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The MIT Alewife Machine:
A Large-Scale Distributed-Memory

Multiprocessor

Anant Agarwal, David Chaiken, Kirk Johnson, David Kranz,
John Kubiatowicz, iiyoshi Kurihara, Beng-Hong Lim,

Gino Maa, and Dan Nussbaum
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

The Alewife multiprocessor project focuses on the architecture and de-
sign of a large-scale parallel machine. The machine uses a low dimension
direct interconnection network to provide scalable communication band-
width, while allowing the exploitation of locality. Despite its distributed
memory architecture, Alewife allows efficient shared memory program-
ming through a multilayered approach to locality management. A new
scalable cache coherence scheme called LimitLESS directories allows the
use of caches for reducing communication latency and network bandwidth
requirements. Alewife also employs run-time and compile-time methods
for partitioning and placement of data and processes to eihance commu-
nication locality. While the above methods attempt to minimize commu-
nication latency, remote communication with distant processors cannot
be completely avoided. Alewife's processor, Sparcle, is designed to toler-
ate these latencies by rapidly switching between threads of computation.
This paper describes the Alewife architecture and concentrates on the
novel hardware features of the machine including LimitLESS directories
and the rapid context switching processor.

1 Introduction

High-performance computer design is driven by the need to solve important
problems efficiently and at a reasonable cost. While single-processor perfor-
mance is limited by physical constraints, advances in technology make machines

To appear in " Scalable Shared Memory Multiprocessors"
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with thousands of processors feasible. Highly parallel machines offer significant
cost-performance benefits over single processor machines.

Parallel machines are commonly organized as a set of nodes that communicate
over an interconnection network, each node containing a processor and some
memory. From the perspective of a node in a real machine built in three di-
meibonidL space, some noueb will be physically closer than others. Informally,
a program running on a parallel machine displays communication locality (or
memory reference locality) if the probability of communication (or access) to
various nodes decreases with physical distance. Communication locality in par-
allel programs depends on the application as well as on partitioning and place-
ment of data and processes.

Parallel machines are scalable if they can exploit communication locality in
parallel programs. That is, for programs that display communication locality,
scalable machines can offer proportionally better performance with more pro-
cessing nodes [29]. Scalable machines are easily programmable if they provide
automatic enhancement of communication locality in parallel programs.

The Alewife experiment explores methods for automatic enhancement of locality
in a sca!able parallel machine. The Alewife multiprocessor uses a distributed
shared-memory architecture with a low-dimension direct network. Such net-
works are cost-effective, modular, and encourage the exploitation of local-
ity [34, 19, 2]. Unfortunately, non-uniform communication latencies usually
make such machines hard to program because the onus of managing locality
invariably falls on the programmer. The goal of the Alewife project is to dis-
cover and to evaluate techniques for automatic locality management in scalable
multiprocessors.

Alewife uses a multilayered approach to achieve this goal, consisting of tech-
niques for latency minimization and latency tolerance. The compiler, runtime
system, and hardware cooperate to enhance communication locality, thereby
reducing average communication latency and required network bandwidth. Be-
cause remote communication with distant processors cannot always be avoided,
Aiewife's processor tolerates the resulting latencies by rapidly switching be-
tween threads of computation.

This paper focuses on the organization of the Alewife machine and describes its
hardware features for automatic locality management. These features include
shared-data caching; made possible by a new cache coherence scheme called
LimitLESS directories, and rapid context switching. We present an overview
of our approach to locality management in Section 2, and describe the machine
organization and the programming environment in Section 3. Section 4 dis-
cusses the LimitLESS directory scheme, and Section 5 outlines our approach
to latency tolerance. We also discuss the performance of the machine on a few
applications. Other details of the machine are presented elsewhere [4, 8, 28].
Section 6 discusses related work, and Section 7 offers some perspective and
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summarizes the paper.

2 System Overview

The Alewife compiler, runtime system, and hardware try to reduce the commu-
nication latency where possible, and attempt to tolerate the latency otherwise.
We are developing compiler technology to enhance the static communication
locality of applications. Programs are first transformed into an intermediate
task graph representation called WAIF [27], where the communication between
threads is exposed through program analysis. Succeeding stages of the com-
piler map the task graph on to the machine and attempt to minimize overall
execution time. When the compiler lacks enough information to make good
placement decisions, it relegates the responsibility to the runtime layer.

Run-time software participates in enhancing locality through lazy task creation,
a novel dynamic partitioning method [28], and intelligent scheduling. In a
dynamic partitioning system the programmer or compiler can expose all of the
parallelism in an application, but new tasks will be created at runtime only when
there are idle processors. To enhance the likelihood of placing related tasks close
to each other, a locality-based tree scheduler determines the order in which idle
processors search for new tasks. To reduce the network bandwidth consumed by
the searching processors, only single representatives from neighborhoods search
for work. Simulations of several parallel applications with 64 processors showed
that a mesh network yielded roughly the same speedup as a more expensive
multistage network, when both used lazy task partitioning, a tree scheduler,
and coherent caches.

