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ABSTRACT

The research project has been initiated to develop a numerical algorithm and conduct a

broad investigation of flow structures and their interactions with moving and ejecting objects. The

numerical method is based on a spectral element approach applied to the unsteady, incompressible
Navier-Stokes equations. The equations are adopted for a moving mesh system that allows the

mesh to adjust dynamically to changing geometry. The method has been used to study flow pat-

terns and forces on moving objects. Among the investigated cases are: two- and three-dimensional

piston pumps, ..- ,w t-ough, an osciliating channel, an oscillating cylinder in a still fluid, an oscil-

lating cylinder in a uniform flow, and an ejecting object from a silo.
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INTRODUCTION

Real flow cases with objects deforming or moving within the flow are quite common. Ma-

chines with moving parts, structures deforming or vibrating in the wind or water current, artificial

heart pumping blood, opening and closing valves, aircraft dropping bombs, submarines ejecting
torpedoes or launching missiles. These examples represent but few. Numerical simulations of such

cases are not common due to relatively high complexity of the geometry involved, numerical dif-

ficulties with handling nonstationary meshes, high complexity of the unsteady flow fields, and
large CPU demands. Even experimental investigations are relatively rare and the evidence in liter-

aturt, is even more limited due to the fact that some of the research involved classified data or re-

suits. In many cases, the scientific rewards for the unavoidable significant research effort might nor

be as attractive as in more traditional areas.

In this study, the primary focus was on phenomena associated with ejection of objects into sur-

rounding fluid. However, several other cases were investigated for comparison of numerical and

experimental results and to determine overall possibility of such investigations.

The spectral element method [1-9] was adopted for this investigation. The method was refor-

mulated to allow the deformations and motion of the numerical mesh which followed the moving

objects. Initially, a piston pump was simulated (two- and three-dimensional) to provide a test case

for the method and to allow qualitative comparisons with existing experimental evidence [10,11].

The problems of underwater motion, ejection, and separation has been the focus of several in-

vestigations [12-20], primarily associated with military applications such as launches from subma-

rines of missiles or torpedoes. More general applications are associated with oscillating slim

underwater structures [21-29] such as cylindrical supports of oil platforms and bridges. That cate-
gory includes also toll buildings and chimneys subjected to the forces resulting from air flow.

This investigation simulated and analyzed many of those type of flows with results described

in the following sections. The analysis in most cases could not be extensive due to the very large

CPU time needed to advance the simulation. Unfortunately, this is the primary limiting factor in
advancing the numerical analysis for cases lIke the ones mrnzioned above beyond research inei'ezt

to result in a design tooL
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NUMERICAL APPROACH

The numerical method implemented for this project is based on the spectral element method
which is a blend of a spectral approach [1,2,31 and finite clement technique. The specaal element

technique underwent many modifications from its initial formulation [4,51 to expand the realm of

applications. The approach resembles the h-version of finite elements [61; however, due to spectral

local expansions, it is much more accurate and suitable for complex flow simulations [7-8].

As in finite elements, the approach breaks the domain into a series of subdomains mapped from
the physical space (x,y,z) into local space (r,s,t) where they are a regular cubes ranging from -I to
+I along each axis. The geometry, velocity, and pressure are represented as tensor-product high

order Lagrangian interpolants (based on Legendre polynomials) through Gauss-Lobatto points.
Those points are the roots of the first derivative of the .egendre polynomials and the end points.

The equations are formed for each subdomain (element) and then combined into a global matrix

system using the direct stiffness method (as in finite elements).

The approach uses the unsteady, incompressible Navier-Stokes equations [91 which together
with mass conservation have the following form:

(IV; aV a p 2- . (1.1)
+V.-~ + F

and

V7v = 0 (1Z)

where:
V =v1s + vj - v3k = velocity

p static pressure
p =density
v = Idnematic viscosity

Fi = body forcc



To solve the system, a splitting scheme is implemented with the following steps:

- nonlinear step:

(CR I v') P (1.3)

- pressure step:

- viscous step:

ax, i (1.5)

The non-linear step is solved explicitly using the third-order Adams-Bashforth approach (no

boundary conditions are needed here):

.A I A-(~"- F )= c .- .3 c,- ,. l'-K . (1.6)

where CO = 23/32, CI=-16/12, C7=5/12.

The system above peffor"' atsftc:_,'ily if te Co--:.-: :urt'r (-) is nor 7c-rea, D d'an 0.

