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ABSTRACT

The research project has been initiated to develop a numerical algorithm and conduct a
broad investgation of flow structures and their interactions with moving and ejecting objects. The
numerical method is based on a spectral element approach applied to the unsteady, incompressible
Navier-Stokes equations. The equations are adopted for a moving mesh system that allows the
mesh to adjust dynamically to changing geometry. The method has been used to study flow pat-
terns and forces on moving objects. Among the investigated cases are: two- and three-dimensional
piston pumps, flew tircugh an osciliaung cnannel, an oscillaung cylinder in a still fluid, an oscil-
lating cylinder in a uniform flow, and an ejecting object from a silo.
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INTRODUCTION

Real flow cases with objects deforming or moving within the flow are quite common. Ma-
chines with moving parts, structures deforming or vibrating in the wind or water current, artificial
heart pumping blood, opening and closing valves, aircraft dropping bombs, submarines ejecting
torpedoes or launching missiles. These examples represent but few. Numerical simulations of such
cases are not common due to reladvely high complexity of the geometry involved, numerical dif-
ficulties with handling nonstationary meshes, high complexity of the unsteady flow fields, and
large CPU demands. Even experimental investigations are reladvely rare and the evidence in liter-
ature is even more limited due to the fact that some of the research involved classified data or re-
suits. In many cases, the scientific rewards for the unavoidable significant research effort might not
be as atractive as in more traditional areas.

In this study, the primary focus was on phenomena associated with ejection of objects into sur-
rounding fluid. However, several other cases were investgated for comparison of numerical and
experimental results and to determine overall possibility of such investigations.

The spectral element method [1-9] was adopted for this investgation. The method was refor-
mulated to allow the deformations and motion of the numerical mesh which followed the moving
objects. Initially, a piston pump was simulated (two- and three-dimensional) to provide a test case
for the method and to allow qualitative comparisons with existing experimental evidence [10,11].

The problems of underwater motion, ejection, and separation has been the focus of several in-
vestigations [12-20], primarily associated with military applications such as launches from subma-
rines of missiles or torpedoes. More general applications are associated with oscillating slim
underwater structures (21-29] such as cylindrical supports of oil platforms and bridges. That cate-
gory includes also toll buildings and chimneys subjected to the forces resuiting from air flow.

This investigation simulated and analyzed many of those type of flows with results described
in the following sections. The analysis in most cases could not be extensive due to the very large
CPU tme needed to advance the simulaton. Unfortunately, this is the primary limiting factor in
advancing the numerical analysis for cases linc the ones mendoned above beyond research intesest
to result in a design tool.




NUMERICAL APPROACH

The numerical method implemented for this project is based on the spectral element method
which is a blend of a spectral approach (1,2,3] and finite clement technique. The spectral element
technique underwent many modifications from its inital formuladon (4,5] to expand the realm of
applicadons. The approach resembles the h-version of finite elements [6]; however, due to spectral
local expansions, it is much more accurate and suitable for complex flow simuladons [7-8].

As in finite elements, the approach breaks the domain into a series of subdomains mapped from
the physical space (x,y,z) into local space (r,s,t) where they are a regular cubes ranging from -1
+1 along each axis. The geomeay, velocity, and pressure are represented as tensor-product high
order Lagrangian interpolants (based on Legendre polynomials) through Gauss-Lobatto points.
Those points are the roots of the first derivatve of the Legendre polynomials and the end points.
The equations are formed for each subdomain (element) and then combined into a global matrix
system using the direct saffness method (as in finite elements).

The approach uses the unsteady, incompressitle Navier-Stokes equadons (9] which together
with mass conservadon have the following form:
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where: X )
V =i +vaj + v3k = velocity
p = smfc pressure
p = density
v = kinematic viscosity

F; = body force




To solve the system, a splitting scheme is implemented with the following steps:

- nonlinear step:
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- pressure step.
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- viscous step:
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The non-linear step is solved explicity using the third-order Adams-Bashforth approach (no
boundary conditons are needed here):
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where Cg=23/32, C;=-16/12, C=5/12.

