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ABSTRACT

A probabilistic failure criterion is needed to quantitatively predict

reliability in critical applications,such as man-safe, deep-sea and air structures, and

as an objective function for use in optimum design. Composites are multi-phased

and anisotropic, which gives rise to failure in different modes with different

probabilistic occurrences that are dependent on the applied stress tensor. Statistical

representation of combined stress failures is practically impossible. Probabilistic

modeling must be based on the failure modes. This investigation examines the

underlying features required in a probabilistic failure criterion for unidirectional

fiber-composite structures via Monte Carlo simulations. The interdependencies of

the intrinsic strengths (associated with uniaxial loadings) and of the failure modes

in a composite structure under combined tensile loading are elucidated. The joint

distribution function for composite failure due to a proportional loading regime is

derived starting from the representation of the physical failure process in Boolean

operations which, in turn, is represented by probability functions. Specific forms

of the probability functions for different failure modes are suggested.
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I. INTRODUCTION

Many structural composite applications require a quantitative determination

of reliability which, in turn, requires a probabilistic failure criterion. Justification

for a quantitative reliability analysis may take many forms. Man-safe applications,

such as aircraft and deep submergence vessel components, and inaccessible

applications, such as satellite components, require design and certification of the

composite to a specified reliability level prior to service. Large complex

composite structures, for which proof testing would be economically impractical,

require extensive preliminary reliability analysis to ensure a zero-reject rate once

in service. Reliability is frequently used as an objective function in the

optimization of design and repair of composite structures. It may also be used in

the maintenance of composite structures in order to identify critical inspection

requirements. For any case, quantitative reliability analysis of a composite

structure requires a mathematical function which specifies the stress or strain

levels below which the probable risk of failure is acceptable. This function is a

probabilistic failure criterion.

Failure occurs in composite structures manifest in different modes which

result from the material heterogeneity and aniotropy inherent in composite

materials. The unidirectional fiber composites used in high performance

structural applications consist of many strong stiff fibers embedded in a relatively

ductile matrix. The fibers account for virtually all of the structural strength along

their longitudinal axis, but they make a negligible contribution to the structural

strength in the orthogonal in-plane (transverse) direction. Thus, the structural

strength of the composite in the direction coinciding with the longitudinal axis of



the fibers is typically significantly less than the structural strength in the transverse

direction. In addition, failure due to the component of the inteinal stress tensor in

the longitudinal direction of the fibers alone is a sequential process exacerbated by

the localized clustering of fi:'er breaks. Failure due to the component of the

internal stress tensor in the transverse direction alone is characterized by crack

propagation within the matrix: binder. These two failure modes were obser,,ed to

be different physical processes.

The mathematical function may be formulated 1o represent the failure states or

it may be formulated to model the physical process. The tormer is termed the

phenomenological failure criterion and he latter, the mechanistic failure criterion.

A phenomenological failure criterion only represents the failure state of a

composite; it does not explicitly attempt to model the underlying failure

mechanisms themselves [Ref. I]. A phenomenological failure criterion may be

viewed as a mathematical transfer function which relates the excitation function (in

this case, the applied stress tensor) to the material response (failure). As extended

to the failure characterization of anisotropic composites, the pherom-nological

failure criterion is intended to assist in experimental design i.e., to facilitite the

interpolation, correlation and retrieval of experimental observations. In general,

it does not address the case where strength variation is described by a statistical

distribution.

Since data is the basis of statistics, a probabilistic characterization of composite

failure requires an extensive experimental data base if it is to be considered

phenomenologically based. Any failure criterion may be represented

geometrically as a limiting envelope in the stress space and the shape of the failure

envelope for a phenomenological failure criterion cannot be completely known

um~nn n mumal nnn l mmlluu u llllm~n I II I I



until experiments are performed for all possible states of combined stress. In

order to represent statistical variation of strength as in the case of a probabilistic

failure characterization, the failure envelope is replaced by a set of failure contours

where each contour represents the locus of all stress states having a specific

probability of failure. For the probabilistic failure model to be solely based on

phenomenological observations, closely spaced series of experiments must be

performed and failure probabilities determined along every possible loading path

in the stress spa, . Such an extensive data base does not exist for composite

mate: ials and the acquisition of such a data base for a composite is economically

infeasible.

Rational formulation of an anisotropic probabilistic failure criterion for

composites, therefore, requires an understanding of the essence of the possible

failure mechanisms. Then formulation of the probabilistic failure criterion may

he reduced to expressing the mathematical combination of the probabilistic models

for each of the possible failure mechanisms using Boolean operations. If the

mathematical nature of this combination of models can be analytically determined,

then the shape of the aforementioned failure contours may be completely visualized

once the statistical parameters of the probabilistic models governing each

individual failure mechanism are experimentally determined. This combined

analytical model significantly -educes the number of experimental measurements

z simplifies the data base required to fully describe the failure contours in the

stress space

A deterministic failure criterion is an expedient representatiap of the ave-aged

micromechanical fi lure processes. An anisotropic deterministic failure criterion

presumes that the material is macroscopically homogeneous and anisotropic:
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therefore, its intrinsic strength in any given direction is uniform. "i,,s implies that

when the component of the internal stress tensor in a given direction is

nonuniform, then failure will occur at the location along that direction where the

component of the internal stress tensor is greatest. In actuality, the intrinsic

strength of the material in any given direction is not uniform due to material

heterogeneity and the statistical distribution of fiber intrinsic strengths. If the

internal stress component in a given direction is nonuniform, then the most

probable location of failure is where the stress-strength ratio is greatest, which is

not necessarily the location of highest stress. A deterministic failure criterion

cannot address this phenomenon. In addition, the assumption of uniform strength

in an), given direction would preclude the observed sequential failure process in

composites under longitudinal loading because all fibers would break

simultaneously if their intrinsic strengths were uniform. When the inherent

expediency in a deterministic failure criterion is not appropriate for the specific

application, as in high reliability or large structures, suitable extension is required.

One such extension is an anisotropic probabilistic failure criterion. A

probabilistic failure criterion acknowledges the existence of variable intrinsic

strength within a material by treating the intrinsic strength as a random variable

whose fractional probability of realization is describable by a particular statistical

distribution function. With this model, the strength of the material is presumed to

be nonuniform and unknown until realized in failure due to an applied stress. If the

distribution function and its parameters are known, then the probabilistic failure

criterion can provide the reliability of the structure as the applied stress is

increased up to a given value. The scope of this investigation will be limited to the

tensile domain.
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The characterization of probabilistic failure in composites requires knowledge

of the applied stress tensor and, if the stress is nonuniform, knowledge of the

spatial location of failure within the structure. Both of these requirements may be

motivated and illustrated through the use of statistical simulation.

The objective of this investigation is twofold. First, this investigation will

motivate the necessary characteristics of the probabilistic failure criterion through

the use of numerical simulation for the cases of uniform and nonuniform stress

states. This will be presented in Chapter III. Second, this investigation will

identify the mathematical formalism needed in the formulation of an anisotropic

probabilistic failure criterion of general applicability and develop explicit

expressions of the criterion for several cases of mechanistic dependence between

failure modes. This will be presented in Chapter IV.
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II. APPROACH

Tensile failure in idealized composite structures will be numerically simulated

and statistical data for each structure will be compiled to aid in the recognition of

the fundamental parameters of probabilistic composite failure. Then, a formalized

formulation of a probabilistic failure criterion of general application will be

presented.

It is impractical to perform actual experiments to collect the requisite data for

probabilistic characterization of tensile composite failure. This is due primarily to

the necessity of accounting for all of the many possible permutations involved in

the sequential failure of composites. Furthermore, experimental techniques are

not yet available to accurately identify internal fiber failure sites and the critical

location of fiber failure clusters from which catastrophic failure of a structure

initiates. Numerical simulation, as opposed to experimentation, providcs an

expedient means for compiling the statistical data necessary to visualize and

identify the underlying parameters of probabilistic composite failure.

A formalized formulation of a probabilistic failure criterion is necessary; the

mathematical requirements and constraints must be clearly identified so that major

limitations and restrictions which apply to the formulation are known. There are

many potential constraints which must be considered in the formulation and

application of a general probabilistic failure criterion. These include, but are not

necessarily limited to: interdependency of uniaxial intrinsic strength components

of a composite material, dependency of failure probability on the external loading

regime and mechanistic interdependence of failure modes. A purely ad hoc

6



formulation without regard for mathematical formalism cannot possibly identify

the level of applicability or the limitations of the result.
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III. PROBLEM IDENTIFICATION VIA SIMULATION

Numerical simulation illustrates many of the physical and statistical

phenomena which characterize probabilistic composite failure. The structural

strength variability as manifest in testing by measurement of the external load is

not necessarily the same as the internal strength variability which is intrinsic to the

composite; the difference between them is dependent on the internal stress

distribution within the structure. When the internal stress distribution is

nonuniform (heterogeneous), the structure does not necessarily fail at the location

with the lowest intrinsic strength or the highest stress but rather the location where

the stress-to-strength ratio is the highest. When the structure is analyzed as a

spatially two-dimensional array of structural elements, the width size effect, which

is governed by the element grid used in the analysis, and the effect of elemental

load sharing must also be considered in order to obtain realistic simulated results.

Finally, in geometrically complex structures, uniaxial loading may result in

decidedly multiaxial internal stress distributions for which a one-dimensional

characterization of probabilistic failure is wholly inadequate. This becomes the

motivation for the formulation of a probabilistic failure criterion for multiaxial

combined stress distributions.

A. BACKGROUND

Current models of univariate (uniaxial) probabilistic composite failure did not

explicitly address the effect of heterogeneous stress distributions on the

characterization of failure in the model structures. In this investigation, the one-

dimensional characterization of probabilistic composite failure is numerically

8



simulated using model geometries similar to those used in actual materials testing

and a uniaxial failure criterion. Since the intrinsic strength distribution within

physical test specimens is governed by the random strength distribution of the

material, the strength distributions of the model structures are generated using

Monte Carlo simulation. The model geometries and elemental arrays within the

model structures are varied to illustrate the effect of heterogeneous stress

distributions, elemental grid definition and internal load sharing on structural

failure characterization. A uniaxial probabilistic failure model is shown to be

inadequate for representing the failure behavior of a composite under a combined

stress distribution and, hence, a combined stress probabilistic failure criterion is

necessary.

Rosen investigated uniaxial probabilistic failure in a composite for a uniform

(homogeneous) stress distribution using a model consisting of a one-dimensional

array of structural elements with the structure represented as a chain of

elements.[Ref. 2] He observed that structural failure for this model was a "weakest

link" or series process in which the failure of the weakest element constituted

failure of the structure and that the elemental intrinsic strengths were determined

by the statistical distribution of imperfections among the elements. This led to the

concept of the length size effect on structural strength; a structure divided into a

greater number of smaller elements will tend to have fewer imperfections in a

given element and, hence, the elemental strengths will appear to increase as the

number of elements is increased. Since the statistical strength of the entire

structure must be independent of the number of elements, the scale parameter of

the elemental strength distribution must be corrected for the number of elements

used to account for this effect. Rosen also concluded that, over a small, but finite.

9



length about a fiber break, the broken fiber in ineffective in carrying the uniaxial

load and that, over this length, the load is transmitted via the matrix through shear

to the adjacent fibers. This length is known as the ineffective length, 8.