Caching shared data is Alewife's hardware method for reducing memory access
latency. With caches, the software does not need to worry as much about careful
initial data placement; the caches dynamically move data objects close to the
processor, so accesses are satisfied completely within a node. A new scalable
scheme called LimitLESS directories solves the cache coherence problem. The
LimitLESS directory is a small set of pointers (say 4) distributed along with
each block of main memory that tracks copies of cached data and maintains
memory consistency by transmitting invalidation messages over the network.
The LimitLESS scheme allows a memory module to interrupt its local processor
for software emulation of a full-map directory when the small set of pointers
overflows. Section 4 describes and evaluates this scheme. i iof

If the system cannot avoid a remote memory request, Alewife's processor can S Ad-

rapidly schedule another task in place of the stalled process. Alewife also toler- ris TAB 9]
ates synchronization latencies and provides fast traps through the same context irmu C ed 

switching mechanism. Because context switches are forced only on memory Istif1cat 1o

requests that require the use of the interconnection network and on synchro-
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nization faults, the processor achieves high single-thread performance.

We believe such a layered approach is necessary to build truly general-purpose
parallel machines. Real applications are composed of phases, which will benefit
in different proportions from the various layers. For example, matrix compu-
tations can benefit from static compiler analysis, while combinatorial search
problems will profit from the runtime and cache layers. Finally, efficient _xe-
cution of phases without inherent locality, such as matrix transpose, is possible
when the processors can mask the latency of remote requests.

3 Hardware Organization of Alewife

Figure 1 depicts the Alewife machine as a set of processing nodes connected in
a mesh topology. Each Alewife node consists of a processor, a cache, a portion
of globally-shared distributed memory, a cache-memory-network controller, a
floating-point coprocessor, and a network switch.

A single-chip controller on each node holds the cache tags and implements
the cache coherence protocol by synthesizing messages to other nodes. While
the Alewife architecture is scalable, the number of directory pointer bits in
the current implementation of our controller will limit the maximum size of the
machine to 512 nodes. The controller uses a simple message-based interface with
the network. Various forms of shared memory cohterence models are maintained
by the controller via messages to other nodes. Alewife has a simple memory
mapping scheme. The top few bits of the address determine the node number,
and the rest of the address is the index within the specific module.

As shown in Figure 1, each node contains a network switch chip, specifically the
Frontier series Mesh Routing Chip (FMRC) from Caltech. The mesh network
uses wormhole routing (11] - a variant of cut-through routing (21]. The network
has eight-bit channels, with a throughput of roughly 100M bytes per second in
each direction. Free ports on peripheral nodes of the network are used for I/O,
monitor, and host connections. The prototype Alewife system will attach to a
host SUN backplane by interfacing a network switch to the VME bus.

The processor uses a memory-reference-based interface with the controller, al-
though the controller uses a message-based interface for internode communi-
cations. Using a control word associated with each memory reference, various
types of synchronization or communication types are synthesized by the pro-
cessor. This interface allows a simple implementation of the processor.

Sparcle, a first-round prototype based on modifications to LSI Logic's SPARC
processor [36] implementation, will clock at 33 MHz and context switch in 11
cycles. Each node has 64K bytes of direct-mapped cache and 4M bytes of
globally-shared main memory. Each node has and an additional 4M bytes of
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Figure 1: The Alewife machit. .owing the LimitLESS directory extension.

local memory, a portion of which is used for the coherence directory. Alewife's
cache and floating-point units are SPARC compatible. Sparcie uses a block
multithreaded architecture [4].

Initially, our software system will be based on Mul-T [23]. A parallel C-like
language is also under development. Mul-T's basic mechanism for generating
concurrent threads is the futur. construct. The expression (future X), where
X is an arbitrary expression, creates a task to evaluate X and also creates an

object known as a placelaolderto hold eventually the value of Yg. When created,
the future is in an unresolved or undetermined state. When the value of X
becomes known, the future resolves to that value, effectively mutating into the
value of X and losing its identity as a future. Concurrency arises because the
expression (future X) returns the future as its value without waiting for the
future to resolve. Thus, the computation containing (futcure X) can proceed
concurrently with the evaluation of X. The act of suspending computation if
an object is an unresolved future and then proceeding when the future resolves
is known as iouclung the object.

Our processor will allow operators to check for resolved futures with no over-
head, disposing of the 60-100% overhead incurred by the system on other pro-
cessors. Support for lightweight full-empty bit synchronization [35] in the pro-
cessor will allow use of efficient fine-grain parallelism. In addition, the modified
SPARC implementation is competitive in raw performance to contemporary
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sequential machines.

We propose to use Mul-T as our intermediate compiler language, augmented
with primitives for specifying explicit partitioning and placement of both data
and processes. Our compiler will partition a program taking communication
costs into account, and produce an extended Mul-T program consisting of a
set of tasks with granularity and placement information. The Orbit optimizing
compiler [13, 22] will then compile these tasks to Sparcle machine code.

