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ABSTRACT

A probabilistic failure criterion is needed to quantitatively predict
reliability in critical applications,such as man-safe, deep-sea and air structures, and
as an objective function for use in optimum design. Composites are multi-phased
and anisotropic, which gives rise to failure in differert modes with different
probabilistic occurrences that are dependent on the applied stress tensor. Statistical
representation of combined stress failures is practically impossible. Probabilistic
modeling must be based on the failure modes. This investigation examines the
underlying features required in a probabilistic failure criterion for unidirectional
fiber-composite structures via Monte Carlo simulations. The interdependencies of
the intrinsic strengths (associated with uniaxial loadings) and of the failure modes
in a composite structure under combined tensile loading are elucidated. The joint
distribution function for composite failure due to a proportional loading regime is
derived starting from the representation of the physical failure process in Boolean
operations which, in turn, is represented by probability functions. Specitic forms

of the probability functions for different failure modes are suggested.
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I. INTRODUCTION

Many structural composite applications require a quantitative determination
of reliability which, in turn, requires a probabilistic failure criterion. Justification
for a quantitative reliability analysis may take many forms. Man-safe applications,
such as aircraft and deep submergence vessel components, and inaccessible
applications, such as satellite components, require design and certification of the
composite to a specified reliability level prior to service. Large complex
composite structures, for which proof testing would be economically impractical,
require extensive preliminary reliability analysis to ensure a zero-reject rate once
in service. Reliability is frequently used as an objective function in the
optimization of design and repair of composite structures. It may also be used in
the maintenance of composite structures in order to identify critical inspection
requirements. For any case, quantitative reliability analysis of 2 composite
structure requires a mathematical function which specifies the stress or strain
levels below which the probable risk of failure is acceptable. This function is a
probabilistic failure criterion.

Failure occurs in composite structures manifest in different modes which
result from the material heterogeneity and anisotropy inherent in composite
materials. The unidirectional fiber composites used in high performance
structural applications consist of many strong stiff fibers embedded in a relatively
ductile matrix. The fibers account for virtually all of the structural strength along
their longitudinal axis, but they make a negligible contribution to the structural
strength in the orthogonal in-plane (transverse) direction. Thus, the structural

strength of the composite in the direction coinciding with the longitudinal axis of




the fibers is typically significantly less than the structural strength in the transverse
direction. In addition, failure due to the component of the internal stress tensor in
the longitudinal direction of the fibers alone is a sequential process exacerbated by
the localized clustering of fiher breaks. Failure due to the component of the
internal stress tensor in the transverse direction alene is characterized by crack
propagation within the matrix binder. These two failure modes were observed to
be different physical processes.

The mathematical function may be formulated io represent the failure states or
it may be formulated to model the physical process. The tormer is termed the
phenomenological failure criterion and *he latter, the mechanistic failure criterion.
A phenomenological failure criterion only represents the failure state of a
composite; it does not explicitly attempt to model the underlying failure
mechanisms themselves [Ref. 1]. A phenomenological failure criterion may be
viewed as a mathematical transfer function which relates the excitation function (in
this case, the applied stress tensor) to the material response (failure). As extended
to the failure characterization of anisotropic composites, the pherom=nological
fuilure criterion is intended to assist in experimental design i.e., to facilitote the
interpolation, correlation and retrieval of experimental observations. In general,
it does not address the case where strength variation is described by a statistical
distribution.

Since data 1s the basis of statistics, a probabilistic characterization of composite
failure requires an extensive experimental data base if it is to be considered
phenomenologically based. Any failure criterion may be represented
geometrically as a limiting envelope in the stress space and the shape of the failure

envelope for a phenomenological failure criterion cannot be completely known




until experiments are performed for all possible states of combined stress. In
order to represent statistical variatior of strength as in the case of a probabilistic
failure characterization, the failure envelope is replaced by a set of failure contours
where each contour represents the locus of all stress states having a specific
probability of failure. For the probabilistic failure model to be solely based on
phenomenological observations, closely spaced series of experiments must be
performed and failure probabilities determined along every possible loading path
in the stress spac- . Such an exiensive data base does not exist for composite
materials and the acquisition of such a data base for a composite is economically
infeasible.

Rational formulation of an anisotropic probabilistic failure criterion for
composites, therefore, require< an understanding of the essence of the possible
tailure mechanisms. Then formulation of the probabilistic failure criterion may
he reduced to expressing the mathematical combination of the probabilistic models
for each of the possible failure mechanisms using Boolean operations. If the
mathematical rature of this combination of models can be analytically determined,
then the <hape of the aforementioned failure contours may be completely visualized
once the statistical parameters of the probabilistic models governing each
individual failure mechanism are experimentally determrined. This combined
analytical model significantly reduces the number of experimental measurements
¢ . simplifies the data base required to fully describe the failure contours in the
stress space

A deterministic failure criterion is an expedient representatior of the averaged
micromechanical failure processes. An anisotropic deterministic failure criterion

presumes that the material 1s macroscopically homogeneous and anisotropic;




therefore, its intrinsic strength in any given direction is uniforim. Tius implies that
when the component of the internal stress tensor in a given direction is
nonuniform, then failure will occur at the location along that direction where the
component of the internal stress tensor is greatest. In actuality, the intrinsic
strength of the material in any given direction is not uniform due to material
heterogeneity and the statistical distribution of fiber intrinsic strengths. If the
internal stress component in a given direction is nonuniform, then the most
probable location of failure is where the stress-strength ratio is greatest, which is
not necessarily the location of highest stress. A deterministic failure criterion
cannot address this phenomenon. In addition, the assumption of uniform strength
in any given direction would preclude the observed sequential failure process in
composites under longitudinal loading because all fibers would break
simultaneously if their intrinsic strengths were uniform. When the inherent
expediency in a deterministic failure criterion is not appropriate for the specific
application, as in high reliability or large structures, suitable extension is required.

One such extension is an anisotropic probabilistic failure criterion. A
probabilistic failure criterion acknowledges the existence of variable intrinsic
strength within a material by treating the intrinsic strength as a random variable
whose fractional probability of realization is describable by a particular statistical
distribution function. With this model, the strength of the material is presumed to
be nonuniform and unknown until realized in failure due to an applied stress. If the
distribution function and its parameters are known, then the probabilistic failure
criterion can provide the reliability of the structure as the applied stress is
increased up to a given value. The scope of this investigation will be limited to the

tensile domain,




The characterization of probabilistic failure in composites requires knowledge
of the applied stress tensor and, if the stress is nonuniform, knowledge of the
spatial location of failure within the structure. Boih of these requirements may be
motivated and illustrated through the use of statistical simulation.

The objective of this investigation is twofold. First, this investigation will
motivate the necessary characteristics of the probabilistic failure criterion through
the use of numerical simulation for the cases of uniform and nonuniform stress
states. This will be presented in Chapter III. Second, this investigation will
identify the mathematical formalism needed in the formulation of an anisotropic
probabilistic failure criterion of general applicability and develop explicit
expressions of the criterion for several cases of mechanistic dependence between

failure modes. This will be presented in Chapter IV.




II. APPROACH

Tenstile failure in idealized composite structures will be numerically simulated
and statistical data for each structure will be compiled to aid in the recognition of
the fundamental parameters of probabilistic composite failure. Then, a formalized
formulation of a probabilistic failure criterion of general application will be
presented.

It is impractical to perform actual experiments to collect the requisite data for
probabilistic characterization of tensile composite failure. This is due primarily to
the necessity of accounting for all of the many possible permutations involved in
the sequential failure of composites. Furthermore, experimental techniques are
not yet available to accurately identify internal fiber failure sites and the critical
location of fiber failure clusters from which catastrophic failure of a structure
initiates. Numerical simulation, as opposed to experimentation, providcs an
expedient means for compiling the statistical data necessary to visualize and
identify the underlying parameters of probabilistic composite failure.

A formalized formulation of a probabilistic failure criterion is necessary; the
mathematical requirements and constraints must be clearly identified so that major
limitations and restrictions which apply to the formulation are known. There are
many potential constraints which must be considered in the formulation and
application of a general probabilistic failure criterion. These include, but are not
necessarily limited to: interdependency of uniaxial intrinsic strength components
of a composite material, dependency of failure probability on the external loading

regime and mechanistic interdependence of failure modes. A purely ad hoc




formulation without regard for mathematical formalism cannot possibly identify

the level of applicability or the limitations of the result.




II1. PROBLEM IDENTIFICATION VIA SIMULATION

Numerical simulation illustrates many of the physical and statistical
phenomena which characterize probabilistic composite failure. The structural
strength variability as manifest in testing by measurement of the external load is
not necessarily the same as the internal strength variability which is intrinsic to the
composite; the difference between them is dependent on the internal stress
distribution within the structure. When the internal stress distribution is
nonuniform (heterogeneous), the structure does not necessarily fail at the location
with the lowest intrinsic strength or the highest stress but rather the location where
the stress-to-strength ratio is the highest. When the structure is analyzed as a
spatially two-dimensional array of structural elements, the width size effect, which
is governed by the element grid used in the analysis, and the effect of elemental
load sharing must also be considered in order to obtain realistic simulated results.
Finally, in geometrically complex structures, uniaxial loading may result in
decidedly multiaxial internal stress distributions for which a one-dimensional
characterization of probabilistic failure is wholly inadequate. This becomes the
motivation for the formulation of a probabilistic failure criterion for multiaxial

combined stress distributions.

A. BACKGROUND

Current models of univariate (uniaxial) probabilistic composite failure did not
explicitly address the effect of heterogeneous stress distributions on the
characterization of failure in the model structures. In this investigation, the one-

dimensional characterization of probabilistic composite failure is numerically




simulated using model geometries similar to those used in actual materials testing
and a uniaxial failure criterion. Since the intrinsic strength distribution within
physical test specimens is governed by the random strength distribution of the
material, the strength distributions of the model structures are generated using
Monte Carlo simulation. The model geometries and elemental arrays within the
model structures are varied to illustrate the effect of heterogeneous stress
distributions, elemental grid definition and internal load sharing on structural
failure characterization. A uniaxial probabilistic failure model is shown to be
inadequate for representing the failure behavior of a composite under a combined
stress distribution and, hence, a combined stress probabilistic failure criterion is
necessary.

Rosen investigated uniaxial probabilistic failure in a composite for a uniform
(homogeneous) stress distribution using a model consisting of a one-dimensional
array of structural elements with the structure represented as a chain of
elements.[Ref. 2] He observed that structural failure for this model was a "weakest
link" or series process in which the failure of the weakest element constituted
failure of the structure and that the elemental intrinsic strengths were determined
by the statistical distribution of imperfections among the elements. This led to the
concept of the length size effect on structural strength; a structure divided into a
greater number of smaller elements will tend to have fewer imperfections in a
given element and, hence, the elemental strengths will appear to increase as the
number of elements is increased. Since the statistical strength of the entire
structure must be independent of the number of elements, the scale parameter of
the elemental strength distribution must be corrected for the number of elements

used to account for this effect. Rosen also concluded that, over a small, but finite,




length about a fiber break, the broken fiber in ineffective in carrying the uniaxial
load and that, over this length, the load is transmitted via the matrix through shear
to the adjacent fibers. This length is known as the ineffective length, 6.

Harlow and Phoenix investigated uniaxial probabilistic failure for a
homogeneous stress distribution for a composite structure modeled as a two-
dimensional elernental configuration by reducing the model to an effective one-
dimensional element array with the structure represented as a chain of element
bundles.[Ref.3 and 4] They identified the failure process for this model as being a
modified "weakest link" or series-parallel process in which the failure of the
weakest bundle of elements constituted structural failure. Based on the concept of
ineffective length, they developed the local load sharing rule for the chain-of-
bundles model by accounting for all permutations of element failure sequences
within a bundle. Through numerical analysis of the local load sharing rule for
different statistical strength distributions and bundle sizes, they concluded that a
chain of element bundles possessed a lower probability of failure at low applied
load than a chain of single elements of equal length; this is the effect of local load
sharing. In addition, Harlow and Phoenix numerically established the existence of
a width size effect for the chain-of-bundles model; as the number of elements per
bundle is increased for a given structure, the likelihood of bundles containing one
or more weak elements is increased and the bundle strengths appear to decrease.
As in the case of the length size effect, the scale parameter of the elemental strength
distributions must be corrected--in this case, for the number of elements per
bundle--for the structural strength to be independent of the element distribution.

Geometrically complex composite structures, such as plates with holes or

inclusions, are typified by clearly heterogeneous stress states, even when the
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external loading is uniaxial. The currently available models do not explicitly
illustrates the effect of a heterogeneous stress distribution on the one-dimensional
characterization of composite failure.

In this simulation, composite test specimens are modeled as elastic and
homogeneous in composition, but anisotropic in terms of responses to applied
deformation. The fiber-matrix heterogeneity implies strength anisotropy and is
incorporated into the structural model by way of the load sharing process.
Representative specimen geometries, which are typically used in materials testing,
distill the effects of the internal stress distribution and spatial location of failurc on
the characterization of probabilistic failure.

A specimen structure is visualized as a spatial array of structural elements.
These elements, as in the physical case, would have different intrinsic strengths
characterized by the statistical distribution of strength for the material. The
intrinsic strengths of the individual elements are generated by Monte Cuarlo
simulation. The Monte Carlo technique used in this simulation consists of assigning
to each element a fractional ranking of its intrinsic strength given by randomly
generated numbers between zero and one, noninclusive. The intrinsic strengths of
each element may then be computed from its respective fractional ranking for a set
of relevant statistical parameters of the underlying strength model for the parent
composite. The specific parametric influence of the strength varnability is varied
to explore the effect of internal stress distribution on the external strength statistics
as measured by the applied load.

A univariate failure criterion in terms of uniaxial stress is employed in the
simulation. An element fails when the internal stress on the element is greater than

or equal to its intrinsic strength.
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A one-dimensional element array similar to that used by Rosen, combined with
a heterogeneous stress distribution, is used to elucidate the phenomenologicaul
differences between the overall structural strength variability and the intrinsic
strength variability as affected by the nature of the internal stress distribution
within the structure. A two-dimensional elemental array with a heterogeneous
stress distribution is used to show the effect of the width size effect on the overall
structural strength variability.

The numerical simulation is straightforward for the one-dimensional
elemental distribution because only the failure of single elements constitutes the
failure of the entire structure. The simulation becomes more complex for
elemental distributions of two or more dimensions because all of the failure
sequences must then be considered in the numerical model. Furthermore, for
internal stress distributions of two or more dimensicss, ali of the failure processes
must be accounted for. Numerical simulation of composite failure for a two-
dimensional elemental distribution due to a one-dimensional internal stress
distribution can be accomplished with a uniaxial probabilistic failure criterion und
is discussed in the remaining section of this chapter. Simulations of composite
failure due to an internal stress distribution of two or more dimensions cannot Le
adequately accomplished with a uniaxial failure criterion and require the
formulation of a combined stress failure criterion, which will be performed in
Chapter IV. Once this failure criterion is formulated, characterization und
numerical simulation of composite failure for stress distributions of two or more
dimensions may be performed through the use of a post-processor for finite

element stress analysis results.




B. SIMULATION PROCEDURE

Four structural models were investigated in the simulation to illustrate the
influence of heterogeneous stress distributions, internal load sharing and the width
size effect on uniaxial composite failure behavior. These models are schematically
represented in Figure 3-1.  Because the uniaxial failure criterion for the model
structures defined the realization of failure in terms of the internal random
variable, intrinsic strength, it was essential that a transfer function be identified in
order to transform the internal random variable to the external random variable.

The internal stress distribution was governed by the spatial geometry of the
specimen model. All specimen models featured a uniform thickness. For the
heterogeneous stress distribution, a model approximating a "dogbone" specimen
was used in which the width of the specimen was reduced by two circular arcs with
a given radius and colinear centers. A homogeneous stress distribution was created
with the "aogbone” specimen geometry by using a radius several orders of
magnitude greater than that used for the heterogeneous stress distribution. A
model approximating a square plate with a concentric circular hole was used to
simulate failure in a complex geometry. The internal stress distribution within the
plate for a unit uniaxial external load was determined using the ADINA finite
element code. The normal stress components--other stress components were not
used in this simulation--along the direction of loading for each element were
compiled and incorporated into the simulation through a stress multiplier array,
which converted the external applied stress on the plate model into the individual
elemental internal stresses.