Harlow and Phoenix investigated uniaxial probabilistic failure for a

homogeneous stress distribution for a composite structure modeled as a two-

dimensional elemental configuration by reducing the model to an effective one-

dimensional element array with the structure represented as a chain of element

bundles.[Ref.3 and 4] They identified the failure process for this model as being a

modified "weakest link" or series-parallel process in which the failure of the

weakest bundle of elements constituted structural failure. Based on the concept of

ineffective length, they developed the local load sharing rule for the chain-of-

bundles model by accounting for all permutations of element failure sequences

within a bundle. Through numerical analysis of the local load sharing rule for

different statistical strength distributions and bundle sizes, they concluded that a

chain of element bundles possessed a lower probability of failure at low applied

load than a chain of single elements of equal length; this is the effect of local load

sharing. In addition, Harlow and Phoenix numerically established the existence of

a width size effect for the chain-of-bundles model; as the number of elements per

bundle is increased for a given structure, the likelihood of bundles containing one

or more weak elements is increased and the bundle strengths appear to decrease.

As in the case of the length size effect, the scale parameter of the elemental strength

distributions must be corrected--in this case, for the number of elements per

bundle--for the structural strength to be independent of the element distribution.

Geometrically complex composite structures, such as plates with holes or

inclusions, are typified by clearly heterogeneous stress states, even when the

10



external loading is uniaxial. The currently available models do not explicitly

illustrates the effect of a heterogeneous stress distribution on the one-dimensional

characterization of composite failure.

In this simulation, composite test specimens are modeled as elastic and

homogeneous in composition, but anisotropic in terms of responses to applied

deformation. The fiber-matrix heterogeneity implies strength anisotropy and is

incorporated into the structural model by way of the load sharing process.

Representative specimen geometries, which are typically used in materials testing,

distill the effects of the internal stress distribution and spatial location of failure on

the characterization of probabilistic failure.

A specimen structure is visualized as a spatial array of structural elements.

These elements, as in the physical case, would have different intrinsic strengths

characterized by the statistical distribution of strength for the material. The

intrinsic strengths of the individual elements are generated by Monte Carlo

simulation. The Monte Carlo technique used in this simulation consists of assigning

to each element a fractional ranking of its intrinsic strength given by randomly

generated numbers between zero and one, noninclusive. The intrinsic strengths of

each element may then be computed from its respective fractional ranking for a set

of relevant statistical parameters of the underlying strength model for the parcnt

composite. The specific parametric influence of the strength variability is vat led

to explore the effect of internal stress distribution on the external strength statistics

as measured by the applied load.

A univariate failure criterion in terms of uniaxial stress is employed in the

simulation. An element fails when the internal stress on the element is greater thanl

or equal to its intrinsic strength.

11



A one-dimensional element array similar to that used by Rosen, combined with

a heterogeneous stress distribution, is used to elucidate the phenomenological

differences between the overall structural strength variability and the intrinsic

strength variability as affected by the nature of the internal stress distribution

within the structure. A two-dimensional elemental array with a heterogeneous

stress distribution is used to show the effect of the width size effect on the overall

structural strength variability.

The numerical simulation is straightforward for the one-dimensional

elemental distribution because only the failure of single elements constitutes the

failure of the entire structure. The simulation becomes more complex for

elemental distributions of two or more dimensions because all of the failure

sequences must then be considered in the numerical model. Furthermore, for

internal stress distributions of two or more dimensions, ali of the failure processes

must be accounted for. Numerical simulation of composite failure for a t., o-

dimensional elemental distribution due to a one-dimensional internal stress

distribution can be accomplished with a uniaxial probabilistic failure criterion aid

is discussed in the remaining section of this chapter. Simulations of composite

failure due to an internal stress distribution of two or more dimensions cannot be

adequately accomplished with a uniaxial failure criterion and require tile

formulation of a combined stress failure criterion, which will be performed in

Chapter IV. Once this failure criterion is formulated, characterization an,

numerical simulation of composite failure for stress distributions of two or moic

dimensions may be performed through the use of a post-processor for finite

element stress analysis results.

12



B. SIMULATION PROCEDURE

Four structural models were investigated in the simulation to illustrate the

influence of heterogeneous stress distributions, internal load sharing and the width

size effect on uniaxial composite failure behavior. These models are schematically

represented in Figure 3-1. Because the uniaxial failure criterion for the model

structures defined the realization of failure in terms of the internal random

variable, intrinsic strength, it was essential that a transfer function be identified in

order to transform the internal random variable to the external random variable.

The internal stress distribution was governed by the spatial geometry of the

specimen model. All specimen models featured a uniform thickness. For the

heterogeneous stress distribution, a model approximating a "dogbone" specimen

was used in which the width of the specimen was reduced by two circular arcs with

a given radius and colinear centers. A homogeneous stress distribution was created

with the "Gogbone" specimen geometry by using a radius several orders of

magnitude greater than that used for the heterogeneous stress distribution. A

model approximating a square plate with a concentric circular hole was used to

simulate failure in a complex geometry. The internal stress distribution within the

plate for a unit uniaxial external load was determined using the ADINA finite

element code. The normal stress components--other stress components were not

used in this simulation--along the direction of loading for each element were

compiled and incorporated into the simulation through a stress multiplier array,

which converted the external applied stress on the plate model into the individual

elemental internal stresses.

For the one-dimensional element distribution, the "dogbone" specimen models

were initially divided into nine elements of equal length. By using an equal numbcr

13
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(a) (b)

One-Dimensional Element Distribution One-Dimensional Element Distribution

Homogeneous Stress Distribution Heterogeneous Stress Distribution

R p

j' p
V rP

(c) (d)
Two-Dimensional Element Distribution Plate with Concentric Circular Hole

Heterogeneous Stress Distribution 24 x 24 Elements

Figure 3-1. Structural models used in the numerical simulation.
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of elements of the same length, the length size effect was eliminated; however, the

strength for any arbitrary element length could be accounted for through the use of

size effect calculations. Thus, the model is analytically valid for any arbitrary

element length so long as any stress gradient within a given element is negligible.

The one-dimensional "dogbone" specimen model was converted to a two-

dimensional model by laterally subdividing each of the original elements into three

smaller elements of equal width, the original elements thus becoming bundles of

elements. The plate model consisted of 500 square elements arranged in a 24-by-

24 element array less the 76 elements which approximated the hole.

Elemental strengths were calculated from randomly generated fractional

strength rankings. The Type III, or Weibull, cumulative distribution function

(CDF) was used as a transfer function between intrinsic strength and fractional

strength ranking

aGl-ex+(i (3-1)

F((5) was the fractional ranking of a, and a and f were the shape (variability)

and scale (magnitude) parameters, respectively, of the CDF. The internal stress, a.

was the realization of the random elemental intrinsic strength; at element failure, a5

equaled the intrinsic strength. When the Weibull CDF was inverted so that the

failure stress, T, was given in terms of the fractional strength ranking, F,

o(F)=exp{(I)ln[-ln( I-FI
J (3-2)
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Equation (3-2) was used in the Monte Carlo simulation for all models to

calculate the random elemental intrinsic strengths.

An advantage of numerical simulation in the acquisition of statistical data is

that it allows otherwise indiscernible internal physical processes to be visualized in

terms of mathematical calculations. For this reason, the simulations for this

investigation were performed using the Microsoft ExcelT M spreadsheet since each

computational step could be visually displayed.

Each simulation essentially followed the same computational sequence.

Fractional rankings of elemental strength were randomly generated and assigned to

each element of a given specimen. Using the input parameters of the statistical

strength distribution, the elemental intrinsic strengths were calculated using

Equation (3-2). At this point, a specimen with random strength is simulated. To

simulate the loading of the specimen,.an initial value for the external load was

imposed on the specimen and the internal stress on each element was calculated

based on the cross-sectional aica established by the specimen geometry. The value

for the internal stress was compared to the respective intrinsic strength for eich

element; if the siress equaled or exceeded the intrinsic strength for an element, th c2,

the element was identified as having failed. For the one-dimensional elemental

distribution, this was equivalent to the structure having failed; for the tmo-

dimensional elemental distribution, the load on the adjacent elements in the bundie

was increased in accordance with a local load sharing rule where the ioad

originally carried by the failed element is equally distributed to its contiguous

neighboring elements. After the load redistribution, teach elemental failure

criterion is evaluated. Once the failure criterion had been evaluated for all inta1,I

elements with no failure indications at a given external load value, the load valu:

16



was incremented )nd the process repeated until structural failure was indicated If

structural failure was indicated, the desired failure parameters were recorded and

the simulation repeated with a new set of fractional strength rankings.

The numerical resullts of the siniulation are intended to simulate actual

experimental data. For this reason, the simulation process must mirror the essence

of the actual physical failure process. A random variable for which data is

simulated must be experimentally measurable. Conventional experimental testing

procedures use the external failure load as the random variable. Direct

experimental measurement of the internal failure stress, i.e., the intrinsic stren,,tI.

would require the knowledge of the exact internal failure site within the structuf,:

this is difficult to implement experimentally. Therefore, comparison of external

failure load to internal failure stress motivates the relevancy of the anal\>is

presented in subsequent sections of this chapter.

C. SIMULATION RESULTS

The effects of homogeneous and heterogeneous internal stress distributions on

failure location are presented in the form of histograms for the one-dimension-1

element distribution and for differept intrinsic strength variabilities. Graphic.Q

representation of the comparison of internal and external random variables for

homogeneous and heterogeneous ztress distributions and different intrinsic

strength variabilities for the one-dimensional element distribution is also

presented. Statistical strength comparisons are presented in the form of lineariz:,

Weibull cumulative distribution functions (CDF) of failure load to illustrate ic

differences in statistical parameters for each data set. Finally, spreadslic,

formulas and the controlling macros for the simulations are presented in ApperL

A.
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The linearized Weibull CDF for the failure load, P, is obtained by isolating the

exponential term in Equation (3-1) and taking the logarithm of both sides of the

equation:
a

(3-3)

The linearized CDF, F*((Y), is formed by multiplying both sides of Equation

(3-3) by -1 and taking the logarithm once more:

(3-4)

Substituting the failure load, P, as the independent variable into Equation (3-4)

gives the linearized CDF for the failure load, P:

F*(P)=I lnl+-FP)1) - 1;) t13! (3-5)

The Weibull CDF in linearized form becomes a straight line with slope equal to

the shape parameter, (X. The value of F* takes on the value of zero when P equals

the shape parameter for the failure load, 3, or (P/3) equals one.

1. Significance of Failure Location and Stress Distribution

Failure data was simulated for the specimen models with one-dimensional

elements, respectively with homogeneous and heterogeneous stress distributions.

The effects to be observed are the external failure load magnitude and variability,

and the distribution of spatial locations of failure. Parameters examined are the

intrinsic strength variabilities through varying the Weibull shape parameter, (x,

between high and low values while the Weibull scale parameter, P, for all

18



for all specimens was held constant.. For each simulated test, failure location,

failure load and failure stress were recorded.

When the internal stress distribution is homogeneous, all of the elemental

stresses are equal. Therefore, failure of the structure is caused by the failure of the

element with the lowest intrinsic strength. Since the intrinsic strengths are

randomly distributed among the elements, the location of failure is also random.

This random distribution of failure location is independent of the strength

variability. These results are illustrated in Figures 3-2(a) and 3-2(b).

The homogeneous stress distribution also implies constant elementJi

cross-sectional areas. Since stress is defined as load per unit area and the elementail

cross-sectional areas are constant, the failure load may be transformed t,)

equivalent data for failure stress by a single scalar value, (Area)-1 ; the location U"

failure is not required to perform the transformation. Figures 3-3(a) and 3-3(L,,

show this result for different strength variabilities. This single-valued scal,-

transformation is independent of the strength variability as shown in Figure 3-4 il

which the results of the high and low variability data sets are merged.