The des ign cf the Alewife machine is in progress and a detailed simulator called
ASIM is operational. ASIM implements several cache coherence protocols and
interconnection network architectures. When ASIM is configured with its full
statistics-gathering capability, it runs at about 5000 processor cycles per second
on an unloaded SPARCserver 330. At this rate, a 64 processor machine runs
approximately 80 cycles per second. Most of the simulations that we chose for
this paper run for roughly one million cycles (a fraction of a second on a real
machine), which takes 3.5 hours to complete. This lack of simulation speed is
one of the primary reasons for implementing the Alewife machine in hardware
- to enable a thorough evaluation of our ideas on much larger applications.

4 LimitLESS Directories

Shared data caching is an important component of Alewife's multilayered sys-
tem for automatic locality management. Caches reduce the volume of traffic

imposed on the network by providing demand-driven data replication where
needed. However, replicating blocks of data in multiple caches introduces the
cache coherence problem [15, 38]. A number of cache coherence protocols have
been proposed to solve the coherence problem in network-based multiproces-
sors [6, 37, 5, 20]. These message-based protocols allocate a section of the
system's memory, called a directory, to store the locations and state of the
cached copies of each data block. The protocols send messages with data re-
quests or invalidation signals, and record the acknowledgment of each of these
messages to ensure global consistency of memory.

Although directory protocols have been around since the late 1970's, the use-
fulness of the early protocols (e.g., [6]) was in doubt for several reasons: First,
the directory itself was a centralized monolithic resource which serialized all
requests. Second, directory accesses were expected to consume a disproportion-
ately large fraction of the available network bandwidth. Third, the directory
became prohibitively large as the number of processors increased. To store
pointers to blocks potentially cached by all the processors in the system, the

size of the directory memory in early full-map protocols grows as E(N 2 ), where

N is the number of processors in the system.

As observed in [5], the first two concerns are easily dispelled: The directory can
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be distributed along with main memory among the processing nodes to match
the aggregate bandwidth of distributed main memory. Furthermore, required
directory bandwidth is not much more than the memory bandwidth, because
accesses destined to the directory alone comprise a small fraction of all network
requests. Thus, the challenge lies in alleviating the severe memory requirements
of the distributed full-map directory schemes.

Scalable coherence protocols differ in the size and the structure of the direc-
tory memory. Limited directory protocols [5], for example, avoid the severe
memory overhead of full-map directories by allowing only a limited number of
simultaneously cached copies of any individual block of data. Unlike a full-map
directory, the size of a 'imited directory grows as ((N log N) with the number
of processors. Once all of the pointers in a directory entry are filled, the pro-
tocol must evict previously cached copies to satisfy new requests to read the
data associated with the entry. In such systems, widely shared data locations
degrade system performance by causing constant eviction and reassignment, or
thrashing, of directory pointers. However, previous studies have shown that a
small set of pointers is sufficient to capture the worker-set of processors that
concurrently read many types of data [7, 39, 301. The worker-set of a mem-
ory block is defined as the set of processors that concurrently read a memory
location, and corresponds to the number of active pointers it would have in a
full-map directory entry.

4.1 Overview of the LimitLESS Protocol

Alewife implements the LimitLESS cache coherence protocol, which nearly real-
izes the performance of the full-map directory protocol, with the memory over-
head of a limited directory, but without excessive sensitivity to widely shared
data. f he LimitLESS scheme implements a small "t of n",ir.tr- in thw mem-
ory modules, as do limited directory protocols. But when necessary, the scheme
allows a memory module to interrupt the processor for software emulation of
a full-map directory. Its name reflects the above properties: Limited directory
Locally Extended through Software Support.

Figure 1 depicts a set of directory pointers that correspond to the shared data
block X, copies of which exist in several caches. In the figure, the software has
extended the directory pointer array (which is shaded) into local memory.

The structure of the Alewife machine provides for an efficient implementation of
this memory system extension. Since each processing node in Alewife contains
both a memory controller and a processor, it is a straightforward modification
of the architecture to couple the responsibilities of these two functional units,
using the Sparcle processor's fast trap mechanism.

The LimitLESS scheme should not be confused with schemes previously termed



Component Name Meaning

Memory Read-Only Some caches have read-only copies of the data.
Read-Write Exactly one cache has a read-write copy.
Read-Transaction Holding read request, update is in progress.
Write-Transaction Holding write request, invalidation is in progress.

Cache Invalid Cache block may not be read or written.
Read-Only Cache block may be read, but not written.
Read-Write Cache block may be read or written.

Table 1: Directory states.

software-based, which require static identification of non-cacheable locations.
Although the LimitLESS scheme is partially implemented in software, it dynam-
ically detects when coherence actions are required: consequently, the software
emulation should be considered a logical extension of the hardware functional-
ity. To clarify the difference between protocols, schemes may be classified by
function as static (compiler-dependent) or dynamic (using run-time informa-
tion), and by implementation as software-based or hardware-based.

4.2 Protocol Specification

We now describe the LimitLESS directory protocol and the architectural inter-
faces needed to implement it.

