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ABSTRACT

"vhe interest for a system able to automatically identify the modulation type of an
intercepted radio signal is increasingly evident for military and civilian purposes. Although
in the past some authors looked at the problem, nobody found "the solution" and the
problem remains. Therefore, an overview of the proposed techniques is useful in order to
assess the actual situation.

This document presents classification techniques and featires (parameters
characterizing the modulation types) used for modulation recognition.

RESUME

Que ce soit pour des fins militaires ou civiles, l'int6rdt d'une machine capable
d'identifier automatiquement le type de modulation d'un signal inconnu est 6vident. Bien
quo par le pass6 certains auteurs se soient pench~s sur le probl~me, personne n'a obtenue
d'6clatant r~sultats indiquant la route . suivre. Par consequent il n'y a pas lieu de
concentrer ses efforts sur un seul auteur mais sur l'ensemble des techniques proposees.

Ce document couvre donc le sujet d'une fagon globale, pr~sentant les techniques
pour classification ainsi que les param~tres utilis6s pour caract6riser et distinguer les divers
types de modulation, tel que propos6s par les auteurs.
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EXECUTIVE SUMMARY

The motivation of this document is the interest of military and civilian
organisations in monitoring the electromagnetic signal activity in the RF spectrum. Since
the number of competent trained human operators is constantly decreasing and the radio
activity in the HF and VHF bands increasing, the interest of a machine capable of
automatically identifying the modulation type of an unknown intercepted signal is quite
obvious. Integrating this device into an ESM system including energy detection (spectral
analysis) Direction Finding and Data Fusion and Correlation, would allow an operator to
drastically improve his efficiency and his ability to monitor the activity in the RF
spectrum.

Although in the past some authors looked at the problem and proposed algorithms
permitting to achieve proper performance for high SOR signals, for an ESM perspective low
SNR signals are more likely to be intercepted. Therefore, the problem of finding good
parameters able to discriminate among the modulation types of interest when the noise is
important, still remains and is very realistic. More and more publications appear in the
literature presenting new ideas and better performance. Also, with the appearance of
better hardware processors, new possibilities are now available and it is believed that soon
a modulation recognition device will be able to classify very noisy signals in a short period
of time with a high accuracy. Although such a device is not yet available, the work done
until now is certainly worthy and merits consideration.

This document introduces and presents techniques proposed in the open literature
for automatic modulation type identification of an intercepted radio signal. Most of these
techniques are baspd on the same classic pattern recognition theory, which is presented in a
separate section, since it is a prerequisite to understand the following sections. The two
main classification techniques used for modulation recognition, the linear classifier and the
decision tree, are more specifically discussed.

Modulation recognition is concerned with analog as well as digital modulation types.
Although there is a modern tendency to replace analog modulation types by digital ones,
analog modulations (i.e., SSB, FM, AM, etc.) are still in use in many countries. The
motivation to intercept these signals is reinforced by the fact that these signals, once
identified, can also be demodulated to extract the message. It might not be the case with
digital modulation types, since usually coding is involved: error correcting code,
encryption, vocoder, etc.

Since the main differences between the approaches proposed by the referred authors
are the features they used, the main part of the document consists in presenting these
features and the corresponding results. Also, more particular points are considered such as
preprocessing to remove gaps in analog amplitude modulated signals.

The purpose of this technical note is to summarize in a very comprehensive way all
the publications on the topic of modulation recognition.
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1.0 INTRODUCTION

From the earliest days of radio communication the need to monitor the
electromagnetic signal activity in the RF spectrum has existed. Civilian authorities may
wish to monitor the transmissions over their territory in order to maintain a control over
this activity. Military organizations may wish to monitor the radio activiies of other
powers for reasons, among others, of national security.

Typically, the technique employed by monitoring stations throughout the world is
based upon a well-tried method which has been in use for many years. This is a one
man-one receiver situation in which the operator spends his time searching the RF
spectrum with a continuously tunable general purpose receiver, hoping to make an
interesting interception. There are variations to that scenario. For example, it is possible
and common practice for an operator to have two receivers. One is used for searching,
w.ile the second remains tuned to a known interesting frequency. A further variation is
caied the master-slave technique. In this method a group of operators is involved. The
master operates a fast tuning-sweep receiver with an associated panoramic display unit.
When a signal of interest is located, this intercepted signal is transferred to one of the
slaves, who tunes to the appropriate frequency and does the monitoring with a
conventional, general purpose, continuously tunable receiver.

Neither of these techniques overcomes the fundamental problem of serious
overcrowding in the radio spectrum. Moreover, the existing pool of highly skilled operators
has begun to dry up and it is proving difficult to find replacements (1]. The classical
method of monitoring is after all, a very boring occupation. Therefore Electronic Support
Measure (ESM) techniques become an important alternative.

In advanced ESM systems, the operator is helped or replaced by sophisticated
electronic machines. These machines are concerned with exploiting enemy electromagnetic
emissions for the purpose of gathering intelligence information as automatically as possible.
This infQrmation is provided by analysis of the attributes of an intercepted signal. Thus,
Modulation Recognition (MR) is an ESM technique: given an intercepted signal, it aims to
identify the modulation type among a number of known possible modulation types. The
terms modulation classification, recognition or identification are currently used to describe
this process.

Prior to modulation classification, the radio signal must be intercepted, which
means that somewhere before the modulation classification system, there is an energy
detection system looking for electromagnetic emissions in the bandwidth of interest. Once
a signal has been detected, the logical following step is to try to identify this signal. A step
farther is the demodulation of that signal and then decryption to finally obtain the signal
itself.

Thus classification is neither energy detection nor normal signal demodulation with
message extraction; it is something in between (see Figure 1).
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Figure 1: Informational Relationships [2, p.312]

For energy detection, only the bandwidth of interest for the ESM system is known.
On the other hand, for demodulation with message extraction, knowledge of the center
frequency, bandwidth, type of modulation, data rate...parameters is required. The signal
classifier should need only the information given by the energy detection system, i.e. where
the signal is: center frequency and bandwidth.

An example of an ESM system is illustrated in Figure 2. The intercepted signal is
submitted to energy detection algorithms, then down-converted and bandpass filtered,
prior to modulation recognition. The information obtained from the latter and from the
energy detector is gathered by the system controller, which will assign the signal to a
proper demodulator, as shown in Figure 2.

The particular problems related to modulation classification are caused by the radio
channel and the ESM system components. The potential problems could be summarized
by:

Effect Source

-Multipath fading Radio Channel
-Poor SNRs Radio Channel
-Amplitude distortion Receiver amplifier
-More than one signal Energy Detector
-Incomplete signal Energy Detector
-Frequency instability Down Convertor

2
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Figure 2: Example of a simple ESM system.

The multipath fading is not discussed in the literature, but the problem of poor
SNR is. Although classifiers for high SNRs exist, those for low SNRs are rare. According
to some simulations [3][4][5][6], under ideal circumstances, it uld be possible to classify a
signal when the SN is above 8 dB (results for a real sys ii and real signals could b'
different). All the classifiers presented in the literature assume only one signal in the
passband of the narrowband filter. Thus it is assumed that the energy detection algorithm
is able to separate every signal perfectly. This is not tiLvial. The frequency stability is
also a problem raised in the literature [7]. The performance of the classifier should not be
too affected by mistuning the down-converter. Hipp [8] got acceptable -'"rformance with
carriers within 10% of the typical value.

Furthermore, modulation recognition presents problems which are due to the nature
of the signal itself. This can be summarized as follows:
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Problem Source

-insufficient signal short acquisition time
-unmodulated segments gaps in the voice (analog modulations)
-long computing time too many features

The performance of a classifier is closely related to the quantity of information
available. Thus it is possible to improve the performance of a classifier with longer
acquisition times (more sample points) and/or by computing more features from the signal.
In both cases the classification process time is increased. The acquisition time is especially
long for analog modulations. AM, SSB, DSB and FM are afflicted with "unmodulated
segments" caused by gaps in the voice. These gaps result in CW segments for AM and
FM, and in noise segments for SSB and DSB. Gallant [3] presented a technique to remove
these unmodulated segments at the r.rice of an acquisition time of at least 1.5 see. For
digital modulation types, the problem is to get enough symbol transitions, otherwise CW
will be detected. The problem is especially obvious at low data rates. For example, the
data rate of OOK could be as low as 10 Hz, then five seconds are required to get only 50
transitions. The effect of the acquisition time on the system performance can be perceived
in [6], [91 and [10].

The computing time depends mainly upon the number of sample points, the number
of extracted features, the number of modulation types, and the complexity of the
classification algorithm. These features permit the user to discriminate among the
modulations. More features could provide more discriminating facilities. Also, features are
usually time invariant, which means they are computed over all the sample points. For
these reasons, the features should be easy to compute, so that a reasonable overall
computing time can be obtained. Also, although some highly sophisticated classification
algorithms exist, the ones used in pattern recognition are simple. The overall computing
time presented in the literature is about 2 seconds.

