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LimitLESS Directories: A Scalable Cache Coherence Scheme*

David Chaiken, John Kubiatowicz, and Anant Agarwal
Laboratory for Computer Science, NE43-633
Massachusetts Institute of Technology
Cambridge, MA 02139
(617) 253 - 1448
chaiken@vindaloo.lcs.mit.edu

Abstract

Caches enhance the performance of multiprocessors by reducing network traffic and av-
erage memory access latency. However, cache-based systems must address the problem of
cache coherence. We propose the LimitLESS directory protocol to solve this problem. The
LimitLESS scheme uses a combination of hardware and software techniques to realize the
performance of a full-map directory with the memory overhead of a limited directcry. This
protocol is supported by Alewife, a large-scale multiprocessor. We describe the architec-
tural interfaces needed to implement the LimitLESS directory, and evaluate its performance
through simulations of the Alewife machine.

1 Introduction

The communication bandwidth of interconnection networks is a critical resource in large-scale
multiprocessors. This situation will remain unchanged in the future hecause physically con-
strained communication speeds cannot match the increasing bandwidth requirements of proces-
sors that leverage off of rapidly advancing VLSI technology. Caches reduce the volume of traffic
imposed on the network by automatically replicating data where it is needed. When a processor
attempts to read or to write a unit of data, the system fetches the data from a remote memory
module into a cache, which is a fast local memory dedicated to the processor. Subsequent ac-
cesses to the same data are satisfied within the Jocal processing node, thereby avoiding repeat
requests over the interconnection retwork.

In satisfying most memory requests, a rarhe increases the performance of the system in two
ways: First. memory access latency incurred by the processors is shorter than in a system that
does not cache data, because typical cache access times are much lower than interprocessor
communication times (often, by several orders of magnitude). Second, when most requests are
satisfied within processing nodes. the volume of network traffic is also lower.

However, replicating blocks of data in multiple caches introduces the cache coherence prob-
lem. When multiple processors maintain cached copies of a shared memory location, local

*Submitted to ASPLOS-1V, 1991.
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modifications can result in a globally inconsistent view of memory. Buses in small-scale nilti-
processors offer convenient solutions to the coherence problem that rely on system-wide broad-
cast mechanisms {1, 2, 3, 4. 5]. When any change is made to a data location. a broadcast is
sent so that all of the caches in the system can either invalidate or update their local copy of
the location. Unfortunately. this type of broadcast in large-scale multiprocessors negates the
bandwidth reduction that makes caches attractive in the first place. Furthermore, in large-
scale multiprocessors, broadcast mechanisms are either inefficient or prohibitively expensive to
implement.

A number of cache coherence protocols have been proposed to solve the coherence problem
in the absence of broadcast mechanisms [6, 7, 8, 9]. These message-based protocols allocate a
section of the system’s memory, called a directory, to store the locations and state of the cached
copies of each data block. Instead of broadcasting a modified location, the memory system
sends an invalidate (or update) message to each cache that has a copy of the data. The protocol
must also record the acknowledgment of each of these messages to ensure that the global view
of memory is actually consistent.

Although directory protocols have beea around since the late seventies, the usefulness of
the early protocols (e.g., [7]) was in doubt for several reasons: First, the directory itself was
a centralized monolithic resource which serialized all requests. Second, directory accesses were
expected to consume a disproportionately large fraction of the available network bandwidth.
Third, the directory became prohibitively large as the number of processors increased. To store
pointers to blocks potentially cached by all the processors in the system, the early directory
protocols (such as the Censier and Feautrier scheme [7]) allocate directory memory proportional
to the product of the total memory size and the number of processors. While such full-map
schemes permit unlimited caching, its directory size grows as O( N?), where N is the number of
processors in the system.

As observed in [8], the first two concerns are easily dispelled: The directory can be distributed
along with main memory among the processing nodes to match the aggregate bandwidth of
distributed main memory. Furthermore, required directory bandwidth is not much more than the
memory bandwidth, because accesses destined to the directory alone comprise a small fraction of
all network requests. Thus, recent research in scalable directory protocols focuses on alleviating
the severe memory requirements of the distributed full-map directory schemes.

Scalable coherence protocols differ in the size and the structure of the directory memory
that is used to store the locations of cached blocks of data. Limited directory protocols [8], for
example, avo'd the severe memory overhead of full-map directories by allowing only a limited
number of simultaneously cached copies of any individual block of data. Uniike a full-map
directory, the size of a limited directory grows linearly with the size of shared memorv. because
it adccat:~ ~rlv a small, fixed number of pointers per entry. Once all of the pointers in a direciory
entry are filled, the protocol inust ¢vi-t nreviously cached copies to satisfy new requests to read
the data associated with the entry. In such systems, widely snared data locations degrade system
performance by causing constant eviction and reassignment, or thrashing, of directory pointers.
However, previous studies have shown that a small set of pointers is sufficient to capture the
worker-set of processors that corcurrently rocad manv tvpes of data 110 11, 12). Tihe periormarnce
ot imited directory schemes can approach the performance of full-map schemes if the software
is optimized to minimize the number of widely-shared objects.