For the one-dimensional element distribution, the "dogbone" specimen models

were initially divided into nine elements of equal length. By using an equal number
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of elements of the same length, the length size effect was eliminated; however, the
strength for any arbitrary element length could be accounted for through the use of
size effect calculations. Thus, the model is analytically valid for any arbitrary
element length so long as any stress gradient within a given element is negligible.
The one-dimensional "dogbone” specimen model was converted to a two-
dimensional model by laterally subdividing each of the original elements into three
smaller elements of equal width, the original elements thus becoming bundles of
elements. The plate model consisted of 500 square elements arranged in a 24-by-
24 element array less the 76 elements which approximated the hole.

Elemental strengths were calculated from randomly generated fractional
strength rankings. The Type III, or Weibull, cumulative distribution function
(CDF) was used as a transfer function between intrinsic strength and fractional

strength ranking

]

(3-1)

F(c) was the fractional ranking of G, and o and 3 were the shape (variability)
and scale (magnitude) parameters, respectively, of the CDF. The internal stress, ©.
was the realization of the random elemental intrinsic strength; at element failure, ¢
equaled the intrinsic strength. When the Weibull CDF was inverted so that the

failure stress, o, was given in terms of the fractional strength ranking, F,

1
a B

G(F)=e><p{

ln[~ln( 1 'F)]+1“( B )}

(3-2)




i‘quation (3-2) was used in the Monte Carlo simulation for all models to
calculate the random elemental intrinsic strengths.

An advantage of numerical simulation in the acquisition of statistical data is
that it allows otherwise indiscernible internal physical processes to be visualized in
terms of mathematical calculations. For this reason, the simulations for this
investigation were performed using the Microsoft Excel TM spreadsheet since each
computational step could be visually displayed.

Each simulation essentially followed the same computational sequence.
Fractional rankings of elemental strength were randomly generated and assigned 1o
each element of a given specimen. Using the inpui parameters of the statistical
strength distribution, the elemental intrinsic strengths were calculated using
Equation (3-2). At this point, a specimen with random strength is simulated. To
simulate the loading of the specimen,.an initial value for the external load wus
imposed on the specimen and the internal stress on each element was calculated
based on the cross-sectional area established by the specimen geometry. The value
for the internal stress was compared to the respective intrinsic strength for each
element; if the siress equaled or exceeded the intrinsic strength for an element, theu
the element was identified as having failed. For the one-dimensional elementul
distribution, this was equivalent to the structure having failed; for the two-
dimensional elemental distribution, the load on the adjacent elements in the bundic
was 1ncreased in accordance with a local load sharing rule where the toal
originally carried by the failed element is equaily distributed to its contiguous
neighboring elements. After the load redistribution, cach elemental failure
criterion is evaluated. Once the failure criterion had been evaluated for all intact

elements with no failure indications at a given external load value, the load valu.
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was incremented and the process repeatcd until structural failure was indicated. If
structural failure was indicated, the desired failure parameters were recorded and
the simulation repeated with a new set o1 fractional strength rankings.

The numerical results of the cimulation are intended to simulate actuul
experimental data. For this reason, the simulation process must mirror the essence
of the actual physical failure process. A random variable for which data is
simulated must be experimentally measurable. Conventional experimental testing
procedures use the external failure load as the random variable. Direct
experimental measurement of the internal failure stress, i.e., the intrinsic strengtii,
would require the knowledge of the exact internal failure site within the structuic;
this 1s difficult to implement experimentally. Therefore, comparison of externul
faiiure load to internal failure stress motivates the relevancy of the analy.is

presented in subsequent sections of this chapter.

C. SIMULATION RESULTS

The effects of homugeneous and heterogeneous internal stress distributions on
failure location are presented in the form of histogiams for the one-dimension:!
element distribution and for differert intrinsic strength variabilities. Graphic:!
representation of the comnparison of internal and external random variables for
homogencous and heterogeneous <tress distributions and different intrinsic
strength variabilities for the one-dimensional element distribution is also
presented. Statistical strength comparisons are presented in the form of linearizedd
Weibull cumulative distribution functions (CDF) of failure load te illustraie the
differences in statistical parameters for each data set. Finally, spreadslicct
formulas and the controlling macros for the simulations are presented in Append .«

A.
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The linearized Weibull CDF for the failure load, P, is obtained by isolating the
exponential term in Equation (3-1) and taking the logarithm of both sides of the
equation:

ool

§ (3-3)
The linearized CDF, F*(©), is formed by multiplying both sides of Equation

a

(3-3) by -1 and taking the logarithm once more:

e)

B

Substituting the failure load, P, as the independent variable into Equation (3-4)

F(o)=tn{ -t 1-Ho]]} = o 1n

(3-4)

gives the linearized CDF for the failure load, P:

p

B

The Weibull CDF in linearized form becomes a straight line with slope equal to

PP)=in{-In[1-AP)]} = aln

(3-5)

the shape parameter, . The value of F* takes on the value of zero when P equals
the shape parameter for the failure load, [3, or (P/B) equals one.
1. Significance of Failure Location and Stress Distribution

Failure data was simulated for the specimen models with one-dimensional
elements, respectively with homogeneous and heterogeneous stress distributions.
The effects to be observed are the external failure load magnitude and variability,
and the distribution of spatial locations of failure. Parameters examined are the
intrinsic strength variabilities through varying the Weibull shape parameter, q,

between high and low values while the Weibull scale parameter, B. for all
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for all specimens was held constant.. For each simulated test, failure location,
failure load and failure stress were recorded.

When the internal stress distribution is homogeneous, all of the elementul
stresses are equal. Therefore, failure of the structure is caused by the failure of the
element with the lowest intrinsic strength. Since the intrinsic strengths arc
randomly distributed among the elements, the location of failure is also random.
This random distribution of failure location is independent of the strength
variability. These results are illustrated in Figures 3-2(a) and 3-2(b).

The homogeneous stress distribution also implies constant elementu!
cross-sectional areas. Since stress is defined as load per unit area and the elemental
cross-sectional areas are constant, the failure load may be transformed 1o
equivalent data for failure stress by a single scalar value, (Area)-1; the location o
failure is not required to perform the transformation. Figures 3-3(a) and 3-3(L..
show this result for different strength variabilities. This single-valued scalur
transformation is independent of the strength variability as shown in Figure 3-4 in
which the results of the high and low variability data sets are merged.

For a heterogeneous stress distribution, the most likely failure location is tli..
element with the highest internal stress with low strength variability accentuatii;
this effect. Structural failure in this case does not depend on the lowest element...
strength, but on the lowest elemental stress-to-strength ratio. An element with &
high internal stress will generally fail unless it has a significantly high strength ..
an element with a lower stress has a significantly lower strength. As the strengi.
variability decrcases, the elemental intrinsic strengths approach a uniforin
deterministic value and, in the limiting case, failure will always be caused by the

failure of the element with the highest internal stress. Figures 3-5(a) and 3-5(1.
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Figure 3-3(a). Failure stress vs. external failure load for homogeneous stress and

high strength variability.
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Figure 3-3(b). Failure stress vs. external failure load for homogeneous stress and

low strength variablity.
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Figure 3-4. Failure stress vs. external failure load for homogeneous stress

(merged data sets).

illustrate the distributions of failures by element for high and low strength
variabilities.

The heterogeneous stress distribution implies a variation in elemental
cross-sectional areas. Therefore, failure load may not be transformed to
equivalent data for failure stress by a single scalar value but by a variable scalar
value, (Failure Area) 1, where the failure area is the cross-sectional area of the
failed element. Clearly the failure location must be known in this case for the
transformation to be performed. Interpretation of statistical data based on the
external failure load without regard for the failure location will result in an
erroneous estimation of the statistical parameters of the intrinsic strength
distribution for the structure (Figure 3-6). Figures 3-7(a) and 3-7(b) show the

variable scalar transformation for high and low strength variability and Figure 3-8

| N
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Figure 3-5(a). Distribution of failure location for heterogeneous stress and high

strength variability.
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shows that the variable scalar transform is independent of the strength variability.
When the failure location for the combined data sets is considered, accurate
estimation of the statistical parameters of the intrinsic strength distribution for the

structure is obtained (Figure 3-9).

2
] No Transformation
01
& 2
*
<9
Intrinsic
CDF
Empirical
41 CDF
(o]
-6 T
1 10 100

Equivalent External Load P

Figure 3-6. Comparison of intrinsic and empirical CDF for heterogeneous stress

and high strength variablity without transformation.
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Figure 3-7(b) Failure stress vs. external failure load for heterogeneous stress and
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Figure 3-8. Failure stress vs. external failure load for heterogeneous stress

(merged data sets).

The empirical strength CDI based on the external failure load converges quickly to
the intrinsic CDF for the material in the case of low strength variability; when the
strength variability is high, convergence is much slower and more simulations are
required. The convergences are illustrated for the homogeneous stress distribution
in Figures 3-10(a) and 3-10(b) for low variability, and 3-11(a) and 3-11(b) for
high variability.
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Figure 3-9. Comparison of intrinsic and empirical CDF's for heterogeneous stress

and high strength variablity with transformation.
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Figure 3-10(a). Comparison of intrinsic and empirical CDF's for homogeneous

stress and low strength variability after 39 simulations.
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Figure 3-10(b). Comparison of intrinsic and empirical CDF's for homogeneous

stress and low strength variability after 150 simulations.

29




High Variability

17 39 specimens

0'1

-1
e
*
<3

27

37

Intrinsic CDF
O Empirical CDF
247
-5 M

External Load P

Figure 3-11(a). Comparison of intrinsic and empirical CDF's for homogeneous

stress and high strength variability after 39 simulations.
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Figure 3-11(b). Comparison of intrinsic and empirical CDF's for homogeneous

stress and high strength variability after 150 simulations.
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2. Effect of Heterogeneous Stress Distribution on Failure

Behavior

In a homogeneous stress distribution, the element with the lowest strength
will be the source of structural failure regardless of its location. If the stress
distribution is heterogeneous, the influence of the lowest elemental strength on the
structural strength may be diminished if the weakest element has a low internal
stress. Thus, the heterogeneity of the internal stress effectively increases the scale
parameter of the empirical strength CDF for the structure. This is shown in
Figures 3-12(a) and 3-12(b). The strengthening effect of the heterogeneous stress
distribution is dependent on the intrinsic strength variability. As the variability
decreases, the elemental strengths approach a uniform deterministic value at which
magnitude of the statistical structural strength is maximum.

3. Effect of Structural Redundancy on Failure Behavior

The two-dimensional elemental distribution with heterogeneous stress
distribution is compared with the one-dimensional elemental distribution with the
same heterogeneous stress distribution to elucidate the effects of structural
redundancy: local load sharing and the width size effect. The two effects can be
visualized for high and low strength variability by using equal scale parameters for
the intrinsic strength distribution (Figures 3-13(a) and 3-13(b)). In each case, the
scale parameter of the empirical strength CDF for the structure appears to have
decreased. In addition, the strength variability and failure probability appear to
decrease at low failure loads. Since the internal stress distribution and, hence, the
structural geometry of the two models are identical, the failure characterization of
each should also be identical. This indicates that the strength statistics are

dependent on the elemental width unless these effects are accounted for. If these
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effects are taken into account, the parameters of the structural strength distribution
will be analytically valid for any elemental distribution, but the scale parameter

will still depend on the internal stress distribution.
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Figure 3-12(a). Comparison of empirical CDF's for homogeneous and

heterogeneous stress distributions and high strength variability.
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Figure 3-12(b). Comparison of empirical CDF's for homogeneous and

heterogeneous stress distributions and low strength variability.
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Figure 3-13(a). Comparison of empirical CDF's for one and two dimensional

elemental distributions with heterogeneous stress and high strength variability.
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Figure 3-13(b). Comparison of empirical CDF's for one and two dimensional

elemental distributions with heterogeneous stress and low strength variability.
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The decrease in the scale parameter of the empirical CDF is the result of
the width size effect. The two-dimensional elemental distribution gives rise to
sequential failure of the structure which begins as the weak elements in the bundle
fail. Since the internal stress distribution is heterogeneous, elemental failure is
governed by the elemental stress-to-strength ratio, but bundle failure is dictated by
the distribution of elemental intrinsic strengths within each bundle. As the number
of elements in the bundle increases, the likelihood of very weak elements within the
bundle increases and the sequential failure process within the bundle begins at a
lower external load. This is the width size effect.

The decrease in strength variability and failure probability at low failure
loads is caused by local load sharing within each bundle. Catastrophic failure of the
structure tends to initiate once adjacent elements within a bundle have failed. Local
load sharing tends to accelerate failure in elements adjacent to elements which have
already have failed. A single element with a very high intrinsic strength can carry
the additional load transferred to it by <. adjacent failure sequence if that external
load is relatively low. As the external load increases, even a very strong element
within the bundle is unable to bear the transferred load and catastrophic structural
failure ensues.

The width size effect and local load sharing effect appear to be dependent
on strength variability. As the strength variability decreases, the range of
elemental intrinsic strengths within a given bundle is limited and the strengths
approach a uniform deterministic value. The adjacent, relatively weak elements
required to start a failure sequence at low external load, and the relatively strong
elements required to stop a failure sequence once it starts are not likely to be

present. The two effects are diminished and failure characterization for low
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strength variability in this case approaches that for the one-dimensional elemental
distribution.
4.  Geometrically Complex Models

The failure characterization for high strength variability of the plate
model with a circular hole is compared with the "dogbone" model having a two-
dimensional elemental distribution and heterogeneous stress distribution to
illustrate the effect of a complex multiaxial stress distribution on one-dimensional
failure characterization. Figure 3-14 compares the empirical structural strength
distributions. For complex geometries such as the plate, determination of the
mathematical transformation between failure load and failure stress is a
complicated matter and requires numerical stress analysis.

All of the effects previously discussed are present in this comparison:
length size effect, heterogeneous stress effect, width size effect and local load
sharing effect. If all of these effects are considered and corrections included in the
simulation, the resulting structural strength distributions should coincide.

Since the simulation v/as based on a uniaxial failure criterion, only a one-
dimensional characterization of structural failure was possible for the plate; the
contributions of transverse normal stress and shear stress to the structural failure
characterization was not possible. In order to adequately model and numerically
simulate probabilistic composite failure resulting from a combined stress
distribution, a probabilistic failure criterion for combined stress is required. The

formulation of such a failure criterion will be performed in the following chapter.
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specimen with two dimensional elemental distribution.
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IV. FORMULATION OF COMBINED STRESS FAILURE
CRITERION

For a composite specimen, the applied stress tensor and the intrinsic strengths
associated with each component of the applied stress tensor are represented as
vectors in the combined stress space. The random intrinsic strength vectors,
associated (colinear) with the applied stress vector, are manifest in failure modes
tracible to the failure modes associated with failure under uniaxial stresses (i.e., the
stress components of the vector). A probabilistic failure criterion for combined
stress must account for each of these unique failure modes in terms of information
which is experimentally or analytically available a priori, such as the
micromechanical material behavior, the uniaxial intrinsic strength distributions
and the applied stress tensor. This may be accomplished by determining the joint
probability density function (pdf) in the stress space and integrating it over the
domains associated with each failure mode. The failure modes may be either
mechanistically and/or probabilistically interdependent (coupled) giving rise to
four possible combinations of mechanistic coupling and probabilistic dependence.
Excluding the case in which the failure modes are mechanistically and
probabilistically coupled, the remaining three combinations would be
experimentally indistinguishable and it is hypothesized in this investigation that a
failure criterion formulated for one combination would be phenomenologically
equivalent for all three combinations. Using the combination of mechanistically
deterministic coupling and probabilistic independence, of the intrinsic strength the
reliability of the composite may be expressed for the physical combined stress

space in terms of Boolean operators. When the random vector functions defining
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ihe failure modes in the combined stress space are substituted into the Boolean
expression for reliability, the resulting transformation of random variables makes
the random vector functions orthogonal and eliminates the coupling of the failure
modes in the transformed space. The reliability in the transformed stress space
may be converted to reliability in the physical stress space and the joint pdf in the
physical stress space determined. The formulation presented herein will be limited

to spatially two-dimensional tensile stress.

A. BACKGROUND

A composite specimen under combined stress has random intrinsic strengths
corresponding to each component of the applied stress tensor. These intrinsic
strengths, as well as the applied stress tensor, can be represented as colinear vectors
whose direction in the combined stress space is known as the loading path. Each
component of the stress tensor is manifest in a unique failure mode which, in the
case of normal stress components, 1is also dependent on the sign of the stress
component since different failure modes arise from tensile and compressive
normal stresses. The occurrences of each failure mode for a composite specimen
may be visualized in the combined stress space through thought experiments in
which each intrinsic strength vector is observed over the range of all possible
loading paths in the combined stress space.

