
AD-A237 560 ELECTE
I t '1 'JUN 2 6 1991

Technical Document 2101
April 1991

Operating Systems
Standards Working

,) Group (OSSWG)
Next Generation
Computer Resources
(NGCR) Program
First Annual Report-
October 1990

R. Bergrman/OSS'WG

Approvec for public rcIease; distrbution is unlimited

91-03471 " .4

& - I!
NAVAL OCEAN SYSTEMS CENTER 1

San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN H. R. TALKINGTON, Acting
Commander Technical Director

U

ADMINISTRATIVE INFORMATION U
The work reported here was conducted over the period January 1989 -

September 1990 by a joint team of experts in the field of computer operating I
systems. These experts were from the Navy, other areas of government, industry,
and academia. Only a few of the Navy participants were actually funded to directly
participate in this process.

The report was funded under NOSC Job Order Number CC3041OF01, Next i
Generation Computer Resources. The sponsoring activity is the Space and Naval
Warfare Systems Command, through the work of the Operating Systems Standards
Working Group (OSSWG). The OSSWG management structure was as follows for
the performance period of January 1989 - September 1990:

NGCR Program Manager, Mr. H. Mendenhall, SPAWAR 324
NGCR OSSWG Co-Chairman, CDR R. Barbour, SPAWAR 324
NGCR OSSWG Co-Chairman, Ms. T. Oberndorf, NADC
Approach Subgroup Chairman, Mr. T. Conrad, NLJSC
Requirements Subgroup Chairman, Mr. R. Bergman, NOSC
Available Technology Subgroup Chairman, Mr. J. Oblinger, NUSC

The products contained within this report are the result of work performed by I
the entire membership of the OSSWG. I
Released by Under authority of
L. J. Core, Head A. G. Justice, Head
Embedded Computer Infnrmation Processing I
Systems Branch and Displaying Division

I

RBT 3

I

Table of Contents

Part 1 - Executive Summary ... 1-A-1

Briefing Charts .. 1 -B-I

Part 2 - Record of Progress .. 2-A-i

Minutes from the 18-19 Jan 1989 OSSWG meeting 2-B-I

Minutes from the 16-17 Mar 1989 OSSWG meeting 2-C-i

Minutes from the 16-18 May 1989 OSSWG meeting 2-D-I

Minutes from the 20-22 Jun 1989 OSSWG meeting 2-E-I

Minutes from the 1-3 Aug 1989 OSSWG meeting 2-F-i

Minutes from the 12-14 Sep 1989 OSSWG meeting 2-G-I

Minutes from the 17-19 Oct 1989 OSSWG meeting 2-H-i

Minutes from the 12-14 Dec 1989 OSSWG meeting 2-I-i

Minutes from the 22-26 Jan 1990 OSSWG meeting 2-J-I

Minutes from the 6-8 Mar 1990 OSSWG meeting 2-K-I

Minutes from the 17-19 Apr 1990 OSSWG meeting 2-L-I

Minutes from the 5-7 Jun 1990 OSSWG meeting 2-M-I

Minutes from the 16-20 Jul 1990 OSSWG meeting 2-N-i

Minutes from the 28-30 Aug 1990 OSSWG meeting 2-0-1

Part 3 - Principal Products .. 3-A-I

NOSC White Paper on Network Operating Systems Standards 3-B-i

POA&M for the OSSWG .. 3-C-i
DID for Operational Concept Document3-D-I

NGCR OSSWG Reference Model, Version 1.02 3-E-I

NGCR OSSWG Available Technology Report, Version 1.3 3-F-i

Operating System Interface Standard Requirements 3-G-i

Reference for Evaluation Process Report 3-H-i
Reference for Evaluation Results Report 3-I-i

Reference for Recommendation Report 3-J-i

Reference for After-Action Report 3-K-i

A..~S,..,.a

|--,.1stribution/ _.

.. i vai /or

I 4oA I -i

Part 1

Executive Summary

The Next Generation Computer Resources (NGCR) Program of the U.S. Navy
seeks to establish standard interfaces of several types in order to provide an
open system architecture for constructing Navy application systems from
compatible components. These interfaces are to be based or industry /
commercial standards. Among the standard interfaces sought is an operating
system interface. The Operating Systems Standards Working Group (OSSWG)
was formed in 1989 for the purpose of identifying such a standard. The OSSWG
is open to participation by all interested parties and has met approximately
once every six weeks in pursuit of its objectives. This report is the formal
record of its achievements for the period January 1989 - September 1990. It is
intended that an Annual Report will be issued each October to record the
previous year's work.

Part 2 of this report documents the sequence of meetings held by the
OSSWG and incorporates the formal minutes of each of those meetings.
Excluded are the briefing materials used by the several subgroups and the
invited briefs by various technical experts, although their message is reflected
in the minutes.

Part 3 contains the principal products of the OSSWG for this reporting
period. Included there is the original white paper on operating system interface
standardization issues, based on which the OSSWG began its work. Also
included is the Plan of Action and Milestones developed to guide the OSSWG's
efforts. This POA&M addresses all the work accomplished through June 1990, a
period now referred to as Phase 1 of the OSSWG's activity. During Phase 1, the
work was shared by three OSSWG subgroups, each of which produced substantial
results. The Approach Subgroup produced a Data Item Description for an
Operational Concept Document for an operating system interface standard.
Further, it generated a Reference Model for discussing operating system
interfaces. Both of these are found in Part 3. The Available Technology
Subgroup performed a survey of the operating system marketplace, as well as a
survey of re;t-.vart standards, and produced an Operating System Technology
Report documenting its findings. The Requirements Subgroup produced many
drafts of a statement of Navy requirements for operating systv,;n ;,terface
capabilities, defining sixteen classes of requirements and appropriate metrics
for each requirement. The end result was the Operating System Interface
Requirements Document, Version 2.U, wn ci, is also incluclea in Part 3 of this
report.