This paper proposes the Limit LESS cache coherence protocol. which realizes the performance




of the full-map directory protocol, with the memory overhead of a limited directory. but without
excessive sensitivity to software optimization. This new protocol is supported by the architecture
of the Alewife machine, a large-scale, distributed-memory multiprocessor. Each processing node
in the Alewife machine contains a processor. a floating-point unit. a cache, and portions of the
system's globally shared memory and directory. The LimitLESS scheme implements a small set
of pointers in the memory modules, as do limited directory protocois. But when necessary. the
scheme allows a memory module to interrupt the processor for software emulation of a full-map
directory. Since this new coherence scheme is partially iliplemented in software. it can work
closely with a multiprocessor’s compiler and run-time system.

Chained directory protocols [9], another scalable alternative for cache coherence. avoid both
the memory overhead of the full-map scheme and the thrashing problem of limited directories by
distributing directory pointer information among the caches in the form of linked lists. But uniike
the LimitLESS scheme, chained directories are forced to transmit invalidations sequentially
through a linked-list structure, and thus incur high write latencies for very large machines.
Furthermore, the chained directory protocol lacks the LimitLESS protocol’s ability to couple
closely with a multiprocessor’s software, as described in Section 6.

To evaluate the LimitLESS protocol, we have implemented the full-map directory, limited
directory, and other cache coherence protocols in ASIM, the Alewife system simulator. Since
ASIM is capable of simulating the entire Alewife machine, the different coherence schemes can
be compared in terms of absolute execution time, While we have used more generic metrics
(such as processor utilization or cycles per transaction) in past studies [10], simulated execution
time gives the closest approximation of the behavior of an actual multiprocessing system.

The next section describes the details of the Alewife machine’s architecture that are rele-
vant to the LimitLESS directory protocol. Section 3 introduces the LimitLESS protocol, and
Section 4 presents the architectural interfaces and various hardware and software mechanisms
needed to implement the new coherence scheme. Section 5 describes the Alewife system simula-
tor and compares the different coherence schemes in terms of absolute execution time. Section 6
suggests extensions to the software component of the LimitLESS scheme that couple the co-
herence protocol with the machine’s runtime system, and Section 7 summarizes the results and
discusses future work in this area.

2 The Alewife Machine

Alewife is a large-scale multiprocessor with distributed shared memory. The machine, organized
as shown in Figure 1, ur2s a cost-effective mesh network for communication. This type of archi-
tecture scales in terms of hardware cost and allows the exploitation of lorality. Unfortunately,
the non-uniform communication latencies make such machines hard to program because the
onus of managing locality invariably falls on the programmer. The goal of the Alewife project is

FPor

to discover and to evaluate techniques for automatic locality management in scalable multipro- -

cessors in order to insulate the programmer from the underlying machine details. Our approach
to achieving this goai employs techniques for latency minimization and latency tolerance.

Severai mechaaaising 1o the Alewife compiler, runcime systein, and hardware cooperate in en-
hancing communication locality, thereby reducing communication latency and required network
bandwidth. Shared-d.ita caching in Alewife is an example of a hardware method for reduc-
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Figure 1: An Alewife processing node with a LimitLESS directory extension.

ing communication traffic. This method is dynamic (uses run-time information), rather that
static (compiler-specified). Lazy task creation [13] together with near-neighbor scheduling are
Alewife’s software methods for achieving the same effect.

When the system cannot avoid a remote memory request and is forced to incur the latency of
the communication network, the Alewife processors rapidly schedule another process in place of
the stalled process. Alewife can also tolerate synchronization latencies through the same context
switching mechanism. Because context switches are forced only on memory requests that require
the use of the interconnection network, and on synchronization faults, the processor achieves
high single-thread performance. Some systems [14] have opted to use weak ordering 15, 16, 17)
to tolerate certain types of communication latency, but this method lacks the ability to overlap
read-miss and synchronization latencies. Although the Alewife cache coherence protocol enforces
sequential consistency [18], the LimitLESS directory scheme can also be used with a weakly-
ordered memory model.

We have designed a new processor architecture that can rapidly switch between processes [19].
The first-round implementation of the processor called SPARCLE will switch between processes
in 11 cycles. This fast context-switch is achieved by caching four sets of register frames on the
processor to eliminate the overhead of loading and unloading the process registers. The rapid-
switching features of SPARCLE also allow an efficient implementation of LimitLESS directories.