In the case of biaxial tensile combined stress, the stress components and their
associated intrinsic strengths may be represented as vectors with components along
each axis of the biaxial stress space. The representation of a specimen under an
arbitrary biaxial tensile stress is illustrated in Figure 4-1. Such a specimen under

biaxial tensile combined stress has two possible failure mechanisms (modes),

longitudinal (M,) and transverse (M.). each with an associated intrinsic strength
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Figure 4-1. Representation of a specimen under arbitrary biaxial tensile stress.

vector, F, and ¥, respectively, which is colinear with the stress vector, §. In the
biaxial stress space, any loading path can be defined by m,,, which is the slope of
the stress vector and its corresponding strength vectors. The failure mode which

will occur in a given specimen along a particular loading path is determined by the

smaller of the intrinsic strength vectors along the loading path, m,.
Each specimen has associated with it random uniaxial intrinsic strengths, X,
and X,,, along each axis of the biaxial stress space. In a thought experiment fcr an

arbitrary specimen, each of the intrinsic strength vectors define a vector function

in the biaxial stress space as m,, is varied over the range of the tensile domain, i.e.,

between zero and infinity. The function defined by the strength vector F,,

f\(o1,022X1’@1)4?1)1(01,02:)(1'@1)§1+029/2 (4-1)
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intercepts the O, axis at the uniaxial strength X, and has a set of coupling
parameters given by ©; which define its shape in the stress space in terms of the

stress components, G, and 0. Similarly, the curve defined by the strength vector

£2 3

£2(01,02§X2’®2)=01§1+(F2}z(61 ’023X2’®2)S‘/2 (4-2)

intercepts the G, axis at the uniaxial strength X, and has a set of coupling
parameters given by ©®,. Each curve represents a deterministic failure criterion
for a particular failure mode associated with that specimen; F;(6,,65:X,,0;)

represents failure mode M, and F>(6,,6,:X,,0,) represents failure mode M,.

The point of intersection of the two curves represents the stress state at which both
failure modes occur simultaneously; this point is called the joint failure state. The
location of the joint failure state with respect to the loading path determines the

ultimate failure mode. This will be investigated in the following section.

B. GENERAL BOOLEAN REPRESENTATION OF FAILURE
MODES

Once the physical conditions defining the occurrence of each possible failure
mode for a composite subject to combined stress are defined mathematically, the
probability of occurrence for each failure mode may be expressed in terms of
logical (Boolean) operations. The magnitudes of the uniaxial intrinsic strength
vectors are the random variables for these operations and the magnitude of the
stress vector represents the realization of these random variables, i.e., the

manifestation of the failure modes. When the mathematical representations for all
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of the failure conditions are combined, a Boolean expression may be used to
represent all of the possible failure conditions for a ziven loading path.

Failure results in mode M, for an arbitrary specunen in biaxial tensile stress is
depicted in Figure 4-2. Vv hen the magnitude of the applied stress vector, §, equals
or exceeds the magnitude of the intrinsic strength vector, F,, failure mode M, will
result if the magnitude of E, is the minimum of the strength vector magnitudes for

the specimen. Thus, any specimen with a combination of intrinsic strength

vectors, F

, and £2, such that IF,l < IFo! will result in failure due to mode M,

whenever |[F;| <ISI. The probability of failure due to mcde M, is:
Foslp£:/ds]) (“+3)

given the condition that |E;| < IE5i. This condition is equivalent to the geometric

configuration in which the joint failure states lie above the loading path.

Failure results in mode M, for a composite specimen is shown in Figure 4-3.

When the magnitude of the applied stress vector, 8, equals or exceeds the

magnitude of the intrinsic strength vector, £2, failure mode M2 will occur if the

magnitude of E, is the minimum of the strength vector magnitudes for the

specimen. In this instance, any specimen with a combination of intrinsic strength
vectors, F, and E,, such that [F5! < {E;! will result in failure due to mode M, when

IE! <181, Failure due to mode M, may therefore be represented in Boolean

notation as

Fo|s|=pr{| 2148} (4-4)
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Figure 4-3. Representation of failure due to mode M,, in biaxial stress space.
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given that IE->! < IE,l. Similarly, this condition is equivalent to the geometric
configuration in which the joint failure states lie below the loading path.

By combining the failure conditions for each failure mode, the failure
condition for the specimen may be expressed in terms of logical statements.
Failure occurs when the magnitude of the stress vector equals or exceeds the

minimum magnitude of the intrinsic strength vectors or,
(SHEWE 4-5)

The probability of failure for either failure mode may now be expressed as

F(s|pr{ £ N E-|ds]) (4-6)
The requirement for the minimum strength magnitude may be eliminated if
Equation (4-6) is recast in terms of the composite reliability. While composite
failure is defined as the occurrence of either failure mode, composite reliability is

defined as the occurrence of neither failure mode and is defined as

Rc(}§»:1 —Fcﬂ §l) . (4-7)

or, in terms of the strength vector magnitudes,

R($kPr|E WEHs]) @-8)

Equation (4-8) implies that the magnitudes of each strength vector must be

greater than the magnitude of the stress vector. Thus, two conditions must both
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apply for the composite to be reliable, [E;| >8] and IF,! >I8]. The composite

reliability may now be expressed in terms of these two conditions

R|8F-Pr{|£: b8 land] £ 5]} (4-9)

In terms of Boolean operations, Equation (4-9) represents the intersection of the

two reliability conditions and may be rewritten as

ch§“‘”{[|f1f>‘§”““sz§”} (4-10)

Equation (4-10) is a general expression for the reliability of a composite under
biaxial tensile stress conditions. However, additional simplifications must still be
made before it may be effectively applied. These simplifications will be identified

in subsequent sections of this investigation .

C. COUPLING OF FAILURE MODES

When the deterministic failure criteria which represent the failure modes of a
single specimen in the biaxial stress space are orthogonal to one another, the failure
modes of the composite are considered independent (uncoupled). These conditions
are schematically illustrated in Figure 4-4. Conversely, deviation from
orthogonality by the specimen failure criteria indicates that the failure modes are
coupled. Coupling may result from the effect of the orthogonal stress components
on the uniaxial intrinsic strength associated with the other stress component. This
is called mechanistic coupling and is governed by the coupling parameters, ©.
Coupling may also result from an interdependency between the statistical ordering

of the random intrinsic strength vector components. This condition is defined as
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Figure 4-4. Independent (uncoupled) failure modes in the biaxial stress space.

probabilistic coupling and is the result of an interdependency between the relative
statistical orders of the random uniaxial intrinsic strengths.
1. Mechanistic Coupling

The specimen failure criteria are represented in the biaxial stress space as
F1(01,62:X1,0y) and F»(64,62;X,,0,). The stress component dependencies of
these failure criteria are determined by the coupling parameters, ®, and ©,. If ©,
and @, are constant parameters, then both ¥1(0,0,;X,0,) and F2(0,62;X2,682)
will be homologous; i.e.. each will maintain the same shape in the biaxial stress
space for every specimen. This is defined as mechanistically deterministic
coupling and is schematically illustrated in Figure 4-5(a). If ®, and G, are random
parameters for each specimen, then each failure criterion will have different stress
dependencies, and therefore different shapes, in the biaxial stress space for
different specimens. This is defined as mechanistically probabilistic and is

illustrated in Figure 4-5(b). In the latter case, the failure criteria would have the
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Figure 4-5(b). Mechanistically probabilistic coupling.

49




functional forms F(0;,065; X;,0,(01)) and F»(64,07; X5,02(03)) where ©,(0,)
and ©,(05) are represented by statistical distribution functions.
2. Probabilistic Coupling

The components of the random intrinsic strength vectors may be
dependent on one another if their associated random uniaxial intrinsic strengths are
interdependent. An example of intrinsic dependency may be visualized in the
pairing of the uniaxial intrinsic strengths by the rank ordering of their magnitudes
(i.e., low strength to low strength, high strength to high strength, etc.). The rank

order of the random uniaxial intrinsic strengths for the population of specimens

are determined by their respective statistical distribution functions, Fx,(G;) and

Fx-(067), shown in Figure 4-6 and the mechanistically deterministic coupling in

Figure 4-7. The failure modes occurring along entire segments of a given loading
path will be the same if the coupling parameters of the failure criteria are
deterministic and will vary randomly if the coupling parameters are probabilistic.
On the other hand, if the components of the random intrinsic strength
vectors are independent of one another, the uniaxial intrinsic strengths for any
specimen will be randomly paired. The failure modes occurring along any loading
path will vary randomly regardless of the nature of the coupling parameters. The
spatial distribution of joint failurc states in the three combinations of mechanistic
and probabilistic coupling where the failure modes vary randomly along any
loading path are apparently indistinguishable from one another. Therefore, the
same mathematical formulation of the probabilistic failure criterion for the
composite should be valid for any of the three combinations of coupling.
For combined biaxial stress, there may exist an interdependency between the

uniaxial intrinsic strengths, X; and X;. If so, then the components of the failure
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Figure 4-6. Uniaxial strength distribution functions in the biaxial stress space.

O, 4
2 FXz(GZ)
4 R
X,
: my;
X,
2
<
l \\\\\\\\\\\
X
\\\\\\\\\\\\\\\\\\\ | '
1 5 ; - -
~ : X 1 X 1 X ) 1

Figure 4-7. Mechanistically deterministic and probabilistically dependent

coupling.

51




criteria, (F1); (01,62:X,,0¢)and (F2)2(01,62:X5,07), the rank order of which are
determined by the respective distributions, F(,)(0,,62;X,,0,) and
F#5),(01,62;X2,02), would also be interdependent and the failure modes are
considered probabilistically dependent. In this case, a specimen with a low uniaxial
intrinsic strength in the longitudinal direction will have a low uniaxial intrinsic
strength in the transverse direction; a specimen with a high uniaxial intrinsic
strength in the longitudinal direction will have a high uniaxial intrinsic strength in
the transverse direction. In terms of the distributions of the failure criteria
components,

F(}-‘ '](01 ,0,=0;X; ,@,FF(FZ}Z(GFO,GQ;Xz,@z) (4-12)

If, in a thought experiment for this case, the uniaxial intrinsic strengths for all
specimens in the population were rank ordered and their individual failure criteria
plotted in the biaxial stress space, a continuous locus of joint failure states for the
population may also be plotted. Given any arbitrary loading path, the failure
modes occurring over entire segments along the loading path are the same. If the
uniaxial strength distributions have the same shape parameter, then the failure
modes occurring along a given loading path remain the same along the entire path.
These phenomena may be visualized in Figures 4-8(a) and 4-8(b).

The occurrences of the failure modes are different in the case where no
interdependency exists between the uniaxial intrinsic strengths, X; and X,. The
pairing of the uniaxial strengths is random; and the failure modes are considercd

probabilistically independent. In this case, a specimen with a low uniaxial intrinsic
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Figure 4-8(a). Mechanistically deterministic, probabilistically dependent coupling

with uniaxial strength distributions having equal shape parameters.
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strength in the longitudinal direction may have a high uniaxial intrinsic strength in
the transverse direction, etc.

There are four possible combinations of mechanistic and probabilistic coupling
in a population of composite specimens. The combination of deterministic
mechanisms and probabilistic dependence has unique characteristics and has been
previously examined. The remaining three combinations, deterministic
mechanisms with probabilistic independence, probabilistic mechanisms with
probabilistic dependence and probabilistic mechanisms with probabilistic
independence, share one significant characteristic. In each case, no continuous
locus of joint failure states may be plotted in the biaxial stress space. Hence, a
random mixture of failure modes will result along any given loading path. This
phenomenon is illustrated in Figures 4-9(a), 4-9(b) and 4-9(c).

Depending on the coupling parameters associated with the failure modes, the
failure characterizations of the three combinations may be indistinguishable in the
biaxial stress space. For this reason, the cumulative combined-stress failure
criterion for one combination will be assumed, for the purposes of this
investigation, to apply to all three combinations. In the following section the
combined-stress probabilistic failure criterion will be formulated for the
combination of deterministically coupled failure modes with probabilistic

independence.

D. FORMULATION OF FAILURE CRITERION

The joint failure probability density function (pdf) for the biaxial stress space

is defined as the probability that both failure modes My and M, occur at any given

biaxial stress state in the composite and is expressed in terms of the applied stress

components. If the joint failure pdf for the biaxial stress space and the spatial
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domains associated with each failure mode are known, then the probability of
failure for the composite may be obtained by integrating the joint failure pdf over
the stress domains for both failure modes. However, the joint failure pdf is usually
not available. In this case, the stress components may be mapped into a
transformed stress space for which the random variables are independent and the
probability of failure in the transformed space determined. The joint failure pdf
for the physical stress space may then be determined by differentiating the
transformed probability of failure with respect to the physical stress components.
A mathematical model for the mechanistic dependency will be proposed based on
the micromechanical behavior of composite failure processes. This mechanistic
dependency model will then be used for transformation and derivation of the joint
probability failure function.
1. Formulation for General Mechanistic Coupling

The objective of this formulation is to obtain the joint pdf for a composite
in the tensile biaxial stress space for an arbitrary coupling of failure modes. Under
the hypothesis that the three of the four combinations of mechanistic and
probabilistic coupling are indistinguishable in the biaxial stress space, the
formulation of a probabilistic failure criterion for one combination will be
applicable to all three. The strength coupling case for mechanistically
deterministic coupling in conjunction with probabilistically independent intrinsic
strengths will be explored. Under these conditions, the coupling parameters of the
specimen failure criteria are constant and that the random uniaxial intrinsic
strengths are independent of one another.

The deterministic specimen failure criteria have been defined in vector

form by Equations (4-1) and (4-2):
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51(01’029(1’@1):(?1)1(01»029(1’@1)91"6292
52(01’022X2,@z)=°1§1+(F2)z(°1’02iX2’92)92

The failure criterion for each failure mode can be partitioned into the uniaxial

strength, X;, plus a coupling effect, C; j(5/;):

(FiH{or02%,01X+Cploy) (4-13)
and

(Fz)z(Cﬁ ,02?X2,92)=X2+C21(°1) (4-14)

where C12(65) and C5 1(0) represent arbitrary coupling functions. The uniaxial
failure pdf's of the stress components are taken to be known and denoted
respectively by fx1((51) and fxz(Gz)-

The general Boolean expression for composite reliability in vector form
was previously given by Equation (4-10) stating the logical conditions that a sample
is reliable only when the strength vectors for each mode both exceed the applied

R(sllpe][ 21 bS] ] [ [EHs]

If the strength vector is assumed to be path independent, then Equation

(4-10) may be expressed in terms of the scalar components, (F1)q or (Fy)>, and




(F2)q or (F>),. The reliability condition for failure mode My can be expressed in
terms of the uniaxial condition, (T‘1)1 > 0 and the reliability condition for failure

mode M can be expressed in terms of its uniaxial condition, (F5), > G,. Equation

(4-10) may then be rewritten in terms of the strength vector components:
RC(0'1,02)=Pr{[(fF 1)1>01] . {(;:Z)ZXSZ]} (4-15)

Equation (4-15) is the intersection of the reliability conditions for the two
failure modes and may be expressed in terms of the conditiona! probabilities of the

two reliability conditions:

RC(G1,02)=Pr{[(?1)1>51]I[(FZ)ZXSZ]}P "{UTZ)ZX;Z} (4-16a)

orT,

Ro 1’02}=Pr{[(?2)2>02m(ﬂ)1>01]}Pf{(ﬂ)1>"1} (4-16b)

The scalar components of the strength vectors, ¥ and F>, (F{); and

(F>)y, are related to the uniaxial strengths, X; and X~, by Equations (4-13) and

(4-14). Substituting these relations into Equations (4-16a) and (4-16b) and

rearranging the inequalities in terms of X and X5,

Rlo).0,k
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Pr{{XP{GFCTZ(GZ)]}I (xx{or-Calol }Pr{X2>[02—Cz1(01)]} (4-17a)

or,

R (o105

Pr{ {X2>[62—Cz1(01)]}| {XP[GVCTZ(GZ)}}}Pr{XP{GrCQ(GZ)}} (4-17b)

Rearranging the inequalities in terms of X and X, is equivalent to

transforming the random variables from the strength vector components to the

uniaxial strengths. The composite reliability has been mapped from the physical
stress space defined in terms of G and G5 into a transformed stress space defined in

terms of transformed stress components 6" and G5 by

61=0,-Cy2(02) (4-18a)

and,
6,"=6,~(21(07) (4-18b)

Differentiating Equations (4-18a) and (4-18b) gives the relations

801'_802:1

5)61 862 (4-]98)
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o0 1 _ (K:'Q
80'2 doz (4-19b)

8(52,_ &21
801 d0'1 (4-19¢)

and,

#o; _ Fo, I
dc1doy 90190, (4-19d)

Figure 4-10 depicts the transformed stress space. Equations (4-17a) and

(4-17b) may be rewritten in terms of 1’and 65" as

Rlo 1»02)=Pf\{x1>01'“ [>12>02']}PF{X2>02'}
(4-20a)

and,

R (0.0, )=Pr [X2>02'“[X1>01'}}PY{X1>01'}
(4-20b)
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Figure 4-10...Transformed biaxial stress space.

