-

- 91-03270

NAVAL POSTGRADUATE SCHOOL
Monterey , Caiifornia

AD-A237 681
AN

THESIS

INSTRUMENTATION REQUIREMENTS FOR TREE EFFECTS
DATA COLLECTION AT THE
NAVAL POSTGRADUATE SCHOOL FLASH X-RAY FACILITY

by

Dale Galarowicz

June 1990

Thesis Advisor X. K. Maruyama

Approved for public release; distribution is unlimited.

IR




unclassified
SECURITY CLASS F-CAT.ON OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE CMB No 0704-0188
1a REPORT SECURITY CLASSIFCATION 16 RESTRIN TIVE MARK NGS
unclassified
2a SECURITY CLASSIFICAT ON AUTHOR'TY 3 DISTRBUTION AL ALABL v OF FEPOR-
Approved for public release; distribution
2b DECLASSIFICATION DOWNGRADING SCHEDuULE unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER!S) S MONITORING ORGAN:ZAT:ION REPORT £, W31 R:S,
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a NAME OF MONTORING ORGAN 24T O
(If apphicable)
Naval Postgraduate School 32 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7o ADDRESS (City State and Z21P Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a NAME OF FUNDING ' SPONSOR'NG 8b OFFICE SYMBO. |9 PROCURENENT INSTRUNENT ‘DERT FICATION NUNBER
ORGANIZATION (if applicable)
BC ADDRESSICf, Ciale,ana Z1P Loge) T 0 SOURCE OF FUNDL f Warss
PROGRA"N. PR, (T TASK WOR= YNT
ELEMENT NO 8O NG £CCESSION NO

T1 T7LE (Include Security Classificaton)  TNSTRUMENTATION REQUIREMENTS FOR TREE EFFECTS DATA COLLECTION
AT THE NAVAL POSTGRADUATE SCHOOL FLASH X-RAY FACILITY

12 PERSONA. ALTHOR:S,
Dale Galarowicz

13a TYPE OF REPORT “3h TVt COVERLD ‘4 DATE OF REFOR™ (Year Month Day) 5 PAGE COLNT
Master's Thesis FROM TO June 1990 118

16 SUPE_EVENTARY NOTAT:OMN
The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the 11.S. Government

v7 COSA™ CODLES 18 SUBLECT TERMS iContinue on reverse if necessary and identify by block number)

FELD CRO P SLB-GROUP

EMP. IEMP, Flash X-ray instrumentation

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The collection of photon-induced transient radiation effects on electronics
(TREE) data in a pulsed X-ray facility is hampered by severe electrical noise
created by the pulse generation process. This thesis presents suitable techniques for
data collection and evaluation when using the Pulserad Model 112A pulsed X-ray
generator installed in the Naval Postgraduate School Flash X-ray facility.

The TREE of wafer scale integrated devices is of primary concern to researchers
at this time; therefore, instrumentation development was based primarily on the needs
dictated by these devices. A brief description of the current status of wafer
scale integrated devices is presented along with some basic TREE data collected on
these devices.

20 OSTR BT GN AVA BB 7 (5 ARSTHACS 2VUABLTRATT SEU LR TS0 L s AT
B src.oasss ey o in D sanr: as e [0 ¢ s nc unclassifie
d2a NNATAE T RISRONS B P OND VDA 2xp TELEPHONE (Inclyage Areg Code 000 s vn G
X. K. Maruyama (408} £45-2431 PH/MX.
DD Form 1473, JUN 86 Previcus editions are obsolete R T e S
.‘//.\' Olo2-LF-014=-6n01 e Y =t e

s BN CAs O L L

i




Approved for public release; distribution is unlimited.

Instrumentation Requirements for TREE Effects Data Collection
at the Naval Postgraduate School Flash X—Ray Facility

by

Dale Galarowicz
Electrical Engineer, Physics Department, Naval Postgraduate School
B.S.E.E., Naval Postgraduate School, 1988

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1990

Author: / C / 4 {/&4[//4—7'
' | Dale Galaro(wfz

/" .
o )

Approved by: /O

/5& K sz)x)ama Thesis Advisor

! el flifa s

S. N. Michael, Second Reader

M@@M

J. P. Powers, Chairman
Department of Electrical and Computer Engineering




ABSTRACT

The collection of photon—induced transient radiation effects on electronics
(TREE) data in a pulsed X-ray facility is hampered by severe electrical noise
created by the pulse generation process. This thesis presents suitable techniques for
data collection and evaluation when using the Pulserad Model 112A pulsed X—ray
generator installed in the Naval Postgraduate Scheol Flash X—ray facility.

The TREE of wafer scale integrated devices is of primary concern to
researchers at this time; therefore, instrumentation development was based
primarily on the needs dictated by these devices. A brief description of the current

status of wafer scale integrated devices is presented along with some basic TREE

data collected on these devices.
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I. INTRODUCTION

The pulsed X-ray generator first came into use for the testing of electronic
components in the early 1960’s. Since then much work has been done in the field of
pulsed power generation, primarily by Physics International Company, Ion Physics
Corporation, Maxwell Laboratories, Cornell University, and Sandia National
Laboratories.

To accommodate the growing demand for pulsed X-ray testing, many new
facilities have sprung up in recent years. The newly acquired Flash X-ray test
facility at the Naval Postgraduate School serves the needs of several government
and civilian agencies engaging in electromagnetic pulse effects testing and
evaluation.

The purpose of this study was to investigate and characterize appropriate
methods for the collection of photon—induced electromagnetic pulse effects on
small—scale electronic components, with an emphasis on wafer—scale integrated
devices. Only a minimal amount of TREE testing experience is required on the part
of the reader.

Chapter II provides a brief description of the current status of wafer—scale
integrated devices. Chapters III and IV discuss the electromagnetic pulse, its
simulation with the use of a flash X—ray generator, and the electrical noise problems
present in a typical flash X—ray facility. Chapter V discusses methods of yield
predictions for typical testing configurations. Chapter VI describes in detail the
instrumentation requirements and construction methods suitable for use in TREE

testing, and, lastly, Chapter VII interprets tests results and effects.




All research performed for this study took place at the Naval Postgraduate
School Flash X-ray facility utilizing a Physics International Model 112A Pulsed

X—ray generator.




II. CURRENT STATUS OF HYBRID WAFER SCALE
INTEGRATED TECHNOLOGY

Integrated circuit (IC) technology has experier-ed dynamic growth in recent
years, with a continuing trend toward higher speed and higher density packaging.
In many cases the perfo.mance of modern systems is no longer limited by the
integrated devices themselves, but rather by the methods of interconnection of these
devices for multiple IC systems.

The use of the conventional epoxy glass multilever printed circuit board
(PCB) has reached the limits of technological feasibility as far as density and
operating speed are concerned, so new methods have been devised to enhance overall
system performance. Among thes are the Multilayer Ceramic (MLC) and the
silicon printed circuit board (SiPCB) technologies.

The MLC technology, although far superior to conventional PCB methods, has
limitations due to the manufacturing processes. These limitations restrict the
minimum geometry of interconnects to rather coarse dimensions (250 pm widths)
requiring large numbers of metal layers (up to 33) to accommodate high density
IC’s. Other problems include a thermal expansion mismatch between the silicon
and alumina substrate, low propagation speeds due to the large dielectric constant
of the alumina, and a substantial thermal resistance caused by the thick ceramic
substrate.

The use of SiPCB technology can provide a high density of interconnects with
a minimum of metalization layers (3 or 4 typical) and can also circumvent other
problems associated with MLC technologies. SiPCB’s possess exceptional
mechanical properties with virtually no noticeable thermal stresses (due to the

thermal expansion match between the IC’s and the SiPCB), and liquid—cooled




versions have demonstrated an ability to dissipate more than 1000 watts, cm? of
heat while maintaining normal IC operating temperatures.

Figure 2.1 shows a possible layout of a SiPCB. The S:PCB performs the
function of a conventional PCB, except on the wafer scale (wafer scale distances of

up to 20 cm are possible at this time). [Refs. 1,2,3]

Figure 2.1 A Hypothetical SiPCB with 4 Mounting Mesas
(Prior to IC Attachment)

Integrated circuits are bonded to the SiPCB vith conventional interconnecting
metallurgy techniques (Au/Ti:W/SiO; or Cu/polymide are :xamples). As shown in

the cross—section of Figure 2.2, the SiPCB, having previously been fabricated with




appropriate interconnecting traces for the circuit configuration being used, can now

be connected to the attached IC’s.
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Figure 2.2 Cross Section of the SiPCB of Figure 2.1
with IC’s Mounted, Ready for Microgrinding and
Laser Defined Interconnection

There are a number of methods currently in use to connect the IC conductor
pads to the interconnects on the SiPCB. The conventional techniques used to date
involve welding or soldering of the IC pads directly by mounting the chip with the
IC substrate away from the SiPCB (the so—called Flip Chip technique), or by the
use of microscopic wires welded between the IC and the SiPCB (wire bonding).
Both of these methods have serious limitations: for the Flip Chip, high thermal
resistance between the IC and the SiPCB limits power dissipation; and, for wire
bonding. the relatively high inductance of the wire interconnects reduces high speed
operation.

A more novel technique, currently being developed at the Lawrence Livermore
National Laboratory (LLNL), cntails the deposition of thin film interconnecting
patterns down the edges of the IC using laser etching techniques. This technology

has been shown to have good electrical properties, high interconnect density (1600




connections on a 1 em2? 1C), mechanical integrity, low inductance and low thermal
resistance between the SiPCB and the heat sinking device.

