RL-TR-91-17

Final Technical Report

March 1991 AD—A237 523
NN

DISCRETIONARY SECURITY
FOR OBJECT-ORIENTED
DATABASE SYSTEMS

SRI International

Teresa F. Lunt

APPHROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

I

l

i

03331

91~
LT

[

|
It

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700
T

3
R

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including {oreign nations.

RIL-TR~-91-17 has been reviewed and is approved for publication.

APPROVED: gmjw 9%&&%

EMILTE J. STARKIEWICZ
Project Ungineer

7

/ / ” /7 // B ‘\
APPROVED: %W 4 pg(j\'\

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

-y)

/ ’ -
s , T
FOR THE COMMANDER: uﬂvia',f g,ﬁi&%lﬂ(‘t/
P v
RONALD RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(COAC) Griffiss AFB, NY 13441-5700. This will assist us In maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on o
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | GiB e 35018

Pu&rmw@ianwdﬁmammmaqv PO per response, NCLKING the OmMe for eviewnng NSMATONE. SeNc g B0SU G GRte SOICes.
gaNeNNg ans Mertareyy the dets Nesded, anct compmsty g and reveweg the colection of rformeton. Send carTTerts regarding e burcen estmats or any Other aspect of this
colecton of rfonmanon Noudng SUGDeSons For re0LCYG T Durden, 10 Washington Headquaners Services, Drectorate for rformmanon Operstora ancReoarts, 1215 Lefferson
Oavis npway. Suke 1204, Aringron VA 222024302, and to the Office of Manegement and Budget, Paperwork Recuction Proedt (0704-01 88). Washington, OC 20563

1. AGENCY USE ONLY (Leave Blank) ‘YZ REPORT DATE 3. REPORT TYPE AND DATES COVERED
l March 1991 Final Mar 89 - Aug 90
4. TITLE AND SUBTITLE S FUNDING NUMBERS
DISCRETIONARY SECURITY FOR OBJECT~ORIENTED DATABASE C - F30602-88-D-0026
SYSTEMS Del. Order 0007
6. AUTHOR(S) PE - 351676
PR - 1068
Teresa F. Lunt TA - 01
WU - P2
7. gERFORMING ORGANIZ{TION NAME (S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
RI Internationa REPORT NUMBER
Computer Science Laboratory N/ A
333 Ravenswood Ave)
Menlo Park CaA 94025-3493
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Air Development Cent AGENCY REPORT NUMBER
Rome Laboratory (COAC)
Griffiss AFB NY 13441-5700 RL-TR-91-17

11. SUPPLEMENTARY NOTES
RL Project Engineer: Emilie J. Siarkiewicz/COAC/(315) 330-3241

4Prime Contractor for this effort is CALSPAN-UB Research Center, P O Box 400,
See reverse)
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distyibution unlimited.

13. ABSTRACT (Mmdmum 200 woras)
The discretionary access controls in today's computer systems are designed to enforce

a specific access control policy. An application whose access control policies do not
easily match the policy that is "wired" into the system is forced to "work around”
that wired-in policy. As a result, the application itself must enforce discretionary
security and cannot make use of the assurances of the computer system's discretionary
access controls. This report presents a flexible approach to discretionary access
control that ailows the implementation of arbitrary access control policies. The
generality of the approach allows a user to implement a discretionary access control
policy that is tailored to an application, rather than having to work around a specifid
policy that is wired into tie computer system. The report focuses on discretionary
controls for object-oriented syctems. Objcct-oriented systems are an emerging tech-
nology of great import for applications in business, industry, and the military. Many
of these applications must share information among users with different needs and
authorizations. The specific actess rules desired will vary from anplication to
application. Thus, a flexible approach to discretionary access control for such
systems is proposed.

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/RADC)

14. SUBJECT TERMS 15 NUMBER OF PACES
Computer Security, Discretionary Access Control, ‘ 56
Database Management, Object-Oriented Database Systems |16 PRiCE CODE
17. SECURIY CLASSIFICATION .18 SECURITY CLASSIFICATION |19, SECURTY CLASSIFICATION 20. UMITATION OF AB_STRACT
OF REPORT I OF THIS PAGrE of AE]&%%TS j :
NCLASSIFIED [UNCLASCIFIED : IFIED I
N3H 754501 280 %500 ' Starcma F o 298 Rev 2 89)
Premorbed by ANSI Sta 23918
2981 (2

—_—

Block 11 (Cont'd)

Buffalo NY 14225

i
Contents
32 Introduction 1
2 General Issues in Discretionary Access Control . 3
21 GroupsS. . ¢ v o vt i e e e e e e e e 3
22 Roles. e e e 4
23 Ownership. i e 6
2.4 Explicit Denial of Authonzation 6
3 Discretionary Access Control Issues Arising ir Database
Systems 9
3.1 Propagation of Authorization 9
3.2 Propagation of Revocations 10
3.3 Authorizations for Views 10
4 Object-Oriented Database Systems 13
4.1 Objects e 13
4.2 Methods 14
4.3 Inheritance, 15
5 Discretionary Access Controls for Object-Oriented
Database Systems 17
51 Related Work 18
5.2 Representing Discretionary Authorizations 19
5.3 Inheritance of Discretionary Authorizations 21
5.4 Neegative and Positive Authorizations 21
5.5 Strong and Weak Awthorizatians e e o
5.6 Drirect Conflicts of Authorizations 26
5.7 Representing Groups 27
58 AccessModes L 28

ii

-3

5.9 Control of Propagation of Authorizations
5.10 Default Access ContrelRules
5.11 Discretionary Constraints

Some Extensions

6.1 Associating Subjects with User and Group Privileges
6.2 Roles. iiiiennenna.
6.3 Ownership. 0ivieo...

Conclusions

Contents

Acknowledgments il

Acknowledgments

This research was supported by the U.S. Air Force, Rome Air
Development Center (RADC), who funded SRI through Subcontract
C/UB-07 with the Calspan ~ UB Research Center (CUBRC), under
U.S. Government Contract F30602-88-D-0026. The author
gratefully acknowledges RADC for making this work possible.

L—Accession For
NTIS aRAsI & |

DTIC TAR

Uninnineounced

Ju:‘-tif’l:::tlon~_____—

4

Bv oo
V_Dx_'stri,bution/

! Availalyillt?‘(%';‘cles
!_...,.__, Avall engfor

‘Dist Special

RPN —

P’li
- -

Abstract v

Abstract

The discretionary access controls in today’s computer systems are de-
signed to enforce a specific access control policy. An application whose
access control policies do not easily match the policy that is “wired” into
the system is forced to “work around” that wired-in policy. As a result, the
application itself must enforce discretionary security and cannot make use
of the assurances of the computer system’s discretionary access controls.

Here we present a flexible approach to discretionary access control that
allows the implementation of arbitrary access control policies. The general-
ity of the approach allows a user to implement a discretionary access control
policy that is tailored to an application, rather than having to work around
a specific policy that is wired into the computer system.

We focus on discretionary controls for object-oriented systems. Object-
oriented systems are an emerging technology of great import for applica-
tions in business, industry, and the military. Many of these applications
must share information among users with different needs and authorizations.
The specific access rules desired will vary from application to application.

Thus, we propose a flexible approach to discretionary access control for such
systems.

b

Chapter 1

Introduction

Traditional discretinnary security mechanisms are usvally based on either
access control lists or capability lists. These mechanisms are cumbersome
if one wishes to impose further restrictions based on, for example, time,
day of week, date, or location. Additionally, these mechanisms tend to
restrict one’s thinking about access control policies to the abilities of the
mechanisms.