The system above performs sarisfactorily if the Couwrane zur-ber ( -&x—) is nor arier ihan O .

The pressure step is solved implicitly. The known pressure is imposed at input as Dirichlet bound-
ary conditdon with natural boundary condinons everywhere else. The viscous step is solved using




Crank-Nicholson approach with the required boundary conditions on velocity. At the outflow, the
natural boundary conditions are imposed.

To allow dynamic changes of the mesh during simulaticns, the momentum equations must be
modified to account for that additional mogon. To achieve that, the new positions of the deforniing
mesh (moving mesh points) must be known. Together with the previous positons, the informagon
is sufficient to find the new velocity and pressure fields at mesh points in the new locatons. The
reformulation of the momentum equation is fairly straightforward and does not add significandy
to the complexity of the regular spectral element codes.

Let 2 = f(%,t) to be the old posidon of the mesh and x = f(x, ) to be the new posidon of
the mesh. The old nodal velocity would then be ¥ = ¥ (%, 7) and the new nodal velociry would
then be v = v (x, t). With these, the momentum equaton at the new position with respect :o the

old positon is given as:
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mesh. Withe these, the final form of the momentum equations 1s as follows:
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During flow simulation, the new position of the mesh is determined, the above coefficients are
calculated and the new flow field is computed. The extra work associated with the moving mesh 1s
reladvely small. probably no more than 5% in CPU time. The benefit of this approach is that no
additional approximations are necessary and that the flow field “follows™ the mesh.

One must be careful not to allow the mesh to deform too much. If the deformatons are t0o ex-
cessive, the errors due i *F~<e deformation might cause serious problems for accuracy and most

of all for convergence of iteratve soivers.




NUMERICAL SIMULATIONS

The study involved several cases of flows associated with moving geometries. Most of the cas-
es were investigated to determine the method’s performance and ability to handle such flows. The
numerical results were compared when possible with existing experimental evidence. Both two-
and three-dimensional cases werc considered.

Two-Dimensional Piston Pump

The two-dimensional piston pump (Figure 1) has a mesh with 26 spectral elements, 25 of them
constitute the inside of the cylinder and the 26th element resides in the inflow neck. Each element
has 125 nodes; the top and the bottom of the geometry are curvilinear to resemble an actual pump.

During a pumping cycle, the volume increases 2.6 times with respect to the initial volume. The
numerical conditions on pressure impose a fixed pressure at inflow; therefore, an area around the
center of the piston surface has been designated as “numerical” inflow with velocity equal to the
velocity of the piston itself. This arrangement fixes an area with the reference pressure (here set to
zero for convenience) and preventing any flow through the piston surface. The flow may enter or
exit only thrcugh the inflow neck.

The motion of the piston is enforced to follow a cosine curve. The peaks of the piston’s dis-
placement correspond to zero velocity. The maximum velocity occurs in the midpoint of the piston
cycle. One piston cycle takes 1500 time steps which corresponds to 46.75 time units for the code.
In SUN 3/50 CPU ume, it requires 84 hours to run a full cycle. The velocities on the moving piston
surface are calculated every step and imposed appropriately for the flow calculations.

As expected, the rapid expansions and contractions of the pump volume are creaung complex
vortex structures (Figure 2). To avoid the influence of the initial conditions, the results are recorded
starting with the third cycle of the simuladons.

Three-Dimensional Piston Pump

The mesh for the pump contains 57 spectral elements (Figure 3) with 125 nodes each. As in the
two-dimensional case, the mesh has four layers of elements with thirteen elements per layer. The
surface of the piston and the head of the cylinder chamber are curvilinear. The inlet has five ele-
ments in it. The pump’s volume expands twice with respect to its initial state. The piston motion
follows a cosine curve. One full cycle requires 1700 time steps which corresponds to 49.61 ume




units. In SUN 4/110 CPU time units, it takes 600 hours per cycle. Due to the excessive simulaton
time, the experiment was curried only through one and a half cycle.

