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Current Collection by a High-Voltage Sphere . 1'

from a Cold Magnetoplasma

M. J. Mandell, M. Rotenberg, and I. Katz AVS'&lAltf , de
-vpit1 and/or

S-CUBED Division of Maxwell Laboratories

1. Introduction

The objective of this work is to understand current collection by, and the potential

and charge density around, a high voltage probe in an ionospheric plasma in the absence

of scattering. As a canonical case, we have chosen a spherical probe 10 cm. in radius,

held at a potential of 11,000 volts, in a plasma of density 1011 m3 , and temperature 0.1

eV, with a magnetic field of 0.3 gauss. This plasma has a thermal current of 8.46x10 4

A-m-2 and a Debye length of 0.743 cm.

The best estimate for collected current in this regime is the Parker-Murphy limit,P1

which we discuss in Section 2. In Section 3 we dvsciibe the features of a computer code

which we used to simulate this problem. Results for the canonical case and related cases

are described in Section 4. Section 5 discusses the results of an orbit-limited theory for

the charge density (and thus potential) about the probe. The theory itself is derived in an

appendix. Conclusions are given in Section 6.

2. Parker-Murphy Limit

The Parker-Murphy limit i1 is derived by considering the maximum cylinder (about

a field line through its center) from which a probe can draw current, consistent with con-

servation of energy and canonical angular momentum. The canonical angular momen-

tum is given by

Pe = mr 2(dO/dt + (o/2)

where

= eB/m,

I Parker, L. W. and B. L. Murphy, "Potential Buildup on an Electron-Emitting Ionospheric
j',urnal of Geophy ical Resoarc 7" 16'A I -1636 (1967).



and its associated kinetic energy by

(P0 " mr2co/2) /2mr.

Neglecting the electron's kinetic energy at its maximum radius, R, and the r- and z-

components of velocity at the probe radius, a, we find

eo = (mR2co/2 - ma 2o/2)2/2ma
2

or

R2/a2 = 1 + (8eo/m0a2)1 .

The maximum current to the probe is then given by

2 it Jth (R2/a2)

where

ith = ne (e0/2irm) .

For the parameters of our canonical problem we have

(o = 5.275x10 sec 1

R = 1.54 m

IPM = 12.6 mA.

3. Computational Method

We have developed a 21/2 dimensional computer code (two-dimensional coordinates

and three-dimensional velocities) to simulate this problem. The code operates in cylindr-

ical (r, z, 0) coordinates on a quadrilateral grid consisting of 90 spherical shells extending

from the probe surface (0.1 m) to a radius of 7 meters. Each shell had 25 angular divi-

sions ranging from the z-axis to the r-axis. The z--0 plane was treated as a mirror plane,

and the r=7m sphere was neld fixed at zero potential.

Electrons were started along the magnetic field (z) durectio, from just inside the 7m

sphere with a radial spacing of 2.3 cm., and with current and velocity set to reproduce the

one-sided plasma thermal current and one-half the ambient density. (Beyond the collec-

tion radi".;, the remaining half of the ambient density comes from electrons reflected

fron the 7-O mirror alanm.) E, ,. an d ,tuonicai a,'iuiar nIOrn:Iiil were explk6tiy

conserved at each particle timestep. Each electron was followed until it either (a) hit the
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probe; (b) escaped the grid; or (c) exceeded the limit on how many times it was allowed

to bounce off the mirror plane. At each timestep the particle's charge was bilinearly

shared to the nearby gridpoints. Ion density was set to ne-

Iterations consisted of alternately solving Poisson's equation and tracking particles

in the resulting potentials to update the charge density. This process was continued until

steady state solutions were achieved. Potentials were constrained to be non-negative, and

in most runs charge densities were constrained to be non-positive, (The charge-density

constraint affects potentials along field lines within the collection radius, which in the

quasi-neutral limit satisfy

e-20/n0 =0.5 (1 + rt E 0)' .

It had negligible effect on collected currents or on potentials beyond the collection

radius.)