In the following sections the process of modulation recognition itself will be treated.
Firstly, the concept of classification or recognition will be presented. Although they
describe the same problem, the term classification and recognition do not represent exactly
the same reality. Recognition (from pattern recognition) includes an additional step before
classification: feature extraction and/or selection. This is preparing the data for
classification. Two kinds of classifiers are presented and used for modulation recognition:
the linear classifier and the decision tree. They are widely used in real systems because
they are simple and fast enough for real-time applications. Finally, the researchers in the
area of MR will be summarized in a matrix, in preparation for the next sections which
present features used by them in their Modulation Recognition (MR) systems.

Section 3.0 presents MR systems capable of recognizing analog modulation types.
The features useful for that purpose are highly sensitive to noise for an obvious reason:
analog modulation schemes consist mainly of amplitude modulation (AM, SSB, DSB).
However, a few authors presented "less sensitive" features. Another topic introduced in
this section is the problem of gaps in the voice. We will see in detail the interesting
solution proposed by Gallant.

it



The features for digital modulation schemes (Section 4.0) are quite different.
Although the separation between Sections 3.0 and 4.0 is very arbitrary (most authors do a
few of both), different features are required to be able to get information on the phase of
phase modulated signals (BPSK, QPSK, FSK). These features are given in Section 4.0.

The two preceding sections present features used by pattern recognition algorithms
for the purpose of modulation recognition. A few authors proposed an alternative way of
doing MR, by using energy detection algorithms. This perspective is presented in section
5.0. Unfortanately, the performance expected from these techniques is not discussed by the
authors.

Finally, Section 6.0 concludes the document with a short summary and comments.
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2.0 CLASSIFICATION TECHNIQUES

2.1 GENERAL

The term classification is the action of associating individuals into one of two or
more alternative classes (groups) on the basis of a set of inputs called features (variables).
The populations are known to be distinct according to the features. As an example,
consider an archeologist who wishes to determine which of two possible tribes created a
particular statue found in a dig. The archeologist takes measurements for several
characteristics of the statue and decides which tribe these measurements are most likely to
have come from. The measurements of the statue may consist of a single observation such
as its height, however, we would then expect a low degree of accuracy. If on the other
hand the classification is based on several characteristics, we would have more confidence
in the prediction.

Classification algorithms could be used in almost any area of knowledge, it is the
heart of any decision process. Tou [11] divided problems where classification algorithms
are applied into two major categories:

1. The study of human beings and other living organisms,

2. The development of theory and techniques for the design of devices capable of
performing a given recognition task for a specific application.

The first subject area is concerned with such disciplines as sociology, psychology,
physiology and biomedical sciences. The second area is concerned with computer, and
engineering aspects of the design of automatic pattern recognition systems. Pattern
recognition can be defined as the categorization of input data into identifiable classes via
the extraction of significant features followed by a classification process. Thus in pattern
recognition we are talking of a two step process: feature extraction and classification.
Contrary to the preceding examples, in pattern recognitirn there are no direct features
available. Although data is available under a digital form (signal processing ADC), more
processing is required to give some meaning to this data. During the feature extraction
process, the large quantity of data is translated into a few significant and discriminant
features used by the classifier.

Pattern recognition spans a number of disciplines and problems, as shown in the
following list:

-speech recognition words identification
-speaker recognition speaker identification
-speaker verification speaker identification

(knowing the words used)
-character recognition character identification
-visual inspection object anomaly identification
-ship recognition kind of ship identification
-biomedical analysis medical diagnoses
-weather prediction weather forecast
--stock market prediction predicted market ups and downs
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Early pattern recognition researc performed in the '60s and '70s focused on the
asymptotic (infinite training data) properties of classifiers. Many researchers studied
parametric Bayesian classifiers, where the form of input distributions is assumed to be
known, and parameters of distributions are estimated using techniques that require
simultaneous access to all training data. These classifiers, especially those that assume
Gaussian distributions, are still the most widely used because they are simple and
described in a number of textbooks.

The thrust of recent research has changed, much of it motivated by the desire to
understand and build parallel neural net classifiers inspired by biological neural networks.
This has led to an emphasis on robust, adaptive, non-parametric classifiers that can be
implemented on parallel hardware. It is very likely that future modulation recognition
systems will use this new technology.

In this chapter, some classical classification techniques will be presented. These
techniques are used in pattern recognition as well as in human sciences. The concept of
feature extraction and selection will also be introduced. Then the particular problem of
MR itself will be presented.

2.2 PATTERN RECOGNITION TECHNIQUES

The goal of pattern recognition is to assign input patterns to one of k classes. The
input patterns consist of static input vectors z containing n elements (continuous or
discrete values) denoted zi, z2, z3,..., z,. These elements represent measurements of features
selected to be useful for distinguishing between classes and insensitive to irrelevant
variability in the input. A good classification performance requires the selection of
effective features as well as the selection of a classifier that can make good use of those
features with limited training data, memory, and computing power. During the training
phase, a limited amount of training data and a priori knowledge concerning the expected
output is used to adjust parameters and/or learn the structure of the classifier. Once the
training is accomplished, the classifier is ready for the test phase, during which a new set of
inputs is presented to the classifier without a priori knowledge (see Figure 3). The
performance is then computed and presented, usually in a confusion table (percentage of
good classification for each class).

The subject of feature selection and extraction is concerned with reducing the
dimensionality of pattern representation. Since the complexity of a classifier grows rapidly
with the number of dimensions of the pattern space, it is important to base decisions only
on the most essential, so-called discriminatory information. Dimensionality reduction is
also recommended from a classification performance point of view. Iritially performance
improves as new features are added, but at some point, inclusion of further features will
result in performance degradation.

Dimensionality reduction can be achieved in two different ways. One approach is to
identify measurements which do not contribute significantly to class separability, this is
feature selection. The other approach, called feature extraction, consists of mapping the
useful information in a lower-dimension feature space (see Figure 4).

7
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To solve a feature selection and/or feature extraction problem, we need some sort of
evaluation criterion. Unfortunately this is not a trivial problem. The quality of a set of
features is very closely related to the classifier used. Therefore the optimal procedure is to
try all the possible sets of features with the classifier and to retain the "best" set. In
general this process requires too much computation and therefore a number of alternative
eat.-re evaluation criteria exist.

It is not the purpose of this document to explain the details of feature evaluation
criteria, however the basic idea will be given in Sections 2.2.1 and 2.2.2.

2.2.1 Feature Selection

We will now briefly discuss how to evaluate a feature by using the following
example. Suppose that an individual may belong to one of two populations. We begin by
considering how an individual can be classified into one of these populations on the basis of
a measurement of one characteristic, say X. We have a representative sample of this
measure from each population. The distribution is represented in Figure 5.

From the figure above, it is obvious that a good feature must have a small variance
among the samples and a mean highly discriminative among classes. Ideally the
distribution should not overlap so that there is no misclassification. If the two
distributions have the same variance and same prior probabilities, the decision rule is quite
trivial, and the threshold is at the intersection of the distribution.

Combining more variables (or features) may provide better classification accuracy.
Consider two variables, X, and X2, with distribulions similar to X. By combining the two
variables according to a linear function (Z = aX + a2X2), we get a two dimensional region
(see Figure 6). Usually Z is called a canonical function.

The example presented in Figure 6 shows that by linearly combining some features,
a decision region is created in which there are clusters. The samples are gathered in
clusters according to similar patterns. In the classical approach discussed here, there is one
cluster per class. As shown in Figure 6, by adding a feature, the clusters should be more
distinct, with less overlapping (in the dimension N). Thus the feature selection criterion
should evaluate the distance between clusters and verify the amount of overlapping. There
are numerous ways to evaluate the distaace, the two most common 1eing probably the
Mahalanobis and Euclidean methods. For a complete list of distance m- -ement criteria,
see [13].

Unfortunately, even with distinct and non-overlapping clusters, the classifier may
not provide the performance expected according to a feature evaluation criterion.
Depending upon the shape of the clusters, some classifiers may not be able to adequately
divide the decision region (this will be explained in Section 2.2.3). Therefore the real
evaluation criterion is done by a stepwise analysis, trying the desired classifier with the
features, adding and removing them, and comparing the results.

9
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2.2.2 Feature Extraction

As pointed out in Section 2.2, in feature extraction all the features are used in order
to create a, lower-dimensional space, thus reducing the classifier complexity. Information
compression is achieved by a mapping process in which all the useful information contained
in the original observation vector y is converted onto a few composite features of vector z;
while ignoring redundant and irrelevant information.

S= (y)

z = [XI, X2,..., ZmI]T

Although non-linear mapping is possible, linear mapping is much more usual and
has the advantage of being computationally feasible. The mapping function becomes a
matrix multiplication.

y= Tz

T [ [ti, 42,..., I

t are column vectors

TrT = 1: T is orthonormal

z is obtained using

= 4-T y, for i=1, 2,..., m

This kind of compression technique is called Principal Component Analysis (PCA)
in the statistical literature [14, pp.309 -330], and the Karhunen-Lo~ve Expansion in
pattern recognition literature [15, pp.226-250], [16].

PCA cau be summarized as a method of transforming the original variables into new
uncorrelated variables to avoid redundancy. The new variables are called the princzpal
components. Each principal component is a linear combination of the original variables.
The principal components are chosen to keep the mean-square error between y and yy
minimal, where iy, the estimation for y, is defined by:

In n

I M+

where b, are preselected constant.