For a heterogeneous stress distribution, the most likely failure location is tl,_,.

element with the highest internal stress with low strength variability accentuatil.I,

this effect. Structural failure in this case does not depend on the lowest element,.,

strength, but on the lowest elemental stress-to-strength ratio. An element with It

high internal stress will generally fail unless it has a significantly high strength aj,,'

an element with a lower stress has a significantly lower strength. As the stren,1.i

variability decreases, the elemental intrinsic strengths approach a unifori-,

deterministic value and, in the limiting case, failure will always be caused by the

failure of the element with the highest internal stress. Figures 3-5(a) and 3-5kL,,
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Figure 3-2(a). Distribution of failure location for homogeneous stress and high

strength variability.
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Figure 3-2(b). Distribution of failure location for homogeneous stress and high

strength variability.
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Figure 3-3(a). Failure stress vs. external failure load for homogeneous stress and

high strength variability.
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Figure 3-3(b). Failure stress vs. external failure load for homogeneous stress and

low strength variablity.
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Figure 3-4. Failure stress vs. external failure load for homogeneous stress

(merged data sets).

illustrate the distributions of failures by element for high and low strength

variabilities.

The heterogeneous stress distribution implies a variation in elemental

cross-sectional areas. Therefore, failure load may not be transformed to

equivalent data for failure stress by a single scalar value but by a variable scalar

value, (Failure Area) -1 , where the failure area is the cross-sectional area of the

failed element. Clearly the failure location must be known in this case for the

transformation to be performed. Interpretation of statistical data based on the

external failure load without regard for the failure location will result in an

erroneous estimation of the statistical parameters of the intrinsic strength

distribution for the structure (Figure 3-6). Figures 3-7(a) and 3-7(b) show the

variable scalar transformation for high and low strength variability and Figure 3-8
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Figure 3-5(a). Distribution of failure location for heterogeneous stress and high

strength variability.
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Figure 3-5(b). Distribution of failure location for heterogeneous stress and low

strength variability.
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shows that the variable scalar transform is independent of the strength variability.

When the failure location for the combined data sets is considered, accurate

estimation of the statistical parameters of the intrinsic strength distribution for the

structure is obtained (Figure 3-9).

0No Transformation

0'

" -2

Intrinsic
0 CDF

0 0 Empirical
0 CDF

0

0

-6

1 10 100

Equivalent External Load P

Figure 3-6. Comparison of intrinsic and empirical CDF for heterogeneous stress

and high strength variablity without transformation.
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Figure 3-7(a) Failure stress vs. external failure load for heterogeneous stress and

high strength variability.
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Figure 3-7(b) Failure stress vs. external failure load for heterogeneous stress and

high strength variability.
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Figure 3-8. Failure stress vs. external failure load for heterogeneous stress

(merged data sets).

The empirical strength CDF based on the external failure load converges quickly to

the intrinsic CDF for the material in the case of low strength variability; when the

strength variability is high, convergence is much slower and more simulations are

required. The convergences are illustrated for the homogeneous stress distribution

in Figures 3-10(a) and 3-10(b) for low variability, and 3-11(a) and 3-11(b) for

high variability.
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Figure 3-9. Comparison of intrinsic and empirical CDF's for heterogeneous stress

and high strength variablity with transformation.
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Figure 3-10(a). Comparison of intrinsic and empirical CDFs for homogeneous

stress and low strength variability after 39 simulations.
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Figure 3-10(b). Comparison of intrinsic and empirical CDFs for homogeneous

stress and low strength variability after 150 simulations.
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Fi, ure 3-11 (a). Comparison of int-insic and empirical CDFs for homogeneous

stress and high strength variability after 39 simulations.
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Figure 3-11 (b). Comparison of intrinsic and empirical CDFs for homogeneous

stress and high strength variability after 150 simulations.
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2. Effect of Heterogeneous Stress Distribution on Failure

Behavior

In a homogeneous stress distribution, the element with the lowest strength

will be the source of structural failure regardless of its location. If the stress

distribution is heterogeneous, the influence of the lowest elemental strength on the

structural strength may be diminished if the weakest element has a low internal

stress. Thus, the heterogeneity of the internal stress effectively increases the scale

parameter of the empirical strength CDF for the structure. This is shown in

Figures 3-12(a) and 3-12(b). The strengthening effect of the heterogeneous stress

distribution is dependent on the intrinsic strength variability. As the variability

decreases, the elemental strengths approach a uniform deterministic value at which

magnitude of the statistical structural strength is maximum.

3. Effect of Structural Redundancy on Failure Behavior

The two-dimensional elemental distribution with heterogeneous stress

distribution is compared with the one-dimensional elemental distribution with the

same heterogeneous stress distribution to elucidate the effects of structural

redundancy: local load sharing and the width size effect. The two effects can be

visualized for high and low strength variability by using equal scale parameters for

the intrinsic strength distribution (Figures 3-13(a) and 3-13(b)). In each case, the

scale parameter of the empirical strength CDF for the structure appears to have

decreased. In addition, the strength variability and failure probability appear to

decrease at low failure loads. Since the internal stress distribution and, hence, the

structural geometry of the two models are identical, the failure characterization of

each should also be identical. This indicates that the strength statistics are

dependent on the elemental width unless these effects are accounted for. If these
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effects are taken into account, the parameters of the structural strength distribution

will be analytically valid for any elemental distribution, but the scale parameter

will still depend on the internal stress disrbution.

2

High Variability

0-

-4 "Homogeneous Stress

A Heterogeneous Stress

-.6
1 10 100

External Load P

Figure 3-12(a). Comparison of empirical CDFs for homogeneous and

heterogeneous stress distributions and high strength variability.
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Figure 3-12(b). Comparison of empirical CDFs for homogeneous and

heterogeneous stress distributions and low strength variability.

34



2

High
Variability

0

-

-- 0-- -D Element Distribution

4 2-D Element Distribution

-6 . . I .

1 10 100

External Load P

Figure 3-13(a). Comparison of empirical CDFs for one and two dimensional

elemental distributions with heterogeneous stress and high strength variability.
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Figure 3-13(b). Comparison of empirical CDF's for one and two dimensional

elemental distributions with heterogeneous stress and low strength variability.
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The decrease in the scale parameter of the empirical CDF is the result of

the width size effect. The two-dimensional elemental distribution gives rise to

sequential failure of the structure which begins as the weak elements in the bundle

fail. Since the internal stress distribution is heterogeneous, elemental failure is

governed by the elemental stress-to-strength ratio, but bundle failure is dictated by

the distribution of elemental intrinsic strengths within each bundle. As the number

of elements in the bundle increases, the likelihood of very weak elements within the

bundle increases and the sequential failure process within the bundle begins at a

lower external load. This is the width size effect.

The decrease in strength variability and failure probability at low failure

loads is caused by local load sharing within each bundle. Catastrophic failure of the

structure tends to initiate once adjacent elements within a bundle have failed. Local

load sharing tends to accelerate failure in elements adjacent to elements which have

already have failed. A single element with a very high intrinsic strength can carry

the additional load transferred to it by a'! adjacent failure sequence if that external

load is relatively low. As the external load increases, even a very strong element

within the bundle is unable to bear the transferred load and catastrophic structural

failure ensues.

The width size effect and local load sharing effect appear to be dependent

on strength variability. As the strength variability decreases, the range of

elemental intrinsic strengths within a given bundle is limited and the strengths

approach a uniform deterministic value. The adjacent, relatively weak elements

required to start a failure sequence at low external load, and the relatively strong

elements required to stop a failure sequence once it starts are not likely to be

present. The two effects are diminished and failure characterization for low
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strength variability in this case approaches that for the one-dimensional elemental

distribution.

4. Geometrically Complex Models

The failure characterization for high strength variability of the plate

model with a circular hole is compared with the "dogbone" model having a two-

dimensional elemental distribution and heterogeneous stress distribution to

illustrate the effect of a complex multiaxial stress distribution on one-dimensional

failure characterization. Figure 3-14 compares the empirical structural strength

distributions. For complex geometries such as the plate, determination of the

mathematical transformation between failure load and failure stress is a

complicated matter and requires numerical stress analysis.

All of the effects previously discussed are present in this comparison:

length size effect, heterogeneous stress effect, width size effect and local load

sharing effect. If all of these effects are considered and corrections included in the

simulation, the resulting structural strength distributions should coincide.

Since the simulat.,n, ias based on a uniaxial failure criterion, only a one-

dimensional characterization of structural failure was possible for the plate; the

contributions of transverse normal stress and shear stress to the structural failure

characterization was not possible. In order to adequately model and numerically

simulate probabilistic composite failure resulting from a combined stress

distribution, a probabilistic failure criterion for combined stress is required. The

formulation of such a failure criterion will be performed in the following chapter.
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Figure 3-14. Comparison of empirical CDF-s for the plate model and "dogbone"

specimen with two dimensional elemental distribution.
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IV. FORMULATION OF COMBINED STRESS FAILURE

CRITERION

For a composite specimen, the applied stress tensor and the intrinsic strengths

associated with each component of the applied stress tensor are represented as

vectors in the combined stress space. The random intrinsic strength vectors,

associated (colinear) with the applied stress vector, are manifest in failure modes

tracible to the failure modes associated with failure under uniaxial stresses (i.e., the

stress components of the vector). A probabilistic failure criterion for combined

stress must account for each of these unique failure modes in terms of information

which is experimentally or analytically available a priori, such as the

micromechanical material behavior, the uniaxial intiinsic strength distributions

and the applied stress tensor. This may be accomplished by determining the joint

probability density function (pdf) in the stress space and integrating it over the

domains associated with each failure mode. The failure modes may be either

mechanistically and/or probabilistically interdependent (coupled) giving rise to

four possible combinations of mechanistic coupling and probabilistic dependence.

Excluding the case in which the failure modes are mechanistically and

probabilistically coupled, the remaining three combinations would be

experimentally indistinguishable and it is hypothesized in this investigation that a

failure criterion formulated for one combination would be phenomenologically

equivalent for all three combinations. Using the combination of mechanistically

deterministic coupling and probabilistic independence, of the intrinsic strength the

reliability of the composite may be expressed for the physical combined stress

space in terms of Boolean operators. When the random vector functions defining
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the failure modes in the combined stress space are substituted into the Boolean

expression for reliability, the resulting transformation of random variables makes

the random vector functions orthogonal and eliminates the coupling of the failure

modes in the transformed space. The reliability in the transformed stress space

may be converted to reliability in the physical stress space and the joint pdf in the

physical stress space determined. The formulation presented herein will be limited

to spatially two-dimensional tensile stress.

A. BACKGROUND

A composite specimen under combined stress has random intrinsic strengths

corresponding to each component of the applied stress tensor. These intrinsic

strengths, as well as the applied stress tensor, can be represented as colinear vectors

whose direction in the combined stress space is known as the loading path. Each

component of the stress tensor is manifest in a unique failure mode which, in the

case of normal stress components, is also dependent on the sign of the stress

component since different failure modes arise from tensile and compressive

normal stresses. The occurrences of each failure mode for a composite specimen

may be visualized in the combined stress space through thought experiments in

which each intrinsic strength vector is observed over the range of all possible

loading paths in the combined stress space.

In the case of biaxial tensile combined stress, the stress components and their

associated intrinsic strengths may be represented as vectors with components along

each axis of the biaxial stress space. The representation of a specimen under an

arbitrary biaxial tensile stress is illustrated in Figure 4-1. Such a specimen under

bilxial tensile combined stress has two possible failure mechanisms (modes),

longitudinal (M,) and transverse (M-). each with an associated intrinsic strength
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Figure 4-1. Representation of a specimen under arbitrary biaxial tensile stress.

vector, F, and 12 respectively, which is colinear with the stress vector, . In the

biaxial stress space, any loading path can be defined by m 12 , which is the slope of

the stress vector and its corresponding strength vectors. The failure mode which

will occur in a given specimen along a particular loading path is determined by the

smaller of the intrinsic strength vectors along the loading path, m12 .