The LimitLESS protocol has the same state transition diagram as the full-map
protocol. The memory controller side of this protocol is illustrated in Figure 2.
which contains the memory states listed in Table 1. These states are mirrored
by the state of the block in the caches, also listed in Table 1. The state tran-
sition diagram specifies i~e states, Ih- composition of the pointer set (P), and
the transitions between the states. It is the responsibility of the protocol to
keep the states of the memory and the cache blocks coherent. The protocol
enforces coherence by transmitting messages between the cache/memory con-
trollers. Every message contains the address of a memory block, to indicate
which directory entry should be used when processing the message.

For example, Transition 2 from the Read-Only state to the Read-Write state is
taken when cache i requests write permission (Write Request) and the pointer
set is empty or contains just cache i (P {} or P = {il). In this case, the
pointer set is modified to contain i (if necessary) and the memory controller
issues a message containing the data of the block to be written (Write Data).

Following the notation in [5], both full-map and LimitLESS are members of the
DirN NB class of cache coherence protocols. Therefore, from the point of view
of the protocol specification, the LimitLESS scheme does not differ substantially
froita 'hp full-map -rotoco!. In fact, the LimitLESS protocol is also specified in
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Figure 2: Directory state transition diagram.

Figure 2. The extra notation on the Read-Only ellipse (S : n > p) indicates hat
the state is handled in software when the size of the pointer set (n) is greater
than the size of the limited directory (p). (See [8) for details). In this situation,
the transitions with the square labels (1, 2, and 3) are executed by the interrupt
handler on the processor that is local to the overflowing directory. When the
protocol changes from a software-handled state to a hardware-handled state,
the processor must modify the directory state so that the memory controller
can resume responsibility for the protocol transitions.

4.3 Interfaces for LimitLESS

This section outlines the architectural features and hardware interfaces needed
to support the LimitLESS directory scheme. To support the LimitLESS proto-
col efficiently, a cache-based multiprocessor needs several properties. First, it
must be capable of rapid trap handling. Sparcie permits execution of trap code
within five to ten cycles from the time a trap is initiated.
Second, the processor needs complete access to coherence related controller
state such as pointers and state bits in the hardware directories. Similarly
the directory controller must be able to invoke processor trap handlers when
necessary. The hardware interface between the Alewife processor and controller,
depicted in Figure 3, is designed to meet these requirements. The address
and data buses permit processor manipulation of controller state and initiation
of actions via load and store instructions to memory-mapped I/O space. In
Alewife, the directories are placed in this special region of memory distinguished

9
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Processor Controller
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Figure 3: Signals between processor and controller.

from normal memory space by a distinct Alternate Space Indicator (ASI). The
controller returns two condition bits and several trap lines to the processor.

Finally, a machine implementing the LimitLESS scheme needs an interface to
the network that allows the processor to launch and to intercept coherence
protocol packets. Although most shared-memory multiprocessors export little
or no network functionality to the processor, Alewife provides the processor with
direct network access through the Interprocessor-Interrupt (IPI) mechanism.

The Alewife machine supports a complete interface to the interconnection net-
work. This interface provides the processor with a superset of the network
functionality needed by the cache-coherence hardware. Not only can it be used
to send and receive cache protocol packets, but it can also be used to send
preemptive messages to remote processors (as in message-passing machines),
hence the name Interprocessor-Interrupt.

We stress that the [PI interface is a single generic mechanism for network access
- not a conglomeration of different mechanisms. The power ofsuch a mechanism
lies in its generality.

The current implementation of the LimitLESS trap handler is as follows: when
an overflow trap occurs for the first time on a given memory line, the trap
code allocates a full-map bit-vector in local memory. This vector is entered
into a hash table. All hardware pointe-s are emptied and the corresponding
bits are set in this vector. The directory state for that block is tagged Trap-
On-Write. Emptying the hardware pointers allows the controller to continue
handling read requests until the next pointer array overflow and maximizes the
number of transactions scrviced in hardware. However, the memory controller
must interrupt the processor upon a write request. When additional overflow
traps occur, the trap code locates the full-map vector in the hash table, empties
the hardware pointers, and sets the appropriate bits in the vector.

Software handling of a memory line terminates when the processor traps on an
incoming write request or local write fault. The trap handler finds the full-map
bit vector and empties the hardware pointers as above. Next, it records the
identity of the requester in the directory, sets the acknowledgment counter to
the number of bits in the vector that are set, and places the directory in its

10



normal Write Transaction state. Finally, it sends invalidations to all caches with
bits set in the vector. The vector may now be freed. At this point, the memory
line has returned to hardware control. When all invalidations are acknowledged,
the hardware will send the data with write permission to the requester.

4.4 Performance Measurements

This section presents some preliminary result- from the Alewife system simula-
tor, comparing the performance of limited, LimitLESS, and full-map directories.
The protocols are evaluated in terms of the total number of cycles needed to
execute an application on a 64 processor Alewife machine. Using execution
cycles as a metric emphasizes the bottom line of multiprocessor design: how
fast a system can run a program.