The matrix T is computed according to the eigenvectors of the covariance (or
autocorrelation) matrix of the distributions of the y, [15, p.236].

ii



2.2.3 Classification Techniques

The concern in this section involves the determination of optimum decision
procedures, which are needed in the identification process. After the observed data from
patterns to be recognized have been expressed, a machine is required to decide to which
class wi these data belong.

By and large the only generally valid statistical decision theory is based upon the
average cost or loss in misclassification, formulated in terms of the Bayes expressions for
conditional probabilities (briefly called "Bayes classifier"). In standard pattern recognition
theory it is reasonably accurate to assume that the unit misdassification cost is the same
for all classes. Assuming that z is the vector of input observations (pattern elements, sets
of attributes ...) and {wj, i = 1, 2,..., k} is the set of classes to which z may belong, let
p(zl wi) be the probability density function of z in class wi, and P(wi) be the a priori
probability of occurrence of samples from class wi; in other words, d,(z) = p(xI Wj)P(W,)
corresponds to the class distribution of those samples of z which belong to class w,. Here
the d,(z) are called the discriminant functions. The average rate of misclassification is
minimized if Z is conclusively classified according to the following rule:

zis assigned to wi iff d,(z) > d,(z), V j# i

The main problem, of course, is to obtain analytic expressions for the d,(z). Notice
that even a large number of samples of :; as such, does not define any analytical
probability density function. One has to use either parametric or nonparametric methods.

Parametric (also called probabilistic) methods assume a priori probability
distributions (such as Gaussian) for input features. Parameters of distributions (means,
variances, covariances,...) are estimated using supervised training where all data is assumed
to be available simultaneously. These classifiers provide optimal performance when the
underlying distributions are accurate models of the test data and sufficient training data is
available to estimate the distribution parameters accurately. Although these two
conditions are not necessarily satisfied with real-world applications, these classifiers are
popular since they are simple and sufficiently efficient in many cases. In the literature on
MR, the most common choice is Fisher's [17] linear classifier presented in Section 2.2.3.1.

Although nonparametric techniques exist such as the k-nearest neighbor classifier,
they are not popular classifiers for MR, being too complex and time coinsuming. They also
require huge amounts of training data. One exeption is the binary tree classifier (also
called decision tree, classification tree,...). Since it is used for MR, it will be presented in
Section 2.2.3.2.

2.2.3.1 Linear Classifiers

It is assumed that a pattern vector z = [z,, z2,..., XmT E w,, i < k (w, are the possible
classes) is presented to a classifier. As shown in Figure 6, it is possible to draw a straight
line between them and call this line the decision boundary, threshold, or discriminant
function d(z).

12



d() = Wo + Wiz 1 + W2z2

d(z) > 0 -4 zE w
d(z) < 0-4 EW2

For the general case of multiclasses, there are as many discriminant functions as
classes. Then the decision is taken according to the rule

zis assigned to wi iff di(z) > dX(z), V j# i

Therefore we can write

d1() = Wo + Wi, + W2x2

d2(z) =-Wo- WI, - W2z2

Usually, in pattern recognition, the matricial notation is preferred. A new vector, z,
is introduced

W, = [WO, W,,..., W']T
W2 = [-Wo, -W,,..., -Wm]T

d1 = WjTz
d2 = W2Tz

d= Wrz

d = [di, d2,..., dk]T

W ~W,... -- , Wk]

Figure 7 shows a few possible cluster shapes. It is clear in the figure that a linear
classifier cannot efficiently discriminate some clusters. It is uncertain that a linear
classifier will be able to determine proper linear functions when there are several clusters.
However other kinds of classifiers are available, such as the quadratic classifier.

13
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The linear classifier was expressed as

d= Wrz

d= WTZ+ c,

c being the thresholds, i.e. W0.

The quadratic classifier is expressed as

d= YVz+ WTz+ c

The boundaries are curves instead of straight lines. Then clusters as in Figure 7-d
can be properly discriminated, however, the computing and memory requirements are
significantly higher. In some situations, the performance improvement obtained with the
quadratic classifier is so small that it does not justify its complexity.

2.2.3.2 Decision Tree Classifiers

Decision tree classifiers are hyperplane classifiers whicb have been developed
extensively over the past 10 years. It is a rather different method of discriminant analysis
which portrays the problem in terms of a binary tree. The tree provides a
hierarchical-type representation of the data space that can be used for classification by
tracing up the tree.

The line of development started in 1963 and has attracted growing interest in the
last 10 years, developing a large number of algorithms able to create binary trees and
multiple binary trees. For the latter see [19]. A classical technique, called CART, will be
presented here.

In its simplest form, the CART [20] method produces a tree based upon individual
variables. For example, the split at the bottom of the tree might be determined by the
question, "Is Z5 < 6.2?". This will determine a left and right branch. The left branch
corresponding to Z < 6.2 might then be divided according to the question, "Is x3 > 1.4?"
and the right branch for which Z5 > 6.2, might be split according to the question, "Is x, >
0?". The methodology has three components: the set of questions, the rules for selecting
the best splits and the criterion for choosing the extent of the tree. With the tree trained,
each terminal node of the tree is associated with one of the class W,.

More sophisticated questions can also be handled, such as, "Is EWi < Threshold?".
Numerous questions are possible and can be mixed in the same tree. Although the concept
is very simple, the implementation of efficient algorithms able to optimize the tree is not:
at each node the algorithm must be able to select the best question and the best feature,
and must know when to terminate the tree. Note also that it is a nonparametric procedure
requiring complex and efficient training algorithms, as well as a considerable amount of
training data. This alternative is especially interesting when a lot of classes are involved
and a lot of features are available.
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2.3 MODULATION RECOGNITION

The preceding techniques will now be applied to solve the problem of Modulation
Recognition (MR). As introduced in the first chapter, the signal presented to the MR
system is intercepted by a receiver, down-converted and bandpass filtered (see Figure 8).

y IF FEATURES CLASSES

RECEIVER
ENERGY DETECTOR FEATURE
DOWNCONVERTER PREPROCESSING COMPUTATION CLASSIFIER
BANDPASS FILTER

MODULATION RECOGNITION

Figure 8: General Architecture of a MR system

The intercepted signal is usually derived from a computer-controlled intercept
receiver. For example, Gallant [3] cites the Watkins-Johnson WJ-8607 receiver [21] Tl'he
RF spectrum is scanned to find a signal. When a signal is detected we have a rough idea of
its frequency. Thus the signal can be down-converted to an intermediate frequency whIch
is usually fixed. Thus, the output of the receiver is an IF signal ready for the classifier

The preprocessing stage varies a lot from author to author, and can even be
nonexistant. An example of preprocessing is shown in Gallant [3]. lie uses a quite complex
three-step preprocessing scheme to remove the "unmodulated' part of the AM, FIM, DSI3
and SSB signals. Theb,3 "unmodulated" parts are caused by gaps in the voice, nainly
between words.

tr1he preprocessing stage can be either analog or digital. Although most of the
authors used DSP boards, some preferred analog preprocessing. For example, Winkler [221
sent the IF signal to a bank of parallel analog demodulators, one for each modulation type
Calian (previously Miller) (231-[271 used three analog PLL demodulators, one each for AM,
FM and DSB.

To allow some versatility and flexibility, feature computation is accomjplished
digitally Given an intercepted signal, a feature is a signal characteristic useful to
discrillnate among the possible modulation types. These features should be as
discriminative as possible, even when the noise level is significant. Most of the classifivr ,

do not perform well at low SNRs.
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The decision procedures considered by the authors are represented by the two
techniques explained in Section 2.2: the linear and the decision tree classifiers. The
decision tree technique considered here consists of the simplest form: questions of the type
"Is z4 > 3.2?", where 3.2 would have been obt2ined during the training phase. Moreover
the tree is not optimized: instead of using a sophisticated algorithm like CART to
establish the optimal splits and thresholds, the sets of rules are defined empirically by
looking at the training data. Note finally that th? tree is sometimes presented in
alternative ways: boolean equations or logic table (see Figure 9).

xl

A \ A = (xl>Th1)(x2>Th2)

BB = (x2<Th2)
C - C = (xl<h1)(x2>Th2)

a) Decision Region b) Boolean Equations

B A

xl x2 B 0 1

A >Th1? 1 >Th2? 1

B >Thl? X >Th2? 0 C 11>Th1

C >Thl? 0 >Th2? 1
- x2>h2

c) Logic Table d) Binary Tree

Figure 9: Illustration of the logic tree decision process.

Usually the authors especially the latest ones, will use a linear classifier. However
one author, Jondral [28][29f, got slightly better results with a quadratic classifier.