The pressure step is solved implicitly. The known pressure is imposed at input as Dirichlet bound-

ary condition with natural boundary conditions everywhere else. The viscous step is solved using
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Crank-Nicholson approach with the required boundary conditions on velocity. At the outflow, the

natural boundary conditions are imposed.

To allow dynamic changes of the mesh during simulations, the momentum equations must be

modified to account for that additional motion. To achieve that, the new positions of the deforming

mesh (moving mesh points) must be known. Together with the previous positions, the information

is sufficient to find the new velocity and pressure fields at mesh points in the new locations. The

reformulation of the momentum equation is fairly straightforward and does not add significantly

to the complexity of the regular spectral element codes.

Let 2 = f(2, t) to be the old position of the mesh and x f(x, t) to be the new position of

the mesh. The old nodal velocity would then be = ' (,2, t) and the new nodal velocity would

then be v = v (x, t) . With these, the momentum equation at the new position with respect zo the

old position is given as:

vj 'at. at. \ av. ____ a ( __'+ + Xj!.xV. = - \2 + Y- -. F(

axs_ ax.
Let a. = - be the velocity of the mesh nodes and L ! be the local deformation of theI at at.

mesh. Withe these, the final form of the momentum equations is as follows:

- v00 + ~vL.+ F,(1-9)
Tr((ct + 5jvj) 7 = j- a 1

During flow simulation, the new position of the mesh is determined, the above coefficients are

calculated and the new flow field is computed. The extra work associated with the moving mesh is

relatively small, probably no more than 5% in CPU time. The benefit of this approach is that no

additional approximations are necessary and that the flow field "follows" the mesh.

One must be careful not to allow the mesh to deform too much. If the deformations are too ex-

cessive, the errors due tc :t-e deformation might cause serious problems for accuracy and most

of all for convergence of iterative solvers.
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NUMERICAL SIMULATIONS

The study involved several cases of flows associated with moving geometries. Most of the cas-

es were investigated to determine the method's performance and ability to handle such flows. The

numerical results were compared when possible with existing experimental evidence. Both two-

ana three-dimnsiona- ca.s werc considered.

Two-Dimensional Piston Pump

The two-dimensional piston pump (Figure 1) has a mesh with 26 spectral elements, 25 of them

constitute the inside of the cylinder and the 26th element resides in the inflow neck. Each element

has 125 nodes; the top and the bottom of the geometry are curvilinear to resemble an actual pump.

During a pumping cycle, the volume increases 2.6 times with respect to the initial volume. The

numerical conditions on pressure impose a fixed pressure at inflow; therefore, an area around the

center of the piston surface has been designated as "numerica" inflow with velocity equal to the

velocity of the piston itself. This arrangement fixes an area with the reference pressure (here set to

zero for convenience) and preventing any flow through the piston surface. The flow may enter or

exit only through the inflow neck.

The motion of the piston is enforced to follow a cosine curve. The peaks of the piston's dis-

placement correspond to zero velocity. The maximum velocity occurs in the midpoint of the piston

cycle. One piston cycle takes 1500 time steps which corresponds to 46.75 time units for the code.

In SUN 3/50 CPU time, it requires 84 hours to run a full cycle. The velocities on the moving piston

surface are calculated every step and imposed appropriately for the flow calculations.

As expected, the rapid expansions and contractions of the pump volume are creating complex

vortex structures (Figure 2). To avoid the influence of the initial conditions, the results are recorded

starting with the third cycle of the simulations.

Three-Dimensional Piston Pump

The mesh for the pump contains 57 spectral elements (Figure 3) with 125 nodes each. As in the

two-dimensional case, the mesh has four layers of elements with thirteen elements per layer. The

surface of the piston and the head of the cylinder chamber are curvilinear. The inlet has five ele-

ments in it. The pump's volume expands twice with respect to its initial state. The piston motion

follows a cosine curve. One full cycle requires 1700 time steps which corresponds to 49.61 time
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units. In SUN 4/110 CPU time units, it takes 600 hours per cycle. Due to the excessive simulation

time, the experiment was curried only through one and a half cycle.

The flow field is documented in Figure 4. Due to the acceleration and deceleration of the piston,

the flow patterns exhibit complex vortex structures forming in the cylinder chamber.

The results of this simulation have been compared qualitatively with the experimental results

obtained by Durst, Ernst, and Pareira [10] using laser doppler anemometer. The experimental re-

sults were processed numerically for visualization [ 11 and are almost identical to those shown in

Figure 5.