Each specimen has associated with it random uniaxial intrinsic strengths, X,

and X2 , along each axis of the biaxial stress space. In a thought experiment for an

arbitrary specimen, each of the intrinsic strength vectors define a vector function

in the biaxial stress space as m12 is varied over the range of the tensile domain, i.e.,

between zero and infinity. The function defined by the strength vector
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intercepts the a, axis at the uniaxial strength X1, and has a set of coupling

parameters given by E1 which define its shape in the stress space in terms of the

stress components, a1 and G2 . Similarly, the curve defined by the strength vector

E2 (71' 2 ;X2'O2 }= lel" F2 )2(O ;X2'O6 (4-2)

intercepts the G2 axis at the uniaxial strength X2 , and has a set of coupling

parameters given by 82. Each curve represents a deterministic failure criterion

for a particular failure mode associated with that specimen; F 1 (G1 ,o 2 ;X1 ,81 )

represents failure mode M1 and F 2 (G 1,a 2 ;X2 ,8 2 ) represents failure mode M 2 .

The point of intersection of the two curves represents the stress state at which both

failure modes occur simultaneously; this point is called the joint failure state. The

location of the joint failure state with respect to the loading path determines the

ultimate failure mode. This will be investigated in the following section.

B. GENERAL BOOLEAN REPRESENTATION OF FAILURE
MODES

Once the physical conditions defining the occurrence of each possible failure

mode for a composite subject to combined stress are defined mathematically, the

probability of occurrence for each failure mode may be expressed in terms of

logical (Boolean) operations. The magnitudes of the uniaxial intrinsic strength

vectors are the random variables for these operations and the magnitude of the

stress vector represents the realization of these random variables, i.e., the

manifestation of the failure modes. When the mathematical representations for all
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of the failure conditions are combined, a Boolean expression may be used to

represent all of the possible failure conditions for a given loading path.

Failure results in mode M1 for an arbitrary specimien in biaxial tensile stress is

depicted in Figure 4-2. 'VY hen the magnitude of the applied stress vector, ., equals

or exceeds the magnitude of the intrinsic strength vector, F ,, failure mode M1 will

result if the magnitude of F, is the minimum of the strength vector magnitudes for

the specimen. Thus, any specimen with a combination of intrinsic strength

vectors, E, and F 2 , such that IFI < IT21 will result in failure due to mode M,

whenever IFTI ISI. The probability or failure due to mcde M, is:

F¢ IP{ f1 (4-3)

given the condition that I£11 < IF21. This condition is equivalent to the geometric

configuration in which the joint failure states lie above the loading path.

Failure results in mode M2 for a composite specimen is shown in Figure 4-3.

When the magnitude of the applied stress vector, _, equals or exceeds the

magnitude of the intrinsic strength vector, £1:-2, failure mode M2 will occur if the

magnitude of F2 is the minimum of the strength vector magnitudes for the

specimen. In this instance, any specimen with a combination of intrinsic strength

vectors, F, and £2, such that IE21 < IF1I will result in failure due to mode M2 when

IF21 < aL. Failure due to mode M2 may therefore be represented in Boolean

notation as

Foa l:Pr~l -V2 Id-44
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Figure 4-3. Representation of failure due to mode M 2 in biaxial stress space.
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given that IF21 < I1. Similarly, this condition is equivalent to the geometric

configuration in which the joint failure states lie below the loading path.

By combining the failure conditions for each failure mode, the failure

condition for the specimen may be expressed in terms of logical statements.

Failure occurs when the magnitude of the stress vector equals or exceeds the

minimum magnitude of the intrinsic strength vectors or,

J SJ Eal J E21 (4-5)

The probability of failure for either failure mode may now be expressed as

Fo( S__l)r'L JA_2d5J) (4-6)

The requirement for the minimum strength magnitude may be eliminated if

Equation (4-6) is recast in terms of the composite reliability. While composite

failure is defined as the occurrence of either failure mode, composite reliability is

defined as the occurrence of neither failure mode and is defined as

RJ$J})=l-FiJ) (4-7)

or, in terms of the strength vector magnitudes,

R'- _? SJ)1(4-8)

Equation (4-8) implies that the magnitudes of each strength vector must be

greater than the magnitude of the stress vector. Thus, two conditions must both
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apply for the composite to be reliable, IF1i > II and 1 21 >II. The composite

reliability may now be expressed in terms of these two conditions

,?1 S)(4-9)
In terms of Boolean operations, Equation (4-9) represents the intersection of the

two reliability conditions and may be rewritten as

Rc SPr{[Z Sl ] r [ 2. ]} (4-10)

Equation (4-10) is a general expression for the reliability of a composite under

biaxial tensile stress conditions. However, additional simplifications must still be

made before it may be effectively applied. These simplifications will be identified

in subsequent sections of this investigation.

C. COUPLING OF FAILURE MODES

When the deterministic failure criteria which represent the failure modes of a

single specimen in the biaxial stress space are orthogonal to one another, the failure

modes of the composite are considered independent (uncoupled). These conditions

are schematically illustrated in Figure 4-4. Conversely, deviation from

orthogonality by the specimen failure criteria indicates that the failure modes are

coupled. Coupling may result from the effect of the orthogonal stress components

on the uniaxial intrinsic strength associated with the other stress component. This

is called mechanistic coupling and is governed by the coupling parameters, E.

Coupling may also result from an interdependency between the statistical ordering

of the random intrinsic strength vector components. This condition is defined as
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Figure 4-4. Independent (uncoupled) failure modes in the biaxial stress space.

probabilistic coupling and is the result of an interdependency between the relative

statistical orders of the random uniaxial intrinsic strengths.

1. Mechanistic Coupling

The specimen failure criteria are represented in the biaxial stress space as

F 1(G1,( 2 ;X1,e) and 2((51,G2 ;X2 ,E 2 ). The stress component dependencies of

these failure criteria are determined by the coupling parameters, 8 1 and 0 2 . If 81

and E)2 are constant parameters, then both F1 (G1 ,O2 ;XI,ES1 ) and .2 (G 1,o2 ;X2 ,2)

will be homologous; i.e.. each will maintain the same shape in the biaxial stress

space for every specimen. This is defined as mechanistically deterministic

coupling and is schematically illustrated in Figure 4-5(a). If E)1 and 0 2 are random

parameters for each specimen, then each failure criterion will have different stress

dependencies, and therefore different shapes, in the biaxial stress space for

different specimens. This is defined as mechanistically probabilistic and is

illustrated in Figure 4-5(b). In the latter case, the failure criteria would have the
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Figure 4-5(b). Mechanistically probabilistic coupling.
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functional forms :F(0,02; X1,6 1(0 1)) and :F2 (a1 ,52 ; X2 ,,2(0 2 )) where 81(o7)

and G2 (72) are represented by statistical distribution functions.

2. Probabilistic Coupling

The components of the random intrinsic strength vectors may be

dependent on one another if their associated random uniaxial intrinsic strengths are

interdependent. An example of intrinsic dependency may be visualized in the

pairing of the uniaxial intrinsic strengths by the rank ordering of their magnitudes

(i.e., low strength to low strength, high strength to high strength, etc.). The rank

order of the random uniaxial intrinsic strengths for the population of specimens

are determined by their respective statistical distribution functions, Fx(Gl) and

FX2 (0 2 ), shown in Figure 4-6 and the mechanistically deterministic coupling in

Figure 4-7. The failure modes occurring along entire segments of a given loading

path vill be the same if the coupling parameters of the failure criteria are

deterministic and will vary randomly if the coupling parameters are probabilistic.

On the other hand, if the components of the random intrinsic strength

vectors are independent of one another, the uniaxial intrinsic strengths for any

specimen will be randomly paired. The failure modes occurring along any loading

path will vary randomly regardless of the nature of the coupling parameters. The

spatial distribution of joint failure states in the three combinations of mechanistic

and probabilistic coupling where the failure modes vary randomly along any

loading path are apparently indistinguishable from one another. Therefore, the

same mathematical formulation of the probabilistic failure criterion for the

composite should be valid for any of the three combinations of coupling.

For combined biaxial stress, there may exist an interdependency between the

uniaxial intrinsic strengths, X1 and X 2 . If so, then the components of the failure
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Figure 4-6. Uniaxial strength distribution functions in the biaxial stress space.
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Figure 4-7. Mechanistically deterministic and probabilistically dependent

coupling.
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criteria, (F1)1 (a 1,a 2 ;X1,E))and (F 2)2(0 1,02 ;X2 ,62), the rank order of which are

determined by the respective distributions, F(p1)i(a 1,02;X 1,01) and

F('2)2(G1,02;X2,E®2), would also be interdependent and the failure modes are

considered probabilistically dependent. In this case, a specimen with a low uniaxial

intrinsic strength in the longitudinal direction will have a low uniaxial intrinsic

strength in the transverse direction; a specimen with a high uniaxial intrinsic

strength in the longitudinal direction will have a high uniaxial intrinsic strength in

the transverse direction. In terms of the distributions of the failure criteria

components,

,a 2 =;X1 ,e 1 =F(401=,0 2 ;x2 e2)(4-12)

If, in a thought experiment for this case, the uniaxial intrinsic strengths for all

specimens in the population were rank ordered and their individual failure criteria

plotted in the biaxial stress space, a continuous locus of joint failure states for the

population may also be plotted. Given any arbitrary loading path, the failure

modes occurring over entire segments along the loading path are the same. If the

uniaxial strength distributions have the same shape parameter, then the failure

modes occurring along a given loading path remain the same along the entire path.

These phenomena may be visualized in Figures 4-8(a) and 4-8(b).

The occurrences of the failure modes are different in the case where no

interdependency exists between the uniaxial intrinsic strengths, X1 and X2 . The

pairing of the uniaxial strengths is random; and the failure modes are considered

probabilistically independent. In this case, a specimen with a low uniaxial intrinsic
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Figure 4-8(a). Mechanistically deterministic, probabilistically dependent coupling

with uniaxial strength distributions having equal shape parameters.
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Figure 4-8(b). Mechanistically deterministic, probabilistically dependent coupling

with uniaxial strength distributions having unequal shape parameters.
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strength in the longitudinal direction may have a high uniaxial intrinsic strength in

the transverse direction, etc.

There are four possible combinations of mechanistic and probabilistic coupling

in a population of composite specimens. The combination of deterministic

mechanisms and probabilistic dependence has unique characteristics and has been

previously examined. The remaining three combinations, deterministic

mechanisms with probabilistic independence, probabilistic mechanisms with

probabilistic dependence and probabilistic mechanisms with probabilistic

independence, share one significant characteristic. In each case, no continuous

locus of joint failure states may be plotted in the biaxial stress space. Hence, a

random mixture of failure modes will result along any given loading path. This

phenomenon is illustrated in Figures 4-9(a), 4-9(b) and 4-9(c).

Depending on the coupling parameters associated with the failure modes, the

failure characterizations of the three combinations may be indistinguishable in the

biaxial stress space. For this reason, the cumulative combined-stress failure

criterion for one combination will be assumed, for the purposes of this

investigation, to apply to all three combinations. In the following section the

combined-stress probabilistic failure criterion will be formulated for the

combination of deterministically coupled failure modes with probabilistic

independence.

D. FORMULATION OF FAILURE CRITERION

The joint failure probability density function (pdf) for the biaxial stress space

is defined as the probability that both failure modes M1 and M2 occur at any given

biaxial stress state in the composite and is expressed in terms of the applied stress

components. If the joint failure pdf for the biaxial stress space and the spatial
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domains associated with each failure mode are known, then the probability of

failure for the composite may be obtained by integrating the joint failure pdf over

the stress domains for both failure modes. However, the joint failure pdf is usually

not available. In this case, the stress components may be mapped into a

transformed stress space for which the random variables are independent and the

probability of failure in the transformed space determined. The joint failure pdf

for the physical stress space may then be determined by differentiating the

transformed probability of failure with respect to the physical stress components.