To collect the information on MR, a literature search has been conducted. All the
papers reported here are unclassified. They report an interest in recognizing both analog
and digital modulations: AM, SSB, DSB, FM, ASK,OOK, BPSK, QPSK and FSK. From
a military perspective, Torrieri [30] in his book says that the importance of analog
communication systems is declining, probably due to the proliferation of digital computers
and the security provided by cryptographic digital communication. Thus in the last yearb
more papers have been published on digital modulation classifiers. Nevertheless, analo'tg
communications are still in use and the problem of analog modulation classification till
retains some interest.
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The techniques for modulation classification described in the following pages have
been grouped depending on whether the author put more emphasis on analog or digital
moduJation schemes. Within each group, the authors have been gathered according to
some s'milarities, as shown in Table 1. In the table, 'I?" refers to a modulation type for
which it was not clear whether or not the MR algorithm was able to recognize.
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MODULATION TYPE
SEC-

GROUP AUTHOR TION ANALOG DIGITAL

A S D F A F B Q
M S S M S S P P OTHER

B B K K S SK K

Miller 3.1 / / / / /
Luiz / / / / /
Wakeman / V / / /
Fry V / / /

Gadbois 3.2 / / / / /
Ribble / / / / / / /
UTL / / / / / /
Gallant / / / /

ANALOG Weaver 3.3 / / /
Winkler / / / /
Callaghan / / / ? ?
Fabrizi / / /
Petrovic / _ / / /

Aisbett 3.4 / / /
Einicke / / ? /

Hipp 3.5 777V7777 _

Liedtke 4.1 / / / / 4-FSK
8-PSK

Jondral I / / / / 4-FSK
Dominguez V / / / / / / / 4-ASK

DIGITAL 4-FSK
Adams

Mammone 4.2 / /
DeSimio / / / /

Ready 5.1 ? ? ?
ENERGY I
DETEC- Kim 5.2 /

TOR Gardner 5.3

Table 1: Groups of authors.
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3.0 MR FOR ANALOG MODULATIONS

This group is bigger for a historical reason: the first paper was written in 1969.
The interest in digital modulation is more recent. The particularity of this group is the
features used. Because analog modulations are dominated by amplitude modulation (AM,
DSB, SSB), the signal envelope is a characteristic somewhat exploited by several authors,
starting with Gadbois in 1985. Before that, authors were using a hardware approach as we
will see with Miller.

3.1 MILLER APPROACH

3.1.1 Miller

In 1978, Miller Communications Systems Limited (now Calian Communications
Systems Limited) presented a report [23] to DREO on the feasibility of a HF/VHF
spectrum surveillance receiver, including automatic modulation type identification. DREO
liked the idea and prepared a contract for a prototype ESM receiver. The approach
developed by Miller for modulation classification prevailed for years and led to a number of
publications [23]-[27][31][321[7].

In their implementation, the receiver produces a 455kHz IF signal (with a passband
filter of baudwidth either 6 or 24 kHz) which is fed to an envelope sampler APD
(Amplitude Probability Distribution) and three parallel phase-lock-loop (PLL)
demodulator circuits (see Figure 10).

The method used to characterize the signal amplitude envelope is called APD
(Amplitude Probability Distribution). As shown in Figure 10, the output of the envelope
detector is sampled by an 8 bit ADC (with a sampling rate of 1.7kHz). N points were used
to compute the following statistics:

Mean:/J = 1 E (x)

Variance: S2 = [ (x2) - 1 ()J

P (x): Probability that the ADC output is equal to x,
corresponding to the APD (see Figure 11).

After an inspection of 213 samples, Miller found that good statistical significance was
obtained and could be useful for modulation classification. However, to keep the number -f
features low, only two APD parameters have been retained: the variance S2 and the
probability that the output of the ADC equals 0, P (0).
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Figure 10: Miller's classifier [25]
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Figure 11: Theoretical APDs [251.
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In a similar way, Miller studied the output of the PLL circuits in order to use the
property that different types of PLL circuits have a tendency to lock onto different signals.
Each of the three loops (AM, FM and DSB) has 2 outputs used for the classification: a
Lock indicator and a Modulation indicato:. Considering 4096 samples, Miller created a
table which is reproduced in Table 2. This table shows which PLL is locked to which
modulation type.

Combining both APD and PLL results, Miller created a Reference Logic Table (see
Table 2). The table contains eight binary features: two from the APD and six from the
PLL. The binary values are the results of hard decisions on the outputs of the ADCs with
reference thresholds.

SIGNAL AM-M AM-L FM-M FM-L IDSB-M DSB-L S2 P (0)

AM 1 1 0 1 1 1 1 0

FM X 0 1 1 X 0 0 0

PSK 1 0 1 1 1 1 0 0

CW 0 1 0 1 0 1 0 0

DSB X 0 1 0 1 1 1 1

SSB X 0 X 1 X 0 1 1

Threshold .312 .812 .625 .500 .250 .812 256 .004

Table 2: Miller's Reference Logic Table [25].

The classification is accomplished by comparing the unknown with the referenre
table for a perfect fit. To use the terminology introduced in Section 2, it is a very simple
binary tree classifier. 'he bandwidth of the passband filter is first set at 24 kHz. If there
is no match for the classification, another attempt is made with the 6 kHz filter.

The results obtained by Miller are quite impressive. They claim a percentage of
correct identification higher than 90% for all modulation types. However, the SNR is not
specified. To get these results, the classifier used 256 samples per try and a minimum of
four tries per classification.

As stated previously, the Miller prototype ESM receiver was built under a DND
contract. An evaluation of Miller's work is reported by Luiz in [31].
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3.1.2 Wakeman

In 1985, a U.S. Patent was registered [32] for a "Spectrum Surveillance Receiver
System". It is Miller's receiver, no upgrade to the classification procedure has been
reported.

3.1.3 Fry

Fry [7] also looked at iller's receiver. Some problems had been reported', and Fry
was assigned by DREO to determine their origins. After some tests, he found that due to
the nature of the PLL design used, the accuracy of the identification process deteriorated
rapidly if the receiver was not tuned to the c, tex of the signal. He also noted that
identification failed with real voice signals. Tests with the modified prototype
(modification both in the hardware and decision tree) revealed 95% correct identification
with a 10dB SNR, when a sine wave was used as modulating signal. Unfortunately, the
accuracy fell drastically for real voice signal. With an infinite SNR (no noise) and a real
voice signal (normal gaps associated with continuous speech), he got an average
performance around 60%.

3.2 GADBOIS APPROACH

3.2.1 Gadbois

In 1985, Gadbois [33]-[35] introduced a novel alternative to modulation
identification, based on the envelope characteristics of the received signal. The feature
selected is the ratio R of the variance to the square of the mean of the squared envelope.
Intuitively, since FM has constant envelope while AM does not, the former's R is zero and
the latter's is close to unity. After some studies Gadbois found that "...SSB, DSB, AM and
FM have very distinctive R's...". He developed mathematical relations relating R to the
SNR, as presented in Figure 12. These expressions are based on the assumption of having

infinite record lengths. In the case of samples, the estimation of R, noted R, is computed
as followed.

0.2 - a-2  1 E (z2)_ 1 () 2

N N2

1
N

RzR= r 2 =N E(z 2 ) -

1 "Laboratory use of the receiver revealed three major shortcomings. speed, accuracy and
friendliness.", and talking about modulation classification, "For some reason, the unit did
not work well and its performance fluctuated from day to day.".
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Figure 12: Mathematical relations relating R to the SNR [35, p.1521.

Computing R for N=2048 points per sample for a large number of samples, Gadbois
determined threshold values within a small decision tree for classification of AM, SSB,
DSB and FM. In his experiments, the voice was simulated by Gaussian white noise
low-pass filtered. The sampling rate for the 12-bit ADC was 160kHz. The IF frequency
was 40kHz. The results of that very simple classifier were computed from 200 samples per
modulation type and are presented here in Table 3.

ACTUAL CLASSIFIED AS

FM AM SSB DSB

FM 200 0 0 0

AM 0 181 19 0

SSB 0 15 160 25

DSB 0 0 12 188

Table 3: Gadbois' confusion table [33, p.29.5.41.

In order to discriminate among constant amplitude modulation type, Gadbois
proposed three additional features: R2, R3 and R4. The main differcnce between FM, FSK
and PSK resides in the phase characteristics. To exploit and extract relevant
characteristics, a Digital Phase Lock Loop (DPLL) is used. The output of this PLL, being
proportional to the phase derivative, can be roughly summarized as follows:
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-for FM, the output is a Gaussian random process

-for FSK, the output is a noisy square wave

-for PSK, the output is uniformly spaced impulses

2

DPLL LPF Rectifier Smoother R2 =-
2

DPLD

2

LI LPF -- 0 R3= G

Figure 13: Gadbois' system block diagram [34, p.39]

The discriminative characteristics in the waveforms can be increased by further
processing, as shown in Figure 13. The output of the rectifier (DC block rectifier used to
remove the carrier) is not significantly modified, except for an FSK signal which generates
an almost pure DC signal. Thus, R2, being a measure of the signal variability, is potentially
able to differentiate the three modulation types. However, simulations showed that R2
alone could hardly separate FM from PSK at SNR less than 20 dB. By adding a low-pass
filter, Gadbois created an additional feature, R3, which would be similar to R2 except for
PSK signals (impulses corresponding to PSK signals contain high frequency harmonics)
Therefore, the ratio R2/R 3, denoted R4, should provide the separation between FM and
PSK:

- for FM, R3 would be less than R2 because the noise would be reduced by the filter
- for PSK, R3 would be much less than R2 since both noise and some of the
baseband signal would be filtered.