The flow field is documented in Figure 4. Due to the acceleration and deceleration of the piston,
the flow patterns exhibit complex vortex structures forming in the cylinder chamber.

The results of this simulation have been compared qualitatively with the experimental results
obtained by Durst, Emst, and Pareira (10] using laser doppler anemometer. The experimental re-
sults were processed numerically for visualizaton {11] and are almost identical to those shown in
Figure 5.

The 3-D numerical simulation exhibits all the details of the flow demonstrated in the experi-
mental investigation. The 2-D simulations show more extensive vortex structure field due to the
constraint coming from the two-dimensionality.

The Oscillating Channel

The dynamic motion of geometries in a flow results in variable forces and moments acting on
those objects. Those forces and moments were recorded in the simulation of a flow in a three-di-
mensional, rectangular, oscillating channel (Figure 6).

The channel consists of six elements with 343 nodes per element. The motion imposed on the
channel is a sinusoidal oscilladon of the exit section with an amplitude of one-fifth the channel
height in a direction perpendicular to the flow. Forces are recorded on the upper and lower walls.
The moment is calculated at a point which acts as a hinge for the oscillation located at the center
of the bottom wall in the spanwise direction. With a time step of 0.0424, forces and momerts are
recorded every three time steps. A full cycle consists of 300 time steps which corresponds to nine
CPU hours of SUN 3/50.

As the channel oscillates, the modon of the walls imposes a velocity on fluid near the wall (Fig-
ure 7). During the oscillation, the inerta of the fluid causes pockets of high pressure to appear near
the inlet and pockets of low pressure to occur near the outflow. As expected, moments and forces
display sinusoidal oscillations synchronized with the geometrical moton (Figure 8).

The results from this simulation allow a qualitative evaluation of the method’s capability to de-
termine forces and moments resulting from geometry-flow structures interactions. For quantitagve
evaluadons (calibration) more extensive simulations and actual experimental measurements would
have to be conducted.




Analysis of Cylinders Oscillating in a Still Fluid and in a Uniform Flow

Introduction

Analysis of the flow around an oscillating cylinder in a still fluid and in a uniform flow shows
that these cases are quite different than flow in the classical case of a cylinder in a steady, uniform
flow. An oscillating cylinder reverses direction, causing the vortex wake of one half cycle to sweep
past the cylinder during a subsequent half cycle. This reversal has a major effect on the magnitudes
of fluid induced forces and also on the fundamental frequency of the drag force.

The interest in studying flow around oscillating cylinders has arisen from many modern day
construction problems. Vortex induced vibrations are often the cause of costly construction delays
and failures in offshore structures such as underwater piping and cylindrical structure components.
Civil engineers have encountered similar problems with cylindrical columnar buildings and chim-
ney stacks in a crosswind. Force oscillations are a significant factor when considering the fatigue
life of a structure. Furthermore, there is a considerable fundamental interest in these flows and in
the ways in which vortices are generated and shed.

For years, designers of offshore platforms typically have used what is known as the Morrison
force equation [21] to calculate the wave on offshore cylindrical structures. The Morrison descrip-
don considers the force to be composed of a drag force (described by the standard semi-empirical
drag coefficient relaton) and an inertia force (described in terms of the inertal coefficient which
is related to the hydrodynamic added mass coefficient) [22].

For a circular cylinder, the in line force per unit length is:

au
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where: p - fluid density
D - body diameter
U - flaid velocity
Cp, - coefficient of mass

C4 - coefficient of drag

The coefficients C, and C4 have been evaluated experimentally from full-scale and laboratory

studies by a considerable number of investigators. This is usually done with the method of least
squares or using the Fourier averaging over a cylinder cycle [23].

