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1. Introduction

The objective of this work is to understand current collection by, and the potential
and charge density around, a high voltage probe in an ionospheric plasma in the absence
of scattering. As a canonical case, we have chosen a spherical probe 10 cm. in radius,
held at a potential of 11,000 volts, in a plasma of density 10" m'3, and temperature 0.1
eV, with a magnetic field of 0.3 gauss. This plasma has a thermal current of 8.46x10™
A-m?anda Debye length of 0.743 cm.

The best estimate for collected current in this regime is the Parker-Murphy limit,[ll

which we discuss in Secton 2. In Section 3 we duscribe the features of a computer code
which we used to simulate this problem. Results for the canonical case and related cases
are described in Section 4. Section 5 discusses the results of an orbit-limited theory for
the charge density (and thus potential) about the probe. The theory itself is derived in an

appendix. Conclusions are given in Section 6.

2. Parker-Murphy Limit

The Parker-Murphy limit'!) is derived by considering the maximum cylinder (about
a field line through its center) from which a probe can draw current, consistent with con-
servation of energy and canonical angular momentum. The canonical angular momen-

tum is given by
P, = Mr (d6/dt + w/2)
where

o =¢eB/m,

1. Parker, L. W. and B. L. Murphy, "Potential Buildup on an Electron-Emitting Ionospheric
Sewd " isurnal of Geophysical Research 72 16311636 (1967),
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and 1its associated kinetic energy by
(P - M w/2)*/2mr”.

Neglecting the electron’s kinetic energy at its maximum radius, R, and the r- and z-

components of velocity at the probe radius, a, we find
ed = (mRzo)/Z - maz(.o/2)2/2ma2
or
RYa> =1+ (8e¢/mw2a2)%.
The maximum current to the probe is then given by
271, (R¥a?)
where

I, =ne (ee/znm)"‘.

For the parameters of our canonical problem we have

® = 5.275x10% sec’!
R=154m
Ipy = 12.6 mA.

3. Computational Method

We have developed a 2! dimensional computer code (two-dimensional coordinates
and three-dimensional velocities) to simulate this problem. The code operates in cylindr-
ical (r, z, 6) coordinates on a quadrilateral grid consisting of 90 spherical shells extending
from the probe surface (0.1 m) to a radius of 7 meters. Each shell had 25 angular divi-
sions ranging from the z-axis to the r-axis. The z=0 plane was treated as a mirror plane,

and the r=7m sphere was neld fixed at zero potential.

Electrons were started along the magnetic field (z) direction from just inside the 7m
sphere with a radial spacing of 2.3 cm., and with current and velocity set to reproduce the
one-sided plasma thermal current and one-half the ambient density. (Beyond the collec-
ton radiu;, ihe remaining half of the ambient density comes from electrons refiected
from the 7=0) mirror planz.) Cicrgy and canonical anguiar momcuiin were explicitly

conserved at each particle timestep. Each electron was followed untl it either (a) hit the




probe; (b) escaped the grid; or (c) exceeded the limit on how many times it was allowed
to bounce off the mirror plane. At each timestep the particle’s charge was bilinearly

shared to the nearby gridpoints. Ion density was set to ne 2978

Iterations consisted of alternately solving Poisson’s equation and tracking particles
in the resulting potentials to update the charge density. This process was continued until
steady siate solutions were achieved. Potentials were constrained to be non-negative, and
in most runs charge densities were constrained to be non-positive. (The charge-density
constraint affects potentials along field lines within the collection radius, which in the

quasi-neutral limit satisfy
e 05 (1+no/0)"

It had negligible effect on collected currents or on potentials beyond the collection
radius.)