The 3-D numerical simulation exhibits all the details of the flow demonstrated in the experi-

mental investigation. Th 2-D simulations show more extensive vortex structure field due to the

constraint coming from the two-dimensionality.

The Oscillating Channel

The dynamic motion of geometries in a flow results in variable forces and moments acting on

those objects. Those forces and moments were recorded in the simulation of a flow in a three-di-

mensional, rectangular, oscillating channel (Figure 6).

The channel consists of six elements with 343 nodes per element. The motion imposed on the

channel is a sinusoidal oscillation of the exit section with an amplitude of one-fifth the channel

height in a direction perpendicular to the flow. Forces are recorded on the upper and lower wails.

The moment is calculated at a point which acts as a hinge for the oscillation located at the center

of the bottom wall in the spanwise direction. With a time step of 0.0424, forces and moments are

recorded every three time steps. A full cycle consists of 300 time steps which corresponds to nine

CPU hours of SUN 3/50.

As the channel oscillates, the motion of the walls imposes a velocity on fluid near the wall (Fig-

ure 7). During the oscillation, the inertia of the fluid causes pockets of high pressure to appear near

the inlet and pockets of low pressure to occur near the outflow. As expected, moments and forces

display sinusoidal oscillations synchronized with the geometrical motion (Figure 8).

The results from this simulation allow a qualitative evaluation of the method's capability to de-

termine forces and moments resulting from geometry-flow structures interactions. For quantitative

evaluations (calibrat.ion) more extensive simulations and actual experimental measurements would

have to be conducted.

-9-



Analysis of Cylinders Oscillating in a Still Fluid and in a Uniform Flow

Introduction

Analysis of the flow around an oscillating cylinder in a still fluid and in a uniform flow shows

that these cases are quite different than flow in the classical case of a cylinder in a steady, uniform

flow. An oscillating cylinder reverses direction, causing the vortex wake of one half cycle to sweep

past the cylinder during a subsequent half cycle. This reversal has a major effect on the magnitudes

of fluid induced forces and also on the fundamental frequency of the drag force.

The interest in studying flow around oscillating cylinders has arisen from many modem day

construction problems. Vortex induced vibrations are often the cause of costly construction delays

and failures in offshore structures such as underwater piping and cylindrical structure components.

Civil engineers have encountered similar problems with cylindrical columnar buildings and chim-

ney stacks in a crosswind. Force oscillations are a significant factor when considering the fatigue

life of a structure. Furthermore, there is a considerable fundamental interest in these flows and in

the ways in which vortices are generated and shed.

For years, designers of offshore platforms typically have used what is known as the Morrison

force equation [21] to calculate the wave on offshore cylindrical structures. The Morrison descrip-

tion considers the force to be composed of a drag force (described by the standard semi-empirical

drag coefficient relation) and an inertia force (described in terms of the inertial coefficient which

is related to the hydrodynamic added mass coefficient) [221.

For a circular cylinder, the in line force per unit length is:

1 1 2. dU
F = 5 pDCdU + 4rtpD CM,-Z

where: p - fluid density

D - body diameter

U - flaid velocity

Cm - coefficient of mass

Cd - coefficient of drag

The coefficients Cm and Cd have been evaluated experimentally from full-scale and laboratory

studies by a considerable number of investigators. This is usually done with the method of least

squares or using the Fourier averaging over a cylinder cycle [23].

Keulegan and Carpenter (24] have found that the average values of Cm and Cd are functions of
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the oscillating cylinder's amplitude and diameter. When the relative flow past a cylinder is under-

going sinusoidal oscillations, the Keulegan-Carpenter number KC is defined as (21ta)/d; where a is

the amplitude of the relative motion and d is the cylinder diameter. Sarpkaya [231 has found that

Cm and Cd depend not only on KC, but also on a parameter 3 which is proportional to the Reynolds

number Re: P, =(Re)/(KC) = D2Tv, where T is the period of oscillation and v is the kinematic vis-

cosity. This number is also known as the Stokes number, named after Stokes who in 1851 have

shown that the force acting on a cylinder or a sphere oscillating sinusoidally in a viscous fluid is

dependent on both the amplitude of the oscillations and the Reynolds number.