Keulegan and Carpenter [24] have found that the average values of C, and Cg are functions of

.10 -




the oscillating cylinder’s amplitude and diameter. When the relative flow past a cylinder is under-
going sinusoidal oscillations, the Keulegan-Carpenter number KC is defined as (2ra)/d; where a is
the amplitude of the relative motion and d is the cylinder diameter. Sarpkaya (23] has found that

Cm, and C4 depend not only on KC, but also on a parameter B which is proportional to the Reynolds

number Re: B =(Re)/(KC) = D2Tv, where T is the period of oscilladon and v is the kinematic vis-
cosity. This number is also known as the Stokes number, named after Stokes who in 1851 have
shown that the force acting on a cylinder or a sphere oscillating sinusoidally in a viscous fluid 1s
dependent on both the amplitude of the oscillatons and the Reynolds number.

Williamson [25] has performed investigations on the relation berween motions of vortices and
forces exerted on a circular cylinder for various KC numbers. He did not examine the three-dimen-
sional structure of the flow along the cylinder axis. Tatsumo and Bearman [26] examined this
three-dimensional structure and concluded that at low KC numbers and at low Stokes numbers the
flow around cylinders is two-dimensional. For this reason, a two-dimensional numerical simula-
tons has a legidmate justfication.

Numerical simulations have been used quite frequently to calculate flow around cylinders.
Most of the time, the cylinders have been stationary due to difficulties associated with the moving
geometry. The major problem has been with describing boundary conditions at tie contnuously
accelerating or decelerating solid wall using the finite element or finite difference wraditional gnd
system [27]. The problem has been dealt with in different ways by many investgators [27,28].

The Two-Dimensional Oscillating Cylinder

As indicated above, a two-dimensional flow exists for small KC numbers. Furthermore, two-
dimensional simulations can be conducted within a reasonat .e computer time, making this a usetul
tool for method verificadons and preliminary studies.

In the case of this study, the two-dimensional cylinder mesh contains 40 spectral elements with
125 nodes per element (Figure 9). The cylinder has a unit radius and the mesh extends radially
away from the cylinder to a distance of eight. This geometric domain has been deemed large
enough by using experimental visualizaton results. All secondary and primary flow patterns pro-
duced by the oscillating cylinder will occur within this distance. Primary flows are defined as those
which occur outside of the cylinder’s boundary layer. Secondary flows are those which occur in-
side the cylinder’s boundary layer.

A coordinate system has its origin in the center of the cylinder at initial position. The cylinder
oscillates along the y-axis. Boundaries parallel to the y-axis are defined as inflows and the bound-
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aries parailel to the x-axis are prescribed as outflows. Pressure as well as velocity are set to be zero
at inflows.

Three test cases have been chosen, each with a different amplitude: 0.8*radius, 1.U*radius,
2.0*radius. According to the {indings ~f Sorokodum [29], these three cases will result in three dif-
ferent flow fields. Parameters for the test cases are summarized in the table below:

Test #1 Test #2 Test #3
Amplitude  0.8*radius 1.0*radius  2.0*radius
KC Number 2.5 32 6.3
Stokes # 62.7 30.8 30.8
Peynolds # 157.6 96.8 193.5

In all three cases the period of oscillations is 300 time steps. A sinusoidal modon is imposed
for the cylinder. To avoid picking up flow patterns due to the start up of motion, results are record-
ed with the beginning of the second oscillation cycle. In SUN 3/50 CPU time, these computations
averaged 168 hours.

The results of the simulations are presented on Figures 10, 11, 12, and 13. The results are in
qualitative agreement with the works of Williamson, Tatsumo and Bearman, and Sarapkaya.

The Three-Dimensional Oscillaning Cylinder

The three-dimensional cylinder mesh contains 100 spectral elements with 125 nodes per ele-
ment (Figure 14). The mesh is an extension of the two-dimensional case in the third dimension.
The cylinder is set to oscillate with an amplicude equal to its radius and pertod of oscillatons equal
to 3.1 dme units (300 ume sieps).

The three-dimensional case, due to extensive requirements for CPU time, has been curried only
for a limited tme to determine dynamic forces acting on the cylinder. Two runs were performed at
a free stream Reynolds number of 80 and 120, and a KC number of 3.14. Forces on the entre cyl-
inder were recorded every two time steps. The moment of forces is calculated with respect to the
center of the cylinder. The results are shown on Figure 15.