I-A-I

I
I

Four other major reports were produced during Phase 1. These are not
incorporated herein, but have been formally published and are availabie upon
request by contacting the National Technical Information Service at the
following address:

U.S. Department of Congress
National Technical Information Service
5285 Port Royal Road
Springfield VA 22161 I

(703) 487-4650.
The cover sheets from those reports as well as the Report Documentation Page
and an executive summary are bound into this report. These four reports
describe (1) the evaluation process defined for evaluating the candidate
operating system interfaces and selecting a standard, (2) the results of
applying that process to the finalist candidates, (3) the final recommendation
of the OSSWG as to the selection of a standard, and (4) an "after action"
anaiysis of what was learned and what should happen next.

In order to provide a suitable context for understanding the work reported
here, a set of briefing charts describing the NGCR program in its entirety is
appended below. Among the important facts revealed in the briefing charts is
the method of work within the NGCR program. The essence of the approach is
the joint industry/Navy working group. The progress documented in this Annual
Report reflects the contributions of the members of the OSSWG, many of whom,
especially those from industry and the academic community, participated on a
voluntary basis.

Finally, those interested in the origination of the NGCR program can obtain I
further information in the following documents:

Operational Requirement for Next Generation Computers
CNOTRANSMITTAL 098r/8u55086 8 August 1988

Next Generation Computer Resources Development Options Paper
COMSPAWARSYSCOM 324/253 30 October 1987

I
i
I

l -A-2I/

NGCR POINT OF CONTACT LIST 12/11/90

To assist in maintaining a current NGCR program point of contact list,
please fill in the following information for yourself and any other representatives
from your organization deemed appropriate. Please print the information carefully
and legibly. A complete list will be provided to each of you before your departure
later in the week. Thank you for your cooperation.

1.) Name

2.) Organization and Code

3.) Telephone Number

4.) E-mail Address

5.) Fax Number

6.) Mailing Address

7.) Area of Program Involvement, e. g., S/NWG, PSEWG

I-A-3

c')w
Q

0
Cl,wccz

0

Cl,

I- ,
0 0

w

wz

DI
LI

I.- I
a .

I

0 w0 0U

w zaF0

LL)j CI

cr) a~ci

0~ U
0 1L

00

E 00

cr ~Qcr.

00.zD a i0 UJ Z Z3
cc CC 0-

CL r - g L

*iu
clII

zB2

(IL
0

0 0

Dm 0

0u:
00

0 _
00

zz

z >u

LL

0

LU U,

0 (0-

LL 10-

IL I4.0

000d
z W412q

LLo o0 j a.b .0 0

0U 0
LL toI

w* E

00
w U. w 0 Icc0a ICTi

C.)w *0 0,4

o <

o .

L- v- II

04

LLIL O

0.

wz w
LU p Ooi

Clc 0

0) Ir Uow

000

* 0 U-S r

ui ix1ZBp 0

LLI

CL0

UU 0
0O I

C.) CC(0 Iu
cc 2

0 08 0(1) 0

z
cc I

00
zz

-B-6

00

0 00

I-n uz CI
z

0

- W 0.1> 0 j
w 0wU- ZC) j (.) Im 0

4c~ Z 5u

orn I t
zz
0 0 0

(I) LL = 0

CC 0 0 C
I - U . w i

C/) OQ CC)

(AOz > Co

0 0-J

0 00 j

I-B-7

0U

0

uI
z o 1o
z co

0 a)34mc
cr) 0)

V- to V0 I _

a) "Mo

z 4ca) z
0C Z0z tU0wV

Z 00 CC

o zZ z U

0m OC44 0
F Vj

al -Jcl (3

0 u
<' 11 . f

0 It o
ccB- 3j

Cj: LU
z Pcc (.5 Cc LLI ZLu a 01--0
w -J z LLCO;=

Co Lu 20 S o uj>w<>- ul 0 o-z(az Q cr !LL) ()
:3
CL

0 CL

z
UA

LU u.2
cc D M

00
0 _5ix all LU
CL >

0 Lu Z MCC >.4 - : LLI a0. >90:3 0o .41= -.j w (,)
to CA. ir

UJz (.)0LJ)ou J 0
0 Z, >
IL0. LU z CC(40 M -20 ca LA z tz-
> -35 f 0zccz
M

ui> ccuwj IT 3 < z tucr. 0 2
0 Rza CEPcc uj -jII--k w5Z 0 OPMco 0 LLHo z0 0 iriCL 0 0CL

wdF

LU

cr.

z Cl)

cc 400, (4 4 -w
Z cn 0 2 CnLLS

I.- Z CC UJU
m z z 0 -o

ui a 0 LL. CC
ui z ul z
z > 0

z

-B-9

uii

o2 0w

C . 0O 0

0 01

LU)
L0COI 0

LU I
wOA 0 U..I- 0

I- z 2 :

zz
C,) 0 ..u(C b

0) W O 0.0 1 i.^
0 LLF L

o o.

UJU
o-B-

CCA

D~

0
cc

0

z

w
LL

LUU
0

z
Wl 0

0 C) wc- 0L 0 0P 1n
cc 1 (C. C CJ

Cl)

0x cc
ww

0 0i

U)UL

o I04) .c

w~~ coc

uju
CL CA

0 C.)CC.

Zj z

Urn~u 00-Ci 2L CC I
Cd) 0. 0.C))

LL0 3c
00 cc I

LU IL

1-B-125

zb

z-
CL(0

OMrZ >Y

cc coc 0W 3
0 .C0 1cc

o) w wwwP 5>53
C)rC-

a 0
ZW z> Z z

(AW c LU

04

cl 0WOME000880ZZ-izJ

w >-

wa w w

urn U) 0>.