The accuracy obtained with these features is 98%, with a SNR of 10 dB, assuming
that only these three modulation types are present.
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3.2.2 Ribble

Using methods similar to Gadbois, Ribble [91 developed his system around the same
features R, and R2 , but replaced R3 and R4 by ACPOW (see Figure 14).

SHIL.BERT 0

TRANSFORMER R1 -

BANDWIDTH
ESTIMATOR BW

IF
INPUT"-

LOCKED LOOP REMOVER - =

ACOUT

ACPOW = ACOUT
r ACIN

ACIN)

Figure 14: Ribble's system block diagram [9, p.20].

In the block diagram, R, is Gadbois' ratio R, and R2 is almost like Gadbois'. The
last feature is a power parameter, ACPOW. It measures the power at the DPLL output'.
Thus it gives the value of the amount of phase/frequency changes in the signal. For digital
modulation schemes, the value of ACPOW decreases with the baud rate.

Once again the decision process uses a logic tree. The value of R is used only to
separate Group B (phase modulations) from Group A (amplitude modulations) The other
features will complete the estimation of the modulation type. The time required for the

It is given that ACPOW = ACOUT/ACIN. Here ACIN is a normalisation factor.
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computation and the decision is 1.7sec. The performance obtained is about the same as
Gadbois', but Ribble reduced the sampling time. He pushed the experiments further and
replaced the simulated voice by real voice, obtaining drastically lower accuracies. However
Ribble did not go further with the problem and concluded his report with this comment:

"If the prime modulating signal of concern is voice then a different data acquisition
process will be necessary. It would have to reject segments of low/no modulation
and stack together those segments which indicate modulation is present. This
would obviously result in extremely long time frames to analyze voice, but this
seems to be the only way to cope with this situation." Ribble [9, p.721.

3.2.3 UTL

In 1989, DND/DEEM 4 gave a contract to UTL CANADA INC. [36] for an
analytical examination of various classification techniques (Jondral, Callaghan, Gadbois,
Ribble, Fabrizi, Wakeman and Gardner). The contract aso asked for the design of a
prototype MRU (Modulation Recognition Unit).

UTL decided that Ribble's approach was the most promising and tried to improve
the performance further. The block diagram was roughly the same. However the
algorithm for evaluation of the bandwidth was "improved". The logic tree for the decision
process was also changed, incorporating a new feature, the product of the preceding
features R, and R2. The hardware was set with the following conditions: IF frequency of
34kHz with 12kHz bandwidth and a sampling frequency of 140kHz. The performance was
not significantly improved and the results or real voice were still unsatisfying (average
probability of success around 25%).

3.2.4 Gallant

Neither Ribble nor UTL were able to obtain good performance with Gadbois' ratio.
Gallant [3] looked at the problem again and got very interesting results.

First of all he considered the problem of real voice signals. The preceding authors
got good results with simulated voice, but their performance fell drastically with real voice.
They all agreed that the gaps in voice signals create "unmodulated" segments which are
improper to classify the signal.

"1. Unmodulated AM and FM produce a pure carrier signal; hence they are
indistinguishable from each other and CW; and

2. Unmodulated SSB and DSB produce no transmitted signal; hence they are
indistinguishable from each other and noise" Gallant [3, p.24]

In order to solve this problem, Gallant added a preprocessor to Gadbois' algorithm.
before computing the ratio R, the preprocessor removes the unmodulated segments. This
preprocessor is comprised of three steps which will now be described.
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The first two steps permit the MIlD to reject long stretches of unmodulated
waveform on a segment to segment basis'. This procedure is performed by the Front-End
which is divided in two parts: the first part rejects low-energy segments, the second
rejects noise-like segments.

Looking at the behavior of R. Gallant found that "anomalies" occur when the
modulated signal envelope is small. The third step consists of rejecting low-valued
envelope sampling points, on a point to point basis. When N good points are collected, a
"pseudo fully-modulated" segment of 2048 points is formed.

The improvement obtained by this preprocessing prior to the computation of R is
quite significant. Figures 15 and 16 show the system block diagram and the results with
and without the preprocessing.

As we can see in Figure 16, there is no real difference between AM and FM,
especially for low modulation index AM. Therefore Gallant proposed a new feature,
denoted VAR, able to discriminate very low modulation index AM2. This new feature is
the variance of the segment to segment envelope variance.

m( s(71 r(iT RWke)

RealR
low noise HES(rT) caic

energy like thr'sh

MODULATOR
n(iT

GWN

CHANNEL
NOISE

Figure 15: Experiment block diagram [3, p.47].

I A segment is formed by N=2048 points and takes 64ms at a sampling rate of 32kHz The
complete classification process requires L2 segments.

2. "...some military radios are known to have modulation indices in the range .45% to
65%..." Gallant [3, p.49].
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Figure 16: Variance of R diminished by preprocessing.

a) Gadbois' ratio R (Gallants experimental results) [3, p.231
b) New feature proposed by Gallant [3, p.48]
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The new feature VAR is computed as followed:

L2

MEAN = E{o2 (k)} = 0,2 (k)
L 2 k u!

t2

VARJo2 (k)} = [o,2 (k) - MEAN2
L 2 kzl

L2: The number of segments which
passed the front-end section.
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Figure 17: The new feature VAR proposed by Gallant [3, p.54].
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The decision process is also a logic tree, however much simpler than Ribble's
because there are only two features. The performance obtained with real voice and SNRs
above 8dB is quite good (90%). However the acquisition time is long : at least 1.5 seconds.

3.3 OTHERS

3.3.1 Weaver

Probably the first author to publish about modulation type classification is
Weaver [37] in 1969. He proposed the use of pattern-recognition techniques to
automatically identify the type of modulation on HF radio signals. The intercepted signal
was passed through an 8kHz analog bandpass filter and down-converted to baseband. It
was then digitized with an 8-bit ADC at a 16kHz sampling rate. The resulting digital
signal fed a bank of 29 parallel narrowband filters and envelope detectors. The outputs
were averaged over an observation time of one second. These mean values created a
29-dimension feature vector used for the decision process. The classifier is an analog
implementation of a linear classifier. Weaver claims 95% classification accuracy at
"typical" SNRs for separating AM and SSB. He warns that speech breaks give rise to
unmodulated signals and a real system may require several seconds of observation time.

3.3.2 Winkler

Winkler [221, proposed a technique based on characterizing the amplitude and
phase spectrum. He used a pure sinusoid as the modulating signal. He obtained 100%
accuracy, although he admitted that gross classification errors occur when the baseband
signal has a noisy spectrum.

3.3.3 Callaghan

Callaghan [38] also based his classifier on the classical pattern-recognition theory,
he used a linear classifier. He sampled the signal envelope and amplitude zero-crossing (to
get the instantaneous frequency). Then he computed the means and the standard
deviations. The sampling frequency was 100Hz and the observation time, 2 seconds. He
reported only the performance for separating AM to FM: 99% for an SNR above 20dB.
Callaghan concluded his paper admitting that his features were very sensitive to noise.

3.3.4 Fabrizi

Instead of considering the variability of the envelope, Fabrizi [39] suggested a new
feature, the envelope peak to mean ratio noted P,. He also used the mean M of the
instantaneous frequency.

The information comes from Gallant[gallant, p.9-10], the reference is not available at this

time.
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Figure 18: Fabrizi's features [39, p.138].

With only these two features Fabrizi built a logic tree for the decision process
(see Figure 19). The parameters were collected over a 250ms sampling time, using 32ka
sampling frequency and 3kHz filtered real voice. Simulations showed that separation of
AM from FM using the instantaneous frequency parameter could not be achieved at SNRs
below 35dB. However, SSB could be separated from AM/FM group at SNR above 5dB.

Figure 19: Fabrizi's Decision Tree [39, p.139].
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3.3.5 Petroic

Petrovic [40] proposed a six feature classification algorithm. The basic
configuration is shown in Figure 20.

SIGNAL SIGNAL CLASSIER
ACTIVITY --,II

ENVELOPE AMPLITUDE
~DETECTIONyI d

-- AMZERO
CROSSING MICRO-

RADIO DETECTION PARALLE PROCESSOR
RECEIVER INTERFACE CONTROL

F IM" "DETECTION

~FM
D - EMODULATOR F

- • WIDEBAND
DETErCTIONI Il

Figure 20: Petrovic's classifier [40, p.387].

The signal activity feature of Petrovic's classifier enables it to determine whether or
not a signal is present. The second activity factor represents the percentage of time the
envelope exceeds a predetermined threshold. The amplitude variation feature is the mean
value of the full-wave rectified AC signal envelope. The FM demodulator gives the
instantaneous frequency of the signal. The signal is applied through a low-pass filter
(3kHz) and the output is averaged to detect narrowband (-analog) FM. The signal is also
applied to a 3kHz high-pass filtered to detect wideband (digital) FM.

The decision process is accomplished with a reference logic table (variation of a
decision tree). The IF frequency is not given but the author said that the IF bandwidth is
optimal at 15kHz. The Confusion Matrix is not given.

33



3.4 AISBETT APPROACH

A lot of work has been done at the Electronic Research Laboratory, Department of
Defence, Defence Research Centre Salisbury, Adelaide, South Australia regarding
modulation recognition. New features , which are claimed to be "noise resistant" are
presented by two authors, Aisbett and Einicke in this section.