The results conform to experimental results. The forces are plotted as a function of time and as
a functon of velocity. The relation berween forces and velocities in that type of moudon was used
by Hamann and Dalto (22] to ty to find a nondimensional parameter to correlate forces due to
wave action. Their findings show that the measured forces are more dependent on the velocity than

-12-

-




on the acceleranon. They conciuded that for a constant value of A/d the maximura force per uait
area is a funcdon of the actual velociry and that the force is increasing with the increase of the A/
d rago. The siope of the curve from the results of the current investigarion is in agreement with
those from experiments.

The Separating Object Case

[ntroducrion

An iniaal ~bjecuve to study full separadon process of an object ejected into a flow field has
been modified following suggestons from the David Taylor Research Center and focussed on the
interacuons during the inidal stages of an object plowing into bay and then into the surrounding
flow field. The geomeny adopted for this investigation is shown below.

|_Staring Height
Height

)
Inner Rndius//‘-u

/;uu:r Radius

There is a scarce information in literature on this subject. Most of the work done has been ex-
pentmental and theoreacal and was directed towards underwater bodies. The available papers
present an evidence that can be divided into four groups of interests: 2) equadons of moGon of sub-




merged bodies [14,15], b) water entry and exit problems [16,17], ¢) forces acung on submerged
bodies [18,19] and d) journal articles related to missiles and submarines [13,20]. Most of the re-
search is considered classified and, therefore, with limited access.

The case under investigation in this research involves the geomety configuration shown earli-
er. The object, initially in the silo, is pushed into the surrounding fluid until the moment when sep-
araton would occur. The interest here is on the flow structures, forces, and moments acting on the
object durng that inidal stage of ejecton. The ejection could be into a stll fluid or into a cross-
flow.

Due to a reladvely complex geometry, an automated mesh generator routine has been created
with five main parameters: the object (inner) radius, the silo (outer) radius, the angle of the silo’s
surface (theta), the height of the object, and the inital height of the object in the silo. The generated
mesh consists of 193 spectral elements (Figure 16). The mesh is constucted in such a way that
when all elements are in their unstetched configuration, the object is fifty six percent of its lengths
above the silo. In that position, the object’s length to diameter rato is 5.5:1 which resembles the
proportions for a Trident C4 missile.

The way the mesh changes during the ejection process affects the accuracy and speed of the
calculatons due to the fact that matrix solvers are based on iterative schemes and more distorted
elements require more iterations to converge to a solution. In addition, it was discovered that there
might be a considerable difficulty to impose properly the conditions for non-zero velocity on the
outside flow if the surface of the mesh is complicated.

The object is assumed to be pushed out of the silo with the necessary force. At the same time,
the fluid will be pushed through the annulus into the surrounding flow field. The flow of that fluid
is prescribed by the following relaton (for a flow through a concentric annulus with 2 moving inner
wall):

o o
. (U@ =bH+v,
Vv, = (rF-dd —( ait) szn(C)
ln(?-) a
N p J
V,=0
where a - radius of the object

b - radius of the silo

V wall - object’s velocity

V, - axial velocity cc.nponent
V. - radial velocity component
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Stationary Object Case

The first investgated case was set with the following parameters: object radius=0.6, silo radi-
us=1.2, object height=6.6, object height above silo=3.76, theta=60 degrees. The object was kept
statdonary and the flow in the annulus was inidated with maximum velocity at the inlet to the an-
nulus being ramped from zero to its normal value (0.5 for this configuration) over 50 tme steps.
The ramping follows a cosine curve for smooth acceleration and deceleraton of the entering flow.
In addidon, the flow was allowed to sette from the impact of the ramping for the next 50 ime steps.
The dara for analysis was taken after 100 time steps of the numerical simulation. Figure 17 shows
the flow and pressure fields which are as one might expect.