In addition to the usual simple access control lists and capability lists,
there are other dimensions to discretionary access control policies whose in-
terpretations are ambiguous and which have largely been ignored in today’s
commercial systems. However, some of these dimensions, such as support
for user groups and for specific denial of authorization, are required at the
higher evaluation classes of the DoD Trusted Computer System Evaluation
Criteria (1], and others, such as support for role-based access controls, are
commonly required for military applications. Others, such as owrership
policies, are commonly implemented, but in a seemi:yr!y haphazard way.
For database systems, there are even more policy choices. The result is that
it is apparently impossible for a single general-purpose system to satisfy the
discretionary access control requirements of all, or even most, applications.
Thus, until now, vendors have been forced to make arbitrary choices, and
the users of such systems have had to force their security policies into the
vendor-supplied access control mechanisms.

Because so many alternative formulations of discretionary access control
policies are possible, it is unnecessarily limiting to have to “wire” a specific
policy into a system. It is appealing to envision a system that could en-
force any of a number of discretionary access control policies. where each

2 Introduction

installation would instantiate the particular policy to be enforced. Such a
mechanism should be designed into a system in such a way that high as-
surance could be obtained that the security policy that the user selects will
be enforced. The berefit of this is obvious: with a wired-in policy, only the
single policy that is wired into the system can be enforced with any assur-
ance. If an application works around the wired-in policy to implement an
application-specific policy, there will be no assurance that this application-
specific policy will be correctly enforced. With a general approach such as is
proposed here, in which a user can express a wide variety of security policies,
whatever policy the user expresses can be enforced with the same degree of
assurance.

In this report we first discuss some of the discretionary access control
policy dimensions for which flexibility and choice are desired. (Many of these
issues were first raised by Lunt {2].) Then we present a general approach for
specifying arbitrary application-specific discretionary access control policies
in a single general-purpose database system. We pay particular attention to
discretionary access control policies for object-oriented database systems.

This report is organized as follows. Chapter 2 introduces some generic
issues of discretionary access control. Chapter 3 introduces some additional
issues that arise in database systems. Chapter 4 provides some background
and definitions for object-oriented database systems. Chapter 5 discusses
discretionary security issues for object-oriented databases. Chapter 6 pro-
poses some extensions to the approach to allow users an additional degree
of flexibility in specifying access control policies. Chapter 7 contains our
conclusions.

Chapter 2

General Issues in
Discretionary Access
Control

Discretionary security policies for most operating systems and file systems
are fairly simple and straightforward. These policies can be easily modeled
using the Graham-Denning access matrix model {3]. This model defines
an access matrix in which the rows represent subjects (user., processes),
the columns represent objects (e.g., files, programs, subsystems), and the
intersection of a row and a column contains the access modes (e.g., read,
write, execute) that the subject has authorization for with respect to the
object.

The Graham-Denning model leaves many questions unanswered, how-
ever. Particularly troubling are some of the requirements in the DoD Trusted
Computer System Evaluation Criteria (1] for support for such things as group
authorization and explicit denial of authorization. This chapter discusses
some of these issues.

2.1 Groups

Discretionary security policies are concerned not only with which subjects
may obtain access to which objects, but also with the granting, revoking,
and denying of authorizations to and from users and groups. Given the
set of authorizations for users and groups, some rule must be applied for
deriving authorizations for subjects.

4 General Issues

In the general case, a user may belong to more than one group. In
assigning privileges to subjects acting on behalf of a user, one can choose to

o Have the subject operate with the union of the privileges of all the
groups to which the user belongs as well as all his or her individual
privileges

o Have the subject operate with the privileges of only one group at a
time as well as all his or her individual privileges

e Allow the subject to choose whether to operate with its user’s priv-
ileges or with the privileges of one of the groups to which its user
belongs

¢ Implement some other policy

The second and third options above provide a means to support the concept
of least privilege.

Note that even if a subject S is constrained to be associated with at
most one group to which its associated user U belongs, a user is still not
constrained to operate with the authorizations of only one group at a time.
For example, if user U belongs to a group G, that is authorized for a relation
or view R, and U also belongs to another group G, that has been specifically
denied authorization for R, then U can still gain access to R by employing
a subject whose associated group is G, (unless U has also been individually
denied authorization for R). Thus, this choice of policy constrains subjects
rather than users, and can be thought of as a form of least orivilege.

2.2 Roles

Some applications may require that discretionary access controls be specified
on the basis of user roles. Many systems have some built-in roles (e.g., sys-
tem auuunistrator, database administrator, system security officer). How-
ever, different users are likely to have different requirements and d-finitions
for such roles. In additicn, many applications require that arbi.rary user
job access contro' requirements be formalized in terms of roles (for exam-
ple, the secure military message system [4]). Thus, a generic capabiiity for
application-defined roles is desirable.

The relationship between a user’s role autherizations and his or her user
and group authorizations probzbly depends on the application. Whether

Gerveral Issues 5

a user acting in a certain role is to be prohibited from granting some of
his or her role privileges to a user acting in another role is also probably
application dependent.

Recently a roles-like extension to the SQL query language for relational
database systems has been adopted by ANSI for a future version of the
ANSI SQL standard [5]. This extension. aims to improve database system
security by simplifying security administration. Discretionary security in
SQL is based on access control lists. In most database applications, the
users interact with the system at a much higher conceptual level than that
of individual relations. For example, a typical database application might
present the user with a set of menus and fill-in-the-blank screens, and provide
the user with a set of function keys with specific operations defined for each
screen. Users who interact with such an application are unlikely to be aware
of how the data is organized into relations. Thus, an access control list
mechanism for discretionary security requires users to specify the security
attributes at too low a conceptual level in the system. The application’s
security policy is likely to be expressed in terms of the entities defined for the
application, rather than in terms of the underlying relations. Typically, in
these applications, managing the access control lists on the underlying data
is performed by a security administrator. But managing a large collection of
access control lists is a hard problem [6]. Part of what makes the problem so
hard is that the security administrator must maintain a conceptual mapping
in his or her head for how the application is mapped onto individual relations
or columns of relations. In addition, typical application-specific security
policies may be of the form “this user can access that data only if he is
running one of these application programs™ [5]; such policies are impossible
to express in terms of simple access control lists.

The ANSI SQL roles facility addresses these problems by introducing the
concept of named protection domains (NPDs) [5]. A named protection do-
main is a way of grouping privileges and assigning the resultant collection of
privileges to specific individuals. A named protection domain is introduced
to simplify security administration. For example, the ability to update the
SALARY column in an EMPLOYEES table can be granted to a named
protection domain called SALARY-CLERK. All the other specific autho-
rizations required by a salary clerk would also be granted to the SALARY-
CLERK named protection domain. Then, when a new salary clerk joins the
organization, it is a simple matter to grant the new individual authorization
for the SALARY-CLERK named protection domain. The NPDs can be de-
signed by the applications designers and set up by the applications builders:

6 General Issues

then the administration of security becomes a relatively simple task that
can be performed by someone with little or no knowledge of the underlying
implementation of the application in terms of relations and views. Only
one NPD can be active at any one time, making it possible to enforce a
separation-of-duties policy with this facility.

The ORACLE database management system implements the ANSI SQL
roles facility described above.