The uniaxial strengths , X4 and X5, are taken as independent random
variables. Therefore, in terms of the transformed stress components, G;’and

02',the conditional probabilities in Equations (4-20a) and (4-20b) become

Pr‘\ [X1>C1,“ [X2>02’}/=Pr{x1>01'> (4-21)

and,

Pr'\{szz’mXPGf] /=PF{X2>"2'> (4-22)

Substitution of Equations (4-21) and (4-22) into Equations (4-20a) and

(4-20b) results in a single logical expression for the composite reliability:
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R(01.02Pr{ X501 |Pr{ X0, (4-23)

The two Boolean terms in Equation (4-23) represent uniaxial reliabilities

and, hence, the composite reliability in functional form becomes

Rc(°1 ’02)=Rx ,(01’)Rx2(02') (4-24)

The reliability domain and the joint failure pdf have not actually changed.
However, the transformation of the stress space has recast their mathematical
expressions in terms of the transformed variables.

In order to determine the joint failure pdf, the composite reliability is
converted into the joint CDF for the composite, F.(51,02), since F.(01,02) is
defined as the area integral of the joint failure pdf over the domains of the failure
modes in the stress space. Since F = 1-R, Equation (4-24), expressed in terms of

CDF's becomes
1_Fc(o-‘l GZ)Z{ I=Fx 1(0.1 ,)}{ I_FXZ(GZ’)}

Oor,
F, c(01 ’GZ)ZFX 1(01')'*Fx2(52’)‘1?x 1(61')Fx2(°2') (4-25)

Since R.(64,65) is invariant for both the physical and transformed stress spaces,

F.(G1,067) 1s also invariant for the two spaces.




The joint failure pdf in the transformed stress space, fx, x,(5¢",05"), may

be obtained by differentiating the joint CDF by each of the transformed variables,
61 and G5":

fx1,x2((51"(‘2 Fﬁ—'

‘—ac—ig{lax 1(01 ')FXZ(GZI)‘FX 1(01 ,)_ FXZ(GZ')]

1

(4-26)

—32—1,{FX1(G1’}fx2(02’fo2(62’)]
~tx [orixfo?) (4-27)

The absolute value is included in Equation (4-26) since the joint failure
pdf must be a positive-valued function; the differentiation of reliability and failure
probability result in positive-valued and negative-valued "mirror images” of the
joint failure pdf because F.=1-R.

The joint failure pdf in the physical stress space, {(r,), ,),(51,02), may

similarly be obtained by differentiating the joint CDF by each of the physical

variables, 6 and 3o:

*
f(r,)l,(fztz(<’1"’2):£gf c
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=a%02{1’ x 01 Fx o2} [or ’)_FXZ(GZ’,]

1

fals e

fRsp e s

{2 dorudos HEZ pfood

oo !

820'1, }f ,)‘( 2)202' ){ ’
{501352 x1(01 90100, XZ(GZ) (4-28)

Substituting the relations of Equations (4-19a) through (4-19d) into

)’ ("1 )fxz( )

Equation (4-28) tives an expression for the joint failure pdf in the physical stress

space in terms of the uniaxial failure pdf's and the coupling functions:

f{r,)1,(r2)2(01’02H11l)fxiﬁf)fxztcz')"( dfcfx Lo )fxicf}fx‘l“z')

do,
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(L i

doy

AO}fx1(01'}sz(cz')*{o)f’m(of)&z("?’)

41)( dcy |xfor) | doﬂ)[ xioz)

d°2} 00, \ doy a0,

o)y (01" Holty [05')

‘( dCp afx1(01’) dCy Efxz(cz')

do, | doy d°1} 90 (4-29)

In order to determine the interdependency of the physical random
variables , (F1); and (F5),, the conditional probabilities , fr )15, (O lo5) and
f(?2)2|(}"1)1(02‘01)* must be determined. The conditional probabilities may be found

using the relations
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\\_f(fl}! v(}‘z‘z((‘;1 ’02)

f{?ﬂw |(F2}2(61 '02’—

fx{o2) (4-30)

and,

(Gzlq):f(fl% ’(7217(61 ’02)

f,
{?2)2”?1}1 fX ](0'1} (4-31)

(F1)y and (F5)o, are independent only if their conditional probabilities

equal the equivalent uniaxial pdf's or,

fir), I(rz};,(@ l<52):fx ](01) (4-32)

and,

f{}“z.kI(T,)-(02|G1):fxz(02) (4-33)

By substituting Equation (4-30) into Equation (4-32) or Equation (4-31) into

Equation (4-32), a single independence criterion for (F;); and (F,), may be

obtained:
f{r‘)‘,(f2}2(01 v02):fx ,(01 }fx2(02) (4-34)

(F1); and (F5), are only independent if there is no mechanistic coupling.

The expression for the joint failure pdf in the physical stress space, Equation (4-29)
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will reduce to the independence criterion for (F1)¢ and (F5),, Equation (4-34),

only if
Cp_91_,
dGZ d(51

(4-35)

and, 61" = 641 and 65" = 6. These conditions are satisfied only when there is no
mechanistic coupling, or C2(02) = C51(5¢) = 0. If mechanistic coupling is
present, i.e., either C45(Gy) or C»1(G1) are nonzero, then Equation (4-29) will not
reduce to Equation (4-34), and (F¢){ and (F,), cannot be independent random
variables.

Equation (4-34) demonstrates that the conditions for independence of the
intrinsic strength vectors in the biaxial stress space are only satisfied if there is no
mechanistic coupling. To illustrate the explicit mathematical operations, this proof
is repeated for explicitly defined linear coupling functions in Appendix B.

Both the joint CDF (joint probability of failure) and the reliability for the
composite are determined by integrating the joint failure pdf over one or more
specific domains in the stress space. The result of Equation (4-29) is evidence that
when mechanistic coupling is present, the expression for the joint failure pdf is
complicated and the evaluation of its area integral may require significant time and
effort. Both the reliability and the joint CDF are the same in the physical and
transformed stress spaces. Therefore, Equation (4-24) may be used in place of the
Jjoint failure pdf to calculate the reliability or joint CDF of a composite under

combined stress provided the coupling functions and uniaxial CDF's are known. If

the uniaxial CDFs, Fx1(01) and FXZ(O’Z), are represented by Weibull distributions
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(Equation (3-1)), then ,using Equation (4-24) and the relation R=1-F, the

composite reliability may be expressed as

Ro1.0oerp {w;?w]“' {@z«mq“z

and the joint CDF , or cumulative probability of failure, for the composite may be

(4-36)

expressed as

Fo(01,.02)=1-exp {giﬂc_ﬂ“‘ { m]az

B B2 (4-37)

Equations (4-36) or (4-37) thus represent the probabilistic failure
criterion in terms of Weibull distributions for biaxial combined tensile stress with
mechanistically deterministic and probabilistically independent coupling of failure
modes. Upon the identification of the mechanistic coupling function, either of
these criteria may be used to evaluate the probability of failure of a structural
element within which the stresses 6 and G, are uniform.

2.  Mechanistic Coupling Functions in Biaxial Tensile Combined

Stress

For a composite under biaxial tensile combined stress, a mechanistic
coupling function associated with each failure mode is needed. The analytical form
for such a coupling function may be inferred from the micromechanical behavior

of the composite under biaxial combined tensile stress. The effects of transverse
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tension on the longitudinal strength are discussed first followed by a discussion of
the effect of longitudinal tension on the transverse strength.
a. Longitudinal Strength Change Due to Transverse Stress

The effects of transverse loading on longitudinal strength for a composite specimen
under biaxial tensile combined stress are illustrated in Figure 4-11. As the
transverse component of the applied stress, o, is increased, localized stress
concentrations about microflaws within the matrix increase. These localized stress
concentrations interfere with the transmission of the applied longitudinal loading
from broken fibers to the adjacent fibers, effectively increasing the ineffective
length, 8, of the composite. As d increases, the number of adjacent fiber breaks
within  also increases and longitudinal failure will occur at a lower level of
applied longitudinal loading.

When the transverse stress, 6,=0, loading is uniaxial in the
longitudinal direction and the longitudinal strength vector component, (F;); is
equal to the uniaxial longitudinal strength, X;. In the limiting case, the transverse
component of the applied loading is increased to a level such that the matrix is no
longer capable of transmitting the longitudinal component of the loading to
adjacent fibers, but not high enough to cause failure due to the matrix alone. In this
case, O becomes large and (F,), approaches a minimum value. This minimum
value is the fiber bundle strength, Gy, which is the tensile strength of the composite
fibers alone with no matrix to allow for local load sharing.

Since the transition from uniaxial longitudinal tensile stress to the bundle strength
may be considered a gradual degradation of matrix properties, the usual partial
fraction form of mixture equation employed in micromechanics is applicable.

Such a partial fraction form can also be expressed in exponential form
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Figure 4-11. Micromechanical effect of transverse loading on longitudinal

strength.

as derived in Appendix C. The exponential form is more convenient for operations

in probability calculations and is adopted herein:

)] (4-3%)

where Cy5 is a constant coupling parameter. This model is shown graphically in

(ﬂ)‘("z}Xr(Xl*’b)""pHchGz

Figure 4-12.

This model satisfies the limiting conditions. When 0,=0, the
exponential term is also equal to zero and therefore, (F);=X;. As O, becomes
large, the exponential term approaches unity, and (F;), approaches the fiber

bundle strength, . In addition, when the coupling parameter, C,5, is zero,
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Figure 4-12. Effect of transverse stress on longitudinal strength in biaxial stress

space.

longitudinal strength should be independent of transverse loading. If this condition
is imposed on Equation (4-41), (F;);=X;, which is the required result.
b. Transverse Strength Change Due to Longitudinal Stress

The effect of longitudinal loading on transverse strength for biaxial
tensile combined stress are illustrated in Figure 4-13. The matrix can be
considered as containing a finite number of inherent microflaws which are
randomly distributed throughout its volume. Uniaxial transverse loading does not
create new microflaws, but instead increases the stress intensity about the pre-
existing microflaws. Matrix failure will, therefore , emanate from from the
largest pre-existing microflaw, since the stress intensity at that location will be
highest. However, as the longitudinal component of the applied stress, Gy, is

increased, weak fibers begin to break, forming additional microflaws in the mutrix
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Figure 4-13. Micromechanical effect of longitudinal loading on transverse

strength.

and further increasing the stress intensity in the vicinity of the fiber breaks,
thereby introducing additional flaw sites and increase the probability of fiilure
resulting in a lower transverse strength.

When the longitudinal stress, 64=0, loading is uniaxial in the
transverse direction and the transverse strength vector component, (F5), is equal
to the uniaxial transverse strength, Xo>. In the limiting case, the longitudinal
component of the applied loading is increased to a level such that a large number of
fiber breaks are present in the composite, but not high enough to cause failure due
to fiber breaks alone. In this case, localized stress intensities become significantly

high and (F5), approaches zero.

A possible model for this vanation in transverse strength is
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(Folloy)= Xz[l—exp(—

:‘ (4-39)

G109

where C5 4 ir another coupling parameter. This model is displayed in Figure 4-14.
This mod<i satisfies the iimiting conditions. When ©1=0, the exponential term is
also equal to zero and therefore, (F5)>=X5. As Gy becomes lorge, the exponential
term approaches unity, and (F»), appt<uches zero. Finally, when the coupling
parameter, Co 1, is zero, transverse strength should be independent of longitudinal
loading. If this condition is imposed on Equation (4-39), (F); =X, which is the
expected result.

The combined stress probabilistic failure criterion for these coupling
models may now be formulated. The composite reliability conditions for biaxial
tensilz stress have been given in Equation (4-10) as (F4)+>04 and (F2)>>0,.When
the results of Equations (4-38) and (4-39) are substituted for the intrinsic strength

vector components and the reliability conditions are recast in terms of the uniaxial

strengths, X4 and X5, the resulting inequalities,

—GDex
y{ C1252 J

8(‘51 2%, C12)
)

C1202 (4-40)

and,
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Figure 4-14. Effect of longitudinal stress on transverse strength in the biaxial

stress space.

=(01,65C51)
I

- %7
X, 1
1~ex¢{4{
G104

provide the transformed stress components.

(4-41)

For uniaxial CDF's given by Weibull distributions, the probabiiistic

failure criterion in terms of reliability may then be expressed as

Rc(ﬁj-(% =exXp {g(61~02:GD,C12)]a1{h(GLGZ:CZ])]OZ
pa B1 BZ

(4-42)

or, in terms of cumulative probability of failure, as
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Fc(crcz):l—exp{ {g("%“z;“o’cxz)r h(cvﬁzicm) *
By By ]
(4-43)
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V. APPLICATION OF COMBINED STRESS FAILURE
CRITERION

Reliability analysis or failure prediction for composite structures under
multiaxial combined stress may be performed through the use of a post-processor
for finite element stress analysis. Development of such a post-processor is a three-
stage process. First, a probabilistic failure criterion for combined stress must be
determined. Second, the structure must be subdivided into elements in order for
the stress distribution within the structure to b: determined using finite element
stress analysis. Finally, the elemental stress data must be input to the probabilistic
failure criterion and the resulting elemental reliabilities mathematically combined
into an overall reliability or failure probability for the structure. This requires the
definition of a load sharing model for the structure which defines the structural
failure sequence.

The first stage in the development of a reliability post-processor is the
determination of the combined stress probabilistic failure criterion for the
composite as was performed in Chapter IV. The mechanistic coupling functions
for each failure mode must first be defined. The analytical forms of these coupling
functions are based on the micromechanical behavior of the composite under
combined stress. Equations (4-41) and (4-42) are examples of mechanistic
coupling functions for biaxial tensile combined stress. Each coupling function has
one or more parameters which must be identified. Examples of possible
parameters for coupling equations include the elastic moduli of the fiber and
matrix, fiber bundle strength, matrix stress intensity factors, etc. Once the

coupling tfunctions are fully defined. Equation (4-27) may be used to formulate the
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joint failure pdf for the composite. The joint failure pdf is then integrated over
specific domains in the stress space associated with each failure mode to determine
either the joint failure CDF or the composite reliability. Either of these functions
constitute the probabilistic failure criterion for the composite and are coupled by
the relation, F.=1-R_.

The second stage in the development is the establishment of an element grid for
the composite structure so that the internal stress distribution may be determined
via finite element analysis. The elements must be small enough that the stress
distribution within the element is approximately homogeneous. The numerical
simulations presented in Chapter III showed that the estimation of the intrinsic
probabilistic strength of a composite structure based on the externally measured--
or, in the case of finite element analysis, calculated--stress is erroneous when the
stress distribution within the structure is heterogeneous. In addition, the size
effects described in Chapter III must be taken into account in order for the
reliability at a given location within the structure to be independent of the
elemental grid. Corrections for the size effects may be incorporated into the
parameters for the coupling equations.