4. Computational Results and Discussion

Runs were done for the canonical set of parameters and for related parameters. A
complete list of the runs with their results is found in Table 1. Line 5 of Table I is our
best solution for the canonical case. The canonical case is difficult because the Debye
length is short compared to the mesh spacing used, and because the particle energy is tiny
compared with the potential scale of the problem. Much insight can be gained by calcu-
lating comparable cases with higher energy. Lines 11 and 14 are our best solutions for
comparable cases in which the plasma thermal current is the same as the canonical case,
but the plasma temperature is raised to 1 and 10 eV respectively. The other cases are

presented for illustrative purposes.

The general character of all runs is that (a) particles originating within a "collection
radius” (somewhat less than the Parker-Murphy radius) are "promptly” (i.e., within three
crossings of the z=0 mirror plane) collected by the probe; (b) most particles originating
between the "collection radius” and the Parker-Murphy radius escape the sheath region;
some are collected after executing lengthy trajectories; (c) there is a very substantial
region extending outward from the Parker-Murphy radius whose particles are "trapped”,
i.e., escape the sheath only after very lengthy trajectories involving tens of crossings of
the mirror plane; and (d) particles traversing only the outermost portion of the sheath are

not trapped. How close the "collection radius” is to the Parker-Murphy radius is




determined primarily by the radial exteni of the sheath, with longer-range potentials col-
lecting smaller currents. Note that Table I is ordered by the radius at which the potential
drops to 100 volts. The current collected is very strongly inversely correlated with this
100 volt radius.

The number of "bounces” (i.e., passages through the mirror plane) allowed affects
*he collected current both directly (i.e., a particle that initiaily missed the probe may
eventually stumble into it), and indirectly. The indirect effect is that lc..g trajectories
accumulate a large charge density which reduces the extent of the sheath. These points
are well illustrated by the runs shown in Table II, in which increased bounce number
leads to more space charge, and thence to a more compact potential, more collected
current, and less trapped current. Lines 16 and 17 of Table I are calculations performed

using the Langmuir-Blodgett'?

(spherical space-charge limited) potential, which happens
to be similar to the potential of line 15. In going from three bounces to 50 bounces (line
17 to line 16) the collected current increases from 4.6 to 7.6 mA, still well below the
Parker-Murphy limit. However, even after 50 bounces 40 mA of cumrent remains
trapped. Taking into account the effect of the trapped charge on the potential (Table II)
we get a larger increase (to 10 mA) of current, as the 100-volt contour moves in from 2.1

m 10 1.4 m. Furthermoie, we dispose of all but 6 mA of the trapped current.

Increasing the temperature reduces the collected current primarily through
decreased shielding of the potential. Shielding is decreased because the lifetime of
trapped particles is reduced, due to increased probability of escape. Increasing the
plasma temperature from 0.1 to 1 to 10 eV (Table III) we find that the 1G0-volt contour
moves outward from 1.4 to 1.6 to 2.0 meters, and the collected current decreases from 10
mA to 9 mA to 6 mA. Note that the current is reduced by the shape of the potential,
rather than directly by the higher energy of the incident particles. Line 4 of Table !
shows a 10 eV plasma with ten times the thermal current of the canonical case. Its poten-
tial profile is comparable to that of line 6, and its collected current scales directly with the

plasma thermal current, despite a hundredfold increase in particle energy.

2. Langmuir, 1. and K. B. Blodgeu, "Currents Limited by Space Charge between Concentric
Spheres”, Physical Review 24, 49-59 (1924).




Runs which allowed positive charge density had positive potentials =xtending along

the field lines within the collection radius. This had no effect on the collected current.

Figures 1 and 2 show the electrostatic potentials and particle trajectories for the 0.1
eV and 10 eV cases (lines 5 and 14 of Table I). (Note that the actual runs followed more
trajectories for longer paths than shown in the figures.) The positive potentials extending
along the field lines are seen clearly in the 10 eV case. Note also the line of "turning
points” for particles which missed the sphere. These particles are actually orbiting the
symmetry axis, and contributing substantially to the charge density. Both of these

features are also present in the 0.1 eV case, but are difficult to see in the figure.