04 4 Ua

)Zzz

w z 0
LL 4 4-i~00 0

z w-B01<

z zJ

0 0i

Z en

ZZ "e~ as m
PC ~ o 42 0 ps" >V

PC ;06

az Z
0 wI
0 0zO

I-B-1I

ccu
I

0

00

0
0* z

IL

0

w
CL
0

ZII

aca

ww rA C)Ui-
04

I-C-I

LU ~0

LU U.U

X -

j. (.n QLL) Co (o

cc ODD
LU .j j LU ..j .- / (fl

1- 1- - U Z -i 0 a

M M z zL

cc N.c0

zz

cc/ 0oc
WW 00 o>Lzccc

o o> 0 0 cc Co

C/) wc 0 cc

'i ~LU

Z U) 3 1 >-

0 >- zn < 0 C (n

00 0

cc) u 4 M O I

wj <0zccn

~ w cn =, U

2~ En 0I

rA I I
00 u

0 0 <Zr0 r3 1 5> 8Iz (:
00 pz

z NIL
z- u,~

PU)

0--

LU z

0 0

z >

F- -- H F

~ z > C 2 c pv yI ~ 0 IQ0

zz
00

Iu §0
* 00 0

nom
W30

z z u

wO * F ce<0 U

C. Q Zb
z (A C

0 *i z
U)0 W 0 t

I-J cc Ccb

mmJ .J IVUC

LULU 00zU.L
3 Z E > >.wwczzz

U, 0- O< a O aa a

0 Yz2LtQ,.<> c
o= CAU /U) h1
0o. CO. 0 0 c

_ 0D ~ -ww
0 (.) cr. 0z0

00w - Zi LU w
F/) ''m c l)C

CC) 04OO 00 cc caI
I-2-O C)00oO< 0

flw omcoc"

0CC.

<CJ 2C8S8 0 w<U
C0 zLLm 3LL1j uC

Cl)0 c. > ui :):- - LUCl)Oc I- C-6

WA -

Cc

000_ I

z O -V
bow

0T,
42

EOsOjo v 1 4)~

0"enA

z ~

-oo

C,.) W)

CA m

z 0W

CD 0 C

5r m IT~ ~~

00 _ _ _4__W"_

1-C-7

0 c0

0 L

cc
o

I0-

0

0

0 CL I
U'U

z 2
LU

0 W

w0

cC,)

I- 0
z 00

cl 00

C44'(1*04
~m J _ _ _ V) C4cc C

o 1o
a. w 0f
0 w >
____ __ __ I___o

1---n

UA
IN

NN -NN -)I

II

o toJ). <4a w w

-~~J
0O

__ _ ___
_ _ _

I I L

U~~1 zacnn~N ~

1-0-

IL LI
-~~ -1 -m cm -

P. - -6 a a
>I CO) .

0 (0*

0 cn +

I- __ I

> -cm- IOV -c 4

0 0qCO

I
. .I

I- I

wi N NM

w.C - 9-

IL V

co C

0 1

0UZ 1 0 I- r

I) u0'4 5 0.0 a 0) Z z u U

_jO~f 0p q 0L 000 Q

9- ol A ad", -K o
ru 6 8 1-D-o

0

U0
z z -1

C,
0

ow 0
I- 0

-j LU (0

PJ 0

0 cc (A c

9,28 2 4co ULM.
*A (a cr oa co .

4 ~ ~ ~ i jWIuU~
F>

W 0 LU LU 14() A Z4c-
ILL LU cc .j Ofl *-

0 CI

I-D-5

LU

xI
z L

IMEI
ujj

co) z
Xw N

0 5.z ow

F z 0.

(A LU

Fz 0c ICoc
0 0

mo 0 l 2 t L. dk

w w '
L'4

=L ChL 0

z CLo
Lu.. AQ U a Czu

I& ~ <000<z04lcaI
Z La0..

0@ 0iu :) M ILI
LU~~~~-- X alg Uz:5b i I

LL7

00

cc w -
0. 0 (100

< 0 ~
0 0 4

c!) z a.

0U 0 z
00

0.
E a4

z
D- 4 -

04 cc

M umiO 0 Cm)

cr.g0U 0z
00

z 04>.

00a 00

LLU

I."*. E
50 ca -DOW

22

00

0

I z
I5

C)

1 -o

cci I
ILl C4~ 0

.. .D

0~ M
I-lc-

-..
LU 0 1. O .o

LUU 0-

_ 0_ ,U LL au.

