest that tI and a are not constants, but are instead functions of p, or more specifically,
k, where k = log12 p. However, the limited sample size does not allow any firm conclusions to be

drawn, and in the absence of a theoretical basis for determining the form of the functions, we have
chosen to use the mean vaues.

6.3 Measured vs. predicted performance

To fiirtlier explore the parallel performance of our algorithm an(l to validate the analytical model,
we varied the com)lexity of the random triangle scene from 6250 to 200000 triangles in multiples
of 2. For each scene, p ranged from the minhmum allowed by memory requirements up to 128 in
powers of 2, using the optimal buffer depth predicted by Equation I 1 (Table 2). Figure 8a shows the

14l



Time in ,is
p t1  a

8 452 113
16 443 120

32 419 152
64 411 185

Mean 431 143

Table 1: Empirical values of message latency and wait time for the standard test scene.

11 _ Predicted Optimal Buffer Depth

1250 12500 25000 , 50000 10000 200000
2 69 98 138 - - -

4 43 60 85 121 - -

8 23 33 47 66 94 -
16 12 18 25 35 50 71

32 7 9 13 19 27 38
64 4 5 7 10 15 21

128 2 3 4 6 9 12

Table 2: Predicted buffer sizes for several random triangle scenes.

observed rendering rates for each scene. The results show that performance continues to increase
as processors are added, even for the smallest scene, although large numbers of processors are most
effective for more complex scenes.

The usual measure of effectiveness of a parallel algorithm is speedup, defined as the time to
execute a problem on a single processor divided by the time to execute it on p processors. In our
case, only the smallest test scenes can be run on a single processor due to memory limitations,
so traditional speedups cannot be computed directly. Instead, we normalize performance across
scenes by comparing the rendering rates, instead of the execution time, and use these to estimate
speedups.6 We define the performance level for p = 1 to be the rendering rate of the largest
test scene which would fit on a single processor, which was 4366 triangles/second for n = 12500.

Table 3 shows speedups relative to this case. Speedups on large numbers of processors (64 and
128) are poor primarily due to communication costs (t,,nd and twit), which are the dominant
overheads. As p decreases, the trapezoid costs (tplit and tB) become the primary overheads, and
speedups are reasonable on moderate numbers of processors (16 and 32). Figure 9 shows the relative
contributions of the individual terms in the performance model for our standard test scene. On the
plot, taplit and tB have been combined into a single term, 1t,,p. Note that the contributions for tsend

'We consider our normalized speedup computations to be just estimates for two reasons: (1) As the density
of the random triangle scenes increases, a larger proportion of the z-buffer comparisons will fail because pixels
are obscured by other triangles which lie closer to the viewer. This results in a lower percentage of frame buffer
stores and slightly reduced computational cost per pixel. (2) Because of the suspected effects of caching (described
subsequently), execution times on small numbers of processors may not be directly comparable to those on larger
numbers of processors. This effect could be mitigated by comparing performance at constant values of n/p, but the
compensation is only partial since the size of the frame buffer segments is independent of the number of triangles.
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Figure 8: (a) Observed rendering rates for several random triangle scenes. (b) Observed and pre-
dicted rendering times for n = 12500, 50000, and 200000. Solid lines are the l)redicted performance.

and t,,it are roughly equal because the buffer size was chosen on the basis of Equation 11. The
divergence Of t.nd and tuait at large values of p illustrates the importance of the ceiling function
in Equation 10, a contribution which was ignored in order to derive Equation 11.

We note in passing an interesting phenomenon in the speedup data. At certain points in the
table (shown in bold type), dramatic increases in performance are observed from one value of p
to the next. Since these points occur at fixed values of n/p, we conjecture that they are due to
caching on the i860 processor. As p increases, the size of several data structures (triangles, frame
buffer segment, message buffers) decreases, which may result in better cache hit ratios.