A mathematical model for the mechanistic dependency will be proposed based on

the micromechanical behavior of composite failure processes. This mechanistic

dependency model will then be used for transformation and derivation of the joint

probability failure function.

1. Formulation for General Mechanistic Coupling

The objective of this formulation is to obtain the joint pdf for a composite

in the tensile biaxial stress space for an arbitrary coupling of failure modes. Under

the hypothesis that the three of the four combinations of mechanistic and

probabilistic coupling are indistinguishable in the biaxial stress space, the

formulation of a probabilistic failure criterion for one combination will be

applicable to all three. The strength coupling case for mechanistically

deterministic coupling in conjunction with probabilistically independent intrinsic

strengths will be explored. Under these conditions, the coupling parameters of the

specimen failure criteria are constant and that the random uniaxial intrinsic

strengths are independent of one another.

The deterministic specimen failure criteria have been defined in vector

form by Equations (4-1) and (4-2):
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The failure criterion for each failure mode can be partitioned into the uniaxial

strength, X. , plus a coupling effect, Cij(aj):

(F1)}( 1,a2;4X , 1+C12((2) (4-13)

and

(F2 U (5 1 ,a2 X2 ,E)= X2 2 1 (CF1) (4-14)

where C12 (Y2 ) and C2 1((31) represent arbitrary coupling functions. The uniaxial

failure pdf's of the stress components are taken to be known and denoted

respectively by fxl(( 1) and fx2 (a2).

The general Boolean expression for composite reliability in vector form

was previously given by Equation (4-10) stating the logical conditions that a sample

is reliable only when the strength vectors for each mode both exceed the applied

stress vector:

Rj(5 J Pr'[ J .1 1q:l] 1.Jj 1]

If the strength vector is assumed to be path independent, then Equation

(4-10) may be expressed in terms of the scalar components, (F1 )1 or (F1)2 , and
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(F2 )1 or (F2 )2 . The reliability condition for failure mode M1 can be expressed in

terms of the uniaxial condition, (F1)1 > al and the reliability condition for failure

mode M2 can be expressed in terms of its uniaxial condition, (F2 )2 > Y2 . Equation

(4-10) may then be rewritten in terms of the strength vector components:

Rjl,(:,2 )=Pr([(F1)l><i] n [() 2>02 ] } (4-15)

Equation (4-15) is the intersection of the reliability conditions for the two

failure modes and may be exoressed in terms of the conditional probabilities of the

two reliability conditions:

R, [(yC;2]PrPr(F2x)

or,

f (4-16b)

The scalar components of the strength vectors, F, and F2 , (F1 )1 and

(F 2 )2 , are related to the uniaxial strengths, X1 and X->, by Equations (4-13) and

(4-14). Substituting these relations into Equations (4-16a) and (4-16b) and

rearranging the inequalities in terms of X1 and X2 ,
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PrXf -- 7 (
Pr\(Xja 1-C12 )]}) {X2>[a--C21 (a1)]} fPr\ 2>ta2 21 1)]}47

(4-17a)

or,

Rearranging the inequalities in terms of X1 and X2 is equivalent to

transforming the random variables from the strength vector components to the

uniaxial strengths. The composite reliability has been mapped from the physical

stress space defined in terms of (a and G2 into a transformed stress space defined in

terms of transformed stress components a 1' and 0 2 ' by

(Y1 '=' 1-&C12 (a-) (4-18a)

and,

CZ=c 2-C21(( 1 ) t4-18b)

Differentiating Equations (4-18a) and (4-18b) gives the relations

da'I- a 2 '- 1

)G 1  ac;2  (4-19a)
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daf-CC12

ac2 dG2 (4-19b)

a(2' d21

and,

'2 ,-2C2 =0

Figure 4-10 depicts the transformed stress space. Equations (4-17a) and

(4-17b) may be rewritten in terms of al'and 192' as

R(o1 ,C;2kPr( X1><l'] I [X2>0211 X2>(2'} (4-20a)

and,
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Figure 4-10...Transformed biaxial stress space.

The uniaxial strengths , X1 and X2 , are taken as independent random

variables. Therefore, in terms of the transformed stress components, al'and

a 2 ',the conditional probabilities in Equations (4-20a) and (4-20b) become

PT [X1>T1'I [X2>(721J =P6) (4-21)

and,

Pr{ [X2>0'1I [X>Gi1 } =Pr(X2 >3 2 ' }  (4-22)

Substitution of Equations (4-21) and (4-22) into Equations (4-20a) and

(4-20b) results in a single logical expression for the composite reliability:
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lk(71,oj=2Pr( X,>a, ')Pr{X2 >a2 '} (4-23)

The two Boolean terms in Equation (4-23) represent uniaxial reliabilities

and, hence, the composite reliability in functional form becomes

R.(71 'Y2, Rx (1')Rxj3 2 ') (4-24)

The reliability domain and the joint failure pdf have not actually changed.

However, the transformation of the stress space has recast their mathematical

expressions in terms of the transformed variables.

In order to determine the joint failure pdf, the composite reliability is

converted into the joint CDF for the composite, Fc(a 1 ,a 2 ), since Fc(cr,,C 2 ) is

defined as the area integral of the joint failure pdf over the domains of the failure

modes in the stress space. Since F = l-R, Equation (4-24), expressed in terms of

CDF's becomes

or,

.Gju~c2Fx 1 (')±Fx 2 (a2 }-Fx (1 a')FXJ(52 ') (4-25)

Since R,(7 1,5 2 ) is invariant for both the physical and transformed stress spaces,

Fc(a71,a32 ) is also invariant for the two spaces.
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The joint failure pdf in the transformed stress space, fx1,x2 (a1',02'), may

be obtained by differentiating the joint CDF by each of the transformed variables,

a,' and (;2':

c19 I (4-26)

a F

=fx '(Y 1')fxJ 0.
2 ') (4-27)

The absolute value is included in Equation (4-26) since the joint failure

pdf must be a positive-valued function; the differentiation of reliability and failure

probability result in positive-valued and negative-valued "mirror images" of the

joint failure pdf because Fc=I-R c .

The joint failure pdf in the physical stress space, f(j 1)1,(F )2((T1,( 2 ), may

similarly be obtained by differentiating the joint CDF by each of the physical

variables, 51 and 72:
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(:j1 aa1  , ' ~'a: '

___
x

__ a} x 2 ' -I O 2 jO'--' frX1( 1kX2')

-20Y (-8

Substituting the relations of Equations (4-19a) through (4-19d) into

Equation (4-28) gives an expression for the joint failure pdf in the physical stress

space in terms of the uniaxial failure pdfs and the coupling functions:

fl#11, 1 o, 1h=]X~kx fr> 2,)+( dC / dC1 x! ,)fx2( z,)
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12 afx 1)F XG')=Idi( 21)Fl(ai'~ af 2 (T2 ')

dC12 d1H) d

da d,9 da

-(Cf1 (a )-21f (02') fx(5'

+d% dC) 21 axj(52)
dc da1 , (4-29)

In order to determine the interdependency of the physical random

variables , (Fl), and (F2 )2 , the conditional probabilities , f(F1),1 (r22 (G1 1Y2) and

f(V)21F1,(G1(Y),must be determined. The conditional probabilities may be found

using, the relations
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and,

f lF2 }, a2 T- f x (4-31)

(F1)1 and (F2 )2 , are independent only if their conditional probabilities

equal the equivalent uniaxial pdf s or,

and,
adf(TA IAr,)- (52 1O1kfx2(52 (4-33)

By substituting Equation (4-30) into Equation (4-32) or Equation (4-31) into

Equation (4-32), a single independence criterion for (F1 )1 and (F 2 )2 may be

obtained:

fi'I}, (T-2 (CT'e0 2 =f x ,( (51 f x J ( T2 )  (4-34)

(FI)1 and (F2 )2 are only independent if there is no mechanistic coupling.

The expression for the joint failure pdf in the physical stress space, Equation (4-29)
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will reduce to the independence criterion for (F1 )1 and (F2 )2 , Equation (4-34),

only if

d-2 dal (4-35)

and, a ' = a1 and a 2 ' = a2 . These conditions are satisfied only when there is no

mechanistic coupling, or C12 (Y2 ) = C2 1 (0 1) = 0. If mechanistic coupling is

present, i.e., either C12 (02 ) or C2 1(a 1) are nonzero, then Equation (4-29) will not

reduce to Equation (4-34), and (F1 )1 and (F2 )2 cannot be independent random

variables.

Equation (4-34) demonstrates that the conditions for independence of the

intrinsic strength vectors in the biaxial stress space are only satisfied if there is no

mechanistic coupling. To illustrate the explicit mathematical operations, this proof

is repeated for explicitly defined linear coupling functions in Appendix B.

Both the joint CDF (joint probability of failure) and the reliability for the

composite are determined by integrating the joint failure pdf over one or more

specific domains in the stress space. The result of Equation (4-29) is evidence that

when mechanistic coupling is present, the expression for the joint failure pdf is

complicated and the evaluation of its area integral may require significant time and

effort. Both the reliability and the joint CDF are the same in the physical and

transformed stress spaces. Therefore, Equation (4-24) may be used in place of the

joint failure pdf to calculate the reliability or joint CDF of a composite under

combined stress provided the coupling functions and uniaxial CDFs are known. If

the uniaxial CDFs, FX( 1@y) and Fx2 (; 2 ), are represented hy Weibull distributions

67



(Equation (3-1)), then ,using Equation (4-24) and the relation R=I-F, the

composite reliability may be expressed as

R,('91 CF2)=exp{ { I-C2(G2)- a, { 2-C2 i)] }a4-6
031 - (4-36)

and the joint CDF , or cumulative probability of failure, for the composite may be

expressed as

F(cY1h(Y2)=-exp{ C,-C2(,) 1 . (-a
I i (4-37)

Equations (4-36) or (4-37) thus represent the probabilistic failure

criterion in terms of Weibull distributions for biaxial combined tensile stress with

mechanistically deterministic and probabilistically independent coupling of failure

modes. Upon the identification of the mechanistic coupling function, either of

these criteria may be used to evaluate the probability of failure of a structural

element within which the stresses G, and a2 are uniform.

2. Mechanistic Coupling Functions in Biaxial Tensile Combined

Stress

For a composite under biaxial tensile combined stress, a mechanistic

coupling function associated with each failure mode is needed. The analytical form

for such a coupling function may be inferred from the micromechanical behavior

of the composite under biaxial combined tensile stress. The effects of transverse
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tension on the longitudinal strength are discussed first followed by a discussion of

the effect of longitudinal tension on the transverse strength.

a. Longitudinal Strength Change Due to Transverse Stress

The effects of transverse loading on longitudinal strength for a composite specimen

under biaxial tensile combined stress are illustrated in Figure 4-11. As the

transverse component of the applied stress, ( 2 , is increased, localized stress

concentrations about microflaws within the matrix increase. These localized stress

concentrations interfere with the transmission of the applied longitudinal loading

from broken fibers to the adjacent fibers, effectively increasing the ineffective

length, 8, of the composite. As 8 increases, the number of adjacent fiber breaks

within 6 also increases and longitudinal failure will occur at a lower level of
applied longitudinal loading.

When the transverse stress, 0 2 =0, loading is uniaxial in the

longitudinal direction and the longitudinal strength vector component, (I'1)i is

equal to the uniaxial longitudinal strength, X1. In the limiting case, the transverse

component of the applied loading is increased to a level such that the matrix is no

longer capable of transmitting the longitudinal component of the loading to

adjacent fibers, but not high enough to cause failure due to the matrix alone. In this

case, 6 becomes large and (r")1 approaches a minimum value. This minimum

value is the fiber bundle strength, Gb, which is the tensile strength of the composite

fibers alone with no matrix to allow for local load sharing.