This case showed the main problem for simuladons of that type: the overwhelming requirement
for CPU dme. On SUN 4/110 the first 100 ume steps of the simuladon took 432 CPU hours. With
increasing complexity (more deformed mesh, more resoluton), the required dme grows quite dra-
matically. For that reason, it is very difficult to achieve developed states for the flow and pressure
fields.

The simuladon was repeated for similar parameters with theta=0 (flat silo surface). The results
are shown in Figure 18. The velocity and the pressure are as expected in such cases. This case was
used as a starting point (inidal condidons) for the case with moving object.

Objecr Ejecting into Sall Flow Field - Forced Motion

To allow the object to move in all directions, the elements in the mesh must be able to deform
accordingly. In this particular case, the generated mesh contains two rings of elements (Figure 19)
that change their shape to allow the object to move. When the object moves in the z-direction, ¢l-
ements in the innermost ring shrink or expand in the z-direction. Elements in the outermost ring
then contract or expand in order that their innermost element faces match with the corresponding
elements in the inner ring (Figures below).

Object Wall
e
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Qutermost Ring Elemenss
f Innermost Ring Elements
A Y Y
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X
[t is assumed in this case that the object can pivot with respect to the bottom of the silo (the

]|

Stadonary Elements

inlet to the annulus). If the object moves in direcdon perpendicular to main moton, the mesh wans-
forms accordingly to accommodate the new positon. Rotation of uie objeci with respect o its own
axis does not cause any mesh defonmadons.

Several cases have been simulated with the object moving in and out of the silo. That modon
generates intensive vortex sguctures in the vicinity of the object’s ap. The additon of forced mo-
don into x-y-direcdons creates quite complex flow fields (Figure 20) due to the fact that the object
pushes and drags a large voiume of fluid during side modons.

Object Ejecting into Cross-Flow - Forced Monon

Due to the complexity of the mesh changes during an object ejecton cycle, the impositon of a
cross-flow through proper boundary conditions above the surface of the silo exhibited some diffi-
culdes. In the current case, the top of the computational domain has been assigned an impermeable
wall condition to force the flow to go along the surface of the silo. The velocity profile perpendic-
ular to the silo surface was assumed to be Blasius profile for a boundary layer flow.

When the top of the computatonal mesh has fragmented boundary conditions (part with Di-
richlet type, part with Neuman type), the juncuons of the various rypes of the boundary condidons
did not funcdoned properly creatng comer type flows and other problems. The mesh should be
constructed in a way that will assure uniform boundary conditions on the top secton of the mesh
where the surrounding fluid interacts with the flow patterns generated by the ejecting body.

The simuladon was inidally done for immobilized object followed by object ejection cycle.
The flow and pressure patterns (Figure 21) are complex in these cases and the simuladons must be
curried on for some dme to diminish the influence of inidal condidons. Unfortunately, the simula-
dons are very CPU demanding which prevented the current investigadon from getting tuily devei-
oped flows and conducting more detailed study.
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CONCLUSIONS

The results of the simulations indicate that the numerical flow analysis for such cases can be
accurate and predict important flow phenomena. For three-dimensional cases combined with mo-
don of bodies, the formulation becomes quite complex and requires significant resoluton (large
number of computational points). When the moton is significant, the mesh can become quite dis-
torted and affect the accuracy and the speed with which a solution at a given time step is achieved,
particularly with respect to a pressure step. A care must be taken to prevent excessive distortions
of elements in meshes. With these aspects in mind, the numerical simulations serve as a very useful
tool in research and practice involving cases as investigated in this project. The comparison be-
tween the simulations and the (when available) experimental data showed good qualitative agree-
ment.

All simulations in the cases above were for situadons in which the motions were forced on the
moving objects and the resulting forces and moments from the body-fluid interactions calculated.
However, knowing the forces and the moments (torques) acting on a moving body, it is fairly
straightforward to develop a dynamic equations of motion for that body allows to determine the
rajectory (path). Thatis essential for unconstrained bodies such as ejected objects. A preliminary
program was developed for that purpose and initially tested. Due to the limited data from ejecting
object simulations and time constraints, the dynamic motion solver has not been completed.