The results presented below are derived from complete Alewife machine simu-
lations and from dynamic post-mortem scheduler simulations. The complete-
machine simulator runs programs written in the Mul-T language, optimized
by the Mul-T compiler, and linked with a runtime system that implements
both static work distribution and dynamic task partitioning and scheduling.
Post-mortem scheduling, on the other hand, generates a parallel trace from
a uniprocessor execution trace that has embedded synchronization informa-
tion [9]. The post-mortem scheduler was implemented by Mathews Cherian
with Kimming So at IBM. The post-mortem scheduler has been modified to
incorporate feedback from the network in issuing trace requests [25].

To evaluate the benefits of the LimitLESS coherence scheme, we implemented
an approximation of the new protocol in ASIM. During the simulations, ASIM
simulates an ordinary full-map protocol, but when the simulator encounters a
pointer array overflow, it stalls both the memory controller and the processor
that would handle the LimitLESS interrupt for T, cycles. The current imple-
mentation of the LimitLESS software trap handlers in Alewife suggests T, 50.

Table 2 shows the simulated performance of four applications, using a four-
pointer limited protocol (Dir4 NB), a full-map protocol, and a LimitLESS
(LimitLESS 4 ) scheme with T = 50. All of the runs simulate a 64-node Alewife
machine with 64K byte caches and a two-dimensional mesh network.

Multigrid is a statically scheduled relaxation program, Weather forecasts the
state of the atmosphere given an initial state, SIMPLE simulates the hydrody-
namic and thermal behavior of fluids, and Matexpr performs several multiplica-
tions and additions of various sized matrices. The computations in Matexpr are
partitioned and scheduled by a compiler. Weather and SIMPLE are measured
using dynamic post-mortem scheduling of traces, while Multigrid and Matexpr
are run on complete-machine simulations.

Since the LimitLESS scheme implements a full-fledged limited directory in hard-

11



Application Dir 4 NB LimitLESS4  Full-Map

Multigrid 0.729 0.704 0.665
SIMPLE 3.579 2.902 2.553
Matexpr 1.296 0.317 0.171
Weather 1.356 0.654 0.621

Table 2: Performance for three coherence schemes, in terms of millions of cycles.

ware, applications that perform well using a limited scheme also perform well
using LimitLESS. Multigrid is such an application. All of the protocols require
approximately the same time to complete the computation phase. This confirms
the assumption that for applications with small worker-sets, such as multigrid,
the limited (and therefore the LimitLESS) directory protocols perform almost
as well as the full-map protocol. See [7] for more evidence of the general success
of limited directory protocols.

To measure the performance of LimitLESS under extreme conditions, we sim-
ulated a version of SIMPLE with barrier synchronization implemented using a
single lock (rather than a software combining tree). Although the worker-sets
in SIMPLE are small for the most part, the globally shared barrier structure
causes the performance of the limited directory protocol to suffer. In contrast,
the LimitLESS scheme is less sensitive to wide-spread sharing.

The Matexpr application uses several variables that have worker-sets of up to 16
processors. Due to these large worker-sets time with the LimitLESS scheme is
almost double that with the full-map protocol. The limited protocol, however,
exhibits a much higher sensitivity to the large worker-sets.

Although software combining trees distribute barrier synchronization variables
in Weather, one variable is initialized by one processor and then read by all of
the other processors. Consequently the limited directory scheme suffers form
hot-spot access to this location. As is evident from Table 2, the LimitLESS
protocol avoids the sensitivity displayed by limited d~rctories.

5 Using Multithreading to Tolerate Latency

While dynamic data relocation through caches reduces the average memory
access latency, a fraction of memory transactions require service from remote
memory modules. When transactions cause the cache coherence protocol to
issue invalidation messages, the remote memory access latency is especially
high. If the resulting remote memory access latency is much longer than the
time between memory accesses, processors spend most of their time waiting
for memory transactions to be serviced. Processor idle time also results from
synchronization delays.

12



One solution allows the processor to have multiple outstanding remote mem-
ory accesses or synchronization requests. Alewife implements this solution by
using a processor that can rapidly switch between multiple threads of computa-

tion, and a cache controller that supports multiple outstanding requests. The
controller forces a context switch when a thread issues a remote transaction or
suffers an unsuccessful synchronization attempt. Processors that rapidly switch
between multiple threads of computation are called muitfthreaded architectures.

The prototypical multithreaded architecture is the HEP [35]. In the HEP, the
processor switches every cycle between eight processor-resident threads. Cycle-
by-cycle interleaving of threads is also used in other designs [31, 18]. Such
architectures are termed finely multithreaded. Although fine multithreading
offers the potential of high processor utilization, it results in relatively poor
scalar performance observed by any single thread, when there is not enough
parallelism to fill all of the hardware contexts.

In contrast, Alewife employs block multithreading or coarse multithreading -
context switches occur only when a thread executes a memory request that

must be serviced by a remote node in the multiprocessor. Context switches are
also forced when a thread encounters a delay due to a synchronization variable
access. Thus, as long as a thread's memory requests hit in the cache or can
be serviced by a local memory module, the thread continues to execute. Block

multithreading allows a single thread to benefit from the maximum performance

of the processor.

