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OBJECTIVE: Multiple corvolution of signals (sonar or radar) has been analyzed as a nonlinear

preprocessing technique for source localization from arrays of receivers, for time-delay estimation in

general, and for spectral estimation of nonstationary signals. The method has proved successful by

computer simulation for many troublesome cases as a supplement to MUSIC (and its adaptations) and

as a simple alternative (or representation of) the Wigner-Ville distribution.

Also, a new two-dimensional (image) processing method is being investigated by a transformed

two-term Volterra series algorithm. The method appears promising for such applications as underwater

green-laser data processing and other cases involving spatially coherent light and related nonlinear

terms.
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ISSUES

The project goal originally was for the development of nonlinear array processing for better source

localization. In regards to traditional high-resolution techniques such as MUSIC, it was found that

difficulties are common due to low numbers of receivers, multiple sources in close proximity, partially

coherent signals, spatially and/or time correlated noises and low signal-to-noise ratio. A theoretical

development was made to show that multiple-autoconvolutlon of received signals signiticantly enhances

the resolution of the MUSIC algorithm and its various adaptations In many troublesome cases.

Theoretically, each convolution would double the resolution for time-delay or direction-of-arrival

estimation at the sacrifice of halving the search window. Of course, finite-data signals and noise

distortion cause other errors. Fortunately, the convolution operation amplifies coherency in the signal

(preserving the phase) and attenuates the noise. In reality, a single convolution followed by simple

windowing is most successful. This is particularly true for nonstationary signals and noise. (I.e., signal

phase and noise statistics are time variant.)

It is interesting and potentially very useful that the time-windowed, autoconvolved s'gnal followed

by a frequency-windowed Fourier transform results essentially In the Wianer-Ville distribution (WVD). A

preliminary analysis indicates that the simple operation of autoconvolution can enhance spectral

estimation of nonstationary signals in a simpler but analogous way to the WVD.

TECHNICAL APPROACH

(a) Delay Estimation

Consider two signals S1 (t) and S1 (t-D) which are measured with additive zero-mean noise V1(t)

and W1(t) (independent of signal S1 (.) and delay D) so that

F3
X1(t) = S1(t) + V(t)

Y1 (t) = SI(t-D) W1(t) -
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Traditionally, crosscorrelation of x1 (t) and y1 (t) (first-order method, FOM) Is used to estimate time delay

D. While windowing techniques may enhance the estimate D somewhat it is Indicated here that simple

autocorrelation is also successful.

Mth-order signals may be generated from x1 , Yv by convolution such that

X2 =Xi * X, Y = Y * Y

XM = XM-1 * Xi, YM = Y-1 * Y

If x1 is a sequence of N points, xm would have 2 m-1 (N-i) + 1 points.

Suppose

X1(t) = ae-ij)t , YI(t) ae-W(t-D)

Then,

XM(t) = aMe-it , YM(t) aMe -ft-MD)

or more generally

YI(t) = XI(t-D) -YM(t) = XM(t-MD)

Strictly speaking, of course this holds only for continuous signals of infinite duration.

Crosscorrelation between xM and YM yields a peak at MD. If the FOM resolves the time delay for

D < 2r/w, SOM is limited to 2D < 2x/., but with theoretically doubled resolution. MSE improvement

in the noise free case is limited to M2 with M convolutions.

(b) Power Spectrum Estimation

Consider

X(t) = a(t) exp4(t)

where 4(t) is real and a(t) is positive and real. The Fourier transform at t may be estimated by the

following, where H(u) is i positive, real function:
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F(tw) = If H(u) X (t , u)e-u du.

The WVD is a time-frequency distribution which provides an unbiased spectrum estimate by

W(t,W) = f H,(u) X (t - u/2) X (t + u/2) e -iwu du ,

where the overbar denotes conjugate. Traditionally, time smoothing also is used to improve the estimate

so that

W(t,()= fH 2() [fH,(u) X (t + - u/2) X (t + r + u/2) e -l' du]d-,

or

W(t,) = fH1 (u) (fH 2(z) X(t + - u/2) X (t + r u2) dr] e-A, du

Similarly, a windowed, short-duration convolved signal yields

Y(t) = fH2() X (t2 - -) X (t/2 + -) d,

and a short-time windowed Fourier transform yields the spectrum of Y(t) from X(t/2)

C(t. ) = fH,(u) [fH2 (r) X ((t + u)/2 - _) X ((t + U)/2 + r) dv] e -Ju du

Similarly, the power spectrum related to X at time t is

C,(2t.j) = ff H,(u) H2(Z) X (t + u/2 - r) X (t + u/2 + z) e-4"udv du

If X(t) is a pure wave of frequency w., these expressions simplify and are equivalent with

W5(tco) = 8((0o) ff H2(T) H,(u) du dr

and

c,(2tw) = 6(wo) ff Hu) H2(r) dr du
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Hence, convolution over H2(r) followed by Fourier transform over H1 (u) is analogous to WV'D over Hj(u)

and smoothed in time over a window H2(-T).

TECHNICAL ACCOMPLISHMENTS

Table A compares the mean error (ME) and MSE for FOM, SOM (in windowed 199 points) and

SOM (59 points) with three levels of signal-to-noise ratio when the signal is a single sinusoid. Table B

considers the same comparisons for an exponentially damped sinusoid. In both cases, the noise is

Gaussian or uniform, 100 real data points are measured, sampling rate is 18 points/period, and Monte

Carlo simulations are performed over 300 runs. Superiority of appropriately windowed SOM is apparent.