2.3 Ownership

Most systems implement some concept of ownership of objects; each object
has a defined owner. Ownership policies are generally implemented so that
the owner of an object is the only individual authorized for certain operations
on the object, for example, the authorization to delete the object, or to grant
and revoke authorizations for the object.

The requirements for the specific definition of object ownership in terms
of the special authorizations that are held only by the owner of an object may
vary from application to application. Whether a certain class of user, such
as a database administrator or security officer, is able to revoke such special
authorizations from the owner of an object may also be an application-
dependent choice. A facility that allows an appropriate ownership policy for
the organization to be defined at system installation would allow vendors
to provide the comprehensiveness and flexibility of control to cover most
applications’ access control requirements while avoiding having to wire in a
fixed ownership policy.

2.4 Explicit Denial of Authorization

In the higher evaluation classes of the DoD Trusted Computer System Eval-
uation Criteria [1], users must be able to specify which users and groups are
authorized for specific modes of access to named objects, as well as which
users and groups are explicitly denied authorization for particular named
objects. Note that explicit denial of authorization is not the same as simple
lack of authorization. For example, the set of users and groups authorized
for an object might be implemented as an ACL (access control list) and the
set of users and groups explicitly denied authorization as an XACL (ezclu-
sionary access control list), as in the naval surveillance model {7]. Because
the set of users and groups authorized for an object may be independent

General Issues 7

of the set of users and groups denied authorization, there may be apparent
conflicts between the two sets. For example, consider the folowing ACL and
XACL for a relation R:

ACL: Ul, Uz,G;,Gz
XACLZ U;, Gg, U3, Ga

Now consider the following questions:

¢ Is U; authorized for R?

o If U, € Ga, is U, authorized for R?

o If U, € G,, is U, authorized for R?

e If U; € G, and U, € G,, is U; authorized for R?

o If Us € Gy, Us ¢ Ga, and Uz € G3, is Uz authorized for R?

The answers to questions such as these are not provided by the DoD Trusted
Computer System Evaluation Criteria. Specific choices have been made
by particular systems designed for these evaluation classes; however, such
choices are arbitrary and may not be suitable for all applications. Lunt {2, 8]
goes into detail about a number of specific alternative approaches to these
questions. However, choices about the meaning of denial and about how to
reconcile the authorizations granted to users individually and as members
of groups are application dependent. Thus, such choices could be specified
at system-installation time using a mechanism such as is proposed in this
report.

Chapter 3

Discretionary Access
Control Issues Arising in
Database Systems

In arelational database system, additional discretionary access control issues
become important. These issues include how to control the propagation of
authorizations and revocations, and how view authorizations are related to
authorizations on relations.

3.1 Propagation of Authorization

Several database systems, for example ORACLE, use grantflags to control
the propagation of authorizations. In these systems, grantflags are specified
for each user for a relation or view and access mode. The grantflag can have
vhe value “grant” or “nogrant.” The grant flag allows a user to grant and
revoke the corresponding access mode. In addition, a user with a grant flag
for a relation or view R and mode m can give and rescind that grantflag.

In SeaView [9, 10], the propagation of access modes is controlled through
the access modes “grant” and “give-grant.” If a user U is authorized the
grant access mode for a relation or view R, then U can grant or revoke
any access mode other than grant and give-grant for R. A user U that
is authorized the give-grant access mode for R can additionally grant and
revoke the grant and give-grant access modes for R.

SeaView's inclusion of the give-grant mode enables a greater degree of
control over the propagation of authorizations than does ORACLE’s grant-

10 Issues Arising in Database Systems

flag approach. In ORACLE, if user A grants user B mode m for relation
or view R with the grantflag, then A cannot prevent B from granting the
grantflag to other users. In SeaView, however, A could grant B the grant
mode while withholding the give-grant mode.

There are other means, such as ownership policies, for controlling the
propagation of authorizations. The choice, however, is likely 10 be applica-
tion specific.

3.2 Propagation of Revocations

In System R [11], when a user A revokes an access mode from another user
B, the mode is also revoked from all users to whom B had granted the
mode (which in turn starts several other chains of revocations). This policy
is called cascading revocation. If user B had granted many authorizations
over a long period of time, as would be the case if user B were, say, a system
security administrator or a database administrator, then the revocation of
B’s authorizations can have far-reaching, unpredictable, and undesired ef-
fects. Managing these difficulties is sufficiently complex that the vendors of
the products that implement this cascading revocation policy recommend
that, rather than assign individual usernames to security administrators and
database administrators, a single role name be used for all such users. That
is, these vendors recommend that all system administrators login under a
single SYSADMIN username, and all database administrators login under
a single DBA username. This has the obvious drawback that such users
cannot then be held individually accountable for their actions.

To lessen these difficulties, some database system vendors provide two
types of revocation: cascaded and simple. Cascaded revocation is as de-
scribed above; simple revocation simply revokes the specified authorization
from the named group or individual. In SeaView, for example, revocation is
not propagated. Moreover, if an ownership policy is in effect, propagation
of revocation may be inappropriate.

Whether to propagate revocation of authorization is an application-
specific choice.

3.3 Authorizations for Views

In many relational database systems, a user may be authorized for a view
without being authorized for the underlying relation(s). In such systems,

Issues Arising in Database Systems 11

granting authorization for a view but not for the underlying relation is a
means of restricting authorization to a subset of the data contained in the
relation.

SeaView does not require that a user be authorized for a relation in
order to access a view defined on that reiation. Instead, SeaView includes
a reference mode that can be used to control which users and groups can
gain access to stored data through views. In SeaView, a user can exercise
access mode m for a view only if he or she is authorized for the reference
mode on all referenced relations at the time the view is accessed. A user can
withhold the ability to reference a relation through a view by not granting
the reference mode.

The Sybase Secure Dataserver takes another alternative, in which users
cannot obtain data through a view unless they have the corresponding au-
thorizations for all the referenced relations. No authorization information is
kept for views [12].

A consequence of the SeaView approach is that when a user creates a
view, he or she becomes authorized for only those access modes for it for
which the user is authorized for each underlying relation. The set of users
and groups authorized for a view is modified as access modes are subse-
quently granted and revoked for that view, independently from the granting
and revoking of modes for the underlying relation(s). As a result, if a user
or group G is later granted additional authorizations for the underlying re-
lations, G does not thereby gain the corresponding authorizations for the
views defined on those relations. Another consequence is that view autho-
rizations are not revoked when authorization for an underlying relation is
revoked.

With the Sybase approach, view authorizations are computed from the
authorizations for the underlying relations at the time the view is accessed.
With this approach, if a user’s authorization for an underlying relation is
revoked, the user can no longer access the view.

Which of these approaches is desired is an application-dependent choice.

Chapter 4

Object-Oriented Database
Systems

Object-oriented databases are a powerful means for organizing and manag-
ing very large applications, which would otherwise be impossibly complex.
Object-oriented database systems are organized around objects, which model
real-world entities. The concept of an object can be used to model a simple
item, such as a number, or a complex item, such as an aircraft. Each object
has some state and a defined set of operations that can be performed on it.
An object’s state is represented by a set of instance variables that are part
of the object definition. The value of an instance variable can also be the
identifier of another object (indicating a relationship with another object).
Operations on objects are handled by methods, which are executed in the
context of the object’s state upon the receipt of messages.

A group of objects with similar properties forms a class, which is also
an object. A class can be system-defined (for example, a class of integers)
or user-defined (for example, a class of customers).