Q.0 00 r
~~~ 40 m L~
o u0 i~k b . .. ......

.2 Z'" ZI-

0 LULZUL

IL 0
uj o 0 o t

z ~ 5~ 'r C0A

-z 0883 0 .00
l1-E-



Z 0
_1 mmm W

(D &u C,, Z/ z

JO L- zC L nZ

imz C3 L-W LLOW =W
(0 CV) ~ r

(* z X C)is>Li c
M1 Cf co W cn CC W

<W Qw~U< L

(0 < a 5-

V Ea< 34- (3M V)

oS2 L 0 con(7Z0 u ()<

ClCl Zz 0cu c
W W a uJP

IM c 0 cr Z:N W0L.L

W W o aJ44Wj) L

a.o 0 za.
J o- F , R-Eo3



V))

W C

W C) 0

<WOWzoomc

ZCI) cnc

w m M
CcC

w w ;.I z
crLUD UL J OA

ac

£0 Cc

z

_ cc
~ZWM

.occ0

1-E-



0C

0

OZ U)

0 UJ w
UJ >-O 0 mo. o 0 CC~1 o 0

Wz a CO IWCI 0~ 0 Z i
0 j am I CO

(A xw x Pw 0W< CCZ >- OP OC.)

U M O (.)0)c

0cc I-* 0004 O

0 Q FI- 0 c i-- UJ LWCO
0o z -PW Q c 33: o

0 cc 0u

>z WC)~
CC z OCO0 0>>

4) tj: 02

Z w (. w2..t

SZ a =Iim

0.2 u.0 ca ccd

UMJM 00002 Z M<0
COW O.W 5 (-.i F2cz w

wO W i-
CA MC -

Z w 4c M4G-0 , ,WII
CO) CL 1-E-t



W0.

a0

a Po pn 0-%
0P A .0 2

_D 40 C4' -

m 0

hi 4 Oki Ch

0i0 cc* a o~-

~ -~ ' hi I-



I

I Part 2

3 Record of Progress

The Operating Systems Standards Working Group (OSSWG) conducted
fourteen meetings from January 1989 through August 1990. A brief schedule ofU the location and dates of those meetings is listed below. The official minutes
of each of these meetings is included in this section. The presentation slides
for each meeting will not be included however, but may be obtained by

I contacting LCDR Robert Voigt, SPAWAR 324A, Washington DC. (703) 602-3966.

In addition, video tapes have been made of each OSSWG meeting except the
I January 1989 meeting. These will be made available by OSSWG and a copy can

be obtained by again contacting LCDR Robert Voigt at the number stated above.

I Navy planning meeting: NADC, Warminster, PA 18-19 Jan 1989
1st public meeting: NAVSWC, White Oak, MD 16-17 Mar 1989

I 2nd meeting: NAVSWC, White Oak, MD 16-18 May 1989
3rd meeting: Vitro Corp. and Booz-Allen & 20-22 Jun 1989

Hamilton, Inc., Crystal City, MD
I 4th meeting: NAVSWC, White Oak, MD 1-3 Aug 1989

5th meeting: NAVSWC, White Oak, MD 12-14 Sep 1989
6th meeting: NUSC, Newport, RI 17-19 Oct 1989
7th meeting: Vacation Inn, San Diego, CA 12-14 Dec 1989
8th meeting: Stouffer Riverview Plaza Hotel 22-26 Jan 1990

Mobile, AL
_ 9th meeting: NAVSWC, White Oak, MD 6-8 Mar 1990

10th meeting: SEI, Pittsburgh, PA 17-19 Apr 1990
11th meeting: NAVSWC, White Oak, MD 5-7 Jun 1990
12th meeting: In conjunction with the IEEE 16-20 Jul 1990

POSIX meeting, Danvers, MA3 13th meeting: NAVSWC, White Oak, MD 28-30 Aug 1990

II
I

* 2-A-I



NEXT GENERATION COMPUTER RESOURCES (NGCR) MEETING

January, 1989

ATTENDEES:

(Co-Chair OSSWG) Rick Barbour SPAWAR
Rich Bergman NOSC
Dale Brouhard NOSC
Stephen Cecil CRANE
Tom Conrad NUSC
Linda Elderhorst NATC
Karen Gordon IDA
Daniel Green NSWC
Steve Howell NSWC
Phil Hwang NSWC
Daniel Juttelstad NUSC
Leigh Lieberman NADC
Larry Lindley NAC
Warren Loper NOSC

(Co-Chair OSSWG) Tricia Oberndorf NADC
James Oblinger NUSC
Carl Schmiedekamp NADC

HANDOUTS

890001 Agenda - NGCR Operating System (OS). In-house
meeting 18-19 Jan 1989.

890002 NGCR OS Working Group (WG) Directory of Personnel

890003 NGCR Program Description - Cdr. R. Barbour

890004 NGCR Status - Presentation to NGCR
Program Review - T. Oberndorf

890005 CBD Announcement 12-28-88

890006 Excerpts from DOP concerning NOS

890007 OS Features Matrix 1/17/89

890008 Brief narrative of candidate OSs

890009 Draft CBD announcement of Brief to
Industry in March 1989

890010 STRAWMAN Definition of Terms (T. Oberndorf)

890011 Proposed SAFENET Communications
Management Definitions (D. Green)

890012 Questions for consideration by the Policy
Group

0-01

2-B-1



NGCR MEETING Minutes
02/13/1989

1 890013 Questions for consideration by the Approach
2 Group

3 890014 Requirement for NGCR OS (repinnse by
4 Requirement Group)

5 890015 SAFENET Presentation

6 890016 NOS Article from Jan 1988 Local Area Network
7 (LAN) Magazine

8 ACTION ITEMS:
9 -

10 NADC Contact SPC and NASA, FAA OS and Lawrence Livermore Lab
11 in regard to membership.

12 ALL Call for application requirements documents to Carl.

13 Carl, Need to submit s/w concerns to the Back Plane i
14 Rich Prototype Working Group.

15 ATWG Technology Report from "Available Technology" Subgroup

16 for March meeting.

17 NADC Address/e-mailing lists for subgroups? 3
18 Tom Abstract OS.

19 Dan G. Remind Safenet of security issue. i
20 -

21 Tricia began this first meeting of the NGCR Network
22 Operating System (NOS) Working Group. She handed out the Agenda
23 and Directory of Personnel (#890001 and 2). i

24 Tricia would like points of contact for any other Navy Labs
25 and industry personnel who might be interested in contributing to *
26 this Working Group.

27 Objectives of this meeting:

28 1. Goal of OS for NGCR.

29 2. Need Technologies Report before first brief to industry.

30 3. Agree on Subgroup structure.

31 Cmdr Barbour presented the NGCR Program Brief (He handed out
0-02

I
2-B- 2 i



NGCR MEETING Minutes

02/13/1989

1 NGCR Program Description, #890003).

2 o Discussed the command structure at SPAWAR.

3 a Numerous vacancies due to funding limitations.

4 0 Program goals are to -increase operational readiness
5 and Program Manager's flexibility.

6 o Many technology influences. Not all are applicable
7 to NGCR.

8 o NGCR is an architecture, not a design or a computer.

9 multiprocessor
10 multisystem interconnect -- main areas for NGCR
11 s/w standards /

12 o Economic decision: prototype 3 of the 10 NGCR
13 standards

14 o Focus areas:

15 SAFENET \ Prototype
16 BACKPLANE & Conformance Testing
17 NOS /

18 Dan G.
19

20 Will use commercial standards and select one and modify
21 where Navy needs dictate. Some mods for SAFENET have been
22 acceptable to joint WG, some not.

23 o Vendors make prototype and these are evaluated for
24 conformance by Navy Labs and presented to Joint WGs.

25 0 Prototype proves standards (Standards are then used
26 to contract for manufacture of units.)

27 0 Can expect a typical 10 year program schedule for
28 these types of development.

0-03

2-B-3



NGCR MEETING Minutes
02/13/19P0  3

1 Discussion
2 -- - -- -
3 o NGCR is requesting a RFP for the prototype by Sep 89