An Alewife node consists of a 33 MHz SPARCLE processor, 64K bytes of direct-mapped
cache, a 4M bytes of globally-shared main memory, and a floating-point coprocessor. Both
the cache and floating-point units are SPARC compatible [20]. The nodes communicate via
messages viirough a direct network [21] with a mesh topology using wormhole routing [22]. A
single-chip controller on each node holds the cache tags and implements the cache coherence




protocol by synthesizing messages to other nodes. Figure 1 is an enlarged view of a node in
the Alewife machine. Because the directory itself is distributed along with the main memory,
its bandwidth scales with the number of processors in the system. The SPARCLE processor is
being implemented jointly with LSI Logic and SUN Microsystems through modifications to an
existing SPARC design. The design of the cache/memory controller is also in progress.

3 't'he LimutLESS Directory Protocol

As do limited directory protocols, the Limit LESS directory scheme capitalizes on the observation
that only a few shared memory data types are widely shared among processors. Many shared
data structures have a small worker-set, which is defined as the set of processors that concurrently
read a memory location. The worker-set of a memory block corresponds tc the number of active
pointers it would have in a full-map directory entry. The observation that worker-sets are often
small has led some memory-system designers to propose the use of a hardware cache of pointers
to augment the limited-directory for a few widely-shared memory blocks {12]. However, when
running properly optimized software, a directory entry overflow is an exceptional condition in
the memory system. We propose to handle such “protocol exceptions” in software. This is the
integrated systems approach — handling common cases in hardware and exceptional cases in
software.

The LimitLESS scheme implements a small number of hardware pointers for each directory
entry. If these pointers are not sufficient to store the locations of all of the cached copies of a given
block of memory, then the memory module will interrupt the local processor. The processor
will then umulate a full-map directory for the block of memory that caused the interrupt. The
structure of the Alewife machine provides for an efficient implementation of this memory system
extension. Since each processing node in Alewife contains both a memory controller and a
processor, it is a straightforward modification of the architecture to couple the responsibilities
of these two functional units. This scheme is called LimitLESS, to indicate that it employs a
Limited directory that is Lccally Extended through Software Support. Figure 1 is an enlarged
view of a node in the Alewife machine. The diagram depicts a set of directory nointers that
correspend to the shared data block X, copies of which exist in several caches. In the figure,
the software has extended the directory pointer array (which is shaded) into local memory.

Since Alewife’s SPARCLE processor is designed with a fast trap mechanism, the overhead
of the Limit LESS interrupt is not prohibitive. The emulation of a full-map directory in software
prevents the LimitLESS protocol from exhibiting the sensitivity to software optimization that
is exhibited by limited directory schemes. But given current technology, the delay needed to
emulate a full-map directory completely in software is significant. Consequently, the LimitLESS
protocol supports small worker-sets of processors in its limited directory entries, implemented
in hardware.

3.1 A Simple Model of the Protocol

Before discussing the details of the new coherence scheme, it is instructive to examine a simple
model of the relationship between the performance of a full-map directory and the LimitLESS
directory scheme. Let T} be the average remote memory access latency for a full-map directory




Component Name Meaning

Mermory Read-Only Some number of caches have read-only copies of the data. |
Read-Write Exactly one cache has a read-write copy of the data.
Read-Transaction | Holding read request, update is in progress.
Write-Transaction | Holding write request, invalidation is in progress.

Cache Invalid Cache block may not be read or written.
Read-Only Cache block may be read, but not written.
Read-Write Cache block may be read or written.

Table 1: Directory states.

protocol. T} includes factors such as the delay in the cache and memory controllers, invalidation
latencies, and network latency. Given the hardware protocol latency T, it is possible to esti-
mate the average remote memory access latency for the LimitLESS protocol with the formula:
T, + mT,, where T, (the software latency) is the average delay for the full-map directory
emulation interrupt, and m is the fraction of memory accesses that overflow the small set of
pointers implemented in hardware.

For example, our dynamic trace-driven simulations of a Weather Forecasting program run-
ning on 64 node Alewife memory system (see Section 5) indicate that T) ~ 35 cycles. If T, = 100
cycles, then remote accesses with the LimitLESS scheme will be 10% slower (on average) than
with the full-map protocol when m =~ 3%. Since the Weather program is, in fact, optimized
such that 97% of accesses to remote data locations “hit” in the limited directory, the full-map
emulation will cause a 10% delay in servicing requests for data.

LimitLESS directories are scalable, because the memory overhead grows as O(N), and the
performance approaches that of a full-map directory as system sizc increases. Although in a 64
processor machine, T, and T, are comparable, in much larger systems the internode communi-
cation latency will be much larger than the processors’ interrupt handling latency (Tx > T5).
Furthermore, improving processor technology will make T, even less significant. In such sys-
tems, the Limit LESS protocol will perform about as well as the full-map protocol, even if m = 1.
This approximation indicates that if both processor speeds and multiprocessor sizes increase,
handling cache coherence completely in software will become a viable option. In fact, the Limit-
LESS protocol is the first step on the migration path towards interrupt-driven cache coherence.
Other systems [23] have also experimented with handling cache misses entirely in software.