Figure 2.3 shows the cross section of Figure 2.2 after the edges of the IC and
SiPCB have been contoured with a microgrinder and laser—defined interconnects

have been etched to connect the IC’s tc the SiPCB.
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Figure 2.3 SiPCB After Microgrinding, Insulation Deposition,
and Laser Defined Interconnection of IC Chip

To date, research conducted at LLNL has been directed towards basic
development, design, and evaluation of test samples mating custom~made and
commercially—available IC’s with SiPCB’s, including modules utilizing 10 static
ram memory chips (64K National Semiconductor NVC 63Q64) (Figure 2.4),
temperature sensors (Figure 2.5), strain gauges, and various small scale integrated
devices.

Since the SiPCB technology lends itself readily to military and space systems,
additional data is required with respect to nuclear effects. The research addressed
in this thesis examines the problems associated with the collection of data during
electromagnetic pulse (EMP) testing of the SiPCB interconnects and substrate.

This data, in conjunction with data collected during underground nuclear tests, will




provide the additional information necessary to characterize SiPCB assemblies with
regard to projected nuclear threats. For a more detailed discussion on the current
status of SiPCB technology, refer to the three sources of information used in this

brief description [Refs. 1,2,3].

Figure 2.4 First—Level-Metal Pattern of the Multichip Memory Module.
Each Side is 4.58 cm Long. [Ref. 3:Fig. 1.3—1:p. 14]
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III. THE ELECTROMAGNETIC PULSE AND ITS EFFECTS

The generation of an EMP ULy the detonation of a high explosive chemical
charge is a phenomena that has been known for some time, so the generation of a
similar pulse from the detonation of a thermonuclear device was anticipated prior to
the initial nuclear tests of the 1940’s [Ref. 4:p. 514]. During atmospheric nuclear
tests in the early 1950°s, unexpected failures of electronic equipment led
investigators to suspect that the EMP due to nuclear effects was a far more serious
problem than that generated by chemical explosions. Foilowing the Johnston Island
high altitude detonation of 1962, a simultaneous failure of 30 series—connected street
light loops on the Hawaiian island of Oahu, approximately 800 miles from the test
site, along with numerous burglar alarm and circuit breaker failures on power
distribution lines in Honolulu confirmed the potential for damage to even insensitive
electrical equipment in the face of a nuclear—generated EMP. [Ref. 4:p. 514, 523]

Since that time, much research has been done to develop methods to predict
~ the EMP effects of nuclear detonations, including the field strengths and the extent
of the damage regions. Figure 3.1 shows the effects of a high altitude nuclear
explosion above the surface of the earth. The deposition region, which is the source
of the EMP, is formed by the interaction of gamma and X-rays with air molecules.
This region, to a first approximation, is circular in shape with a thickness of
approximately 50 miles at ground zero, tapering at the edges, with a mean altitude
of 30 miles. The EMP generated is relatively uniform between the deposition region
and the earth with a variation of field strength of not more than a factor of two

throughout the entire region. [Ref. 4:pp. 518—519]




For high altitude detonations the extent of the deposition region is large. As
an example, a nuclear explosion of several hundred kilotons detonated 200—500
miles above the center of the United States could produce field strengths in excess of
10’s of kilovolts per meter throughout the entire country, including large swaths of

Canada and Mexico (Figure 3.2). [Ref. 5:p. 1—40][Ref. 6:pp. 2.14~2.16)

Figure 3.1 EMP Generated by a High Altitude Nuclear Detonation
[Ref. 4:Fig. 11.13, p. 519]
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Figure 3.2 EMP Ground Coverage for a Nuclear Detonation over
the United States for Various Heights of Burst
[Ref. 5:Fig. 1.4.2-8, p. 1—40]

This level of EMP could conceivably cause major short—term power outages, and
long—term failure of numerous civilian and military computer and electronic
systems, including the failure of vast segments of the telephone network in North
America.

Because of these disturbing effects, military and civilian authorities alike
have expended a great deal of time and energy researching the EMP effects on

components, assemblies, and systems.
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A. THE GENERATION OF AN ELECTROMAGNETIC PULSE

The EMP produced by a nuclear detonation is primarily due to the prompt
release of large numbers of photons and neutrons, and the subsequent interaction of
these particles with the surrounding medium. The photons, being the dominate
particles of interest, produce a region of high ionization around the burst point,
mainly by the Compton effect {Ref. 7:pp. 160—166]. The electrons, being much
lighter than the nucleus, are driven outward by the incident photons leaving the
heavier, positively charged ions, creating a positive charge separation

(see Figure 3.3).

SCATTERED
®_PHOTON

Figure 3.3 Compton Scattering
The peak magnitude of the charge separation is reached in about 10-%

seconds, which is the approximate rise time of the EMP caused by the Compton

effect [Ref. 4:p. 533], with a subsequent decay to zero which may last for a

12




considerably longer time. Figure 3.4 shows a typical current pulse induced in an
overhead power line by the EMP resulting from a high—altitude nuclear blast. Note

the fast rise time and exponential decay evident in this indirectly generated pulse.

CURRENT (kiloamperes)

TIME (microseconds )

Figure 3.4 Typical Current Pulse Induced in an
Overhead Power Line by the EMP Resulting from a High Altitude
Nuclear Detonation [Ref. 4:Fig. 11.50, p. 530?
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In addition to the EMP generated from the photon interaction with the
atmosphere, there is also an EMP created by the impingement of photons on solid
materials. For satellites in earth orbit, this effect becomes the dominate one, due to

the rarity of the atmosphere at orbital altitudes. This locally induced field, here

called the induced electromagnetic pulse (IEMP) [Ref. 8:p. 50], is created by the
scattering of electrons from solid materials by the Compton effect, as was previously
described.

The Compton process in solid material produces scattering in the backward
as well as the forward directions. Figure 3.5a shows curves relating the forward
emitted photoelectric yield per unit fluence versus photon energy, while Figure 3.5b
shows the case for reverse emitted photocurrent, where fluence here is defined as the

transfer of energy in calories per square centimeter. Reverse emitted photo current

cannot be neglected in comparison to the forward emitted photo current.
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Figure 3.5a Forward

Emitted Photoelectric Yield

Per Unit Fluence Versus

Photon Energy for Several
Materials [Ref. 8:Fig. 3.3a, p. 52]
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Figure 3.5b Reverse

Emitted Photoelectric Yield

Per Unit Fluence Versus

Photon Energy for Several
Materials [Ref. 8:Fig. 3.3b, p. 53]




As electrons are scattered, some of them recombine within the conductor,
while some leave this parent material to become entrapped in nearby insulators, or
are lost in surrounding space, depending to a large extent on the thickness of the
parent material and the proximity of potential absorbing media. This creates a
positive charge accumulation within the parent material. If a current path exists to
a region with a neutral or negative charge density, an electric current will flow
between this region and the positively—charged parent material as seen in

Figure 3.6.

Figure 3.6 Current Pulse Generated by Photon Scattering of
Electrons and Subsequent Replacement from a Charge Source

Since the rise time of the Compton effect is typically 10-8 seconds, the pulse
rise time typically will be in this neighborhood as well. However, the actual rise
time, as well as the pulse fall time is greatly dependent on the conductor parameters

(resistance, capacitance, inductance) and so will vary greatly from circuit to circuit.
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IV. THE FLASH X—RAY GENERATOR AS A PHOTON SOURCE FOR
INDUCED ELECTROMAGNETIC PULSE EXPERIMENTS

The use of a flash X—ray (FXR or Bremsstrahlung) generator has become the
preferred method for performing IEMP testing. The Bremsstrahlung process is

illustrated in Figure 4.1.

PHOTON

INZIDENT :
E:JA \ \
PARTICLE \\ \

Figure 4.1 Generation of a Photon by the Bremsstrahlung Process

When a charged particle is accelerated towards a target atom, the deflection
of the particle and subsequent deceleration caused by the electric field surrounding
the atomic nucleus gives rise to the emission of a quantum of electromagnetic
radiation. The energy of the emission (wavelength) is determined by the initial

energy of the impacting particle as well as the target material properties.

16




Virtually all X-—ray machines rely on the above phenomena for their

operation. The particles used are electrons (Beta particle) and the target is a heavy
element, typically tantalum. The peak energies of the electrons are usually greater
than 1 MeV for practical IEMP simulations.

Figure 4.2a shows the electric field strength o: a representative EMP induced
by a nuclear burst, whereas Figure 4.2b indicates the cathode current for the NPS
FXR facility (the photon emission time domain curves closely follow the cathode
current curves). The rise time (time from zero to peak level) of the two pulses are
sufficiently similar to allow the use of the FXR facility for simulation of the IEMP
due to a nuclear detonation. (Note that Figure 4.2a is a representation of EMP
rather than IEMP which explains the vast difference in time scales between

Figure 4.2a and Figure 4.2b.)

Figure 4.2a Electric Field Strength Figure 4.2b Photograph of

as a Function of Time for th= Typical Pulserad 112A 100kV

Representative EMP [Ref. 9:p.21] Diode Current Waveform
[Ref. 10:p. 38]




Note that the nuclear induced IEMP is dependent on a great r.any
parameters, and thus it is not unreasonable to settle for an approximation when

performing EMP and IEMP testing.

A. NAVAL POSTGRADUATE SCHOOL (NPS) FLASH X—RAY FACILITY

The FXR facility at NPS is centered around the Model 112A Pulserad Pulsed
X-ray Generator, built by Physics International of San Leandro, CA. Figure 4.3
shows a photograph of the generator face, and Table 4.1 lists its published
specifications. For a more complete characterization of the Pulserad generator and

its operating procedures, see references 10 ard 11.

Figure 4.3 Model 112A Pulserad Flash X—Ray Generator Installation

18




TABLE 4.1 SYSTEMS SPECIFICATIONS OF PULSERAD
PULSED X—-RAY GENERATOR [Ref. 11:p. 3]

Marx Generator:

Stages: 12

Stage Capacitance: 0.05 microfarads
Output Capacitance (Total Marx): 4.7 nanofarads
Maximum Charge Voltage: 100 kV
Maximum Stored Energy: 3 kJ

Blumlein Generator:

Output Impedance: 43 ohms
Output Voltage: 1.7 MV
Output Pulse Width (FWHM): 20 nanoseconds

X—ray Output:

Dose at 0.5 Meter from Anode: 8 R

Power Requirements:
Controller: 110/220 Vac, 50/60 Hz, 500 VA max.