3.4.1 Aisbett

Almost every paper presented proposed features which are very sensitive to noise.
For example, remember that Fabrizi was not able to separate AM from FM at SNRs below
35 dB. Aisbett [41][42] closely considered the problem of additive white Gaussian noise
(AWGN) regarding time-invariant features for pattern recognition.

She observed that most published modulation recognition schemes perform poorly
because the authors chose signal parameters which can only be estimated with a bias in the
presence of AWGN. She shows, for example, how the sample mean and sample variance of
the instantaneous frequency varies with SNR for a number of analog modulation types
Thus she proposed time-domain signal parameters which are unbiased estimators of the
true signal parameters in the presence of AWGN with symmetric spectral density.

The three new proposed noise resistant features are A2, AA' and A20', where A is
the signal envelope, A' the signal envelope derivative and 0' the instantaneous frequency
Considering very low SNRs (3dB), she claims discrimination between AM, FM DSB and
CW possible on the basis of characterizing the new parameters' statistical distribution
functions.

896 917

DSB

~Z
AM

noise
Z 

FM(narrowband) M-:Z FM(wideband)

Q I I Th%.%.. IAM DSB8d

A -3.7 -8dB A20,  8dB

Figure 21: Distributions of Aisbett's parameter A2 0'
and the typical parameter A (SNR = 1dB) [41, p.12, 171,
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It is shown in Figure 21 that for very low SNR (-1 to 3dB), the typical parameter A
(signal envelope) has a distribution function which offers no discrimination between the
modulation types. However the distribution functions for Aisbett's parameter A20' are
distinct and could therefore be used for classification.

She was satisfied by her preliminary work and envisaged further simulations with a
much larger data base in order to implement a classifier using a pattern-recognition
algorithm applied to these new features.

3.4.2 Einicke

A few years later, a paper written by Einicke [6] was published. He described a
classifier based on Aisbett's features.

A2 =2 + Q2
AA'= II' + QQ'
A201 = IQ? - IQ

He added two classical parameters, the signal envelope and instantaneous frequency

A )A1/2

F = 0' = (A20')/A2

As stated by Aisbett, the statistical distribution of these parameters should have a
good discriminating power even for low SNRs. Jondral's method' of using the histogram
as a features vector is potentially very powerful. However the computation required is too
exhaustive for a real time system. One of the best ways to describe a statistical
distribution is to use the standard deviation a, the coefficient of skewness 'y and the
kurtosis /0.

The feature vectors are computed for each modulation type according to three
classes of signals: strong signal (30dB), medium (15dB) and weak (5dB). The parameters
in the data base are obtained through digital signal processing of data generated from
12-bit ADC having a sampling rate of 20 kHz. For the decision process, a linear classifier
(Fisher's functions) is applied to these reference feature vectors. He also tried a quadratic
classifier but found no improvement. The performance obtained depends on the sample
acquisition time. For an acquisition time of 409ms, the overall performance is around 94%
(5dB < SNR < 30dB).

See the digital modulation section.
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3.5 HIPP APPROACH

3.5.1 Hipp

This area of modulation classification is very intuitive. The choice of the features
depends upon the author's background, imagination, etc. Hipp [8] used a different way to
select his features. He did a systematic and exhaustive evaluation of more than twenty
features from which he retained only six. The results obtained are very impressive: he
classified almost all modulation types (digital and analog) with an overall performance of
95% with SNRs going down to 10dB. His paper is presented in a distinct section for these
reasons.

The features used are based on statistical central moments: standard deviation,
standard deviation divided by its mean, skewness and kurtosis. These statistical
parameters are used to describe the following signal characteristics: amplitude, phase,
frequency, spectrum, squared signal spectrum, in-phase channel and quadrature channel

Amp Phase Cos Sin Freq Spec- Squared
Phase Phase trum- Spec-

trum"

Standard S X X X X S S
Deviation

Skewness S X X X X X X

Kurtosis X X X X X X X

Phase Vector Quality Factor S

vcos 24+Sinf2

RMS Amplitude X

Signal Standard Deviation of S
Spectrumii

Notes:
S: Hipp's selected features
X: Not selected features
i: Threshold at 3 dB above noise floor
ii: Threshold at 3 dB below spectral peak

Table 4: Features evaluated by Ilipp [8, p.20. 2.51

36



To evaluate all of these features, Hipp collected 400 sets of 1024 data points for each
modulation type with SNRs varying from 100dB to 10dB. Then he made a statistical data
analysis on the data base in order to select those parameters having greatest discriminating
properties. He achieved that evaluation with a stepwise discriminant analysis on a linear
classifier (Fisher's functions).

The resulting six-feature vectors allowed the classification of an unknown signal
with an overall probability of 95%. The features retained are: the amplitude standard
deviation, amplitude skewness, phase spread, spectrum standard deviation (threshold at
3dB above noise floor), spectrum standard deviation (threshold at 3dB below peak) and
squared signal spectrum standard deviation (threshold at 3dB below peak).

The simulation was done with a sample acquisition time of 26ms at a sampling
frequency of 40kHz for an IF of 10kHz. The carrier frequency was randomly selected
within 1kHz of the nominal frequency. The IF bandwidth was fixed at 20kHz.
Unfortunately, some modulation parameters remained constant during the simulations:
AM modulation index fixed at 90%, FSK frequency deviation 500Hz, baud rate 300 and
1200Baud, and FM frequency deviation at 3 and 5kHz. Moreover, it is not specified how
the modulating signal (for analog modulation schemes) was generated. As shown by
Ribble, UTL, Gallant, and Fry, simulated voice and real voice do not perform in the same
way.
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4.0 MR FOR DIGITAL MODULATIONS

The interest in digital modulation classification is growing yet the number of
publications is still small. For this reason all the classifiers are represented by only two
groups. The first one is represented by Liedtke and Jondral. These two authors, especially
the latter, are very well known and are cited in almost every paper on the topic. The
second group includes authors who used a different approach to Liedtke's.

4.1 LIEDTKE AND JONDRAL APPROACH

4.1.1 Liedtke

One of the first authors to publish about modulation type identification, Liedtke [2]
was also the first to present the concept of modulation recognition applied to digital
modulation schemes. The system proposed by the author is fully digital, as shown in
Figure 22. The output of the receiver is digitized (In-phase and Quadrature channels) and
then filtered by a bank of parallel FIR narrow-band filters. These filters have the same
center frequency but different bandwidths. "The best classification result will be
automatically obtained behind that filter which matches the signal bandwidth best."

The feature extraction is accomplished with a "universal demodulator". These
features are the amplitude, phase and instantaneous frequency (see Figure 23). To get the
parameter values in a synchronous way, a timing recovery procedure is used. The
parameters are defined as:

Amplitude = (12 + Q 2)112

Instantaneous Frequency 1 [dso( t)]
2 L dt t=ti

1 o, - 'Pi-

2 r 2 At

V arctan (Q/I)

The values are compiled to form histograms of amplitude, frequency and phase.
These histograms are used as features for the classification. The 256-point phase
histogram of BPSK has peaks at 0 and 1800. Foi QPSK, the peaks are located at 0, 90,
180 and 270". And likewise for 8-PSK. Therefore the phase histogram is used to classify
these modulation types. The object is to use the histogram as input to a procedure that
will recognize the number of ph;.ses. A pattern-recognition algorithm could be used,
taking each cell of the histogram as an element of the feature vector. However, to simplify
the computation, Liedtke used suboptimal weighting functions, as shown in Figure 24
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Figure 22: Block diagram of Liedtke's classifier [2, p.313].
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Figure 24: Classification of PSK signals by Liedtke
al Actual phase histogram for QPSK [2, p.315]
b)Suboptimal weighting function for QPSK [2, p.3 16]

The unknown signal phase histogram is compared to the weighting functions and a
value of similarity is attributed to each. The largest output is retained and noted DPHI,
corresponding to the number of phases detected (2, 4 or 8).

If the recognition criterion of PSK modulation types is not satisfied, the
classification of ASK and FSK is investigated. To identify these modulations, the
variances of the amplitude and frequency (AVAR and FVAR respectively) are calculated.
A large AVAR indicates ASK, and a large FVAR, FSK.

In a similar way to the phase histogram, the amplitude and frequency histograms
are also used. The amplitude histogram of ASK contains two peaks, as does the frequency
lustogram for FSK. These histograms should contain only one peak for other modulation
schemes. The resulting variables are respectively AHI and FHI.
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The decision process is accomplished with three boolean equations: one for the PSK

modulation type, one for ASK and one for FSK. The decision function for PSK is

[(max (DPHI))i>2 > TDPHI]-[AVAR < TLAVAR]-[FVAR < TFVAR = TRUE

i=2,4 or 8 is the number of phases
TDPHI is the threshold for the phase histogram

TLAVAR is the threshold for the amplitude variance
TFVAR is the threshold for the frequency variance

the symbol - is a logical AND

If the function is "true" for i=2, BPSK is detected; if i=4, QPSK is detected; and if
i=8, 8-PSK is present. Otherwise, i.e. DPHI is optimal for i=1, the test continues for
ASK and FSK. The equations are the followings.