A multithreaded architecture is not free in terms of either its hardware or
software requirements. The implementation of such an architecture requires
multiple register sets or some other mechanism to allow fast context switches,
additional network bandwidth, support logic in the cache controller, and ex-
tra complexity in the thread scheduling mechanism. Other methods, such as
weak ordering [12, 1, 261, incur similar implementation complexities in the cache

controller to allow multiple outstanding requests. In Alewife, because the same
context-switching mechanism is used for fast traps and for masking synchro-
nization latencies as well, we feel the extra complexity is justified.

5.1 Implementing a Multithreaded Processor

This section describes the implementation of the Sparcle processor and evaluates
its potential in masking communication latency. Alewife's processor is designed
to meet several objectives: it must context switch rapidly; it must support fast
trap dispatching; and it must provide fine-grain synchronization.

Alewife's block multithreaded processor uses multiple register sets to implement
fast context switching. The same rapid switching mechanism coupled with
widely-spaced trap vectors minimizes the delay between the trap signal and the
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execution of the trap code. The wide spacing between trap dispatch points
allows inlining of common trap routines at the dispatch point. The processor
supports word-level full-empty bit synchronization. On a synchronization fault,
the trap handling routine can respond by:

1. spinning - immediately return from the trap and retry the trapping in-
struction.

2. switch spinning - context switch without unloading the trapped thread.

3. blocking - unload the thread.

Sparcle is based on the following modifications to the SPARC architecture.

Register windows in the SPARC processor permit a simple implemen-
tation of block multithreading. A window is allocated to each thread.
The current register window is altered via SPARC instructions (SAVE and
RESTORE). To effect a context switch, the trap routine saves the Program
Counter (PC) and Processor Status Register (PSR), flushes the pipeline,
and sets the Frame Pointer (FP) to a new register window. [4] shows
that even with a low-cost implementation, a context switch can be done
in about 11 cycles. By maintaining a separate PC and PSR for each
context, a custom processor could switch contexts even faster. We show
that even with 11 cycles of overhead and four processor resident contexts,
multithreading significantly improves the system performance. See (40]
for additional evidence of the success of multithreaded processors.

" The effect of multiple hardware contexts in the SPARC floating-point unit
is achieved by modifying floating-point instructions in a context depen-
dent fashion as they are loaded into the FPU and by maintaining four
different sets of condition bits. A modification of the SPARC proces-
sor will make the context window pointer available externally to allow
insertion into the FPU instruction.

" Sparcle detects unresolved futures through word-alignment and non-
firnum traps.

" The SPARC definition includes the Alternate Space Indicator (ASI) fea-
ture that permits a simple implementation of the general interface with
the controller. The ASI is available externally as an eight-bit field and
is set by special SPARC load and store instructions (LDA and STA). By
examining the processor's ASI bits during memory accesses, the controller
can select between different load/store and synchronization behavior.
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* Through use of the Memory Exception (MEXC) line on SPARC, it can
invoke synchronous traps and rapid context switching. Sparcle adds mul-
tiple synchronous trap lines for rapid trap dispatch to common routines.
The controller can suspend processor execution using the MHOLD line.
Inter-processor interrupts are implemented via asynchronous traps.

5.2 Simulation Results and Analysis

We compare the behavior of a multithreaded architecture to a standard con-
figuration, and analyze how synchronization, local memory access latency, and
remote memory access latency contribute to the run time of each application.
See [3] for additional analyses.

A thorough evaluation of multithreading will require a large parallel machine
and a scheduler optimized for multithreaded multiprocessors. On the largest
machines we can reasonably simulate (around 64 processors) and with our cur-
rent scheduler, the scheduling cost of threads generally outweighs the benefits
of latency tolerance. Furthermore, the locality enhancement afforded by our
caches and the runtime system diminishes the effect of non-local communica-
tions. Indeed, multithreading is expected to be the last line of defense when
locality enhancement has failed. However it is still possible to observe the
benefits of multithreading for phases of applications with poor communication
locality.

Our simulation results are derived from both post-mortem scheduled and full
system simulation branches of ASIM. The post-mortem scheduled runs use
traces of SIMPLE and Weather as described in Section 4.4 and the full system
simulations represent a transpose phase for a 256 x 256 matrix. In addition to
determining the execution time of an application, the multiprocessor simulator
generates raw statistics that measure an application's memory access patterns
and the utilization of various system resources. We will use these statistics to
explain the performance of our multithreaded architecture. The simulations
reported in the following sections use the parameters listed in Table 3.

5.3 Effect of Multithreading

Table 4 shows the run times for the various applications using one and two
threads per processor. SIMPLE and Weather realize about a 20% performance
increase from multithreading. Since neither of the application problem sets are
large enough to sustain more than 128 contexts, no performance gain results
from increa.qing the number of contexts from two to three per processor. For
the matrix transpose phase, we realize a performance gain of about 20% with
2 threads and 25% with four threads.
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Number of Processing Elements 64
Cache Coherence Protocol LimitLESS4
Cache Size 64KB (4096 lines)
Cache Block Size 16 bytes
Network Topology 2 Dimensional Mesh (8 x 8)
Network Channel Width 16
Network Speed 2 x processor speed
Memory Latency 5 processor cycles
Context Switch Time 11 processor cycles

Table 3: Default Simulation Parameters

Application Contexts Time
SIMPLE 1 2440123

2 2034963

Weather 1 1405536
2 1150325

Transpose 1 172242
2 141571
4 129450

Table 4: Effect of Multithreading

5.4 Cost Analysis

An analysis of the costs of memory transactions confirms the intuition that a
multithreaded architecture yields better performance by reducing the effect of
interprocessor communication latency. We refine the simulator statistics into
the costs of four basic types of transactions.