3.2 Specification of the LimitLESS Scheme

In the above discussion, we assume that the hardware latency (7)) is approximately equal for
the full-map and the LimitLESS directories, because the LimitLESS protocol has the same state
transition diagram as the full-map protocol. The memory controller side of this protocol is
illustrated in Figure 2, which contains the memory states listed in Table 1. These states are
mirrored by the state of the block in the caches, also listed in Table 1. It is the responsibility
of the protocol to keep the states of the memory and the cache blocks coherent. The protocol
enforces coherence by transmitting messages (listed in Table 3) between the cache/memory
controllers. Every message contains the address of a memory block, to indicate which directory
entry should be used when processing the message. Table 3 also indicate whether a message
contains the data associated with a memory block.
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Figure 2: Directory state transition diagram for the full-map and LimitLESS coherence schemes.

The state transition diagram in Figure 2 specifies the states, the composition of the pointer
set ( P), and the transitions between the states. Each transition i labeled with a number that
refers to its specification in Table 2. This table annotates the transitions with the following
information: 1. The input message from a cache which initiates the transaction and the identifier
of the cache that sends it. 2. A precondition (if any) for executing the transition. 3. Any
directory entry change that the transition may require. 4. The output message or messages that
are sent in response to the input message. Note that certain transitions require the use of an
acknowledgment counter (AckCtr), which is used to ensure that cached copies are invalidated
hefore allowing a write transaction to be completed.

For example, Transition 2 from the Read-Only state to the Read-Write state is taken when
cache 7 requests write permission (WREQ) and the pointer set is empty or contains just cache i
(P = {} or P = {i}). In this case, the pointer set is modified to contain ¢ (if necessary) and the
memory controller issues a message containing the data of the block to be written (WDATA).1.

Following the notation in [8], both full-map and LimitLESS are members of the DiryN B
class of cache coherence protocols. Therefore, from the point of view vf the protocol specification,
the LimitLESS scheme does not differ substantially from the full-map protocol. In fact, the
LimitLESS protocol is also specified in Figure 2. The extra notation on the Read-Only ellipse
(S : n > p) indicates that the state is handled in software when the size of the pointer set
(n) is greater than the size of the limited directory (p). In this situation, the transitions with
the shaded labels (1, 2, and 3) are executed by the interrupt handler on the processor that is
jocal to the overflowing directory. When the protocol changes from a software-handled state to
a hardware-handled state, the processor must modify the directory state so that the memory
controller can resume responsibility for the protocol transitions.

'The Alewife machine will actually support an optimization of this transition that would sent a modify grant
(MODG), rather than write data (WDATA). For the purposes of this paper, such optimizations have been
eliminated in order to simplify the protocol specification.

-3




Transition Input Precondition Directory Entry Outpat
Label Message Change Message(s)
1 1 — RREQ — P =Pu {1} RDATA —
2 1 — WREQ P = {i} — WDATA —
t — WREQ P={} P = {1} WDATA —
3 + — WREQ [ P=1{k...., knjAi g P P =i}, AckCtr=n Vk, INV — &,
1 — WREQ P={k.. .. ka}As€P | P={1}, AckCir=n—1 | Vk, #1 INV — &,
4 ) — WREQ = {1} P=1{; INV —
5 7 — RREQ P={ P=1{; INV —
6 t — REPM P=1{: P=1{} —
T J — RREQ — — BUSY —
) — WREQ — — BUSY —
j — ACKC AckCtr # 1 AckCtr = AckCtr — 1 --
;] — REPM — — -
8 7 — ACKC AckCtr= 1, P = {s} — WDATA —
j — UPDATE P = {i} — WDATA —
9 7 — RREQ — — BUSY —
1 — WREQ — — BUSY —
;] — REPM — — —
10 ] — UPDATE P =1} — RDATA —

Table 2: Annotation of the state transition diagram.

Type Symbol Name Data?
Cache to Memory | RREQ Read Request
WREQ Write Request
REPM Replace Modified Vv
UPDATE | Update Vv
ACKC Invalidate Acknowledge
Memory to Cache | RDATA Read Data Vv
WDATA | Write Data Vv
INV Invalidate
BUSY Busy Signal

Table 3: Protocol messages for hardware coherence.
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Figure 3: Signals Between Processor and Controller.

The Alewife machine will support an optimization of the LimitLESS protocol that maximizes
the number of transactions that are serviced in hardware. When the controller interrupts the
processor due to a pointer array overflow, the proucessor completely empties the pointer array
into local memnry. The fact that the directory entry is empty allows the controller to continue
handling read requests until the next pointer array overflow. This optimization is called Trap-
On-Write, because the memory controller m: >t interrupt the processor upon a write request.
even though it can handle read requests itself. The next section explains the mechanisms that
are needed to implement the software/hardware hand-off required by the LimitLESS protocol.