4 - Need to discuss in this WG if this is
5 feasible.

6 o What is transition for NOS from current to total
7 NGCR? - undefined

8 Dan G.
9 -- --

10 o SAFENET hopes UYK-43, 44.

11 o Transition to NGCR is highly dependent on target i
12 system. Probably a phased transition of NGCR
13 products. i

14 Ralph
15 -- -

16 o Future bus has been scheduled, but Backplane may
17 consist of several buses i
18 These other buses would handle:

19 Error log 3
20 Maintenance
21 Debug

22 Local Bus tightly coupling a few modules. Talk of: I
23 Signal Processing Bus I
24 Current Program Activities

25 o New tech work: i

26 ruggedized Milspec
27 Hank, Jerry and Dave are only ones currently U
28 attempting to address this

29 o Ruggedized is between no testing and full Mil testing. 3
30 Effort is to firm up what ruggedized means.

0-04 3

I
2-B-4 3



NGCR MEETING Minutes
02/13/1989

1 o Program Program Plan, Acquisition Plan and T&G Plan
2 are currently under revision. Milestone I is just
3 coming up.

4 ISSUES
5

6 Program Doc - not developing only hardware products

7 Naval Research Advisory Committee (NRAC)- is critical of
8 current NGCR approach

9 Joint Industry Avionics Working Group (JIAWG)- doing similar
10 things as NGCR but has a different
11 schedule

12 Tri-Service Program -

13 SUMMARY
14

15 Summary - hardest nut: - Navy policy to implement

16 TRICIA presents the slides that she had previously presented
17 to NGCR meeting in December, 1988.

18 Handed out:

19 NGCR Status 890004
20 CBD Announcement 890005
21 Excerpts from Development Options Paper (DOP) 890006
22 OS Features Matrix 890007

23 o Same brief as NGCR Program Review in December

24 o Tricia had been on program less than month

25 o Not all potential members have yet participated in
26 Working Group

27 o NOSWG next meeting (in-house) scheduled for February

28 o Brief to industry by WG in March

29 0 SEI will not be brought in until March meeting

30 o Suggested Members:
0-05

2-B-5



NGCR MEETING Minutes
02/13/1989

1 Software Productivity Consortium (SPC) (Tricia does have

2 contacts)

3 Lawrence Livermore (Tricia does not have contacts)

4 0 Need to do requirements study 3
5 o Need to input S/W concerns to B.P. Prototyping RFP

6 o June 90 award RFP contract for OS standard Finalized i
7 93. How can this work?

8 o Evolutionary approach - modify existing standard? 3
9 Does a standard exist, or do we have to start from
10 scratch?

11 o Emphasis by NGCR is on adoption of industry standard. i
12 o Should OS be distributed or network - Need to make
13 recommendation to NGCR concern what is feasible for I
34 O.S.

15 o Language binding and/or language independent? Make
16 recommendations.

17 o CBD announcement has been published; heads-up for
18 March meeting.

19 o TriciF. pa3sed out a paper containing excerpts
20 from t!-! Decisions Options Paper. I
21 o Presented six main O.S. requirements from
22 DOP Ada-oriented, Real time, Distributed,
23 Multi-Level Security, Reliable, Heterogenous
24 Processors. I
25 Discussions
26 -- - - - -
27 o Suggestion to replace 'Real time' with 'Critical
28 time.' 3
29 o Government would not be maintainer of O.S. - the
30 implementer would be the maintainer, as in commercial
31 systems.

32 o The Conformance Group is responsible for
33 showing/demonstrating conformance to the standard. I

0-06

2-B-6



NGCR MEETING Minutes
02/13/1989

1 o Conformance testing is not to be used to prove
2 interoperability (Harry Gold). Conformance tests
3 should lead to interoperability.

4 0 If standard requires interoperability, then passing
5 the tests shows interoperability?

6 o Would like to avoid situation as in DOS where there
7 is only one implementation - it is a standard but
8 unique interface.

9 o What is possibility that two implementations which
10 meet the standard interoperate?

11 a Trial use standard and prototype before final
12 standard publication in order to prove standard.

13 Back to OS Requirements:

14 o Concept where S/W modules such as schedulers which
15 could be changed based on Achitectures.

16 o Don't know of an existing standard for an OS.

17 0 Posix is the only known standardization effort, but
18 they have organized into separate WG for Ada, RT,
19 etc.

20 o Standard Electronics Modules Program (SEMP) CRANE
21 goal would be to provide complete interchangeability
22 over time.

23 H/W / S/W Context

24

25 Ralph :

26 Currently proposed low performance Backplane has capabilities
27 equivalent to the High Performance backplane described in the
28 DOP (High Performance Computer).

29 o Discussion on whether to define Million Instructions
30 Per Second (MIPS). Consensus is that definition
31 would be unproductive.

32 o Two types of Signal Processors NGCR and non-NGCR what
33 does the NOS cover? Does OS Reside on non-NGCR
34 processor or just communicate with these non-NGCR
35 processors.

0-07

2-B-7



I
NGCR MEETING Minutes

02/13/1989

1 o Provide paper addressing each of the items contained
2 in the OS requirements from the DOP paper 890006.

3 Presentation by Dan Green

4

5 Handed out SAFENET Presentation #890015

6 o Presentation originally made to SAFENET Comm Mgt WG

7 0 SAFENET choose to base its work on MAP and then made 3
8 modifications

9 o Presented SAFENET Diagram showing the seven ISO/OSI
10 levels and its relation to services, resources, and
11 application

12 o Same as above for GOSIP i

13 Discussion
14

15 o What should the goals of an OS for NGCR be? I
16 o What is the effect on a PM?

17 o Use multi-vendors product with only a re-compilation

18 o Interoperability with other conforming components?

19 (from other vendors)

20 (ease problems of interop) i

21 PM Advantages:

22 - S/W transportability
23 Interoperability:
24 between same processor
25 between different board same node
26 between different nodes
27 between different nodes different vendor

28 Purchase of state-of-the-art heterogeneous processors
29 which conform to standard (type of transportability) 0

0-08

2-B-8 3



I
NGCR MEETING Minutes

02/13/1989

1 - Maintainability and logistic support

2 - Raise level of abstraction of design to run on H/W

3 - Very High Scale Integrated Circuit (VHSIC) OS engine