Figure 3 shows the charge density for the 0.1 eV case (Table I, line 5). Note that
the charge density is relatively low in the region traversed by collected electrons, and
higher in the trapping region. Figure 4 shows the charge density along a radial line nor-
mal to the magnetic field for all three temperatures. For all but the 10 eV case, there 1s a
sharp peak in the charge density at a radius of about 0.4 m. This peak consists of elec-
trons which originated just outside the Parker-Murphy radius. For a circular orbit at a
given radius, the centrifugal force (outward) and the magnetic force (outward) on an
electron are determined by conservation of orbital angular momentnim. These do indeed
balance the electric force (inward) at a radius of about 0.4 m. However, the kinetic
energy associated with this circular motion is well under half the total kinetic energy of
these electrons; most of their kinetic energy is associated with oscillations parallel to the

magnetic field.

5. Orbit-Limited Theory

The appendix presents a theory for an upper bound to the charge density for this
problem. By "orbit-limited” we mean that any point in phase-space whose energy and
canonical momentum are consistent with a trajectory connecting to ambient plasma con-
tributes to the local density. This is known to give a charge density which is far too high,
because it contains contributions from trajectories which can reach a field point only in
the presence of bizarrely unrealistic potentials. However, we can modify the orbit-
limited theory as follows to assure that the charge density is built up from only "reason-

able” trajectories.




We first note that trajectories originating within a "collection radius”, R,, are
immediately collected by the probe. Therefore, we exclude this region of angular
momentum from the orbit-limited charge density integrals, and insteaa treat such trajec-
tories by accelerated current formulas. We also exclude particles outside some larger
radius, R,, which may be roughly interpreted as the "range of the potential”, on the
grounds that such particles never see any fields which draw them into the sheath region.

Outside R, we use accelerated current formulas to determine electron density.

If we take the "range of the potential” to be the radius at which the potential drops
to the plasma temperature, we can imagine solving the problem self-consistently using
these "modified orbit-limited" charge densities. This can be done easily only for the case
of the 10 eV plasma. We find that the resultant potential is qualitatively correct, but too
compact, i.e., the charge density is still too high. It follows that the currents in this
potential will be too high. Figure 5 shows the solution for the 10 eV case using the
modified orbit-limited theory.

Alternatively, we can generate any reasonable set of potentials (either by using a
particle tracking code or, for example, by solving Laplace’s equation inside a grounded
ellipse), set R, to be at or just inside the Parker-Murphy radius, and determine R, by the
requirement that the total charge in the sheath cancel the charge on the sphere. (This
method does not require that R, - R, be resolvable by the computer code.) Figure 6
shows charge densities calculated for the 0.1 eV case using the potenuals of figure 1, R,
= 1.54 m, and R, = 1.56 m. Comparing figure 6 with figure 3, we find that the theory
gives a much sharper boundary between the high and low density regions, and that the
theory does not predict the structure due to particle dynamics in the high density region.

It can be shown (see appendix) that the theory predicts a densit.
P/, = (me’r/8nT)” x [(R R, )]

for all points whose radius and potential are consistent with trajectories connecting to the
spherical shell R, <R <R,

Table I includes results from the "modified orbit-limited" theory for the 0.1, 1, and
10 eV cases. Only in the 10 eV case is the answer truly self-consistent; the charge densi-
ties in the other two cases are too high to easily achieve self-consistency. However,
these potentials follow the same theme of giving a potential which is too compact and

draws more current than obtained by particle-tracking.




6. Conclusions

We have used a particle-tracking code to calculate potentials and currents associ-
ated with an 11 kV, 10 cm probe in an ionospheric plasma. We have also developed a
"modified orbit-limited” theory which yields potentials about the probe which are quali-
tatively good, but quantitatively are too compact.