4.1 Objects

An object represents either a class or an individual, and stores named at-
tributes in instance variables. For example, the object CUSTOMER could have
instance variables CUSTOMER-ID, ORGANIZATION-NAME. AUTHORIZED-REP,
ADDRESS, PHONE-NUMBER, and CALLING-HOURS.

Object-oriented systems typically support both a subclass and an in-
stance relation, where an instance object is an individual, meaning it can

14 Object-Oriented Database Systems

have no instances of its own. Both subclasses and instances inherit the vari-
ables of the parent class object, and may have additional variables of their
own.

For the purposes of this report, we will not make use of the distinction
between subclass objects and individual objects. We will use the term “in-
stance” ambiguously to refer either to a subclass or to an individual instance.
The difference between a subclass and an individual instance is significant
primarily for reasons of implementation efficiency; it does not affect secu-
rity policy. Thus, our approach is equally valid for systems that make this
distinction and those that do not.

4.2 Methods

An object has methods defined for it. Methods encapsulate the behavior
of an object, in that an object can be acted upon only through executing
the methods defined for the object. Methods consist of executable code.
Methods are invoked by sending messages to an object. A message consists
of a command, which selects the appropriate method, and some arguments,
if necessary.

A method performs three sorts of activities: (1) it may read and write
the variables of the object where it resides; (2) it may send messages to other
objects, to invoke methods there; and (3) it may, when it terminates, return
a value to the sender of the message that invoked it. Ability (2) accounts
for much of both the usefulness and complexity of object-oriented systems.

For example, a Bank-account object would have methods for the com-
mands Withdraw, Deposit, and Query-balance. To withdraw or deposit
funds in a specific bank account, a message of the form command value
is sent to the object representing that bank account, where command is
either Withdraw or Deposit, and value is the amount to be deposited or
withdrawn. To query the balance for a specific account, the message Query-
balance would be sent to the account object.

Methods are inherited by instances. This means that a method placed
in a class object is automatically made available to its descendants. The
Withdraw method for bank accounts, for example, need only be placed
in the Bank-account class object, to permit all individual bank accounts
to respond to a Withdraw message. Inheritance of methods is one of the
greatest benefits of the object-oriented approach.

Object-Oriented Database Systems 15

4.3 Inheritance

One of the greatest benefits of the object-oriented approach is inheritance.
Inheritance allows the object structure, names and default values of instance
variables, and methods to be inherited from the object’s parent or class
object. Thus, in the object model, a class hierarchy designates the structure
of subciasses and superclasses.

For example, the class CUSTOMER is a subclass of the class COMPANY.
A subclass inherits the instance variables and methods of its superclass. If
a class has more than one superclass, and two or more of its superclasses
have instance variables of the same name, then the instance variable that is
inherited by the subclass depends on some a priori rule.

Figure 4.1 illustrates the class hierarchy. The class SKI has subclasses
NORDIC-SKI and ALPINE-SKI. NORDIC-SKI and ALPINE-SKI inherit the in-
stance variables and methods of SK!, and may define some additinnz! iin-
stance variables and methods of their own. Class AL¥INE-SKI in turn has
subclasses RACING-SKI and RECREATIONAL-SKI, and class NORDIC-SK1 has
subclasses TELEMARK-SKI, SKATING-SKI, and TOURING-SKI. RACING-SKI
and RECREATIONAL-SKI in turn inherit the instance variables and methods
of ALPINE-SKI, and TELEMARK-SKI, SKATING-SKI, and TOURING-SKI inherit
the instance variables and methods of NORDIC-SKI. In addition to the in-
stance variables and methods they inherit, RACING-SKI, RECREATIONAL-SKI,
TELEMARK-SKI, SKATING-SKI, and TOURING-SKI may define some additional
ones of their own. In addition, they may override the default values for in-
stance variables that were inherited from their parent.

16 Object-Oriented Database Systems
ski
nordic alpine
ski ski
skating telemark touring racing recreatnonal
ski ski ski ski ski

Figure 4.1: The is-a class hierarchy

17

Chapter 5

Discretionary Access

Controls for
Object-Oriented Database
Systems

Discretionary access control models can be represented by the access matrix
model developed by Lampson in 1971 [13] and further refined by Graham
and Denning [3]. To make it more useful for database systems, the model
was extended with predicates and other components [14, 15, 16]. For exam-
ple, predicates can represent content-dependent access controls that may be
implemented by views. There has been considerable study of the application
of these models to relational databases [6, 15, 17, 11, 16].

Object-oriented database models are much richer and more complex than
the relational model. Thus, many new discretionary security issues are in-
troduced. For example, a fundamental property of object-oriented systems
is inheritance. If a user is authorized to access a class, should that user
also be authorized to access all of its instances or descendants? Should this
inherited authorization also include authorization for attributes that do not
exist in the parent class but were defined in the descendants [18]?

If authorizations are inherited, that is, if authorization for a class implies
authorization for all instances of the class, then we have the undesirable
result that individuals who are authorized for objects that are high up in the
epject hierarchy (n-ar the rcot object) will be consequently authorized for
iuch or all of the database. Thus, there is a need to override these inherited

18 Discretionary Access Controls for OODBMS

authorizations. One way to do this is to use negative authorization, which
is given a higher priority than positive authorization. Another way is to use
explicit authorization to override implicit inherited authorization.

In this chapter we present an approach for discretionary security for
object-oriented database systems. This approach could also be specialized
for use for object-oriented operating systems, which typically do not support
inheritance or support only a limited type of inheritance.

5.1 Related Work

Several research groups have been studying discretionary security for object-
oriented database systems. Won Kim and his group at MCC have developed
a detailed formal model for object-oriented systems using ORION as an il-
lustration (the ORION object-oriented database system was also developed
at MCC) [19]. Implied authorizations are inherited through the object hier-
archy. They introduce the notion of weak and strong authorizations, where
strong authorizations can override weak authorizations. Their mode] also
includes positive and negative authorizations, where negative authorizations
are used to represent explicit denial of authorization. Their approach makes
an important contribution by proposing algorithms for reconciling negative
and positive authorizations through the use of strong and weak authoriza-
tions. Here we have borrowed many of their ideas in an attempt to make
use of inheritance in the discretionary security policy.

Udo Kelter at the University of Hagen in West Germany is developing
models for distributed structurally object-oriented database systems [20]. A
similar model was developed by K. Dittrich and his group at the University
of Karlsruhe in West Germany, for the DAMOKLES database system [21].
The model defines complez objects, which are composed of sets of other
objects as component parts. For example, an object of class BICYCLE is a
composite of objects of class FRAME, WHEEL, HANDLEBARS, FITTINGS, and
SEAT. An object in the wheel class is in turn a composite of objects of class
TIRE, TUBE, RIM, SPOKE, and HUB. A HUB object may be composed of
objects of class BEARING, SCREW, and so forth. Such a database is useful
for describing a CAD or CASE application. In Kelter's model, complex
objects are the units of access control. Authorization conflicts may arise if
complex objects share components. The model also includes a hierarchy of
user groups, and subgroups inherit authorizations from supergroups.

Eduardo Fernandez and his group at Florida Atlantic University have

Discretionary Access Controls for OODBMS 19

developed an authorization mode! for object-oriented semantic databases
specially tailored to OSAM*, a CAD/CAM database system being imple-
mented at the University of Floride (22, 18]. Fernandez’s approack divides
the network of objects into administrative domains. The intent of this ap-
proach is to make the database suitable for large financiai applications.The
model defines authorization inheritance through the object hierarchy. Re-
cent work also considers how to handle negative authorizations and the use
of predicates [23].

