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This letter constitutes the final report for ONR contract N00014-89-J-1595 awarded
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on ocean flow dynamics as it pertains to the prediction of ocean motions. Results
from the research conducted during this period were published in refereed scientific
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1. “Evolution of a Warm-Core Ring in the Gulf of Mexico: Lagrangian Observa-
tions,” J. Geophys. Res., 94(C6), 8163-8178, 1989.

. “Fractal Drifter Trajectories in the Kuroshio Extension,” Tellus, 41(A), 416-435,
1989.

3. “Ring Evolution in General Circulation Models from Path Analysis,” J. Geo-
phys. Res., 95(C10), 18057-18073, 1990.

4. “Dynamics of Warm-Core Mesoscale Eddies,” Chin. J. Oceanol. Limnol., 8(3),
220-231, 1990.
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houl and B. M. Jamart, Editors).
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Evolution of a Warm-Core Ring in the Gulf of Mexico:
Lagrangian Observations

Janes K. Lewts

Scrence Apphcattens birernational Corporation, Collese Station Tevan

A, L. KIRWAN, JR.

Department of Oceanograpin . Old Domuonon Uninversun, Nenpolk, Ao gima

GEORGE Z. FORRISTALL
Sheid Development Company, Houston, Tevas

During 1985 and 1986. a Gulf of Mexice ning shed by the Loop Current was observed to migrate
toward the western Gulf of Mexice. This movement across the gulf was well documented by
observations that included drfter Cata within and outside the ring. sea surface temperature at weekly
intervals, expendable bathytherinogroph surveys at various tmes. one major hydrographic cruise
when the ring was in the northwestern gult. and curreats from moorings over which the ring passed
The dnfter data were used to infer the movement of the ring center as well as the eccentricity and
orientation of the major axes. The data from the drifters bridge the gaps betaeen detatled surveys to
the extent that a datly history of the position and shape of the ring can be constructed The svathesis
of these diverse but comphmentary Jata sources provides a detarled description of how the ring
interacted with the bathymetry of the northern Gulf of Mexico as well as with previously and

subsequently shed rings.

I. INTRODUCT JN

A number of studies in the last several years have indi-
cated that Loop Current rings have a major influence n the
central and western Gulf of Mexico (GOM). Nog only are
these anticvclonic features important with res = w salt
and heat budgets of the western GOM [Ellior. 19/9), but thay
also appear to be the dominant factor in momentum balance
(Elliot. 1982: Kirwan et al., 1984a). This last factor is due v
the large size of Loop Current rings (radius ot ~150 km). the
intensity of circulation (velocities about the center. or swirl
velocities. of 50-75 cm/s), and the frequency of ring separa-
tion from the Loop Curren: (up to three in | year [Elliot,
1982]). Lewis and Kurwan [1983, 1987} showed that a number
of these anticyclones can exist 1 the GOM at a given time,
resulting in a considerable amount of interaction between the
flow fields of individual rings.

Beyond the confines of the American mediterranean.
Loop Current rings may also play an important role in the
overall energy budget of the North Atlantic gyre. The
general picture of this large anticyclonic flow pattern is
acceleration and entrainment on approaching the western
boundary and energy transfer to other scales at the northern
end of the gyre. One of the primary mechanisms for decel-
erating the Guif Stream and dissipating energy in the North
Atlantic Current 1s thought to be through the generation of
eddies. However, Ellior [1979] suggested that the size,
intensity. and frequency of Loop Curreat rings might repre-
sent a significant loss of energy for the western boundary
system. I 1s conceivable then that the energy associated

Copyright 1989 by the American Geophysical Union
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with Loop Current “ings1s an important factor in the western
boundary energy balance of the North Atlanuc.

The motion and processes that are typical during the hfe
history of a Loop Current ring are only now betng idenufied
through drifter studies. numencal simulattons. and satellite
imagery work. After having been pinched off from the Loop
Current, these anticycienes move westward across the GOM
at a rate of 3 to 8 cows [Cochirane. 1972 Elliot. 1982 Kirvan
et ol [ 1984a). The primary path of the rings 1s westward
through the deepest portion of the GOM {Lewis and Kirwan.
1985]. How. er. a more northerly route has been identified
by Vukovich and Crre saan (1986, Analysis of dnfter data
and numencal mode! studies indicate that the anticyclones
remain relatively stable during their westward migration
(Kirvan et al.. 198da. Hurlburt and Thom--on. 1980] until
they reach ~93°W (approximately 400 krn fron: (he western
GOM coasthne). The orthodox view is that at this longitude
the rings begin interacting wath the continental stope. where
they are often observed to migrate northward. There are at
least two explanations for this migration. Nahamoto [1986]
has showa that 1t can be explained as a propagating sohtary
wave. Smuth [1986] has postulated that the northward migra-
tion 15 the result of the nonhinear acceleraton of the north-
ward fiow between the coast and the ring center. There &5
also some evidence that nings at this longitude may be
strongly affccted by circulation structures along the slope
Merrell and Morrison (1981} and Merrell ¢ nd Vazque: {1983}
showed that there can be an eastward transport of 30 Sv off
the slope. Lewts and Kuwan [1985] showed an example
where a ring impacted the western slope betore an earlier
ring had dissipated. Recent modeling studies [Thompson,
1986] tend to indicate that the rings go through thetr final
stages of decay in the northwestern corner of the GOM. but
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Fig 1

Trajectory for dnfter 3378 Depth contours are in meters Squares denote the beginning posttions of the dnfter

trajectories. and tnangles denote the end positions.

they may be often reenergized by coalescing with younger
anticyclones moving northward along the Mexican coastline.

These studies raise several fundamental questions about
the dynamics of the Gulf of Mexico. For example. how many
rings are there likely to be at any one time in the GOM?
What are the dynamical mechanisms that determine the
paths of the rings across the GOM"” To what extent do the
rings nteract with each other and with the topography”
What is the fate of these rings in the western GOM?

Throughout the spring of 1985. sea surface temperature
(SST) and ship of opportunity expendable bathythermograph
(XBT) data indicated that a major eddy was on the verge of
separating from the Loop Current. As it seemed ideal for
addressing some of the above questions. an extensive effort
was made to study this 1ing as it moved into the western Gulf
of Mexico. A number of data sets were collected. First. XBT
daia were collecte 1 by ships of opportunity while the rning
was n the east central GOM. In addiion. the ring was
seeded with a drifter which stayed in the ring from July 18.
1985, to approximately May 20. 1986. Several other dnfters
gave information on the ring during the year. SST data from
satellite imagery were analyzed on a weekly basis from July
1985 through August 1986. Other water column surveys were
conducted. including an XBT survey during November
H1-13, 1985 a hydrographic survey from January 23 to
February 6. 1986: a second XBT survey from April 30 to
May 6. 1986: and a final XBT survey in the western GOM
during August 16-22. 1986. Finaily. three sets of current
meters were moored 1n the northwestern GOM duriug the
life of the ring.

The basis of this paper 15 a ptesentation and discussion of
the Lagrangian data sets along with an analysis and interpre-
tation of the data. The next section describes in more detail
the data used in this study  Section 3 provides a chronology
of'events for the movement of the 1985 ning across the GOM.

Finally. in section 4 some dynamical interpretations of
events in the ring's lifetime are discussed.

We conceatrate on factors pertaiaing to the ring’s motion
along the northern continental slope of the Gulf of Mexico.
In addition. we describe and interpret the interaction of the
ring with an older ring as well as with a younger ring. We
suggest that the more northerly route across the GOM 15
induced by the proximity of a previously shed ring. We also
show that the ring entrains a constderable amount of shelf
water. This rning’s interactions with a previous ring and a
succeeding ring anpear to be different. With the older.
smaller ring. mass 1s steipped off and swirled into the center
of rotation of this nng. However, when the ring 1s confronted
by a younger ring of similar si1ze, the two apparently coa-
lesce.

2, THE DaTa

The primary Lagrangian data detailed 1n this study are the
position data of the dnfter with Argos tdentification number
3378 (Figure 1). Since several other dri{ters gave information
on the ring. we have departed from our pra:vious practice of
numbering the ring after the buoy. and simply called 1t Fast
Eddy. Fast Eddy was tracked across the GOM for a 10-
month period. during which ime drifters 5678 and 5683 were
also entrained in the ring's flow field. As it wpproached the
Mexican coast. Fast Eddy interacted with a previously shed
ring called Gtost Eddy [Lewts and Kirwan. 1987]. Several
dnfters were associated with Ghost Eddy Thetr identfica-
tion numbers werz 3353, 5495, and 5682. Actually. dnfter
5495 had been seeded in Fast Eddy. but it was cast out early
and become entrained in Ghost Eddy. A seventh dnfter.
number 3354, was entrained in the Loop Current at the um.
Fast Fddy was being shed [Lewis and Kirwan. 1987). An
cighth drifter. number 3379, was seeded 1n a subsequent ring
(Hot Eddy ) in March of {986. Fast Eddy and the younger
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TABLE 1 Dnfters. Their Avsociated Oceanographic Strectures. TABLE 2 Cruises During Which XBT Water Temperatuie Dal.
and Periods During Which Posiion Data Were Collected Were Collected for Fast Eddy
Nntter Assocrated ltme n Source Date
ldentification Anticyclone Gult ot Mente
- MV NATCOS July 16~19. {985
378 Fast Eddy July 18, 1985 w0 RV Pelican Oct 22-27 Y83
Jurne 26, (986 AXBT surver Nov =13 1983
3495 Fast Eddy. June 29, 4985, to B O Afran Jan 2310 Feb & 1986
Ghost Eddy Jan 23, 1986 B O Al Aprit 26 to Man 14 1986
3680 not tn a nag Julv 18, 1985, to HO-2 Aug 16-220 1986
Sept 5, |85
S682 Ghost Eddy Aug. 6. 1985 to
Oct. 11, 1988
3354 Loop Current June 18, 1985 10 shelf” and even moved shghtly north of west untl it reached
s . ,\n“flmme Sep; |>ér|9“-‘ 92°W. The ring became essentially stationary for three
: ast Eddy \u\%;)v‘ ,'3 'w;‘: revoluttons. Then in mid-September 1985. Fast Eddy
678 Fast Eddy. Oct. 23, 1985, 10 abruptly moved southward into deeper water. Thiy move-
Hot Eddy April 30, 1986 ment occurred within one revolution of the ring (~11 days).
3353 Ghigsl Eddy. NO‘; 3. 1985, to0 The ring then translated westward. with the dnfter moving
ast Eddy Mav 22, 1986 ‘oS ; .
: closer to the ring center (note the smaller loops between
3379 Hot Eddy March 7. 1986. to & ( P

Jan. 22, 1987

Hot Eddy wteracted as the latter drifted into the western
GOM. Table | summarizes the drifter data sources.

In some cases, the Lagrangian data are presented aloig
with corresponding sea surface temperature data for the
entire GOM. The SST maps represent average temperature
structure over a 7-day peniod. Additional flow characteristics
can be inferred from these SST contours.

The path information from the dnfters was analyzed to
provide various kinematic data [Kirwan et al.. 1988] which
detail the changes of Fast Eddy during its lifetime. These
include changes in swirl speed (rotary speed about the
translaung center of the ring). vorticity. period of rotation.
ellipticity (eccentricity and orientation of the axes). defor-
mation (shape change rate). and size.

Water column parameters are used to infer changes in the
s1ize and extent of Fast Eddy. Specifically. we look at the
volume of water between the 8°C and 15°C isotherms across
the ring where the 8°C isotherm reaches upward to the depth
of 550 m. This was done by using the water temperature data
(accuracy of =0.1°C) to estimate the eccentricity of the ring
and then calculating a volume based on that eccentricity.
Moreover, the spatial pattern of the depths of the 8°C
isotherms helps describe the character of flow around the
ring. The 8°C isotherm was chosen because this temperature
surface 1s not affecterd by <urface heating and cooling.
Simularly. the 15°C 1soth2i-nal surface is rarely affected by
surface processes ¢xcept in shatlow shelf regions (<100 m).
As for the consideratim of lateral extents bounded by where
the 8°C isothe: mal survace reaches 550 m. an inspection of
XBT data showed that the 8°C surface typically has its
greatest slope 1n rings at 550 m. Thus the 550-m extent of the
8°C surface is a good indicator of the eddy edge. The
hydrographic data collected for Fast Eddy arc listed in Table
-

3. THe MoveMENT oF Fast Eppy

Drifter 3378 was seeded in Fast Eddy at 26.4°N. 89.3°W on
July 18. 1985. As 1s shown in Figure |. Fast Eddy slowly
moved westward. reaching approximately the 91°W mend-
1an by mid-August. Then nstead of continuing on the usual
path., Fast Eddy held against the slope of the continental

92°W and 95°W 1n Figure 1). The latter part of the trajectory
data (mid-November 1985 through May 1986) shows Fast
Eddy interacting with the western shelf of the GOM. Several
processes occurred during this time. and these will be
covered in more detail later in the paper.

Separation of Fust Eddv and Initial Movement

The wtial charactenistics of Fast Eddy have been dis-
cussed by Lewts and Kirwan [1987). Dnfter 3378 exhibited
current speeds of 60 to 90 cmys at radit of 60 to 100 km. The
Gulf of Mexico flow field for the week beginning Auxust 7.
1935. 15 depicted in Figure 2. This shows drifter 3375 at a
retatively large radus in Fast Eddy along with Ghost Eddy
Just to the southwest. Drifters 3354 and 5683 were associated
with the flow field of the Loop Current, with 3354 defining an
anticyclone within the Loop Current {Lewss and Kirwan.
1987]. Drnifter 5680 was seen to have some anticyclonic
motion to the northeast of Fast Eddy, but temperature
profile data indicate that the flow was not directly related to
that of Fast Eddy [see Lewts and Kwrwan. 1987, Figure 9j.

Fast Eddy became stalled along the northern continental
slope untul mid-September 1985. During this ime. the drifter
exhibited shghtly weaker currents (50-70 cavs) at radnt from
50 to 80 km from the ring center. The ning then made 1ts
rather rapid southern movement, and the resulting condi-

TTrTTTT T I T T AR RERERE]

]30

FAST EDDY
3378

5682 25

GHOST@::”
EDDY
7—-13 AUG 1985

20

95 90 85 80
Drifter trajectories for August 7-13. 1985 Asterishs repre-
sent the iitial posit.uns of the drfters
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95 90

Drifter trajectories for September 25 through October .
1985 Asterishy represent the intial positions uf the dnfters.

Fig 3

tions are shown in Figure 3. There are two interesting facts
to be pointed out in Figure 3. The first ts that Ghost Eddy
was well southwest of Fast Eddy at that time (September 25
to October 1. 1985). Ghost Eddy had continued its south-
westward migration. the preferred path of most GOM rings
[Vihovich and Crissman, 1986, Lewis and Kirwan. 1985].
The second interesting factor 1s the location of dnifter 5683.
This dnifter had been near the Flonda Straits «Figure 2). but
moved northward and then westward to a position off the
Mississippt deita. As will be seen. this dnifter eventually
became entrained in the flow field of Fast Eddy.

As October 1985 progressed. dnfter 3378 moved to tighter
orbits (~~40-km radn) in Fast Eddy. Conditions for October
23-29 are shown 1n Figure 4. Fast Eddy had moved west-
southwest into dexper water. and Ghost Eddy had reached
the Mexican coast at ~22.5°N. Drifter 5678 1s seen to have
some anticvclonic motion to the north of Fast Eddy. and
dnfter 5683 appears to be foliowing drifter 5678.

Interactions in the Western Gulf

After October {985, Fast Eddy began its interaction with
the northwestern corner of the COM continental slope.

L L B L B N Y O

30

e '\ FAST

EDDY

25 3378 ¥

7y GHOST
W eooy

23-29 OCT 1985
5495 ]

95 90

Drifter trajectories for October 23-29. 1985 Dotted hnes
indicate the locations of rning waters (based on XBT datay and the
edges of Fast Eddy. Asterisks represent the imtigl posiions ot the
drifters.

Fig 4.

56
S 6-19 NOV 1985

3378
b FAST EDDY

5678

95 90
Drifter trajectories for “ovember 619, [YRS, Dotted
lines indicate the locations of ring waters thased on XBT datar and
the edges of Fast Eddy. Asterisks represent the imtial posinons of
the drifters

Fig. §

Conditions for November 6-19. 1985, are shown in Figure §
Two drifters were in Ghost Eddy while three drifters were in
Fast Eddy The southern edge of the flow field of Fast Eddy
is located at 23°N. the same latitude of the apparent northern
edge of Ghost Eddy The northern edge of the influence of
Fast Eddy 1~ seen to be at ~27°N. These drift data coincide
well with the outline of the ring as determined by depth of
the 8°C isothermal surface from an awr-dropped XBT
(AXBT) survey of November 11-13, 1985 (Figure 6). These
temiperature data indicate that the ring was being deformed
along 1ts northwestern edge.

An nteresting sequence of events followed the mid-
November uine pertod. Over the next 2.5 months, Fast Eddy
and Ghost Eddy interacted in such a manner that the two
rings coalesced. The conditions of November 6-19. 1985
(Figure 5). show Fast Eddy to be quite large. The motion of
the dnfters imply a radius of at least 200 km. Ghost Eddy 1s
about half as large. In the November 20-26. 1985. SST map
(Figure 7). Fast Eddy is still seen tc be quite circular, with
the movement of drifter 5678 being northward along a tongue
of 26°C water. Also note that one of the dnfters in Ghost
Eddy had left that ring. moving northeastward along the
same curvature as the southwestern section of Fast Eddy
Over the next 3 weeks. this dnfter (3353) made a slow
cyclonic loop near the Mexican coast at ~24°N. During the
same period. dnfter 5678 continued moving north-northeast
along the western edge of Fast Eddy and reached 28°N
Finally. note the characteristic bulge of the Loop Current
(26°C 1sotherm) in Figure 7 as 1t pushes northward into the
GOM. This is the beginning of a new ring (to be called Hot
Eddy) which will be shed from the Loop Current in January
1986.

By rud-December 1983, both dnfters that had been in
Ghost Cddy were moving northward along the west side of
Fast Eddy along a tongue of 24°C temperature water. By
December 22-28, 1985 (Figure 8). the field of flow became
even better orgamized. A large tongue of 24°C water ex-
tended from the location of Ghost Eddy (22.5°N) to 27.5°N
The four dnfters moved along or within this water massn an
anticyclonic manner,

By mud-January 1986 this large. highly elliptical anucy-
clone apparently began a process of consolidation The
center of rotation for dnfters 3378, 3353. and 5495 moved to
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Fig. 6.

- 24.5°N with its southern edge reaching at least to 22.5°N.
By January 22-28. 1986 (Figure 9). the flow tield had become
much less elongated and elliptical. A cyclonic feature to the
northwest of the anticyclone is readily apparent in the SST
data. A hvdrographic cruise was conducted during this
period. from January 23 to February 5. 1986. The surface
dynamuc height field relative to 800 m 1s shown 1n Figure 10.
The cyclone-anticyctone pair 1s readily discerned. and the
movements of the dnfters were tightly coupled to this
dynamic topography.