For fixed probe voltage and magnetic field, the probe current has a strong inverse
correlation with the extent of the potential, i.e., longer-ranged potentials draw less
current. The reason for this is that particles at a given radius receive more longitudinal
acceleration, and less radial acceieration, as the potential becomes longer-ranged. Parti-
cles originating at the Parker-Murphy radius can hit the probe only with zero longitudinal
velocity, and the probability of having a small longitudinal velocity when near the probe

is less likely for a longer-ranged potential.

The range of the potential is determined by particles which are "trapped”. Most of
these originate in a region just outside the Parker-Murphy radius, and spend a large
amount of time orbiting close to the probe. This is illustrated by figure 4, which plots the
net charge density for the three cases. Note the very high (several times ambient density)
peak in the charge density at about 0.4 m. This corresponds approximately to the radius
of a circular orbit where electrostatic (inward), centrifugal (outward), and magnetic (out-
ward) forces balance for electrons originating just outside the Parker-Murphy radius and

moving in the (ExB) direction.




Table 1.
Potential and Current Collection Calculations

K v T n +Q  NBounce I, g, RO0D) R0 RO.D)
(V] eVl [m?]  Allowed - (mA]  (mA]  [m) (m] (m]
1 11,000A) 01 1x10" n 23 11.7 5 1.0 1.45 19
2 11000B) 10  3x10" n 23 124 6 1.1 1.7 2.3
3 11,000B) 10 3x10" y - - - 1.1 1.7 24
4 11,000 100 1x10" n 13 1o 3 13 17 19
5 11,000 0.1 1x10Y y 50 i0 6 14 1.8 19
6 11,000 0.1  1xioY n 50 11 9 14 1.8 2.0
7 11,000 01  1xi0" n 20 9.0 22 1.5 19 2.0
8 11,0000 10.  1x10® n 23 73 72 1.5 22 32
9  11,000C) 10. 1x10" y 23 - . 1.7 26 36
10 11,000 1. 3x10' n 23 8.0 8.0 1.6 2.1 2.3
11 11,000 1. 3x10'° y 23 9.0 5.0 1.6 2.1 24
12 11,000 10.  1x10'%° n 23 6.5 3 1.7 22 29 |
13 11,000 0.1  1x10" n 10 6.7 30 18 24 2.7
14 11,000 10.  1x10" y 50 6.8 0 1.95 2.7 45
15 11,000 01 ixio" n 3 42 46 2.1 2.8 35
16 11,000D) 0.1  1x10" - 50 7.6 40 2.2 29 35 |
17 11,0000) 0.1  1x10" - 3 46 46 22 2.9 35

(A) Modified orbit-limited charge density ; (R1,R2)=(1.40,1.46).
(B) Modified orbit-limited charge density ; (R1,R2)=(1.50,2.10).
(C) Moduiied orbit-limited charge density ; (R1,R2)=(1.13,2.20).
(D) Langmuir-Blodgett Potential.




Table Il.
Effects of "bounce number"” on the potentizal
and collec*=d current calculated for the probe.

x v T n +Q  NBounce I, L, RO00) RA0)  ROD

(V] [eV] 'm’]  Allowed . (mA] [(mA) (m] (m] [m]

1000 01 1xto! n 50 11 9 14 1.8 20
710 01 bags a 20 9.0 22 15 19 20
13 11000 01 ix10! n 10 6.7 30 1.8 24 27
1S o0 01 1xaot n 2 4.2 46 2.1 28 35

Table IIIL
Effects of increasing '2mperature (at constant
current density) on the poteritial and collected current.

; # V T n +Q NBounce ICDI I'l'np R(IOO) R(IO) R(Ol)
- V] eVl  (m?]  Allowed . [mA]  [mAl {m] (m} [m]
5000 01 1xio! g 50 0 6 14 18 19
1o L 3x0 y 23 9.0 50 1.6 2.1 2.4
1410010, mo""_ y 50 6.8 0 195 2.7 45




Figure Captions

Figure 1. Electwostatic potential contours (solid lines) and particle trajectories (dotted
lines) for a 0.1 meter radius sphere at 11 kV, magnetic field 0.3 gauss, plasma den-
sity 10" m?, plasma temperature 0.1 ¢V. Contours are logarithmically spaced.
with the outermost contour at 1 volt. The figure has mirror symmetry at the R-Axis

and rotational symmetry about the Z-Axis. Distances are noted in meters.