J. D. Moffet and M. Sloman at the Imperial College of Londor use a
model that treats administrative users differently from ordinary users of the
data {24]. Their model also includes the notion of object ownership; owners
can grant administrative authorizations. Recently they have considered how
their model may be implemented in a decentralized fashion [25).

5.2 Representing Discretionary Authorizations

One of the first decisions to be made is whether discretionary authorizations
should be attached to objects or stored in sepcrate authorization structures.
Most relational database systems use separate authorization structures. In
an object model, such separate authorization structures could be represented
as a set of objects. With thic approach, we would represent authorizations
as attributes of users and groups. Thus, users and groups are represented
as objects, and their authorizations are represented as instance variables, as
shown in Figure 5.1. Figure 5.1 shows class user to be a subclass of class
group. Instances of the class user would be user objects representing the
individual users of the system. Other insta:ices of the group class would be
the specific user groups that are defined. Each of these group objects would
have a set of instances that would -epresent the individuals belonging to
the group; these would be object-ids for the user objects representing the
individuals. Instances of a group object could also represent subgroups of
the group; these would be object-ids for other group objects.

With this approach, a user inherits the authorizations of all the groups he
or she belongs to. In addition, subgroups inherit the authorizations of their
parent groups. This approach has the drawback that it would be difficult
to irmplement a least-privilege sort of policy.

We take a different approach here. by attaching discretionary authoriza-
tions to the objects thev refer to. This is illustrated in Figure 5.2

In Figure 5.2, a list of individuals and groups would appear as the autho-

20

Discretiorary A~cess Controls for OODBMS

object-id: A112
object-name: group

class: object

instances: A123, Al115
variables: name:
authorizations:

object-id: All5

object-name: user

class: group

instances: Q999, Q123

variables: name:
clearance:
authorizations:
office:

Figure 5.1: Users and groups as objects

object-id:

class:

instances:
variables:
methods:

constraints:

authorizations: < list >

Figure 5.2: Authorizations attached to objects

Discretionary Access Controls for OODBMS 21
rization list. (An individual can be thought of as a group with one member.)

5.3 Inheritance of Discretionary Authorizations

With our approach of attaching discretionary authorizations to the objects
they refer to, an object inherits the authorizations of its parents. What this
means is, if a user is authorized for an object, then the user is also authorized
for the descendants, or instances, of the object. This approach has the
convenience that a user can be authorized for an entire set of objects simply
by authorizing the user for an appropriate class object; it is not necessary
to grant the user authorization for all of the dependent objects individually.

In our approach, discretionary access control attributes are inherited just
as are instance variables and methods. As for instance variables and meth-
ods, an object inherits the discretionary access control attributes not only
of its immediate parent object but also of its parent’s parents, and so on up
the object hierarchy. For an object, additional discretionary access control
attributes can be defined and applied in addition to those that are inher-
ited. In the case of multiple inheritance, an object inherits the discretionary
authorization attributes of each of its parents.

However, intuitively it seems that the type of policy that many appli-
cations would need to implement would be one in which more and more
privilege is needed in order to access objects further down the class hierar-
chy. This is true of the mandatory security models that have been proposed
for object-oriented database systems [26, 27, 28]. These mandatory models
typically include a property that requires that the classification of an object
must dominate that of its parent object(s). Thus, in addition to the conve-
nience of inherited authorizations, we need a way .o restrict or override the
inherited authorizaticns == that users can assign the precise authorizations
desired for an object. We discuss a means of doing this in the next sect.on.

5.4 Negative and Positive Authorizations

One of the requirements in the DoD Trusted Computer System Evaluation
Criteria (1] that appears at Class B3 for discretionary access control is that
users be able to specify which users and groups are authorized for spe-
cific modes of access to named objects, as well as which users and groups
are expliatly denied authorization for particular named objects (see Sec-
tion 2.4). Following the work of Kim et al. 120. 19]. we will call the explicit

22 Discretionary Access Controls for OODBMS

object-id:

class:

instances:
variables:
methods:

positive authorizations: < list >
negative authorizations: < list >

Figure 5.3: An object with its discretionary authorizations

discretionary authorizations positive authorizations and the explicit denials
of authorization negative authorizations.

Just as an object’s positive authorizations are attached to the object, as
shown in Figure 5.2, we also attach the object’s negative authorizations to
the object. Figure 5.3 shows the template of an object with its positive and
negative discretionary authorizations.

In Figure 5.3, a list of individuals and groups would appear under positive
authorizations and negative authorizations. The positive authorizations are
interpreted as “must belong to.” That is, in order to be authorized for the
object, a user must belong to one of the groups in the positive authorizations
Jist. The negative authorizations are interpreted as “must not belong to.”
That is, if a user belongs to one of the groups on this list, the user cannot
access the object.

Negative authorizations can be used to nullify the effects of positive
authorizations. For example, in the object structure shown in Figure 5.4,
the astronauts group is authorized for object 0234. Since authorizations are
inherited, this would imply that the members of the astronauts group are
also authorized for all instances of object 0234, that is, for all spaceships.
However, if we would like to restrict access to the hubble spaceship, which
is an instance of spaceship, so that user glenn of the astronauts group is
not authorized for the hubble spaceship, we can put glenn on the negative
authorizations list for the hubble spaceship. This is shown in Figure 5.4. In
the figure, the entry for the astronauts group that is shown for the hubble
spacecralt object (object 0458) has been inherited from the parent object,
object 0234.

Thus, the use of negative authorizations in conjunction with positive
authorizations allows users to implement policies in which more privilege is

Discretionary Access Controls for OODBMS 23

needed in order to access objects further down the class hierarchy. Negative
authorizations provide a way to restrict the inherited authorizations so that
users can assign the precise authorizations desired for an object.

object-id: 0234
object-name: spaceship
class: vehicle

instances: 0456,0457,0458

positive authorizations: astronauts
negative authorizations: <>

object-id: 0456
object-name: apollo
class: spaceship

object-id: 0457
object-name: enterprise
class: spaceship

object-id: 0458
object-name: hubble
class: spaceship

positive authorizations: astronauts
negative aut.iorizations: glenn

Figure 5.4: The use of negative authorizations

As we mentioned in Section 2.4, there can be difficulties in reconcil-
ing conflicting negative and positive authorizations. In [29]. the concept of
strong and weak authorizations is introduced to deal with this problem. We
adopt this concept as well, as we describe in the next section.

24 Discretionary Access Controls for OODBMS

5.5 Strong and Weak Authorizations

Our approach includes both weak and strong discretionary authorizations,
similar to [29] and [19]. A strong authorization is one that cannot be over-
ridden by another authorization. A weak authorization can be overriddex
by a strong authorization. .

In [2] various means of reconciling positive and negative authorizations
are discussed. One of these is the most-specific rule, which requires that if an
individual user is specifically granted or denied authorization for an object,
this takes precedence over any authorizations for the object that are granted
or denjed to groups to which the user belongs. This is the approach taken
in Multics and proposed for SeaView. With the most-specific rule, negative
authorizations are simply a corvenience in forming the access control lists.
They can be used as follows: if user A wants to make object O available to
everyone in group G except user B, then instead of enumerating everyone
except B in the access control list, A could grant authorization to G and
specifically deny authorization to B.