The evidence presented above would suggest that the
surface waters of Ghost Eddy had been pulled around to the
west and north of Fast Eddy and that a coalescing process
between the two rings might be occurring. This evidence
includes the movement of the dnfters out of Ghost Eddy. a
tongue of warm water onginating at the northern edge of
Ghost Eddy and moving northward up to 27.5°N. and the
reconsolidation of the Ghost Eddy drifters into Fast Eddy.
Additional evidence will be presented in the following sec-
tion.

We finally note that the recently shed Hot Eddy is easily
aiscerned by the 24°C and 25°C 1sotherms in Figure 9. Drifter
5678 was along the northwestern edge of thic new ring.
rotating 1n a cyclonic fashion as depicted in Figure 9.

Reflection and Dissipation

For the next 3: months (to mid-May 1986), Fast Eddy
continued to persist off the Mexican coast. Maximum swirl
speeds were 75 ¢avs at a radius of 80 km. but this occurred
in mid-February 1986. During March—-May. the surface Lhar-
acteristics of Fast Eddy became less energetic and less well
orgamzed. Dnifter trajectories for February 26 to April 22.

Depth of the 8°C 1sotherm from the AXBT survey of November 11-13, 1985
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1986. are shown 1n Figure 11. Fast Eddy had moved east-
ward. and dnfter 5678 had become entrained 1n the anticy-
clonic flow regime of Hot Eddy. Fast Eddy became quite
elliptical as Hot Eddy approached. with a distinct east-west
elongation for the flow field of Fast Eddy by mid-March.

Hot Eddy continued moving southwestward across the
deepest regons of the GOM. By the end of April, the flow
field of the older Fast Eddy became quite irregular, and the
center of Hot Eddy had reached 91°W, 25°N. Drifters 3353
and 5678 appeared to have been influenced by the newer
nng's western and northern flow fields. respectively. Dnfter
3378 was heading south into the Campeche Bay region.

A set of XBT data was collected in the western GOM
during the period of April 26 to May 14, 1986. The depth of
the 8°C 1sothermal surface 1s shown 1n Figure 12. The results
indicate a smaller but sull intense cyclone-anticyclone pair
centered at about 95 5°W, 24°N. Dnfter 3378 went as far
south as 22°N. then moved northward along the western side
of the cyclone-anticyclone pair. and finally turned eastward
at about 25.5°N.

Interaction With Hot Eddy

At the time that dnfter 3378 turned eastward. a curious
cvent occurred which involved Hot Cddy. Trajectories tor
May [4-24, 1986 are shown in Figure [3. As drifter 3378
moved eastward. dnfter 3379 began to dnift toward the west
at ~24#°N. At about 94°W, dnfter 3379 abruptly turned
northward to complete the vuthine of an elongated ellipse
with an east-west onentation Dnifter 3379 then continued 1ts
anticy clonic rotation. but dnfter 3378 kept moving easiward
toward the Loop Current. By June 21, 1986. drifter 3378 had
moved northward around the Lovp Current and left the
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Fig 7 Sea surface temperature (degrees Celsius) for November 20-26. 1985. The corresponding trajectortes of
drifters are shown by arrows (3378, black line, 5495, open circles, 5683. solid circles. 5678, open squares. 3353, solid

squares).

GOM through the Florida Straits in mid-July 1986. On the
other hand. Hot Eddy had reached the Mexican coast at
~24°N (Figure [4) within a 3-week period. At that time.
drifter 3379 began making large. anticyclonic loops in the
western gulf and continued this type of motion through
August 1986 These loops covered almost 4° in latitude and
longitude. An XBT survey was conducted during August
16-22, 1986 (Figure 15). and the 8°C isothermal surface
indicates a large anticyclone centered somewhere south of
23°N.

4. DvyNaMicAL INTERPRETATIONS

There are several aspects of the life of Fast Eddy that we
wish to discuss. These will be broken down nto four topics.
the westward dnft across the GOM. the interaction with
Ghost Eddy, the gradual dissipation. and the interaction with
Hot Eddy.

Wesoward Motion After Separation From
the Loop Current

Previous dnfter-tracked rings as well as Hot Eddy all
moved southwestward across the deepest portions of the
GOM [Lewnts and Kirnan. 1985] But Fast Eddy s the first
drifter-tracked ring that followed a more westerly path
paralleling the northern continental slope of the gulf The

<outhwesterly path can be explained by simple notions of
topographic steering of nngs. However, the route along the
northern continental slope cannot be so easily explained.

For example. the westward transtation of Fast Eddy
moves the northern portion of the ring over bottom topog-
raphy that is substantially shallower than the southern
portion. Current data from Fast Eddy as 1t approached the
western gulf showed that the flow field extended to greater
than 3000 m [Science Applications International Corpora-
tion (SAIC). 1988]. which 1s typical for GOM rings [Hof-
mann and Worley. 1986). Considering the spatial extent of
this ring when it detached from the Loop Current (Figure
16). the movement of the center of the ring onto the 3000-m
isobath would mean that the circulation would flow from
depths as shallow as 1200 m in the north to greater than 3000
m 1n the south. Thus by following the mote westerly path.
the ning circulation is forced into a drastically different
ropographic environment relative to the conditions at its
formation. This 1s quite surpnising considering the present
level of understanding of ring dynamics

Associated with the movement into shallower water. we
find several interesting points. First. a simple notion of the
conservation of potential vorticity imphes that Fast Eddy
should exhibit divergence as it moves into shallower water.
However. anziysis of the dnfter data (Figure 17) indicates
Just the opposite. During Julian days 235-2535. the distance of
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dnfter 3378 to the center of Fast Eddy decreased from
approximately 80 to 60 km. Other puzzling aspects of the
motion of Fast Eddy are its stalling after moving onto the
3000-m 1sobath and its subsequent abrupt southward jump
back into deeper water.

We will now consider some of these puzzling aspects of
Fast Eddy. first addressing its westward motion onto the
3000-m 1sobath. Based on our present understanding of ring
dynamics. there ts no internal mechamsm that would cause
the ring to migrate onto the shallow bathymetry to the north.
This means that only external processes could have contrib-
uted to the westward movement of the ring. Possible candi-
dates are atmospheric forcing. and the presence of nearby
but unobserved flow structures such as cyclones. anticy-
clones. and shelf-slope circulation. Atmospheric forcing
seems the least likely. since it would be of short duration
with etfects confined mostly to the mixed layer (~-20-30 m),
By the same reasoning. shelf circulation is not a likely
candidate. as its effects are confined to the upper 200 m at
most In addition. the speeds associated with the Texas-
Lowistana shelf circulation are about an order of magnitude
less than the swirl speed of the ring [Cochirune and Kellv.
1986}.

Note in Figure 2 that Ghost Eddy was quite close to Fast
Eddy prior to its movement onto the 3000-m 1sobath. This
raises the possibility that these two large nings interacted in
a4 way to torce Fast Eddy along its more westward route

o
Z N %//
.
SN/GON ///////// %///////4

85°wW

Sea surface temperature (degrees Celsius) for December 22-28. 1985, The corresponding trajectories of

However, the interaction of the flow fields of two anticy-
clones tesults 1n the rotation of the pair in an anticyclonic
sense |Hooker, 1987, Cresswell. 1982]. Such an interaction
would result in Fist Eddy’s rotating southeastward and
away from the conunental slope. Moreover. two interacting
vortices with the same rotation tend to coalesce. being
drawu together as their flow fields merge [Chang. 1983. Nof
and Simon, 1987}, There 1s no indication of such a coales-
cence at that time.

There 15 another external flow field that could have inter-
acted with Fast Eddy to move 1t into shaliower water and
that cannot be as easily dismissed as the previous candi-
dates. [t is well known from theory and model studies that a
translating anticyclone will radiate energy in its wahe in the
form of vortices of alternating sign [e g.. Smuth and O Brien.
1983]. Thus one could expect a tralling cyclone northeast of
Ghost Eddy. (Figure 18 shows such a cyclone associated
with Hot Eddy when 1t was at ~90.4' W), {hs suggests that
the motion of Fast Eddy onto the 3000-m 1sobath could have
been the result of an interaction with a cyclone of Ghost
Eddy A cydlone-anticyclone pair will translate in the direc-
tion of the flow of water along their common boundary
[Hooker. 1987). With Ghost Eddy being southwest of Fast
Eddy. this would mean 4 northwestward movement. bring-
ing Fast Eddy onto the conunental slope. The implicotion is
that Loop Current rings move along the northern slope oi the
GOM as a result of o previous ring already being in the
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deeper waters of the central gulf. The direct cause 15 the
younger ring’s interaction with the wake (cyclone) of the
older ring. Direct observatiors of this effect would be
difficult but highly desirable.

Stalling of Fast Eddy on the 3000-m 1sobath 15 likely a
common event for rings traveling along the northern GOM
slope. Westward propagation can be explained by the beta
etfect on individual water parcels within the nng (Sruth and
O'Brien. 1983]. But when the ring feels the effect of bathym-
etry to the north, nonlinear accelerations can become 1mpor-
tant [Smith. 1986] The narrower and shallower region along
the northern edge of the ring causes an acceleration and an
increase in momentum. This effect 15 readily seen n the
hinematic data of dnfter 3378 in which the culculated penod
of rotation wus decreased by ~2 days whenever the dnfter
was on the northern side of the ring during the period of the
stall  Geostrophic current calculations for Fast Eddy also
show this effect in terms of increased curreat speeds in the
northern part of the ring [(SA/C. 1988). As a result. the
castward flowing water north of the nng center exceeds the
westward flow to the south. thus counteracting the beta
effect. The stalling of Fast Eddy likely is the result of a
balance between the westward tending beta effect and the
eastward tending nonlinear acceleration.

Sull to be accounted for 1s the fuct that the orbits of drifter
3378 became smaller as Fast Eddy moved on and stalled on

the continental slope. One clue to what may have occurred is
found n the XBT data. Table 3 shows the maximum depths
of the 8°C 1sotherms for various surveys. Also shown are the
volumes between the 15°C and 8°C isothermal surfaces as
determined from the intersection of the 8°C isotherm with
the 550-m depth. If one considers the first two cruises. it is
seen that the depth of the 8°C isotherm decreased by 5 m but
the volume between the 8> and 15°C surfaces increased
constderably. The net result is a substantial growth of Fast
Eddy from the period between when it was spawned and
after 1t moved southward off the 3000-m 1sobath. A rough
estimate of the growth using the 8 and 15°C data 15 an
increase of —~60%. This implies that Fast Eddy entrained a
substantial amount of water. Such a process 15 consistent
with the paths of dnifters 5683 and 5678 (Figures 4 and §).
These dnfter data indicate that the source of the water was
the warm shelf waters of the northern GOM. Similar entrain-
ments for Gulf Stream warm-core rings are shown in some
excellent sateilite images by Garfield and Evans (1987).
Stern [1987] has shown that entrainment results from the
engulfing of outlying waters by an unstable wave form
travehing ¢yclomcally around the edge of a warm-core ning
The unstable wave 15 ¢ Kelvin-Helmholtz type and breaks
(crest traveling faster than the rest of the wave) (o entrain
water outside of the eddy. Stern has shown that the insta-
bility Lan be mitiated by an offset of the center ot the eddy




LEWIS €T AL : LAGRANGIAN OBSERVATIONS OF A WARM-CORE RING

8.3. ALTAIR CRUISE 86-0t 1/23/86 T0 2/ 4/86
L. 98 97 W 96 W 95 W 94 W I N
28 ‘4' / T 1 T 28 N
i
i éi
| by
2 N—- ~27 N
i
26 N ~26 N
25 N ¥ ~25 N
&
o
=]
| v
24 N " —24 N
3N ( ‘ ' | 1 23 8
98 W 97 W 96 W 9B W 94 ¥ 93 ¥

800 - 0 M. DYNAMIC HEIGHT (DYNAMIC METEPS)

Fig. 10. Surface dynamic topography (centimeters) with respect to 800 m from tie survey of January 23 to February
4. 1986.

with respect to its outside edge. a distinct possibility for a
ring that has encountered a shelf slope. However, Stern
[1987] also indicates that the symmetry of an eddy could be
perturbed by an extenior velocity field. This too could be a
cause of the entrainment for Fast Eddy considering the
cyclonic flow field that has been discerned on the Texas
continental shelf by Cochrane and Kelly [1986).

The entrainment process explains both the decrease in the
radus seen by dnfter 3378 and the abrupt offshore jump
made by the ring. First. the entrainment of shallow, warm
shelf water would produce a convergence in the top layer of

LB RS LAY EAAN BN MUY BRI SN Sy

HOT EDDY

Fig. 11. Dnfter trajectonies for February 26 to April 22. 1986.
Asterisks represent the imtial positions of the dnifters.

Fast Eddy. The convergence would then produce smaller
dnfter orbits. Upper layer entrainment would have to be
compensated by divergence tn the lower layers of Fast
Eddy. Some portion of the decrease in ning radius after
moving off the 3000-m isobath could be the result of vortex
stretching as the ring goes into deeper water. Assuming the
ring extends to the bottom at all depths of the GOM. vortex
stretching can only account for a third of the decrease in ring
radwis. The remainder must be attributed to mass entrain-
ment in Fast Eddy. Overall, the net decrease in the nng
radius indicates a volume increase of 509%, quite consistent
with the 60% estimate obtained using the 8° and 15°C
isotherm data.

The entrainment process can also account for the south-
ward movement of Fast Eddy into deeper water. To illus-
trate this, consider the simplified case of a vortex undergoing
solid-body rotation. The conservation of mass and potential
vorticity over the volume of the vortex are

dHldt + HD = Q
A+ Hidt + DI+ H =0

where H is the average depth (assuming the ring reaches to
the bottom). ¢ is ume., D is the horizontal divergence
(negative in the case of entrainment). Q is some source of
mass (the mass entrainment process). { 1s the vertical
component of vorticry, and f is the Coriolis parameter.
Eliminating D between the two equations gives

din ¢+ HIH)di= - Q/IH
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Fig 12 Depth of the 8°C isotherm from the XBT survey of Apnl

26 1o May 14, 1986

Since Q 1s positive for entrainment. the above implies that
(¢ = S¥H must decrease. This can be accomplished by
increasing H andior decreasing { - f. For Fast Eddy. the
latter varies by at most 5% while the former varies by 30%.

This simplified example quahtauvely demonstrates the
role of entrainment on the vorticity tendency of the vortex.
[t suggests that a more detailed study of the effect of
entrainment on baroclinic vortcies i the presence of sloping
topography is required before a complete understanding of
this process is available.

We have discussed the sigmficant events during Fast
Eddy’s westward translation. but we have yet to comment
on the general dynamics within the ring as 1t drifted west.

Fig 3. Drntter trjectories tor May 14=24. 1986 Asterishs repre-

sent the initial posiions ot the dnfters

L T B L T B N B r—

30

15 JUN-19 AUG 1986

OT £0DY

25

20

Fig 14, Dnifter trajectonies for June 15 1o August 19 1986
Dotted hnes ndicate the locitions of ring waters tbased on XBT
data) and the edges of Fast Eddy. Asterishs represent the mitial
positions of the dnfters.

This can be done with some of the resuits of the kinematic
analysis and parameters trom dynamical models of eddies.
We have considered the analytcal solutions for an isolated
cddy first presented by Ball [1963. 1965] and extensively
described by Cushman-Roisin et al. {1985]. They start with
the governing equations for a warm core eddy 1n a reduced-
gravity environment on an f plane. Cushman-Roisin et al.
fcund that the equations of motion reduced to a set of
nonlinear. coupled. ordinary differential equations of (1) the
velocity of the fluud within the eddy varied linearly wath
distance from the ring center and (2) the depth variations of
the warmer waters of the eddy were a quadratic function of
space. The latter assumption ts quite reasonable for Fast
Eddy The rms errors of fits of elliptical paraboloids to the
isotherm depths measured during July 16-19. 1985 (e.g..
Figure 16). were only ~10 m.

The dynamical components of the Cushman-Roisin model
are the reduced-gravity horizontal pressure gradient, the
Coriolis effect, and the local p.us nonlinear acceleration
terms. Cushman-Roisin et al. showed that the axes of an
elliptical warm-core eddy would have a subinertial, anticy-
clonic rotatton. The kinematic analyses were used to deter-
mine to what extent the Cushman-Rossin et al. model could
be applied to Fast Eddy. Appropnate expressions from
Cushman-Roisin et al. were numenically integrated to give
the length and orientation of the eddy axes. The reduced-
gravety formulation requires a temperature structure de-
scribed by the depth of the upper layer of water and &
vertical temperature difference at the eddy center. On the
basis of the XBT data of July 16~19. 1985. we used a depth
of 300 m with a temperature difference of 6°C. The results of
the numerical integration were compared with the elliptical
ornentation information provided by the kinematic analysis
The lengths of the axes were taken from the estimates of the
distances to the locus ot the 20-C 1sotherm at a depth of 125
m (as opposed to the distance to the drifter itself). Since the
devianon of the analytical solution from the observations
increases with time. the calculations were restarted every 20
days (--2.5 orbital periods).

The orientations of the observed and model minor axes are
shown 1n Figure 19 The occasional erratic behavior in the
observations occurred when the eddy was nearly circular
The observed and model axes rotated ant cyclomcally at
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almost the same rate. an average of 3° per day. The model
results are impressive in that they follow the observed axis
orientation on relatively short time scales (1-2 days). The
model is for an 1solated eddy. and as noted by Cushman-
Roisin et al.. the mode! rotation rate depends only on the
ratio of the eddy size to the radius of deformation. Interac-
tions with Ghost Eddy and the bathymetry thus seem to have
had little etfect on the orientation of Fast Eddy.

The observed and modeled major and minor axis lengths
are shown in Figure 20. Although the model predictions
follow the observations for much of the modeled period. the
model 1s not significantly more accurate than a forecast
based on persistence. The model does not follow the ob-
served growth of the major axts from Julian days 270 to 300.
If this growth 15 due to entrainment. then we would not
expect it to be described by a mode! of an i1solated eddy. On
the other hand. the observed axis lengths do not seem to
show any effects from the close proximity of Ghost Eddy
during days 210-240. The axis lengths predicted by the
model often show n-phase oscillations with periods about
the same as the orbutal period. The observations show
similar oscillations. especially after Juhan day 250 (Figure
20). However, these oscillations are out of phase.

STATION

TABLE 3. Esumates for Fast Eddy of the Vertical Extent ot
the ®°C Isotherm and ot the Volume of Water Between the 8 C
and 15°C sothermat Surtaces

Estumated Mass

Mavumum Depth Between I8
Date of ot the 8 C and 8 C at 530
Surver Isotherm. m m. 0 m
July 16-19. 1985 760 167
Oct 22227, 1988 AN 2.67
Nov =13, 1988 710 282
Jan. 22 to Feb 810 246
5. 1986
Apnl 26 to May 720 137
14. 1986
Aug. 16-22. 1986 ~700 192

These estimates are used as tndicators ot the changes in the size
of the ring between various crutses,

The above comparisons are encouraging. The physics of ¢
reduced-gravity . nonlinear eddy seem appropriate tor Fast
Eddy dunng various periods of its westward translation
across the gulf. This 1s somewhat remarkable. since the
reduced-gravity model applies to an isolated, shallow. lens-
like eddy lying over an infinitely deep mert layer.