Since the transition from uniaxial longitudinal tensile stress to the bundle strength

may be considered a gradual degradation of matrix properties, the usual partial

fraction form of mixture equation employed in micromechanics is applicable.

Such a partial fraction form can also be expressed in exponential form
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Figure 4-11. Micromechanical effect of transverse loading on longitudinal

strength.

as derived in Appendix C. The exponential form is more convenient for operations

in probability calculations and is adopted herein:

- C12Y-2)](4-38)

where C12 is a constant coupling parameter. This model is shown graphically in

Figure 4-12.

This model satisfies the limiting conditions. When a 2 =0, tOr

exponential term is also equal to zero and therefore, (r1 )=X 1. As G2 becomes

large, the exponential term approaches unity, and (F1 )1 approaches the fiber

bundle strength, Gb. In addition, when the coupling parameter, C12 , is zero,
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Figure 4-12. Effect of transverse stress on longitudinal strength in biaxial stress

space.

longitudinal strength should be independent of transverse loading. If this condition

is imposed on Equation (4-41), (F1)1=X 1, which is the required result.

b. Transverse Strength Change Due to Longitudinal Stress

The effect of longitudinal loading on transverse strength for biaxial

tensile combined stress are illustrated in Figure 4-13. The matrix can be

considered as containing a finite number of inherent microflaws which aIre

randomly distributed throughout its volume. Uniaxial transverse loading does not

create new microflaws, but instead increases the stress intensity about the pre-

existing microflaws. Matrix failure will, therefore , emanate from from the

largest pre-existing microflaw, since the stress intensity at that location will be

highest. However, as the longitudinal component of the applied stress, G1, is

increased, weak fibers begin to break, forming additional microflaws in the matrix
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Figure 4-13. Micromechanical effect of longitudinal loading on transverse

strength.

and further increasing the stress intensity in the vicinity of the fiber breaks,

thereby introducing additional flaw sites and increase the probability of filure

resulting in a lower transverse strength.

When the longitudinal stress, G,=O, loading is uniaxial in the

transverse direction and the transverse strength vector component, (F 2)2 is equal

to the uniaxial transverse strength, X2 . In the limiting case, the longitudinal

component of the applied loading is increased to a level such that a large number of

fiber breaks are present in the composite, but not high enough to cause failure due

to fiber breaks alone. In this case, localized stress intensities become significantly

high and (F2 )2 approaches zero.

A possible model for this variation in transverse strength is
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( 2  ( 1) z- X2[I - exr~ 2 j 49

where C2 1 i another coupling parameter. This model is displayed in Figure 4-14.

This moodi satisfies the limiting conditions. When a1=O, the exponential term is

also equal to zero and therefore, (F2 )2 =X 2 . As a, becomes kirge, the exponential

term approaches unity, and (F 2 )2 appi-,4ches zero. Finally, when the coupling

parameter, C2 1, is zero, transverse strength should be independent of longitudinal

loading. If this condition is imposed on Equation (4-39), (F2 )2=X2 , which is the

expected result.

The combined stress probabilistic failure criterion for these coupling

models may now be formulated. The composite reliability conditions for biaxial

tensilh stress have been given in Equation (4-10) as (F1)1'G 1 and (F2 )2 >G2 .When

the results of Equations (4-38) and (4-39) are substituted for the intrinsic strength

vector components and the reliability conditions are recast in terms of the uniaxial

strengths, X1 and X2 , the resulting inequalities,

I1--ex p - - -C12G[] (4-40)

and,
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Figure 4-14. Effect of longitudinal stress on transverse strength in the biaxial

stress space.

F2 1'91 (4-41)

provide the transformed stress components.

For uniaxial CDF's given by Weibull distributions, the probabilistic

failure criterion in terms of reliability may then be expressed as

L~ ~ ( _4-42)

or, in terms of cumulative probability of failure, as
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F,(c~l a21=-exP{ { (yl 'g2' Crb 2)ja 01 ,52;C21. (4-43
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V. APPLICATION OF COMBINED STRESS FAILURE

CRITERION

Reliability analysis or failure prediction for composite structures under

multiaxial combined stress may be performed through the use of a post-processor

for finite element stress analysis. Development of such a post-processor is a three-

stage process. First, a probabilistic failure criterion for combined stress must be

determined. Second, the structure must be subdivided into elements in order for

the stress distribution within the structure to b, determined using finite element

stress analysis. Finally, the elemental stress data must be input to the probabilistic

failure criterion and the resulting elemental reliabilities mathematically combined

into an overall reliability or failure probability for the structure. This requires the

definition of a load sharing model for the structure which defines the structural

failure sequence.

The first stage in the development of a reliability post-processor is the

determination of the combined stress probabilistic failure criterion for the

composite as was performed in Chapter IV. The mechanistic coupling functions

for each failure mode must first be defined. The analytical forms of these coupling

functions are based on the micromechanical behavior of the composite under

combined stress. Equations (4-41) and (4-42) are examples of mechanistic

coupling functions for biaxial tensile combined stress. Each coupling function has

one or more parameters which must be identified. Examples of possible

parameters for coupling equations include the elastic moduli of the fiber and

matrix, fiber bundle strength, matrix stress intensity factors, etc. Once the

coupling functions are fully defined. Equation (4-27) may be used to formulate the
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joint failure pdf for the composite. The joint failure pdf is then integrated over

specific domains in the stress space associated with each failure mode to determine

either the joint failure CDF or the composite reliability. Either of these functions

constitute the probabilistic failure criterion for the composite and are coupled by

the relation, Fc=I-R c .

The second stage in the development is the establishment of an element grid for

the composite structure so that the internal stress distribution may be determined

via finite element analysis. The elements must be small enough that the stress

distribution within the element is approximately homogeneous. The numerical

simulations presented in Chapter III showed that the estimation of the intrinsic

probabilistic strength of a composite structure based on the externally measured--

or, in the case of finite element analysis, calculated--stress is erroneous when the

stress distribution within the structure is heterogeneous. In addition, the size

effects described in Chapter III must be taken into account in order for the

reliability at a given location within the structure to be independent of the

elemental grid. Corrections for the size effects may be incorporated into the

parameters for the coupling equations.

When the stress data from the finite element element analysis are combined

with the probabilistic failure criterion, structural reliabilities for each element are

obtained. The overall reliability of the structure is a function of the elemental

reliabilities. This function is defined by a load sharing model, which defines the

failure sequence for the structure. An example of a load sharing model is the

"weakest link" model, in which no load sharing between elements occurs and the

entire structure fails when one element fails. In this model, the overall reliability

of the structure is defined as the product of the elemental reliabilities. Thus, if a
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rectangular grid of m elements by n elements is used, then the overall reliability

for the structure for the 'weakest link' model is defined as

mn
R= ij=-IR i (5-1)

Composites are structurally redundant and all exhibit load sharing to some

degree. While the "weakest link" model does not reflect the actual failure process

in a composite, it does represent the weakest possible failure sequence for the

structure and, hence, Equation (5-1) will result in a lower bound for the structural

reliability of the composite.
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VI. CONCLUSIONS AND RECOMMENDATIONS

This investigation motivated the need for an anisotropic probabilistic failure

criterion for composites. This was performed by illustrating some of the physical

and statistical phenomena which characterize probabilistic failure in composite

structures through the use of numerical simulation. It was demonstrated that

external load was not a sufficient measure of the internal strength when the internal

stress distribution is nonuniform, and could only be used to characterize the

internal strength in that case if the location of failure is known. In addition, some

of the statistical size effects were illustrated for nonuniform stress distributions. It

was also shown that a uniaxial probabilistic failure criterion is inadequate for

characterizing failure in complex composite structures in which the internal stress

distribution is multiaxial even when the applied loading is uniaxial. This was the

motivation for formulating a probabilistic failure criterion for composites under

combined stress conditions.

The essential elements of a combined stress probabilistic failure criterion were

identified. These elements included the vectorial nature of applied stress ana

intrinsic strength, multiple failure modes with unique intrinsic strengths, the

coupling of failure modes and the joint failure probability density function. The

general formulation of a probabilistic failure criterion was performed by

developing a logical representation of composite failure under combined stress

using Boolean operations and converting this representation into functional form

through the use of statistical distributions. It was demonstrated that the intrinsic

strength vectors for a composite under biaxial tensile stress are independent only ii

the failure modes are uncoupled. Exponential coupling models for composites
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under biaxial tensile combined stress were inferred from composite

micromechanics. The essential elements of a finite element post-processor for

multivariate structural reliability analysis was discussed.

Further investigations regarding the combined stress probabilistic failure

criterion are recommended in two areas. First, the hypothesis that three of the

four combinations of mechanistic and probabilistic coupling are externally

indistinguishable should be tested through the use of numerical simulation.

Second, the formulation of the combined stress probabilistic failure criterion

should be expanded to include the effects of shear and compressive normal stresses.
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APPENDIX A. SIMULATION SPREADSHEETS AND MACROS

Numerical simulation was performed using the Microsoft ExcelT M

spreadsheet with each elemental distribution having its own spreadsheet and

controlling macro. Simulations for the "dogbone" specimens with one-

dimensional elemental distributions were performed using the spreadsheet

SIM9xlUNIAX and macro CONTROL9xlUNIAX. Simulations for the

"dogbone" specimens with two-dimensional elemental distributions were

performed using the spreadsheet SIM9x3UNIAX and macro

CONTROL9x3UNIAX. Simulations for the plate model were performed using the

spreadsheet SIM24x24UNIAX and macro CONTROL24x24UNILLS.

High strength variability was imposed by setting the Weibull shape parameter,

X=5 and low strength variability was imposed by setting (x=25. For the "dogbone"

specimens, a heterogeneous stress distribution was imposed by using a curvature

radius for the specimen of five and a homogeneous stress distribution was

approximated by using a curvature radius of 100,000. In all simulations, the

specimens were of a normalized thickness of 0.1 and the Weibull scale parameter,

was held constant with a value of 100.