4 Hardware Interfaces for LimitLESS

This section discusses the architectural properties and hardware interfaces needed to support
the LimitLESS directory scheme. We describe how these interfaces are supported in the Alewife
machine. Since the Alewife cetwork interface is somewhat unique for shared-memory machines.
it is examined in detail. Afterwards, we introduce the additional directory state that Alewife
supports, over and above the state that is needed for a limited directory protocol, and examine
its application to LimitLESS. Other uses for the extra states are discussed in Section 6.

To set the stage for this discussion. examine Figure 3. The hardware interface between
the Alewife processor and controller consists of several elements. The address and data buses
permit processor manipulation of controller state and initiation of actions via simple load and
store instructions { memory-mapped I/0?). The controller returns two condition bits and several
trap lines to the processor.

4.1 Necessary support for LimitLESS

To support the LimitLESS protocol effict. :tly, a cache-based multiprocessor needs several prop-
erties. First, it must be capable of rapid trap handling Because LimitLESS is an extension of
hardware through software, the LimitLESS protocol will not perform well on processors or soft-
ware architectures that require hundreds of cycles to begin executing the body a trap handler.
The Alewife machine employs a processor with register windows (SPARCLE) and a finely-tuned
software trap architecture that permits trap code to begin execution within five to ten cvcles
from the time that a trap is initiated.

*The memory-mapped [/O space is distinguished from normal memory space by a distinct Alternate Space
Indicator (ASI). In a way. the ASI bits are part of th: address bus: see [20] fo. further details.
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Figure 4: Uniform Packet ['ormat for the Alewife Machine

Second, the processor needs complete access to coherence-related controller state such as
pointers and state bits in the hardware directories. This state will be modified, wher appropriate.
I~

by the LimitLESS trap handler. In Alewife, the directories are placed in a special region of
memory that may be read and written by the processor.

Finally, a machine implementing the LimitLESS protocol needs an interface to the net-
work that allows the processor to launch and intercept cache-coherence protocol packets. Most
shared-memory multiprocessors export little or no network functionality to the processer; the
Alewife machine is somewhat unique in this respect. Network access is provided through the
Interprocessor-Interrupt (IPI) mechanism, which is discussed in the next section.

4.2 Interprocessor-Interrupt (IPI) in the Alewife machine

The Alewife machine supports a complete interface to the interconnection network. This inter-
face provides the processor with a superset of the network functionality needed by the cache-
ccherence hardware. Not only can it be used to send and receive cache protocol packets, but it
can also be used to send preemptive messages to remote processors (as in message-passin. ma-
chines). The name Interprocessor-Interrupt (IPI) comes from the preemptive nature of messages
that are directed to remote processors.

We stress that the IPI interface is a single generic mechanism for network access — not a
conglomeration of different mechanisms. The power of such a mechanism lies in its generality.

Network Packet Structure T, simplify the IPI interface, network packets have a single,
uniform structure, shown in Figure 4. This figure includes only the information scen at the
destination; routing information is stripped off by the network. The Parket Header contains
the ID of the source processor, the length of the packet, and an opcode. It is a single word
in the Alewife machine. Following the header are zero or more operands and data words. The
distinction between operands and data is software-imposed; however, this is a useful abstraction
supported by the IPI interface.

Opcodes are divided into two distinct classes: protocol and interrupt. Protocol opcodes are
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Figure 5: Simolified, Queue-based Diagram of the Alewife Controller

nsed for cache-coherence traffic; they are normally produced and consumed by the controller
hardware, but also be produced or consumed by the Limiti ESS trap-handler. Protocol opcodes
encode the type of coherence transaction: for example, a read miss would generate a message
with <opcode = RREQ>. <Packet Length = 2>, and <Operand0 = Address>. Packets with
protocol opcodes are called protocol packets.

Interrupt opcodes have their MSBs set and are used for interprocessor messages. Their format
is defined entirely by the software. Packets with interrupt opcodes are called interprocessor
interrupts and are processed in software at their destinations.

Transmission of IPI packets A simplified, queue-based diagram of the internals of the
Alewife controller is shown in Figure 5. This is a “memory-side” diagram; for simplicity it
excludes the processor cache.

The processor interface uses memory-mapped store instructions to specify destination, op-
code, and operands. It also specifies a starting address and length for the data portion of
the packet. Taken together, this information completely specifies an outgoing packet. Note
that operands and data are distinguished by their specification: operands are written explicitly
through the interface, while data is fetched from memory. The processor initiates transmission
by storing to a special trigger location, which enqueues the request on the /Pl output queue.

Reception of IPI packets When the controller wishes to hand a packet to the processor, it
places it in a special input buffer, the IPI input queue. This queue is large enough for several
protocol packets and overflows into the network receive queue. The forwarding of packets to the
IPI queue is accompanied by an interrupt to the processor.