Probably one of the most significant Lonsequences of an
elliptical. rotating eddy s the presence of an oscillatory
deformation field within the eddy. The reader 1s referred to
Cuslman-Rousin et al. [1985] for an excellent discusston of
this phenomenon. The oscillatory deformation field results in
each fluid parcel being relatively close to all others at some
ume during the full period of rotation of the eddy axes. The
effects of lateral mixing {the Cushman-Rossin et al. model
has no such mxing) along with this phenomena would
greatly enhance the homogeneity of the fluid within an eddy.
Thus process is greater for more eccentric eddies. From this
one may conclude that the greater eccentnicity that results
from entrainment or ring-ring coalescing also aids n the
mixing of the water masses to produce a final umform water
mass rather quickly.

208
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Fig. 18 A north-south XBT transect through Hot Eddv during March 6~8. 1986. The transect was just south of the
Mississippr delta. at ~-90 4°W. from 24 8°N (station 17) to 28.5 N (station 32) The drop in the 1sotherms trom station
2510 28 indicates a deep cyclone north of the main budy ut Hot Eddy (stations 8-17) and south of the continental slope

(stations 30-32).
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Interaction With Ghost Eddh

After moving into deeper water and crossing the GOM,
Fast Eddy began interacting with the western boundary of
the gulf. This interaction consisted of deformation caused by
the bathymetry and coalescence with Ghost Eddy. On
approaching the northwestern corner ot the gulf. Fast Eddy
underwent considerable deformation (Figure 21). As a re-
sult. the ring became more clongated but with a variable
ortentation of the ellipse (Figure 22). Swirl speeds as de-
tected by drifter 3378 were of the order of 25 cmus.

Figure 7 shows that Fast Eddy had begun to interact with
Ghost Eddy at least as early as November 25, 1985 At the
beginning of this interaction. the elliptical onentation of Fast
Eddy was northwest to southeast with an eccentricity vary -
ing between 2 and § (Figure 22). This changed abruptly to a
north-south orientation with an eccentricity as great as 7 0,
This corresponds to the tme that the tongue of warm water
penetrated far north over the Texas continendal slope and
shelf (Figure 8). As the water mass became more consoli-
dated (January 1986). the resulting anticycione ook on a
northeast-southwest orientation and became more circular
(Figure 22).

The previously presented hydrographic and SST data
indicate that Fast Eddy had coalesced completely with
Ghost Eddy. The coalescence process has many of the same
features as one reported by Lews and Kirwan [1985).
However. the trajectories of all the drifter data indicate a
rather specific coalescence process. It appears that much of
the mass of Ghost Eddy was stripped off by Fast Eddy and
pulled to the west of the younger ring. with some water being
thrown well north of the center of Fast Eddy. Most of the
water then returned to an orbit abouut Fast Eddy. The
process is kinemaucally reminiscent of a binary star system
in which the mass of the smaller stur 1s whirled tar out into
space beyond the larger star before eventually falling nto the
latter. In the case of the GOM. the larger and more intense
Fast Eddy v.ould pull the waters from the older Ghost Eddy.
(With momentum being proportional to the radius squared.
Fast Eddy had at least 4 umes the momentum as Ghost

Fast Eddy
D=300M AT=6
90+ , . . )
60+ é g
30+ :E :
o o | |
f |

1l k] Ll L L
230 250 270 310 330

Day of 1985

Fig 19 Ornentation of the minor axis of an elliptical fit to the
shape of Fast Eddv The sohid fine was determined by the trajectory
of drifter 3378, The dashed hne was determined using the model ot
Cushman-Roisin et al [1985) with a 3X-m center depth of an
anticyclonic eddy with a vertical temperature difference ot 6 C
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Fast Eddy
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Axis length (km)
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Fig 20 Varnatons m the lengths of the mayyor and minor axes of
Fast Eddv. The solid line was determined by the tragectory ot drifter
3378 and XBT data. The dashed hne was determined using the
model of Cioshiman-Ronsin ¢t ad. [1985] with a 300-m center depth ot
an anticyclonic eddy with a verucal temperature difference of 6 C

Eddy: see Figure §). With the decay of Ghost Eddy. diver-
gence n the upper layers would be ejecting warm water from
the ring’s central region. The drifter and SST data indicate
that Fast Eddy tonk apptoximately 1 to 1.5 months to extract
and incorporate the waters of Ghost Eddy.

After a tongue of highter water 15 jetted northward over
denser. colder water. a near-geostrophic balance would be
expected to be established at the interface. This would
produce a northward flow along the west side of the tongue
and a southward flow along the east side of the tongue. Thus
by this argument. the water ot Ghost Eddy would return to
circulate around Fast Eddy.

The 8°C 1sotherm data ot January 23 to February S. 1986
(Table 3) indicate th> extent of the coalescence process. The
volume of water between ihe 8°C and 15°C surfaces de-
creased shghtly, but the maximum depth increased dramat-
ically by 100 m. The imphcation 1s that the coalescence
process consisted of the influx of warmer water from the
south. and these warmer waters converged at the surface of
Fast Eddy. resulting 1n the depression of isotherms.

Dussipation of Fast Eddy

Duning February. March. Apnil. and May 1986. Fast Eddy
underwent a period of dissipation. Both drfters 3378 and
3383 showed anticyclonic motion untl late March 1986. The
net movement of the center of rotation was southward and
somewhat offshore at about 24°N. consistent with the recent
entratnment of water trom Ghost Eddy. In about the third
week of March 1986. both dnifters left the ring and stopped
thetr anticyclonic rotations. When the dnfters feft Fast
Eddy. the distance to the center of rotation was ~80 km. The
8°C isotherm data of Aprnil 26 to May 14, 1986. showed a
maximum depth of only 720 m (a decrease of 90 m in 3
months) and an estimated volume between the 8° and 15°C
isotherms of 1 37 x 10'* m® (compared with 2.46 x 10" m'
for the previous survev). It 1s obvious that Fast Eddy had
decayed substantrally  The loss of both drifters is consistent
with the weakening of the ring  As the 1sotherms rise. the
surface layers undergo divergence. leading to ejection of
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water from the eddy. (We note that this process 15 of a
different nature than that of the interaction of Fast Eddy and
Ghost Eddy In the latter case. dnifters were pulled out of
Ghost Eddy as a result of water being extracted by a type of
coalesence process. not a decay of the flow field.)

Sull. the XBT data indicate that the ring was far from
weak (the 8°C isotherm was still depressed beyond 700 m).
But the loss of water from the surface fayers of the eddy and
the consequent increase 1n orbit size makes 1t difficult to use
drifters to track a decaying ring such as this. However.
interaction with a vounger ring apparently acted to consoli-
date and revitalize ths eddy.

Interacrion With Hor Eddy

The XBT survey of Apnl 27 to May 14, 1986 (Figure 12)
shows a distinct closed. anucyclonic vortex in the western

LAGRANGIAN OBSERN ATIONS OF A WarM-Core RiNg

Julian Days (1985)

Normai deformation rate. shear deformation rate. and vortienty tor Fast Eddy

GOM. the remnants of Fast Eddy. As Hot Eddy approached
this vortes. dnfter 3378 made a large. anticyclonic loop and
passed on the west side of the anticyclone shown in the XBT
data. At this point. the two anticyclones began an interaction
as depicted in Figure 13, The peculiar tactor of this interac-
tton was the elongated ellipticai path taken by dnfter 3379,
This *peanut’’-shaped path had an east-west ortentation.
and the track occurred at the same time as dnfter 3378 made
a sharp eastward turn and began tracking eastward. This
apparently 15 not an unusual phenomena. being seen in the
trajectortes of two previously dnfter-tracked GOM rings
[Kirwan et al., 1983a. b: Lewis and Kowan, 1985). The
subsequent XBT data from August 16-22, 1986 (Figure 15,
shows an elongated. east-west feature with an 8°C 1sotherm
maximum depth of ~700 m. a clear indication of an anticy-
clone in the western GOM. Although the depth of the 8°C
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1sotherm had shallowed with respect to the previous survey.,
the estimated volume of the anticyclone appears 0 have
grown substantally. Thus the interaction of rings 3378 and
3379 was apparently one of coalescence

We do not have a complete enough data set to determine
exactly how the two anticyclones coalesced. 1t s possible
that they coalesced in a similar fashion as Fast Eddy and
Ghost Eddy  Howeser. during that previous coalescent
process. there was no indication of the peanut phenomene in
any of th2 dnfter paths [t s true that exaggerated elhptical
tragectories were made during the coalescing of Fast Eddy
and Ghost Eddy. But the elongated ellipse occurring during
the interaction of Ghost Eddy and Fast Eddy went beyond
and well north of the center f rotation of Fast Eddy. In the
case of Fast Eddy and Hot Eddy. the peanut occurred in
between the centers of rotation. a very distnct difference

The other form of coalescence tfor vortices ot the same
sign is the gradual joining of streamlines as the rings touch
[Chang. 1983]. [n such a case. a more central streamline
remains closed taround one center of rotation) until alf
outlying streamlines have merged with those of the other
center of rotation. At that time. the streamhine can merge
with the corresponding streamline of the other vortex. The
general shape of a recently merged streamline s that of a
dumbbell or peanut. The details of this type of process has
recently been examined by Vof [1988]. Nof showed that the
actual coalescing process consists of intrusions of tentacles
of water from each eddy. These intrusions establish what
Nof terms ay a “‘padlock™ flow field about each eddy. with a
chatacteristic peanut shape between the centers of rotation.
With time. the tentacles become longer. and eventually the
eddies are converted entirely into a single vortes of long.
spirallike tentacles. At the latitude of Hot Eddy. the merging
ume would be appronimately 50 days.

Although our data are not sufficient to establish the
pre<ence of tenacles of intruding water. Nof [1988] shows
analytically and expenmentally that such intrusions and
tenacles are tevitable. Thus there are several strong pieces
of evidence suggesting that Fast Eddy and Hot Eddy coa-
lesced by the process described by Nof.

5. SUMMARY

Our results have provided a wealth of information pertain-
ing to processes of Loop Current rings. This information
plus previous research allows us to provide tentative an-
swers to the questions we posed in the introduction. First. it
appears that we may have up to four Loop Current rings
shed per year. However. based on our sampling of such rings
and their size and interactions. there are hkely only a
maximum of three such rings in the GOM at any one time.
The dynamical mechanisms that determune the paths of
GOM nings are (1) topographic steering in terms of the
conservation of potential vorticity and (2) interactions with
other rings. 1he interactions between a ring and topography
or another ring appear to vary but can be explained by our
present knowledge of eddy dynamics Topographic interac-
ttons involve not only the conservation of potential vorticity
but also the effects of nonlinear acceleration along the edge
of the ring 1n shallower water. This latter effect aceounts tor
the clockwise movement of GOM anuicyclones along the
shelf-slope regions of the gulf Ring-ring wnteractions appar-
ently range from simple coalescence. to more complex torms
of merging. to subtle mteractions between one ring and the

LAGRANGIAN OBSERVATIONS OF A Wansi-Core RING

Xt°"

tratling vortices of another ring. The ulumate Lite of am
GOM ning is 1ts coalescence with an older anticy clone in the
western gulf. This process continually reenergizes an anti-
cyclome feature typically found along the coast of Mewweo.
But 1in the periods between such reenergizations. we wan
expect to find an anticy clone that may vary considerably in
its characteristics.

There are several points that would provide the basis ot
some very interesting future work The first 15 direct obsei-
vatton of the intetaction between the vortices of an older ning
and the movement of a younger ning. We are particulariy
interested 1n the phenomenon which causes GCM rings to
move westward along the northern slope of the gulf. The
second 15 a more detailed study of the entriinment ot shelt
waters and the effect that such a process has on a ning it s
indeed intriguing that entrainment can apparently set up u
system of flow that affects water up to 300 km away dalong the
Texas coust. Finally. the details of the coalescing ot two
GOM rings 15 of particular interest. Ths 1s not only because
there appears to be different torms of coalescing. But also
such a process can include o tremendous transfer of mass
and heat as well as o temporary and perhaps dramatic
convolution of the flow field.
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ABSTRACT

We study the fractal and scaling properties of the Lagrangian trajectories of three satellite-
tracked, freely drifting buoys (drifters) placed in the Kuroshio extension region during 1977.
Over a period of about one year, the drifters, whose positions followed approximately the
motions of fluid parcels in the near-surface layer, traveled almost the entire width of the
Pacific Ocean. During this time, the drifters followed what may be described as highly erratic
paths, while on the average being advected eastward in the zonal flow. Here we apply four
different data analysis methods, based on the mathematics of fractals, to the drifter paths. We
find that for space scales extending from at least 20 to 150 km and time scales from 1.5 days to
1 week, each of the trajectones displays fractal and scaling behavior with a fractal dimension
of approximately 1.3. The multifractal nature of the drifter trajectories is also explored. The
implication of these results is that the near-surface Lagrangian mesoscale motions in the
Kuroshio Extension exhibit fractal properties in a range of scales normally attributed to
geophysical fluid dynamical turbulence. These results evidently provide the first experimental
evidence that fluid parcel trajectories in large-scale ocean flows can exhibit fractal behavior. A
relation between the observed value of the fractal dimension and the properties of the power
spectrum of a typical drifter position coordinate is also exploited. We finally discuss some of
the possible physical implications of these results for the study of geophysical fluid dynamical

flows.

1. ntroduction

The use oi freely drifting, satellite-tracked
surface buoys (drifters) and of deep subsurface
SOFAR floats is a relatively recent development
in the experimental study of large- and meso-
scale ocean dynamics. These novel measurement
techniques, which are crucially dependent upon
remote-sensing technologies. have the capability
of providing a large amount of information on
the genzral circulation and on its variability. The
trajectories of the drifters and of the floats rep-
resent a (quasi) Lagrangian description of the
fluid flows since the free buoys may be con-
sidered to approximately follow the individual
parcels of fluid in their motions throughout the
ocean. While scarcely useful in tracking vertical

and convective motions, the drifter measure-
ments are obviously best employed in deter-
mining some of the properties of large-scale,
essentially two-dimensional, geophysical flows.
To quantitatively interpret the observations
now available from several ocean regions, various
approaches and time series analysis methods
have been considered by different authors. Since
large-scale motions may possess an energetic
turbulent component, the drifter paths may be
highly irregular and statistical approaches must
consequeatly be employed. The techniques most
commonly adopted may be grossly subdivided
into two main categories, depending upon the
scope of the analysis. The first approach is
essentially based on considering the *‘ensemble”
behavior of many trajectories, with the aim of
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reconstructing the overall characteristics of the
circulation. Some examples of these kinds of
analyses are provided by Kirwan et al. (1978),
McNally et al. (1983) and McNally and White
(1985). who studied the circulation in the North
Pacific: by Richardson (1983), who studied the
mean kinetic energy distribution in the North
Atlantic; by Molinari et al. (1981}, who analyzed
the surface currents in the Caribbean Sea, by
Schmitz et al. (1981), Owens (1984), and Shaw
and Rossby (1984), whose work was devoted to
the study of the Gulf Stream and : { the sub-
tropical gyre with SOFAR floats; by Royer and
Emery (1984), who studied the circulation in the
Bering Sea, by Hofmann (1985), who analyzed
the circulation in the Southern Ocean; and by
Peterson (1985), who compared drifter data and
current-meter measurememe at Drake passage in
the Southern Ocean. An extensive review of the
drifter approach and of the technical problems
related to the use of satellite-tracked drifters may
be found in Kirwan and Cresswell (1982).

The secoad approach to the analysis of drifter
data is in a ense complementary to the former
and it is based on considering the statistical
properties of the motions of individual drifters
(single ‘rticle diffusion) or on two-parcel separ-
ation studies. In this context, Davis (1982, 1983)
has provided a theoretical basis for analyzing
single-parcel and two-particle statistics and for
relating Eulerian and Lagrangian statistical
properties. These studies represent an extension
of classic approaches to Lagrangian diffusion in
three dimensional, homogeneous and isotropic
turbulence to geophysical fluid dynamical flows.
The papers by Davis (1985) on the experimental
program CODE and by Fahrbach et al. (1986} on
the Atlantic Equatorial Undercurrent are recent
examples ot parcel separation studies in ocean
flows.

In the present analysis, we consider a different
approach and focus on the individual geometrical
properties of thres drifter trajectories in the
Kuroshio extension region, a part of the Pacific
Ocean known for its intense mesoscale vari-
ability. Although the drifter paths are quite
irregular and apparentiy strongly different from
each other, we show that there are some funda-
mental geometrical and statistical properties
which are common to all trajectories. In particu-
lar we consider the fractal and scaling behavior
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of the drifter motions and discuss how the fractal
properties of the fluid parcel trajectories may be
related to the dynamical motion. The study of the
fractal properties of fully developed turbulent
flows was stimulated over 15 years ago by the
work of Mandelbrot (1972, 1974, 1975), who
suggested for the first time that a full under-
standing of turbulent fluid flows requires con-
sideration of the scaling and fractal properties of
the motion. Here we concentrate on an unex-
plored aspect of the relationship between :urbu-
lence and fractals and provide original experi-
mental evidence that fluid parcel trajectories in a
large-scale ocean flow may be viewed as fractal
curves with a fracta: dimension of approximately
1.3. This research is a continuation of a previous
study (Osborne et al, 1986), in which we
considered the possibility that these Lagrangian
observations of the dynamics in the Kuroshio
extension could be interpreted in terms of
deterministic chaos (for an introduction to
deterministic chaos and related topics see, e.g.,
Eckmann and Ruelle, 1985). That analysis pro-
vided no evidence for low-dimensional chaos, but
instead indicated that the drifter trajectories in
the ocean surface layer displayed many of the
characteristics of fractal curves. This paper is
thus devoted to the systematic study of these
fractal properties.

The approach taken here differs in at least 3
ways from other experimental studies on fractal
properties of turbulent flows. First the analysis
relies cn Lagrangian data; hence we focus on the
fractal nature of fluid parcel trajectories. We are
not aware of any other experiments which have
utilized particle trajectories to estimate fractal
propertigs. A second important difference is that
the data analyzed here come from a geophysical
fluid dynamical (GFD) system whose dynamics
are known to be significantly different from
three-dimensional dynamics. Finally we stress
that the data studied here come from a natural,
large-scale system and not from a controlled
laboratory experiment.

The use of Lagrangian data is particularly
appropriate in the study of fractal behavior
in that Lagrangian trajectories are amenable to
at least four types of fractal analyses. Three of
these techniques are devoted to the study of the
so-called monofractal properties of the drifter
trajectories. Of these the “yardstick”™ length and
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the correlation dimension method provide infor-
mation on spatial scales over which fractal and
scaling properties hold. The third method, based
on the calculation of the scaling exponent, gives
comparable time scale information. Thus, the
fractal analysis of Lagrangian data has the poten-
tial to give both time and space-scale infor-
mation. The fourth method which we employ is
based on the use of a box counting algorithm and
is devoted to the study of the multifractal nature
of the drifter data. This method also provides
space-scale information.