4. Computational Results and Discussion

Runs were done for the canonical set of parameters and for related parameters. A

complete list of the runs with their results is found in Table I. Line 5 of Table I is our

best solution for the canonical case. The canonical case is difficult because the Debye

length is short compared to the mesh spacing used, and because the particle energy is tiny

compared with the potential scale of the problem. Much insight can be gained by calcu-

lating comparable cases with higher energy. Lines 11 and 14 are our best solutions for

comparable cases in which the plasma thermal current is the same as the canonical case,

but the plasma temperature is raised to I and 10 eV respectively. The other cases are

presented for illustrative purposes.

The general character of all runs is that (a) particles originating within a "collection

radius" (somewhat less than the Parker-Murphy radius) are "promptly" (i.e., within three

crossings of the z=O mirror plane) collected by the probe; (b) most particles originating

between the "collection radius" and the Parker-Murphy radius escape the sheath region;

some are collected after executing lengthy trajectories; (c) there is a very substantial

region extending outward from the Parker-Murphy radius whose particles are "trapped",

i.e., escape the sheath only after very lengthy trajectories involving tens of crossings of

the mirror plane; and (d) articles traversing only the outermost portion of the sheath are

not trapped. How close the "collection radius" is to the Parker-Murphy radius is

3



determined primarily by the radial extent of the sheath, with longer-range potentials ca-

lecting smaller currents. Note that Table. I is ordered by the radius at which the potential

drops to 100 volts. The current collected is very strongly inversely correlated with this

100 volt radius.

The number of "bounces" (i.e., passages through the mirror plane) allowed affects

• e collected current both directly (i.e., a particle that initially missed the probe may

eventually stumble into it), and indirectly. The indirect effect is that lc..g trajectories

accumulate a large charge density which reduces the extent of the sheath. These points

are well illustrated by the runs shown in Table II, in which increased bounce number

leads to more space charge, and thence to a more compact potential, more collected

current, and less trapped current. Lines 16 and 17 of Table I are calculations performed

using the Langmuir-Blodgett [21 (spherical space-charge limited) potential, which happens

to be similar to the potential of line 15. In going from three bounces to 50 bounces (line

17 to line 16) the collected current increases from 4.6 to 7.6 mA, still well below the

Parker-Murphy limit. However, even after 50 bounces 40 mA of current remains

trapped. Taking into account the effect of the trapped charge on the potential (Table II)

we get a larger increase (to 10 mA) of current, as the 100-volt contour moves in from 2.1

m to 1.4 m. Furthermoie, we dispose of all but 6 mA of the trapped current.

Increasing the temperature reduces the collected current primarily through

decreased shielding of te potential. Shielding is decreased because the lifetime of

trapped particles is reduced, due to increased probability of escape. Increasing the

plasma temperature from 0.1 to I to 10 eV (Table III) we find that the 100-volt contour

moves outward from 1.4 to 1.6 to 2.0 meters, and the collected current decreases from 10

mA to 9 mA to 6 mA. Note that the current is reduced by the shape of the potential,

rather than directly by the higher energy of the incident particles. Line 4 of Table !

shows a 10 eV plasma with ten times the thermal current of the canonical case. Its poten-

tial profile is comparable to that of line 6, and its collected current scales directly with the

plasma thermal current, despite a hundredfold increase in particle energy.

2. Langmuir, 1. and K. B. Blodgett, "Currents Limited by Space Charge between Concentric
Spheres", Physical Review 24, 49-59 (1924).
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Runs which allowed positive charge density had positive potentials ':xtending along

the field lines within the collection radius. This had no effect on the collected current.

Figures 1 and 2 show the electrostatic potentials and particle trajectories for the 0.1

eV and 10 eV cases (lines 5 and 14 of Table I). (Note that the actual runs followed more

trajectories for longer paths than shown in the figures.) The positive potentials extending

along the field lines are seen clearly in the 10 eV case. Note also the line of "turning

points" for particles which missed the sphere. These particles are actually orbiting the

symmetry axis, and contributing substantially to the charge density. Both of these

features are also present in the 0.1 eV case, but are difficult to see in the figure.