The header (source, length, opcode) and operands of the packet at the head of the IPI input
queune can be examined with simple load instructions. Once the trap routine has examined the

11




Meta State Description
Normal Directory being handled by hardware.
Trans-In-Progress | Interlock. Software processing in progress.
Trap-On-Write Trap for WREQ, UPDATE. and REPM.
Trap-Always Trap for all incoming packets

Table 4. Directory Meta States for the LimitLESS protocol

header and operands, it can either discard the packet or store it to memory. beginning at a
specified location. In the latter case, the data that is stored starts from a specified offset in the
packet. This store-back capability permits message-passing and block-transfers in addition to
enabling the processing of protocol packets with data.

IPI input traps are synchronous, that is, they are capable of interrupting instruction execu-
tion. This is necessary, because the queue topology shown in Figure 5 is otherwise subject to
deadlock. If the processor pipeline is being held for a remote cache-fill * and the IPI input queue
overflows, then the receive queue will be blocked, preventing the load or store from completing.
At this point, a synchronous trap must be taken to empty the input queue. Since trap code is
stored in local memory, it may be executed without network transactions.

4.3 Meta States for the LimitLESS protocol

As noted in Section 3. the LimitLESS protocol consists of a series of extensions to the ba-
sic limited directory protocol. That section discussed circumstances under which the memory
controller would invoke the software. Having discussed the IPI interface, we can examine the
hardware support for LimitLESS in more detail.

This support consists of two components, meta states and pointer overflow trapping. Meta
states are directory modes and are listed in Table 4. They may be described as follows:

¢ Coherence for memory blocks which are in Normal mode are handled by hardware. These
are lines whose worker-sets are less than or equal to the number of hardware pointers.

e The Trans-In-Progress mode is entered automatically when a protocol packet is passed
to software (by placing it in the IPI input queue). It instructs the controller to block on
all future protocol packets for the associated memory block. The mode is cleared by the
LimitLESS trap code after processing the packet.

¢ For memory blocks that are in the Trap-On-Write mode, read requests are handled as usual,
but write requests (WREQ), update packets (UPDATE), and replace-modified packets
(REPM) are forwarded to the IPI input queue. When packets are forwarded to the IPI
queue, the directory mode is changed to Trans-In-Progress.

e Trap-Always instructs the controller to pass all protocol packets to the processor. As with
Trap-On-Write, the mode is switched to Trans-In-Progress when a packet is forwarded to

*In the Alewife machine, we have the option of switching contexts on cache misses (see [19]). However, certain
forward-progress concerns dictate that we occasionally hold the processor while waiting for a cache-fill.
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the processor.

The two bits required to represent these states are stored in directory entries along with the
states of Figure 2 and the five hardware pointers.

(C'ontroller behavior for pointer overflow is straighiforward: when a memory line is in the
Read-Only state and all hardware pointers are in use, then an incoming read request for this
line {RREQ) will be diverted into the IPI input queue and the directory mode will be switched
to Trans-In-Progress.

Local Memory Faults What about local processor accesses? A processor access to local
memory that must be handied by software causes a memory fault. The controller places the
fulting address and access type (i.e. read or write) in special controller registers. then invokes
a svnchronous trap.

A trap handler must alter the directory when processing a memory fault to avoid an identical
fault when the trap returns. To permit the extensions discussed in Section 6, the Alewife machine
reserves a one bit pointer in each hardware directory entry, called the Local Bit. This bit ensures
that local read requests will never overflow a directory. In addition, the trap handler can set
this bit after a memory fault to permit the faulting access to complete.

4.4 Use of Interfaces in LimitLESS Trap

A possible implementation of the LimitLESS trap handler is as follows: when an overflow trap
occurs for the first time on a given memory line, the trap code allocates a full-map bit-vector
in local memory. This vector is entered into a hash table. All hardware pointers are emptied
and their corresponding bits are set in this vector. The directory mode is set to Trap-On-Write
before the trap returns. When additional overflow traps occur, the trap code locates the full-
map vector in the hash table, emptying the hardware pointers and setting their corresponding
hits in this vector.

Software handling of a memory line terminates when the processor traps on an incoming
write request (WREQ) or local write fault. The trap handler finds the full-map bit vector and
empties the hardware pointers as above. Next, it records the identity of the requester in the
directory, sets the acknowledgment counter to the number of bits in the vector that are set, and
places the directory in the Normal mode, Write Transaction state. Finally, it sends invalidations
to all caches with bits set in the vector. The vector may now be freed. At this point, the memory
line has returned to hardware control. When all invalidation are acknowledged. the hardware
will send the data with write permission to the requester.

Of course, this is only one of a number of possible LimitLESS trap handlers. Since the trap
handler is part of the Alewife software system, many other implementations are possible.

5 Performance Measurements
This section describes some preliminary results from the Alewife system simulator that compare

the performance of limited, LimitLESS, and full-map directories. The protocols are evaluated in
terms of the total number of cycles needed to execute an application on a 64 processor Alewife

13




MuU-T program

MukT Alpwite
Compiler Runtme
Assombias
Linker

l

SPARCLE m.dunlhngu.oo program

SPARCLE
Simuieor Traces
L] Dynamic
Post-|

e |
Mo mory requestyy ack nowiedgements e~

Cache/Memoty
Simuistor

Network "Iml

Network
Simuator

ALEWIFE Simuister

Figure 6: Diagram of ASIM, the Alewife system simulator.

machine. Using execution cycles as a metric emphasizes the bottom line of mul:iprocessor design:
how fast a system can run a program.