Williamson 251 has performed investigations on the relation between motions of vortices and

forces exerted on a circular cylinder for various KC numbers. He did not examine the three-dimen-

sional structure of the flow along the cylinder axis. Tatsumo and Bearman [261 examined this

three-dimensional structure and concluded that at low KC numbers and at low Stokes numbers the

flow around cylinders is two-dimensional. For this reason, a two-dimensional numerical simula-

tions has a legitimate justification.

Numerical simulations have been used quite frequently to calculate flow around cylinders.

Most of the time, the cylinders have been stationary due to difficulties associated with the moving

geometry. The major problem has been with describing boundary conditions at Lie continuously

accelerating or decelerating solid wall using the finite element or finite difference traditional grid

system [271. The problem has been dealt with in different ways by many investigators [27,28].

The Two-Dimensional Oscillating Cylinder

As indicated above, a two-dimensional flow exists for small KC numbers. Furthermore, two-

dimensional simulations can be conducted within a reasonat le computer time, making this a useful

tool for method verifications and preliminary studies.

In the case of this study, the two-dimensional cylinder mesh contains 40 spectral elements with

125 nodes per element (Figure 9). The cylinder has a unit radius and the mesh extends radially

away from the cylinder to a distance of eight. This geometric domain has been deemed large

enough by using experimental visualization results. All secondary and primary flow patterns pro-

duced by the oscillating cylinder will occur within this distance. Primary flows are defined as those

which occur outside of the cylinder's boundary layer. Secondary flows are those which occur in-

side the cylinder's boundary layer.

A coordinate system has its origin in the center of the cylinder at initial position. The cylinder

oscillates along the y-axis. Boundaries parallel to the y-axis are defined as inflows and the bound-
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aries parallel to the x-axis are prescribed as outflows. Pressure as well as velocity are set to be zero

at inflows.

Three test cases have been chosen, each with a different amplitude: 0.8*radius, l.U*radius,

2.0*radius. According to the findings 'f Sorokodum [29], these three cases will result in three dif-

ferent flow fields. Parameters for the test cases are summarized in the table below:

Test #1 Test #2 Test #3

Amplitude 0.8*radius 1.0*radius 2.0*radius
KC Number 2.5 3.2 6.3
Stokes # 62.7 30.8 30.8

P. ynolds # 157.6 96.8 193.5

In all three cases the period of oscillations is 300 time steps. A sinusoidal motion is imposed

for the cylinder. To avoid picking up flow patterns due to the start up of motion, results are record-
ed with the beginning of the second oscillation cycle. In SUN 3/50 CPU time, these computations

averaged 168 hours.

The results of the simulations are presented on Figures 10, 11, 12, and 13. The results are in

qualitative agreement with the works of Williamson, Tatsumo and Bearman, and Sarapkaya.

The Three-Dimensional Oscillazing Cylinder

The three-dimensional cylinder mesh contains 100 spectral elements with 125 nodes per ele-

ment (Figure 14). The mesh is an extension of the two-dimensional case in the third dimension.

The cylinder is set to oscillate with an ampli:ude equal to its radius and period of oscillations equal

to 3.1 time units (300 time steps).

The three-dimensional case, due to extensive requirements for CPU time, has been curried only

for a limited time to determine dynamic forces acting on the cylinder. Two runs were performed at

a free stream Reynolds number of 80 and 120, and a KC number of 3.14. Forces on the entire cyl-

inder were recorded every two time steps. The moment of forces is calculated with respect to the

center of the cylinder. The results are shown on Figure 15.

The results conform to experimental results. The forces are plotted as a function of time aLd as

a function of velocity. The relation between forces and velocities in that type of motion was used

by Hamann and Dalto [221 to try to find a nondimensional parameter to correlate forces die to

wave action. Their findings show that the measured forces are more dependent on the velocity than
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on the acceleration. They concluded that for a constant value of A/d the maximum forcc per uiiut
area is a function of the actual velocity and that the force is increasing with the inc-ease of the .V

d ratio. The slope of the curve from the results of the current investigation is in agreement with

those from experiments.

The Separating Object Case

Introduction

An initial bjective to study full separation process of an object ejected into a flow field has

been modified following suggestions from the David Taylor Research Center and focussed on the
interactions during the initial stages of an object plowing into bay and then into the surrounding

flow field. The geometry adopted for this investigation is shown below.