Figure 3 shows the charge density for the 0.1 eV case (Table I, line 5). Note that

the charge density is relatively low in the region traversed by collected electrons, and

higher in the trapping region. Figure 4 shows the charge density along a radial line nor-

mal to the magnetic field for all three temperatures. For all but the 10 eV case, there is a

sharp peak in the charge density at a radius of about 0.4 m. This peak consists of elec-

trons which originated just outside the Parker-Murphy radius. For a circular orbit at a

given radius, the centrifugal force (outward) and the magnetic force (outward) on an

electron are determined by conservation of orbital angular momentlim. These do indeed

balance the electric force (inward) at a radius of about 0.4 m. However, the kinetic

energy associated with this circular motion is well under half the total kinetic energy of

these electrons; most of their kinetic energy is associated with oscillations parallel to the

magnetic field.

5. Orbit-Limited Theory

The appendix presents a theory for an upper bound to the charge density for this

problem. By "orbit-limited" we mean that any point in phase-space whose energy and

canonical momentum are consistent with a trajectory connecting to ambient plasma con-

tributes to the local density. This is known to give a charge density which is far too high,

because it contains contributions from trajectories which can reach a field point only in

the presence of bizarrely unrealistic potentials. However, we can modify the orbit-

limited theory as follows to assure that the charge density is built up from only "reason-

able' trajectories.

5



We first note that trajectories originating within a "collection radius", R, are

immediately collected by thl-e probe. Therefore, we exclude this region of angular

momentum from the orbit-limited charge density integrals, and insteaQ treat such trajec-

tories by accelerated current formulas. We also exclude particles outside some larger

radius, R2, which may be roughly interpreted as the "range of the potential", on the

grounds that such particles never see any fields which draw them into the sheath region.

Outside R2 we use accelerated current formulas to determine electron density.

If we take the "range of the potential" to be the radius at which the potential drops

to the plasma temperature, we can imagine solving the problem self-consistently using

these "modified orbit-limited" charge densities. This can be done easily only for the case

of the 10 eV plasma. We find that the resultant potential is qualitatively correct, but too

compact, i.e., the charge density is still too high. It follows that the currents in this

potential will be too high. Figure 5 shows the solution for the 10 eV case using the

modified orbit-limited theory.

Alternatively, we can generate any reasonable set of potentials (either by using a

particle tracking code or, for example, by solving Laplace's equation inside a grounded

ellipse), set Rt to be at or just inside the Parker-Murphy radius, and determine R2 by the

requirement that the total charge in the sheath cancel the charge on the sphere. (This

method does not require that R2 - R, be resolvable by the computer code.) Figure 6

shows charge densities calculated for the 0.1 eV case using the potentials of figure 1, R1

= 1.54 m, and R2 = 1.56 m. Comparing figure 6 with figure 3, we find that the theory

gives a much sharper boundary between the high and low density regions, and that the

theory does not predict the structure due to particle dynamics in the high density region.

It can be shown (see appendix) that the theory predicts a densii'I

p/po = (mw2 r2/8nT)A x [(R2
2-R1

2)/r2]

for all points whose radius and potential are consistent with trajectories connecting to the

spherical shell Rt< R < R2.

Table I includes results from the "modified orbit-limited" theory for the 0.1, 1, and

10 eV cases. Only in the 10 eV case is the answer truly self-consistent; the charge densi-

ties in the other two cases are too high to easily achieve self-consistency. However,

these potentials follow the same theme of giving a potential which is too compact and

draws more current than obtained by particle-tracking.

6



6. Conclusions

We have used a particle-tracking code to calculate potentials and currents associ-

ated with an I kV, 10 cm probe in an ionospheric plasma. We have also developed a
'modified orbit-limited" theory which yields potentials about the probe which are quali-

tatively good, but quantitatively art too compact.

For fixed probe voltage and magnetic field, the probe current has a strong inverse

correlation with the extent of the potential, i.e., longer-ranged potentials draw less

current. The reason for this is that particles at a given radius receive more longitudinal

acceleration, and less radial acceleration, as the potential becomes longer-ranged. Parti-

cles originating at the Parker-Murphy radius can hit the probe only with zero longitudinal

velocity, and the probability of having a small longitudinal velocity when near the probe

is less likely for a longer-ranged potential.