Because of these attributes the data herein
considered can also be used to address several
basic issues in the fractal analysis of experimental
signals. First, 3 separate trajectories are analyzed.
This is important since, with just a single signal,
there 1s concern that some unsuspected bias may
distort the results. By contrast we have 6 signals
available for fractal analysis; thus by combining
signals in different ways we are able to test the
internal consistency of the analyses. Second,
since we use several different fractal analysis
methodologies, we are able to address the import-
ant question of whether different methods of
calculating the fractal dimension give compar-
able results when applied to experimental
data. Finally, we also exploit a suggestion by
Mandelbrot (1977, 1982), together with an exten-
sion of a result of Panchev (1971), to estimate the
logarithmic slope of the (displacement) power
spectrum in the fractal scaling range from the
measured values of the fractal dimension of the
drifter trajectortes.

The remainder of this paper is organized as
follows. Section 2 gives a brief description of the
experiment and of the data considered herein.
Section 3 summarizes the aspects of fractal
behavior for curves on a plane that are pertinent
to this study. In particular, we review the notions
of scaling exponents, yardstick length and the
correlation function as methods for determining
the fractal dimension of data. We also discuss
how the fractal dimensions can be used to infer
the slope of the displacement power spectrum in
the case of simple (or ““mono™) fractals and we
introduce the concepts of muitifractality and mul-
tiple scaling. In Section 4, these methodologies
are applied to the data described in Section 2.
The statistical uncertainties encountered in this
analysis are discussed in Section §, and some of

the possible physical implications of the results
found in the present research are discussed in
Section 6.

2. Description of data

The data analyzed here consists of the trajec-
tories of 3 drifters deployed in the Kuroshio
current off the coast of Japan 1n 1977. These data
were included in the synthesis of the North
Pacific subtropical circulation compiled by
McNally et al. (1983). Part of the data used here
were also analyzed by Vastano et al. (1985) and
Kirwan and Cresswell (1982). The classical
oceanographic interpretation of these data has
thus been well astablished. Further information
on the descriptive and statistical oceanographical
aspects of the drifter trajectories can be found 1n
the referenced papers.

The drifters were drogued by parachutes to a
depth of 100 m. This large drogue depth was
chosen to minimize spurious wind and wave-drift
effects on the buoy motions, the trajectories are
thought to be representative of fluid particle
paths in large scale ocean flows. The problem of
closely relating the drifter motions to the real
fluid particle trajectories is a difficult and
debated issue. In a study of drifter motions in the
North Pacific Ocean, for example, McNally
(1981) reported the puzzling observation that
both drogued and undrogued drifters behaved
similarly, both being very sensitive to the local
winds. This result was however obtained for
drifters with a drogue depth of only about 30 m,
and 1s thus relevant to drifters which measure the
dynamics in the surface mixed layer and which
are strongly influenced by the local atmospheric
(and wave) forcing. Drifters with a much larger
drogue depth are by contrast thought to behave
differently, following more closely the large and
mesoscale flows below the surface mixed layer
(Kirwan et al., 1978, 1979; Large and Van Luon,
1989 Krauss et al., 1989). Thus, because of the
quite large drogue depth of the drifters studied
here, we consider the drifter trajectories to be
fairly representative, at sufficiently large scales,
of the real fluid parcel trajectories.

The trajectories of the three drifters are shown
in Fig. 1. The solid line is for drifter NO106, the
dashed line for NO307 and the dash-dotted line 1s
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Fig | Lagrangian trajectories of the three satellite tracked dnifters in the Kuroshio Extension. The solid line 1s for

buoy NO106. dashed line 1s for NO307 and dash-dotted Iine 1s for NO341.

for dnfter NO341. Positions of the drifters were
determined several times a day by the Nimbus 6
satellite system. The time series were obtained
from the raw Nimbus 6 file by interpolation
to equally-spaced time intervals of At=12h.
Additional technical details can be found in
Kirwan and Cresswell (1982). The paths begin
near latitude 32° North and longitude 133° East
near the core of the Kuroshio current. In this
region, the Kuroshio is a highly organized flow.
During the time of deployment the Kuroshio was
evidently in 1ts meander mode as suggested by all
3 drifter paths.

East of the Izu Ridge (approximately 138°
East), the Kuroshio flow field is much less organ-
ized and highly irregular. Large mesoscale vari-
ability in this region is well established; see, e.g.,
Bernstein and White (1979, 1981), Schmitz (1982)
and Schmitz et al. (1982) for analyses based on
XBT and current meter data. The intense
mesoscale variability of this region is related tc
several possible effects, including the presence of
active mesoscaie eddies, turbulent dynamics and
Rossby waves. This area is thus appropriate to
the study of the properties of fluid parcel trajec-
tories in large-scale flows.

The 3 dnfters were deployed within 5 km of
each other and within an interval of 2 h; they
crossed the Izu Ridge within a 7-day period after
following paths that deviated by at most 10 km.
However, 1n the Kuroshio extension region their
separations 1n space and time changed dramati-
cally. In the first few days after crossing the ridge
the separation between the drifters grew from
approximately 10 to more than 500 km. There-
after the dnfters repeatedly approached and sep-
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arated in an irregular fashion. It is this extremely
irregular and apparently random motion of fluid
parcels that is the focus of our study.

3. Fractal curves on the plane

In this section we review some of the classical
ideas on fractals which are pertinent to this
study. The material of this section represents a
cursory survey of the techniques which we use in
the analysis of the data and is thus limited both in
scope and in length. More detailed discussions on
fractals and related topics are given in Mandel-
brot (1977, 1982). Original developments in the
study of the fractal nature of fluid flows may be
found for example in Mandelbrot (1972, 1974,
1975), Frisch et al. (1978), Frisch and Morf
(1981), and Frisch (1981, 1985) for theoretical
aspects and for example in Lovejoy (1982),
Lovejoy and Mandelbrot (1985), Sreenivasan and
Meneveau (1986), Meneveau and Sreenivasan
(1987) and Schertzer and Lovejoy (1987) for
experimental results. A recent survey on certain
applications of fractals in other fields of physics
may be found in Pietronero and Tosatti (1986).
For the issues of multifractality, multiple scaling
and anisotropy see, e.g., Schertzer and Lovejoy
(1983, 1987), Benzi et al. (1984), Frisch and Parisi
(1985), Halsey et al. (1986), Lovejoy et al. (1987)
and Paladin and Vulpiani (1987).

Heuristically, a fractal is a geometric object
whose shape is irregular and/or fragmented at all
scales. A technical definition of a fractal is “a set
of points whose topological dimension is strictly
smaller than its Hausdorff (or fractal) dimen-
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sion.” The rigorous definition of Hausdo:ff di-
mension may be found for example in Mandel-
brot (1977, 1982). A striking characteristic of the
fractal dimension D is that it can be non-integer.
This is in contrast to the topological dimension
which s always integer A fractal curve on a two
dimensional surface (for simplicity a plane) has a
fractal dimension which lies somewhere between
the topological dimension of the curve (which s
Dy =1) and the dimension of the space (herz 2).
A fractal curve is “"non-smooth™ at every length
scale. No matter how small or large a portion of
the curve is examined, one always finds finer or
larger scale cusps, structures and *wiggles."”

The richness of structures in a fractal curve is
related to one of the basic properties of fractals,
namely their “scaling” behavior. The scaling
properties imply that there is a well-defined
relationship describing the structure (e.g., the
fluctuations) of the curve :t different space and
time scales. In the present context, we will be
concerned with fractal curves whose scaling
properties are statistical and in this case the
scaling behavior refers to the probability
distribu‘ion of the random process which gener-
ates the curve. If the curve is parameterized by a
single scalar (e.g., time) then each component of
the curve is a scaling, random scalar function of
this parameter.

A more rigorous definition of scaling is now
appropriate. This clarification leads to a basic
distinction between monofractals (which are also
called *‘simple” fractals) and multifractals. The
issues of multiple scaling and of multifractality
are relatively recent and may be associated
with multiplicative random processes (see, e.g.,
Schertzer and Lovejoy, 1987 for a discussion of
multifractality and for its applications in geo-
physics), while monofractals are older and
simpler mathematical objects associated with
additive random processes (e.g., referred to as
*“scaling of the increments”) and have simple
scaling rules. In the following we introduce the
relevant ideas of fractal mathematics in the
context of monofractals. The extension to
multifractal behavior is then considered.

In the case of monofractal curves the scaling
properties may be related to the self-affine or self-
similar character of the curve or of its parametric
representations. To properly define self-affinity
consider an arbitrary scalar random function of
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time X(¢). If, for an arbitrary interval Ar,
d

AHX (e +2AD) - X () = [X(e + Ay = X(1)] (3.1)

holds independent of time (= means equality 1n
the sense of distributions), then X(¢} is said to be
a self-affine simple (or mono) fractal signal with
scaling exponent H. This exponent must be posi-
tive and less than or equal to one. Intuttively a
self-affine signal is such that if the time scale 1s
multiplied by a factor 4 and the signal amplitude
by a factor A" then the transformed time series
has the same statistical properties as the original
one. It is important to realize here that self-
affinity refers to the properties of the differences
in the signal amplitudes. Random, self-affine
scalar functions with scaling exponent H and
gaussian increments are the *fractional Brownian
functions” discussed by Mandelbrot (1977, 1982).
Ordinary Brownian motion is found when H = }.
Formula (3.1) also indicates that for monofractal
curves a single scaling exponent is sufficient to
completely define the scaling properties of the
system (e.g., the scaling properties of the mean,
of the variance, and of higher moments).

Now consider another random process, say
Y(z). Being different processes X(¢) and Y{t) may
have different scaling exponents, say H, and H,.
These two time series can be thought of as the
parametric equations of a curve which can be
viewed as a self-affine random trajectory on the
X-Y plane. This is a particular case of
anisotropic monofractal curves, and may be
found when different physical conditions are
acting in different directions. A well-studied,
special case of fractal curves are however self-
similar (isotropic) fractal curves; this case occurs
when X and Y have the same scaling exponent,
i.e.,, H .= H,. This occurs for example when X
and Y are different realizations of the same
underlying random process. For self-similar
monofractals the fractal dimension of the
trajectory 1s given by

D=min(1/H,2]. (3.2)

Hence for 0 < H <1, the trajectory is a simple
fractal curve such that 1 <D < 2.

The calculation of the scaling exponent just
discussed is a common method for determining
the scaling properties and for obtaining the
fractal dimension of a self-similar monofractal
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curve. Another method for obtaining the fractal
dimension 1s based on measuring the length
of the curve by varying-length rulers (see
Mandelbrot. 1967, 1977, 1982). If the length is
approximated by a broken line whose segments
have a “vardstick” length A then, in the limit for
small A, the length goes as

L(A) = A'" P (3.3)
-0

where D, is the ‘“divider dimension™ which
approximates the Hausdorff dimension D. For an
aralytic function, D, =1 and one obtains the
ordinary length of a differentiable curve. For
fractal curves the length diverges for smailer and
smaller yardstick lengths. Computing the power
law in (3.3) for the length divergence of a self-
similar monofractal curve furnishes its fractal
dimension.

A third method for determining the dimension
of a fractal curve is based on the computation of
the correlation dimension of the curve through a
method proposed by Grassberger and Procaccia
(1983). To compute the correlation dimensicn
(which is an approximation to the Hausdorfl
dimension) from a digitized, vector time series
x(t) one first calculates the Grassberger and
Procaccia correlation function

l
M-M

Cle)= > Oe - lx(ti) = x(t))),

LY

3.9

where © is the Heavyside step function, M is the
number of points in the time series and the
vertical bars indicate the norm of the vector. In
the case of a self-similar fractal curve one has for
small ¢,

Ce) = ¢,

t—90

(3.5

where v i3 the correlation dimension of the curve.
Typically the correlation dimension is computed
by calculating the slope of the correlation func-
tion (for small €) in log-log coordinates.

An important observation is that the fractal
dimension can be related to concepts from classi-
cal time series analysis. Specifically, there is a
close relationship between self-affine, mono-
fractal signals X(r) and their power spectra. Self-
affimty implies that there is no preferred length
scale tn the signal. By a siraightforward extension
of the classic argument which relates the struc-
ture function of a signal to its power spectrum
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(see Panchev, 1971), one finds that a self-affine
signal with scaling exponent H has a power law
spectrum P(w)x w™* (where w is the angular
frequency) such that

1=2H+1, l<agl (3.6)

It is possible to extend this result to the case of a
curve in an N-dimensional space, where one finds
that, for self-similar monofractal curves, the spec-
tral slopes of the signal components can be
related to the fractal dimension of the curve
through (3.2) and (3.6), such that

D =min[2/(a — 1), N]. 3.7

It is important to stress that the relation
between the scaling nature of a signal and the
power-law dependence of its power spectrum is
unidirectional, i.e., the self-affine, fractal charac-
ter of a signal determines the power law form of
the spectrum, and not vice versa. Only in
particular cases, in which both the power spec-
trum and the phase spectrum have particular
characteristics, then relation (3.6) is valid in both
“directions”. An example of this is provided by
random systems with power-law spectra and ran-
dom Fourier phases uniformly distributed on
(0, 2r) (see, e.g., Osborne and Provenzale, 1989).
In this particular case, the slope of the power
spectrum and the fact that the phases are random
univoquely fixes the self-affine properties of the
signal. In general, however, the sole knowledge of
power-law dependence in a power spectrum does
not infer that the corresponding signal is fractal.
In fact (a) perfect power-law spectra are almost
never observed in experimental results and one
does not know a priori how sensitive the fractal
properties are to deviations from power-law be-
havior, and (b) simple examples exist of signals
which have power law spectra but which are non-
fractal. The common triangular wave has a power
law spectrum P(w) ~ w~? but it is obviously non-
fractal. Thus, when an w=? spectrum is for
example observed, it is not possible to know a
priori whether the corresponding signal is self-
affine (and fractal) or if it is dominated by few
strong “jumps” (and is non-fractal). The fractal
nature of a signal must thus be assessed
independently from the power-law form of the
spectrum. The latter may be taken at most as an
indication of the possible presence of fractal
behavior.




For simple, self-similar fractal curves the dif-
ferent methods for computing the fractal dimen-
sion provide (within the statistical uncertainties
associated with the experimental errors and the
finite amount of data) the same value for the
fractal dimension. This relationship does not hold
if the curve under study has a multifractal nature.
In this case the parametric representation of the
curve does not obey a simple relationship such as
eq. (3.1), and the correspondence between the
value of the dimension and the logarithmic slope
of the power spectra is not necessarnily given by
eq. (3.7). The different methods for computing
the fractal dimension, which rely upon different
assumptions and measure different scaling
properties of the curve, may thus provide differ-
ent values for the fractal dimension. This results
from the fact that for data with multifractal
properties there are infinitely many different
fractal dimensions. These are related to the dif-
ferent moments of the probability distributions of
the process under study.

Multifractal properties are in fact related to
multiplicative random processes and are associ-
ated with different scaling properties at different
scales. In this case, a single scaling exponent (and
a single fractal dimension) are not sufficient to
describe the behavior of the statistical moments
at different scales (see, e.g., Schertzer and
Lovejoy, 1987 and Paladin and Vulpiani, 1987).
Thus the extension from the simple scaling
properties of monofractals to the more complex
situation found for multifractals allows for a
wider application of the “‘fractal approach” and
also allows for a closer link to the dynamical
processes active in fluid flows.

A simple way to study multifractal behavior is
based on the use of a box-counting algorithm.
Given a fractal curve on a two dimensional
surface (for simplicity a plane) the box-counting
procedure is based on filling the plane with a
covering of adjacent square boxes of size ¢, and
on computing the probability p(e) that the ith
box contains a piece of the fractal curve. For
fractal curves one has that for small ¢

Y [ploF xeomn2, (3.8)

where the sum is extended over all non-empty
boxes. The quantities D, are the generalized
fractal dimensions; a fundamental difference
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between monofractals and multifractals 1s that
for monofractal curves one has that D, = D, for
q # q" while for multifractals the different gener-
alized dimensions are not equal. In general in fact
D,< D, for ¢>q'. The usual correlation dimen-
sion is for example recovered for ¢ =2. Thus
computing at least some of the generalized
dimensions D, provides a way to test the
multifractal nature of a signal.

A word of caution about the application of
multifractal methods is perhaps necessary how-
ever. The interest herein is focused on the appli-
cation of these 1deas to experimental data. A
realistic application of multifractal methods to
natural data provides information only on
moments of lowest order. It is well-known that
the errors of the higher moments may be large
because of experimental noise and the finte
length of a time series. Another question relates
to the origin of (possibly observed) differences
among the various generalized dimensions, since
it may be unclear whether these deviations are
produced by statistical fluctuations or by genuine
multifractal behavior. These points will be dis-
cussed further below in the analysis of the
Kuroshio data.

It is worth stressing that in all physical appli-
cations the focus is on “natural™ fractals, as
opposed to mathematical fractals. The latter
“scale” over all length scales and their length
truly diverges, while the former scale only 1n a
well defined range of scales. For natural fractals
small scale processes such as molecular diffusion
and experimental noise limit the scaling range for
small distances. In fluid dynamics an additional
constraint to scaling is provided by the particle
paths being solutions to a system of partial
differential equations and hence continuously dif-
ferentiable at very small scales. At large scale
constraints such as the finite time of the expen-
mental measurement, or natural boundaries such
as the size of the ocean, provide an upper limit to
scaling. For natural fractals the various fractal
analysis methods therefore provide the value of
the fractal dimension and also indicate the scale
range over which fractal properties hold. In par-
ticular the scaling exponent calculations provide
time scale information while the yardstick
length and correlation function methods give
space scales. Employing the various methods,
one can thus gain independent space and time
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scale information about the extent of the fractal
scaling range. In the authors’ opinion the infor-
mation on the extent of the scaling range is
probably almost as important as the discovery of
the scaling behavior itseif.

4. Fractal analysis of the Kuroshio data

In this section, the ideas discussed above are
applied to the analysis of the drifter trajectories
from the Kuroshio extension. The first test is to
compute the scaling exponents H, and H, of the
longitude (x) and latitude () positions of the
drifters. This test is important because it
determines whether the signals display (statisti-
cal) scaling properties. As discussed above this
method also provides time-scale information.

To compute the scaling exponents attention is
focused on the average absolute value of
displacements 1n longitude (Ax) and latitude
(Ay), which for self-affine signals must obey

lx(r + AA1) — x(1)] = Ax(A Ar) = A Ax(AY)

=Aix(t+ A — x(r)l,  @4.1)
|+ AAD) — v(0)l = Ay(AAr) = i Ay(Ar)
=iyt + AN -yl (4.2)

[n (4.1) and (4.2), the vertical bars indicate
absolute value and the overbar indicates a time
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average. The delay time AAr is an integer
muitiple of the sampling time Ar=12 hours. If
the signals are self-affine then graphs of Ax(A A7)
and Ay(4Ar) versus A must fall on a straight line
on a log-log piot, the slope of this line being the
value of the scaling exponent.

Figs. 2 and 3 show Ax(AAr) and Ay(AAr)
versus 4 in log-log coordinates for each of the
dnifters. The mean (eastward and northward)
drifter velocity has been removed from each time
series used here. This step 1s standard in the study
of turbulent flows and in our case it is useful in
that it compacts the longitude signals that would
otherwise be stretched in the east-west direction
by the zonal flow. This implies that we are
studying the properties of fluid particle motions
around the rectilinear trajectory generated by a
constant mean flow. This 1s also equivalent to a
Galilean transformation to a coordinate system
moving with the constant mean flow. These
aspects are discussed further in Section S.