The main factor limiting the scope of this research was the large demand for CPU time, partic-
ularly for three-dimensional cases involving significant object motions (mesh distortions). The use
of supercomputers, vector processors, and multiprocessor machines could improve that situations.

RECOMMENDATIONS FOR FUTURE RESEARCH

There is a significant interest on part of the industry for simulations involving moving objects
and particularly for cases that require the simulation not only of the flow field but also the dynamic
behavior of the body resuiting from the external fluid forces. However, at present it seams that for
realistic and accurate simulations of such cases, the required size of the computational model re-
sults in very large computing imes. In addition, cases with large Reynolds numbers and highly un-
steady further complicate the situation. Therefore, with the current computational capabilites
(primarily supercomputers or comparable machines) one can approach only limited cases. Even-
tually, when the barriers of computer speed will be overcome by technological developments and
new solvers for matrix equations (the main CPU time consumers) will be developed, the successtul
research developments in this area will offer scientific rewards as well as technological payoffs.
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Figure 1. Schematic drawing of the computational domain for the two-dimensional piston
pump.

Figure 2 (a-e) Plots of velocity vectors and pressure for the two-dimensional pump cycle. The
period of the cycle is identified for every plot at the bottom left corner. Vector scales are located
at the lower right corner (scale is with respect to units identfied on the axis). For pressure, open
ended arrows indicate negative pressure, close ended arrows indicate positve pressure.

Figure 3. The computational domain for the three-dimensional piston pump displaying all 57
elements. Schematic drawing of the piston pump is identical as on Figure 1.

Figure 4. (a-f) Plots of velocity vectors and pressure contours for the three-dimensional piston
pump during pump cycle. Values between contour lines are identified at lower right corner of pres-
sure plots. (The first number corresponds to the difference between negative pressure lines (dotted)
and the second number corresponds to the difference between positve pressure lines (solid lines).

Figure 5. Vortcity plots from an experiment using laser doppler anemometer. Sine curves at
the top of each plot identfy the position of the piston in the pump’s cycle.

Figure 6. Schematic drawings of the three-dimensional oscillating channel geomerry.

Figure 7 (a,b). Plots of velocity vectors and pressure contours during one cycle in an oscillat-
ing channel flow. Sine curves next to each plot represent the position of the channel in the cycle.

Figure 8 (a,b). Plots of forces and moments on the walls of the oscillating channel. The x rep-
resents the number of time steps divided by three.

Figure 9. Schematic drawing of the two-dimensional oscillaing cylinder.

Figure 10(a-c). Velocity vectors for the two-dimensional cylinder oscillating at an amplitude
equal to 0.8*radius. Sine curves at the top of each figure identify the location of the cylinder in the
cycle.

Figure 11(a-c). Velocity vectors for the two-dimensional cylinder oscillating at an amplitude
equal to 1.0*radius. Sine curves at the top of each figure identify the locaton of the cylinder in the
cycle.




Figure 12(a-c¢). Velocity vectors for the two-dimensional cylinder oscillating at an amplitude
equal to 2.0*radius. Sine curves at the top of each figure identify the location of the cylinder in the
cycle.

Figure 13(a-c). Pressure for the two-dimensional cylinder oscillating at an amplitude equal
to 1.0*radius (opened arrows indicate negative pressure, closed arrows indicate positive pressure).
Sine curves at the top of each figure identify the location of the cylinder in the cycle.

Figure 14. Computational domain for the three-dimensional oscillating cylinder. Only ele-
ment edges are plotted for clarity.

Figure 15. Forces and moments recorded on the three-dimensional oscillating cylinder at a
Reynolds number of 120.

Figure 16. Schematic drawing of the separating objects configuraton.

Figure 17. Plots of velocity vectors and pressure for the separating objects case for theta equal
to 60 degrees. (Plots are for flow after 100 time steps of simulation. )

Figure 18. Plots of veiocity vectors and pressure for the separating objects case for theta equal
to zero degrees. For pressure, open arrows indicate negative pressure, closed arrows indicate pos-
idve pressure, the length of the arrows is proportional to pressure magnitude. (Plots are for flow
after 100 tme steps of simulation.)