[AHI > TAHII- [AVAR > TUAVAR] = TRUE.. for ASK and
[FHI > TFHI -[FVAI> TFVAR]-[AVAR < TLAVAR] = TRUE...for FSK

TAHI is the threshold for AHI
TUAVAR is the upper threshold of amplitude variance

TFHI is the threshold for FHI

These functions and the thresholds are schematized in Figure 25. The five
separation parameters are shown together. The dashed lines point out which classes are
separated by which separation parameters. The overlapping between PSK and FSK
indicates some remaining difficulties.

Noise and
FSK FHI continuously AHI ASK

2 modulated 2

FVAR 2 4A
FVAR (PSK 4.PSK 8) 2<

Figure 25: Schematized class space with separation parameters [2, p.3181.
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The results shown in Figure 26 indicate a classifier very sensitive to noise.
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Figure 26: Liedtke's results [2, p.3191.

4.1.2 Jondral

Jondral [28][29 ] used an approach similar to Liedtke's to which he added two analog
modulation types (AM and SSB) and pattern-recognition techniques for the decision
process.

The features used by the author are bared on histograms. However, he did not use
Liedtke's synchronization system. Therefore the histograms are different, although the
parameters are similar: amplitude, instai caneous frequency and pliase. The phase
characteristic called zero phase, used to det'ct BPSK, is obtained by squaring the signal to
create a carrier at twice the frequency which can be caught by a tracking loop, resulting in
the detection of 0 and 7r phases in BPSK signal.

Collecting the parameters for 4096 points, a histogram of 192 cells is computed (see
Figure 27). This histogram is used as the feature vector. However, Jondral realized that
the features between positions 60 and 140 do not contribute to the discrimination. The
final results were obtained with 93-D feature vectors. This is remarkably bigger than
Gadbois, who used only a few features.
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Figure 27: Examples of histograms [28, p.185].
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The performance obtained is very good, but the SNRs are not specified. The system
operated for a signal down-converted at 200kHz. The 12-bit ADC sampling frequency is
chosen according to the IF signal bandwidth: 2.2kHz to 22.2kHz respectively for 300Hz to
6kHz. To acquire the 4096 data points, an acquisition time of 0.18 to 1.8 seconds was
required. The decision function was based on a pattern-recognition technique. Jondral
tried both linear and quadratic clas3ifiers (minimum mean squared error): he respectively
got an overall accuracy of 93% and 98%. To reduce the number of terms for the quadratic
classifier, he applied the Karhunen-Love-transform to the feature vectors. That way, 30
transformed-features (containing about 97% of the information) were used in the classifier
instead of 93 features.

4.1.3 Dominguez

Also using a histogram as the feature vector, Dominguez [43][44] realized a
recognition system very similar to Jondral's. The parameters used in his histogram are the
amplitude, the instantaneous frequency and the instantaneous phase V (k).

o (k) = arctan{Q (k)/I (k)}
k < 3000 points

The dimension of the vectors is 79: 31 components corresponding to the amplitude;
31 components for the frequency; and 17 for the phase. The classifier was linear. The
overall performance is 95%, and the system recognizes all modulation types. However, the
SNR is not given, neither is the message signal used for analog schemes.

Dominguez also presented in [43] a preprocessor. Noticing that the system works
better if the signal is perfectly centered over the IF frequency, he proposed a preprocessing
able to estimate the frequency of a carrier. This preprocesso; also explores the spectrum to
detect adjacent modulated signals: it is similar to an energy detection subsystem.

To analyze the spectrum, a periodogram is used. First, the spectrum is
differentiated to detect carriers. Then the symmetry around the carriers is studied. The
output is the number of signals. The classification algorithm will be processed if there is
only one signal. An example is shown in Figure 28. The symmetry around the first carrier
indicates a first modulation type spread on both sides of the carrier A second carrier is
present in the spectrum, indicating a second modulation type. This signal would have to
be filtered by the preprocessor to allow the first signal to be recognized.

c

a_
l)

FREQUENCY

Figure 28: Intercepted spectrum[43]
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4.1.4 Adams

Adams [45] proposed an improvement to Jondral's recognition system by using a
new classification process. On the same 192 features, he applied the PCA (Principal
Component Analysis) algorithm to reduce the dimension of the pattern vector. The author
did not give the size of the resulting vector. Then the MANOVA algorithm is applied on
these new vectors to optimize the discrimination. This is a linear discrimination technique.
MANOVA is a conventional multivariate statistical technique discussed respectively
in [46].

No performance results are given in the paper. It is not obvious that this technique
would perform better than Jondral's. Jondral also used data reduction, reducing the
dimension of his vectors from 192 to 30 with the Karhunen-Lo~ve--transform, keeping 97%
of the information. Moreover Jondral used a multivariate linea:. and quadratic
discrimination techniques.

4.2 OTHERS

4.2.1 Mammone

The paper proposed by Mammone [10] presents a recognition system for PSK
signals. Therefore only two modulation schemes are concerned. However, he also
presented a technique for evaluation of the bit rate. The phase derivative is used to find
the transitions which occur between every data symbol.

The received signal is digitized and expressed as z (k). The phase p (k) and its
derivative are expressed by:

p (k) = arctan{Im[z (k)]/Re[z (k)]}
P'(k) p(k) -p (k-1)

The carrier frequency is found by averaging p' (average of the instantaneous
frequency). The bit rate estimation requires further processing. The intervals between
pulses are multiples of the symbol rate, which is, knowing the modulation type, indicating
the bit rate. The amplitude of the pulses indicates the phase shift. 7r/2 or 7r. Therefore it
is a feature to discriminate BPSK from QPSK. However, because the signals are filtered
and phase noise is present, the instantaneous phase shifts are not very accurately
representing the true phase shifts. The author presented another approach able to estimate
more accurately the amplitude of these phase shifts.

The decision process is accomplished with a logic tree. The performance is given for
a system operati 'c with 1024 sampling points, 3kHz and 30kHz bandwidth depending on
the baud rate (from 75 to 19200 bps), and C/No between 35 and 70dB. The performance is
given according to the baud rate. It is shown that a low baud rate signal (below 200bps)
would require a much longer acquisition time (see Table 5).
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CLASSIFIED AS
MOD. C/No DATA r 1

TYPE RATE EPSK QPSK CW

dB bps % %%

75 82 15 3
BPSK 45 300 98 2 0

1200 95 5 0

2400 1 99 0
QPSK 45 4800 16 83 1

19200 89 11 0

75 82 14 4
BPSK 60 300 100 0 0

1200 96 4 0

2400 0 100 0
QPSK 60 4800 2 98 0

19200 0 100 0

Table 5: Mammone's results [10, p.28.4.6].

4.2.2 DeSimio

For his Master's Degree, DeSimio [4][5] made some simulations concerning ASK,
FSK, BPSK and QPSK automatic recognition. Nine features are used. The mean and
variance of the signal envelope are used to discriminate ASK signals. The other features
are taken from spectra.

The following four features are the spectral location and magnitude of the two
largest correlation peaks of the signal spectrum with a sinc 2 reference function Two large
peaks indicate FSK. The results of correlations with spectra of the signal squared and
quadrupled provide information related to the number of phases: BPSK vs QPSK

Unfortunately the simulation was done with fixed baud rate signals (2500 bauds),
therefore the features presented could not be applied to the general case of unknown bit
rate.

The decision process is done with an adaptive technique. The LMS algorithm,
which is derived from the perceptron, optimizes the values of weight vectors during a long
learning process. Once the learning process is finished, the system is ready for testing with
unknown signals. l)eSimio tested the classifier with only 16 sarnples (SNRs from 20 to
5dB) for which he obtained no misclassification.
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The perceptron classifier used by DeSimio could be seen, by extension, as a very
simple neural network with no hidden layer, nonrecurrent and a hard limiting transfer
function. The processing element of the classifier is shown in Figure 29.

INPUT X,T 
- e)

i=O

fN(a) flia) fo(a)

0 a-- 0 a-- 0 a

-1
HARD LIMITER THRESHOLD LOGIC SIGMOID

Figure 29: A single unit of the perceptron classifier [47, p.5]

As in the case of the linear classifier, the output is computed by vector
multiplications. There are as many outputs in the network as classes, as we had with the
linear classifier. However the weighting vectors W are not determined by statistical
methods. Via a long learning process (100 000 iterations) the five weight vectors (one per
modulation type) are non-parametrically determined. In Figure 29, the transfer function
for the perceptron and LMS is represented respectively by Threshold Logzc and by Hard
Limitcr.
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5.0 MR BASED ON ENERGY DETECTION ALGORITHMS

As described so far, modulation recognition has been accomplished using
conventional pattern recognition techniques. In this chapter, a different approach ispresented, based on the premise that if we are able to detect a modulation type and onlyone, we recognize it. This chapter presents modulation recognition based on energy
detection algorithms.

5.1 READY APPROACH

In 1986, a U.S. Patent was registered for a "Modulation Detector and
Classifier" [481. Ready presented a new approach for some sort of digital modulation
classification. It is quite a complex hardware system, so the complete details will not be
explained here.