Another approach discussed in {2] is denials take precedence. With this
approach, a user or group’s denial of authorization for an object takes prece-
dence over any authorizations that the user or group may have been granted
for the object. Under the interpretation that denials take precedence, if a
user A explicitly denies user U authorization for object O (by granting a
negative authorization), and a user B later grants a positive authorization
for O to U, then U will not become authorized. Thus, denial of authoriza-
tion is a strong measure that can be taken to ensure that specific users and
groups cannot obtain authorization to an obiect.

To illustrate the difference in these two policies, consider the object
shown in Figure 5.5. The figure shows an object represer.ting the spaceship
enterprise. The figure also shows that user kirk is on the positive autho-
rization list for the object, and the captains group is on the r.. ative autho-
rization list for the object. Since user kirk happens also to be a member of
group captains, there is a potential conflict between the two lists. With the
most specific rule, since user kirk is a more specific entry than group cap-
tains, then kirk’s positive authorization takes precedence over the captains
group’s negative authorization; thus, kirk is allowed access to the space-
ship enterprise. Thus, with the most specific rule, the two authorization
lists can be interpreted as meaning that no captains are authorized for the
spaceship enterprise with the exception of captain kirk. With the denials-
take-precedence policy, on the other hand. kirk’s negative authorization as

Discretionary Access Controls for OODBMS 25

» member of the caplains group tukes precedence over his positive autho-
rization as an individual; thus, kirk is not allowed access to the spaceship
enterprise.

object-id: 0123
object-name: enterprise
class: spaceship

positive authorizations: kirk
negative authorizations: captains

Figure 5.5: Example: conflicting authorizations

The denials-take-precedence rule could be implemented with our ap-
proach by making all negative authorizations strong and all positive au-
thorizations weak. Thus, with inheritance of discretionary access control
attributes, specifying a negative authorization for a group for a parent ob-
ject ensures that no access to any of the object’s offspring is granted to
members of the group. On the other hand, specifying a positive authoriza-
tion for a group for a parent object does not guarantee that the group will
be authorized for the offspring; in fact, the group will be authorized for the
offspring unless the child object contains a negative authorization for that
group.

The most-specific rule could be implemented with our approach by mak-
ing individual authorizations strong and group authorizations weak.

Both the denials-take-precedence policy and the most-specific policy are
simply two possible policies out of very many possible ways of resolving
conflicts among the positive and negative authorizations. How such con-
flicts should be resolved, whether it be through the use of the denials-
take-precedence policy or the most-specific policy, is an application-specific
choice. Rather than wire in one such choice, it is desirable to allow the
application to specify how such conflicts are to be resolved. To take advan-
tage of the full degree of flexibility possible, we allow specific negative and
positive authorizations to be individually labeled strong and weak, so that
many more policy variations than the two discussed above are possible. Fig-
ure 5.6 illustrates how strong and weak authorizations could be represented

26 Discretionary Access Controls for OODBMS

for individual positive and negative authorizations.

object-id:

class:

instances:
variables:
methods

strong positive authorizations: <list>
weak positive authorizations: <list>
strong negative authorizations: <list>
weak negative authorizations: <list>

Figure 5.6: Strong and weak authorizations

Figure 5.7 illustrates the use of strong and weak positive and negative
authorizations to implement a policy that says that all captains except cap-
tain kirk are to be denied authorization to the spaceship enterprise.

object-id: 0123
object-name: enterprise
class: spaceship

strong positive authorizations: kirk
weak negative authorizations: captains

Figure 5.7: Negative and positive authorizations

5.6 Direct Conflicts of Authorizations

It is possible for negative and positive authorizations to conflict. if they are
both weak or both strong. For example. in Figure 5.7, if a user could list

Discretionary Access Controls for OODBMS 27

the captains group as a strong negative avthorization, rather than as a2 weak
negative authorization, there would still be an unresolved conflict. Ideally,
the proper assignment of weak and strong authorizations would be used
to avoid this situation. However, it may not be obvious at the time that
an authorization is granted or revoked that a resulting conflict may occur.
Thus, it would be useful and appropriate to include in the object-oriented
database system a tool that would analyze the authorizations for an object
to detect conflicts. A user would be notified if the result of his or her grant
or revoke operation would result in a conflict, so that either the grant/revoke
operation would not take effect or the situation would be remedied. One
mechanism for doing this would be to have integrity constraints on the
authorization lists. These constraints would be part of the root object and
inherited by every object in the system.

Since it is possible for such a tool to detect and prevent such conflicts, our
approach will assume that such conflicts do not exist, and that strong and
weak negative and positive authorizations have been assigned appropriately
so as to eliminate conflicts.

5.7 Representing Groups

To implement the policy described in the preceding sections, the system must
know which users belong to which groups, and which groups are subgroups
to which other groups. We represent users and groups as objects, as shown
in Figure 5.8. Figure 5.8 is similar to Figure 5.1 except that discretionary
authorizations are no longer attributes of user and group objects. Thus,
the figure shows class user to be a subclass of class group. Instances of
the class user would be user objects representing the individual users of the
system, as shown in Figure 5.9. Other instances of the group class would be
the specific user groups that are defined, as shown in Figure 5.10. Each of
these group objects would have a set of instances that would represent the
individuals belonging to the group; these would be object-ids for the user
objects representing the individuals, as shown in Figure 5.11. Instances of
a group object could also represent subgroups of the group; these would be
object-ids for other group objects; see Figure 5.10.

Note that in Figure 5.11 the user objects E123,E 234, and E456 have
two parent objects: payroll and user. Thus, Figure 5.11 shows that the user
objects inherit the instance variables of the user class as well as those of the
group class.

28 Discretionary Access Control: for QODBMS

object-id: A112

object-name: group object-id: Al15

class: object object-name: user

instances: A123, A115 | class: group

variables: group name: | instances: Q999, Q123

admin: address: username:

phone:
office:

Figure 5.8: Representing users and groups

Arbitrary user attributes can be specified as part of the user class; those
shown in Figure 5.8 are simply examples. Some other user attributes that
the application might desire to specify could be job, department, projects,
location, integrity level, and hire-date. Thus, the system should allow the
specification of the user class to be customized by the system security ad-
ministrator or database designer.

5.8 Access Modes

The discussion above of negative and positive and weak and strong autho-
rizations was simplified somewhat, in that we assumed that the authoriza-
tion lists contain simply lists of users and groups. However, rather than
assign blanket authorization for an object to a user or group, most security
policies require the ability to assign specific modes of access for the object to
users and groups. Thus, in the authorization lists attached to objects, there
must be not only a designation of which users and groups are so authorized,
but an indication of which specific modes of access they are authorized.
Thus, each of an object’s authorization lists is actually a set of lists, each
for a specific access mode, as shown in Figure 5.12. Some access modes, such
as create-instance, are relevant for all objects; slots for these are inherited
from the root object. Other access modes are relevant to a particular object
class and its methods. The particular access modes may correspond one

Discretionary Access Controls for OODBMS

object-id: A115
object-name: user

class: group

instances: E999, E123, E456

|username:
| address:
phone:
office:

object-id: E999
object-name: jane roe
class: user

object-id: £123
object-name: emily foster
class: user

object-id: E456
object-name: gary smith
class: user

{username: gsmith

|| |address: 12 main street |
phone: 327-1234

office: EJ120

Figure 5.9: Users as objects

29

Discretionary Access Controls for OODBMS

object-id: A112
object-name: group

class: object

instances: A123,A115,A335
variables: groupname:

object-id: A123
object-name: personal
class: group

object-id: Al115
object-name: managers
class: group

L object-id: A335
object-name: finance

class: group

instances: G123,G234,G456

groupname: finance

object-id: G123
object-name: accounting
class: managers

object-id: G234
object-name: planning
class: managers:

— |object-id: G456
object-name: payroll

class: manager
-J instances: E123.E234,E456

groupname: pavroll

Figure 5.10: Groups and subgroups

Discretionary Access Controls for OODBMS

object-id: G456
object-name: payroll
class: managers

instances: E123,E234,E456

[groupname: payroll

object-id: E123
object-name: dave miller
class: payroll, user

object-id: E234
object-name: steve lunt
class: payroll, user

object-id: E456
object-name: brenda murphy
class: payroll, user

groupname: payroll

L] username: bmurphy

username: payroll

L address: 6 fifth ave
phone: 654-9876

office: BS145

Figure 5.11: Members of a group

31

32 Discretionary Access Controls for OODBMS

to one with the methods defined for the object. Alternatively, a smaller
number of access modes could be defined, with each access mode relcvant
to a set of an object’s methods. Figure 5.12 illustrates the structure of
the authorization lists. In Figure 5.12, each list is a list of user and group
identifiers. :

Although the amount of authorization information that must be stored
with each object appears from Figure 5.12 to be enormous, in practice the
use of inheritance eliminates the need for storage of redundant data. Because
most of the authorization information is inherited from the parent objects,
only the additions to the authorization need be actually attached to any
instance.

5.9 Control of Propagation of Authorizations

The topic of the control of propagation of discretionary authorizations is
concerned with who has the authorization to change an object’s authoriza-
tion lists. This is controlled through the use of the special access mode
“modify_ACL.” Only subjects authorized for the modify_ ACL mode can al-
ter the weak and strong positive and negative authorization lists (with the
exception of the modify_ ACL authorization lists) for the object in question.
We also propose the use of a give-grant mode, as in SeaView, to control the
propagation of discretionary authorizations (see Section 3.1). Only subjects
authorized for the give-grant mode can alter the modify ACL authorization
lists for the object in question.

To provide the user with a choice when revoking authorizations, separate
functions would be provided for simple revocation and cascaded revocation.

5.10 Default Access Control Rules

Because authorizations are inherited, authorizations that are defined for
the root object can be considered default access control rules. Weak and
strong negative and positive authorizations assigned to the root object will
be inherited by all other objects in the system. These default authorizations
can be restricted or overridden by authorizations that are defined for objects
lower in the object hierarchy.

Similarly, different default access control rules can be specified for large
portions of the object hierarchy simply by making entries in the authoriza-
tion lists for objects sufficient]ly high up in the object hierarchy.

Discretionary Access Controls for OODBMS

strong positive authorizations:
create-instance: <list>
delete: <list>
modify: <list>
methodl: <li-* .-
method2: <list>
etc.

weak positive authorizations:
create-instance: <list>
delete: <Lst>
modify: <list>
methodl: <list>
method2: <list>
etc.

strong negative authorizations:
create-instance: <list>
delete: <list>
modify: <list>
methodl: <list>
method2: <list>
etc.

weak negative authorizations:
create-instance: <list>
delete: <list>
modify: <list>
methodl: <list>
method2: <list>
etc.

Figure 5.12: Avthorization lists

34 Discretionary Access Controls for OODBMS

ot .cause the authorizations tha. are d-fined for tkLe root object affect the
rules of access to all the objects in the system, it is important that they
not oe changed capriciously. Thus, autho:ization to modify such authoriza-
tio s should be restricted to a few specia! u ers. This should be controlled
by Lsting only one small group on the positive authorization list for the
modify . ACL access mode for the root ot ject.

5.11 Discretionary Constraints

The discretionary ac. -ss controls discussed in the previous sections can be
extended to include named discretionary constraints. These discretionary
constraints could be named on an object’s authorization lists in the same
way as user and group names. The names could refer to rules, defined
elsewhere in the system, that can be value dependent, contain expressions
having group-id variables, contain expressions that refer to other related
objects, use logical connectives (groupl or group2), and so forth.

Possibly conflicting discretionary constraints can be resolved in the same
way as is done for users and groups. That is, constraint names can be placed
on the strong positive, weak positive, strong negative, and weak negative
access control lists. Then, the constraints on the positive lists are used to
compute who has authorization, while the constraints on the negative lists
are used to compute who does not have authorization; the constraints on
the weak lists can be overridden by the constraints on the strong lists.

The discretionary constraints would be inherited just as the other user
and group authorizations are inherited. If an object has more than one
direct parent, then the issue arises of how to combine the effects of the rules
inherited from the different parents; this is a topic for further research.

Discretionary constraints can be used to allow or deny access on the
basis of user identity, user attributes, user role, niser group, location, object
name, object attributes, object value the value of related objects, time of
day, date, application name, and so on. Constraints may refer to other
constraints and ma) use system-defined or externally defined functions.

35

Chapter 6

Some Extensions

We have presented a flexible approach to specifying discretionary security
policies in object-oriented database systems. In this chapter we present a
means of providing some additional flexibility to users, and we also advocate
the use of a roles mechanism such as that described by Robert Baldwin [5]
(see Section 2.2) for simplifying security management in the resulting sys-
tem.

6.1 Associating Subjects with User and Group
Privileges

Given the set of strong and weak negative and positive authorizations for
users and groups, some rule must be applied for deriving authorizations for
subjects. This is especially important in the general case in which a user
may belong to several different groups. The rule that is used is likely to
depend on the specific needs of the application.

Thus, in a system such as we have described in this report, users should
be given a choice of how subject authorizations are derived from user and
group authorizations.

We have already discussed the use of strong and weak negative and
positive authorizations to control the interaction of individual and group
authorizations. However, the following choices still remain. A subject can:

¢ Assume the union of the user’s individual authorizations and those of
all the groups to which the user belongs

36 Some Extensions

o Assume some subset of the union of the user’s individual authoriza-
tions and those of all the groups to which the user belongs (this choice
must be designated by the user or application at the time of subject
invocation or must be predesignated by the application)

¢ Assume the union of the user’s individual authorizations and of a single
group to which the user belongs (this group must be designated by
the user or application at the time of subject invocation or must be
predesignated by the application)

¢ Assume either the user’s individual authorizations or those of one of
the user’s groups (this choice must be designated by the user or appli-
cation at the time of subject invocation or must be predesignated by
the application)

The system should present users with the appropriate choices, rather than
wiring in a particular choice that may not be suited to the needs of all or
most applications.

Note that unless the system can restrict a user to having a single subject
active at a time, these choices cannot be used to implement roles or sepa-
ration of duty simply by using groups. To implement roles, an additional
capability is needed. This is discussed in the next section.

6.2 Roles

In Section 2.2 we discussed the difficulty of administering security in a re-
lational database system. As is evident from the discussion in the preced-
ing chapters, administering security is far more complex in object-oriented
database systems, especially given the degree of flexibility we propose in this
report. Unfortunately, added flexibility implies added complexity. Thus, a
system taking the approach we advocate here also needs some tools to sim-
plify the administration of security.

We advocate the use of toois similar to the ANSI SQI roles facility and
the use of named protection domains (NPDs) described in Section 2.2. For
example, a named protection domain can be defined for each application-
specific role. The NPD would contain the strong and weak positive and
negative authorizations that are required to define each role. The applica-
tion designer would design each NPD so that it contains only those specific
authorizations required by the role.