When the stress data from the finite element element analysis are combined
with the probabilistic failure criterion, structural reliabilities for each element are
obtained. The overall reliability of the structure is a function of the elemental
reliabilities. This function is defined by a load sharing model, which defines the
failure sequence for the structure. An example of a load sharing model is the
"weakest link” model, in which no load sharing between elements occurs and the
entire structure fails when one element fails. In this model, the overall reliability

of the structure is defined as the product of the elemental reliabilities. Thus, if a




rectangular grid of m elements by n elements is used, then the overall reliability
for the structure for the 'weakest link' model is defined as
mn

Composites are structurally redundant and all exhibit load sharing to some
degree. While the "weakest link" model does not reflect the actual failure process
in a composite, it does represent the weakest possible failure sequence for the
structure and, hence, Equation (5-1) will result in a lower bound for the structural

reliability of the composite.
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VI. CONCLUSIONS AND RECOMMENDATIONS

This investigation motivated the need for an anisotropic probabilistic failure
criterion for composites. This was performed by illustrating some of the physical
and statistical phenomena which characterize probabilistic failure in composite
structures through the use of numerical simulation. It was demonstrated that
external load was not a sufficient measure of the internal strength when the internal
stress distribution is nonuniform, and could only be used to characterize the
internal strength in that case if the location of failure is known. In addition, some
of the statistical size effects were illustrated for nonuniform stress distributions. It
was also shown that a uniaxial probabilistic failure criterion is inadequate for
characterizing failure in complex composite structures in which the internal stress
distribution is multiaxial even when the applied loading is uniaxial. This was the
motivation for formulating a probabilistic failure criterion for composites under
combined stress conditions.

The essential elements of a combined stress probabilistic failure criterion were
identified. These elements included the vectorial nature of applied stress ana
intrinsic strength, multiple failure modes with unique intrinsic strengths, the
coupling of failure modes and the joint failure probability density function. The
general formulation of a probabilistic failure criterion was performed by
developing a logical representation of composite failure under combined stress
using Boolean operations and converting this representation into functional form
through the use of statistical distributions. It was demonstrated that the intrinsic
strength vectors for a composite under biaxial tensile stress are independent only ii

the failure modes are uncoupled. Exponential coupling models for composites
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under biaxial tensile combined stress were inferred from composite
micromechanics. The essential elements of a finite element post-processor for
multivariate structural reliability analysis was discussed.

Further investigations regarding the combined stress probabilistic failure
criterion are recommended in two areas. First, the hypothesis that three of the
four combinations of mechanistic and probabilistic coupling are externally
indistinguishable should be tested through the use of numerical simulation.
Second, the formulation of the combined stress probabilistic failure criterion

should be expanded to include the effects of shear and compressive normal stresses.
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APPENDIX A. SIMULATION SPREADSHEETS AND MACROS

Numerical simulation was performed using the Microsoft ExcelTM
spreadsheet with each elemental distribution having its own spreadsheet and
controlling macro. Simulations for the "dogbone" specimens with one-
dimensional elemental distributions were performed using the spreadsheet
SIM9x1UNIAX and macro CONTROLO9x1UNIAX. Simulations for the
"dogbone” specimens with two-dimensional elemental distributions were
performed asing the spreadsheet SIM9x3UNIAX and macro
CONTROL9x3UNIAX. Simulations for the plate model were performed using the
spreadsheet SIM24x24UNIAX and macro CONTROL24x24UNILLS.

High strength variability was imposed by setting the Weibull shape parameter,
0=5 and low strength variability was imposed by setting 0=25. For the "dogbone”
specimens, a heterogeneous stress distribution was imposed by using a curvature
radius for the specimen of five and a homogeneous stress distribution was
approximated by using a curvature radius of 100,000. In all simulations, the
specimens were of a normalized thickness of 0.1 and the Weibull scale parameter,

B, was held constant with a value of 100.
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Control9x1Uniax

-ERROR(FALSE)

=SELECT("R21C3")

=SET.VALUE(LocRsIt9x1Uniax, REFTEXT(ACTIVE.CELL(),TRUE))

=SELECT("R21C4")

=SET.VALUE(StrRsit9x1Uniax, REFTEXT(ACTIVE.CELL(),TRUE))

—SELECT("R21C6")

=SET.VALUE(LoadRslt9x1Uniax, REFTEXT(ACTIVE.CELL(),TRUE))

=SELECT("r11c10:r19¢10")

=COPY()

=SELECT("r11c6:r19¢6")

=PASTE.SPECIAL(3,1)

=CALCULATION(3,FALSE)

=SET.VALUE (Load9x1Uniax,1)

=FORMULA("=ControliLoad9x1Uniax","r5¢c2")

=CALCULATE.NOW()

=|F(DEREF('Simulation:Sim9x1Uniax'!1$H$20)>=1,GOTO(End9x1Uniax))

=SET.VALUE(Load9x1Uniax,Load9x1Uniax+0.02)

=FORMULA("=Control!Load9x1Uniax","r5¢2")

=CALCULATE.NOW()

=GOTO(A17)

=SELECT("R11C8:R19C8")

~FORMULA.FIND("1",2.1,2)

=SELECT("RC[-7]")

~COPY()

=SELECT(TEXTREF(LocRsit9x1Uniax, TRUE))

=PASTE.SPECIAL(3,1)

=SELECT("R11C8:R19C8")

=FORMULA.FIND("1",2,1,2)

=SELECT("RC[-4]")

=COPY(Q

=SELECT(TEXTREF (StrRsi9x1Uniax,TRUE))

=PASTE.SPECIAL(3,1)

=SELECT("R5C2"}

=COPY(

=SELECT(TEXTREF (LoadRsit9x1Uniax, TRUE))

=PASTE.SPECIAL(3,1)

=CANCEL COPY()

=SET.VALUE{LocRsi9x1Uniax, REFTEXT(OFFSET(TEXTREF(LocRsit9x1Unlax, TRUE),1,0), TRUE))

=SET.VALUE(StrRs!t9x1Uniax,REFTEXT(OFFSET(TEXTREF(StrRsl9x1Uniax, TRUE), 1,0), TRUE})

=SET.VALUE (LoadRsl/t9x1Uniax,REFTEXT(OFFSET(TEXTREF (LoadRsitdx1Uniax, TRUE),1,0), TRUE;

-GOTO(A9)

=ALERT("Simulation completse”,3)

alate[alalwlw{o{w{ololwlwio|wlms]eloiviv]ooivipla]w]a]alalala]als]a
alwlvi«lolololv|alnlalalpialelelol~lolnlslwln]w]olo|elwla|ulelw|p <[ [@]RIN PN+ (@I

=RETURN()
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Control9x3Uniax

=SELECT("R1C50")

=SET.VALUE(Result9x3Uniax, REFTEXT(ACTIVE.CELL().TRUE))

=SELECT{"r12c46:r20c48")

=COPY()

=SELECT("r12c23:r20c25")

=PASTE.SPECIAL(3,1)

=CALCULATION(3,FALSE)

=SET.VALUE(Load9x3Uniax,2)

=FORMULA("=ControliLoad9x3Uniax" "rSc2")

=CALCULATENOW(}

=IF (DEREF('Simulation:Sim9x3Uniax'1$AP$21)>=1,GOTO(End9x3Uniax))

=SET.VALUE(Load9x3Uniax,Load9x3Uniax+0.02)

=FORMULA("=ControliLoad9x3Uniax","r§c2")

=CALCULATE.NOW()

~GOTO(B12)

=SELECT("R5C2")

=COPY(Q

=SELECT(TEXTREF(Result9x3Uniax,TRUE))

Nt jdjalalalalalalas
olo|o|v|a|n|alw|n]alo @R ® @1

=PASTE.SPECIAL(3,1)

Y
'

21 |=CANCEL.COPY()

22 |=SET.VALUE(Result9x3Uniax,REFTEXT(OFFSET(TEXTREF(Result9x3Uniax,TRUE),1,0},TRUE))
23 |=GOTO(B4)

24 |=ALERT("Simulation complete”,3)

2 5 [<RETURN()
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Controi24x24UnilLLS

=ERROR(FALSE)

=CALCULATE.DOCUMENT(

~SELECT("R7C27")

=SET VALUE(Result24x24UniLLS,REFTEXT(ACTIVE.CELL(), TRUE))

=SELECT("R32C52:R55C75")

=COPY(

-SELECT("R32C28:R55C51")

=PASTE.SPECIAL(3,1)

=CALCULATION(3,FALSE)

=SET.VALUE(Load24x24UnilLS,1.3)

~FORMULA(DEREF(D90),"R1C27")

=SELECT("R7C28:R30C51")

=FOR("COUNT",1,576)

—FORMULA( =EXP{(LN(-LN(1-R[25]C))+R5C27°LN(R6C27))/R5C27)")_

=SELECT(,"RC[1]")

“NEXT()

=SELECT("R57C2:R80C25")

-COPY()

-SELECT("R7C52:R30C75")

—PASTE()

-GOTO(D24)

=FORMULA FILL(1)

=CALCULATE.DOCUMENT)

—SELECT("R7C1:R30C26")

—IF(NOT(FORMULA.FIND("1",2,1,1)).GOTO(Loop1_24x24UniLLS))

=SET.VALUE(Fail24x24UniLLS,REFTEXT(ACTIVE.CELL(),TRUE)}

=SET.VALUE(Stress24x24UniLLS,DEREF(OFFSET(TEXTREF(Fail24x24UniLLS, TRUE),0,50)))

=SELECT(,"RC[-1]")

~WHILE(OR{ACTIVE.CELL()=1,ACTIVE.CELL()="F"))

=SELECT(,"RC[-1]")

=NEXT()

W W [WIWININNININ NN N[N A=t o | b ok [k foud |k ok | d ek
n WIN [~
QNJO‘D@\IOIU!bQN-‘O(Dm\IO!U‘bUM-‘O‘om\‘m &

=IF(ACTIVE .CELL()=2,GOTO(Loop2_24x24UniLLS))

=DEREF(OFFSET(ACTIVE.CELL(),0,50})+0.5"Stress24x24uniL LS

-FORMULA(DEREF(D34),GFF SET(ACTIVE.CELL(),,50))

=SELECT(,RELREF(TEXTREF(Fail24x24UniLLS,TRUE),ACTIVE.CELL()))

W WW(wW
N |

—FORMULA(0,OF FSET(ACTIVE.CELL(),0,26))

w
@

=FORMULA(0,OFFSET(ACTIVE.CELL(),0,50))

w
©

=SELECT("RC[1])

=WHILE(OR{ACTIVE.CELL()=1 ACTIVE CELL()="F")) _

o
L =

—SELECT(,"RC[1]")

=NEXT()

=IF(ACTIVE.CELL()=2.GOTO(Loop3_24x24UniLLS))

—DEREF(OFFSET(ACTIVE.CELL(),0,50))+0.5'Stress24x24UniLLS

=FORMULA(DEREF(D44),0FFSET (ACTIVE.CELL().0,50))

=CALCULATE.DOCUMENT()

-GOTO(D25)

=SELECT(,RELREF(TEXTREF(Fail24x24UniLLS,TRUE) ACTIVE.CELL()))

=SELECT(,"RC[-1]")

Oialald(aifdinials
OO N[O B [WIN

=WHILE(ACTIVE.CELL()="F")

[3,]
-k

=SELECT("RC[-1]']

(3]
N

=NEXT()

wm
w

=DEREF(OFFSET(ACTIVE.CELL(),0,50))+0.5°Stress24x24UniLLS

~FORMULA(DEREF (D53),OFF SET(ACTIVE.CELL(.0.50))

nin
(LAY

~CALCULATE.DOCUMENT()
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56

-GOTO(D25)

57

-SELECT(,RELREF(TEXTREF (Fail24x24UniLLS, TRUE),ACTIVE.CELL(}))

58

~FORMULA(0,OF FSET(ACTIVE.CELL(),0,26))

59

=FORMULA(0,OF FSET(ACTIVE.CELL(),0,50))

60

=SELECT(RC[1]) _

61

=WHILE(OR(ACTIVE.CELL()=1,ACTIVE.CELL()="F"))

62

=SELECT(,"RC[]")

63

=NEXT()

64

=IF(ACTIVE.CELL()=2,GOTO(End24x24UniLLS))

65

-DEREF(OFFSET(ACTIVE.CELL(),0,50))+ Stress24x24UniLLS

66

=FORMULA(DEREF(D65),OF FSET(ACTIVE.CELL().0,50))

67

=CALCULATE.DOCUMENT()

68

-GOTO(D25)

69

=SET.VALUE(Load24x24UnilLLS Load24x24UniLLS+0.02)

70

~FORMULA(DEREF(D90),"R1C27")_

71

=CALCULATE.DOCUMENT()

72

-GOTO(D25)

73

=5t LECT(,RELREF(TEXTREF(Fail24x24UniLLS, TRUE) ACTIVE.CELL())

74

=SELECT{(,"RC[1]")

75

=WHILE{ACTIVE.CELL()<>2)

76

=FORMULA(0,OFFSET(ACTIVE.CELL()0226))

77

=FORMULA(0,OF FSET(ACTIVE.CELL(),0,50))

78

=SELECT(."RC[1])

79

80 |

=NEXT()

=CALCULATE. DOCUMENT()

81

=SELECT("R1C27")

82

=COPY()

83

~SELECT(TEXTREF (Result24x24UniLLS, TRUE))

84

=P/.STE.SPECIAL(3.1)

85

=CANCEL.COPY()

86

=SET.VALUE(Result24x24UniLLS,REFTEXT(OFFSET(TEXTREF(Result24x24UniLLS,TRUE),1,0).TRL:

87

-GOTO(D§)

88

=ALERT("Simulation complete”,3)

89

-RETURN()
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(Sswv$/{osvVSINT.SSVVS+((EEIV- DINTINTIAX3=|  (58vvs/{98vveINT.ssvvs+{{ecHY-1INTINTIdX3=| 8
{Ssvvs/((osvVEINT.SEVVSHZeIV- L INTINTNIX3=|  (58vvl{osvveINT.ssvvs+((2eHv-LINT-INMax3=[" 7
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- {s$vv$/({9gvVSINT.SSVVE+{{SSHV-1INT-INT)dX3=

{6svvs/{(asvveINT.SSVVS+{(SSPV-1INT-INT) dX 3=

~ (58$vv$/({9svvEINT.SsvVS+{(PSuV-IINT-INTDdX3=

{ssvve/{{asvveiNTL.sevvs+H{{vsrv-1INT-INTdX 3=

- {s3wvs/{{agvvsINIL.GSvVE+{(eSHV-1INT-INTIdX 3=

{ssvve/{lagvvsInT.sSvvs+H{{esrv-LINT-INTHdX3=

- (s$vvs/{{agv veINT.SSvVS+H({zonv-1INT-INTDGX 3=

(ssvve/{agvveINT.ssvve+{{zsrv-IINT-INT)dX 3=

~ (S$vvs/{{agvveINTL.SSvvSH{{ISHV-1INT-INTIdX3=

{ssvver{{agvveini.ssvvsH{{isrv-1INT-INTdX 3=

{ssvvs/((9svvsINI.SevvE+{{osHv-IINT-INTNdX3=

{ssvve/({ogvveINT.ssvvs+{{osrv-1INT-INTdx 3=

{sgvvs/({asvvsINT.ssvvE+{{6pHV-EINT-INTNIX3=

(ssvvs/lTogvvsINI.sSvve+{leprv- 1IN INDdX 3=

{ssvvs/l{agvveINT.ssvvEH{{avyv-1INT-INTdX3=

{ssvve/((9svveINT.sswvs+{{arrv-1INT-INTJX 3=

(s$vv$/({9gvv$INT.SSVVS+({Zprv-1INTINTAX3=

{ssvvs/({asvvsINILSSYVS+H{TZprv-IINT-INT)dX 3=

~ {ssvver{{asvvsINT.SSvvs+H{{9vMV-1INT-INTdX3=

~ (svve/{ogvveINT.SSvve+{{arrv-LINT-INT)dX3=

{ssvvs/((9svvSINI.SSYVS+H{{SPV-1INT-INTdX3=

{ssvvs/((9svySINI.SSVVSH{{Srrv- IINT-INT ) dX3=

{ssvvs/((9gvveINT.SSvVE+H{Terv-IINT-INTNdX3=

{ssvvs/{TasvveINT.sEvvs+{(rrrv-1INT-INTdX3=

{ssvv$/({agvvsINT.SSVVS+H{{EpPv-1INI-INT)dX3=

{ssvvs/((agvveINT.s3vvs+{{Errv-1INT-INTdX 3=

{ssvvs/{{agvvsInT.ssvve+{leriv-1INT-INTdX3=

(ssvve/TTagvveINTL.SSVVS+{{2erv-1INT-INTNdA 2=

(s$vv$/((9gvvSINTLSSVVS ({1 V- 1INT-INTdX3=

{s3vvs/((9gvveINT.SSvvS+{{iprv-1INTINT)IX 3=

~ (sgvvs/l{osvveINT.ssvve+{lovdv-1INT-INax3a=

(ssvve/((9svveINT.ssvvE+{lorrv-INT-INY ax3=

~ (ssvyv$/{{agvveINT.Ssvvs+{{6EMV-1INT-INTdX3=

(sgvvs(logvvsIN.ssvvs+{leerv-1INT-INTNdX 2=

(ssvve/lagvvseIni.ssvvs+{{senv-1INI-INNIX3=

{s3vve/{{agvvsiNi.ssvvs+{(serv-1INT-INTdX 3=

(sevv$/({9gvveINT.SEVVS+{{ZeMV-TINT-INTNdX3=

— (sevvs/({ogvveINT.ssvvs+H{{zer o NT-INTIX 3=

~ (5gvve/{(9gvveINT.sSvvS+({oenv-1INT- TN dX 3=

~ (ssvve/({ogvvsINT.ssvvs+((9erv-1INT-INT))dx 3=

(ssvv/{{agvveINT.sSvvs+{{senv-1IINT-INTNGX3I=

(ssvvs/((agvvsINT.ssvvs+{serv- 1IN INTdX3=

(5svv3/{(9svVSINT.SSVVYE+({PEXY-LINT-INTdX3=

{ssvyvs/({agvvsINT.sSvvs+{{perv-1INT-INTNIX3=

(ssvv$/({agvvsINT.Ssvvs+{(eexv-LINT-INTdX3=

{ssvvs/{{asvveINT.ssvvs+{{cerv-1INT-INTNdX3=

(s$vv/({9gvveINT.SSVVS+{{Zexv- L INT-INTNdX3=

{ssvvsr({agvveInT.sevvs+{{zerv-1INT- INDIIX 3=
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(sSvv3/((98vVEINI.SSVVS+H(SSWV-IINT-INT))dX3=