4 on silicon

5 - S/W bases - interface bus

6 - Other constraints may overwhelm the design, other
7 than OS constraints, such as weight, size.

3 DBMS Interface

9 - If we standardized on an Structured QueryI 10 Language (SQL) DB system, does that mean when
11 someone comes along with an object oriented
12 data base (OODB), it will be non-compliant?

13 - Device Drivers other than Graphics, will theyI 14 be subsumed by NOS?

15 - NRAC committee has some concerns that we need
16 to address.

17 - Need to provide goal or direction to industry
18 so they can use their initiative to solve
19 problems instead of having them work ad hoc
20 then seeing if we need the technology.

21 - High need for generating a set of system
22 requirements (specifically RT).
23

24 DAY 2

25 On the second day of the NGCR Meeting, an
26 updated master mailing list was distributed to the
27 attendees. The working group will make heavy use of
28 ARPA net. Also handed out was the STRAWMAN
29 definition for NOS terms, SAFENET definitions (from
30 Dan Green, and an article about NOS terms (#890010,
31 11, 16).

32 An attempt was made to define terms, and a
33 suggestion was made to add the following terms:

34 Node

35 Needs Modifier - i.e. application
0-09

2-B-9



I
NGCR MEETING Minutes

02/13/1989

1 Application Level Interfaces

2 Interface - One layer to the next layer

3 Services - Function to be performed

4 Protocol - Controls transmission of
5 information between two layers

6 Agree that a computer is based on a Backplane.

7 o Need to develop common set of terms for use
8 by this WG whether or not it is accepted by
9 other committees.

10 o Message is very fuzzily defined terms by
11 everyone. ISO uses Protocol Data Unit (PDU)
12 which defines a message between the entities
13 of each layer. A PDU for a layer consists of
14 its Service Data Unit (SDU), which consists
15 of the next highest layer's PDU, plus a I
16 header that contains control information for
17 that layer's protocol.

18 o Need to describe where boundary is between OS i
19 and SAFENET.

20 o NOS could potentially control all levels. i
21 o Need to know computer system architecture or
22 develop a minimal set of hardware. i
23 Karen

24 o Mach (DARPA) UNIX selected as application
25 interface and extended for specific
26 architectures.

27 o Extensions for Distributed, secure.

28 o Executive would be the core of the system.
29 Layered on this would be file system,
30 supervisor, etc., which then form an O.5. 3
31 Larry

32 Can slice horizontally or vertically

0-10I

2-B-10



NGCR MEETING Minutes

02/13/1989

1 Could slice File Sys, Memory Management, I/O, etc.

2 or

3 Single Process, Dist. tightly coupled, etc.

4 Make List

5 I/O \ Channel Mgt
6 / device control

7 Process Mgt
8 Interrupt Mgt
9 Scheduling

10 Memory Mgt
11 Interprocess Comm
12 Information Mgt (including naming)
13 Resource Mgt
14 Dispatch Mgt
15 Time Services (incl Synch)
16 Fault Tolerance
17 Performance Monitoring
18 Debug
19 Security
20 Comm Services (math, data conversions, etc.)
21 Logging/accounting
22 Recovery/initialization

23 **Action Put together Glossary of Terms NADC

24 Tricia takes over to break the Group into four
25 subgroups

26 Four Groups:

27 Requirements

28 Available Tech (use matrix handed out previously)

29 Approach (standard, family of O.S., etc.)

30 Policy /legal issues, mandates

31 Handed out questions for consideration for
32 Approach and Policy (890012 and 890013)

33 The excerpts from DOP requirements (Requirements
34 Group) and the Matrix (Avail Tech) was handed out
35 yesterday.

0-li

2-B-il1



I
NGCR MEETING Minutes

02/13/1989

1 Reliability = handling of fault tolerance

2 Approach WG i
3

4 1. Describe abstract notion of O.S. I
5 2. Address issue of family

6 - levels of partition.

7 3. Describe functionality.

8 4. Requirements Grnup would quantify.

9 5. Available technc'ogy Group would provide i
10 candidates.

11 6. Will look at concepts and generate capabilities
12 w/o regard to current technology.

13 7. Will not come out with something as formal as
14 CAIS.I

15 8. Assume Ada

16 Dan G:
17 - - -

18 9. We should expect a 4-10 year gestation. i
19 Tricia:

20 10. Need spec by mid 1990's to be used by projects
21 to 

1
22 - specify for their systems.
23 - be used by real projects.

24 Linda: U
25 11. JIAWG is working on near term problem CORE-SEE
26 while working on the long term (full) SEE. This
27 could be method to evolve to full system.

28 Rick:
29 

I
30 12. NGCR has no plans for this type of activity
31 (evolution).

2-B2

2-B-12i



NGCR MEETING Minutes
02/13/1989

1 Tricia:

3 13. Our spec in '93 will have to be close to final.
4 In order to have a viable prototype, we need a draft
5 specification by '91.

I 6 14. Difference between Standard and Spec:

7 Spec - describe what to build
8 Standard - describe how to build.

9 Discussion
10

i Chances are that, if we solve all current
12 problems, we will fall short for systems 10 years
13 from now. We will have to attempt to look down the
14 road.

15 (Dan) argues for evolutionary approach, see
16 what's broken and fix it, rather than starting with
17 blank sheet of paper t17hen moving to conceptual
18 design.

19 Technology Awareness Group
20
21 Need "Technology Report" for March meeting describing
22 the available technology - like NOSC White Paper
23 (short excerpts).

I 24 SAFENET
25

26 - Need to define boundary between OS and
27 SAFENET.

28 - If OS has hooks and Netw has hook they need
29 to match.

30 Avoid redundantly specifying31 functions/features in OS and SAFENET
32 (particularly specify differently).

33 - Security.

34 Planning for March Meeting
35 - - - - - - - - - -

0-13

I
I2-B-1 3



I
NGCR MEETING Minutes

02/13/1989

1 March 16 and 17

2 Reworked CBD announcement

3 Agenda for meetings I
4 Updated Matrix and Technology Report5 Presentation on what discussions have been

6 February Meeting (In-house Working Group) I
7 Next Meeting: February 21, 22, to start at 10:30 on
8 the 21st...I

I
I
I
I
I
I
I
I
I
I
I

0-14

I
2-B-14i



I

NGCR MEETING Minutes
02/13/1989

E 1 LIST OF ACRONYMS

I 2 ATWG Available Technology Working Group