Some Extensions 37

For example. the named protection domain SALARY-CLERK could con
tain a weak positive authorization to invoke the increment-salary method
on the salary object for the nonmanager instances of salaryv: it could contain
strong negative authorizations for the increment-salary and review-salary
methods on the manager instances of salary and for the increment-salary
method on the clerk’s own salary. The named protection domain SALARY-
CLERK could then be granted to the relevaut individuals or groups. Thns.
the authorizations assaciated with a salary clerk can be granted and revoked
by a security administrator in a straightforward manner, without knowledge
of the underlving objeet lierarchy and its authorization lists. If the syvstem
is desiened so that only one NPD can be active at any one tine, then it be-

comes possible 1o enforee a separation-of-duties policy with this mechanism.

6.3 Ownership

Ownership policies generally authorize only the owner of an object for cor-
tain operations on the object. The specifie set of operations that define
ownership mav, however, he application dependent. Thus. a facility that
allows users to define object ownership in terms of specific strong and weak
negative and positive anthorizitions is desirable. This facility could nse the
named protection domain concept desceribed above.

In addition 1o ownership. most database svstems include a number of
other svaten-defined voles. sueli as system administrator. security adminis-
trator. and database adininistrator. The named protection domain facility

could alvo he used to allow users to castomize these roles for their needs.

39

Chapter 7

Conclusions

This report presents a flexible approach to discretionary access control for
object-oriented database systems. This approach allows users to implement
arbitrary application-specific access control policies. The approach is suffi-
ciently general to allow users to implement policies that are tailored to their
application, rather than having to work around a specific policy that is
wired into the computer system. Because each such specifiable policy is im-
plemented with a common mechanism, each can be enforced with the same
degree of assurance. The capability for a single system to enforce arbitrary
application-specific discretionary security policies would materially increase
the security of database systems by allowing users to rely on the evaluated
system-provided mechanisms to enforce their specific policies, rather than
having to encode such policies in the (perhaps untrustworthy) applications
themselves.

Future work could take several directions. The model suggested here
could be formalized. A specific object-oriented system could be selected for
which a design of the discretionary security mechanisms outlined here could
be produced. The concept of discretionary constraints could be explored
further.

Bibliography

(1)
2]

[3)

[4]

(5]

(6]

(7]

(8]

[9)

Department of Defense Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD. Department of Defense, December 1985.

T. F. Lunt. Access control policies: Some unanswered questions. Com-
puters and Security, February 1989.

G. S. Grabam and P. J. Denning. Protection—principles and practice.
In Proceedings of the Spring Joint Computer Conference, volume 40,
Montvale, New Jersey, 1972. AFIPS Press.

C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A security model for
military message systems. ACM Transactions on Computer Systems,
2(3), August 1984.

Robert W. Baldwin. Naming and grouping privileges to simplify secu-
rity management in large databases. In Proceedings of the 1990 IEEE
Symposium on Research in Security and Privacy, May 1990.

D. D. Downs, J. R. Rub, K.C. Kung, and C.S. Jordan. Issues in dis-
cretionary access control. In Proceedings of the 1985 IEEE Symposium
on Security and Privacy, 1985.

R. D. Graubart and J. P. L. Woodward. A preliminary naval surveil-
lance DBMS security model. In Proceedings of the 1982 IEEE Sympo-
sium on Security and Privacy, April 1982.

T. F. Lunt. Access control policies for database systems. In C. E.
Landwehr, editor, Database Security II: Status and Prospects. North
Holland, 1989.

T. F. Lunt, D. E. Denning, R. R. Schell, W. R. Shockley, and M. Heck-
man. The SeaView security model. JEEE Transactions on Software
Engineertng, June 1990.

Bibliography 41

[10] T.F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D. Warren.
A near-term design for the SeaView multilevel database system. In
Proceedings of the 1988 IEEE Symposium on Security and Privacy,
April 1988.

[11] P. P. Griffiths and B. W. Wade. An authorization mechanism for a
relational database system. ACM Transactions on Database Systems,
1(3), September 1976.

{12] P. A. Rougeau and E. D. Sturms. Sybase secure dataserver: A solution
to the multilevel secure DBMS problem. In Proceedings of the 10th
National Computer Security Conference, September 1987.

(13) B. W. Lampson. Protection. In Proceedings of the 5th Princeton Sym-
posium on Information Science and Systems, March 1971, Reprinted
in ACM Operating Systems Review, Vol. 8 (1), January 1974.

[14] R. W. Conway, W. L. Maxwell, and H. L. Morgan. On the implemen-
tation of security measures in information systems. Communications of
the ACM, 15(4), April 1972,

(15] E.B. Fernandez, R.C. Summers, and C.D. Coleman. An authorization
model for a shared data base. In Proceedings of the 1975 ACM SIGMOD
International Conference, 1975.

(16] H.R. Hartson and D.K. Hsiao. A semantic model for database protec-
tion languages. In Proceedings of the Second International Conference
on VLDB. North-Holland, 1976.

[17] E. B. Fernandez, R. C. Summers, and C. Wood. Database Security and
Integrity. Addison-Wesley, Reading, Massachusetts, 1981.

(18] H. Song, E. B. Fernandez, and E. Gudes. Administrative authorization
in object-oriented databases. In Proceedings of the EISS Workshop on
Database Security, European Institute for System Security, Karlsruhe,
W. Germany, April 1990.

[19] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A Model of Authoriza-
tion for Nezt Generation Database Systems. Technical Report ACA-
ST-395-88, MCC, November 1988.

42 Bibliography

[20] U. Kelter. Group-Oriented Discretionary Access Controls for Dis-
tributed Structurally Object-Oriented Database Systems. Informatics
Report N 93, Fern Universitat Hagen, Hagen, Germany, 1990.

[21] K. R. Dittrich, M. Hartig, and H. Pfefferle. Discretionary access control
in structurally object-oriented database systems. In Proceedings of the
ond IFIP WG11.8 Workshop on Database Security, October 1988.

[22] M.M. Larrondo-Petrie, E. Gudes, H. Song, and E. B. Fernandez. Se-
curity policies in object-oriented databases. In Database Security III:
Status and Prospects, D.L. Spooner and C. Landwehr (Eds.). Elsevier,
1990.

(23] E. Gudes, H. Song, , and E. B. Fernandez. Evaluation of negative and
predicate-based authorization in object-oriented databases. In Proceed-
ings of the 4th IFIP WG11.8 Workshop on Database Security, Septem-
ber 1990.

[24] J. D. Moffet and M. S. Sloman. The source of authority for commercial
access ccutroi. Computer, 21(2), February 1988.

(25] J. D. Moffet and M. S. Sloman. Delegation of Authority. Domino
rept. B1/IC/4, Dept. of Computing, Imperial College of Science and
Technology, London, July 1990.

[26] T. D. Garvey and T. F. Lunt. Multilevel security for knowledge-based
systems. In Proceedings the EISS Workshop on Database Security, Eu-
ropean Institute for System Security, Karlsruhe, W. Germany, April
1990.

[27] T. F. Lunt. Multilevel security for object-oriented database systems.
In D. L. Spooner and C. E. Landwehr, editors, Database Security III:
Status and Prospects. Elsevier, 1990.

[28] J. K. Millen and T. F. Lunt. Secure Knowledge-Based Systems. Tech-
nical Report SRI-CSL-90-04, Computer Science Laboratory, SRI Inter-
national, Menlo Park, California, August 1989.

[29] F. Rabitti, D. Woelk, and W. Kim. A model of authorization for object-
oriented and semantic databases. In Proceedings of the International
Conference on Ezrtending Database Technology, 1988.

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C3I) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3I systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