(Sevve/{{9svVEINT.SSVVS+{(SSTV- NI INT)IdX 3=

(ssvvs/({agvvsINT.ssvvs+{TrSv-1INT-INTEXT=

{sevveTosvvsINT.SSVVS+{pSIV-INT-INTNGX3=

(s$vve/({9gvvsINIL.SSVVS+H{{ESWV-1INT-INT)d X3 =

(5svv$/({9svVSINT.SSVVS+{(esTv- 1IN INTdX 3=

{ssvv$/({9svveINT.SSVVSH(2S V- 1INT-INTIX3=

{Sevv$/({9$VVSINT.SSVVS+((25IV- 1IN INTNIIX3=

{ssvvs/({asvvsINT.ssvvs+{{Iswv-IINT-INTdX3=

(ssvv$/({agvvSINT.SSVVE+{1GTV- NI INTAX 3=

{ssvvsrl{agvvsINT.ssvvs+{{oswv-LINT-INT)dX3=

(ssvvs(lagvveINT.ssvvs+{{osTv- 1IN INTIax3=

{csvvsr{{asvveInT.ssvvs+{leynv-1INT-INT)dX3=

- {ssvv$/{{agvvEINT.SsSvvSH6vIV-HINTINVIIX 3=

{ssvvs/({agvvsinT.ssvvs+{{syWv-LINTINTdX3=

S$vve/{{9svvSINT.SSVVS+{(8vIV-1INTINTdX 3=

(ssvvs/({agvveINT.SSVVS+H{{Z Y WV-1INT-INTdX3=

(5svv3/({98vVSINT.SSVVS+H{{ZpTv-INTINTNAX3=

(sgvvs/((agvvsINT.Ssvve+{{avnv-IINTINTIdXT=

{(s3vvel{asvveInT.ssvvs+{{arTv-1INT-INTdX 3=

(ssvvs/((agvveINT.ssvvs+{{syv-1INT-INTYdX3=

(s$vv$/({9svveINT.SsvvE+{{SpIv-1INT-INTIaX 3=

(ssvv$/((9gvvsINI.SSVVS+H{(Pyv-1INT-INT)IdX3=

(s$vv$/({9svveINT.SSVVS+H{{rpIv-1INTININdX T =

{s3vve/((9svveINT.SSVVSH{EY V- INT-INT)dX3=

(s$vvs/{{agvvsINI.SSVVS+{{ErTv- 1INTINT)IIX 3=

(ssvve/((9gvveINT.SSVVS+{{ZrWV- LINT-INTIdX3=

{ssvv$/({9gvvEINT.SSVVS+H{{ZEIV-1INTINTNIX 3=

(asvvs/({agsvvsINT.SSVVS+H{{LYWV-INT-INTdX3=

{ssvvs/{{agvveINTL.SSVVSH{1pIV-1INT-INdX 3=

(ssvve/((agsvvsINi.ssvvs+{{ornv-LINT-INIdX3=

(S$vvs/((9swvsiNT.ssvvS+{{opTv- 1 INT- INTdX 3~

{ssvvs/({agvveINT.ssvvs+H{{6EWV- LINTINTIIX 3

{ssvv$/((9svveINT.SSvVS+{{6ETV-1INT-INT)dX 3=

{asvve/{{9svvEINT.SEVVEH{BEWY-IINT-INTNIX3=

{(ssvvs/((9svveINT.SSVVS+{{BETV- IINTININEX 3=

(ssvvs/AlogvveINT.sevvs+{{Zewv-LINT-INTNdX3=

(ssvv$/((9svVveINT.SSVVSHIZETV-INTINTNAX 3=

{ssvvs/((9gvvsINT.SSvvS+{{9ewv-1INT-INTDdX 3=

(5$vvs/((9svv$INIL.SSVVS+H{{oev-1INT-INTNdX 3=

{ssvvsr((agvveINT.ssvvs+H{{sewv- 1IN INTINdX 3=

{ssvve/(lagsvvsINT.Ssvve+{{seTv- 1IN INTYdX 3=

{ssvve/((agvveINT.SSVVS+H{{PEWV-INT-INTdX3=

{(sevve/((9svveINTL.SSYVS+{{pETv- HINTINTNAX 3=

{ssvvs/({agvvsINI.ssvvs+{eenv-LINT-INTDdX3=

(ssvve/((9svveINT.SSVVS+H{(EETV-1INTINTIGX 3=

{s3vvs/({agvvsINT.SSVVS+H{(ZEWV-IINT-INTdX3=

{s$vv$/((9svvSINT.SSVVS +H{(ZETV- IINTINTNEX 3=
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~{53vv$/{{98VVSINI.SSVVS+H{ISSOV-1INT-INTNdXT=

{5svve/[19gvvsIN.GSVVE+{{SSNV-LINT-INTdX 3=

{ssvvs/TasvvsInNT.SSVVS+{{psOv-1INT-INTIdX3=

{ssvve/({oagvveINT.SsvVS+H{{FSNV- LINT-INTdX 3=

{ssvvs/{{asvvsINT.ssvvs+H(ESOV-LINT-INT)dX3=

{ssvve/{lagvveInT.ssvvs+{{esNv-1INT-INTaX 3=

{ssvvs/{Tasvvsini.sgvvs+{{zsov-1INT-INT)dX3=

{sgvve/{losvvsInT.ssvvs+{{zaNv-LINT-INTDdX 3=

{ssyve/{{asvvsini.ssvve+{{1sov-1INT-INT)dX3=

{ssvve/{lasvvsINT.Ssvvs+H{{isNV- IINT-INTAX 3~

(ssvvs/{logvvsIN.ssvvs+{losov-tINT-INTNdX3~

{ssvvs/llagvvsInNT.ssvvs+H{{oSNV- 1IN INTdX 3=

~ (ssvvs/{{9gvvsINT.SSVVS+{{6vOV-1INT-INT)IX3

(s$vvs/(lagvveINT.usvvs+{{erNV-LINTINTIdX 3=

{ssvvs/({asvveIN1.sSvvs+H{{8YOV-1INT-INT)dX 3=

{s$vve/((agvvsINT.SSVYS+({BrNV-LINT-INTHAX 3=

{ssvve((9gvvsINT.ssvvs+{{ZzpOv-1INT-INDIdX 3=

{ssvvs/([(asvvsINT.csvvs+{{ZyNV-LINT-INT X 3=

{ssvvs/{{asvvsIN.SSVVS+{(arOV-LINT-INTIdX3=

(s$vvs/({agvvsINT.SSvVS+{{oPNV-IINTINTAX 3=

{ssvvs/({asvvsInT.ssvvs+H{(srov-1INT-INT)dXa=

(s3vvs/({asvvsINT.sSvvS+H{(SpNV-LINT-INTNdX 3=

{ssvve/({9svvsINI.SSVVSH(PPOV-1INT-INI) X 3=

{ssvvs/(lasvvsINT.sSvVE+H{{pyNV-IINT-INT DX 3=

{ssvvs/({agvveINT.sSvvSH{{ErOV-1INTINTdX3 =

{s$vvs/lasvveINT.sSvVS+{{ErNV-1INT-INT)dX 3=

{ssvvs/({asvvsINT.ssvvs+{(2rov-1INT-INT))dX3=

{ssvve/{{agvvsInNi.sevvs+H{{zeNv-1INT-INTOX 3=

~ (ssvvs/({agvvsINI.SSYVSH{(1vOV-INT- NI X3=

(ssvvs/AlogvveIN1.SSVVS+{{IvNV-LINT-INTdX 3=

{ssvve/({asvveInT.ssvvs+{{ovov-1INT-INTdX 3=

{ssvvsr(lasvvsini.ssvvs+{{ovny-1INT-IN)dX 3=

{ssvvs/((asvvsIn.ssvvs+{{ecov-1INT-INTdX3=

{ssvve/{{asvvsINT.SSvvS+({6ENV-IINTINTIIX 3=

(sgvve/({9svveINT.ssvvs+{{scov-1INT-INdX 3=

{ssvve/{lagvveINT.ssvvs+{{seNv-LtINT-INTdX 3=

{ssvve/({asvvseINI.ssvvs+{{zeov-1IINT-INTIdX3=

{ssvve/{losvveINT.ssvvs +H{{ZeNv-IINT-INTIdX 3=

{ssvvs/{{asvveINT.ssvvs+H{{9cOov-1INT-INT))dX 3=

{ssvvs/[TogvvsINT.SSvvS H{9eNY-1INT-INTaX 3=

(ssvvs/({{agvvsINi.Ssvvs+{{seov-1INTI-INTNdX3I=

{ssvve/logvvsInT.ssvvs+{{seN- LINT-INTdX 3=

{ssvvs/({asvveINT.ssvVs+H{{rEOV-IINT-INT)dX 3=

(ssvve/{{9svvsIN1.SsVYS+H{{venv-IINT-INTdX 3=

(ssvvs/((9svveINT.ssvvs+H(ccOv-1IINTINDdX3=

{ssvve/((osvvEINT.SSVVS+H{{EENV- LINT-INTN X 3=

{ssvvs{osvveINT.ssvvs+H{{zeov- INT-INT)dX3=

(ssvvs/TosvveINT.SSvVS+{{ZENV-LINT-INT)dX 3=
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(S$vv$/((93VVSINT.SSVVS+{(SSOV-IINTINDIIX 3=

{s$vvs/({agvveINT.ssvVS+{{SSdV-1INT-INIdX 3=

(s$vvs/({asvveINT.Ssvvs+{{PSOV-1INTINTdX3=

{ssvvs/({asvveINT.SSVVS+{{PS3V-1INT-INTdX 3=

(s$vvs/({asvveINT.SSVVS+{{ESOV-LINT-INTNdX3=

{ssvvs{lagvveINT.ssvvs+{{esdv-1INT-INTNOXI=

(s3vvs/({9svvsINT.SsvvS+{{2sOV- 1IN INTdX3=

(ssvvs/TasvveinT.ssvvs+{{zsdv-1INTINT)IdX 3=

(sgvvs/({agvveINT.SSvvsH{{tsov-INT-INT)aX3=

(ssvvs/{{asvveINT.ssvvs+H{{iSdv-1INT-INT))dX3=

{ssvvs/((osvveINT.ssvvs+{{osov-1INT-INTdXT=

{ssvvs/{lasvvsINI.SSWVS+{{0SaV-1INI-IND)dX 3=

(s$vve/({agvvsINT.SSVVS+{{6POV-IINT-INTdX3=

(ssvvs/(losvvsiINT.ssvvs+{{6vdv-1INT-INT))dX 3=

(s$vv3/{{agvvsINT.SSVVS+{{8rOV-LINT-INTdX3=

{ssvvs/{Tagvvsini.ssvvs+{{srdv-1INT-INTdX3=

{s$vve/({9svvSINT.SSVVS+{{LPOV-1INTINTIdX3=

{ssvvs/({agvveINIL.sevvsS+H{{Zvdv-LINT-INT) DX 3=

{s$vv$/((9svvsINT.SSvVE+{{ovOV- INT-INT)dX 3=

{ssvve/{{asvveINT.sSvvs+H{{9vdv-1INT-INT))IX3=

(s$vve{logvveINi.ssvvs+{(srov-1INTINTEXT=

{ssvvslagsvvsINT.Sevve+((spdv-1INT-INY)dX 3=

(s$vve/((9svvsINi.ssvvs+{{vpOV-1INTINTAX3=

(ssvvs/A{agvveINILSSYVS+{(Prdv-1INT-INTNHX 3=

(s$vvs/((asvvsINI.ssvvs+({epov-INTINTNaXT=

(ssvver({{asvveIN.sevvSH{Erd V- 1INT-INT)IdX3=

(s8vvs/({9svveINT.SSVVS+{{2POV-1INT-INT)IdX3=

{ssvvs/({9gvveINT.SSVVS+{{2vdV-1INT-INT)dX 3=

{s$vve/((9svveINT.SSVVSH{{IvOV- LINTINTNIXI=

{ssvvs/({9svvsINT.SSVVE+H{TiPdV-LINT-INT))dX3=

~(s$vve/(lagvveINi.ssvvs+{{orov-1INTINTAX3=

{ssvvs/logvveInT.ssvve+{(ovdv-INT-INT)dX 3=

{ssvv$/{asvvsINT.SSvVS+{{6EDV-1INT-INTIAXT=

{ssvvs/({asvveINI.SSvvsH{{eedV-LINTINT))dIX 3=

{ssvvs/({agvvsInT.ssvvs+{{scov-IINTINTNEX3I=

{ssvvs({agvvsINI.ssvvs+H{{sedv-1INT-INT))dX 3=

{ssvve/((agvveINT.ssvvE+{{Zzeov- 1IN INTdX 3=

(ssvvs{{agvvseINT.ssvvS+{zedV-1INT-INT)IdX T =

{s$vvs/((9svvsINT.SEVVS+({9cOV-LINT-INTNIX 3=

(ssvv/{{asvveINi.ssvve+H{{9edV-1INT-INT)dX 3=

(s$vve{lagvveINT.SSvvs+{{Scov-1INTINTax3=

(ssvvs/{9gvveINT.Sevvs+{(sedv-1INTINTdX3=

(s$vver((agvveINT.ssvvs+{reov-1INTINTNAXT=

{ssvvs/({agvveIN1.SsVVSH{{vedV-1INT-INT)dX 3=

{ssvv$/{asvvsINT.SsSvvS+{(EcOV- INTINTIIXT =

(ssvv/({agvveINT.sevvs+{{ecav-1INTINTIIdX 3=

{s$vv$/{{asvvsINT.SSvvs+{{2eOv-INTINTIXI=

(ssvvs/({asvvseIN.sSvve+{{ZEdV- 1IN INT)dX 3=
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{ssvv$/({asvVsIN.SSVVS+H{{SSSY-LINT-INTdX3=