The range of the potential is determined by particles which are "trapped". Most of

these originate in a region just outside the Parker-Murphy radius, and spend a large

amount of time orbiting close to the probe. This is illustrated by figure 4, which plots the

net charge density for the three rases. Note the very high (several times ambient density)

peak in the charge density at about 0.4 m. This corresponds approximately to the radius

of a circular orbit where electrostatic (inward), centrifugal (outward), and magnetic (out-

ward) forces balance for electrons originating just outside the Parker-Murphy radius and

moving in the (ExB) direction.

7



Table I.
Potential and Current Collection Calculations

# V T n +Q NBounce Ico1  ,rp R(100) R(10) R(0.1)

[V] eV] [m I Allowed - [mA] [mA [Irn] [in [mI

I 1 11,000(A) 0.1 lxlO' n 23 11.7 5 1.0 1.45 1.9

2 11,000(B) 1.0 3x10 °  n 23 12.4 6 1.1 1.7 2.3

3 11,000(B) 1.0 3x101 °  y - - 1.1 1.7 2.4

4 11,000 10. 1xl0ll n 13 110 32 1.3 1.7 1.9

5 11,000 0.1 lxiol y 50 i0 6 1.4 1.8 1.9

6 11,000 0.1 1xl0 l l  n 50 11 9 1.4 1.8 2.0

7 11,000 0.1 lxlO'1  n 20 9.0 22 1.5 1.9 2.0

8 11,000(C) 10. lxlO01 n 23 7.3 7.2 1.5 2.2 3.2

9 11,000(C) 10. lxlO0 °  y 23 - - 1.7 2.6 3.6

10 11,000 1. 3x10'0  n 23 8.0 8.0 1.6 2.1 2.3

11 11,000 1. 3x10l °  y 23 9.0 5.0 1.6 2.1 2.4

12 11,000 10. 1xl0 l °  n 23 6.5 3 1.7 2.2 2.9

13 11,000 0.1 lxlo n 10 6.7 30 1.8 2.4 1.7

14 11,000 10. lxlOl° y 50 6.8 0 1.95 2.7 4.5

15 11,000 0.1 1xl0 1  n 3 4.2 46 2.1 2.8 3.5

16 11,000(D) 0.1 IxO11 - 50 7.6 40 2.2 2.9 3.5

17 11,000(D) 0.1 1x10" 3 4.6 46 2.2 2.9 3.5

(A) Modified orbit-lin-ited charge density; (R1,R2)-(1.40,1.46).
(B) Modified orbit-limited charge density ; (R1,R2)=(1.50,2.10).
(C) Modified orbit-limited charge density ; (R1,R2)-(1.13,2.20).
(D) Langmuir-Blodgett Potential.



Table I1.
Effects of "bounce number" on the potential

and collec'ed current calculated for the probe.

# V T n +Q NBounce 1I L R(100) R(10) R(0.1)

IVI [cVI [m 31 Allowed [mAl [mA] [7n] [m] [ml

6 11.(X) 0.1 lxlOA n 50 11 9 1.4 1.8 2.0

7 11,000 0.1 l>10i n 20 9.0 22 1.5 1.9 2.0

13 11,000 0.1 1Xl O
1  n 10 6.7 30 1.8 2.4 2.7

15 t !,(XX) 0.1 1x l) n 1 4.2 46 2.1 2.8 3.5

Table III.
Effects of increasing ,mperature (at constant

current density) on the potential and collected current.