1. Application transactions are the memory requests issued by the program
running on the system. These transactions are the memory operations in
the original unscheduled trace.

2. Synchronization transactions are memory requests that implement the
barrier executed at the end of a parallel segment of the application.

3. Local cache miss transactions occur when an application or synchroniza-
tion transaction misses in the cache, but can be serviced in the local
memory module.

4. Remote transactions occur when an application or synchronization trans-
action misses in the cache or requires a coherence action, resulting in
a network transmission to a remote memory module. Multithreading is
designed to alleviate the latency caused by this type of transaction.
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SIMPLE Weather
Transaction Type 1 Thread 2 Threads 1 Thread 2 Threads
Application 1.00 1.00 1.00 1.00
Synchronization 1.17 1.08 0.76 0.45
Local Cache Miss 0.41 0.36 0.34 0.36
Remote 3.98 2.83 1.25 0 94
Total 6.56 5.27 3.35 2.75

Table 5: Memory access costs, normalized to application transactions.

The contribution of each type of transaction to the time needed to run an
application .is equal to the number of transactions multiplied by the average
latency of the transaction. We assume that the latency ef application and
synchronization transactions is equal to 1 cycle, while the simulator collects
statistics that determine the average latency of the cache miss transactions.
Table 5 shows the cost of each transaction type, normalized to the number
of application transactions for SIMPLE and Weather. For example, in the
simulation of SIMPLE with one context per processor, the memory system
spends an average of 3.98 cycles servicing remote transactions for every cycle
it spends servicing an application data access.

The statistics in Table 5 are calculated directly from the raw statistics generated
by the multiprocessor simulator, except for the cost of remote transactions in
the multithreaded environment. A multithreaded architecture can overlap some
of the cycles spent servicing remote transactions with useful work performed
by switching to an active thread. We approximate the number of cycles that
are overlapped from the average remote transaction latency, the context switch
overhead, and the number of remote transactions. The number of overlapped
cycles is subtracted from the latency of remote transactions in order to adjust
the cost of remote transactions. For all of the simulations summarized in the
table, the total cost multiplied by the number of application cycles is within
5% of the actual number of cycles neededt to execute the application.

The analysis shows that remote transactions contribute a large percentage of
the cost of running an application. This conclusion agrees with the premise
that communication between processors significantly affects the speed of a mul-
tiprocessor. The multithreaded architecture realizes higher speed-up than the
standard configuration, because it reduces the cost of remote transactions. Be-
cause communication latency grows with the number of processors in a system,
the relative cost of remote transactions increases. This trend indicates that the
effect of multithreading becomes more significant as system size increases.
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6 Related Work

A hardware approach to the automatic reduction of non-local references that has
achieved wide success in small-scale shared-memory systems is the use of high-
speed caches to hold local copies of data needed by the processor. The memory
consistency problem can be solved effectively on bus-based machines [15, 381 by
exploiting their broadcast capabilities, but buses are bandwidth limited. Hence
most shared-memory machines that deal with more than 8 or 16 processors do
not support caching of shared data [17, 14, 32, 24].

Some recent efforts propose to circumvent the bandwidth limitation through
various arrangements of buses and networks [41, 16, 26, 10]. However, buses
cannot keep pace with improving processor technologies, because they suffer
from clocking speed limitations in multidrop transmission environments. The
DASH architecture does not really require the bus broadcast capability; rather,
it uses a full-map directory scheme to maintain cache consistency. In contrast,
Alewife is exploring the use of the LimitLESS directory for cache coherence,
where the directory memory requirements grow as O(N log N) with machine
size

Chained directory protocols [20] are scalable in terms of their memory require-
ments, but they suffer from high invalidation latencies, because invalidations
must be transmitted serially down the links. It is possible to use a block mul-
tithreaded processor such as Sparcle to mask the latency, or by implementing
some form of combining. Accordingly, we have observed that chaining scheme
enjoys a larger relative benefit from multithreading than the LimitLESS scheme.
Chained protocols also require additional traffic to prevent fragmentation of the
linked lists when cache locations are replaced. Furthermore, chained directory
protocols lack the LimitLESS protocol's ability to couple closely with a multi-
processor's software.