5.1 The Measurement Technique

The results presented below are derived from complete Alewife machine simulations and from
dynamic post-mortem scheduler simulations. Figure 6 illustrates these two branches of ASIM.
the Alewife Simulator.

ASIM models each component of the Alewife machine, from the multiprocessor software to
the switches in the interconnection network. The complete-machine simulator runs programs
that are writter in the Mul-T language [24], optimized by the Mul-T compiler, and linked with a
runtime system that implements both static work distribution and dynamic task partitioning and
scheduling. The code generated by this process runs on ASIM, the Alewife machine simulator,
which consists of processor, cache/memory, and network modules.

Although the memory accesses in ASIM are usually derived from applications running on
the SPARCLE processor, ASIM can alternatively derive its input from a dynamic post-mortem
trace scheduler, shown on the right side of Figure 6. Post-mortem scheduling is a technique that
generates a parallel trace from a uniprocessor execution trace that has embedded synchronization
information {25]. The post-mortem scheduler is coupled with the memory system simulator and
incorporates feedback from the network in issuing trace requests, as described in [26). The use
of this input source is important because it lets us expand the workload set to include large
parallel applications written in a variety of styles.

As shown in Figure 6, both the full-machine and the dynamic post-mortem simulations use
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the same cache/memory and network simulation modules. The rache/memory simulator can be
configured to run a number of different coherence schemes. including software-enforced coherence
and a scheme that only caches private data. In addition, the memory simulator can vary more
basic parameters such as cache size and block size. The network simulator can model both
circuit and packet switching interconnects, with either mesh or Omega topologies.

The simulation overhead for large machines forces a trade-off between application size and
simulated svstem size. Programs with enough parallelism to execute well on a large machine
take an inordinate time to simulate. When ASIM is configured with its full statistics-gathering
capability. it runs at about 3000 processor cycles per second on an unloaded SPARCserver 330.
At this rate. a 64 processor machine runs approximately 80 cvcles per second. Most of the
simulations that we chose for this paper run for one million cycles (a fraction of a second on a
real machine), which takes 3.5 hours to complete. This lack of simulation speed is one of the
primary reasons for implementing the Alewife machine in hardware — to enable a thorough
evaluation of our ideas.

For the purpose of evaluating the potential benefits of the LimitLESS coherence scheme,
we implemented an approximation of the new protocol in ASIM. The technique assumes that
the overhead of the LimitLESS full-map emulation interrupt is approximately the same for
all memory requests that overflow a directory entry’s pointer array. This is the T, parameter
described in Section 3. During the simulations, ASIM simulates an ordinary full-map protocol.
But when the simulator encounters a pointer array overflow, it stalls the both the memory
controller and the processor that would handle the LimitLESS interrupt for T, cycles. While this
evaluation technique only approximates the actual behavior of the fully-operational LimitLESS
scheme, it is a reasonable method for determining whether to expend the greater effort needed
to implement the complete protocol.

5.2 Performance Results

-

Figure 7 presents the performance of a statically scheduled multigrid relaxation program on a
64-processor Alewife machine. This program was written in Mul-T and runs on a complete-
machine simulation. The vertical axis on the graph displays several coherence schemes, and
the horizontal axis shows the program’s total execution time (in millions of cycles). All of
the protocols, including the four-pointer limited directory (DiryN B), the full-map directory,
and the LimitLESS scheme with full-map emulation latencies of 50 and 100 cycles (T, = 50
and T, = 100) require approximately the same time to complete the computation phase. This
confirms the assumption that for applications with small worker-sets, such as multigrid, the
limited (and therefore the LimitLESS) directory protocols perform almost as well as the full-
map protocol. See [10] for more evidence of the general success of limited directory protocols.

A weather forecasting program, simulated with the dynamic post-mortem scheduling method,
provides a case-study of an application that has not been completely optimized for limited direc-
tory protocols. Although the simulated application uses software combining trees to distribute
its barrier synchronization variables, Weather has one variable that is initialized by one pro-
cessor and then read by all of the other processors. Our simulations show that if this variable
is flagged as read-only data, then a limited directory performs just as well for Weather as a
full-map directory.

However, it is easy for a programmer to forget to perform such optimizations. and there
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Figure 8: Weather, 64 Processors, limited and full-map directories.

are some situations where it is very difficult to avoid this type of sharing. Figure 8 gives the
execution times for Weather when this variable is not optimized. The results show that when the
worker-set of a single location in memory is much larger than the size of a limited directory, the
whole system may suffer from hot-spot access to this location. So, limited directory protocols are
extremely sensitive to the size of a heavily-shared data block’s worker-set. If a multiprocessor’s
software is net perfectly optimized, limited directory thrashing may negate the benefits of caching
shared data.