V T 11 +Q NBounce :Col Lrrap R(100) R(10) R(0.1)

- IV] eVI [m3 1  Allow'd [mA] [mAl [m] [m] [ml

5 11,000 0.1 1xl O11 y 50 10 6 1.4 1.8 1.9

I11 11,000 1. 3xl0 °  y 23 9.0 5.0 1.6 2.1 2.4

14 11,000 10. 1xlO i y 50 6.8 0 1.95 2.7 4.5

9



Figure Captions

Figure 1. Electrostatic potential contours (solid lines) and particle trajectories (dotted

lines) for a 0.1 meter radi us sphere at 11 kV, magnetic field 0.3 gauss, plasma den-

sity 10 i M , plasma temperature 0.1 eV. Contours are logarithmically spaced.

with the outermost contour at 1 volt. The figure has mirror symmetry at the R-Axis

and rotational symmetry about the Z-Axis. Distances are noted in meters.

Figure 2. Electrostatic potential contours (solid lines) and particle trajectories (dotted

lines) for a 0.1 meter radius sphere at 11 kV, magnetic field 0.3 gauss, plasma den-

sity 1010 m-3 , plasma temperature 10 eV. Contours are logarithmically spaced, with

the outermost contour at 1 volt. The figure has mirror symmetry at the R-Axis and

rotational symmetry about the Z-Axis. Distances are noted in meters.

Figure 3. Charge density for a 0.1 meter radius sphere at 11 kV. magnetic field 0.3

gauss, plasma density 1011 m3 , plasma temperature 0.1 eV. (Compare potentials

and trajectories, figure 1.) The contours are logarithmically spaced and denote the

negative of the charge density (p/ 0 ); ambient is 1807. Note the low charge density

along the Z-Axis, the sharp peak on the R-Axis at R = 0.5 meters, and the ridge

extending upward from the R-Axis just inside the sheath.

Figure 4. Charge density (p/co) for the 0.1 eV case (curve with two sharp peaks, ambient

= 1807, compare fig. 3), 1.0 eV case (curve with two broad peaks, ambient = 571),

and the 10 eV case (flat curve, ambient = 181).

Figure 5. Electrostatic potentials and particle trajectories for a 0.1 meter radius sphere at

11 kV, magnetic field 0.3 gauss, plasma density 1010 m3 , plasma temperature 10

eV, calculated by the "modified orbit-limited theory". (Compare with figure 2.)

Figure 6. Charge densities calculated for the 0.1 eV case using the potentials of figure 1,

R, = 1.54 m, and R 2 = 1.56 m. (Compare with figure 3.)
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APPENDIX

ORBIT-LIMITED CHARGE DENSITY

IN MAGNETIC FIELD
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Orbit-Limited Charge Density in Magnetic Field

With cylindrical coordinates, B-field along Z, the

Lagrangian is

L ( r+ + +2 r2J eo(r,z) + e -2 2

The canonical moments are [W = c = eB/m]j

p9  mr 2 b eBr 2 /2 = mr 2 (b w/2)

Pr= mr

The energy is

E =U + 2 o- mr 2w12] - e 0(r,z)
2mr

where U 1- [ 2 + p2

dp rdp = 47rmdU

We need to relate the distribution factor, f(r,z,G,Pr,Pz,Pe)

to the ordinary density. Over some region we have

N f p(r,z,O)rdrdzd9 f drdzdO } dp rdp dp6 f

so that f fdp rdp zdpo = rp



In undisturbed plasma, the distribution function is

1/2 -Uo/T

fo(R,zo,,Uope) = Po(2 mT3 )  exp

- (po - mR2w/2) 2/2mR2 T
x exp

I. Non-Magnetized Case

To do the nonmagnetized case, we set w = 0.

From a point (r,z,O) within the sheath, trace an

orbit back to a cylinder of radius R, where R lies beyond

the range of the sheath. Then

Rp(R) - dP dU 2 T e _o 2mR
_D U1

where the energy

E U  + p2 /2:R 2 = U - eo + p2/2mr2 > 00 0; 19

and E > p2/2mR
2

2 2

so that U1 -2mR 2  2mr 2 + eo

19



2

and _ dU exp [(eo-U- 0] 2/T] -/

e-p/m [2?rmR /T3

where 2~ 2 2--

s r R

Region of integration (w = eB/m = 0).