In Figure 8b, we compare the observed and predicted performance of several test scenes. To
predict performance using our model, we must first determine the value of the scene-dependent
constant C. This is done by taking the observed rendering time on some number of processors p an(l
solving Equation 10 for C. We have chosen the entries lying along the boldface diagonal in Tabl, 3
as the points at which to solve for C (points of constant n/p). We also need values for t,,it, tH, and
t10 . Based on the operation counts from Section 4 and timing information from [8, 9], we estimate
that t split = 2.500 iLs and tB = 13.375 its. Since communication in the termination algorithm uses
synchronous (non-overlapped) message passing routines and incurs very little overhead beyond the
actual message transmission, we use published latency data [1] to set 11, = 75 /is. As the p)l
shows, our model successfully predicts the general performance trends. Some discrepancies occur
for small p where the suspected caching perturbations occur, and the model underestimates slightly
the overheads at large p. This lends credence to our previous observalion that a is an increasing
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6 ] 0Speedup
p _ _250 0 25000] 50000 100000200000
1 0.6 1.0 - - -

2 1.7 1.2 2.0 - - -

4 3.2 3.4 2.5 3.8 - -
8 5.8 6.2 6.4 5.1 7.5 -

16 9.9 10.7 11.6 12.3 10.5 14.2
32 13.1 16.1 18.6 20.1 20.7 25.5
64 15.3 18.6 23.4 28.0 32.8 40.1

128 18.8 21.2 25.6 31.4 37.4 50.6

Table 3: Speedup estimates derived from observed rendering rates. Boldface entries indicate unex-
pectedly large performance increases.
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Figure 9: Predicted contributions of individual components of the performance model for our
standard test scene. tirap -: (tsptit + tB).
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function of k, although other terms may be involved as well.

6.4 Performance on non-uniform sceies

Although our random test scene is useful for analyzing our algorithm, it is not a very representative
application. To obtain a better feel for performance on more realistic scenes, we ral experiments
with two additional test cases, shown in Figures 10-11. The first scene, which we will refer to a

Plato, contains a large number of small triangles with the density of triangles varying from place
to place in the scene. The second scene, designated LDEF. contains a wide range of triangle sizes.
which is very effective at desynchronizing the processors because of differences in rasterization time.
Both scenes were rendered at a resolution of 512 x 512.

The first issue we address is that of picking a buffer size. Figure 12 shows rendering time as a
function of buffer size, where d varies from 2 to 1.25v. In contrast to the uniform scene shown in
Figure 7, the optimal buffer sizes for both of these scenes occur at much larger values of d. Thlins

Equation 11 is not applicable because the processors are much farther out of sync and the fi nal
buffer flushes are spread out in time, reducing the effect of l,,t. In the absence of an analvtical

prediction for a good buffer size, we note that t/2 works well in many cases. Other experinents
have shown that for small values of n/p, increasing the buffer depth to around c offers additional
performance gains, a trend hinted at in Figure 12.

If r, and hence v, are unknown, then the best we can do is hazard a guesq. A buffer depfli
of 10-100 seems like a good starting point since it reduces latency costs by one to two order." of
magnitude. As a rule, buffer depth should decrease with increasing p. If a scene will be rendered
repeatedly with minor changes in the viewing parameters from frame to frame, as in an animated
sequence, then the renderer can automatically adjust the buffer size. For the first friame an initial
guess is needed. For subsequent frames, the observed value of 7 from the previous frame is used to

derive a better guess for d.
Figure 13 shows rendering rates for the LDEF and Plato scenes using a buffer depth of u/2.

Because of memory limitations, neither of these scenes could be rendered with a single processor at
512 x 512 resolution. Hence we have no single-processor data on which to base speedup estimates.
Examination of the available data shows that processor utilization is best for p of 16 32 or less.
consistent with the previous results for scenes of these sizes. Note that performance of the Plato
scene peaks out at 6-1 processors and then declines as the communication overhead becomes domni-
nant. Careful choice of buffer sizes can boost the Plato performance on 64 and 128 nodes to about
125000 triangles/second.

7 Considerations for Shared Memory Architectures

Although the algorithm described in Section 3 was designed specifically for distributed inenrory
machines, it can be readily adapted for shared memory architectures. We assume that viable shared
memory systems would support an efficient mechanism for implementing critical sections on shared
variables. Given this, the basic structure of the algorithm remains the same, with interprocssor
communication taking place through shared data stri'ttires rather than witli russagev.