Stage 2: Linear Phase ,-30

" . ' I V L E N MLBIT 2 %V2(f,'=,,r2) I.l

FILTER CEMPA RA

SELECTOR I SEETRELERCTOR

31L 26L

Figure 30: One of the 3 similar stages of Ready's system [48, p 2].
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a) Received spectrum b) Noise path c) Signal path [,48, p.9 -11].
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The system is basically made by cascading N similar stages. Stage 1 detects
Constant-Phase modulation schemes (M-PSK); stage 2 for Linear-Phase (M-FSK); and
stage 3 for Quadratic-Phase signal (linear FM or chirp). Higher order phase modulations
could be implemented. The system performs classification by characterizing the phase.
This hardware could not be modified for analog modulation types.

In Figure 30, the signal 22 comes from the preceeding stage, and signal 22L goes to
the following stage. Signals 31L and 26L are used by the decision circuits. The system
performs signal detecticn and classification. Therefore, it allows more than one modulation
type in the bandwidth of iDterest. The system would also work in the presence of
interfering signals.

Figure 31-a shows an example of a received spectrum where several modulation
types are present. The detection of a constant-phase signal, in the example PSK, would be
performed by stage 1. The output of the first stage noise path envelope detector is an
estimation of the noise amplitude. This threshold value is used to detect the presence of a
signal at the output of the first stage signal path envelope detector. Figure 31-c, presents
that output. We can see the same spectrum as 31-b but with two additional narrow
spectral lines above the noise threshold. These spectral lines are symmetric about the
carrier frequency and indicate the presence of a constant-phase signal and its symbol rate.
The last path, i.e. the phase extractor, gives information on the phase difference between
the clock circuit and the data clock of the received signal.

5.2 KIM APPROACH

Kim [49][50] presented his energy detector as a way to classify phase-modulated
signals. Using only one feature, i.e. qLLR defined below, he was able to discriminate
BPSK from QPSK for very low SNR (0dB). The algorithm is as follows:

qLLR - (E - )2 + 4Q

where all E are energy related and defined by

N N N

Q n; E In Qn

nI n=I nI

nT

r, r(t)coswct d.; n=l,...,N
(n-I)T

nT

rq,, - r(t)sinw t dt; n=l,...,N
Q,
i- I) T

and r (t' is the received signal containing AWGN.
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The feature proposed seems to perform well with AWGN. The results are given for
SNRs as low as 0dB with close to 100% correct classification. However, Kim assumed a
precise knowledge of the carrier frequency and symbol timing. In a real system, accurate
determinations of these might be very difficult for signals as noisy as 0 dB, and might lead
to unfortunate performance degradations. Moreover, it is not dear that the system will not
react to other modulat:on schemes that might be presented to the Modulation Recognition
Sub-System in a real system. This technique is applicable only to digital phase
modulation schemes.

5.3 GARDNER APPROACH

Gardner is well known in the energy detection area. In a paper [51] he proposed the
use of his techniques for modulation classification purposes. The interception of LPI signal
is accomplished by exploiting cyclic features which are present in modulated signals:
sinewave carrier, data rate, etc.. The theory of spectral correlation in cyclostationary
signals developed by Gardner has been shown to be a general and flexible cyclic feature
estimator called a cyclic spectrum analyser.

The process maps a time varying signal (2-D) into a 3-D distribution, using cyclic
spectra. The distribution presents some characteristic shapes potentially useful for
modulation classification.

The time varying signal 4 t) is cyclostationary if the parameter

R.(r) = lim - r4t+r/2)x(t-,r/2)ei 2 atdt
T-sw T J-T/2

is not zero for some a 1 0. R(r) is called the cyclic autocorrelation, and its Fourier
transform is called the cyclic spectrum, S..(j), and can be interpreted as a spectral
correlation function via the following characterization.

= I im Iim A t X 1 tf+a/2)Xr'(t,f-a/2)dt
T-w At--u TA -At/2

t-T/2

The set {a: R'(r) f 0} is called the set of cycle frequencies. Some examples are
presented in Figure 32.
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Figure 32: Theorical spectral correlation distributions [52, p. 902]
a) BPSK b) QPSK c) OQPSK d) MSK

These distributions show some discriminating power among modulation types.
However, Gardner did not discuss how these distributions are sensitive to parameters such
as baud rate, modulation index, carrier frequency, etc.. Neither did he discuss the ability
of his cyclic feature to characterize analogue modulations regarding the random nature of
voice (a nonstationary process). The potential advantage of this tethnique is its ability to
recognize a modulated signal in the presence of interference.
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6.0 CONCLUSION

In this document, we have seen how different authors have performed modulation
recognition. Using pattern recognition techniques, they have implemented a classification
algorithm able to associate features, which have been judged discriminative, to different
classes according to the similarity between the unknown pattern vector and the reference
pattern vectors obtained during the training.

For the classification process, it seems that the linear and the binary tree classifier
have been adopted almost unanimously. The linear classifier is the simplest of parametric
techniques. Using only the pooled within-class covariance matrix to classify the unknown
signal, this technique is very fast and easily implemented. For a real-time requirement
such as MR, it is a good choice. However, for solving bigger problems, with numerous
classes and features, it is usually advantageous to use more sophisticated algorithms. The
quadratic classifier, by using parabolic functions instead of linear ones to discriminate
clusters, could, depending upon the particular application, present improved performance
The outcome is an additional amount of memory and computation time for manipulating
the within-class covariance matrices (one per class).

Although these parametric techniques could be optimal in some applications
(typically when the distributions are normal), the more general case of non-parametric
techniques sometimes needs to be investigated (for example, when distributions are
multi-modal). In this technical note, only the binary tree concept has been discussed.
Modern algorithms for creating trees are very powerful for handling a large amount of
classes and features. The CART algorithm is probably the most standard type.

Notice that there also exists other nonparametric algorithms in classical
pattern-recognition literature [15]. Kernel (Parzen estimator) and K-nearest-neighbor
approaches are very well known. In the first case, the density function, instead of
assumedly being known as in the parametric approach, is approximated by a sum of
kernels. These can be any functions, although normal kernels are usually used. For
classification, the unknown signal is compared to all N training samples according to the
the kernel function in use and is associated to the closest class considering the overall
probability. For the K-nearest-neighbor, the decision rule is simplified by considering
only the K samples closest to the unknown (instead of all N samples) to compute the
probabilities p(w, I z). Unfortunately it is still necessary to store all N samples and compare
the unknown with all these samples to find the K closest points. Therefore, the amount of
computation is not significantly decreased. In order to overcome this disadvantage, it
would be interesting to eliminate samples, keeping only some good representative3 (located
along boundaries). This process is called condensed K-nearest-neighbor decision rule in
(15].

Another alternative, not proposed by the authors mentioned in this paper, but very
popular in modern pattern recognition research centers, could also be applied to the MR
problem. Neural networks are very interesting nonparametric techniques which provide
efficiency and extreme versatility with numerous applications. The great interest for this
artificial brain is fairly new but some algorithms are becoming well established, such as the
back-propagation network. It is highly likely that some new MR systems will use neural
networks, in the future, when neural network VLSIs will be available on the market.
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Although the choice of the classifier is very important, the selection of good features
is fundamental. The features have to be discriminative, noise resistant and requiring as
few computation as possible. A feature is obtained from the probability distribution
(histogram) of a parameter, which is usually computed on a point to point basis from the
sampled signal waveform. Popular parameters are the signal envelope, the instantaneous
frequency, etc. Some authors also used the frequency distribution (PSD) to represent the
parameter. In both cases, the features are chosen in order to represent efficiently
characteristics from the distribution. Very often the mean and standard deviation are
used, although the skewness and the kurtosis are also popular (Einicke and Hipp). Another
approach consists of using directly the bin values of the distribution as features (Jondral).
Unfortunately the latter gives rise to a very large dimension feature vector. To avoid that
problem, only the most significant bins can be used: Miller used the first bin, p(O), from
the signal envelope distribution. See Table 6 for more examples.

Section Author Parameter Time/Freq Feature

3.1 Miller Signal Envelope A T Bin value p(O)

3.2 Gadbois A2  T

(A2)2

Gallant A2  T O(a 2(A 2 ))

3.3 Fabrizi Instant. Freq. F, T (F)

3.4 Aisbett A2Fi T

AN T I

3.5 Hipp PSD(signal R) F a (PSD(R))

PSD(signal2) F a(PSD(R2))

4.1 Jondral A, F, and F,' T Bin values

Table 6: Examples of features used for modulation recognition
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It would be interesting at this time to investigate a stepwise selection of these
features to get a discriminative pattern performing with noisy signals and short acquisition
times. Some new features would also be very desirable, features able to deal with lower
SNRs, shorter acquisition times, and more modulation types. From a military perspective,
classification of signals with SNRs as low as 5 to 10 dB presents a real interest. Gallant's
solution of very long acquisition time (a little below 2 seconds) to remove gaps in the voice
is not adequate for all applications. A new feature able to discriminate analogue
modulation types with a shorter acquisition time would be very desirable. Finally it would
be worthwhile to be able to recognize other power-efficient modulation types such as MSK,
OQSPK, GMSK and TFM.
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