From Figs. 2 and 3 scaling 1s evident both for
longitude and latitude for all three drifters. A
lower limit to the scaling range is fixed by the
dewviation of the curve from a straight line to be
approximately 1.5 days. An upper limit to scaling
is approximately 8 days for longitude and 6.5
days for the latitude time series. Table | lists the
values of the scaling exponents obtained from a
least-square-fit over the scaling range. The indi-
cated uncertainties on the individual value., of H,

Table 1. Values of the scaling exponent and of the fractal dimension obtained by the various methods from

the three trajectories

Drifter Component H D=1/H Dy v
longitude 0.85 +0.02
NO106 latitude 0.73 +0.02
average 0.79 + 0.06 1.27 +0.09 1.20 + 0.03 1.35 + 0.05
longitude 0.85+0.02
NO307 latitude 0.84 +0.02
average 0.84 +0.02 1.19 +£0.02 1.14 £ 0.02 1.28 +0.08
longitude 0.75 £0.02
NO341 latitude 0.75 +0.02
average 0.75 £ 0.02 134+0.04 1.35 +0.05 1.33+0.04
ensemble longitude 0.81 +0.03
average latitude 0.77 £ 0.03
g average 0.79 + 0.03 1.26 +0.05 1.23 +0.06 1.32 +0.06

The uncertainties on the individual values are the least-square-fit statistical bounds, while the uncertainties on
the average values are the maximum between the error due to propagation of individual errors and the standard

deviation of the average.
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Fig. 2. Plot of Ax(1Ar) versus 4 in log-log coordinates
for the three drifter trajectories. Panel (a) is relative to
drifter NO106, panel (b) refers to drifter NO307 and
panel (c) to drifter NO341. The two vertical dashed
lines indicate the limits of the scaling range. The solid
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Fig. 3. Plot of Ay(AAr) versus 4 in log-log coordinates
for the three drifter trajectories. Same details as in Fig. 2.

line in each paiel is the least-syuare fit to the data. The
slope of this line gives the scaling exponent.
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anc H, are the statistical errors of the least square
fits to the slopes of Ax(4Ar) and Ay(4At). These
have been obtained as the least-squares 95%
confidence limits on the individual values of the
slope. It should be recognized that these are just
the statistical uncertainties on the power law
dependence of Ax(4 A7) and Ay(4At), they do not
account for bias in the calculations arising from
the fact that the ume series have finite length, for
propagation of experimental errors or, even more
importantly, for the statistical fluctuations in-
herent in the value of the scaling exponent from
one signal (and hence one realization) to another.
This latter point is discussed further in Section 5.
We remark here that when an average over
several individual values of the scaling exponent
{or of the dimension) is taken, the indicated
uncertainty is the maximum between the stan-
dard deviation of the average and the uncertainty
due to propagation of individual least-square
errors. The latter 1s in general observed to be
much smaller than the former.

Averaging the longitude and latitude scaling
exponents for each drifter and using eq. (3.2) gives
estimates of the fractal dimension of each of the
threetrajectories. ThesearealsoreportedinTable 1.
The average over all drifters then furnishes a value
D =1.26 + 0.05 for the average fractal dimension.
This result is evidently the first indication that fluid
parcel trajectories in a large scale ocean flow may
exhibit fractal and scaling behavior.

The average over H, and H, for each trajectory
aad the use of eq. (3.2) implies an isotropic
character for the buoy trajectories. This seems
justified since the difference between the average
longitudinal and latitudinal values of the scaling
exponent is quite small, indicating that any
deviations from isotrapic behavior are probably
very mild. We thus consider the drifter trajec-
tories, at least in a first approximation, to be
isotropic fractal curves. We note however that
the effects of rotation induce well-known differ-
ences between the meridional and the zonal
directions, which could in turn induce different
scaling properties in the two directions and
consequently result in anisotropic behavior (which
could for example be studied by methods such as
“functional box counting”, see, e.g., Lovejoy et al.
(1987), and Schertzerand Lovejoy (1987)). Adeeper
understandingof the isotropic or anisotropic nature
of drifter trajectories in large scale flows is thus an
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important 1ssue, but definite conclusions must be
deferred tofuture studies with larger data bases than
those considered here.

As a second step in the study of the fractal
properties of these data we now compute the
lengths of the three dnifter trajectories in the x-y
plane by a variation of the yardstick method
discussed earlier in Section 3. The strict version
of this method cannot be applied here since the
data are equally spaced in time but not in space.
This means that one cannot choose a fixed yard-
stick length. The simplest solution to this
problem is to compute the trajectory length L(4,,)
versus the average length A,, of the yardstick. A
separate analysis shows that the errors introduced
by a non-constant yardstick length are, in the
present case, on the order of the statistical
uncertainties of the least-square fit to the slope in
the scaling region. Thus the slope of L(A,,), for
small A,,, gives the fractal dimension of the curve
with inconsequential error.

Fig. 4 shows the results for the three drifter
trajectories. The path lengths clearly diverge for
small A,,. In this region all curves exhibit power-
law behavior with L(A,,) ~ Al °. The values of
D, are listed in Table 1. These results give as an
average fractal dimension D, =1.23 +0.06 for
the three trajectories. Of course with these data
(as with all experimental time series) the length
divergence does not continue up to infinitesimal
yardstick lengths. The length divergence follows
a well-defined power law down to scales of
roughtly 20 km, indicating fractal and scaling
behavior down to these spatial scales. An upper
limit to scaling may in turn be fixed at
approximately 100 km.

The last test which we use for determining the
value of the fractal dimension (and for estimating
the extent of the scaling range) is obtained from
the Grassberger and Procaccia correlation func-
tion. Fig. 5 shows the 3 correlation functions for
the drifter paths. The mean drifter velocity was
removed from the data before calculation of the
correlation function. Scaling is evident from
spatial scales of approximately 20 km up to scales
of roughly 150 km. The slopes of the three corre-
lation curves (in log-log coordinates) in the
scaling range and the individual least-square-fit
errors are given in Table 1. From these values the
average correlation dimension of the three dnfter
trajectories 1s calculated to be v=1.32 + 0.06.




426

160

(a)

140 -

120 A

length - degrees

60 -

40 —r—T—"T 1 7+ T t°r 1 I

0 10 20 30 40
Aay - degrees

A. R. OSBORNE ET AL.

10°

(b)

1
3
1
1
1

length - degrees

10'

10° 10’
Aey - degrees

10"

Fig 4 Length L(A,,) of the three trajectories versus the average yardstick length in linear coordiantes (panel (a))
and log-log coordinates (panel (b)). Circles are for buoy NO106, triangles for NO307 and crosses for NO341. Note

the divergence of the lengths for small 4,,.

We have therefore used three independent
methods for finding the value of the fractal
dimension and the extent of the scaling range.
Since the 3 methods rely upon different assump-
tions, and because they measure different
properties of the trajectories, the likelihood is
lessened that systematic factors associated with a
particular technique have affected the results of
the analysis. All 3 methods show that the drifter
trajectories display fractal properties and scaling
in a well-defined range of scales. Estimates of the
average fractal dimension are between 1.23 and
1.32. The differences among the resuits of the
various methods, as well as the differences among
the estimates obtained from different drifter tra-
jectories, are discussed in Section 3.

Previously it was noted that the fractal dimen-
sion of a self-affine monofractal signal is related
to the logarithmic slope of its power-law spec-

trum. This is due to the fact that the scaling
nature of a signal originates a power spectrum
with power-law behavior. Power spectral analy-
sis of the drifter positions is shown in Fig. 6 for
the longitude and in Fig. 7 for the latitude time
series. Even if not perfectly power-law as would
be found for **mathematical” fractals, the spectra
of the drifter positions clearly display an overall
power-law dependence. The spectra displayed
here have been passed through a Hanning filter.
The spectra have been fitted to power laws by the
least-squares method over the range 0.04-1.0
rad/day. We note that in analyses like those
considered here, considerable care must be exer-
cised in computing the slopes of the power
spectra. Procedures such as the Hanning filter
may n fact lead to biased estimates of the
spectral slope. For this reason the slope estimates
reported here were obtained from the unfiltered
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Fig 5. Correlation functions for the three drifter trajec-
tories. The slope of the correlation function in log-log
coordinates 1s a measure of the correlation dimension of
the signal. The two vertical dashed lines indicate the
approximate limits of the scaling range.

spectra. The resultant slopes are given in Table 2
where the uncertainties are the 95% confidence
limits of the least-square slope estimates. We also
provide estimates of spectral slopes derived from
the values of the scaling exponents and the fractal
dimension (through egs. (3.6) and (3.7)); these are
also given in Table 2. Note that these latter are
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all within the 95% confidence limits of the ob-
served slopes. This relation between the self-
affine character of the signals and the power-law
dependence of their spectra was in fact expected
on the basis of the discussion given in Section 3,
and may be considered as a further confirmation
of the scaling nature of these data.

Given that the scaling and fractal nature of
drifter trajectories in large-scale ocean flows
has been determined, an interesting question
is now whether they also display a monofractal
or a multifractal behavior. To this end we
have applied a box-counting algorithm to the
detrended drifter data in order to determine the
generalized dimensions D, for several values of g.
From an experimental point of view, the prob-
ability p,(¢) that the ith box with size ¢ be
occupied is now empirically computed from a
measured series of points by

&) =ne)/N, 43)

where n,(¢) 1s the number of data points falling in
the ith box and ¥ is the total number of points in
the time series.

For determining the possible multifractal be-
havior of the drifter data, we have computed the
function ., [ p(e)F for several values of g between
1.5 and 6.5 for each of the trajectories. Power-law
behavior for all three trajectories and for all the
selected values of g is evident in the functions
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Fig 6. Power spectra of longitude signals for the three drifter trajectones. Panel (a) refers to drifter NO106, panel
(b) to dnfter NO307 and panel (c) to drifter NO341. The solid line represents an w~** power spectrum.
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Table 2. Values of the spectral slopes measured from the drifter spectra through least-square fits and of the
spectral slopes derived from the self-affine character of the signal

Drifter Component 2 From H From D From v
longitude 2.75 +0.37 2.69 +0.03
NO106 latitude 211 +£0.42 2.46 + 0.05
average 2.43 +0.40 2.58 +0.12 267+004 2.48 +0.06
longitude 2.78 +0.37 2.69 +0.03
NO307 latitude 2.49 +0.37 2.68 +0.04
average 2.64 +0.37 2.69 +0.04 2.75 +£0.04 2.56 +0.10
longitude 2.56 +0.34 2.49 +0.03
NO341 latitude 2.23+£0.39 2.49 +£0.05
average 2.40 +0.37 2.49 +0.04 248 £0.05 2.51 +0.05
longitude 2.70 £ 0.36 2.63+£0.07
ensemble latitude 2.28+0.39 2,545 0.07
g average 2.49 +0.38 2.59 +0.07 2.63 +0.07 2.51 +0.07

The indicated uncertainties on the observed spectra are the least-square-fit statistical bounds while those on the
computed slopes are due to propagation of the errors of the scaling exponent and of the fractal dimension.

Y.[p(e)F at least for ¢ in the interval from
approximately 20 to more than 100 km (in agree-
ment with the results of the methods discussed
above) and the generalized dimensions are re-
ported in Table 3. Fig. 8 reports the generalized
dimension D, versus g — 1 for the drifter NO106
(panel a), for NO307 (panel b) and for NO341
(panel c).

We recall that for monofractals, the general-
ized dimensions D, are all equal. From Fig. 8 we
see however that there is a well-defined decrease

of the D, for increasing ¢, a common result in
the case of multifractal curves. Note that the
three different trajectories provide quite con-
sistent estimates of the generalized dimensions.
Note also however that the average D, varies
only from D,;x1.4 to D, 1.2, i.e, less than
20%. While obviously constrained to lie in the
range 1 < D,<2, one would have expected a
larger variation for “strong™ multifractal be-
havior. We thus conclude that the drifter trajec-
tories probably possess a genuine multifractal
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Fig. 7 Power spectra of latitude signals for the three drifter trajectories. Same details as Fig. 6.
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Table 3. Values of the generalized fractal dimen-
sions obtained by a box counting method from the
three trajectories

Generalized dimension D,

q-1 NO106 NO307 NO34i

0.50 1.38 £0.02 1.44 + 0.03 1.37 £ 0.03
0.75 1.36 + 0.02 1.42 +0.03 135+0.03
1.00 1.34 £0.02 1.40 + 0.03 1.33+0.03
1.25 1.32 +0.02 1.38 +0.04 1.32+£0.03
1.50 £.30 £ 0.02 1.36 + 0.04 1.30 £ 0.03
1.75 1.28 £ 0.02 1.34 + 0.04 1.28 £0.03
2.00 1.27 £ 0.02 1.32 +£0.05 127 £0.03
2.25 1.26 +0.02 1.31 £0.05 1.26 £ 0.03
2.50 1.24 £ 0.02 1.29 £ 0.05 1.25 £ 0.04
275 1.23 +0.02 1.28 + 0.06 1.23 +0.04
3.00 1.22 +£0.02 1.26 +0.06 1.22+£0.04
325 1.2t £0.02 1.25 +0.06 1.21 £ 0.04
3.50 1.20 £0.03 1.24 +0.06 1.20 £ 0.04
3.75 1.20 +0.03 1.23 +0.07 1.20 + 0.04
4.00 1.19 £ 0.03 1.22 +0.07 1.19 +£0.04
4.25 1.18 +0.03 1.21 +0.07 1.18 +0.04
4.50 1.18 +£0.03 1.20 +0.07 1.18 + 0.05
4.75 1.17 £ 0.03 1.19 +0.07 1.17 +0.05
5.00 1.16 +0.03 1.19 £ 0.07 1.16 + 0.05
5.25 1.16 £ 0.03 1.18 + 0.08 1.16 +0.05
5.50 1.15 £ 0.03 1.17 + 0.08 1.15+0.05

The uncertainties on the individual values are the
least-square-fit statistical bounds.

behavior, which is however quite “mild”. This
also implies that, while multiplicative random
processes are probably required for a deeper
understanding of the dynamics, a simple first-
order model based on additive processes (e.g.,
fractional Brownian motion) probably describes
some of the principal features of the drifter
motions.

5. Discussion of uncertainties in the analysis
of the data

Table | summarizes our analysis on the
monofractal properties of the three drifter trajec-
tories. These results indicate that near-surface
fluid particle paths from the Kuroshio extension
region exhibit fractal behavior with an average
fractal dimension of 1.27 + 0.06 for spatial scales
from approximately 20 to 150 km and time scales
from approximately 1.5 days to 1 week. This
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Fig. 8. Generalized dimensions D, versus ¢ — 1. Panel
(a) refers to dnifter NO106, panel (b) to dnfter NO307
and panel (c) to drifter NO341.

value of the fractal dimension has been obtained
by averaging the dimension estimates from three
independent methods and the indicated uncer-
tainty is the standard deviation of the average.
Statistical bounds on the value of the average
fractal dimension of the drifter paths may be
fixed by the use of a standard two-tailed student-t
distribution. Averaging the dimension estimates
from the three different methods and the three
trajectories one obtains D=1.27 +0.11 with a
95% confidence limit. It is important to stress
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that the 95°; confidence limits outlined above
indicate that the average fractal dimension is
significantly larger than one. This is important
since it provides strong evidence for the fractal
character of the drifter trajectories.

The individual values of the fractal dimension
and of the scaling exponent have been deter-
mined by fixing a scale range over which an
appropriate quantity (Ax(4Ar), Ay(AAr), L(4A,,),
C(g)) shows a power-law dependence on its
argument. The choice of the scaling range is, of
course, somewhat subjective. We ghserve how-
ever that if we decrease the range of scales over
which the least-square fit to the data has
been obtained, no significant changes in the
values of the scaling exponent are observed. If,
on the contrary, we perform a least-squar= fit in a
range larger than that selected in the analysis,
then significant changes in the values of the
scaling exponent and much larger errors on the
least-square fits are soon observed. Thus in
general the idea that guides the search for the
extension of the scaling range is to define the
maximum range inside which no significant
deviations from power law dependence are de-
tected. The smallness of the statistical errors on
the least-square fits to the slopes (which in the
present case never exceeds 47, of the value of the
scaling exponent) in particula provides a strong
indication that Ax(AAr) and Ay(4At) obey a
power law and thus that the scaling nature of
these signals is well defined.

Another important issue in the analysis is
whether the differences among the fractal dimen-
sion estimates provided by the various methods
and by the different trajectories are significant.
From Tabie 1, it is seen that of the three methods
used to compute the fractal dimension, the “yard-
stick length” (D, ) method gives results with the
largest scatter. The most internally consistent
technique for obtaining the fractal dimension for
this Jdata set has been found to be the correlation
dirnension (v) method. The use of individual
least-square errors is however inappropriate to
decide whether the deviations among the various
measured values of the fractai dimension may
have some significance, as these errors only indi-
cate the correctness of a power-law fit to each
individual signai and do noc. take into account
wApenmental erfors, woiaszz armsing froxa the
relatively iin 2d number of data po'nts and

Table 4. Values of the scaling exponent obtained
from fifteen different realizations of a self-affine
random signal with 733 points

Realization number Scaling exponent

1 0777 + 0.005
2 0816 + 0.003
3 0.682 + 0.010
4 0.779 + 0.002
5 0.851 + 0.004
6 0.797 + 0.005
7 0.756 + 0.003
8 0.704 + 0.006
9 0 764 + 0.004
10 0.796 + 0.003
11 0.787 + 0.006
12 0.789 + 0.004
13 0.787 + 0.002
14 0772+ 0.008
15 0.659 + 0.016

The uncertainties on each value of H are the least-
square fit statistical bounds. It 1s clear how the value of
H displays statistical fluctuations from one realization
to another which are not accounted for by the least-
square fit statistical bounds.

statistical fluctuations of the measured dimension
from one signal to another. Hence the errors of
the least-square fits to the slopes, while being
important indicators of the well-defined scaling
properties of the signals, are too small to be
considered as representative of the real statistical
fluctuations in the value of the scaling exponent
from one signal (i.e., one statistical realization)
to another. To emphasize this observation,
we report in Table 4 the values of the scaling
exponent computed from fifteen realizations of
a synthetic, self-affine random process (with
733 data points) obtained by inverting a power-
law power spectrum P(w)=x w™?" with random
Fourier phases uniformly distributed on (0, 2r).
As discussed above, for this particular class of
random processes there is a one-to-one correspon-
dence between the slope of the power spectrum
and the value of the scaling exponent. Each
realization of this process corresponds to the
same power spectrum but to a different set of
random phases. From Table 4, one sees that the
values of the scaling exponent obtained from the
various realizations are well outside the respect-
ive least-square confidence limuts, thus indicating
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that these must be considered at most as lower
limits to the real statistical fluctuations of the
system. A similar behavior is therefore to be
expected in general when the scaling exponent
{or the fractal dimension) is measured {rom
experimental data, even if 1rising from a strict
determunistic origin, as the measurement process
itself would generate fluctuations in the values of
these quantities.