(Starting Height

Height

Thema

Inner Raius

?utm 'Radius

There is a scarce information in literature on this subject. Most of the work done has been ex-

per'mental and theoretical and was directed towards underwater bodies. The available papers
present an evidence that can be divided into four groups of interests: a) equations of motion of sub-
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merged bodies [14,15], b) water entry and exit problems [16,17], c) forces acting on submerged

bodies [ 18,19] and d) journal articles related to missiles and submarines [13,201. Most of the re-

search is considered classified and, therefore, with limited access.

The case under investigation in this research involves the geometry configuration shown earli-

er. The object, initially in the silo, is pushed into the surrounding fluid until the moment when sep-

aration would occur. The interest here is on the flow structures, forces, and moments acting on the

object during that initial stage of ejection. The ejection could be into a still fluid or into a cross-

flow.

Due to a relatively complex geometry, an automated mesh generator routine has been created
with five main parameters: the object (inner) radius, the silo (outer) radius, the angle of the silo's

surface (theta), the height of the object, and the initial height of the object in the silo. The generated

mesh consists of 193 spectral elements (Figure 16). The mesh is constructed in such a way that
when all elements are in their unstretched configuration, the object is fifty six percent of its lengths

above the silo. In that position, the object's length to diameter ratio is 5.5:1 which resembles the

proportions for a Trident C4 missile.

The way the mesh changes during the ejection process affects the accuracy and speed of the
calculations due to the fact that matrix solvers are based on iterative schemes and more distorted

elements require more iterations to converge to a solution. In addition, it was discovered that there
might be a considerable difficulty to impose properly the conditions for non-zero velocity on the

outside flow if the surface of the mesh is complicated.

The object is assumed to be pushed out of the silo with the necessary force. At the same time,
the fluid will be pushed through the annulus into the surrounding flow field. The flow of that fluid

is prescribed by the following relation (for a flow through a concentric annulus with a moving inner

wall):

2

Va = (r2 -a) (a-b)+ Vwal) xln( )

a

Vr= 0

where a - radius of the object
b - radius of the silo
Vwa u, - object's velocity
Va- axial velocity ccnponent
Vr - radial velocity component
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Stationary Object Case

The first investigated case was set with the following parameters: object radius:O.6, silo radi-

us= 1.2, object height-6.6, object height above silo-3.76, theta=60 degrees. The object was kept

stationary and the flow in the annulus was initiated with maximum velocity at the inlet to the an-

nulus being ramped from zero to its normal value (0.5 for this configuration) over 50 time steps.

The ramping follows a cosine curve for smooth acceleration and deceleration of the entering flow.

In addition, the flow was allowed to settle from the impact of the ramping for the next 50 time steps.

The data for analysis was taken after 100 time steps of the numerical simulation. Figure 17 shows

the flow and pressure fields which are as one might expect.

This case shcwed the main problem for simulations of that type: the overwhelming requirement

for CPU time. On SUN 4/110 the first 100 time steps of the simulation took 432 CPU hours. With

increasing complexity (more deformed mesh, more resolution), the required time grows quite dra-

matically. For that reason, it is very difficult to achieve developed states for the flow and pressure

fields.

The simulation was repeated for similar parameters with theta:0 (flat silo surface). The results

are shown in Figure 18. The velocity and the pressure are as expected in such cases. This case was

used as a starting point (initial conditions) for the case with moving object

Object Ejecting into Saill Flow Field - Forced Motion

To allow the object to move in all directions, the elements in the mesh must be able to deform

accordingly. In this particular case, the generated mesh contains two rings of elements (Figure 19)

that change their shape to allow the object to move. When the object moves in the z-direction, el-

ements in the innermost ring shrink or expand in the z-direction. Elements in the outermost ring

then contract or exuand in order that their innermost element faces match with the corresponding

elements in the inner ring (Figures below).

Object Wall

zL

x
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Outermost Ring Element

P] r Innermost Ring Elements

Ln ElementsX

It is assumed in this case that the object can pivot with respect to the bottom of the silo (the

inlet to the annulus). If the object moves in direction perpendicular to main motion, the mesh trans-

forms accordingly to accommodate the riew position. Rotation of die objcct With i-espect co its own

axis does not cause any mesh deformations.

Several cases have been simulated with the object moving in and out of the silo. That motion

generates intensive vortex structures in the vicinity of the object's tip. The addition of forced mo-

ion into x-y-directions creates quite complex flow fields (Figure 20) due to the fact that the object

pushes and drags a large volume of fluid during side motions.