(S3vv$/((93vVSINT.SSVVS+((SSHV-LINT-INIdx 3=

(ssvvs/{{agvvsIN.sSvvS+H{{bSSY-1INT-INT)dX3=

{ssvvs/l(9gvv$INT.SsvVS+{{pSuvV-INTINTIdX 3=

{ssvve/{(9gvvsINT.sSvvs+{{essv-1INT-INTdX3=

(ssvvs/({agvvsInT.ssvvs+{(esHv-1INT-TNTdx 3=

(ssvvs/{{asvvsini.sevve+{{zsSy-1INT-INT)dX3=

~ (s$vvslogvvsINT.Gvvs +H{{zsHV-LINTINTgX 3=

{ssvvs/({(asvvsINI.SSVVS+H{(1GSV-1INT-INTdXT=

{ssvvs/({9svveINT.Ssvvs+{{1sHV-LINT-INT X3~

{ssvvslogvveINT.ssvvs+{{ossv-1INT-INTNdX3=

~ (ssvvs/((agvveINT.ssvvs+{{osuv- NI TN dX 3=

(ssvvs/(TagvvsINT.sSvvS+{{6vSY-LINT-INTdX3=

{ssvvsllagvveint.ssvvs+{leruv-1INT-INTdX3=

{ssvvs/{{agvveINT.sSvvS+{(8ySY-1INT-INTdX3=

{ssvvs/{{agvveINT.SSvVS+H{{8rvV-LINTINTEX 3=

{ssvvs/{{agvveINT.sevvSH{{ZPSV-1INT-INT)AIX3=

(S$vvs/(198vVEINT. SSVVSH{ZpuV- 1IN INTdX 3=

{ssvvs/{{osvvsINT.SsvvS+{{avsv-1INT-INTdX3=

~ (s$vve/({(agvvsINT.sSvvS+{{oyuv- 1IN INTdX3=

{ssvve/llagvveINT.ssvvs+{{spSv-1INT-IN))ax3=

{s$vvs/({9svvsINT.SSVVS+{(SyEV-1INT-INTIIX 3=

(s$vvs$/({agvvsINI.GSVVEH{{vrSV-1INT-IN1))dX3=

~ (s3vvsrl(9gvveINT.ssvvS+{{ppuv-1INT-INTI9X 3=

~{s3vvs/({9gvvSIN.SSVVSH{{EPSVY-1INT-INT)GX 3=

{ssvvs/(9gvvsINT.SSVVS+H{ErHV-LINTINTdX 3=

~ (58vv$/{{9svvsINT.SSVVS+{{zrSY-1INT-INTdX3=

(s$vvs/l{agvvsINT.SSvvs+{{epHv-LINT-INTdX T =

{ssvv$/{9svvsINIL.SSYVSH{{1vSV-1INTINT)dX3=

(s$vve{agvveINT.SevvS+{TLpuv-1INTINTdX 3=

{ssvvsllogvvsINi.ssvvs+{{orsv-1INT-INTdx3=

(sgvvs/({(agvveINT.ssvvsH{{ovuv-1INT-INT )X 3=

{ssvv$/((9svveINT.SEvVS+H{{6ESY-IINT-INT)IdX3=

(s3vv$/{(9gvveINT.5evVE+{{eeuv-LINT-INTNdX3=

~ (ssvv$/({agvvsINT.Ssvvs+{{BESV-LINT-INTdXT=

~ (osvvs/{9gvvEINT.a8VVS+{(8edV- 1INT-INT))dX 3=

~ (ssvvs/{{asvveINT.SSVVSE+H{{ZESY-LINTINT)dX3=

{ssvvs/l(asvvsINT.sevvE+{{zeuv-LINT-INTdX 3=

~ (ssvve/({{osvveInt.ssvvs+{{aesv-1INT-INTDdX3=

(s$vvs/((9gvvsIni.ssvve+((ochv-1INT-INTIdX3=

{ssvvs{{agvvseInT.ssvvs+{{sesv-1INT-INTDdX3=

~ {sgvvser(logvveINT.ssvve+{(senv-1INT-INTdXx 3=

(ssvvs{{asvvsINT.SSvvE+{{PESY-LINT-INTNHX3=

(ssvvs/((agvvsIng.ssvvs+{(veuv-1INT-INT)dX 3=

{ssvvg/{{agvvsIni.sevvs+{{eesv-LINT-INTIdX3=

{ssvvgrl{agvveint.sgvvs+{{ecuv-1INTINTdX3=

~ (ssvve/((agvvsINT.ssvvs+((zesy-LINT-INTOX3=

(sgvvs1{9gvvSINT.SSvVS+{{2eHv-LINT-INTIdX3=
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(5Svv$/({9gvVEINT.SEVVSH(SSNV-LINT-INT)IdXI=

(S$vvS/((98VVEINT.SSVVS+{(SSLV-LINT-INT)dX 3=

{ssvvslasvveINi.ssvve+{{rsnv-1INT-INTIX3=

{ssvve/({{asvveINTL.SSVVS+{TrSLV-1INT-INTdX 3=

{ssvvs/lagvveIni.ssvvs+{{esnv-1INT-INTNIX3=

{ssvvs/({asvveINT.sSvvS+{{eSLv-LINT-INTdX 3=

(ssvve/((agvvsINT.sSvvs+{{2snV-1INT-INTIdX 3=

(esvv${(agvveINT.Ssvvs+H{(251v-LINT-IN))dX 3=
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5218.23vvs= SZHE.28VV$= §eo8.c$vvs=| Ge48.28vvs- 5e38.23vvs=[ 06
v218.23VVv$= vZHE.2sVYV$= v298.23VV$= ve48.28VV$= v238.23vve=[ 6 v
£c18.28vvs= £2HE.23VV$= £298.28VV$= £248.23vVVs= £c3g.2svve=[ 8y
22Ig.28vVVs= 22H8.2sVV$= 2298.23VV$= 2249.23vvs= 2238.23vvs=| L v
1218.28VVs$= lZHE.23VV$= 1298,23VV$= 1248.23vvs= 123g8.23vvs=| 9v
0218.23VVs$= 0ZHE.2$VV$= 0294.2$VV$= 0239.2$vvs$= 0238.23VV$=[ St
6119.28VV$= 61HA.28VV$= 6198.23VV$= 6148.28vVVvs= 6139.28vvs=[ vy
8118.23VV$= 81Hg.23VV 3= 8198,28VV$= 8149.23VV$= 8138.23vvse= v
2118.23VV$= /1HE.2$VV$= 199,23VV3$= £1489.28VV$= Z138.23vvs= v
9119.23VV$= 91HE.2$VV$= 9194,28VV$= 91489.,2$VV$= 9138.23vvs=| L v
G119.2$VVs$= SIHE.2$VV$= 5194,2$VVv$= S138.23Vv$= S138.2$Vvs={ 0¥
v119.28VVs$= vIHE.2$VV$= v198.28VV$= r148.28VV$= vi3g.2svvse=[6¢
£11g.23vvs= £1Hg.2$vYV$= £198.23VV$= €£148.23VV$= €138.c3vvse=| 8¢
2118.23VVs= ZIHE.23vVV$= 2198.,23vVvs= 2149.23vVvs= Zi38.2svvse=[L¢e
1118.28VVs= LIHE.2SVV$= 1199,28VVe= Li48.23vVs= ri3g.2svvs=| 9¢
04189,28Vv3$= 0lHg.cvvse=| 0198,28vV$= 0148.28VVv$=) _0i138.28vve=|S¢e
619.2$VYV$= 6Hd.2sVV$= 698.2$vve=| 648.2$VVv$= 639.23vvs={ b E
819.23VVs$= 8Hg.28VV$= 898,2$VV$= 848.2$vvs= 83g.c3vvs=| £¢
219.23VVvs$= HE.28VV$= /98,23VV$= /489.23VV$= £38.28vvs=| 2¢

I
] r 1 H )

o
o




0ENG.2SVV$*= 0EW8.2sVVS=] 0€18.28VV$=] oexg.2svvs=]|  0€rg.2csvvs=[ssS
62NE.2$VV$= 62WA.28VVs= 6218.23VV$= 6208.23VV$= 62rg.2gvvse=[vs
82NB.2$VV$= 8zWa.2sVVse= 8218.28VV$= 8Z)9.2VV$= 82rga.c3vvs=[€s
/2NB.23VV$= L2NB.23VV$= 1218.28VV$= 12)9.28VV$= Lerg.csvvs=[zs
9ZN8.23VV$= 9ZN8.23VVs= 9218.28VV$= 92)8.23VV$= 92rg.23vvs=[ 1§
GZNE.2$VV$= SSNg.2svvs=| G218.e$vvs=|  <SZwd.2$vvs=|  sera.zsvvs=|{ 06
yZNB.23VV$= veNg.2svvs= ¥218.2$VV$= vZHg.23VVe= v2ra.2gvvs=[6v
£2NE.cVV$= £2NE.2sV V= £218.28VV$= £2%8,23VV$= €era.esvvs={ 8 v
2ZN8.28VV$= ZZNE.23VV$= 2218.23VVs= ZeMg.esvvs= cera.csvvs=[ Ly
1ZNEB.23VV$= 12,23V $= 12718.23VV$= 1z2)8.2$VV$= 12rg.23vvs=| v
0ZN8.23VV$= 0CWg.2cSVYVS=|  0219.28vvs$=|  o0zvg.2$vvs=[  oera.zsvvs=[s¢
6INB.2$VVS= 61NE.23VVSE= 6119.25VV$= 6198.28VVs= 61rg.23vvs=[vv
8ING.cSVV$= 8inWg.2svvs= 8118.23VV$= 8IMg.2$VV$= girg.2csvvs=[ ev
ZING,23VVs$= LING.23VVs= £118.28VV$= 1iMg8.28vvs= Lirg.csvvs=[ zv
91NE.23VV$= 9INg.2SVVS= 9138.23VV$= 9:%8.28VV$= 9irg.csvvs={ 1 v
SINgG.2$VVS$= SING.2SVVS$= §118.23VV$=]  SIMB.23vVS=] sirg.zsvvs=[ov
vING.2SYVS=| viNg.2svvse= v118.23Vv$= ridg.28vvs= virg.csvvs=[6¢
£ING.23VV$= £INg.23VYV$= £1718.23VV$= £108.28VV$= €ira.csvvs=[ 8¢
ZING.2$VV$= 2iNg.2sVV$= 2118.25Vv$= 2iNg.23vvs= cirg.esvvs={ ¢
LINB.2SVVS= LING.2SVV$= 1118.2$VV$= LIME.CEVV$= Lirg.2svvs=[ 9¢
0INEB.2SVYVS=| oiNg.23vvs=|  0119.28VV¥$=]  oiMg.esvvs=|  oirg.csvvs=[se
6Ng.23VV$= 6W8.28VV$= 618.2$VV$= 6Y8.28VV =] 6rg8.2$vvse=| ve
8NEB.23VYV$= 8ng.2svvs= 818.23VV$= 8Y8.2$VVv$= 8rg.csvvs=/ c¢e
IN8.2$YV$= [NB.28VV$= 218,23VV$= IN8.23VV$= Lrg.csvvs=[ze
i 1€

d 0 | N | N 1
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~ 0£S8.28VV$=]  0£”B.28VV$= 0€08.25VVS=] 0£d48.2$VV$= 0£08.25VVs=
62S8.2$VV$= 62H8.28VV$=] 6208.2$VV$=, 6249.,23VV$= 6208.23VV$=
8258.23VV$= 82HE.23VVs= 8208.23VVS$=: 8248.28VV$= 8208.28VV$=
1258.2%VVs= 1248.23vVvs= 1208.23VV$= 1249.23VV$= 1208.23VV$=
9259.28VV$= 924a.c8VV$= 9208.23VV$= 9248.23VVs$= 9208.23VYV$=
llllll 52sd.28vvs=|  scud.28vvs=|  5208.28VV$=  G2d8.2%vvs=|  5208.23Vvss
vesa.2svvs= ZARALA & $208.23VV$= v248.2$vvs= $208.23VV$=
£2S8.23VVs$= £24g.28vvs= £208.23VV$= £2d8.28vve= £208.23VVs=
22S8.23vvs= Zzyug.csvvs= 2208.28VVs= 22d48.23vVVs= 2208.23VVs=
12S8.28VVs= 1eHa.2svvs= 1208.23vVs= 1249.28vV$= 1208.23VVs=
0258.28vvs=|  ocyg.e$vvs=|  0208.28vvs=] | 02d8.28¥YV$=|  0208.23Vvs=
61S8.28VV$= 614Q9.23VVs$= TTe108.28vvs=|  61d8.28VVS=]  610€.2$VVs~
8159.28vVVs= g8148.2$vv$= 8108.2$VV$=] g1d49.23vvs= 8108.2$VV$=
1158.23VVs= [148.28vvs$= 210d.2$vVs=! 11d8.2%VVs= £108.28VVs=
91S8.23VVs= 91Ug.csVVs= 9108.23VV$=| 91d48.2$vVvse= 9108.28VVs$=
—sisg.esvvs=|  siud.esvvss|  slod.esvvss]  Sidd.esvvss]  SlO8. .2$YV$=
v158.28VVs$= AR AL _ viD8.28vVe=|  vidB.covvss v108.23¥V$=
£158.2$VVvs= £148.23vv$= £108.23VV$=! €148.23VV$= €108.23VV$=
21S8.28vVvs= 2148.c3vvs= Z+08.23VVs=| 21 dg.28vvs= 2108.23VVs=
1158.23VV$= 11H8.25VV$= 1108.23VVS$= 11d8.28vVVs= 1108.2$VVs=
01S8.28VVS$=|  olH8.e$vvs=| 0108.28Vv$=, Oid8.esvvs=|  _ o0i08. ZeVvs=
658.2$VVv$= 6yg.cev¥v¥s=| 604, Nw<<w-, o 648.2$VV§= 609.28VV$=
858.2$VV$= 84g.23vVVs$= 808.28VV$=| 8d8.23VV$= 808.23VVS$=
£589.23vv$= ldg.23vvs= 108.23YVs$=| /d8.28VV$= £08.2$VV$*"
| r
n 1 | S | H [o)




0EME.CIVVS= 0EAB.28VVS=]  0end.esvvs=] _ 0€l@.c$vvs=[SS
62MB.2$VVS$= 62M8.23VV$= 62N9.28VV3$= 6218.2$VV$=[vs
8ZMB.23VV$= 8ZAE.2SVVS= 82ND.2SVVS= 8218.23VVs$=[ €S
1ZM8.23VV§= 1ZNE.23VVS= 72N8.23VV$= Z21d.2$vvs=[cS
9ZM8.2$VVS= 92A8.23VVE= 92Na.23vV$= 9218.23VVs=| IS
Sema.cevys= ScNB.c8vv$=  send.esvve= se18.29vvs=0S
vZMB.23VVe= vZAE.2sVV$= ¥2N8.2$vvs= ¥218.23vvs$=[6v
£2MB.23VVS= £2A8.2$VV3= £2ng.23vvs= £218.23Vve=| 8
2ZMB.23VVS= 22A8,28VVS= 22ng.2svvs= 2218.28VVs=[ Lt
1ZME.23VVS= IZA8,2SVVS= IZna.cevvs= 1218.2$VVs=| 9v
0ZMB.23VVs= 0ZA8,23VVS= 02Nd.2$VV$= 0218.23VVs$=| SV
61M8.23VV$= 61A8,28VVS= 61N8.23VV$= 6118.23VVs=[ vV
8IME.23VVS= BIAE,ZSVVS= 81N8.23VVE= 8118.23VVs=[ eV
LIMB.23VVS$= LING,28VVs= £1Ng.28VVs= £i16,23VVs=| ¢ v
91MB.2VVS= 91NE.23VVS= 9tN8.23VVs= 9118.28vVs=[ 1 v
SIME.2SVVS- SIAG,28VV3= 5INg.23vVs= S1ig.e3vvs={ov
PIME.CSVVE= 7IAB.2VYS= v1N8.23YV$= v118.28VVs=[6¢€
€IMB.23VVS= EIAE.2SVVS= €1N8,2VVS= €118.23Vvs=[ 8¢
ZIME.23VVS= ZHAB.2SVVS= Zing.esvvs= Z11d.23vvs=[ Lt
L IME.23VV$= LLAB.2SVVS= LNG.23VVS= L118.23vvs=| o€
01M8.28VV$= 0+AG.28VV$= 01N8.2$VV$=| 0118.23vvs=[s¢
6MB.c3VV 3= 6A8.2$VV$= 6N9.2$VV$=] 6.18.23VVs$=| v E
8ME.23VVE= 8A8.23VVS= 8N8.23VV$= 818.23VVS=[ E€
IM8.23VV$= ZA8.23VVs= 1N8.23vvs= 218.23VVs$=| ¢t

e
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APPENDIX B STRENGTH DEPENDENCE FOR LINEAR
MECHANISTIC COUPLING

In this appendix, the interdependency of the intrinsic strength vectors will be
illustrated for an explicitly defined mechanistic coupling model in which the
coupling functions, C42(0>) and C5 1(0) are deterministic linear functions. The
same procedure as that used in Chapter IV to prove the dependency of the intrinsic

strength vectors for arbitrary deterministic coupling functions and probabilistic

independence will be used herein. First, the coupling functions, Cy2(G2) and
C51(c4), will be defined and the transformed stress components, G¢” and oy, will
be determined in terms of the coupling functions. Second, the reliability will be
expressed in terms of the transformed stress components and the joint failure pdf's
in both the physical and transformed stress spaces will be derived from the
differentiation of the joint failure CDF. Finally, the joint failure pdf in the
physical stress space will be compared with the independence criterion given by
Equation (4-34) to identify those conditions for which the intrinsic strength vectors
are independent for the given coupling model.