To study the significance of the deviations
observed among the various measured values of
the fractal dimension one may thus more
appropriately use a standard two-tailed, student-
distribution for determining the confidence limits
of each group of measurements and for testing
their consistency. Averaging the dimension esti-
mates obtained by the three different methods for
each of the trajectories, or alternatively averaging
over the trajectories to keep distinct the outputs
of the various methods, we find that the various
estimates for the fractal dimension are inside the
respective 95°% confidence limits and differ from
each other by at most 10%,. It 1s thus encouraging
that for these data from a natural, uncontrolled
system the deviations among the fractal dimen-
sions provided by different approaches and by
different trajectories are quite small. This
suggests that the value of the fractal dimension
determined here may be a fundamental property
of the flow investigated.

The fact that the dimension estimates provided
by the different methods are statistically equiv-
alent is in agreement with the *‘mild” multifractal
behavior determined through a box-counting
method, the results of which are reported in
Table 3. Computing the generalized dimension
D, we have found that they differ from each other
by at most 209 in the range 1.5<¢<6.5. It
cannot be excluded however that the differences
among the various D.s could be explained by
statistical fluctuations introduced by the finite
length of the time series. However the fact that
there is a well-defined trend in the dependence of
the D,s from g, seems to indicate a genuine, even
if slight, multifractal nature for the drifter data.

Important technical questions concern the in-
dependence of the results of this analysis from
both (a) the number of points in the time series
and (b) the procedure of mean drift removal. If
the drifter trajectories are cut into two or three
parts and the various fractal analysis methods are
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applied to each part, then the dimension esti-
mates obuained in this way randomly differ by at
most 15°; from the original values. These fluctu-
ations are consistent with the statistical uncer-
tainties observed in our analysis, and are thus
neglected 1n a first approximation. The smallness
of the fluctuations in the value of the fractal
dimension 1s important because it indicates that
the fractal and scaling properties are nearly
uniform over the entire trajectories. Another in-
teresting question relates to whether one may be
abie to detect small but significant fluctuattons of
the fractal dimension in different oceanic
regions. Although challenging, the answer to this
question cannot come from the present analysis
as it requires a much larger data base than
available here.

Another important point concerts the removal
of the mean drift current. Since we are primarily
interested in scales between approximately 20
and 200 km, 1t seems natural to limit the effects
of large scale advection, and consequently to
consider some form of mean drift removal,
especially for the longitude signals. In a first
approximation these signals may be represented
as a fluctuating part (which is the one of interest
here) superimposed onto a monotonically increas-
ing part which mimics the average advective
effect of the mean flow.. Removal of the mean
flow is standard in the study of turbulence. We
used several procedues for mean drift removal in
our analysis (e.g., removing the mean velocity
from the signals, or removing the linear least-
square-fit trend, etc.) and in all cases we have
found consistent results for the fractal dimension
and the scaling exponents. The analysis of the
raw data by contrast (i.e., with no mean drift
removal) systematically furnished slightly lower
values for the fractal dimension, a fact which 1s
related to the systematically larger (of the order of
109%,) value of the longitudinal scaling exponent
H..

This behavior is entirely understood as
spuriously generated by the “stretching™ of the
signal due to the mean drift and is observed in
general when a fractal curve is subjected to some
form of stretching along one of the dimensions.
We have investigated this effect by generating a
two dimenstonal self-similar fractal curve with a
given and known dimension and then adding a
linearly increasing function of time to one of 1ts
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components. This resulted in a (spurious) in-
crease of the associated scaling exponent similar
to that found in our data analysis. Thus a pro-
cedure of mean drift removal seems appropriate
in our case. We notice also that the stretching of
the trajectories 1n the mean flow is not directly
related to the effects of rotation and to a possible
anisotropic nature of fluid particle paths in
mesoscale flows. The longitudinal elongation of
the trajectories is in fact entirely produced by the
advection due to the mean current. For drifter
trajectories obtained in currents with a north~
south orientation for example the stretching is in
the latitudinal direction, with no relationship
associated with the effects of rotation. It is
conceivable however that an anisotropy might
exist in the detrended data, since in general the
variance in the east-west direction is larger (by a
factor of two or three) than the variance in the
meridional direction. Since however an aniso-
tropy in the scaling behavior of the drifter data
herein considered is indicated by only one of the
three trajectories (NO106), we defer the import-
ant study of anisotropic scaling behavior to
future analyses with larger amounts of data.

6. Discussion of physical implications

The fractals encountered in this study are
natural fractals, as the scaling properties have
been detected only in a limited (but well-defined)
range of scales. An important point is now
whether the limits to the scaling range are gener-
ated by statistical fluctuations and/or experi-
mental considerations or if they reflect some
fundamental dynamical limit. Basic dynamical
processes active in the flow may in fact be
responsible for a finite scaling range. A particular
dynamical regime (active on a certain range of
scales) may generate fractal behavior in its
domain of validity, while other regimes (active at
different scales) may be non fractal. In this case
the fractal and scaling properties would be
dynamicaily confined to a finite range of scales.
The fact that certain experimental data have
fractal and scaling properties over a finite range
of scales may thus be an important dynamical
result. Quantitatively relating the fractal proper-
ties to the actual dynamical processes active in a
particular flow and carefully exploring the origin
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Fig. 9. Schematic power spectrum representing the
different dynamical domains present in the time scales
tested by the drifter trajectones.

of the finiteness of the scaling range are thus
major challenges for future theoretical and
experimental studies.

In the case of the data analyzed here the scale
estimates determined above give a ‘“‘turbulent
intensity” of 15 to 20cm/s and are in general
consistent with usually accepted bounds on
geostrophic or quasigeostrophic turbulence. Thus
a plausible inference is that the near-surface
mesoscale motions in the Kuroshio Extension
exhibit fractal behavior in a range of scales
usually attributed to geostrophic turbulence. Fig.
9 schematically shows a power spectrum typical
of large-scale flows. For scales larger than 10 days
and 100 to 200 km, the dynamics are essentially
governed by Rossby waves and zonal flows. Our
analysis gives no evidence of fractal and scaling
properties in this regime. At the opposite side of
the spectrum, i.e., for scales shorter than 2 days
and 20 km, where inertial and/or tiual-wave
dynamics dominate, a lack of fractal and scaling
properties is observed. Between these two
extreme wave regimes, the dynamics is governed
by GFD turbulence and the power spectrum is
thought to have a power law dependence (see,
e.g., Rhines (1979) and Salmon (1982)). It is in
this intermediate range of scales that we find
evidence of fractality and scaling. Outside the
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GFD turbulence scale range, i.e., in the Rossby
or inertial/tidal wave regimes, wave dynamical
processes may act to inhibit fractal behavior. In
this regard 1t is interesting to recall a suggestion
by Mandelbrot (1977, 1982) that 1n a Lagrangian
framework one difference between laminar and
turbulent flows may be in the contrast between
the regular and fractal aspects of fluid parcel
trajectories. Our findings apparently point in this
direction also. We caution however that the
limits to the scaling range determined here are
essentially indicative; the drifter data are not
inconsistent with the existence of a much larger
scaling region. In this case, the limits of the
scaling range would be of instrumental or stat-
istical origin. In particular the lower limit to
scaling could have been artificially generated by,
e.g., the finite sampling time or by the position-
ing errors of the drifter-satellite system. Further
work with other data sets is required to clarify
this important issue.

A further interesting observation is that the
fractal dimension of the trajectories is less than
two. This implies that the drifter motions are
definitely different from ordinary Browman
motion (for which D = 2) and that, if a stochastic
model is used to describe the drifter paths, it
must possess some form of persistency or
*“memorv” which is not found in Brownian
random walks. The fact that D <2 also implies
that the drifter motions do not explore and fill the
entire plane of the ocean surface, as would be
done by Brownian motion.

The principal results obtained here are sum-
marized as follows. Each of the 6 signals has been
analyzed by four different methods to determine
fractal behavior. Remarkable consistency has
been found in the results, which indicate a fractal
nature for the drifter trajectories in the range of
scales typical of GFD turbulence. It is encourag-
ing that data from a large-scale natural flow,
analyzed with four independent techniques, give
the same fractal properties. Because these obser-
vations come from an uncontrolled experiment in
a natural environment, this consistency could not
be assumed a priori. We also note that this is
evidently the first experimental indication that
fluid parcel trajectories in large-scale flows can
exhibit fractal behavior. The drifter trajectories
have also been shown to possess a “mild™ multi-
fractal character. While in general the introduc-
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tion of multifractility (associated with multipli-
cative random processes) is an important step
toward the understanding of the links between
fractal behavior and dynamical processes, for the
particular data set studied here, we observe that a
satisfactory first-order approximation is probably
represented by simple additive processes such as
fractional Brownian motions.

We hope that the results discussed here will
provide a stimulus to search for fundamental
reasons why fractal behavior might occur in flows
of this type. A number of important questions are
still to be answered. How fundamental dynamical
motions generate fractal behavior remains in fact
an open crucial question. The implications from
a growing body of literature (see, e.g., Mandel-
brot, 1974, 1975, 1977, 1982; Frisch et al,
1978; Frisch, 1985; Frisch and Parisi, 1985;
Lovejoy and Mandelbrot, 1985; Sreenivasan and
Meneveau, 1986. Meneveau and Sreenivasan,
1987; Schertzer and Lovejoy, 1987; Paladin and
Vulpiani, 1987) are that there are several deep
connections between the nonlinear dynamics gen-
erated by the partial differential equations of
motion and fractal properties. While these con-
nections are still to be understood it is to be
expected that further theoretical clarification is
forthcoming. For these reasons, it is important, in
our opinion, to continue and to expand on experi-
mental studies which can help shed light on the
various aspects of fractal properties and to
perhaps provide some insight about possible
directions in which theoretical investigations
might most fruitfully go. Several important physi-
cal questions are open 1n this context, such as for
example: (1) Is the observed value of the fractal
dimension common to all fluid parcel trajectories
in GFD turbulent flows? How much different is
the case of three dimensional turbulence? (2) Are
the power spectra obtained for these data typical
of Lagrangian GFD turbulence and may they be
directly derived through some cascading argu-
ment? (3) Are the multifractal properties import-
ant and can they be stronger than those
determined here? (4) Are the drifter motions
(around the mean flow) isotropic or anisotropic?
(5) Can one identify the scaling properties of the
underlying (Lagrangian) equations of motion? Is
it possible to derive the value of the fractal
dimension from the equations of motion? (6) Can
the drifter trajectories be modeled by (non-
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gaussian) stochastic approaches or is there the
need for a truly nonlinear deterministic model?
(7) What is the relationship between the fractal
behavior and the statistical properties of the
system? Although these, and many other, funda-
mental issues are still to be addressed, we believe
that the study of the fractal and scaling behavior
of large-scale flows in a Lagrangian framework
may provide added insight into the fundamental
properties of large-scale motions.
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Observed and Simulated Kinematic Properties of Loop Current Rings

A. D. KIRwaN, Jr,!'? J. K. LEw1s,? A, W. INDesT,* P. REINERSMAN,! AND I. QUINTERO!

Two nings, shed by the Loop Current in 1980 and 1982, were observed for several months by
satellite-tracked drifters to mugtate across the Guif of Mexico. The dnfter path data have been inv.rted
1o obtain estimates of the paths of the centers of the two rings, ning shape, and the swirl vciocities. Three
dniters were deployed in the 1980 ring, and the analysis of that data set establishes the vanability of the
above kinematic estimates for one nng. A companson of the analysis of data from both nngs provides
some 1dea on inter-nng vanability. Roth rings impacted the Mexican continental slope at about 22.8°N,
95.5°W. Alter a brief adjustment period, both rings reestablished and maintained a vortex character for
several months in the slope region while migrating slowly to the north. The paths of the centers of the
wwo rings along the slope are virtually 1dentical. The same analysis routine was applied to some simulat-
ed drifter data obtained from the Hurlburt and Thompson (1980) Guif of Mexico pnmitive equation
model. In the midgulf, the agreement between the observed nngs and the simulated nng 1s good,
although the former showed stronger interaction with the continental slope topography and/or circu-
lation than was seen in the latter. Along the slope, the model ring kinematic charactenstics were 1n

extraordinary agreement with the observations.

1. INTRODUCTION

The circulation of the Gull of Mexico has been the subicct
of a surprising amount of theoretical and observational stud-
ies. From the turn of the century [Sweitzer, 1898] until 1973
[Austin, 1955; Nowlin and McClellan, 1967; Nowlin, 1972], the
emphasis was on analyses of hydrographic data. These studies
established the presence of poorly defined, but quasi-
permanent, anticyclonic signatures in the central part of the
gulf.

Since 1973, the emphasis has shifted {from qualitative de-
scriptions of the hydrography to attempts at quantifying dy-
namical mechanisms associated with the anticyclonic struc-
tures. Sturges and Blaha [1976] and Blaha and Sturges [1978]
proposed that the western gulf circulation was the result of the
balance of wind stress curl and planetary vorticity, i.e., a mini~
western boundary current effect in the Gulf of Mexico. Elliot
[1979, 1982] disputed this, noting that this balance was not
generally achieved if synoptic wind data on a fine scale were
used. His work also gave more credence to the earlier idea of
Ichiye [1962] that the anticyclonic features were in fact rings
that had been shed by the Loop Current in the eastern gulf.
Kirwan et al. [1984a] substantiated this hypothesis by track-
ing the migration of a ring shed by the Loop Current across
the guif to the continental shelf >ff of Mexico.

In a companion paper, Kirnsan et al. [1984b] assessed the
translation velocities, local vorticity, deformation rates, and
shape of the ring as it propagated across the gulf The analyses
of the three drifters that were in the ring simultaneously
showed generally good agreement of these properties. The re-
sults also are in general qualitative agreement with the nu-
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merical simulations from the general circulation model (GCM)
of Hurlburt and Thompson [1980]. hereinafter referred to as
HT.

Is the qualitative agreement between GCM calculations and
one particular ring fortuitous or the result of deterministic
dynamics? We examine this question with observations from
two different rings along with simulated data from the HT
model. Specifically, we compare in detail kinematic properties
such as the movement of ring centers, ring translation and
swirl velocities, and ring shapes from 1980-1981, 1982-1983,
and simulations from the HT GCM.

The analysis toutine used to determine these kinematic
properties is an improved version of that reported by Kirwan
et al. [1984b]. The routine inverts Lagrangian path data to
obtain the desired kinematic properties. Unlike the carlier
study, the present routine eraphasizes ring shape and trans-
lation. Also, considerably better time resolution on parameter
estimates can be made with the new routine. Some details are
given below and in the appendix. The internal consistency of
the anaiysis routine is being assessed separately with simulat-
ed data from the HT GCM.

The following observed data were utilized in this study.
These come from two rings which occurred in 1980-1981 and
1982-1983. We have reported previously on the former [see
Kirwan et al., 1984a, b] using the more primitive analysis
routine. That ring had three drifters in 1t simultaneously, and
so our re-analysis provides some indication of intraring varia-
bility along with some indication of the consistency of the
analysis routine. Only a descriptive analysis of the latter ring,
which had only one drifter, has been reported before [Lewis
and Kirwan, 1985]. Comparison of these two rings provides
some measure of inter-ring variability.

These observed data are compared with simulated La-
gran;ian data from the HT GCM. This model was a two-layer
(lower layer active) nonlinear primitive equation model of the
Gulf of Mexico with realistic bottom topography. The gnd
spacing for the calculations used here was 10 km. The simulat-
ed path was obtained by advecting a parcel at each model
time step (4 hours) to a new position given by the product of
the velocity vector at the current position of the parcel and the
time step. Since the position of the parcel was rarely at a grid
pont, it was usually necessary to interpolate the velocity
vector from surrounding grid points. These calculations were
kindly performed by A. Wallcraft.

1189




1190 KIRWAN ET AL.. KINEMATIC PROPERTIES OF LOOP CURRENT RINGS

Both the observations and the simulations track appropri-
ate rings for many months. During this time, the real and
simulated rings move from the midgulf region with fairly flat
topography in excess of 3000 m to the continental slope off of
Mexico. This area of interest is depicted in Figure 1. In the
midgulf region, ring translations are governed essentially by
Rossby wave dynamics, and so one expects them to move
west-southwest. But along the slope, interactions of the ring
with bottom topography become important. Since the dynam-
ics in these two geographic regions are so different, we have
performed separate analyses for the rings in the two regions.

98° 95° 90° 85° 30°

Fig. 1 Depiction of the area in which the observed and simulated
Loop Current nings are studied.

2. ANALYSIS PROCEDURE

The obszarvations used in this study are the positions of the
Polar Research Laboratory drifters with Argos identifications
1598, 1599, 1600, and 3374. Kirwan et al. [1984a, b] reported
on the analysis of 1598, 1599, and 1600, which were deployed
simultancously in November 1980. Position data from these
three dnifters are analyzed to establish the variability within a
ring. Intraring variability is assessed by comparing the analy-
sis performed on the three drifters in the 1980-1981 ring with
that of drifter 3374, which was deployed in the 1982-1983
ning. Each drifter was the standard Polar Research Labora-
-cry buoy drogued by a 200-m thermistor line. No thermistor
d..a are available from any of these units.

The analysis procedure utilizes a parametric kinematic
model discussed by Kirwan et al. [1984b] for inferring the
translation and swirl velocities as well as the vorticity, hori-
zontal divergence, and deformation rates. This model was first
proposed by Okubo [1970] to desciibe small-scale motion
about flow singularities. Kirwan [1984] showed that same
model can be applied to larger scales if the model pararneters
are constant along a parcel path.

The model assumes that the swirl velocity is given as a
linear function of the distance from a local flow center. Here
the local parcel flow center will be referred to as the “ring
center” or some times “orbit-determined center”. This termin-
ology is dictated only by the nature of the available data.

Flierl {1981] has pointed out that this center may not coincide
with an “Eulerian” center. (We interpret this as a center of
mass.) Smith and Reid [1982] have developed a general for-
malism for studying the centers of the distribution on any
property, for example, mass, potential energy, kinetic energy
or enstrophy. In general, these centers do not coincide, nor do
their propagation velocities. Establishing the relations be-
tween these various centers for Gulf of Mexico rings requires
much more data than is now available.

For the present model the total velocity (u, v) of a drifter is
composed of the translauon velocity (U,, ¥;) of the ring
center and the swirl velocity (ug, vg):

u="Us+ug
n
v=Vp+ v
ug=(d + a)x;2 + (b — c)y/2

{2)
vg=(b+ c)x'2 + (d — a)y/2

Here x and y are the instantaneous coordinates, relative to the
ring center of a particular parcel (drifter). If (2) 1s reparded as a
Taylor expansion for the velocity field, then the parameters a
and b can be interpreted as deformation rates and ¢ ana d as
the vertical vorticity and horizontal divergence. it is streseed
that these parametsrs are evaluated along individual paths.
Eulerian estimates of deformation rates, vorticity, and diver-
gence likely would differ from these estimates. Consequently, it
is better to interpret a, &, and ¢ as shape functions which
determine the orientation and ellipticity of a narticular orbit
1n a ring. See Kirwan et al [1984b] for details.