Object Ejecting into Cross-Flow - Forced Motion

Due to the complexity of the mesh changes during an object ejection cycle, the imposition of a

cross-flow through proper boundary conditions above the surface of the silo exhibited some diffi-

culties. In the current case, the top of the computational domain has been assigned an impermeable
wall condition to force the flow to go along the surface of the silo. The velocity profile perpendic-

ular to the silo surface was assumed to be Blasius profile for a boundary layer flow.

When the top of the computational mesh has fragmented boundary conditions (part with Di-

richlet type, part witn Neuman type), the juncions of the various types of the boundary conditions

did not functioned properly creating comer type flows and other problems. The mesh should be
constructed in a way that will assure uniform boundary conditions on the top section of the mesh
where the surrounding fluid interacts with the flow patterns generated by the ejecting body.

The simulation was initially done for immobilized object followed by object ejection cycle.
The flow and pressure patterns (Figure 21) are complex in these cases and the simulations must be

curried on for some time to diminish the influence of initial conditions. Unfortunately, the simula-

tions are very CPU demanding which prevented the current investigation from getting fully devel-

oped flows and conducting more detailed study.
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CONCLUSIONS

The results of the simulations indicate that the numerical flow analysis for such cases can be

accurate and predict important flow phenomena. For three-dimensional cases combined with mo-

tion of bodies, the formulation becomes quite complex and requires significant resolution (large

number of computational points). When the motion is significant, the mesh can become quite dis-

torted and affect the accuracy and the speed with which a solution at a given time step is achieved,

particularly with respect to a pressure step. A care must be taken to prevent excessive distortions

of elements in meshes. With these aspects in mind, the numerical simulations serve as a very useful

tool in research and practice involving cases as investigated in this project. The comparison be-

tween the simulations and the (when available) experimental data showed good qualitative agree-

ment.

All simulations in the cases above were for situations in which the motions were forced on the

moving objects and the resulting forces and moments from the body-fluid interactions calculated.

However, knowing the forces and the moments (torques) acting on a moving body, it is fairly

straightforward to develop a dynamic equations of motion for that body allows to determine the

trajectory (path). That is essential for unconstrained bodies such as ejected objects. A preliminary

program was developed for that purpose and initially tested. Due to the limited data from ejecting

object simulations and time constraints, the dynamic motion solver has not been completed.

The main factor limiting the scope of this research was the large demand for CPU time, partic-

ularly for three-dimensional cases involving significant object motions (mesh distortions). The use

of supercomputers, vector processors, and multiprocessor machines could improve that situations.

RECOMMENDATIONS FOR FUTURE RESEARCH

There is a significant interest on part of the industry for simulations involving moving objects

and particularly for cases that require the simulation not only of the flow field but also the dynamic

behavior of the body resulting from the external fluid forces. However, at present it seams that for

realistic and accurate simulations of such cases, the required size of the computational model re-

suits in very large computing times. In addition, cases with large Reynolds numbers and highly un-

steady further complicate the situation. Therefore, with the current computational capabilities

(primarily supercomputers or comparable machines) one can approach only limited cases. Even-

tually, when the barriers of computer speed will be overcome by technological developments and

new solvers for matrix equations (the main CPU time consumers) will be developed, the successful

research developments in this area will offer scientific rewards as well as technological payoffs.

-17-



REFERENCES

(1] Gottlieb, D.O. and Orszag. S.A., Numerical Analysis of Spectal
Methods: Theory and Applications, SIAM, Philadelphia (1977)

[2] Hussaini, M.Y. and Zang, TA., "Spectral Methods in Fluid Dynamics."
Annual Review of Fluid Mechanics, voL 19, pp.339-367 (1987)

[3] Orszag, S.A.. "Spectal Methods for Problems in Complex Geomet-
ries," Journal of Computational Physics. voL. 37, p.70 (1980)

[4] Patera. A.T.. "A Spectral Element Method for Fluid Dynamics:
Laminar Flow in a Channel Expansion," Journal of Computa-
tional Physics, voL 54, p. 468 (1984)

[5] Korczak, Karol Z. and Patera, Anthony T., "An Isoparametric Spectal
Element Method for Solution of the Navier Stokes Equations in
Complex Geometry," Journal of Computational Physics, voL 62,
pp. 361-382 (1986)

[61 Babuska. L and Do= A, "Er= Estimates for the Combined
h and p Versions of the Finim Element Method," Numet
Math., voL 37, pp257-277 (1981)