Vacuum System:

Diffusion Pump: 110/220 Vac, 50/60 Hz, 500 VA max.
Fore Pump: 110/220 Vac, 50/60 Hz, 1 kVA max.
Power Supply: 220 Vac, 50/60 Hz, 500 VA max.
Oil Transfer System: 110/220 Vac, 50/60 Hz, 1 kVA max.

19




Referring to Figure 4.4, the salient features of the facility in its entirety can
be discussed. The radiation area is enclosed in a concrete vault with the back and
side walls lined with one—inch—thick steel plate (the entire building was originally
designed as a jet engine test cell and is thus robustly built). All instrumentation is
enclosed in a radio frequency interference (RFI) enclosure to reduce electrical noise
pickup during tests. The FXR generator penetrates the concrete walls of the
radiation area through a steel lined opening with the test and maintenance panels
readily accessible from either end.

The layout and construction of the facility provides excellent isolation of the
X—ray radiation from personnel and instrumentation. However, the incident EMP
escaping from the Pulserad body presents a problem for data collection, therefore
special techniques and precautions must be taken to ensure reasonable data fidelity

and instrument damage protection.
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Figure 4.4 NPS FXR Facility Layout (1st Floor)
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B. ELECTRICAL NOISE PROBLEMS ASSOCIATED WITH THE
NPS FXR FACILITY

The FXR generator is ideal for IEMP testing of small components and
systems, however the processes involved in creating the photon beam inevitably
generate a large amount of direct EMP which will interfere with normal data
collection.

Figure 4.5 shows a highly simplified block diagram of the Model 112A
Pulserad Flash X—ray generator indicating the pulse generation technique. The
Marx Generator, which is discharged as 12 series connected 0.05 microfarad
capacitors, delivers a pulse to the Blumlein Pulse generator when the pressurized
spark gaps are triggered by a voltage pulse supplied from the operator "FIRE"
button. Each capacitor is charged to a user—selected value, with a peak value of 100

kV. Therefore, the Marx Generator can deliver a pulse of 1.2 MV.
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Figure 4.5 Simplified Diagram of Flash X—Ray Generator
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The Blumlein Pulse generator, which is a 43 ohm resonant transmission line
pulser, provides a 4:1 impedance step~up with a corresponding 2:1 voltage
multiplication. The Blumlein charges up to 1.5 MV for a Marx Generator output of
1.2 MV [Ref. 11:p. 21] and provides an open—circuit output voltage of 3 MV, with
an output impedance of 43 ohms. The electron accelerator impedance is 40 to 60
ohms, therefore the cathode voltage is determined, by Ohm’s law, to be
approximately 1.7 MV. The pulse generated by this process can be as short as 20
nanoseconds.

The peak cathode current for the atcove conditions is equivalent to 32 k
Amps during the pulse durstica, and, assuming a frequency spectrum with
components beyond 12 MHz [Ref. 8:p. 144], the magnitude of the problem begins to
emerge. Even with the extensive shielding on the generator itself, and a radiation
resistance of the cathode being generally much less than the 50  electron
accelerator impedance, greatly reducing EMP radiating efficiency, there is sufficient
radio frequency coupling to data links and apparatus to disrupt data collection or
even to damage instruments.

In addition to the above, other sources of electrical noise are present that
may create problems for the data collection apparatus. A major source of EMP is
the model TX—40 high voltage trigger pulse transformer, located on top of the
pulserad body near the rear access hatch. Figure 4.6 shows the relative location of

the trigger transformer.
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Figure 4.6 Rear View of Model 112A Pulserad Flash X—Ray Generator

Experience has shown that the trigger transformer, which is supplied
unshielded by the manufacturer, must be shielded with the use of heavy aluminum
foil and conductive copper tape to reduced EMP radiation. Figure 4.7 is a
photograph of the trigger transformer after this shielding has been installed.
Furthermore, all dc as well as ac cables connecting the transformer and pulserad
body with the control console and power supply must be carefully shielded with
proper earth grounds secured to the shields.

Proper grounding is also required for the RFI enclosure, and for all electrical
cables entering it. The ac power lines must enter through conduits connected to the
enclosure’s outer surface, and shielded cables must have their shields firmly
attached to the enclosure, as well, to prevent introduction of noise signals to the

instruments contained therein. It should be noted that any length of conductor is
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Figure 4.7 Trigger Transformer After Shielding Installation

capable of acting as a dipole antenna at some frequency, and therefore can receive
and re-radiate EMP levels that could interfere with data fidelity during and after
the photon—induced event.

The bonding of metallic objects to earth ground within the FXk facility
should be done with braided grounding straps, as the surface area is far more
important than the cross sectional area of a conductor at the radio frequencies
present in typical EMP radiation (see Section VI for the explanation of skin effect
and its effects on radio frequency surface currents). Furthermore, the bonding
straps should be connected directly to the building earth ground pad, if possible, to
facilitate a single grounding point for the elimination of ground loops. Figure 4.4
shows the location of the building earth ground and the significance of ground loops

is discussed in Section VI, Figure 6.2.
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The ac line power in the NPS FXR facility may also introduce electrical
noise into sensitive instruments by nature of EMP pickup through electrical wiring
within the building, as well as transients created by heavy equipment located in
portions of the building being utilized for aeronautical engineering laboratories.
These transients are removed by use of a large radio frequency interference filter, a
Corom model number CDEUX400050A6, installed in the facility in such a manner
as to electrically isolate the data collection apparatus from the remainder of the

building. This filter is located near the RFI enclosure, as indicated in Figure 4.4.

C. ISOLATION OF NOISE SOURCES IN THE NPS FXR FACILITY

One of the most difficult tasks encountered in data collection in any FXR
facility is the isolation and elimination of noise sources. Almost imperceptible
grounding or equipment problems may introduce massive noise signals into sensitive
instruments making data collection impossible. Several useful methods for isolating
and correcting noise sources will be presented here to assist future researchers
utilizing the FXR facility.

The importance of proper earth grounds to high data fidelity was emphasized
in the last section. This is by far the most common reason for the deterioration of
signal—to—noise ratio on a shielded data link. Figure 4.8a shows an IEMP signal
collected with the differential data link to be described in Section VI. Figure 4.8b
shows a signal collected under identical conditions as Figure 4.8a, except for a poor
grounding connection on one of the triaxial cables at the target. The overpowering
noise displayed here is typical of that occurring due to faulty grounding conditions

in the presence of strong EMP.
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Figure 4.8a Typical IEMP Signal Figure 4.8b Similar Signal
Collected with a Differential Data with Faulty Ground Connection
Link at Target

Less obvious are the effects of noise introduced on the surfaces of shielded
cables where it is only possible to ground the shields at each end of the cable.
Figure 4.9a shows the differential data link with induced noise on its external shield
surface. This noise was eliminated (Figure 4.9b) by the application of four ferrite

filter cores on the cable assembly. Figure 4.10 depicts a split ferrite core designed
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Figure 4.10 Split Ferrite Filter Core and Installation




to be installed over existing coaxial or triaxial cables to eliminate currents induced
on the shield surfaces. Such cores installed on the cables will help isolate
instruments from the cable surface currents by increasing the impedance presented
to the common mode signal [Ref. 12:Ch. 4]. Differential mode signals will be
unaffected by the filter cores due to normal transformer action.

Figure 4.11a shows the relationship between the impedance of various core
filter materials and the shield current frequency. For the Amidon Associates part
number BN43-151 filter core [Ref. 13:p. 72], the impedance factor indicated on the
graph is approximately 5 for the 43 material. Figure 4.11b provides an equivalent
circuit for the filter core installation and illustrates its effects on common—mode and
differential-mode signals (Section VI.B discusses the subject in detail). It is
recommended that all differential data links incorporate several BN43-151 filter
cores as illustrated in Figure 4.10 to reduce shield surface currents in the NPS FXR
facility. These filter cores should be installed as close as possible to the data
collection instruments in the RFI enclosure.

The isolation of noise sources within the Pulserad FXR generator itself
requires several special techniques. Noise sources in the generator are varied and
include, among other things, poor grounding connections, leaky Marx bank resistors,
and improper firing of pressurized spark gap switches. Most of the high voltage
components that are used in the construction of the FXR generator are life limited,
and become more troublesome with age.

As mentioned previously, the trigger pulse transformer has the potential to
generate large amounts of electrical noise. This component is definitely life limited,
and subject to electrical breakdown with age (accurate lifetime predictions for the

model TX—40 trigger pulse transformer are unavailable from the manufacturer to
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date). To test the transformer’s contribution to the noise environment on a

particular data link, the following procedure can be used. Refer to the pulserad

operations manual [Ref. 11] and the thesis of Renee B. Pietruszka [Ref. 10:pp.

13—15] as required.

1.

Connect the data link and instrumentation being used for the IEMP
experiment in question.

Do not turn on the high voltage power supply.

Turn on the trigger panel key switch.

Press the trigger button and note the electrical noise induced in the data
link by the trigger pulse. This procedure triggers the spark gap switches,
but since the Marx generator capacitor bank has not been charged, no
Marx pulse occurs. Using this method, therefore, allows the analysis of

the effects of elecirical noise generated by the trigger circuitry alone.

To analyze the effects of noise generated by the FXR generator alone, the

following procedures can be followed to avoid the use of the trigger circuitry (again,

refer to the pulserad operations manual and the thesis of Renee B. Pietruska as

required).

1.