PO

P9  (2ms 2 (eo-~Uflh/2

ALLOWED

FORBIDDEN

u

U = ~
FORBIDDEN

ALLOWED
p6  [2ms 2(eo-U) 1 /2  -

20



The space within the parabola is "forbidden," i.e., these

orbits do not connect to ambient. Changing the order of

integrations, we have

00 00

R{(R) -Texp[(eo-U/TJ dp 0 expP/ 2 mrT

J2ms 2 (eo-U)

-e U2rR2T3-/ exp [ (eO-U)/T] dpgex p (-p 2i2mr 2T)

0

- 2ms 2 (CO-U)

pexp[e/T [(e-U)/T]err

0

Let R-00, (s/r)--l

The integral becomes

- dx ex erf (xJ

T

erf(X2Je (x)

0
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-~that

T 1T

2

Using erf(z) I -e Z/Z 47

T/7+e[4eop/?7TT 2[rT' 2ei

for eO/T >>1 For eO/T << 1, we get

p-= I (eO/T) - 0 [(OT2

II Magnetic Case

m

As before, we have

(2nT31/2 J o dpe dU p(R)expf --. eo-U- (p-mr2 w/2) 2I

2-0 2 2 2

-(pe-mr 2wl'2) 2 p-m w12)2
eo- 2mr 2 -2nR 2



Now, we need a new criterion for R, tbe iadius at which we

terminate outwardly tracked orbits. Orbits with p0 > 0 do

n-t include the r=O axis. We terminate these orbits with

S= 0

2R = 2 p./mw

Ipo-m 2 w/2 2

2mR
2  =0

Orbits with pO < 0 do include the r=O axis; for these:

b -W

R2 = -2P/

2
R -2p./mw

IfpomR
2w/2)2

2mR2  = wpo

The region of integration is

C> - 6 r 2/2 m 2 ~Po-mr 2w/2]
eo - 2(PO > 0)

C >
22

et -- 2.mr 2 ) - WPo (Po <  )

23



p nr w + 8eo5 2 -

FORBIDDEN ALW

2
Pe ~r w /2 -

FORBIDDEN ,, U e -mr 2w /8

TRAPPED

-e mr w I* + ( 8 OJ
2 2 2

(2irmT 3)1/ rp(r)/p(R) {ODdU __ dpoexp[ e-CU mr 2 2/

fe r2 w2 / 2 WI,(eo)/r2 w2 1/2-

dU J dp0 exp L*'
Jo
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reo 2 (eo,2m2 w1/2

- dU dp, exp L'

~~r / mr w [1-[8(eo-U)/mr 2 w2)2]

22 o

e mr 2W /r

-TdU dp, exp [0]-)m~
2 2

o- mr w 1+(8(eo -) m 2w2 2

rer 2 mw 1(8(eoU)/2 w2 )1/2]

22o 21

2 j

First term gives

rpr r exp(eO/T)

Second term gives

dU r 2221 J U (eo-U)/T erf e~-j 4 erf (m82T
T 8T m

25



Third term gives

I e4o

- r dli e (e¢-U)/T erf( d ] 2

2 2
eo -mr W

8

Fourth term gives

eo-mr 2w2/8

r J dU e(eo-U)/T er ___- 2 w2

+ err fmr 2 w2 22 1 (2(eO2U) ]2
2T mr2W2

Fifth term gives

(eo-U)/T fUerf[ ( mr2w2 2{ [2mr-)1 '"
eo-mr2 w 2/8

I 
I

- erf[ m r 2 w 2 ) 21 - (2 (e-U) )2
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Gathering terms, we have

(r)= exp (eO/T)
PO

dU (eo-U)/T e1/
- ; j e erfLTJ

0

e -mr2 w 2/8

1 J U e(eo-U)/T erf ( 1/2

2 T
.0

d U _ (eo-U)/T e r w )2(+2(eO-LU) J21
2 T mr

0

eo

1 d dU e(eO-U)/T erf mr w22[+_2(O2 U)2

2 T 2-T-- mr 2w 2

2 2

eo- mr w

8

The first two terms given the B=O result. In the remaining

terms, the leading term of erf (1) cancels.