Figure 2. Electrostatic potential contours (solid lines) and particle trajectories (dotted
lines) for a 0.1 meter radius sphere at 11 kV, magnetic field 0.3 gauss, plasma den-
sity 10" m?, plasma temperature 10 eV. Contours are logarithmically spaced, with
the outermost contour at 1 volt. The figure has mirror symmetry at the R-Axis and

rotational symmetry about the Z-Axis. Distances are noted in meters.

Figure 3. Charge density for a 0.1 meter radius sphere at 11 kV. magnetic field 0.3
gauss, plasma density 10" m?, plasma temperature 0.1 eV. (Compare potentials
and trajectories, figure 1.) The contours are logarithmically spaced and denote the
negative of the charge density (p/€); ambient is 1807. Note the low charge density
along the Z-Axis, the sharp peak on the R-Axis at R = 0.5 meters, and the nidge

extending upward from the R-Axis just inside the sheath.

Figure 4. Charge density (p/g,) for the 0.1 eV case (curve with two sharp peaks, ambient
= 1807, compare fig. 3), 1.0 eV case (curve with two broad peaks, ambient = 571),

and the 10 eV case (flat curve, ambient = 181).

Figure 5. Electrostatic potentials and particle trajectories for a 0.1 meter radius sphere at
11 kV, magnetic field 0.3 gauss, plasma density 10" m'3, plasma temperature 10

eV, calculated by the "modified orbit-limited theory”. (Compare with figure 2.)

Figure 6. Charge densities calculated for the 0.1 eV case using the potentials of figure 1,

;= 1.54m, and R, = 1.56 m. (Compare with figure 3.)
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APPENDIX

ORBIT-LIMITED CHARGE DENSITY
IN MAGNETIC FIELD




Orbit-Limited Charge Density in Magnetic Field

With cylindrical coordinates, B-field along Z, the
Lagrangian is

2
L = % (r2 + 22 . r2$2] + e¢p(r,z) + eB %— 8

The canonical moments are [w = w. = eB/m]

Pg = mrzé + eBr2/2 = mrz(é + w/2)

2
E=U=+ 21 5 [pe - mrzw/2J - e ¢(r,z)
mr
D S 2
where U = o [pr pz}

dprdpz = 4mmdU

We need to relate the distribution factor, f(r,z,6,p.,pP,,pg)

to the ordinary density. Over some region we have

drdzdé J dprdpzdpe f

N = I p(r,z,8)rdrdzdf = J
0 v

fl

so that J fdprdpzdpe = rp
]

18




In undisturbed plasma, the distribution function is

- 172 -U_/T
£ (R,z_,6,U_,pg) = p_[2mmT?) exp

- (pg - mR%w/2)°/20R%T
X exp
1. Non-Magnetized Case
To do the nonmagnetized case, we set w = O.
From a point (r,z,0) within the sheath, trace an

orbit back to a cylinder of radius R, where R lies beyond
the range of the sheath. Then

2
0 0 Pg
-1/2 -1U _+ /T
rp(r) _ 2.3 [ o 2]
ﬁﬁfﬁ% = | dpy | dU (2mar®T) e 2mR
—o Ul

where the energy
E=U_ + pe/2uR° = U - ep + pa/2mr? > 0

and E > pg/QmR2

p2 p2
so that U1 = 62 - 92 + e
2mR 2mr




Rp(R) ~ 2 2 2T -1/2
~0 e¢—p9/2ms x[ZWmRz/Ts]
where = = lé - l§
s T R
Region of integration (w = eB/m = 0).
p
7
Py = [2ms2(e¢—U)]1/2 -
ALLOWED
FORBIDDEN
\\\ U = ey
FORBIDDEN
0 1/2 ALLOWED
pg = - [2ms%(ep-U)] -
20