Connect the data link and instrumentation being used for the IEMP
experiment in question.

Perform the necessary steps to prepare the FXR generator for normal
operation, including pressurization of the spark gap switches to the
appropriate level, initialization of the high voltage power supply, and
charging of the Marx bank. However, do not arm the trigger generator

panel.
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3. When the Marx bank reaches the user—determined voltage, reduce the
gas pressure in the Marx bank spark gap swiiches until they discharge.
The Marx bank discharge will force the remaining gas switches to fire,
resulting in a normal discharge without the use of the trigger generator
circuitry.

Note: This procedure has the potential to cause damage to various
components in the FXR generator and should orly be used when the preceding
method yields inconclusive results.

The use of the two procedures listed above should allow the isolation of the
offending component, be it in the FXK generator itself, or in the trigger circuitry.
In any event, the elimination of electrical noise in the NPS FXR facility can be a
difficult task, and researchers should set aside sufficient time in their research
proposals for the elimination of noise scurces and the establishment of an acceptable

dat2 collection system.
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V. PREDICTION OF PHOTON INDUCED ELECTRON YIELDS FOR
WAFER SCALE INTEGRATED DEVICES

In order to design appropriate instrumentation to collect useful data on the
effects of IEMP on wafer—scale devices, some general predictions of yield need to be
developed. Due to the infinite possibilities that exist in SiPCB design layout, it
would be impractical to develop exact relationships that would be accurate for all
crses.  Therefore, in this sectior, generalized results will be obtained for the
e pected yield of an incremental condrctor element under ideal conditions so that
results can be obtained for other con”gurations by extrapolation.

Figure 5.1 shows the general case to be analyzed. It represents a two micron
thick meia'ized gold film deposited on a silicon svpstrate and is, in fact, a
cross—section of the temperature scnse~ presented in Figure 2.5. The sample

element analyzed here assumes a total irradiated surfac> area of 0.05 cm?2.

Figure 5.1 Cross section of Two Micron Thick Temperature Senscr (See Figure 2.5)




To determine the maximum expected electron yield for this sample element,
the intensity and energy of the incident X~ray beam must be known. The average
values of these parameters can be obtained from the Pulserad 112A specification
sheet (Table 4.1) and the characterization data collected in the thesis of Renee B.
Pietruska [Ref. 10]. However, the values obtained from these sources are of an
unrestricted beam. Irradiation of an area of 0.05 cm? requires the use of a shield
composed of a high atomic number material (usually lead) with a through hole to
limit the irradiation to the target area.

The thickness of the lead chosen here was 1 inch. Experimental data indicates
that, for a 0.05 cm? aperture, the through—hole dose will be approximately twice
that obtained through the lead, with sufficient dose reaching the target to provide a
measurable level of signal.

This 2—to—1 dose ratio is hardly ideal. It would be preferable to have at least
a 10—to—1 ratio to insure that only areas of interest are irradiated with significant
" quantities of X—rays. Unfortunately the generation of the X—ray pulse by the
Bremsstrahlung process is far from tidy. Figure 5.2 shows the ideal process, where
all Bremsstrahlung photons travel straight, predictable paths. Were this the case,
the X—ray attenuation through the 1 inch of lead would be approximately 90%
(Table 5.1).

Figure 5.3 depicts the actual scenario, where countless collisions between
electrons, Compton scattering, tantalum integrity, and other non—ideal processes
produce a non—uniform photon output. This greatly reduces the effectiveness of the

aperture/shield arrangement as an X—ray directing technique.

33




FXE GENTRATOR

thN;

. ACCELERATED ELECTRONS

i\
;\\\-TANTA;W. FOI.

BREASSTRAMUIUNG ¥ -RAYE

IS REYYIY

J

TENJATEL

APEZRTURE !

Figure 5.2 The Bremsstrahlung Generator and Shielding Under Ideal Conditions

TABLE 5.1 ATTENUATION CHARACTERISTICS OF LEAD AS MEASURED
AT THE NPS FXR FACILITY

Measured Dose Versus Lead Thickness at 100 KV Charge on Marx Bank at Pulserad 112A Face

Lead Thickness in Inches Dose in ROENTGENS

1/8 18.07
1/4 11.56
3/8 7.74
1/2 5.39
5/8 4.02
3/4 2.95
7/8 1.45
1inch 1.93
General Relationship (Approximate) between Attenuation and Shield Thickness
- =)
=17

T, =
a = attenuation desired
T = 1/2 dose thickness
N = number of 1/2 dose thicknesses required

Ty = total shield thickness
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Figure 5.3 The Bremsstrahiung Generator and Shielding under
Actual Conditions

Using this lead shield and aperture, the dose expected at the target will be
greatly reduced. As an example, the exposure derived from Table 5.2 and Figure
5.4 for a distance of 3.6 cm from the anode face (a minimum distance determined by
hardware constraints) is 916 Roentgens (R). Experimental data obtained using a
one inch thick lead shield with a 0.05 cm? aperture and 3.6 cm total distance to the
dosimeter is approximately 5 R. The large disparity between the two results
illustrates the value of experimentally—obtained dose information. Since the dose
delivered through a complex shielding geometry is very difficult to predict, all dose
information presented here will be experimentally derived.

Using the approximate value of 5 R obtained above, an average photon energy
of 0.7 MeV (derived by taking the average value of the pulse in Figure 4.2b,
approximately (1.7 MeV)(.4) ¥ 0.7 MeV) and Table 5.3, the X—ray beam intensity

can be estimated.




TABLE 5.2 ON—AXIS MEASURED EXPOSURE AT VARIOUS
DISTANCES FROM THE ANODE FACEPLATE (100 kV)
[Ref. 10:p. 115]

Distance Exposure
(cm) (R)
0.64 2290
1.27 2180
1.90 1309
2.54 1064
5.08 693
10.16 255
15.24 125
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TABLE 5.3 PHOTON FLUENCE PER RAD(Si) AS A FUNCTION
OF PHOTON ENERGY [Ref. 5:pp. 3—28]

Intensit
Energy (MeV) (108 photons/cm3)
0.1 143.0
0.15 136.0
0.2 108.0
0.3 71.0
0.4 53.0
0.5 42.0
0.6 35.0
0.8 27.0
1.0 224
1.5 16.2
2.0 12.9
3.0 9.4
4.0 7.4
5.0 6.1
6.0 5.2
8.0 4.0
10.0 3.2
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The estimated value is:
(31x108 Photons/cm? Rad(Si))(5 R) ¥ 1.6x101° Photons/cm? (5.1)
where
1 radiation absorbed dose in silicon (Rad(Si)) ~ 1 R+
To determine the actual photon yield, the following relationship can be
used [Ref 5:pp. 4—4,4-5]:

¢, = f ——i,— P;CosA —%I};-?- dV dE Photoelectrons/cm? (5.2)

where
®, = photoelectron fluence,
P.= electron escape probability,
A = electron scattering angle,
1/r2 = fluence dispersion factor in the solid angle,
dPe/dQl’ = differential volume source of photoelectrons per unit solid angle,
V = volume of target, and

E = energy of photons.

When the individual terms above are expanded, the expression for ¢, becomes
quite imposing, and for several of the terms only an approximate closed form is
possible. Fortunately, graphical techniques are available and are in standard use to

avoid the problems of obtaining a numerical solution for &

* 1 Rad deposits 10-2 J/kg of energy in a material (silicon in this case), while 1R
deposits 8.7x10-3 J/kg. These values are similar enough to be considered equal

for the approximations applied here. [Ref. 14:p. 1021]
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For the photon energy levels of interest here, and for a gold target (Atomic
number = 79), the Compton effect dominates over the photoelectric effect and pair
production as can be seen in Figure 5.5. The photoelectric fluence ($,) can be
approximated by the use of Figure 5.6a, which is a set of composite curves
combining the Compton (¢e) and photoelectric fluence effects (Figure 5.6b). In
Figure 5.6, it is assumed that P, is sufficiently small to justify the omission of the
sample element thickness as a pertinent parameter (since for Py << 1, thin and
thick targets will have a similar yield).

From Figure 5.6a, the sample element is seen to have a photoelectric fluence of
7x10-3 electrons/photon for an average photon energy of 0.7 MeV. Using the value
of intensity previously obtained (1.6x1010 photons/cm?), it can be seen that 1.1x108
electrons have been displaced from the sample element by the incident photons.
This leaves a positive charge of 1.8x10-! Coulombs. Assuming a FXR output pulse
width of 20 nanoseconds (Table 4.1), a current of approximately 900 microamperes
is expected to occur between the earth ground and the sample element, assuming a
charge equalization time similar to the FXR pulsewidth.

This yield prediction is, to say the least, highly speculative. Results depend
not only on the Compton yield of the target, but also upon the effects of
surrounding media (including the insulating subtrate of Figure 5.1) and other effects
not addressed here. Furthermore, the actual X-ray yield of the FXR generator
varies dramatically from day to day, depending on the conditions of its various
component parts and random factors associated with each individual shot.
Variations of several hundred percent from this projected yield can be expected, and

the 900 microamp prediction should be considered a mean value, useful primarily as
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an aid in the design of the data collection apparatus. Some of these variations can

be minimized by ensuring the use of a relatively clean cathode and anode for a
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particular experiment. Note that, for the energy levels of interest here, most metals
will have a similar yield and may be used interchangeably for convenience (Figure
5.6a).