Expanding erf, we get

27



Term 3: - e-mr 
2 w 2 /8 du feo- 1/2

2 A Y i(~ 2 ~'

r T

Term 4: 
+ 1 e

2 

-1

oJ

mr

1 2 2

+ +2(JOe 1/2 w1

222

e~ ~ 2 ) (_ 2 mr 2 e ~2/T ] 12

2 (U) w2/2 T

mr w

=smal 1
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•e__ 2mr2w 2211Ter 5 1 " 2T - [2(eo-U) (mr w ) /

Term 5 : -
2 -- Fe1 1

(mr w 2/2T)2 ((o-U/T] 2

e-mr wo
e. 8

(steps omitted)
1

45 F [mr2 w 2

So, finally,

'0 )1/2 1 ( '/2 r2 w2 1/2
p -7re 

i

III. A More Reasonable Orbit-Limit.

We can get a more reasonable orbit-limited bound on

density by noting that:

a) Particles originating within radius R1, hit the

object, and contribute negligibly to the density;

b) Particles originating outside radius R2 (the

range of the potential) may be ignored, as they

never see the potential; and

c) We also ignore orbiting particles (p0 <D).
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Def ine

1 m 1 2w12

P 2 mR 2 2 1

p max mr 2 w/2 11+ (8eO/mr 2W2)1/2]

Pmin =max (O,mr 2 w12 [1 - (8eO/mr2W2 J1/~2]

From above we have

P~ro)- (2rmr2 T 3 1/2f ( 2 dpo

J dU exp [ (eo-U--(p. - mr2 w12) 2 /2mr 2)3T

max(O,eo - t mr :rw2 --

Case A: P 2> PI> Pmax

Leads to

PA (r,O) -1 e eO/T rerf r 2- mr 2w121

PO 2 L I 2 mr 2T)1/2J

er P I- mr 2w12
-ef (2mr 2T)1/2J
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If the arguments of erf are large, we may use the asymptotic

expansion to write

2

P2- mr w/2 P2- P  1/2
2 2 max T J

(2mr2TJ1I 2 T .mr2  1/2

2 2
1 eP2

- m r
-

W / 2 1 1 (2mr2 TJ 1/2

(2m T)25-~ P2 - mr w/2J

X. exp (P2- Pmax. T~2- max + 2 (e~ /

e (2mr2 T) l/
2  (2mr2T)1/

2  T

(and similarly for P 1 terms)

Case B: P > P2> Pi> mr
2w/2 [1 - 8e 1/2

max 2 mr2 w2 )  I

In this case the inner integral simply gives T, so we

PB(r,¢) [m 2r2]l/2 [R 2
2 -R 1

2 1

I 1 1/2

- 27rmr 2 T (P 2 - P1 )

Case C: mr 2w/2 [1 - m282 1/2 ] > P
mr 2 W22
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This is similar to Case A, giving

pG(ro) _ eo/T [mr 2w/2 - P1]

PO - 2 e(2mr
2T) 1 /2

- erfr fmr2w/2 -lj ]

For large argument, we have

1 e /T e mr 2 w/2 - P 11

2 efc (2mr 2TJ 1/2J

-2TT- mr2 W12 - PJ

x exp [ Pmin- P1 Pminl- P +1 2 1/ 2 1
x exp (2mr 2T) 1 /2  (2mr2 T)J1 /2 +2 T

and similarly for P2

Other Cases:

Other cases may be derived from these, if we add P1,

P2 as arguments to PA, PB, PC-

A = F A (r,O,P 1 ,P 2 ) , etc.

32



We then have,

Case D: P >P p r2w2 [1 8eq51/21
2 max 1 >r/ Lmr 2r 2J

p FA (r,'Pmaxp2) B F (r,O,Pi,PmaJ

Case E: P2 >Pma >P.mi > PI

PE ~ ma =F (r+FB(r ,F rPlj
p FA rOPma'2 B Omin'pmaxJF(,,imin)

Case F: px> P 2 >Pin > P1

Pmm='F2(r + FC(r,O,P1 'Pmin)p B F8(O'Pmi'2
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