The deterministic specimen failure criteria were defined in vector form by

Equations (4-1) and (4-2):
351(01 62:X1.0) HF1)1(01,529<1,@1)‘21+0292

1"2(01-Gzixz»@z>=01§1*(F2)2(01’622X2,®2)92
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For this example, a linear coupling model will be employed. The failure

criterion for each failure mode is partitioned into the uniaxial strength, X;, plus the

coupung etfect, G ;0

(?1)1(0 152:X4 ’@1)=X1+C1202 (B-1)
and

(FoH0105% 0 F%+ o101 (B-2)

where Cq5 and Cy ¢ represent constant coupling parameters. These failure criteria

are represented for a specimen under an arbitrary biaxial tensile stress is shown in

Figure B-1. The uniaxial failure pdf's of the stress components are given by
fx,(61) and fx(Gp).

Equations (4-16a) and (4-16b) gave two expressions for the composite
reliability in terms of the conditional probabilities of the reliability conditions for

each failure mode:
R o 1’02}=Pr{ [(3’1>1>01m(3’2}2>02] }Pf{(Fz)z>02}

R ,%FPT{[(FZ)Z%HUE)PGJ }Pr{(ﬂ)%ﬁ }
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2+ C21°1

M,
\ .
& 0, (1)1F) X, o

Figure B-1. Representation of the linear coupling model for a specimen under

arbitrary biaxial tensile stress.

The scalar components of the strength vectors, £1 and E5, (F4); and (F3),, are
related to the uniaxial strengths, Xy and X5, by Equations (B-1) and (B-2).

Substituting these relations into Equations (4-16a) and (4-16b) and rearranging the

inequalities in terms of X and X»,

Rc(c1 ,02)=Pr{[x1>0 1"C1202“ [XZ)GZ_CTUGJ }Pr{X2>62—Cz10'1 } (B-3a)

or,
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Rc(01'02)=Pr\[X2>02—Cz101“ [X1>°1—C1202] fpf{ X1>°1—C12<’2>
(B-3b)

Rearranging the inequalities in terms of X; and X5 is equivalent to

transforming the random variables from the strength vector components to the

uniaxial strengths. The composite reliability has been mapped from the physical

stress space defined in terms of G4 and 0, into a transformed stress space defined in

terms of transformed stress components 641" and G5’ by

6,=01-C120; (B-4a)

and,
0,"=0,—C2 10 (B-4b)

Differentiating Equations (B-4a) and (B-4b) gives the relations

801’_802’_1
dc; 9o, (B-5a)
J6+

l=—cp
doy (B-5b)
00>’

=Gy
do (B-5¢)
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and,

#o; _ Fo) i
d0100, 00190, (B-5d)

Equations (B-3a) and (B-3b) may be rewritten in terms of G4’and 65" as

RC(O»GZFPT{[XPW'“[X2>°2’]}Pr{xz>°2'} (B-62)

and,

RC(O»GzFPf{[X?Gz'“[XP"]']}PI{X‘PG"} (B-6b)

The uniaxial strengths , X and X», are taken as independent random variables.

Therefore, in terms of the transformed stress components, 641’and 65',the

conditional probabilities in Equations (B-6a) and (B-6b) become

pr\[x1>o'1’]| |X,>0,'] /=Pr{X1>G1'} B

and,

(B-8)
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Substitution of Equations (B-7) and (B-8) into Equations (B-6a) and (B-6b)

results in a single logical expression for the composite reliability:
R01.02Pr{ X501 |Pr{ X,>0,') (B-9)

The two Boolean terms in Equation (B-9) represent uniaxial reliabilities and,

hence, the composite reliability in functional form becomes

R (01.02=Rx 1(01')Rx2(02') (B-10)

The reliability domain and the joint failure pdf have not actually changed.
However, the transformation of the stress space has recast their mathematical
expressions in terms of the transformed variables.

In order to determine the joint failure pdf, the composite reliability is

converted into the joint CDF for the composite, F.(G,02), since F.(G1,02) is

defined as the area integral of the joint failure pdf over the domains of the failure
modes in the stress space. Since F = 1-R, Equation (B-10), expressed in ierms of

CDF's, becomes
I—FC(G1 02)={ 1-Fy 1(01')}{ l—sz(OZ’)}

or,

Fc(01 ’02}:1: X 1(01’}‘*Fx2(02')" Fy 1(01')Fx2(02’) (B-11)
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Since R.(G4,07) is invariant for both the physical and transformed stress spaces,
F.(04,02) is also invariant for the two spaces.
The joint pdf in the transformed stress space, fx, x,(0¢’,02"). may be

obtained by differentiating the joint CDF by each of the physical variables, 4" and

’

Gy

*
fx 1 ,XZ(G1"62,}:—'{Fcl

d6,'d5,’ (B-12)

F I , ' LE. (6
s fraloirdosefoibeder]

Ti?{Fx 1(01’}fx2(52')‘fx2(02')}

=fx 1(01’}fx2(02') (B-13)
The absolute value is included in Equation (B-12) since the joint pdf must be a

positive-valued function; the differentiation of reliability and failure probability

result in positive-valued and negative-valued "mirror images” of the joint pdf
because F.=1-R..

The joint failure pdf in the physical stress space, fF,),,F,),(51.02), may

similarly be obtained by differentiating the joint CDF by each of the physical
variables, 64 and G5:

82 .
f(r,),,(fﬁ(“%“ZWQ‘
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ol e

ao1X ) 01)2( )‘{acszXaoz)ini)i*)

96,

}f O )fx

[

*(

‘{ ;zo )«x(q kzozy( i;é }FX,(G],)fXJ%,,
aRrre
oot

Substituting the relations of Equations (B-5a) through (B-5d) into

fo(GZ

(B-14)

Equation (B-13) gives an expression for the joint failure pdf in the physical stress

space in terms of the uniaxial failure pdf's and the coupling functions:

f(r,)1,(rzgﬁ1,02H1X1)fx‘cf)fxz(cz'H‘Cax-Cm)fxlﬁf)fxz(ﬁz')

af(c’ afj

+(-CQX1P—X$;—1)FXZ(02'H1X—C21)Fx1(01')—%6—f2—)
1

s
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Ol o1 e o MOl (o1 fixfo7)
Hif-cp )—-——-(x’(61 Gl z(

‘{O)fxlcl’Ho)fx 62’)
=fx1((’1 ')fxz(oz ')"'C12C2 1fx‘01 ')fxz(ﬁz')

afx,(c ')

{
i , aof 2\02')
- sz(cz )'C21Fx1(61 %—);62—

-Cp

+Cp afx1(01,)4'€21 afxz(ozf,

90 7] (B-15)

In order to determine the interdependency of the physical random variables ,
(F1)q and (F3),, the conditional probabilities |, f(}'1)1|(}'2)2(0'1|02) and
fF,),1,),(02101), must be determined. The conditional probabilities may be found

using the relations

10 62)
{5l 132(021)

(B-16)

and,
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o LD

fx 1(01) (B-17)

(¥ 1)1 and (F5), are independent only if their conditional probabilities equal

the equivalent uniaxial pdf's or,

f{r1}1l(r2}2(01 |62)=fx 1(01) (B-18)

and,

f{f2}2|{?1)z(62|01):fxz((52) (B-19)

By substituting Equation (B-16) into Equation (B-18) or Equation (B-17) into
Equation (B-19), a single independence criterion for (1) and (F2), may be

obtained:
f{Tl)-llTZ)Z(G%GZ)':fX 1(01)fX2(62) (B-20)

(F1)1 and (F), are only independent if there is no mechanistic coupling.

The expression for the joint failure pdf in the physical stress space, Equation
(B-15) will reduce to the independence criterion for (F4); and (F5)>, Equation
(B-20). only if Cy, = C54 = 0, which implies that 64" = 64 and 0" = 65. If

mechanistic coupling is present, i.e., either Cyo or C5 are nonzero, then Equation
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(B-15) will not reduce to Equation (B-20), and (¥{); and (F5), cannot be

independent random variables.




APPENDIX C. EXPONENTIAL PARTIAL FRACTION MODEL

In the mathematical modeling of composite materials, it is desired to predict
the composite stiffness properties from the elastic properties of the constituent
components. Micromechanical analysis, which utilizes the mathematical theory of
elasticity as well as energy methods, is frequently used as it treats the multiple
phase configurations of a composite with simplified geometrical models.
However, for those properties which are geometrically in series (such as transverse
and shear moduli), even the simplified models give rise to very complex results.
Further simplification of these results for asymptotic stiff fibers leads to relations
of the partial fraction form in which the influence of each respective component
modulus on the composite modulus is weighted by the volume proportion of the
component. This partial fraction weighting is also physically appealing to strength
modeling under combined stress in which the strength associated with the doriinant
failure mode is weakened (i.e., weighted) by the magnitude of the combined stress.
Under this consideration, a general form of partial fraction weighting is adopted.
The geometric properties of such a form will be examined and the modifications
required to reconcile it with the known physical condition of combined stress
coupling will be determined.

The general algebraic form of the partial fraction weighting model is

}{ u)= a+bu

c+du (C-l )
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where a, b, ¢ and d are constant nonnegative coefficients. Equation (C-1) is
presented graphically in semi-logarithmic form in Figure C-1.

The partial fraction weighting model as depicted in Figure C-1 is similar in
geometric configuration to the graphical representations of combined stress
coupling shown in Figures 4-12 and 4-14. There are, however, two significant
differences between the representation of the partial fraction weighting model in
Figure C-1 and the micromechanical requirements of combined stress coupling as
illustrated in Figures 4-12 and 4-14. First, Figure C-1 presents the partial fraction
weighting model in semi-logarithmic space while Figures 4-12 and 4-14 represent
combined stress coupling in the linear biaxial stress space. Second, Figure C-1
shows that the partial fraction weighting model is a monotonically increasing
function of the independent variable, u. Micromechanics requires that the strength
associated with one failure mode must be a monotonically decreasing function of
the stress component associated with the other failure mode.

These discrepancies may be resolved with an appropriate transformation of the
independent variable,u, in Equation (C-1). If Equation (C-1) is recast in terms of
the natural logarithm of u, then its geometric configuration in linear space will be
identical to that shown in Figure C-1 for semi-logarithmic space and the first
discrepancy will be resolved. The second discrepancy will be resolved by recasting
Equation (C-1) in terms of the arithmetic inverse of u. In this manner, the
graphical representation of Equation (C-1) will be reversed, and the partial
fraction weighting model will become a monotonically decreasing function of u.

Both discrepancies will be resolved if Equation (C-1) is reformulated in terms of

the arithmetic inverse of the natural logarithm of u, or [In u]".
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0 >
1 Inu

Figure C-1. The general form of the partial fraction weighting model in semi-

logarithmic space.

Ifv=[Inu]", then

u=exp(l)
M (C-2)

When the variable transformation of Equation (C-2) is substituted into Equation
(C-1), both of the discrepancies between the partial fraction weighting model and
the micromechanical requirements for combined stress coupling are resolved.

After the substitution, Equation {C-1) thus becomes
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a 1
c+{d)exp(;) o

or,

v (C-4)

Equation (C-4) is the exponential form of the partial fraction weighting model
and is illustrated in Figure C-2 in linear space. The geometric configuration of the
model is now fully reconciled with the representations of combined stress coupling
shown in Figures 4-12 and 4-14. Thus, the exponential form of the partial fraction
weighting model given by Equation (C-4), may be used for strength modeling
under combined stress conditions.

When v equals zero, the exponential terms in Equation (C-4) also equal zero

and,

y(v=0)=E
d (C-5)

As v approaches infinity, the exponential terms in Equation (C-4) approach

unity and,
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Figure C-Z. Exponential form of the partial fraction weighting model in linear
space.
c+d (C-6)

The decrease in the longitudinal strength, (F)4, due to transverse loading, 05,

llustrated in Figure 4-12 may now be modeled using partial fraction weighting of
strength under combined stress. Let y=(T'1)1 /oy, and v=Cy50, where G, is the fiber
bundle strength and Cy5 is a constant coupling parameter. When 65=0, v=0 and

(F4)q becomes the uniaxial intrinsic strength, X4. Therefore, from Equation (C-5),

y(v:())_—_.lz = .)_(_1_
d o (C-7)
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Equation (C-7) specifies the values for two of the coefficients in Equation (C-4);
the coefficient b is equal to the uniaxial intrinsic strength, X4, and the coefficient d

is equal to the bundle strength, G,.
As 0, approaches infinity, v approaches infinity and (¥); approaches the

bundle strength, G,,. If the values for the coefficients b and d obtained from

Equation (C-7) are substituted into Equation (C-6), then

oo 2102 %1 %
c+d c+g, o, (C-8)

Equating the numerators in Equation (C-8) and solving for the coefficient a,

a=G, X (C-9)
When the denominators in Equation (C-8) are equated, the coefficient ¢ is equal to
Zero.

The variable definitions, y=(F1)4/0,, and v=C1,0, and the values for the four

coefficients are substituted into Equation (C-4),

(Filio) (GD—XJW(- C;Gz )‘X1

G, G, (C-10)

Solving for the longitudinal strength component, (F)4,

R

Cip0 (C-11)
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which is the model given in Equation (4-38).
The decrease in the transverse strength, (F5),, due to longitudinal loading, G4,

illustrated in Figure 4-14 may also be modeled using partial fraction weighting of
strength under combined stress. Let y=(F5)>/X5 and v=C5 106 where C ¢ is a
constant coupling parameter. When ¢1=0, v=0 and (F5), becomes the uniaxial

intrinsic strength, X5. Therefore, from Equation (C-5),

y(v=0)=—tl=—x—2
d X (C-12)

Equation (C-12) specifies the values for two of the coefficients in Equation (C-4);

both b and d are equal to the uniaxial intrinsic strength, X.

As o approaches infinity, v approaches infinity and (F5), approaches zero. If
the values for the coefficients b and d obtained from Equation (C-12) are
substituted into Equation (C-6), then

+X
}{V__»o):a+ b _a+Xp

=0
c+d c+Xo (C-13)

Solving Equation (C-13) for the coefficient a, a=—X5. The value of the coefficient

¢ has no effect on the partial fraction weighting model in the limiting case as O

approaches infinity. Therefore, it will be taken to be the same value as in the
previously derived model, or ¢=0.

The variable definitions, y=(¥5)>/X> and v=C5 G4, and the values for the four

coefficients are substituted into Equation (C-4),
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1
—Xze -—— X2
(Foldor) _ xp( C21°1)‘
X2 X2

Solving for the longitudinal strength component, (F2),,

(Folon)=x%; e"P{' 1 )

G101

= X2 l—eK%- 1
G164

which is the model given in Equation (4-39).

150

(C-14)

(C-11)

h J




LIST OF REFERENCES

Wu, Edward M., "Phenomenological Anisotropic Failure Criterion,”

Mechanics of Composite Materials, v. 2, edited by Sendeckyi, G. P.,
Academic Press, New York, 1974 pp. 353-431.

Rosen, B. Walter, "Tensile Failure of Fibrous Composites,”, AIAA Jounal,
v. 2, pp- 1985-1991, November 1964 .

Harlow, D. Gary, and Phoenix, S. Leigh, "The Chain-of-Bundles
Probability Model for the Strength of Fibrous Material I: Analysis and
Conjectures,"Journal of Composite Materials, v. 12, pp. 195-214.

Harlow, D. Gary, and Phoenix, S. Leigh, "The Chain-of-Bundles

Probability Model for the Strength of Fibrous Material II: A Numerical
Study of Convergence,"Journal of Composite Materials, v. 12, pp. 314-334.

151




INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22304-6145

. Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

. Professor Edward M. Wu, Code 67Wt

Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California 93943-5000

Department Chairman, Code 69
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, California 93943-5000

Naval Engineering Curricular Officer, Code 34
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93943-5000

. LT Scott J. McKernan

3281 Begonia Circle
Marina, California 93933

Dr. Robert Badaliance

Naval Research Laboratory, Code 6380
Branch Head/ Mechanics of Materials
Washington, D.C. 20375

No. Copies
2

10




Dr. S. C. Chou

Chief, Materials Dynamics Branch
Army Materials Technology Laboratory
Attn: SLCMT-MRD

Watertown, Massachusetts 02171-0001

153