The method of measuring this photoelectric current is illustrated in Figure 5.7.
This simple arrangement allows the fast current pulse to be measured indirectly, by
detecting the voltage drop across a load resistor and applying Ohm’s law. The
value chosen for this resistor was 100 Q (the reasons for this choice will be made
clear in Section VI). Using the 100 ohm load resistor, the expected signal level will

be 90 millivolts.
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V1. INSTRUMENTATION REQUIREMENTS FOR THE
MEASUREMENT OF IEMP IN WAFER-SCALE INTEGRATED DEVICES
AT THE NPS FXR FACILITY

The noise problems discussed in Section IV and the modest yields predicted in
Section V indicate the need for a data collection system that can provide a high
signal-to—noise ratio (SNR) and still provide reasonable fidelity over a wice
bandwidth in a high noise environment. Preliminary tests have shown that simple
unbalanced coax or triax data links are inadequate for the task, regardless of how
the shields are connected, due to their low immunity to electrical noise. This
section provides sufficient information to allow researchers to construct, test and
troubleshoot suitable data collection apparatus for use in the NPS FXR facility.

Since the majority of frequency components cont~:aed in the EMP are below
20 MHz (with a wavelength longer than 15 meterc), most electrical noise pickup
occurs in the data link from the radiation exposure area to the instruments in the
RFI enclosure, a data cable distance of approximately 20 meters.

To reduce the effects of the radiated EMP on data collection links, several
special techniques may be applied. Two of the most promising techniques have been
investigated here, and their advantages and shortcomings will be described.

To incrcase noise immunity, the data link from the radiation area to the
instrumentation may be a fiber optic link rather than conventional electrical coaxial
cables. The expression relating the time average power induced in a linear

conductor by an external electromagnetic field is [Ref. 15:p. 485]

Pav=1—— [—chd—] (6.1)
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where
n = impedance of free space = 120 7 ohms,
I, = current induced in conductor in amperes,
d = conductor length in meters,
A = wavelength of induced current in meters, and

Pav = time average power induced in conductor in watts.

It can be seen that in order to reduce the level of power induced in a conductor, it
must be very short in comparison to the wavelength and, for conductor lengths of
less than one quarter wavelength, the coupling efficiency becomes quite small and
little power is induced in the conductor.

The use of a fiber optic cable in lieu of an electrically conducting one reduces
the d term in Eq. 6.1 to zero, thus completely eliminating electrical noise pickup in
the data link itself. This leaves only the data collection instrumentation attached to
the fiber optic cable as a potential source of unwanted electromagnetic interference
pickup.

To protect the target and data ccllection instrumentation from the above
noise, the entire target and associated instruments should be enclosed in a Faraday
cage or other shielded enclosure. Figure 6.1 is a cutaway diagrari of the Faraday
cage built for this investigation showing the arrangement of the target and

associated data collection and transmission modules.
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Figure 6.1 Cutaway Diagram of Faraday Cage Showing Arrangement
of Target and Data Collection and Transmission Modules

Generally a Faraday shield should be constructed of mu metal for maximum
attenuation of the electromagnetic interference. Considering the relationship for
conduction current density and electric field intensity with penetration into a

conductor [Ref. 15:p. 400},

b= — L (6.2)
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where
f = frequency of electromagnetic wave in Hertz,
o = permeability of free space = 47x10-7 H/m,
im = permeability of conductor (dimensionless),
o = conductivity of conductor in mhos per meter (2m)-1, and
6 = depth of penetration (skin depth) in meters

= depth where power density is reduced to e-? of incident value.

It can be seen that for a given frequency, the depth of penetration of an impinging
electromagnetic wave is inversely proportional to the square root of the permeability
and conductivity of the shielding material. Table 6.2 is a list of normalized skin
depths for various materials suitable for fabricating electronic enclosures. It can be
seen that magnetic materials are significantly better than non—~magnetic materials
at lower frequencies for shielding purposes due to the large permeability of the
former. ("Better" implies a smaller skin depth).

In addition to having the electronics enclosed in the Faraday cage, the power
source for the data collection instruments (the batteries in Figure 6.1) should also
be enclosed. This eliminates the possibility of external power supply conductors
introducing EMP into the Faraday cage and subsequent enclosed circuitry. The
only penetration of the shielded Faraday assembly should be for the optical cable,

an unavoidable necessity.
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TABLE 6.2 CONDUCTIVITY, PERMEABILITY AND NORMALIZED SKIN DEPTH
FOR COMMON SHIELDING MATERIALS. TO FIND ACTUAL SKIN DEPTH,
DIVIDE NORMALIZED VALUE BY THE SQUARE ROOT OF THE
FREQUENCY OF INTEREST

(6= 6n/y T) [Ref. 8:p. 132]

Material Conductivity Permeability Normalized

(22m)-1 (H/m) Skin Depth é,
(Centimeters/(sec) )

Aluminum 3.5x107 1 8.50

Copper 5.8x10 1 6.1

Brass 1.6x107 1 12.6

Tin 8.7x106 1 17.1

Zinc 1.9x107 1 11.5

Lead 4.5x106 1 23.7

Nickel 1.3x107 50 1.97

Iron (pure) 1.0x107 4x103 0.252

mu metal(typical) 1.6x107 2.0x10¢4 0.089

Another important aspect of shielding is the problem associated with ground
loops. A ground loop occurs when the grounding point of several components or
instruments occurs at more than one location. This in effect creates a loop antenna
that may be quite efficient at picking up radio frequency interference occurring at
certain frequencies and attitudes as well as causing dc currents that may cause offset
errors, both of which couple into the signal path. Figure 6.2 shows two hypothetical
instrumentation set—ups, one showing obvious ground loops and the other
deliberately configured to avoid these loops.  Since the actual grounding

configurations for various items in the FXR environment are uncertain, some

49




experimentation may be warranted in an effort to reduce noise pickup by
instruments and re-radiation from seemingly innocent items (such as electrical
conduits or shielded cables).

When each instrument block by itself is shielded and a Faraday cage is being
utilized, then each block should be securely grounded to the Faraday cage interior
surface, with minimum length signal cables used.

The block diagram of the entire fiber optic data link is shown in Figure 6.3

and the experimental setup is illustrated in Figure 6.4.
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The second method investigated for data collection in the NPS FXR facility
consists of a differential data link. The differential cable concept is illustrated in
Figure 6.5. Note that the desired signal is applied differentially to the paraliel
conductor pair and thus can be recovered at the receiver end with a differential
amplifier, while electrical noise is applied to the parallel conductors equally
(common mode) and is rejected by the differential amplifier (Figure 6.6). The block
diagram for the differential data link is shown in Figure 6.7. Note that the shielding
techniques previously referred to must be observed to protect the contents of the

target shielding box.
A. LIMITATIONS OF FIBER OPTIC AND DIFFERENTIAL DATA LINKS

The two methods of data collection in the NPS FXR facility discussed above
have proven to be the only suitable techniques available for adequate data fidelity.
However, these methods each have limitations that limit their usefulness.

In the case of the fiber optic link, the limiting factors are electrical noise
pickup in the Faraday target box, and noise generation in the optical receiver
(photo avaianche detector or pin diode). The former problem arises in part by
nature of the complexity of the circuitry required in the target box. The numerous
electronic components necessary to perform the buffering, amplification and optical
modulation have a tendency to be adversely affected by EMP as well as IEMP.
This problem can be solved only by the use of a carefully designed Faraday
enclosure to limit EMP, and the use of thick lead shielding to protect the electronics

from photon effects. The thickness of the lead shielding may have the additional
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detrimental effect of reducing the photon dose at the target which subsequently
reduces the electron yield, lowering the SNR even further.

The mean square—noise power generated in the optical receiver can severely
limit the signal-to—noise ratio of the system by introducing a background noise
level approaching that of the expected signal. Experimental results indicate that for
a Merit Inc. Model R26911TV—GD Photoavalanche optical detector module, the
expected noise level will be 15—20 mVy;, across a 50 Q load (the preferred units for
expressing photon—induced data is volts). The use of a PIN diode in lieu of a
photoavalanche detector reduces this noise level by an order of magnitude or
greater. Additional problems with fiber optic systems include the high cost of
components and the difficulty in the field installation of fiber optic connectors onto
cables. A major bonus that fiber optic systems possess is the large bandwidths
attainable (up to 120 MHz for light emitting diode transmitters and many gigahertz
for laser—based systems).

For a differential data link, the primary problems encountered are limited
bandwidth and difficulty in obtaining a sufficiently high common—mode rejection
ratio to provide adequate data fidelity. The problem of EMP and IEMP pickup in
the target box is greatly reduced by nature of the small physical size of the target
enclosure and the ability to construct the data acquisition and cable driver circuits
using only passive components.

After considerable experimentation and design iterations, the differential data
link was selected as being the most versatile, low noise and cost effective method of
data collection in the NPS FXR facility and no further work on fiber optic links was

pursued. The following section will describe in detail the differential

55




instrumentation setup established for the irradiation of wafer—scale integrated

devices and other small scale electronics components.

B. THE DIFFERENTIAL DATA COLLECTION METHOD AS APPLIED TO THE
NPS FXR FACILITY

A specific variation of the differential data collection method has been applied
at the NPS FXR facility. This application has proven to be the most suitable
technique tried for collection of data from the photon irradiation of wafer scale
integrated devices.

Figure 6.8 shows the cable configuration used for the differential data link. It
consists of two Amphenol 21-204 5002 triax cables carefully twisted together with 13
twists per meter. The assembly is wrapped with plastic electrical tape to prevent
unraveling. The purpose of twisting the cables together is to insure that any
electrical noise applied to the dual cable assembly induces equal noise currents on
each cable. This common mode signal can then be canceled out as was described in

Figure 6.6.

Figure 6.8 Twisted Pair Triax Differential Cable Assembly
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The cable ends are provided with BNC connectors to be compatible with most
common test equipment. The two separate shields on each of the triax cables are
shorted together at the BNC connectors and are treated as one shield at this point,
since this has proven to be the interconnecting method providing the highest noise
immunity. The overall data link is approximately 20 meters long and is installed in
the cable rack connecting the radiation area with the instrumentation located in the
RFI enclosure (see Figure 4.4).