The general solution to (1) and ¢2) ie easily obtained
LOkubo, 1970]. The procedure here is to apply this solution to
every time interval between fixes (in practice, interpolated
positions). Thus for the interval ¢, S ¢ S1,.,, one obtamns

Uy = Upy +{d, + a)x /2 + (b, — cJy,/2 3)
v = Wy + (b + c)xy/2 + (d, — a)y,/2 )
where
xy={exp [r (e~ )N X /a2 +b 2 —c 2 +a)+ Vb — )l
—exp [ralt— )X\ (@~ /2,2 +5, = ¢, )+ Vb, — )]}
-2/a b=,k (5)
W = {exp Il —)IIXuby + )+ Ko T +6,2—¢,F -a,)]
+exp [ralt — 110~ Xy, + )+ Yi/a, 2 + 6,5 —c, )]}
~2J/a2 +b2 -t  (6)

In (5) and (6), (X,, Y,) are the coordinates of the parcel 1n
question at time ¢ = f, relative to the ring center. Also,

r = (dy + /a2 + b2 - ¢,*)2 N
ra=(dg - vg:z+bk2_5kz)/2 8i

are the eigenvalues of the matnx

_ (dy+a) (by—cy
M, = [(b. +¢) (d— a.)]

Note that these eigenvalues are complex conjugates when
¢t > a,* + b2 This, naturally, produces real pertodic solu-
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tions which are a characteristic of swirl velocities of drifters
trapped in a ring.

To apply this model to drilter data, differentiate (3) and (4)
three times ~th respect to time. One side of these equations
contains the unknown variable set Z, = (a,. b,, ¢, d;, X,, Y}).
The other side of these equations can be estimated from path
data. These six equations do not contain the translaticn veloc-
1ty, since 1t 1s assumed a priori to be constant for a time
interval. (But, of course, its value may change from one time
interval to the next.) These six equations are inverted analyti-
cally for the six elements of Z,. The translation velocities can
be recovered from (3) and (4), since all other quantities are
now known. Alternatively, the translation velocities can be
obtained by differentiating the path of the ring center. Both
procedures provide comparable estimates. Here we use the
latter procedure. With all elements of Z, now determined, one
then moves to the next time interval and repeats the calcula-
tions, thus obtaining a time series of Z,. Details are given in
the appendix.

We have expended a great deal of effort in learning how to
make reliable time derivative estimates of the path data. For
the data analyzed here, the raw position files have been edited,
interpolated to equally spaced time intervals, and low-pass
filtered (half power point of 100 hours). All derivative esti-
mates were obtained by fourth-order accurate, centered differ-
ence schemes. Each derivative file was edited 2nd low-pass
filtered. The calculations, as described in the appendix for Z,,
were performed with the latter derivative files. The calculated
Z,, in turn, were edited and low-pass filtered.

The analysis procedure just outlined is an improvement
over that used by Kirwan et al. {1984b]. Their meinod re-
quired an a priori assignment of a solution form to (4) and (5);
1., (7) and (8) were assumed to be complex conjugates, and
values of Z, were assumed to be constant over one ring revo-
lution (approximately 15 days). The procedure used here does
not require an a priori assignment of the solution form; it lets
the data determine this. Thus it should have wider utility. In
addition, the Z, are now required to be constant over seven
time intervals (42 hours in the present case) rather than 2
weeks.

As was indicated above, g, b, and ¢ are not especially useful
for comparison with Eulerian data. For rings a more appro-
pnate descniption would be the ellipticel structure of the orbit
traversed by a particular drifter. As was shown by Kirwan et
al. [1984b], the characteristic equation is

(6 + bJx,? + (¢ — by,® — 24,3,
=L, exp [—d\(t - t))] 9

Here L, is the angular momentum per unit mass relative to
the ring center. This can be calculated directly (see equation
(A18)). In (9) the argument in the exponential term can be
made zero by making the evaluation at the beginning of the
time interval ¢ = t,. Note that a requirement for (9) to describe
an eliipse 1s that ¢,2 > a,? + b, 2.

From analytic geometry 1t is known that for anticyclonic
motion, ¢, < 0, the major axis of the ellipse makes an angle
with east of

o, =4tan"! (~ayb,) (10)
In evaluating (10), care must be exercised in the quadrant
assignment. Also, the semilength of the major axis is
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Ry = Lyjlcy—hy) (i

where
ni=a?+b?

The paradigm just outlined for analysis of Lagrangan data
puts critical emphasis on time denivatives of path data. Incon-
sequential errors in the path data can become consequential in
the denivative estimates Moreover, the nonlinear algebraic
combinations of these derivatives in the paradigm may mag-
nify further the impact of these errors on the inversion. The
concern is that two paths which contain the same kinematic
information but differ by small random and/or round off
errors, will produce vastly different kinematic estimates when
run through the paradigm. The internal consistency of esti-
mates of ring kinematics is presently being examined with
simulated data from the HT GCM.

3. MIDGULF

3.1. Observations

Here the results of the intraring and inter-ring comparisons
are presented for the mudgulf region. This tncludes nng kin-
ematics as inferred from the three dnfters in the 1980-1981
ring and the single drifter in the 1982-1983 nng. While in the
midgulf region, bath nags began to interact with the conti-
nental slope topography and/or circulation. This period is iso-
lated in the analysis. The same analysis routine is then applied
to simulated midgulf nng data from the HT GCM.

The 1980-1981 ring. The data for this portion of the study
come from three drifters (1598, 1599, and 1600) which were
seeded 1n the 1980-1981 ring. Kirwan et al. [1984a, b] have
already reported on this. The data have been reanalyzed using
the general algorithm discussed in the preceding section and
in the appendix.

Figure 2 shows the paths of these three dnfters in the
midgulf region along with the positions of the centers and the
orbit cllipses. Arrows on the drifter and center paths mark
10-day intervals, while the cllipses are presented at 15-day
intervals. The paths for each dnfter are for 2 common time
interval (day 340, 1980, to day 118, 1981). This figure es-
tablishes three points. First, all three make the same swath
through this portion of the guif, suggesting that they generally
followed the nng. The overall path characteristics of dnfters
1598 and 1600 (Figures 2a and 2c¢) are remarkably similar,
suggesting that they were 1n very similar orbits. Second, the
paths for the center of the ring, as determined independently
from the three drifters, is in good agreement as far as about
94°W (the first 2 months of the record). Discounting the very
beginning where there are numenical problems, the typical dif-
ference in the location of the center at any one time is 30 km,
about 20% of the diameter of the ring as determined from
satellite imagery [Kirwan et al., 1984b]. This 1s about 10 km
larger than the rms displacement between the maximum sur-
face and interface displacement anomalies of the HT GCM.
The 30-km variability is considerably larger than that report-
ed by Hooker and Olson [1984] using a vanant of the tech-
nique employed here under ideal conditions. In view of our
resuits along the continental slope, described below, it 1s not
clear whether the large variability is due to data, technique, or
rapid evolution of the nng.

Finally, th~ ecllipses also show generally good agreement
east of 94°W. Note the tendency to develop a northwest elon-
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gation as the ring approaches 94°W. West of 94°W, all three
orbits suggest that the ring begins to interact with the conti-
nental slope circulation and/or topography. This is discussed

later.
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Figure 3 shows the time series for the swirl and translation
velocities. All three records indicate swarl velocities in excess of
50 cnyys throughout most of the record. The domnant period
is about 14 days with a variation of about 2 days between the
records. This is recognized as the ring’s rotation period. How-
ever, from about day 30 to 60, 1981, all three drifters show a
smaller-period component (about 5 days) in the time series
and a decrease in swirl amplitude. As will be discussed below,
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1t 1s speculated that during this period the dnfters were re-
sponding to effects produced by the continental slope and/or
crrculation further to the west. All the translation velocities
show a consistent westward component of about 4 cm/s up
until about day 30, 1981. For the reason just given, it is not
clear that the analysts applies to this ning for the period from
day 30. 1981, to day 60, 1981. After day 60, 1981, the ring
centers appear to be stationary.

The 1982-1983 ring and comparison with the 1980-1981
ring. The same characteristics are seen 1n the analysis for the
1982-1983 ring. Figure 4 shows the dnfter path, inferred
center path, and the orbit ethipses for dnifter 3374. As in Figure
2, there 15 significant distortion of the orbits west of 94°W.
Unlike the earlier ring, no significant northwest ellipticity 1s
developed as the ring approaches 94°W Comparison with
Figure 2 indicates that the 1982-1983 nng center followed
nearly the same path as that of the 1980-1981 ring.
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Figure 5 shows the translation and swirl velocities for the
1982-1983 ring. The swirls are shghtly less than 50 cmy/s,
which could reflect 2 smaller orbit of the dnfter. The dominant
period s sull about 14 days. Note that around day 1, 1983 the
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swirl velocities decrease significantly and show some evidence
of higher-frequency components. This 1s the period when the
drifter moves west of 94°W and exccutes the deformed,
northwest-oriented loop. As with the earlier ring, this 1s inter-
preted as evidence for topographic and/or slope circulation
interactions.

Figure 2 indicates that west of 94°W, the three drifters in
the 1980-1981 ring show significant divergence in the calcula-
tion of the inferred center. Furthermore, dnifters from both
rings showed anomalous path charactenstics in this region. In
particular, 1598 and 1600 appeared to become entrained in
smaller, anticyclomc eddies, while 1599 and 3374 exhibited
warped and elongated ellipses. This has been attributed to
interaction between the ring and the continental slope and/or
slope circulation further to the west.

Figure 6 focuses on this time interval. Figure 6a shows the
paths of all four drifters during the period in question. It is
clear from this that all four drifters were under the influence of
different dynamical processes here than those they experienced
to the east.
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Figure 6b compares the movement of the inferred centers
In interpreting this figure, it should be emphasized that the
center calculation is grcatly complicated by the changes 1n
curvature of the paths. The paradigm interprets this as a
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change from an anticyclonic to cyclonic structure with a
consequent change in the location of the center. No doubt the
real dynamics during this period are much more complicated
than the rather simple scenario available from the kinematic
model. The geographic vanation in the paths clearly is much
larger than that seen east of 94°W or, as will be seen shortly,
than that found along the slope. This suggests that each of
these drifters was either briefly pulled out of the parent ring or
its orbits deformed through interaction with the continental
slope topography or circulation. This hypothesis accounts for
the deformed orbits and the brief occurrence of high fre-
quencies in the swirl velocities.

3.2. Simulatons

Attention is now turned to the simulated data. There are
two issues involved in the utilization and interpretation of this
data. First, how consistent is the paradigm in recovering ring
kinematics which should be independent of the orbit? This
issue is presently being addressed. Addressed here is the issue
of establishing how well the GCM agrees with the observa-
tions. Specifically, the center path, orbit ellipses, and trans-
lation velocity as inferred from the simulated data are com-
pared with the same properties as determined from the obser-
vations.
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Fig. 7 Path and orbit ellipses (blue) of a simuiated dnfter from
the HT GCM. Arrows on the path are at 10-day intervals, while
cllipses are shown at 15-day intervals Figure 7a shows the ellipses
using the orbit-inferred center as the flow center, and Figure 7b uses
the maximum interface displacement anomaly. Both centers are
shown in red.

Figure 7 shows the path of one of several simulated drifters
from the HT GCM along with the orbit ellipses. Figure 7a
depicts the results using the ring center as inferred from the
dnifter orbit, while Figure 7b repeats the ellipse calculation
using the position of the maximum displacement anomaly of
the interface. The choice of the interface displacement as rep-
resentative of the ring center 1s arbitrary. Presently, we are
comparing the maximum interface displacement, the maxi-
mum surface elevation displacement and orbit-determined
centers. In general, all are within 30 km of each other.

The most significant difference between the orbit-
determined centers and interface displacement anomaly occurs
in the interval between 91°W and 93°W where the orbit-
inferred ring center shows a significant southern loop. This is
not seen in the path of the maximum interface displacement
anomaly. At 93°W the orbit-inferred center executes an anti-
cyclonic loop that, again, is not seen in the displacement
anomaly path. Elsewhere, the orbit-determined path is consis-
tently 5 to 25 km south of the displacement anomaly path.

A comparison of Figures 2, 4, and 7 shows that the simulat-
ed and observed centers follow the same general path through
this part of the midgulf. In general, the simulated center path
15 10 to 35 km south of the observed path, depending upon
which of the two simulated center paths is used. There is
virtually no evidence of the interaction with the continental
slope topography and circulation in the model results as was
seen in the observations. None of the simulated orbits were
deformed or appeared to be pulled out temporarily from the
ring. Somewhat surprisingly, we have found less consistency 1n
the ellipse calculations for the simulations than in the observa-
tions. A number of the ellipses from the simulated data are
quite deformed. They also show (requent reversals of the
major and minor axes. Overall, however, as the ring nears the
slope region, a northeast orientation appears to develop in the
orbit ellipses.

Figure 8 shows the translation and swirl veloaities for the
simulation. Figure 8a gives the results using the orbit center,
and Figure 8b uses the maximum displacement anomaly as
the ring center. The dominant period in the swirl velocities is
about 24 days, or 10 days more than was found in the obser-
vations. Note that the swirl velocities, as calculated from
cither center, are of comparable magnitude, about 30 cm/s.
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been superimposed. Except for the beginning and end of the
paths, the maximum deviation is 70 km with a rms deviation
of 12 km. Moreover, all paths show the same general charac-
teristics. Both the observations and simulation show a north-
ward migration along the isobaths but with some eastward or
looping component.
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Fig. 10. (cont.) Dnfter paths, inferred centers and orbit ellipses for
(c) the simulated ring, and (d) center paths along the continental slope.
Arrows on the paths depict 10-day intervals, while the ellipses are
shown at 15-day intervals

The northward migration along the slope is puzzling, as
conventional theory [Smith and O’'Brien, 1983] would have
topographic beta drive the rings to the south. Recently, Smith
[1986] has suggested that the northward migration may be
due to boundary effects. An alternate explanation was offered
by Nakamoto {1986], who found northward propagating soli-
ton solutions i a two-layer, nonlinear, quasi-geostrophic
model.

The swirl and translation velocity time series are shown in
Figure 11. In the 1980-1981 ring the dominant period 1s 15
days, almost exactly that found in the midgulf. For the 1982-
1983 ring the dominant period 1s about 11 days, slightly less
than that found 1in the midguif. The simulated ring also shows

a decrease in the dominant period to about 15 days. The
magnitudes of the observed ring's swirl velocities are about 40
to SO cmys, which is close to that found in the midgulf. The
swirl velocity for the simulated ring is about 80 cm/s, subs a-
tially more than what was obtained for the midgulf. All trans-
lation velocities indicate a fairly steady northward movement
of about 4 cmys.
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5. CONCLUSIONS

The paths, translation and swirl velocities, and orbit ellipses
have been calculated from Lagrangian observations for two
large anticyclonic, Gulf of Mexico rings and one simulated
ring. Within the capabilities of the data base and the analysis
routine, the following are now established.

1. The paths of the three rings across the central Gulf of
Mexico to the continental slope off of Mexico are virtually
identical. However, not all Loop Current rings will follow this
path. See Lewis and Kirwan [1987).

2. The intraring variability of translation and swirl veloci-
ties and the inferred center paths for the 1980-1981 ring are
essentially the same as the inter-ring variability between the
1980-1981 and 1982-1983 rings.

3. For the observed rings, there was evidence of strong
ellipticity developing as these rings approached the conti-
nental slope. The axis of orientation was approximately
NE-SW. No independent data on ellipticity were available for
the 1982-1983 ring, so it cannot be ruled out that this ring
was so orientated. Similar but less pronounced ellipticity was
seen in the simulated ring.

4. Both observed rings showed significant distortion of the
drifter orbits west of 94°W. Thus is attributed to interaction of
these rings with the continental slope topography and/or slope
circulation features. Such interaction was not observed in the
simulated ring.

5. After encountering the continental slope off of Mexico,
both observed and simulated rings retained their integrity for
at least several months while they migrated to the north. The
track of the center of both was very close to the 1200-m
1sobath. The observed swirl speeds were slightly changed from
the values obtained from the midgulf. The simulated ring ex-
hibited a substantial increase in swirl velocity. For both the
observed and simulated data, the translation speeds were com-
parable to those obtained for the midgulf.

There are a couple of broader implications of this study
pertinent to eddy-resolving GCM’s. Both the volume of data
as well as the time and space scale resolution of simulated
data available from these models far surpasses the typical ob-
servational data bases used for verification. Because of the
different time and space scales of resolution in the simulated
and observed data bases, it is not clear how to establish reli-
able critenia for statistical comparisons. This study suggests
that a potent alternauve is to compare model and observed
Lagrangian kinematics. Both simulated and observed La-
grangian data sets provide comparable space-time resolution
on the evolution of specific circulation features. Moreover, the
assessment of the prediction of such features is a more strin-
gent test of a model's predictive capability than are general
statistics. The Lagrangian data also provide a means of fine-
tuning model parameters such as layer depth, density differ-
ences, etc., so that observed and simulated swirl velocities can
be matched. As to the HT model, this study has documented
the interesting situation that the prediction improves in time,
at least as lar as the movement of the ring 18 concerned.

The second and related issue is the use of Lagrangian obser-
vations for updating prognostic models. In character, such
data are similar to sea surface topographic data derived from
satellites [see Hurlburt, 1986; Thompson, 1986; Kindle, 1986].
The Lagrangian data contain information on the motion of
representative parcels but no information on what 1s happen-
ing nearby. Satellite topographic data return information just

1197

along the satellite path but give no information on the actual
motion. Supplementing the latter data with the former data in
eddy-resolving general circulation models could sigmficantly
upgrade their predictive capabilities.

APPENDIX

The purpose here is to provide some details on the inver-
ston of (3) and (4) to obtain the ume series for the elements of
Z,. The basis for this inversion 1s a Taylor expansion in time
about the instant ¢, of the velocity vector. From the left-hand
stde of (3) and (4) one obtains

u(t) = tlt,) + WXt — t) + w' (Xt — £,)%/2

F Ut - 1)6 (Al
o) = ofty) — VNt — ) + V(e e — th)?/2
+ 07 )t - 1,)%/6 (A2)

for the interval ¢, St St,,,. The primes represent time de-
nvatives. Now each of the terms on tht right-hand side of (A1)
and (A2) can be estimated from the vélocity record. For exam-
ple u{t,) and u(z,) are merely the velocities at time t,. The
derivatives can be estimated by a variety of techniques; here
we have employed centered finite differences.