The space within the parabola is "forbidden," i.e., these
orbits do not connect to ambient. Changing the order of

integrations, we have

00 00

~1/2 2
o(x) _ , 2.3 . —p2 /2mr2T
el - J du{2mR?T?] " exp[(e¢-U/T] J 4Py axp 070

le) — 00

l2ms2 (eg-U)

-1/2 2 2
exp [ (ep-U) /1] |dpyexp (-p2/2mr2T)

—Jst2(e¢-U)

e
. J du{ 2mmR%1?)

O

B e

I

ep
g expled/T] - g J %E exp[(e¢‘U)/T]erf[§[§%—l—J]

Let R—o, (s/r)—1

The integral becomes

© 1
- [ dx eXerf (sz

ed
T

21




<o that

= €

e¢p/T
L _
Po

Using erf(z) = 1 — e 2 Jz dn

P

o]

£ - [T/ﬂe¢J%

for ep/T >> 1. For e¢p/T <K 1, we get

e_
Po
11 Magnetic Case
w = eB # 0
m

As before, we have

(2meT3) 1 2rp(r) =

o

--00

=1 (ep/T) + 0 [(ep/D?

00

2 2
| L (pgmmriw/2)

dU p(R)exp -7 e¢p-U- 5

\ 2mr

AN 2
oo (pg-urZu,/2)%  (py-mR%w/2)”
e — +
2mr 2mR2

[
2




Now, we need a new criterion for R, the izdius at which we
terminate outwardly tracked orbits. Orbits with pg > 0 do

not include the r=0 axis. We terminate these orb:ts with

R™ = 2 pe/mw
.2
(pg-mR%w/2)
. 6
2umR?

Orbits with pg < O do include the r=0 axis; for these:

8 - —w

2
R™ = —2p9/mw

2
[pg-uR2w/2)
] 2 T T UWpg

2mR

The region of integration is

p 2
ipe—mrzw/2}
e¢ - 2 (pe > O\
2mr
Jd >
2
I _ o)
te¢ ) Wpg (Pe < 0)
. 2mr




i
1
_ mr-w 8e 2 U = eg¢
o - 55 1+ (257 -
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FORBIDDEN ALLOWES
pe = ILT'2W /2 _ /
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FORBIDDEN /'\\» U= eo - mrlu?/s
P
/// //
-~ /
TRAPPED
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_ mor w Ke 2
> {1+[2+——9Lzz)} i
mr w
00 ) ) 2
3,1/2 _ (pg-mr w/2)°
(27mT™) rp(r)/p(R) = dU dpeexp ep-U- 5 /T
° —oo 2mr J

2w2 1/2:
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du

(o] Lo

[e¢~mr2w2/8 mr2w[l¢(8(e¢~U)/mr
2
J dpa exp [®°**;

p
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ed 2 !

2
mr w'1+(8(e¢—U)/mr2w2 1/2]
- duU ‘

dpe exp [(*°**]

e¢—mr2w2/8 J 2

m; w [1—[8(e¢—U)/mr2w2)
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e¢ -mrw?/g(°
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First term gives
T2LE) - ¢ exp(e¢/T)
Po
Second term gives
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Third term gives

ed

1
2
- r %Q e(e¢_U)/T erf[g%?iq
2 2
ep - mrsw
Fourth term gives
e¢—mr2w2/8 1
-U) /T 2 2.2
r dU e(e¢ U/ mr-w
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mrw
Fifth term gives
e¢ 1
o (e¢p-U) /T du ; [mr2w2}2
2 € T [€F 2T
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1 1
2 2.2 2
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Gathering terms, we have

2Lr) _ oxp (e¢/T)

pO
ed
( dU  (ep-U)/T ep-tn 1/2
- J T °© erf(%2Y)
O
e¢—mr2w2/8
. : 1/2
L1 U (00T (e /
2 | T =)
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e 1 1
1| dU (ep-U)/T (orlw)2(, (2(e¢-U)\2
S22 4T © erf) |ZoT ] [“[mrzwz ] J
o
e¢ 1 1
1 | dU  (eg-U)/T prlwd)2(, (2(e¢-U))2
*2 | T °© erf [21‘ ] [1'(mr2w2 ) ]
mr2w2
¢_.
8
The first two terms given the B=0 result. In the remaining

terms, the leading term of erf (1) cancels.