The wafer—scale device to be radiated is fitted into a compact cast—aluminum
box (the data collection system being described provides sufficient noise immunity
without the need for a mu metal enclosure). This target box configuration, as well
as the printed circuit board designed for mating to the wafer—scale device, is shown
in Figure 6.9. The printed circuit board provides a plug—in mounting for the
wafer—scale sample as well as appropriate interconnects for the other components
needed to drive the data link previously described. The wafer—scale carrier is
. displayed in Figure 6.10.

Figure 6.11 shows a schematic diagram of the target box connected to the data
link. The target load resistor will have a voltage induced across it when the wafer
scale device is irradiated with photons as a result of the Compton effect (see Figure
3.6, 5.7). This load resistor must be 100  to provide a proper impedance match to
the data link as will be demonstrated shortly.

The transition from an unbalanced to a balanced load, as well as appropriate
impedance matching, is accomplished by the use of a balun (balanced to
unbalanced) transformer. The use of active electronic circuitry has proven to be

excessively sensitive to noise pickup to be useful for this purpose.
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Figure 6.12 illustrates the o>ncept of the balanced transformer when used to
drive two coaxial cables. Figure 6.12a shows the arrangement for constructing a
1-to—1 balun transformer. Note that the primary resistor has one end to ground
while the secondary resistor has a phantom ground occurring at its center, thus it is
balanced with respect to ground. If the secondary resistor is split in two, their
junction can be grounded without altering the circuit as shown in Figure 6.12b.
Finally it can be seen in Figure 6.12c that properly terminated coaxial cables can be
installed in lieu of each of the secondary resistors. If the cable impedance is 50 {2
(as in the case of the Amphenol 21-204 triax cable used in the twisted pair
differential data link), the primary resistance must be 100 £ to maintain proper
impedance matching.

There are numerous other balun configurations that may prove useful to
researchers, primarily to allow the use of a target resistance greater than 100 Q.
Figure 6.13 illustrates two of these baluns with impedance transformation
properties. Note that as the impedance transformation ratio becomes larger, the
transformer structure becomes more complex, and bandwidth limitations may
result. Furthermore, load resistor values greater than 100 ohms tend tc suffer the
effects of parasitic capacitances that are inevitable in the circuitry, reducing the
bandwidth even further.

For the yields anticipated from photon irradiation of wafer scale devices, the
simple 1-to—1 balun has proven to be satisfactory. The physical construction of a
suitable wide bandwidth balun transformer is illustrated in Figure 6.14. Here a
specialized balun core is used in conjunction with tri—filar wound coils to produce a
transtormer with a —3dB bandwidth extending from 1.2 kHz to 30 MHz. The use of

tri—filar construction insures that each of the three separate windings used in
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the balun are of the same length, insuring that the differential cable assembly is
driven in a balanced, symmetrical fashion. A disadvantage of tri—filar and bi—filar
windings is the introduction of additional interwinding capacitance that may cause
transformer ringing or limit the upper frequency bandwidth. [Ref. 16:pp. 268—271]

At the receiver end of the differential link a differential amplifier is required.
This amplifier can be either a true differential type, or it can be implemented by the
use of a dual channel amplifier that is capable of performing the inversion and
addition functions depicted in Figure 6.6. However, the use of a dual channel
amplifier results in a poor common—mode rejection ratio (CMRR), defined as the
differential-mode gain divided by the common—mode gain. This is due to the lack
of symmetry in the circuit and the subtle phase and amplitude differences occurring
in the two channels. The CMRR resulting from the use of a dual channel amplifier
is typically 150 at dc dropping to below 10 at 20 MHz. The ideal value of the
CMRR would approach infinity.

True differential amplifiers are the preferred choice when implementing a
differential data link. The only notable limitation with the use of a differential
amplifier is in the bandwidth. The typical commercially available differential
amplifier has an upper —3dB bandwidth of 1 MHz. This limitation is imposed by
the manufacturer primarily due to the deterioration of the CMRR as the frequency
is increased. The CMRR of most commercial differential amplifier assemblies is
100000 at ac, and typically degrades to 2000 at 1 MHz. This degradation is due to
phase and amplitude variations in the amplifier stages, as was the case for dual
channel amplification. The limitation is imposed so that a minimum specified

CMRR can be guaranteed over the bandwidth of the amplifier.
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The amplifier chosen for use with this data link is a Tektronix Model 7A13
differential comparator. This unit can be used as a differential comparator or a
differential amplifier, depending on user—selected switch settings. This amplifier is
a plug—in device and is used in conjunction with a Tektronix Model 7104
Oscilloscope. The bandwidth of the amplifier is 105 MHz when used in conjunction
with the Tektronix Model 7104 oscilloscope and has a CMRR ranging from 20000 at
dc, to 200 at 20 MHz (Figure 6.15). The limited CMRR at high frequencies is to be
expected and will not adversely affect the noise immunity since experimental data
suggests an induced noise level of 1 V,, on a triax cable 20 meters in length. A
CMRR of 200 will reduce this to approximately 5 mVpp, a level far less than the 90
mVy,, expected signal level.

The analog portion of the data link can now be analyzed in its entirety.
Figure 6.16 shows the frequency response of the assembled system, with Figure
6.16a showing the swept response from 200 Hz to 4.4 kHz, and Figure 6.16b showing
the response from 200 kHz to 20 MHz. The frequency range of 4.4 kHz to 200 kHz
(not shown) possesses a monotonically smooth response.

The CMRR can be determined by the application of an equal signal (Common
Mode) to each cable in the differential data link and dividing this signal value by
that obtained from the output of the differential amplifier (that value displayed on
the 7104 oscilloscope). This yields the CMRR assuming the differential mode gain

equals unity in the data link. (A reasonably good assumption.)
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Figure 6.16a Frequency Response of the Differential Data Link
between 200 Hz and 4.4 KHz

Figure 6.16b Frequency Response of the Differential Data Link
between 200 KHz and 20 MHz
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Figure 6.17a shows the response of the data link to a 0.35 Vp, common mode
input sweeping from 200 kHz to 20 MHz. For frequencies below 200 kHz the
response is approximately zero, indicative of a CMRR approaching that of the 7A13
differential amplifier. Above 200 kHz, the response grows at a uniform rate,
indicative of a rapidly deteriorating CMRR. This is to be expected, since the
velocity of propagation is not equal in the two cables, which causes a phase
difference between their respective signals. This phase difference becomes more
pronounced for higher frequencies since their wavelengths decrease with respect to
the fixed length of the data link (20 meters). If the frequency were swept even
higher, nodes and antinodes would appear on the response due to phase shifts
through constructive (180° phase difference between signals applied to the
differential amplifier) and destructive (0° phase difference) alignment.

The phase shifts just described will cause an incomplete cancellation of the
common—mode signal in the differential amplifier, which in turn decreases the
CMRR. The decrease in the CMRR will reduce the immunity of the data link to
radiated noise power produced by the FXR generator. Fortunately, the phase shift
can be corrected easily by the installation of incremental transmission line segments
on the cable that displays the lesser phase shift.

The installation of incremental transmission line segments will cause an
additional phase shift in the cable on which they are installed by introducing a small
amount of time delay. The simplest method of accomplishing this is to use BNC
couplers as incremental transmission line segments. FEach male/female coupler

assembly adds approximately 3 centimeters of length to a cable when installed.
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Figure 6.17b shows the response of the data link when two male and two
female BNC couplers are installed on the cable with the lesser phase delay. Note
that a dramatic improvement in the CMRR is achieved by this simple procedure.
This has proven to be the optimum arrangement for obtaining a satisfactory CMRR
on this data link.

Using the method for determining CMRR previously alluded to, the worst case
value between 200 kHz and 20 MHz is approximately 290 at 3.7 MHz with the BNC
couplers installed. It should be noted that the ripple apparent on the response of
Figure 6.17 is due to reflections occurring within the coaxial cables due to subtle
impedance irregularities along their length, and is not due to the test procedure or
the terminating impedances used. These irregularities occur in all transmission lines
and can be significantly reduced only by the use of the highest quality, solid
conductor, gas—filled coaxial lines. = Fortunately, this problem is of little

consequence for the data collection configuration used here and should not introduce
. any significant errors in the collected data.

The shielded target enclosure, shielding arrangement and target alignment
apparatus are shown in Figure 6.18. This target assembly arrangement allows the
installation of different thicknesses of lead shielding, the changing of the size of the
target enclosure and the accurate movement of the target with respect to the
aperture in the shield plates. The target may also be rotated by 180° for irradiation
of its back side if desired.

The size, shape, material and wall thickness of the target enclosure has been
shown to have a significant effect on the IEMP yield of a given target. The
arrangement of Figure 6.18 was built to allow the researcher ample means by which

to alter the experimental configuration to examine these yield effects in full.
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Figure 6.17a Frequency Response of the Differential Data Link between
200 kHz and 20 MHz for a 0.35 Vp, Signal Applied Common Mode

Figure 6.17b Frequency Response of the Differential Data Link between
200 kHz and 20 MHz for a 0.35 V,; Signal Applied Common Mode
with Optimum Phase Delay Added to One Cable
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VII. INTERPRETATION OF RESULTS AND EFFECTS
DURING IEMP TESTING

IEMP testing is wrought with uncertainties and aberrations. The random
variations in exposure, pulsewidth, emitted beam angle, and EMP emissions makes
collection of meaningful data in a FXR facility more voodoo than science.
Predictions of quantities of interest are so mediocre that experimentation is often
the only useful method to foretell future results.

The ability to differentiate between meaningful data, and that which is altered
by the test conditions can only be obtained with hands—on experience. This section
will attempt to convey a sufficient amount of experimentally obtained information
to allow future researchers to make intelligent choices as to experimental design and
data interpretation.

The data collection system depicted in Figure 6.7 will be used exclusively in
this discussion. Note that complete information with regard to the characterization
and use of all the components of the system is contained in the appendices, as listed
in the table of contents.