3 DOP Development Options Paper

4 FAA-OS Federal Aviation Administration - Operating
5 System

6 JIAWG Joint Industry Avionics Working Group

7 LAN Local Area Network

8 MIPS Million Instructions Per Second

9 NGCR Next Generation Computer Resources

10 NOS Network Operating System

II NRAC Naval Research Advisory Committee

12 OODB Object Oriented Data Base

13 SPC Software Productivity Consortium

I 14 SQL Structured Query Language

15 VHSIC Very High Scale Integrated Circuit

E 16 WG Working Group

I

0-15

2-B-15



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

i INITIAL MEETING 16-17 MARCH 1989

MEETING MINUTES

-2-C-I



I
I

The Next Generation Computer Resources (NGCR) Program
Operating Systems Standards Working Group (OSSWG) initial meeting
with industry was held March 16-17 at the Naval Surface Warfare
Center (NSWC) in White Oak, Maryland. Over 200 representatives
of government, academia, and industry gathered to hear NGCR
presentations on Thursday morning. The group was then organized
into three subgroups that met Thursday afternoon and Friday
morning, with subgroup wrap-ups presented and the meeting
concluded Friday afternoon.

Thursday, 16 March.

The meeting was opened with welcome presentations from CDR
Rick Barbour, SPAWAR 324A, and Captain Robert P. Fuscaldo,
Commanding Officer, NSWC-White Oak. All presentations were
filmed, and a limited number of copies will be made available to
those who wish to make a copy of their own.

The Keynote Address was given by RADM R. L. Topping,
Director, Warfare Systems Engineering, SPAWAR. ADM Topping
stated that the current joint NGCR cooperation between the Navy
and private industry is a "superlative" success, as demonstrated
by the SAFENET and Backplane Bus working groups. His
presentation then addressed the importance of computers to Battle I
Force Systems Engineering. Noting that weapons capabilities, the
wirfare domain, battleground distance, sensor capabilities and m
C tactics have all increased exponentially over the past 200 3
years, ADM Topping explained how the Navy wants to apply systems
engineering toward programs to structure today's battle force.
He identified three major challenges to battle force programs:
allocation of functions to resources (platforms);
intra/interoperability across major platforms (ships, submarines,
aircraft, satellites); and weighted trade-off of all system
capabilities and engineering disciplines. ADM Topping then m
pointed out that many of the battle force pervasive disciplines
apply to "information warfare". These include interoperability
(standard interfaces), graphics (interaction with human factors),
computer standards, multi-level security, and data base
management systems. He concluded by saying that the Navy was
structured to meet these challenges in the 1990's with the joint
industry/government venture for achieving common interface I
standards for computer resources (SAFENET and Backplane Bus) and
the OSSWG providing the "glue" to tie the intra/interfaces
together.

A copy of ADM Topping's presentation is available upon
request.

No questions were asked of ADM Topping.

The next presentation was made by Hank Mendenhall, NGCR
Program Manager, SPAWAR 3243. Hank identified the NGCR Program
purpose, organization, history of developments (since December
1985), statement of needs, and program objectives. He stressed
that an open systems architecture approach is what the Navy

L-C-2



needs, and the joint industry/Navy standards program is the
solution. The advantages to the Navy in using an NGCR open
systems architecture approach were then identified by Hank.
These included: rapid incorporation of state-of-the art
technology into the fleet, logistics reduction due to commonality
of NGCR products, interoperability of NGCR products through
common interfaces, program manager flexibility in system design
and acquisition managament, and the establishment of a commercial
base of standards and products which will provide industry with
incentive to invest in the NGCR program. Several times
throughout the presentation, Hank stressed that NGCR is a
significant departure from past Navy policies involving computer
resource standardization. He stated that NGCR is not a computer
or software system, but, instead, an architecture that
standardizes hardware/software interfaces and protocols. He
reminded the audience that the parameters of the open system
architecture would be defined by joint industry/Navy working
groups, focusing on widely used non-proprietary commercial
standards. The NGCR standardization areas were identified as
multiprocessor interconnects, multisystem interconnects, and
software entities such as operating systems, database management
systems, programming suppoit enviroments, and a graphics
1Ar-,age/interface. Further elements of the NGCR program, such
as program elements, flow, and milestones were discussed as well
as the working group interrelationships and current program
activities.

A copy of Hank Mendenhall's presentation is available upon
request.

Several questions were asked of Hank. The following are
edited representations of the questions and answers:

Q: Is the purpose of today's meeting to define hardware and
software interfaces between different types of computer
systems like Apple MacIntoshs and IBM PCs?

A: That is a defintion the Navy frequently uses for open systems
architecture - different types of computers talking over
standard interfaces.

Q: Please repeat your comment on the use of proprietary
standards.

A: The standards that we will publish will not be proprietary.

Q: What is the Navy's position on NATO involvement in the NGCR
Program?

A: All foreign governments are invited to participate, and
foreign companies are currently represented in the NGCR
working groups.

2-C-3



I

CDR Rick Barbour, NGCR OSSWG Chairman, SPAWAR 324A, then 3
presented an overview of the NGCR OSSWG. He presented the
purpose and approach of the OSSWG, then gave the proposed
charter. Consistent with the NGCR Program approach presented by
Hank Mendenhall, CDR Barbour reiterated that the Navy would like
to initiate a dialogue with industry in order to form a joint