Now the analytic solution, (5) and (6), can be expanded in a
Taylor series as well. When this is done and coeflicients of the
appropriate powers in this expansion and (Al) and (A2) are
equated, a system of simultaneous nonlinear equations is ob-
tained for each time interval. With the subscript k suppressed,
these are

Xa+dy+ Yb—c)+2Ur=2u (A3)
Xb+o)+Yd—a)+2Vp=20 (Ad)
X[(d + a)* + b* = c¥] + 2Yd(b — ¢) = 4’ (AS)
2Xd(b + ¢) + Y[(d = a)* + b* = c*] =4 (A6)
X0(d + a)® + (b2 — c¢2X3d + a)]
+Yb—-c3d*+at + b —c)=8u" (A7)
X(b + cX3d* +a* + b = ¢?)
+ Y[(d - a)® + (b> — c*N3d — a)] = 8" (A8)
X[a® + b* — ¢ + d¥)? + 4d¥a* + b* = ¢
+ dad(a® + b* — c* + d%)]
+ 4Yd(b — cXa? + b* = ¢ + dY)]) = 16u” (A9)

4Xd(h + cha? + b* — ¢* + d?) + Y[(@* + b* — ¢* + &%)}
+4d%(a® + b* ~c?)—4dad(a® + b? ~ct+d)]=16v" (A10)

These eight equations are nverted at each time step for X, Y,
Ur, Vp a, b, ¢, and d. To our surprise it seems that this can be
done analytically. The key to this is the observation that the
geometric invarsants of the matrix M,, i.c.. Tr (M) and det (M),
can be calculated from observations without knowing a, b, or
¢, a prion. After 3 years of inspection it was seen that

det (M) = z(unum - uruvn)/(uavu - vfuu) = MZ

vu)=d

(Al1)
Tr (M) = (W'v"” - v'u")(4'v" — (A12)

Insertion of M? and d, calculated from (All) and (A12),
respectively, into (A5A10) significantly simplifies the latter
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expressions. Considerable routine algebra then yields

X = 8[u(M? + 2% ~ " YM* (A13)
Y = 8[v(M? + 2d%) - 20" YM* (A14)
a=—{K,M?+ K, + Kyd/2)}/N (A15)
b={H M+ H, + Hyd/2}/N {A16)
¢ = —{G ,M? -G, + G,(d/2}/N (AL7)

where
N = 8(u'v" — u"v);

G, = Au'? + v'Y);
G, = 8(u't + v'¥);
Gy = 16u'u" + v'v");
H, =2w?-v?),;
H, = 8(u"? = v"?);
Hy = 16(u'u” — v"v’);
K,=2v;

K, = 8u"v";

Ky = 8(u'v” + u™').

Incidentally, the parameter N is directly related to the angu-
lar momentum per unit mass of the orbit L:

L= —4N/M* (A18)

The final step in the calculations is to determine the trans-
lation velocities from (A3) and (A4). This is trivial, since all
other terms are now known.
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Abstract

A nonhinear model of a warm-core nng is presented here. The model treats the warmrcore ang as a con-
fined lens ol hud rotating vn an f° plane. A simple polynomal expansion of the hydrodynamic field vana-
bles about the center of mass of'the lens provides the bas:s for an exact reducton of the hydrodynamic equations
Observauons from two warmrcore rings are compared with simulations from the nonlinear model Fair
agrezment 1s found between model caiculations and observauons from the Guif Stream ana the Kuroshio

[. INTRODUCTION

There has been vigorous development in both theory and observation of
warm-core rings in recent vears. An indication ol this activity is the warm-core rings
workshop held at the University of Rhode [sland. USA in August of 1984. The papers
resuiting from the workshop included models and observations of rings north of the
Gult Stream (see J. Geophys. Res.. Vol. 90, No. 5. 1985).

Warm-core rings are clockwise rotating. high-pressure centers bounded underneath
by a strong thermocline that rises around the warm-water pool and reaches the sur
face. forming a front around the ring’s periphery. Typical characteristics of a young
warm eddy are an ellipsoidal shape . a horizontal scale of about 200 to 300 km . a
center depth of more than 500 m. and surface velocities sometimes in excess of | m.'s
(Kirwan et al.. 1988). The popular explanation for the formation of the warm eddy
of western boundary currents is separation of the meanders of the currents ( Saunders.
1971. Gotthart and Porocshy, 1974). The life of the warm eddies is measured in
months. Their usual fate is to reattach to the main currents.

Fig. 1 from Joyce, 1984, shows a warm ring observed north of the Gulf Stream.
From the star- shaped observations of the surface currents the diameter of the ring is
about 300 km. The 10 C  water reaches the depth of more than 700 m near the ring
center. At the depth of 500 m water warmer than 10 T covers an elliptical area with
horizontal scale of 200 km. The high velocity zone is located at the distance of about
100 km from the ring center with maximum current speed of 2 m/s. Fig. 2 from
Kawai, 1972, shows a warm ring north of the Kuroshio . The anticyclonic surface cur-
rents cover an elliptical area with horizontal dimension of about 300 km . The water
warmer than 16 C drops at the depth of 200 m and occupies an area with horizontal
scale of 150 km. The surface current velocity measured by a geoelectromagnetic
kinetograph also reached about 2 m/s.

Because of the farge swirl velocities and resultant large Rossby numbers it is
uncertain whether or not linear quasi-geostrophic dynamics apply. Recently. several
non-linear models for warm eddies have been proposed. Cushman-Roisin et al.

* Contnbution No. 1747 from the Institute of Oceanology. Academia Sinica
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Fig- . Starshaped survey of the ning track carmed out from 14 to 16 September 1981 from the R. V. Endeavor '
(2) Depth (m)of the 10 T isotherm from XBTs (dots) : (b) Acousuc-Doppler velocity at 28 m depth
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(1985, 1987) developed a time-dependent. non-linear model for the warm-core rings
and obtained analytical solutions to special linear and non-linear cases. Kirwan and
Liu (1989) presented a systematic numerical investigation of the general system of the
equations developed by Cushman-Roisin et al. (1985) as an initial value problem. In
the Kirwan Liu formulation the time dependent amplitude equations for the vorticity.
divergence, deformation., and the ellipse shape were developed and solved numerically.
This decomposition provides a simple description of the geometry and kinematics of
warm eddies.

The present paper applies the model of Kirwan and Liu (1989) to warm eddies
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Fig. 2. Temperature distnbution ( C ) at a depth of 200 m in a region east of Japan on August 12 - 21. 1960.
The carcles show the posttions of the hydrographic stauons. The arrows indicate the direction of
surface currents measured by a geoelectromagneuc kinetograph fafter Kawai. 1972)

spawned by western boundary currents. A brief review of the model is given in the next
section. A comparision of model calculations with the observations is presented in sec
tions 3 and 4. The last section gives a brief discussion of the results.

II. MODEL REVIEW

The following is a brief review of the model given by Kirwan and Liu ( 1989).
We start with the well known reduced-gravity equations for an inviscid two layer flu-
id.

u+ uu+vu,~fv=—gh (1.a)
v+ uv vy +fu=-gh, (1.b)
h+ (hu), +(Av) ,=0 (l.¢)

where f is the Coriolis parameter. g reduced gravity. and h the upper layer thickness.

The lower layer is assumed to be infinitely deep and at rest.
If the boundary of the upper layer is an ellipsoid. an exact solution to (1) is
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u=(G/2+G,) x+(G,-G,) y (2.a)
v=(G+G)x+(G/2-G,) v (2.b)
h=hy+(B/2+ B x+2B,xy+(B/2-B,)y* (2.¢)

where h,.B.B,.B,.G.G,.G,.and G, are functions of time only. and x and » are
coordinates relative to the center of mass. The eight amplitudes in (2) can be deter
mined by substituting (2)into (1). This resuics in the following system of differental
equations:

l;0+ Ghy=0 (3.a)
B+2{BG+2(BG,+ BG,)) =0 (3.b)
B,+2BG+ BG,~2B,G,=0 (3.0)
B,+28,G+ BG,+ 2B,G,=0 (3.d)
G+G: /2 +2(G+ G+ G)-2/G,+ 2 gB=0 (3.¢)
G+GG+/G/2=0 (3.1)

(.7~+ GG,-fG,+2gB,=0 (3.2)
G.+GG,+ /G, +2gB,=0 (3.h)

where () = -‘% ( ). The first tour parameters /1, . B. B, . and B, describe the distribu-

tion of mass within the ring. The remaining four parameters G. G, . G,. and G, are
recongnized as the divergence. vorticity. shear and normal deformation rate of the
ring. See Kirwan. 1975. for a discussion of the physical interpretation of these quanti-
ties. The equations in (3 ) describe the evolution of warm-core rings under appropnate
initial conditions. The center mass of the ring undergoes steady inertial motion ( Ball.
1963 ). therefore. the system of the equations (3) governs the motion of the ring in a
coordinate system moving with the center of the ring mass.

There are two special analytical solutions of the model. One is an elliptical shaped

‘ring which was. named rodon by Cushman-Roisin et al. (1985). The other is a circular

ring first discovered by Cushman-Roision (1987) and named pulson by Kirwan and
Liu (1989).

We consider first the rodon solution. Assuming G=0 and B is constant, the A,
and G, become constant and the equaticas (3.¢), (3.d). (3.g)and (3.h) reduce to
four linear differential equations. The analytical solution of the rodon from the four
linear equations is

B,= - B,cosb (4.2)
B,= - Bpsin 8 (4.b)
G,=G,cosl (4.c)
G, = -G, sinb (4.d)

where 6= w t+ ¢. The phase ¢ can be chosen according to the initial crientation of
the ellipse. The B, .G, . B. G, .and w are constrained by equations
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Bp(w+2G,) - BG,=0 (4.e)
Gplf-w)~2gB,=0 (4.1)
G,-G—-fG,+gB=0 (4.g)

There are difterent ways to specify these parameters. Here we chose B and B, . accord-
ing to the inttial condition, to express the others. From the four linear equations and
(4.e). (4.6). and (4.g). the constraints can be obtained as

Gp=(2B,/0)M*"- (4.h)
G=~f/2+(B/8YM*""+M* /4 (4.1)
w=f-M""*/2 (4.)
where
M~ =(f+3g)' P £(f-0g)" (4.k)
and
0=4[B8-48}]'* (4.1)

Kirwan and Liu (1989)showed that (4) can be obtained from the general system
of equations (3 ) if special initial values are specified.

On the other hand. by assuming B8, = B,=G,=G,=0. the equations (3.1 ).( 3.b
(3.¢). and (3. f) reduce to four non-linear equations. A particular analytical solu-
tion of these equations 1s the pulson solution. This is

hy=H/{ I+ysin( f1+0)) (5.a)
B=—-(Ag/74¢g) /[1+ysin{ft+0)]? (5.b)
G= frcos( fi+o) /[ L+ ysin( f1+ ) (5.¢)
== (f2) i+ A, /[ L+ysin( f1+ 9)] ) (5.d)
There are also constraints for the solution from the G equation
Ap=f(1-7=A,)>0 (5.e)
-l1<y< (5.£)

Subject to special constraints the numerical solution of the general system of equa-
tions (3 )is identical to (5).

IlI. ELLIPTICAL EDDIES

A great number of observations show that the warm eddies are elliptical. The ma
jor axis of the ellipse is meridional in Fig. 1, but zonal in Fig. 2. Supposing the ellipti-
cal eddies only rotate and do not change their size then the rodon special case applies.

[n the general system of equations (3). choosing f=10"*s~".Ap /p=1.5x10"".
we obtained one example of the rodon with the following initial values:

B (0)=G(0)=G,(0)=0
ho(0)=0.5km




y (km)
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B(0)=—-8.5x 10" km"!
B,(0)=~-2.0x 10" km"!
G.(0)= —1.220488 day™"
G,(0)=—-0.52157 day~".

The initial ellipse is lo.ated with a meridiona! major axis of 298km and a zonal minor
axis of 178 km. The eilipse rotates clockwise and completes | rotation in 56 days. The
particles also move clockwise around the center of the ring at maximum speed of
1.8 m/s. Fig. 3 shows the boundary of the ring at its 2nd and 13th day respectively.
The end to head arrow lengths indicate the distances the particles within the nng move
in two hours on that day. The length of the arrows has the same scale as the
coordinates.
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Fig. 3. The mowing state of the vanous partcles within the ring rodon during the first two hours on its 2nd
day (a)and 13th day (b). The dashed ellipse is the positon cf the boundary at the same ume.

Kirwan and Liu (1989) showed that the rodon solutions apply if 0<d< ( £/ g).
Setting the major axis in the meridional direction, the initial values for the general
rodon case are

ho(0)=H (6.a)
B,(0)=G(0)=G,(0)=0 (6.b)
B(0)=-{(6/4)+4B}]"" (6.c)
B,(0)=-8, (6.d)

G (0)=~fR+(B0) /)M " +M"" /4 (6.e)
G,(0)=~(2B,/6)M"" (6.f)

where Bp>d- The size of the ring and the velocity field depends upon H, 6 and B,.
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Large H provides large honizontal scale of the rings, while large B, causes the particles
to move faster. The rotation of the ellipse and particles is determined by d. There are
two groups of possible values in (6) which depend upon the selection of + and - in
M. A choics of M " gives a slower spin and an ellipse rotation rate proportional to 9 ;
the M~ selecuon results in faster spin and a rotation rate inversely proportional to ¢ .
In the example the solution is for the M* root. Fig. 4 shows the relationship between
w and ¢ . This plot shows that for a given value of 4 there are two possible ellipse rota-
tion rates. The M~ root refers to the lower branch of w.

8- 100}

y{hm)
[

1 : - 150 )
0.0 02 0.4 0.6 0.3 to -1 -w -¥% 0 010
xthm)
§i(rteg™) Fig. 5. The path of the parucle at the boundary (the square)
Fig. 4. Relationship between rotating rate of of the rodon dunng us first 30 days. The arrows
the ellipse @ and & ndicate the moving direcuon

Subject to the general initial condition (6). the numerical solutions show that the
dynamic fields. ho(t). B(t), G(t), and G, (:) retain their initial values, which
means that the center depth, the divergence, and the vorticity of the rodon are constant
during the evolution of the eddies. The particles within the eddies rotate at the frequen-
cy of{ w 72(f - w /2)] * around the center (Ripa, 1987). In the example w is 0.036
cycle per day. therefore, the particles rotate at the rate of 0. 156 cycle per day. which is
much larger than that of the frame of the eddy. Fig. 5 shows the path of a particle
at the boundary of the eddy. The square in this figure indicates the initial position of
the particle. The particle completes 4. 7 cycles along the boundary of the eddy in a
month. The structure of the particle velocity field is not isotropic. Particles near the mi-
nor axis move faster than those near the major axis. This is the result of conservation
of total angular momentum for the eddy ( Ball, 1963 and Kirwan and Liu, 1989).
The maximum veloctties. therefore. are located at the cross points of the minor axis
and the boundary of the ring (Fig. 3).

IV. CIRCULAR EDDIES
Observations also show that the shape and the size ofthe warm eddies change
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with time. The shape of eddies in the ocean surface sometimes is circular. The circular
eddies can be approximated with the pulson special case of the general system of equa-
tions (3).

Choosing phase ¢ =0 could not lose the generality. The initial conditions of the
pulson case can be specified as

hy(0)=H (7.a)
B(0)=8,(0)=G,(0)=G,(0)=0 (7.b)
B(0)=-A,/(4g) (7.¢)
G0)=f7y (7.d)

G, (0)==(f2)1+A,) (7.e)

where H is the average depth of the ring center. The A, 7. and A ; can be chosen from
the initial condition.

Kirwan and Liu (1989) showed that the pulson size and the associated velocity
field depend upon H.G(0). and G,(0). Large ring and high velocity are produced
by large H. G(0). and G,(0). L. the evolution of the ring the B,(¢). B,(t).
G,(t), and G,(¢) retain their initial values of zero. which means that the eddies in the
pulson mode always keep their circular shape and have no shear and normal
deformation. The motion of the pulson eddies is a periodic but nonlinear expansion
and contraction of their circular outcrop at the inertial frequency. The particle motions
within the lens are anticyclonic. The average circle in the sea surface is coupled with
the mean depth H. The maximum (minimum )circlesarerelated to minimum (maximum )
depth of the ring center. If the imtial value G,(0) < = f/2 (positive A,), the local
spin G, () is always negative and the particles move clockwise around the ring center.
However. if the G,(0) > —f/2 (negative A ;). the local spin can change its sign as
the ring goes to its minimum radius. In this case the local spin may briefly achieve posi-
tive (cyclonic) values.

For simulating eddies spawned by western boundary currents. initial values are
chosen subject to (7)as .
h, (0)=0.3km

B,(0)=B,(0)=G,(0)=G,(0)=0
B(0)=—-4.71939x 10~ km™'
G (0)=3.456 day™"
G,(0)=—1.08day™".

Fig. 6 (a)and (b) show the position of the surface circle of the eddy at its C. 15 and
0.5 days of evolution where the dashed circles indicate the imiual position of ihe
boundary. The diameter of the =ddy can change from 285 km tc 143 km. The peried
of the oscillation of the boundary is 9. 73 day, wiuch corresponds (o an erual
oscillation with f=i0"*s™'. Fig. 6(c) and ( d) show the veriical sections in(a)
and (b). The shallow mode has a iarger surface area while the deep mede has a
smaller area. The depth of thz eddv can change from 210 m to 500 m. The frequency
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Fig- 6. (a.b) The positions of the surface circles at 0.15 and 0.5 days. The dashed arcles are the iniual
boundaries : (c- d )the relauve vertical sections of tge pulson.

of the depth variation is the same as that of the surface circle. i. e. the Coriolis frequen-
cy. The amplitude of the fluctuation at the surface and the depth depends upon the
horizontal divergence in the eddy. A large G (0) produces a large variation of the G (¢)
and, therefore, produces a large amplitude of the variation in the surface circle and the
depth of the ring. The velocities of the particles increase gradually from the center to
the boundary of the ring, with a maximum value of 2 m/s. The larger the G(0).
G,(0), and H. the higher the veloaity of the ring. The velocity field of the pulson.
unlike the rodon. is isotropic at all times. The variation of the velocities in this case is
remarkable as the particles move from the largest circle to the smallest. Fig. 7 shows
the different modes of the velocity field where the solid circles are the initial positions
of the boundaries and the dashed circles indicate the evolved boundaries of the nng.
The scale of the arrows is the sameas that of the coordinates. We can see from Fig.7 that
the ring expands first from the initial position to its maximum then shrinks to the
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minimum. Although the particles move back and forth with the motion of the circles.
they tend to spend more time in the shallow, large radius mode than in the deep.
small radius mode. This is attributed to the basic nonlinearity of the model. One notes
that the particles move slower as the ring is in the deep. small radius mode. This is the
result of the principle of angular momentum conservation. Because ofthe sign change
of the local spin at the deep. small radius mode, particle paths show some brief
cyclonic structures (Fig. 7d ). Fig. 8 shows the path of the particle (the square) at the
boundary of the ring. In this example it takes 7.5 days for a particle to complete one
cycle around the center of the eddy.
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Fig. 8. The path of the particle at the boundary (the square) of the pulson dunng its first 7. 8 days. The
arrows indicate the moving direction.

V. DISCUSSION

Both examples of the numerical results are in fair agreement with the warm eddies
in Fig. 1 and Fig. 2 in the horizontal scale and the velocity fields. It is worth noting
that the rotation of the ellipse as a whole ring is different from the rotation of the parti-
cles in the model. In the example of the rodon, the ellipse rotates once in 56 days while
the particles complete one revolution around the ring center in only 6.4 days. In the ex-
ample of the pulson,the particles move once around the ring center in 7.5 days. Itishard .
tomeasure the rotating rate of the ellipse from the hydrographic data. Therefore. the
rotating rate of about one cycle per 3.6 days in the Gulf Stream eddy (Fig. 1) ob-
served by Joyce (1984 ) probably corresponds to the rotating rate of the particles in the
examples, not of the ellipse.

For simulation of large warm eddies of western boundary currents, the iniual val-
ues must be chosen to correspond with the lower value of w in the model. This implies
M" option for the rodon case. In the pulson case. the rate of vorticity should be chos
en in the range of —f/2 < G,(0) <0.

The numerical scheme used in the calculations is a standard explicit linear
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multistep method. The time step in the integration is 0. 01 day. The numerical tests
showed that all of the modes both in the rodon and the pulson are stable if 8(0) <0
and B(0)°=4B3 > 0 in the initial values.
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