Many seemingly innocuous mistakes may cause results that launch researchers
into quests for irradiation effects that do not exist. A prime example is illustrated
in Figure 7.1 This is a photon—induced pulse obtained from the irradiation through
a 0.05 cm? aperture of the temperature sensor depicted in Figure 2.5. Three distinct
pulses appear, one positive and two negative. Only one pulse is meaningful
information, while the other two result from the scale factor function of the
Tektronix 7104 oscilloscope mainframe. Figure 7.2 depicts a pulse obtained under

similar conditions with the scale factor function disabled.
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Another blunder is illustrated in Figure 7.3. This positive—going pulse was
obtained from the irradiation of a 1 cm? brass pad, with the target box rotated 180°
to allow irradiation of the opposite face. Unfortunately the differential cables were
not exchanged with the rotation, resulting in an output of reversed polarity. It
should be noted that the actual photon—induced pulse is positive going, but the
negative polarity setup was chosen as the standard to match that used for the
Pulserad 112A current characterization and trigger pulses (see Figure 4.2b).

As was alluded to easlier, the shielded box containing the target may have a
drastic effect on the yields obtained during irradiation testing. Figure 7.4 displays a
pulse obtained from the wafer—scale device using a target shield box with a rear
cover approximately one centimeter from the irradiated device. This seemingly
normal pulse was shown to be highly attenuated by the effects of the enclosure when
compared to a pulse collected under similar conditions, but in a larger box with a
distance of 10 centimeters from the target device to the rear cover (Figure 7.5).

The causes of this attenuation are not clear; however, the emission of
secondary electrons from the shielded box itself is the likely culprit. As discussed in
Section V| the irradiation of the target box as a whole is impossible to prevent, thus
it can be expected that a number of characteristics present in collected data can be
attributed to the shielded enclosure. Experience has indicated that for enclosures
with a distance of eight centimeters or more from the irradiated target to the rear
cover, the amplitude distortion to the data will be insignificant, and, in some rare
cases, tho rear cover may be left off all together with only minor levels of EMP noise

introduced to the IEMP data.
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As a final note, it is likely that the front cover of the target will cause similar
amplitude distortion to the data. Unfortunately the distance from the target to this
cover cannot be increased, since this would cause a drastic decrease in the X—ray
exposure (see Figure 5.4). To deduce the secondary electron yield from the front
cover, it should be made as thin as possible. A thin target will produce less
secondary electrons due to the fewer Compton interactions that take place. Note
that the front cover must always be installed to prevent severe EMP pickup
(Figure 7.6).

A. DIFFERENTIATING BETWEEN PHOTON EFFECTS AND EMP EFFECTS

In many cases the effects of EMP may overshadow or modify the results of a
given irradiation test. It is therefore useful to have a method of isolating the effects
of IEMP from those of the induced EMP when questions arise as to the source of a
particular response. Several methods were investigated and one has proven to be
useful for most target applications.

As indicated previously, different materials will yield different quantities of
secondary electrons when irradiated with a spectrum of photons. Electrical
conductors generally provide high yields, while insulators generate few free electrons
under X—ray irradiation. Most insulators also possess the ability to trap or deflect
free electrons injected into them, depending on the properties of the insulating
material. These properties can be used to separate the effects of EMP and IEMP at
the target under test.

Figure 7.7 shows the yield of a brass pad being irradiated with 3.5 R total
dose. This same target then was covered oi: both sides with silicon vacuum grease
(this grease is used extensively for lubricating seals on the FXR generator and thus

is readily available) and radiated nder the same conditions (Figure 7.8). It can be
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seen that the pulse amplitude has increased measurably from the previous case of
Figure 7.7.

Although the exact mechanisms responsible for this increase are difficult to
predict or ascertain, it has been shown over many separate instances with varying
target configurations to consistently provide greater yields than the case of a target
free from insulating grease. Since there are no convincing arguments to suggest that
this yield increase could be caused by EMP, it may be safely assumed that the pulse
is due primarily to photon interactions with the target.

In many cases, the photon—induced current yield of a device under test will
vary drastically depending upon its attitude during irradiation. Figure 7.9
illustrated the yield of the wafer scale temperature sensor being irradiated through
its aluminum mounting case. In this configuration the X—rays pass through the
aluminum case and silicon substrate before striking the gold traces (Figure 2.5).
Figure 7.10 shows the yield of the same device when irradiated from the opposite
direction. Here the X—rays pass through the plastic face of the mounting case
before striking the gold traces and silicon substrate.

The dramatic yield differences noted here are due to the Compton effects of
the different materials involved, as well as their relationships to one another, and
cannot be attributed to EMP. Thus the careful alteration of the sample attitude is
useful as a means to isolate EMP from IEMP in a target during initial experimental

setup and design.

B. REDUCTION OF PHOTON EFFECTS OF EXTRANEOUS OBJECTS
DURING IEMP TESTING

It was pointed out in Section V that the dose through 0.05 cm? aperture in a

one inch lead plate was only twice that obtained through the lead directly. The
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X-rays penetrating the shielding may have an adverse effect on data collection,
since some components will invariably be irradiated by this undesirable radiation.

Predicting the effects of this leakage radiation is next to impossible. The
irradiation of wires, printed circuit board traces, balun transformers, connector pins,
et cetera, all produce a yield, depending upon the dose received, attitude, and
numerous other factors. However, the effects of leakage radiation on extraneous
objects can be greatly reduced by following simple procedures when collection and
processing the data.

Referring to Figure 6.7, it can be seen that the data displayed on the
Tektronix 7104 oscilloscope is recorded by the use of a Tektronix C1001 digitizing
camera system (DCS). This system digitizes the information presented on the
screen of the oscilloscope and processes it in a format that is compatible with disk
operating system (DOS) computers.

The DCS software has a number of usefui functions that can be utilized to
improve data accuracy.

The pulses from several shots may be averaged using the ADD and SCALE
functions within the WFM—OPS menu of the DCS (see the DCS operations manual
[Ref. 18] and the appendix for complete information on use of the DCS software).
The basic operation is:

(A+B)x(C5)=C (7.1)
where
A = first data pulse to be averaged,
B = second data pulse to be averaged, and

C = arithmetic average of A and B.
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This procedure may be repeated with numerous waveforms to obtain a pulse
that is generally representative of a given sample for a given set of FXR generator
parameters. Care should be taken to make sure that all the samples are equally
weighted when taking an average. This can be assured if the number of samples
taken satisfies the following relationship:

N =M (7.2)
where, N = number of data waveforms taken and M = any positive integer.

Using a number of sample pulses that satisfies the above relationship, the
averaging arrangement of Figure 7.11 can be used to overcome the limitation of two
waveforms per calculation that is imposed by the DCS software. It should be noted
that the AVERAGE function within the ACQUIRE menu should not be used, since
the overall data average may be corrupted by one or more mis—firings during a
series of FXR generator shots.

Figure 7.12 shows an averaged pulse obtained by irradiation of the
" temperature sensor of Figure 2.5. This pulse is the average of 4 pulses and was
irradiated with an average dose of approximately 5 R.

To remove the signal added to this by the yields of other components in the
target test box, the temperature sensor was removed, the empty target box was
irradiated, and the resulting yields were measured and averaged under identical
conditions. This pulse is displayed in Figure 7.13.

To remove the box yield form the total, the DCS SUBTRACT function within
the WFM—OPS menu was used. Figure 7.14 shows the average target yield less the
test box yield. This represents a close approximation to the actual yield of the

target alone. Note that no aperture was used in the lead shield for this procedure,
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since the use of an aperture as an X-ray directive means has proven to be
ineffective, and the target consists of five individual 1 cm? sensors internally wired
in parallel. Thus the yield of one sensor is approximated by dividing the total yield
by 5 and using the average dose of 5 R.

Note that the procedure just described has the effect of providing an artificial
aperture for the target area of interest, since the caiicellation of all signals
contributed by components other than the intended target mimics the function of an
ideal aperture. For this reason, it is recommended that this procedure be used
whenever possible for data collection at the NPS FXR facility in lieu of a physical
aperture, or as a supplement to improve the fidelity of the data when a physical

aperture structure is deemed mandatory.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

The photon irradiation in the NPS FXR facility of small electronic
components in general, and wafer—scale integrated devices in particular can yield
useful data only when careful attention is paid to the details of data collection
techniques and their implementation. Considerable time can be wasted and
important data lost if due care is not exercised with regard to experimental layout
and design.

Since the techniques used in this study have proven to be effective in
producing valid TREE data, it is advisable that they be followed wherever possible,
or at least used as a starting point for the design of specialized instrumentation for
future experiments.

In particular, the information presented in Section VII should be referenced
when data is being collected. It is imperative that researchers learn to recognize
and compensate for the numerous error sources present in the FXR facility. It is
advisable that all instrumentation systems be tested under known conditions (the
irradiation of a 1 cm? pad is a standard yield test source) before attempting to

collect data on an actual sample of interest.
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APPENDIX A

CHARACTERIZATION OF NPS FXR DATA LINK

The following procedures can be used to obtain characterization information

on the differential data link described in this thesis.
A. OBTAINING FREQUENCY RESPONSE CURVES

1.

Required Equipment

a.

b.

h.

HP3314A Sweep Generator (or equivalent)

TEK C-50 Oscilloscope Camera (or equivalent)

TEK 7104 Oscilloscope (or equivalent)

TEK 7A12 Differential Comparator Plug In

TEK 7B92A Horizontal Time Base Plug In (or equivalent)

5002, .25W, 1% Resistor

50Q coaxial cable assembly three feet long with a BNC connector on
one end and two mini alligator clips on the other

500 coaxial cable from the radiation area to the RFI enclosure

Equipment Setup (Refer to Appropriate Operator’s Manual)

a.