[71 Ghaddar, N.K., Korczak. K.Z., Mlkic, B.B., and Parera, A.T.,
"Numerical Investigation of Incomprcssible Flow in Grooved
Channels. Part 1. Stability and Sef-Sustained Oscflarions,"
Journal of Fluid Mechanics, voL 163, pp. 99-127 (1986)

[8] Ronquist, Einar M_ Ph.D. Thesis, Massachusetts Instimte of
Tecrhnology (1988)

[91 Bamchelor, G.K., An Introduction to Fluid Dynamics, Cambrdge
University Press. Cambridge, Great Britain (1988)

[10] Durst. F., Ernst. F., and Pareim J.C.F.. "LDA Measurements of
Time Dependant. Separted. Internal Flows," Internanonal
Symposium on Applicanons of Laser Doppler Anenomeny
to Fluid Mechanics, Lisbon. Portugal (1982)

- is-



( 11 Tjan, Wasi, "Quantitative Flow Visualization," Master's Thesis
Case Western Reserve University (1986)

(12] Korczak, K.Z., Wessel R., "Mixing Control in a Plane Shear Layer",

AIAA Journal, December 1989.

(13] Eisenberg. Philip, "Research Trends in Naval Hydrodynamics...
The ONR Programn," Journal of Ship Research, voL 2, no. 1,
pp. 3-7 (1958)

(14] McVoy, James L. "Prediction of a Submarine's Trajectory by an
Approximate Solution of its Equations of Motion." Naval En-
gineers Journai, vol. 91, no. 4, pp. 19-42 (1979)

[151 Reid. Walter P., "On the Motion of a Missile Under Water," Jet Pro-
pulsion, vol. 26, no. 6, pp. 463-464 (1957)

(161 May, Albert, "Review of Water-Entry Theory and Data" Journal of
Hydrodynamics. vol. 4, no. 4, pp.140-142 (1970)

[171 Moran. John P., "The Vertical Water-Exit and -Entry of Slender Sym-
metric Bodies," Journal of the Aerospace Science,, voL 28, no.
10, pp. 803-812 (1961)

[18] Wislicenus, George F. "Hydrodynamics and Propulsion of Submerged
Bodies," ARS Journal, voL 30, no.17. pp. 1140-1148 (1960)

(191 Berdichevski. Vi., "On the Force Acting on a Body in Viscous
Fluid." Applied Mathematics and Mechanics. vol 45, no. 5,
pp. 628-631 (1981)

[20] Fuhrman. R.A., "The Fleet Ballistic Missile System: Polaris to
Trident." Journal of Spacecraft and Rockes, voL 15. no. 5,
pp. 265-286 (1978)

[211 Morrison, JI.R., O'Brien, ,.P., Johnson, J.W. and Schaa, S.A.. "The
Forces Exerted by Surface Waves on Piles," Journal of Per'o-
leum Technology, voL 189, p. 149 (1950)

[221 Hamann. F. and Dalton, C., "The Forces on a Cylind"r Oscillaang
Sinusoidaily in Water," Journal of Engineering for Industry, pp.
1197- t202 (1971)

- 19



[23] Sarpkaya. Turgur, "Force on a Circular Cylinder in Viscous Oscilla-
tory Flow at Low Keulegan-Carpenter Numbers," Journal of
Fluid Mechanics, vol. 165, pp. 61-71 (1986)

[24] K,.ulegan, G.H. and Carpenter, LR, "Forces on Cylinders and Plates
in an Oscillating Fluid," United States Bureau of Standards -
Journal of Research, vol. 60, no. 5, pp. 423-440 (1958)

[25] Williamson, C.--., "Sinusoidal Flow Relative to Circular Cylinders,"
Journal of Fluid Mechanics, vol. 155, pp. 141-174 (1985)

[26] Tarsuno, M. and Bearman, P.W., "A Visual Study of the Flow Around
an Oscillating Circular Cylinder at Low Keulegan-Carpenter
Numbers and Low Stokes Numbers," Journal of Fluid Mech-
anics, vol. 211, pp. 157-182 (1990)

[27] Hurlbut, S.E., Spaulding, M.L. and White F.M., "Numerical Solu-
tion for Laminar Two Dimensional Flow About a Cylinder
Oscillating in a Uniform Stream," Journal of Fluids Engineering,
vol. 104, pp. 214-222 (1982)

[28] Bratanow, Theodaore, Ecer, Akin, and Kobiske, Micheal, "Finite
Element Analysis of Unsteady Incompressible Flow Around
an Oscillating Obstacle of Arbitrary Shape," AIAA Journal,
vol. 11, no. 11, pp. 1471-1477 (1973)

[29] Sorokodurn., E.D., "Flow Near a Vibrating Cylinder," Fluid Dyna-
mics, vol. 17, no. 4, pp. 654-656 (1982)

- 20 -
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Figure 1. Schematic drawing of the computational domain for the two-dimensional piston

pump.