Expanding erf, we get
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Term 3: - 1 -,Cll,—u [E%:LIJ
27
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Term 4: + — T e
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= small
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2 2 ;
[ - ey (mr2w2>/'f2]§]
Term 5. - i | dU _
ol7 | T

(1T

1
(mr2w2/2T)2 - ((ep-vy /1)
Je¢_mr8w

(steps omitted)

1
1 [ 2T ]2
D S (S i

So, finally,

1/2 1/2 2 2

=) ]

2 [ . ) 8T

Ted

L2

o
IIT. A More Reasonable Orbit-Limit.

We can get a more reasonable orbit-limited bound on

density by noting that:

a) Particles originating within radius Ry, hit the

object, and contribute negligibly to the density;
b) Particles originating outside radius Ry (the
range of the potential) may be ignored, as they

never see the potential; and

c) We also ignore orbiting particles (pg<0).

29




Define
_ 2
P1 = le w/2
_ 2
P2 = mR2 w/2
P = mr? w/2 [1 + (8e¢/mr2w2)1/2]
max
Pmin = max (D,mr2w/2 [1 ~ (8e¢/mr2w2]1/2]

From above we have

Py
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Case A: P2> P1> Pmax
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Pl— mrzw/Z

- erf 172
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If the arguments of erf are large, we may use the asymptotic

expansion to write

2
Po- mriw/2  Py- P [ ed)1/2

(ZmrzT]l/z (Zmrszl/z : T

2
L 4T [Pz‘ ar w/?] L [(zmrzwz}
2

(2r21) 172}~ 2f7 Py~ mrPw/2

x exp [_ (P2~ Prax) [(P2— Phax . 2[§QJ1/2] }
(2mr2T]1/2 (2mr2T)1/2 T

(and similarly for P1 terms)

. 2 _ 8e¢ 11/2
Case B: Pmax> P2> P1> mr-w/2 [1 [mrzw ] ]

In this case the inner integral simply gives T, so we

i
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p 8nT 2
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This is similar to Case A, giving

2
PcT®) 1 epyt - [mf w/2 - Pl}
Po 2 U Uome?r) 1/2

(mr2w/2 -~ P1
- et l(ZmrzT)l/z

For large argument, we have

L H/T {mrzw/2 - Pl]
= erfc
2 (2mr2T)1/2

1 [(2mr2T01/2 ]

2{m mrzw/2 - P1

P.-P P.-P
m 1 min 1 epy1/2
x exP {_ (2m;gT]1/2 l(zm;2T31/2 * 2 [ TJ J }

and similarly for P2

Other Cases:

Other cases may be derived from these, if we add Py,

Po as arguments to pp, PB, PC-

©

A

E— = FA (r,¢,P1,P2) , etc.
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We then have,

. 2 ~ 8e 1/2
Case D: Py >P__ >P > morw/2 [1 [————Q—2 2] J
orr
Pp
;— - FA (r’¢’Pmax’P2) * FB (r’¢’P1’PmaxJ
Case E: P, > P >P . > P
2 max min 1
PE
E~ - A[r’¢’Pmax’P2)+FB(r’¢’Pmin’PmaxJ+FC(r’¢’P1’Pmin)
Case F: Pmax > P2 > Pmin > Pl
PF
p FB(r’¢’Pmin’P2] * FC(r’¢’P1’Pmin)
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