Figure 19. Example of the motion of the object in the z-direction. Elements in the figure on
the left are in the unstretched position. The right figure shows the object in the silo with elements
stretched to accommodate that position.

Figure 20. Flow field created by an object moving in the y-direction as shown at the top of the
figure. Velocity vectors and pressure are plotted next to it. For pressure, open arrows indicate
negative pressure, closed arrows indicate positive pressure, the length of the arrows is proportional
to pressure magnitude.

Figure 21. Plots of velocity vectors and pressure for the separating objects case with theta
equal to 10 degree. For pressure, open arrows indicate negative pressure, closed arrows indicate
positive pressure, the length of the arrows is proportional to pressure magnitude. (Plots represent
flow field after 100 ume steps of simulation.)
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‘e “ar
T
el a
10} || ! 2t
“f’.l
TR
Lol e T /Ov \
VT T W o TT TR e T
‘TT ‘ - vvvvv'£0v0vv'0v’v'vv|
MR A EY'S R P PP TPTITTTTTIITIITTITOT
o ' Lf- vvvvvvﬁvvovvvvvvv'vv
-1.8}) PR A “-7 . 4084 .0 "."'lTT T’T rv.T-
47 rowvre .v.
/LN - - 7"’?v .. s
~“.—-—f N o - LR R -SSRl 3
RS PP P Pt S SR RS et Pt L
{
srrpPprPrTLETITITCIYTSTY O e e Tt T T E Y e .
-4 b EEEREEEEEEEER R XXX -4.0 > . s e e e s e e e s
A I IR I I A A A B I I e T T T T TN
| |
._.L | e rerastsrerresrrere DT T !
! !
| eptprPrrrrYYRYRSYRYLCYS | | | ..o
+
b |es . b —_—
l
-tzl -13
Ve 1.37 2,z Scaies 3.5 Ares.. 3.87 zye jcaies 2
3 .3 1.3 1.3 1.3 .3 5.3 -3 .3 1.3 1.3 1.3 4.3 5.3
1 2 ¢
I
I afa
(b I‘l H
[ — I
' /—,-:_._721012 ...... [ [ II I ';Y[([Il{
a
oi Io LA R4 lvvvv'v ’e
-t r PEPRPEPRL R S > l's... -1 I I II [I[{II[
sl e
,‘I 4 [ Iv * v’[v'vv"v
-1 “‘.’~-x~' Ifo‘,.“ -1
> v * \ A AR R X R
aal il fl._. 1t
! "r’r‘ ;v‘ S \Qxﬂ’. ! r"rT [ JITTI[[rN
|
”‘Hl]“ L] L
U A 3 L., ., W 1T rTrrrrrrYY
! [ v yi it l
oy ‘[I\\ b ' ’
N e B BiAh statsemstaant!
y "l" l"'Q,!' l"'v
A e Rt A VI
) ;
T rer, ‘,"o"
2 -7
Vel 3.32 =y¢ S¢atesr 3.3 Pres. .92 ¢cye Scetles 0.3
-.3 .3 1.3 1.2 1.3 4.1 3.3 -.3 -3 1.3 2.3 3.1 4.3 1.3

Two-Dimensional Pump Velocity and Pressixe Cycle Plots

(3]

~Jd




—— — —_— —
— — ——— —
S— —— — ———— S -
—
— -
— —— — ——e—
— — — .- -—
— — —_——
L —— — —— —
————— —_— — ———
el —— S —— —
—_— — —
— — — ————— ——
— —_ >
— — — e e
—— —— > -~
— a— —— - e
— —— — — —
— — — —
— -
“— a — - a

...............
.............

...........

333333333333333
. .

..........

_28_

Two-Dimensional Pump Velocity and Pressure Cycle Plots

Figure 2 (e)




Figure

3

The Three-Dimensional Pump
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