81



A
I ControlgxlUniax
2 =ERROR(FALSE)
3 =SELECT("R21 CT")
4 -SET.VALUE(LocRsltgx 1 Unlax.REFTEXT(ACTIVE.CELLo.TRUE))
5 -SELECT(R21 C4-)
6 =SET.VALUE(StrRsltgxl Uniax,REFTEXT(ACTIVE.CELLo,TRUE))
7 =SELECT("R21 06")
8 =SET.VALUE(LoadRsltgx 1 Uniax,REFTEXT(ACTIVE .CELLo,TRUE))
9 =SELECT("rl Icl O:rl 9clO0*

1 0 =-COPYO
11 SE LE CT("rl 1c6:r 1 c6*)
1 2 =PASTE.SPECIAL(3,1)
1 3 =CALCULATION(3,FALSE)
1 4 -SET.VALUE (Loadgxl Uniax,l)
1 5 =FORM ULA("=Control )Load9x 1 Uniax","r5c2")
1 6 =CALCULATE.NOWO
1 7 - IF(D ERE F(Simulation:Simgxl Uniax'I$H$20)>.1 ,GOTO(Endgxl Unlax))
1 8 =SET.VALUE (L adgxl Un~ax,Loadgx 1Uniax+0.02)
1 9 -FORM ULA(=.Control!Loadgx 1 Uniax"r5c2')
20 =CALCULATE.NOW()
2 1 .=GOTOIA1 7)
22 =SELECT("R 1 C8:R 1 908")
23 =FORMULA. FIND ("1 ",2,1,2)
2 4 =.SELECT(-RC[-7jV)
25 =COPYO
2 6 .=SELECT(TEXTREF(LocRsltgxl Uniax,TRUE))
27 =PASTE.SPECIAL(3,I)
28 =SELECT("R 1 08:Rl 9C8")
29 =FORMULA.F(ND (1 ,2,1,2)
30 =SELECTC"RCI-41])
31 =COPYO
3 2 =SELECT(TEXTREF(StrRsltgxl UniaxTRUE))
33 =PASTE.SPECJALt3, 1)
3 4 =SELECT(-R5C2-)
35 .=COPYQ
3 6 =SELECT(TE)CTREF(LoadRslt9xl Uniax,TRUE))
37 =PASTE.SPECIAL(3,1)
38 --CANCELCOPYO_
39 =SET.VALUE(LocRshi9xl Unlax.REFTEXT(OFFSET(TEXTREF(LocRsltgxl Unlax,TRUE),l1.O),TRUE))
40 =SET.VALUE(StrRsltgxl1Uniax,REFTEXT(OFFSET(TEXTREF(StrRsltgxl Unlax,TRUE). I,0),TRUE))
41 =SE. VALUE(LoadRsrtgx I Unlax,RE FTEXT(OFFSET(TEXTREF(LoadRsltgx I Uniax,TRUE), 1 ,),TRE~
42 =GOTO(A9)
4 3 =ALE RT ("Simulation complete",3)
4 4 J=RETURN()
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B
1 Controlgx3Unlax
2 =SELECT(-R1 C50-1
3 -SET.VALUF(Resuttgx3Uniax,REFEXT(ACTIVE.CELLoTRUE))
4 =SELECT("rl 2c46:r20c48")
5 --COPYO
6 =SELECT("rl 2c23:r2Oc25")
7 =PASTE.SPECIAL(3,1)
8 =CALCULATION (3,FALSE)
9 =SET. VALUE (Loadgx3Uniax,2)

1 0 =FORM ULA("=Control !Loadgx3Uni ax"."r5c2")
1I I CALCULATE.NOW()
1 2 =IF(DEREF(CSimulation:Simgx3Uniaxi!$AP$21 )>=1 ,GOTO(Endgx3Uniax))
1 3 -~SET. VALUE (Loadgx3 Uniax, Loadgx3 Uniax+. 02)
1 4 = FORM ULA(.Control fLoad~x3 Uniax", r5c2")
1 5 =CALCULATE.NOW()
1 6 =GOTO(B12)
1 7 =SELEC ('R5C2-)
1 8 =Copyo
1 9 =SELECT(TEXTREF(Result9x3Uniax,TRUE))
20 =PASTE.SPECIAL(3.1) _________________________

21 =CANOELCOPYO
2 2 =SET.VALUE(Result9x3Uniax,REFTEXT(OFFSET(TEXTREF(Resultgx3Uniax,TRUE), 1,O),TRUE))
2 3 =GOTO(B4)
24 I-ALERT("Simulation complete",3)

.25 J=RETURN()
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D
1 Control24x24UniLLS
2 =ERROR(FALSE)
3 =-CALCULATE.DOCUMENTO
4 =SELECT(-R7C27-)
5 1=SET.VALUE(Resu1124x24UniLLS,REFTEXT(ACTIVE .CELLo,TRUE))
6 =SELECT("R32C52:R55C75")
7 =-COPYO
8 =SELECT(-R32C28:R55C51")
9 =PASTE.SPECIAL(3.1)
1 0 =CALCULATION(3 FALSE)
1 1 =SET.VALUE(Load24x24UniLLS,1 .3)
1 2 1=FORM ULA(DEREF (D90),*Rl C27")
1 3 =SELECT("R7C28:R30C51")
1 4 =FOR("COUNT-,1,576)
1 5 =FORMUL.A(-=EXP((LN(-LN(1 -R[25]C))+R5C27*LN(R6C27))/R5C27)")
1 6 =SELECT(,-RC[l]-)
1 7 =NEXT()
1 8 l=SELECT("R57C2:R80C25")
1 9 =COPYO
20 =SELECT("R7C52:R30C75")
21 =PASTE()
22 =GOTO(D24)
23 =FORM ULAFI LL(l)
2 4 I=CALCULATE.DOCUMENTO
2 5 =SELECTC'R7C1 :R30026")
26 =IF(NOT(FORMULA.FIND("1",2,1,1)),GOTO(Loopl_24x 4UniLLS))
27 =SET.VALUE(Fai124x24UniLLS,REFTEXT(ACTIVE.CELLo,TRUE))
2 8 =SET. VALUE(Stress24x24UniLLS,DEREF(OFFSET(TEXTREF(Fai24x24UniLLS,TRUE),O,50)))
29 =SELECT(,"RC[-1]')
3 0 1=WHILE (OR(ACTIVE.CE LLo=1,ACTIVE .CELLo="F)
31 =SELECT(,"RC[-1]")
3 2 =NEXT()
3 3 1=IF(ACTIVE.CELL()=2,GOTO(Loop2 24x24UniLLS))
3 4 I=DE RE F(OFFSET(AC rIVE.CELL() 0,50 +O-,.5Stress24x24UnILLS
3 5 ! =F9M ULA(D ERE F(D34),OFFSET(ACTIVE.CELLo,5))
3 6 =SELECT(,RELREF(TEXTREF(Fai24x24UniLLS,TRUE),ACTIVE.CELLo))
3 7 =FORM ULA(0,OFFSET(ACTIVE.CELLQ,0,26))___
3 8 =FORM ULA(O,OFFSET(ACTIVE.CELLO,0,50))
39 =SELECT(,'RC[11')
40 -=WAlLE(OR(ACTIVE.CELL(y1 ,A TIVE.rELL9="Fi - ____

41 l=SELECT(,"RC[1j]) _________________________
42 =NEXTO
43 =IF(ACTIVE .CELLo=2,GOTO(Loop3_24x24UniLLS))
44 =DEREF(OFFSET(ACTIVE.CELLo,0,50) +0.5*Stress24x24UniLLS
45 =FORM ULA(DERE F(D4)OFFSET(ACTIVE.CELLo,0,50))
46 =CALCULATE. DOCUM ENTQ
4 7 =GOTO(D25)
4 8 = SELECT(, E LRE F(T E XTR EF(F ail24x24Uni LLS,TRU E),ACTIVE.C ELLO))
49 =SELECT(,-RC[-1lr)
50 =WHILE (ACTIVE.CELLo=-")
5 1 =SELECT(,"RC[-l]")
5 2 =NEXT()
53 1=DEREF(OFFSET(ACTIVE.CELLo,0,50))+0.5*Stress24x24UniLLS
5 4 1=FORM ULA(D ERE F(D 53),OFF SET (ACTIVE .CEL~,,0)________ _ __

55 =CALCULATE.DOCUMENTO)-------

96



56 =GOTO D25 D
5 7 = SELECT(, RE LREF(TE XTR EF(Fail24x24Uni LLS,TRU E),ACT IVE.C ELL()))
58 =FORM ULA(O, OF FSET(ACTIVE. CELL(),0,26))
5 9 =FORM ULA(O,OFFSET(ACTIVE.CELLO ,0,50))________
60 j=SELECT(,"RC[1j")
61 1=WHILE (OR(ACTIVE.CE LLo=1 ,ACT IVE.CE LLo="F"))
62 =SELECT(,"RC[l]") ____ ____

63 =NEXT()_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

64 =IF(ACTIVE.CELLo=2,GOTO(End24x24UniLLS)________________________
65 =DEREF(OFFSET(ACTIVE.CELLo,O,50))+Stress24x24UniLLS
66 =FORM ULA(DERE F(D65),OFFSET(ACTIVE.CELLoO0,50))
67 I=CALCULATE.DOCUMENTO ____________________

6 8 1 GOTO(D25)
69 =SET.VALUE(Load24x24UniLLS,Load24x24UniLLS+O.02)
70 =FORM ULA(DERE F(D90),"R1 C27") ________________________

71 =CALCULATE.DOCUMENTO
72 =GOTO(D25)
73 =,--tLECT(,RELREF(TEXTREF(Fai24x24UnLLS,TRE)ATIVE.CELI1________
74 I=SELECT(,-RCf13') _____________

75 =WHILE (ACTIVE.CE LLo<>2)
7 6 =FORM ULA O.OFFSET(ACTIVE.CELLQO,26)) _____

77 J=FORM LA(OOFFSET(ACTIVE .CELLo,O,50))
78 J=SELECTCRC[11r)
79 =NEXT()
80 I=CALCULATE.DOCUMENTO_______

81 I=SELECTRlC27")________ __ _______

8 2 1=COPYO
8 3 =SELECT(TEXTREF(Result24x24UniLLS,TRUE))
84 j=PASTE.SPECIAL(3,1)
8 5 1 =CANCELCOPYO
86 =SET.VALUE(Resuht24x24UniLLS,REFTEXT(OFFSET(TEXTREF(Resut24x24UniLLSTRUE),1 ,0),TRtJ
8 7 =GOTO(D6) _________________ __

88 =ALERT('Simulation complete",3)____________
8 9 =RETURN()
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APPENDIX B STRENGTH DEPENDENCE FOR LINEAR

MECHANISTIC COUPLING

In this appendix, the interdependency of the intrinsic strength vectors will be

illustrated for an explicitly defined mechanistic coupling model in which the

coupling functions, C12 (( 2 ) and C2 1(0 1) are deterministic linear functions. The

same procedure as that used in Chapter IV to prove the dependency of the intrinsic

strength vectors for arbitrary deterministic coupling functions and probabilistic

independence will be used herein. First, the coupling functions, C12 (5 2 ) and

C2 1(a 1 ), will be defined and the transformed stress components, a,' and 02 will

be determined in terms of the coupling functions. Second, the reliability will be

expressed in terms of the transformed stress components and the joint failure pdf s

in both the physical and transformed stress spaces will be derived from the

differentiation of the joint failure CDF. Finally, the joint failure pdf in the

physical stress space will be compared with the independence criterion given by

Equation (4-34) to identify those conditions for which the intrinsic strength vectors

are independent for the given coupling model.

The deterministic specimen failure criteria were defined in vector form by

Equations (4-1) and (4-2):
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For this example, a linear coupling model will be employed. The failure

criterion for each failure mode is partitioned into the uniaxial strength, X,., plus the

coupmlg effect, jsjd:

(F~(5,(YX 1 ,81 Xl-fCl 2(a (B-i1)

and

(r2 cl '((2 ;X2,)=X 2+C2 1l (B-2)

where C 12 and C2 1 represent constant coupling parameters. These failure criteria

are represented for a specimen under an arbitrary biaxial tensile stress is shown in

Figure B-1. The uniaxial failure pdfs of the stress components are given by

fxl(al) and fx2(2).

Equations (4-16a) and (4-16b) gave two expressions for the composite

reliability in terms of the conditional probabilities of the reliability conditions for

each failure mode:

RcG C }-Pr{ [(r1)1> 1] I [(r22> ] }Pr (F2 >52

or,
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X + C 12 2

(F2 ) 2

(52 X2- C21(l1

e2 i M,

el ( (ElFI I ) 1W 1 1

Figure B-1. Representation of the linear coupling model for a specimen under

arbitrary biaxial tensile stress.

The scalar components of the strength vectors, f 1 and E2 , (Fl) 1 and (F2 )2 , are

related to the uniaxial strengths, X1 and X2 , by Equations (B-I) and (B-2).