Although caches are successful in automatic locality management in many en-
vironments, they are not a panacea. Caches rely on a very simple heuristic to
improve communication locality. On a memory request, caches retain a local
copy of the datum in the hope that the processor will reuse it before some other
processor attempts to write to the same location. Thus repeat requests are sat-
isfied entirely within the node, and communication locality is enhanced because
remote requests are avoided. Caching and the associated coherence algorithms
can be viewed as a mechanism for replicating and migrating data objects close
to where they are used. Unfortunately, the same locality management heuristic
is ill-suited to programs with poor data reuse; attempts by the programmer
or compiler to maximize the potential reuse of data will not benefit all ap-
plications. In such environments, the ability to enhance the communication
locality of references that miss in the cache and the ability to tolerate iatencies
of non-local accesses are prerequisites for achieving scalability.
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The Alewife effort is unique in its multilayered approach to locality manage-
ment: the compiler, runtime system and caches share the responsibility of in-
telligent partitioning and placement of data and processes to maximize com-
munication locality. The block multithreaded processors mitigate the effects of
unavoidable remote communication with their ability to tolerate latency.

7 Perspective and Summary

The class of MIMD machines is composed mainly of shared memory multi-
processors and message passing multicomputers. In the past, machine realiza-
tions of shared memory multiprocessors corresponded closely with the shared-
memory programming model. Although the network took many forms, such
as buses and multistage networks, shared memory was uniformly accessible by
all the processors, closely reflecting the programmer's viewpoint. It was rela-
tively easy to write parallel programs for such machines because the uniform
implementation of shared memory did not require careful placement of data and
processes. However, it has become abundantly clear that such architectures do
not scale to more than few tens of processors, because an efficient implementa-
tion of uniform memory access is infeasible due to physical constraints.

Message passing machines, on the other hand, were built to closely match phys-
ical constraints, and message passing was the computational model of choice.
In this model, no attempt was made to provide uniform access to all of memory,
rather, access was limited to local memory. Communication with remote nodes
required the explicit use of messages. Because they allowed the exploitation of
locality, the performance of such architectures scaled with the size of the ma-
chine for applications that displayed communication locality. Unfortunately,
the onus of managing locality was relegated to the user. The programmer not
only had to worry about partitioning and placing data and processes to mini-
mize expensive message transmissions, but also had to overcome the limitations
of the small amount of memory within a node.

Recent designs reflect an increased awareness of the importance of simultane-
ously exploiting locality and reducing programming difficulty. Accordingly, we
see a confluence in MIMD machine architectures with the emergence of dis-
tributed shared-memory architectures that allow the exploitation of communi-
cation locality, and message passing architectures with global addressability. A
major challenge in such designs is the management of communication locality.

Alewife is a distributed shared-memory architecture that allows the exploita-
tion of locality through the use of mesh networks. Alewife's network interface
is message oriented, while the processor interface with the rest of the system is
memory reference oriented. Alewife's approach to locality management is mul-
tilayered, encr-'passing the compiler, thc runtime system, and the hardware.
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While a more general compiler system is being developed, we have been exper-
imenting with applications with special structure. Prasanna [33] has developed
a compiler for expressions of matrix operations and FFTs. The system exploits
the known structure of such computations to derive near-optimal process par-
titions and schedules. The Matexpr program used in Section 4 was produced
by this system. The speedups measured on ASIM with this system outstrips
the performance of parallel programs written using traditional heuristics.

A runtime system for Alewife is operational. The system implements dynamic
proc_ part;tioning and near-neighbor tree scheduling. The tree scheduler cur-
rently uses the simple heuristic that threads closely related through their control
flow are highly likely to communicate with each other. For many applications
written in a functional style with the use of futures for synchronization the
assumption is largely true, and the performance is superior to that of a ran-
domized scheduler.

Caches are useful in enhancing locality for applications where there is a signifi-
cant amount of reuse (assuming locality is related to the frequency and distance
of remote communications). The LimitLESS directory scheme solves the cache
coherence problem in Alewife. This scheme is scalable in terms of its directory
memory use, and its performance is close to that of a full-map directory scheme.

The performance gap between LimitLESS and full-map is expected to become
even smaller as the machine scales in size. Although in a 64-node machine, the
software handling cost of LimitLESS traps is of the sanae order as the remote
transaction latency of hardware-handled requests (about 50 cycles), the intern-
ode communication latency in much larger systems will be much more significant
than the proc!,ssors' interrupt handling latency. Furthermore, improving pro
cessor technology will make the software handling cost even less significant. If
both processor speeds and multiprocessor sizes increase, handling cache coher-
ence completely in software will become a viable option. Indeed, the LimitLESS
protocol is the first step on the migration path towards interrupt-driven cache
coherence.

Latency tolerance through the use of block multithreaded processors is Alewife's
last line of defense when the other layers of the system are unable to minimize
the latency of memory requests. The multithreaded scheme allows us to mask
both memory and synchronization delays. The hardware support needed for
block multithreaded also makes trap handling efficient.

The design of Alewife is in progress and a detailed simulator called ASIM is op-
erational. The Sparcle processor has been designed; its implementation through
modifications to an existing LSI Logic SFARC processor is in progress. A signif-
icant portion of the software system, including the dynamic partitioning scheme
and the tree scheduler, is implemented and runs on ASIM. The Alewife com-
piler currently accepts hand partitioning and placement of data and threads;
ongoing work focuses on automating the partitioning and placement. Several
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applications have been written, compiled, and executed on our simulation sys-
tem.
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