The effect of the unoptimized variable in Weather was not evident in previous evaluations of
directory-based cache coherence [10], because the network model did not account for hot-spot
behavior. Since the program can be optimized to eliminate the hot-spot, the new results do not
contradict the conclusion of [10] that system-level enhancements make large-scale cache-coherent
multiprocessors viable. Nevertheless, the experience with the Weather application reinforces the
belief that complete-machine simulations are necessary to evaluate the implementation of cache
coherence.

As shown in Figure 9, the LimitLESS protocol avoids the sensitivity displayed by limited
directories. This figure compares the performance of a full-map directory, a four-pointer limited
directory (DiryN B), and the four-pointer LimitLESS (LimitLESS,) protocol with several values
for the additional latency required by the LimitLESS protocol’s software (T, = 25, 50, 100, and
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Figure 9: Weather, 64 Processors, LimitLESS with 25 to 150 cycle directory emulation latencies.

150). The execution times show that the LimitLESS protocol performs about as well as the
full-map directory protocol, even in a situation where a limited directory protocol does not
perform well. Furthermore, while the LimitLESS protocol’s software should be as efficient as
possible, the performance of the LimitLESS protocol is not strongly dependent on the latency
of the full-map directory emulation. The current estimate of this latency in the Alewife machine
is between 50 and 100 cycles.

It is interesting to note that the LimitLESS protocol, with a 25 cycle emulation latency,
actually performs better than the full-map directory. This anomalous result is caused by the
participation of the processor in the coherence scheme. By interrupting the Weather application
software and slowing down certain processors, the LimitLESS protocol produces a slight back-off
effect that reduces contention in the interconnection network.

The number of pointers that a LimitLESS protocol implements in hardware interacts with
the worker-set size of data structures. Figure 10 compares the performance of Weather with
a full-map directory, a limited directory, and LimitLESS directories with 50 cycle emulation
latency and one (LimitLESS;), two (LimitLESS;), and four (LimitLESS,) hardware pointers.
The performance of the LimitLESS protocol degrades gracefully as the number of hardware
pointers is reduced. The one-pointer LimitLESS protocol is especially bad, because some of
Weather’s variables have a worker-set that consists of exactly two processors.

This behavior indicates that multiprocessor software running on a system with a LimitLESS
protocol will require some of the optimizations that would be needed on a system with a limited
directory protocol. However, the LimitLESS protocol is much less sensitive to programs that are
not perfectly optimized. Moreover, the software optimizations used with a LimitLESS protocol
should not be viewed as extra overhead caused by the protocol itself. Rather, these optimizations
might be employed, regardless of the cache coherence mechanism, since they tend to reduce hot-
spot contention and to increase communication locality.

6 Extensions to the LimitLESS Scheme

Using the interface described in Section 4, the LimitLESS protocol may be extended in several
ways. The simplest type of extension uses the LimitLESS trap handler to gather statistics about
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Figure 10: Weather, 64 Processors, LimitLESS scheme with 1, 2, and 4 hardware pointers.

shared memory locations. For example, the handler can record the weorker-set of each variable
that overflows its hardware directory. This information can be fed back to the programmer or
compiler to help recognize and minimize the use of such variables. For studies of data sharing, a
number of locations can be placed in the Trap-Always directory mode, so that they are handled
entirely in software. This scheme permits complete profiling of memory transactions to these
locations without degrading performance of non-profiled locations.

More interesting enhancements couple the LimitLESS protocol with the compiler and run-
time systems to implement various special synchronization and coherence mechanisms. Previous
studies such as [27] have examined the types of coherence which are appropriate for varying data
types. The Trap-Always and Trap-On-Write directory modes (defined in Section 4) can be used
to synthesize some of these coherence types. For example, the LimitLESS trap handler can
cause FIFO directory eviction for data structures that are known to migrate from processor to
processor. A FIFO lock data type provides another example; the trap handler can buffer write
requests for a programmer-specified variable and grant the requests on a first-come, first-serve
basis. The directory trap modes can also be used to construct objects that update (rather than
invalidate) cached copies after they are modified.

The mechanisms that we propose to implement the LimitLESS directory protocol provide
the type of generic interface that can be used for many different memory models. Judging by the
number of synchronization and coherence mechanisms that have been defined by multiprocessor
architects and programmers, it seems that there is no lack of uses for such a flexible coherence
scheme.

7 Conclusion

This paper proposed a new scheme for cache coherence, called LimitLESS, which is being im-
plemented in the Alewife machine. Hardware requirements include rapid trap handling and
a flexible processor interface to the network. Preliminary simulation results indicate that the
LimitLESS scheme approaches the performance of a full-mapped directory protocol with the
memory efficiency of limited directory protocol. Furthermore, the LimitLESS scheme provides
a migration path toward a future in which cache coherence is handled entirely in software.
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