Substituting these relations into Equations (4-16a) and (4-16b) and rearranging the

inequalities in terms of X1 and X2 ,

Rkjaj q 2 )=Pr{f[Xi]I [ 21 2 G2 ] I 1011Pr( X2 >-,-C 2 1 7

or,
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R,(ato )=Prf [X2 ->-C21 a9 1 [X1 >0 1 -Cl 2 " ]Pr(Xl>a1 -Cl 2 a2
(B-3b)

Rearranging the inequalities in terms of X1 and X2 is equivalent to

transforming the random variables from the strength vector components to the

uniaxial strengths. The composite reliability has been mapped from the physical

stress space defined in terms of a1 and a 2 into a transformed stress space defined in

terms of transformed stress components a1 ' and ( 2 ' by

(5I'=°!-C12G2 (B-4a)

and,

'32'=G2-C2 1l(1 (B-4b)

Differentiating Equations (B-4a) and (B-4b) gives the relations

,Jo1'_ 2i_

ac1 aG2 (B-5a)

Ja2  (B-5b)

aa 2 '- c

5(B-5c)
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and,

2 =0
k'la P -'910'2 (B-5d)

Equations (B-3a) and (B-3b) may be rewritten in terms of a 'and 0 2 ' as

Rc(a'(Yi 2 )Pr{[Xi>i']I [X2 >a2 '1}Pr(X2 > 2 '} (B-6a)

and,

The uniaxial strengths , X1 and X2 , are taken as independent random variables.

Therefore, in terms of the transformed stress components, 0 1 'and 0 2 ',the

conditional probabilities in Equations (B-6a) and (B-6b) become

r\{Xj>G11 I [X 2>( 2 'f Pr(X1>o') (B-7)

and,

2  2 x 1 X2'02"r)(B -8)
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Substitution of Equations (B-7) and (B-8) into Equations (B-6a) and (B-6b)

results in a single logical expression for the composite reliability:

Ik(a1 ,,)=Pr{ X 1>o 1')Pr( X2 >c2'} (B-9)

The two Boolean terms in Equation (B-9) represent uniaxial reliabilities and,

hence, the composite reliability in functional form becomes

The reliability domain and the joint failure pdf have not actually changed.

However, the transformation of the stress space has recast their mathematical

expressions in terms of the transformed variables.

In order to determine the joint failure pdf, the composite reliability is

converted into the joint CDF for the composite, F(O 1,0 2 ), since Fc(a ,5 2 ) is

defined as the area integral of the joint failure pdf over the domains of the failure

modes in the stress space. Since F = 1-R, Equation (B-10), expressed in terms of

CDFs, becomes

or,
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Since R,(0 1, 02) is invariant for both the physical and transformed stress spaces,

F, I(71 ,2) is also invariant for the two spaces.

The joint pdf in the transformed stress space, fxlx 2(Gl',G2'), may be

obtained by differentiating the joint CDF by each of the physical variables, y1' and

C'2 2
(r,2,2

(B-12)

r
- l,'Fx ,((Y ' Fx 02 fx l( al')]

The absolute value is included in Equation (B-12) since the joint pdf must be a

positive-valued function; the differentiation of reliability and failure probability

result in positive-valued and negative-valued "mirror images" of the joint pdf

because Fc =I-R c .

The joint failure pdf in the physical stress space, f(F1),(V2)2(1 1,2 ) , may

similarly be obtained by differentiating the joint CDF by each of the physical

variables, al and (72:
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X 1'ja ac 2 ' ___ ___

_0 1  0 0

____ o~1'~f~(~') ___ 2 -)GI2

I ,aa fXl'1' -12)f XJ'2/)
a -Jalo(B-14)

Substituting, the relations of Equations (B-5a) through (B-5d) into

Equation (13-13) gives an expression for the joint failure pdf in the physical stress

space in terms of the uniaxial failure pdfs and the coupling functions:

+C12 1)af X F,(C 2'lcia ;'
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A 1 --C12 au -21M

xi1'f 3'0 1 c2 ix~ ' 20'

4)x,(,'ofxja2 ')C~~(i

afx(' 1' jy' lC 1xaxc

-YB-I5)

In ~ ~ ,(5, orde todtrieth nedpndnyo h pyia ado aibe

0 O'G2(B- 16)

Inodrt eemn h nedpnec ftepyia andomvribe

(F ),an (2), hecodtina pobbiites'f(0,(F)2G140) n



X f (;) (B-17)

(F 1 )1 and (F 2 )2 , are independent only if their conditional probabilities equal

the equivalent uniaxial pdfs or,

f(F1) 1 I V26(cyl [C2(CY2) ( (B-18)

and,

f(F26Z ]{F1)1(kT2 1(11 P X (Y2) (B-19)

By substituting Equation (B-16) into Equation (B-18) or Equation (B-17) into

Equation (B-19), a single independence criterion for (F 1 )1 and (F 2 )2 may be

obtained:

f~rl , 1 2 G1 '(7'2 )fx 1((51 x 2) (B-20)

(F 1 )i and (F 2 )2 are only independent if there is no mechanistic coupling.

The expression for the joint failure pdf in the physical stress space, Equation

(B-15) will reduce to the independence criterion for (FI)1 and (F 2 )2 , Equation

(B-20). only if C12 = C2 1 = 0, which implies that a1' = c] and (2 = 0 2 " If

mechanistic coupling is present, i.e., either C12 or C2 1 are nonzero, then Equation
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(B-15) will not reduce to Equation (B-20), and (FI), and (F 2 )2 cannot be

independent random variables.
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APPENDIX C. EXPONENTIAL PARTIAL FRACTION MODEL

In the mathematical modeling of composite materials, it is desired to predict

the composite stiffness properties from the elastic properties of the constituent

components. Micromechanical analysis, which utilizes the mathematical theory of

elasticity as well as energy methods, is frequently used as it treats the multiple

phase configurations of a composite with simplified geometrical models.

However, for those properties which are geometrically in series (such as transverse

and shear moduli), even the simplified models give rise to very complex results.

Further simplification of these results for asymptotic stiff fibers leads to relations

of the partial fraction form in which the influence of each respective component

modulus on the composite modulus is weighted by the volume proportion of the

component. This partial fraction weighting is also physically appealing to strength

modeling under combined stress in which the strength associated with the dominant

failure mode is weakened (i.e., weighted) by the magnitude of the combined stress.

Under this consideration, a general form of partial fraction weighting is adopted.

The geometric properties of such a form will be examined and the modifications

required to reconcile it with the known physical condition of combined stress

coupling will be determined.

The general algebraic form of the partial fraction weighting model is

3u a+bu

c+du (C-1)
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where a, b, c and d are constant nonnegative coefficients. Equation (C-I) is

presented graphically in semi-logarithmic form in Figure C-1.

The partial fraction weighting model as depicted in Figure C-1 is similar in

geometric configuration to the graphical representations of combined stress

coupling shown in Figures 4-12 and 4-14. There are, however, two significant

differences between the representation of the partial fraction weighting model in

Figure C-1 and the micromechanical requirements of combined s'ess coupling as

illustrated in Figures 4-12 and 4-14. First, Figure C-I presents the partial fraction

weighting model in semi-logarithmic space while Figures 4-12 and 4-14 represent

combined stress coupling in the linear biaxial stress space. Second, Figure C-i

shows that the partial fraction weighting model is a monotonically increasing

function of the independent variable, u. Micromechanics requires that the strength

associated with one failure mode must be a monotonically decreasing function of

the stress component associated with the other failure mode.

These discrepancies may be resolved with an appropriate transformation of the

independent variable,u, in Equation (C-I). If Equation (C-i) is recast in terms of

the natural logarithm of u, then its geometric configuration in linear space will be

identical to that shown in Figure C-1 for semi-logarithmic space and the first

discrepancy will be resolved. The second discrepancy will be resolved by recasting

Equation (C-I) in terms of the arithmetic inverse of u. In this manner, the

graphical representation of Equation (C-i) will be reversed, and the partial

fraction weighting model will become a monotonically decreasing function of u.

Both discrepancies will be resolved if Equation (C-i) is reformulated in terms of

the arithmetic inverse of the natural logarithm of u, or [In u] - 1.
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Figure C-1. The general form of the partial fraction weighting model in semi-

logarithmic space.

If v = [In u] - 1, then

When the variable transformation of Equation (C-2) is substituted into Equation

(C-1), both of the discrepancies between the partial fraction weighting model and

the micromechanical requirements for combined stress coupling are resolved.

After the substitution, Equation (C-1) thus becomes
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a+(b) ex()

c+dev! (C-3)

or,

(a)ex- ()b

Equation (C-4) is the exponential form of the partial fraction weighting model

and is illustrated in Figure C-2 in linear space. The geometric configuration of the

model is now fully reconciled with the representations of combined stress coupling

shown in Figures 4-12 and 4-14. Thus, the exponential form of the partial fraction

weighting model given by Equation (C-4), may be used for strength modeling

under combined stress conditions.

When v equals zero, the exponential terms in Equation (C-4) also equal zero

and,

y v=0)= b

d (C-5)

As v approaches infinity, the exponential terms in Equation (C-4) approach

unity and,
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Figure C-2. Exponential form of the partial fraction weighting model in linear

space.

3 v_,
a+ b

c+d (C-6)

The decrease in the longitudinal strength, (F1)1, due to transverse loading, Y2 ,

illustrated in Figure 4-12 may now be modeled using partial fraction weighting of

strength under combined stress. Let y=(Fl)l/b and v=C 12 0 2 where Gb is the fiber

bundle strength and C12 is a constant coupling parameter. When T2 =0, v=O and

(Fl)1 becomes the uniaxial intrinsic strength, X 1. Therefore, from Equation (C-5),

v=O b- X1
d obD (C-7)
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Equation (C-7) specifies the values for two of the coefficients in Equation (C-4);

the coefficient b is equal to the uniaxial intrinsic strength, X1, and the coefficient d

is equal to the bundle strength, a b .

As a2 approaches infinity, v approaches infinity and (Fl)i approaches the

bundle strength, ab. If the values for the coefficients b and d obtained from

Equation (C-7) are substituted into Equation (C-6), then

v_4a+b a+Xl_ Tb

c+d c+aD %b  (C-8)

Equating the numerators in Equation (C-8) and solving for the coefficient a,

a=-7yXl (C-9)

When the denominators in Equation (C-8) are equated, the coefficient c is equal to

zero.

The variable definitions, Y=(F1)l/b and v=C 12 a2 , and the values for the four

coefficients are substituted into Equation (C-4),

T % (C- 10)

Solving for the longitudinal strength component, (F1)1,

C12 48 (C-1 1)
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which is the model given in Equation (4-38).

The decrease in the transverse strength, (F2 )2 , due to longitudinal loading, a1,

illustrated in Figure 4-14 may also be modeled using partial fraction weighting of

strength under combined stress. Let Y=(F 2 )2 /X2 and v=C 2 10 1 where C2 1 is a

constant coupling parameter. When 71=0, v--O and (F2 )2 becomes the uniaxial

intrinsic strength, X2 . Therefore, from Equation (C-5),

Sv=O)=b_X2

d X2  (C-12)

Equation (C-12) specifies the values for two of the coefficients in Equation (C-4);

both b and d are equal to the uniaxial intrinsic strength, X2 .

As a, approaches infinity, v approaches infinity and (F2 )2 approaches zero. If

the values for the coefficients b and d obtained from Equation (C-12) are

substituted into Equation (C-6), then

v.- a+ b = a +X2 -0
c+d c+X 2  (C-13)

Solving Equation (C-13) for the coefficient a, a=-X 2 . The value of the coefficient

c has no effect on the partial fraction weighting model in the limiting case as (71

approaches infinity. Therefore, it will be taken to be the same value as in the

previously derived model, or c=O.

The variable definitions, y=(F 2 )2 /X2 and v=C2 1 c 1, and the values for the four

coefficients are substituted into Equation (C-4),
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(r}~a 1 -X2 e- X~c)2

X2 X2 (C-14)

Solving for the longitudinal strength component, (F2 )2 ,

(rAV 1)= x2-x2 ex( - I~
C2 1 1

X2 1-e-II

(C-11)

which is the model given in Equation (4-39).
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