Instead of partitioning the triangles in round-robin fashion and assigning thon to partlicilar
processors, they are llaced in a share(] list or array. Whein a I)ro(-('ss,,r ieels a triandl to \work
on, it grabs the next one from the list, in typical self-schediled fashion. The overhead for fetcllig
the triangle is the time it. takes to lock the list, index variable, read I lie ciirrent valte. incremenit it,
and unlock it. Presimuably this can Ibe done in a few instruction imes given suitabe architet tiiral

sripport. Some wait time may )e incirred if anot her processor already has hIe variabe locked. This

18



Figuire 10: TheV five hyperbo!l)Oic Platonic mflhi(L. n - .59246. hi 3.1.

lgr I: NA\S'A>" LJimp D~illiim psl I~\ 1 6.2.h ~f2.



5 4.0

3.5

4
'7' 3.0

0) V)

a)3 a) 2.5p=

p=8 0

2
0) ~ 1.5

-o- p= 4

W) 0)

p=16 P=8~
p=32 0.5 =1

p=64 p =32

0-rl~~l I 111 111 0.0
101 102 13101 102 10 3

Buffer Depth, di Buffer Depth, d

(a) (b)

Figure 12: Execution time as a function of buffer depth for the (a) Plato and (b) LDEF scenes. (I
ranges from 2 to 1.25v. The vertical bars indicate d = v/2.

20



1.00E+05

o Plato

' 8.00E+04(D
0Y)
C

, 6.OOE+04

a)

o LDEF

o) 4.00E+04

'-

a 2.OOE+04

0. I I l i

100 101 102

Number of Processors

Figure 13: Rendering rates for the LDEF and Plato scenes.

should not be a problem for moderate numbers of processors, since the time to process a triangle
would be much larger than the time required to fetch and update the list index.

The other major shared data structure is the frame buffer. A naive approach would be to
let processors rasterize triangles directly into the frame buffer after transforming them into screen
coordinates. But since many processors would be doing this simultaneously, there would be memory
conflicts when triangles overlapped other triangles in the frame buffer. A poor solution would be
to lock the entire frame buffer for the duration of the rasterization step, but that would effectively
serialize the rasterization phase of the computation. A better solution is to partition the frame
buffer into p segments. Then triangles could be split into trapezoids as in our original algorithm.
But instead of sending the trapezoids to other processors, they would be placed on a shared list of
trapezoids needing to be rasterized. There would be one trapezoid list per frame buffer segment.
After processing one or more triangles, a processor would grab an unlocked frame buffer segment
and process all of the outstanding trapezoids queued for that segment. Because there are as
many segments as there are processors, at least one will always be unlocked. By not tying frame
buffer segments to particular processors, load balancing will be automatic and performance should
be better than the distributed memory version of the algorithm. As before, the overhead for

maintaining the trapezoids lists and locking and unlocking frame buffer segments should be small
compared to the cost of the rasterization computations.

Thus, the shared memory version of the algorithm becomes:
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Until done

If triangles remain

Select the next triangle
Shade the triangle
Transform, back face cull, and clip

Split into trapezoids
Insert the trapezoids onto the trapezoid lists

Find an unlocked frame buffer segment with outstanding

trapezoids (if any)
Rasterize all of the trapezoids in that list

Continue

Termination of the algorithm is also simpler in the shared memory version. Each processor mist
certify when it has finished working on its last triangle. This occurs when a processor checks for
the next triangle and none remain. After all processors have finished their last triangle. t hen when
all of the trapezoid lists become empty and all of the frame buffer segments are unlocked, rendering
is complete.

Modification of the performance model for the shared miemnory algorithm is straightforward.
An additional nonlinear term is needed to model contention for the triangle list index variable.
Message passing terms in the distributed memory model are rellace(d with terms which reflect the
time needed to update the trapezoid lists (including content ion) and to search for inlocke( framne
buffer segments with outstanding trapezoids.

8 Conclusion

In this paper we have described a parallel re(ndering alg)rithin for MI I) conpuler archit ecl Iky.

The algorithin is attractive for its exploitation of both object amid pixel level parallelisin. We have
given t theoretical analysis of its perfornance on distrihuted ineniory, Inessage passing svystells.

and( coinpared this with an actual implementation on t lie l il'S( IS) hypercu be. Our resiills
show that the algorithm is a viable means of achieving at highly parallel renderer. Srcalabilitv is
limited primarily by communication costs, which increase as a function of the number of proces-

sors. Expected improvements in communication speed and optimization of the transformation ,Irid!
rasterization software will allow this algorithm to compete favorably with other high- performance

rendering systems.
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