Figure 2 (a-e) Plots of velocity vectors and pressure for the two-dimensional pump cycle. The

period of the cycle is identified for every plot at the bottom left corner. Vector scales are located

at the lower right comer (scale is with respect to units identified on the axis). For pressure, open

ended arrows indicate negative pressure, close ended arrows indicate positive pressure.

Figure 3. The computational domain for the three-dimensional piston pump displaying all 57

elements. Schematic drawing of the piston pump is identical as on Figure 1.

Figure 4. (a-f) Plots of velocity vectors and pressure contours for the three-dimensional piston

pump during pump cycle. Values between contour lines are identified at lower right comer of pres-

sure plots. (The first number corresponds to the difference between negative pressure lines (dotted)

and the second number corresponds to the difference between positive pressure lines (solid lines).

Figure 5. Vorticity plots from an experiment using laser doppler anemometer. Sine curves at

the top of each plot identify the position of the piston in the pump's cycle.

Figure 6. Schematic drawings of the three-dimensional oscillating channel geometry.

Figure 7 (a,b). Plots of velocity vectors and pressure contours during one cycle in an oscillat-

ing channel flow. Sine curves next to each plot represent the position of the channel in the cycle.

Figure 8 (a,b). Plots of forces and moments on the walls of the oscillating channel. The x rep-

resents the number of time steps divided by three.

Figure 9. Schematic drawing of the two-dimensional oscillating cylinder.

Figure 10(a-c). Velocity vectors for the two-dimensional cylinder oscillating at an amplitude

equal to 0.8*radius. Sine curves at the top of each figure identify the location of the cylinder in the

cycle.

Figure 11(a-c). Velocity vectors for the two-dimensional cylinder oscillating at an amplitude

equal to 1.0*radius. Sine curves at the top of each figure identify the location of the cylinder in the

cycle.

-21 -



Figure 12(a-c). Velocity vectors for the two-dimensional cylinder oscillating at an amplitude

equal to 2.0*radius. Sine curves at the top of each figure identify the location of the cylinder in the

cycle.

Figure 13(a-c). Pressure for the two-dimensional cylinder oscillating at an amplitude equal

to 1.0*radius (opened arrows indicate negative pressure, closed arrows indicate positive pressure).

Sine curves at the top of each figure identify the location of the cylinder in the cycle.

Figure 14. Computational domain for the three-dimensional oscillating cylinder. Only ele-

ment edges are plotted for clarity.

Figure 15. Forces and moments recorded on the three-dimensional oscillating cylinder at a

Reynolds number of 120.

Figure 16. Schematic drawing of the separating objects configuration.

Figure 17. Plots of velocity vectors and pressure for the separating objects case for theta equal

to 60 degrees. (Plots are for flow after 100 time steps of simru-ation.)

Figure 18. Plots of veiocity vectors and pressure for the separating objects case for theta equal

to zero degrees. For pressure, open arrows indicate negative pressure, closed arrows indicate pos-

itive pressure, the length of the arrows is proportional to pressure magnitude. (Plots are for flow

after 100 time steps of simulation.)

Figure 19. Example of the motion of the object in the z-direction. Elements in the figure on

the left are in the unstretched position. The right figure shows the object in the silo with elements

stretched to accommodate that position.

Figure 20. Flow field created by an object moving in the y-direction as shown at the top of the

figure. Velocity vectors and pressure are plotted next to it. For pressure, open arrows indicate

negative pressure, closed arrows indicate positive pressure, the length of the arrows is proportional

to pressure magnitude.

Figure 21. Plots of velocity vectors and pressure for the separating objects case with theta

equal to 10 degree. For pressure, open arrows indicate negative pressure, closed arrows indicate

positive pressure, the length of the arrows is proportional to pressure magnitude. (Plots represent

flow field after 100 time steps of simulation.)
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