HP3314A

(1) AMPTD: 70 mV

(2) SWEEP: LIN

(3) SW/TR INTVL: 10 ms

(4) START FREQ: 199 kHz (for high frequency sweep)
(5) STOP FREQ: 19.99 MHz (for high frequency sweep)
(6) FUNCTION: SINE

(7) GEN: FREE RUN

(8) TRIGGER: INT
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b. TEK C-50 Oscilloscope camera (suggested setting when using
Polaroid 667 film)

(1)
(2)
(3)
(4)

APERTURE: 2.8
SHUTTER SPEED: T5
MODE: NORM
FOCUS: As required

¢. TEK 7104 Oscilloscope

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

VERTICAL MODE: LEFT (TEK 7A13 installed in left slot)
HORIZONTAL MODE: B (TEK 7B92A installed in right slot)
TRIGGER MODE: LEFT VERTICAL

INTENSITY: Approx. 30% of full

GRAT ILLUM: PULSED

+ GATE/EXT (of grat illum): + GATE

READOUT: PULSED

+ GATE/EXT (of readout): + GATE

All Other Controls Not Used

d. TEK 7A13 Differential Comparator Plug In

(1)
(2)
(3)
(4)
()
(6)
(7)

VERTICAL SENSITIVITY: 10 mV/div

CHANNEL ONE SOURCE: D.C.

CHANNEL TWO SOURCE: D.C.

BANDWIDTH: FULL

POSITION: Trace on center of screen (initial position)
VARIABLE BALANCE: Centered

All Other Controls Not Used




e. TEK 7B92A Horizontal Time Base Plug In
(1) HORIZONTAL SWEEP TIME: 1 ms/div
(2) TRIGGER SWEEP TIME: EXTERNAL
(3) TRIGGER LEVEL: Approx. zero (adjust for steady display)
(4) TRIGGER COUPLING: A.C.
(5) TRIGGER MODE: AUTO
(6) SLOPE: +
(7) COUPLING: A.C.
(8) SOURCE: EXTERNAL
(9) EXTERNAL TRIGGER IMPEDANCE: 50Q
(10)  All Other Controls Not Used
Upper Bandwidth (200 kHz to 20 MHz) Characterization Procedures
(Refer to Figure A.1)
a. Remove the target from the target shield box
b. Remove the target load resistor from its socket in the target shield
box
c. Connect the output of the HP3314A through the 509 resistor to the
ungrounded socket of the target load resistor socket with the 500
coaxial cable. Ground the cable shield to the target box
d. Connect a 500 coaxial cable between the HP3314A trigger output and
the TEK 7B92A trigger input
e. Adjust the horizontal position on the TEK 7B92A plug—in so that the

trace starts on the left margin of the screen
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Photograph the display using the TEK C-50 oscilloscope camera
(some camera settings many need to be changed to acquire an
acceptable photograph).

To characterize the lower bandwidth (400 Hz to 4.4 kHz), change the
start and stop settings on the HP3314A to 400 Hz and 4.4 kHz

respectively and repeat the above procedure.

B. OBTAINING COMMON MODE REJECTION RATIO CURVES

1. Required Equipment

a.

b.

g
h.

HP3314A Sweep Generator (or equivalent)

TEK C-50 Oscilloscope Camera (or equivalent)

TEK 7104 Oscilloscope (or equivalent)

TEK 7A13 Differential Comparator Plug In

TEK 7B92A Horizontal Time Base Plug In (or equivalent)

3 foot long 501 coaxial cable with 2 BNC connectors installed on
either end

CMRR Cable Test Box (refer to Figure A.2)

500 coaxial cable from radiation area to RFI enclosure

2. Equipment Setup (Refer to the Appropriate Operator’s Manual)

a.

HP3314A

(1) AMPTD: 700 mV
SWEEP: LIN
SW/TR INTVL: 10 ms

STOP FREQ: 19.9 MHz

(2)

(3)

(4) START FREQ: 199 kHz
(5)

(6) FUNCTION: SINE
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(7) GEN: FREE RUN
(8) TRIGGER: INT
b. TEK C-50 Oscilloscope Camera
(1) APERTURE: 2.8
(2) SHUTTER SPEED: 15
(3) MODE: NORM
(4) FOCUS: as required
¢. TEK 7104 Oscilloscope
) VERTICAL MODE: LEFT (TEK 7A13 installed in left slot)
) HORIZONTAL MODE: B (TEK 7B92A installed in right slot)
3) B TRIGGER SOURCE: LEFT VERTICAL
) INTENSITY: Approx. 30% of full
) GRAT ILLUM: PULSED
6) + GATE/EXT (of grat illum): + GATE
READOUT: PULSED
+ GATE/EXT (of readout): + GATE
9) All Other Controls Not Used

(1) VERTICAL ONE SOURCE: 1 mv/div
CHANNEL ONE SOURCE: D.C.

CHANNEL TWO SOURCE: D.C.

(2)
(3)
(4) COMPARATOR VOLTAGE: Not used
(5) BANDWIDTH: FULL

(6)

POSITION: Trace on center of screen (initial position)
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(7) VARIABLE BALANCE: Centered

(8) All Other Controls Not Used

TEK 7B92A Horizontal Time Base Plug In

HORIZONTAL SWEEP TIME: 1 ms/div

TRIGGER SOURCE: EXTERNAL with positive slope
TRIGGER LEVEL: Approx. zero (adjust for steady display)
TRIGGER COUPLING: A.C.

(1)

(2)

(3)

(4)

(5) TRIGGER MODE: AUTO
(6) SLOPE: +

(7) COUPLING: A.C.

(8) SOURCE: EXTERNAL
(9)

EXTERNAL TRIGGER IMPEDANCE: 500

(10)  All Other Controls Not Used

Common Mode Rejection Ratio Characterization Procedure (Refcr to

Figure A.2)

a.

Remove the two triax cable BNC connectors from the target shield
box and install them on the CMRR cable test box output BNC’s
Connect a 50§2 coaxial cable between the HP3314A trigger output and
the TEK 7B92A trigger input

Connect a 5080 coaxial cable between the HP3314A output and the
CMRR cable test box input

Adjust the horizontal position on the TEK TB92A plug—in so that the

trace starts on the left margin of the screen
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Photograph the display using the TEK C-~50 oscilloscope camera
(some camera settings may need to be changed to acquire an
acceptable photograph)

The CMRR is obtained (approximately) by dividing the constant 0.7
by the peak—to—peak voltage from the photograph at the frequency of

interest
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Figure A.1 Schematic Diagram of Bandwidth Characterization Circuitry

Figure A.2 Schematic Diagram of CMRR Characterization Circuitry
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APPENDIX B

CONDENSED OPERATING PROCEDURES FOR NPS FXR

DIFFERENTIAL DATA LINK

REQUIRED EQUIPMENT

1.
2.
3.
4.

TEK 7104 Oscilloscope (or equivalent)

TEK 7A13 Differential Comparator Plug In

TEK 7B92A Horizontal Time Base Plug In (or equivalent)

TEK C1001 Digitizing Camera System

EQUIPMENT SETUP (Refer to Appropriate Operator’s Manual)
TEK 7104

1.

a.
b.
C.
d.

€.

VERTICAL MODE: LEFT (TEK 7A13 installed in left slot)
HORIZONTAL MODE: B (TEK 7B92A installed in right slot)
B TRIGGER SOURCE: RIGHT VERTICAL

INTENSITY: Full clockwise

All Other Controls Off

TEK 7A13

a.

b.

VERTICAL SENSITIVITY: Usually 10 mV/div, or as required
CHANNEL ONE SOURCE: D.C.

CHANNEL TWO SOURCE: D.C.

BANDWIDTH: FULL

POSITION: Start at center of screen, change as required
VARIABLE BALANCE: Centered

All Other Controls Not used
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3. TEK 7B92A
a. HORIZONTAL SWEEP TIME: 10 ns or as required
b. TRIGGER SOURCE: EXTERNAL
c. TRIGGER LEVEL: Approx. zero (change as required)
d. TRIGGER COUPLING: A.C.
e. TRIGGER MODE: NORM
f. SLOPE: NEGATIVE
g. COUPLING: A.C.
h. SOURCE: EXTERNAL
i. EXTERNAL TRIGGERING IMPEDANCE: 50
j- Other Controls Not Used
4. TEK C1001

a. Calibrate according to procedure in operator’s manual

C. COLLECTION OF PHOTON YIELD DATA FROM IRRADIATION
OF WAFER SCALE DEVICE

1. Install differential data link cables onto target shield box, making sure
labels on cable match those on box (A to A, B to B). Position the target
in front of the FXR generator as required.

2. Install other end of differential data link cables onto TEK 7104 with A on
channel 1, B on channel 2.

3. Select LIGHT TRIG under the ACQUIRE menu and toggle to ON.
Alternately, the EXT.TRIG function under the ACQUIRE menu can be
selected in lieu of the LIGHT TRIG function. This requires the
connection of a cable between the + GATE output of the TEK 7104 and

the trigger input of the DCS circuit board (see DCS manual for details).
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Select CALIBRATE under ACQUIRE menu and toggle ON.

Press the F1 function key. The screen will display "Waiting for light
trigger” or "Waiting for External Trigger(s)", depending on the triggering
method selected in part 3 above. This signifies that the system is ready to
collect data.

Setup and fire the Pulserad FXR generator following the procedure in the
operator’s manual.

The DCS will acquire and display the collected data waveform.

Adjust triggering, sensitivity and sweep time as required for an acceptable
display. Do not change triggering after an acceptable display is achieved,
since this will cause a horizontal displacement in the data which will
introduce errors in the data if two waveforms are acted upon by functions
in the WFM—OPS menu.

After an acceptable display is achieved, repeat steps 5 through 7 to

acquire as many waveforms as desired.
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