Figure 1 compares the spectrum estimate for backscatter sonar data by short-time Fourier

transform, by autoconvolution, and by smoothed WVD. Figures 2 and 3 show how autoconvolution

enhances periodicities for the data used in Figure 1.

SIGNIFICANCE

The following have been found for various restricted classes of problems:

1. Multiple convolution can be utilized to enhance signal coherence and attenuate noise

distortion such as delay or dfrection of arrival estimation.

2. Single autoconvolution seems to enhance direction of arrival resolution by MUSIC in

many troublesome cases which include combinations of multiple sources in close

proximity, partially coherent sources, small numbers of receivers, low signal-to-noise

ratio, spatially and/or time-correlated noises, and small number of samples.

3. The autoconvolution method, for successful application discussed here, is quite

sensitive to windowing forms. But the window can be most simple.

4. For spectral estimation of nonstationary processes, the windowed (time and fre-

quency) single autoconvolution offers similar resolution to WVD. In fact, the two

methods are practically equivalent, but autoconvolution seems simpler.
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Table A. Periodic signals

S/N Exact FOM (100) SOM (199) SOM (59)
inla

dB ME MSE ME MSE ME MSE

No 5 0 010 0 0 0

533 0.33 0.11 0.17 0.027 0.17 0.027

_ 5.5 -0.5 0.25 0 0 0 0

-3 dB 5 -0.42 1.92 -0.23 0.848 -0.028 0.341

5.33 -0.08 1.82 -0.02 0.852 -0.039 7, 7 11

5.5 -0.03 1.63 -0.011 0.833 -0.017 0.396

-9 dB 5 0.133 5.65 -1.15 5.69 0.172 2.35

5.33 0.01 5.62 1.41 7.12 -0.265 2.74

5.5 -0.13 5.69 -1.65 8.27 0.317 2.82

Table B. Nonperiodic signals

S/N Exact FOM (100) SOM (59) Short SOM (20)
in DelayIdB ME MSE ME MSE ME MSE

No 5 0 0 0 0 0 0
Noise5.33 0.33 0.11 0.17 0.027 0.17 0.027

5.5 -0.5 0.25 0 0 0 0

-3 dB 5 0.333 7.69 0.537 4.47 0.122 2.44
9 t

Sample 5.33 -0.36 7.54 0.666 5.15 0.111 2.65

# 1 5.5 10.221 6.23 0.705 5.16 0.001 380

Sample 5.33 1.47 18.82 1.46 8.41 -0.78 6.36

#1 5.5 1.19 17.62 -1.38 8.34 -0.89 689
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Figure 1: Frequency spectrum of backscatter sonar data, 256 points processed
Thick line. short time Fourier transform
Thin line: autoconvolution method
Dotted line: smoothed WVD

Figure 2: Barkscatter sonar data, real part, 256 samples.

Figure 3: Backscatter sonar data, real part of the 32-point autoconvolved signal.
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5. Bilinear Volterra analysis can be useful for two-dimensional (image) data processing.

In conjunction with singular-value decomposition, the method presents a good base

for future research.

PUBLICATIONS AND PRESENTATIONS

Details of the autoconvolution supplement for angle of arrival estimation and its performance

comparison with MUSIC alone is available in reports (OSU-EE-ONR Reports 90-1,2) previously submitted

to ONR. Several recent papers and books have evolved wholly or In part from this project [1]-[11].

New papers and reports are in progress particularly related to real applications, nonstationary spectral

estimation, and two-dimensional (image) processing. The submitted report OSU-EE-ONR Report 90-3

provides substantial foundation for the latter.

The applications of these algorithms to Navy data analysis was discussed with staff members at

NOSC ii May and at China Lake in July. Both presentations received careful scrutiny but enthusiastic

interest.
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Appendix

Examples of simulated resolution of the direction of arrival problem

for two sources are presented here.

Sampling rate IMHz,
Linear array of 3 sensors.
Distance between seuzors : D - 600m (half wave lenght)
Propagation speed C - 300.000 km/s.

o Independent Gaussian noise of amplitude SN - 0.4
(Le. variance of 0.32)

Independent sources 31 and 32 of amplitude S I and S2.

:SI -42
Frequency : 2 pure complex waves at 250

t62.5 Hz.
Impinging angle: 60.

S2 :$2 - 2

Frequency: 1 pure complex wave at 250 Hz.
Impinging angle : 0.

As the two sources get closer, the peaks get smaller and wider untiU

the point where the sources are not distigishible. Then. unable to separate

the sources, the peak grows higher and thinner between the actual source
placements.

The resolution limit, at which two maxima are distinguishible is at

about 4.50 .



(Standard 1)
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For the second order, the resolution limit is under 1.30 , that is four
times better than for the first order.

The relative strengths of the sources, as weil as the bias drift are
oppusite compared with the first order (previous page). It suggests a way
to reduce the bias by comparing the results of both methods.., provided
that the first order is able to distinguish sourcesl



(Standard 1)
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Te comparison is conducted almost at the resolution limit of the

second order.

The superiority of the second order is dear.

The third and fourth order are not as good
as the second order. The second order shows the highest peak but is at the
verge of detecting the second source, as the log plot shows (next page). The
fourth order is also Limit, but at a too low level

: Though the second order can be thought of
as an artificial way of doubling the array length (aperture), it preforms
much better than the actual doubling of the array length, and the array
musL be quadrupled in lengLh to obtain similar results,



(Standard 1 with sources at 00 and 1.30)
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The following figures show how resolution is affected by a higher
correlation between the two sources, for a constant signal power. The
second order method always shows better results. Note that the correlation
also produces an increased bias according to the fourth figure.
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(Standard 1, sources at 00 and 60)
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