industry/Navy operating systems standards working group. This
group will establish NGCR operating system interface standards I
which will be based on the "best fit" between Navy requirements
and existing commercial operating system standards. The OSSWG
will meet every 6 weeks and plans to produce an operating system
requirements statement and draft abstract model by July '89, a
technology report by October '89, and a product evaluation
process by January '90. The OSSWG will select concepts/products
to be incorporated into a draft baseline standard by September
1991. CDR Barbour acknowledged that this is an ambitous schedule
and that the working group was faced with many challenges.

A copy of CDR Barbour's presentation is available upon
request.

Several questions were asked of CDR Barbour. The following i
are edited representations of the questions and answers:

Q: Is there a mandate to develop this operating system in Ada? 3
A: Mandate is a strong word. Since DoD requires new software

development in Ada, it is something we must consider.

Q: Academia seems to be underrepresented in this (NGCR) effort.

A: We need to look at what is being done in the academic arena.

Q: Isn't it true that DoD directives emphasize the use of i
existing (software) products whether they are written in Ada
or not? 3

A: That is correct. We will be examining the incorporation of
existing commercial products whether or not they are written
in Ada. I
Tricia Oberndorf, Co-Chairman OSSWG, NADC Code 7031, then

gave a presentation expanding on CDR Barbour's. Tricia first i
defined several high level requirements for the NGCR operating
system. These were: real-time, distributed, Ada-oriented,
heterogeneous, mulit-level secure, and fault tolerant. She
revisited the Ada-orientation requirement and offered that this
was a reference to Ada Languange bindings; it did not mean that
implementations of the operating system had to be written in I
Ada. She then went on to say that the peculiarities of each
requirement would tend to pull the focus of the OSSWG in
different directions and that compromises would have to be made i

2-C-4



in order to adequately address the Navy's needs. Tricia then
reviewed a series of questions addressing the relevant issues
before the OSSWG. These included the orientation of the system
that the Navy required to have an interface standard (operating
system, executive, kernal, Ada run-time), the language
dependencies of the standard, and the relationship of the
operating system standard with other NGCR standards. Tricia's
list of issues also touched upon performance characteristics and
the question of Navy needs being met by existing technology.
Tricia then identified the proposed subgroup organization of the
OSSWG, consisting of a Requirements Subgroup - chaired by Rich
Bergman of NOSC, an Available Technology Subgroup - chaired by
Phil Hwang of NSWC (White Oak), and an Approach Subgroup -
chaired by Tom Conrad of NUSC (Newport).

A copy of Tricia Oberndorf's presentation is available upon
request.

Each of the Subgroup chairmen gave a presentation describing
the objectives, approach, products, and milestones of their
respective group. The following paragraphs are a synopsis of
those presentations.

The Requirements Subgroup will identify the requirements for
the NGCR operating systems and support the development of a set
of operating systems interface standards. They will examine
current Navy and commercial operating system functions,
performance requirements, hardware/software/language interface
issues, various "-ilities" issues (security, technology
insertion, etc.), and then produce a requirements document. The
schedule calls for a Requirements Statement on 6/1/89, an
Operational Concepts Document Draft on 1/1/90, and an Operational
Concepts Document Final on 5/1/90.

The Available Technology Subgroup will examine the
incorporation of current and evolving operating systems
interfaces, services, and protocols into the NGCR operating
systems standards. In addition to identifying issues associated
with existing and evolving operating systems functions and
interfaces, they will develop a representative model of existing
operating systems architectures. This Subgroup will also
evaluate existing and evolving technologies relative to the
criteria for NGCR technologies. This Subgroup will consolidate
comments from commercial developers by 4/16/89 and produce an
operating systems technology report by 10/1/89. An evaluation
report summarizing technology evaluation results is due 4/1/90.

The Approach Subgroup will define a process for establishing
a family of NGCR operating systems interface standards. This
activity includes identifying the process for industry/Navy
cooperation in defining standard operating systems interfaces,
services, and protocols. This group will also define the
procedures for comparing identified operating systems elements
against identified NGCR requirements in addition to defining
appropriate OSSWG documents. The Approach Subgroup is scheduled

2-C-5



I

to deliver a Requirements Document DID on 6/1/89, an abstract I
model of operating system services on 7/1/89, and the Evaluation
Process Definition Draft on 9/1/89 and Final on 1/1/90.

A copy of the presentations for each of the Subgroups is
available upon request.

After the Subgroup presentations, there was a general
question and answer period hosted by CDR Barbour and Tricia
Oberndorf. The following are edited representations of the
questions and answers:

Q: Who is leading the OSSWG effort? 3
A: The NGCR Program Office.

Q: Where will future OSSWG meetings be held? 1
A: That is up to the individual subgroups. General sessions of

the entire OSSWG will be held in the Washington D.C. area for U
the next 4-5 meetings.

Q: Is it the Navy's intent to create an IEEE standard?

A: No, that will be up to industry and the IEEE. 3
Q: What is my incentive to pursue this Navy market?

A: Hopefully, the market created by the joint industry/Navy
standards will be expanded to the commercial market.

Q: Why shouid we voluntzr.:ly 1artic-eate in this working group?
What is in it for us to attend? It seems that a more prudent
approach would be for us to stand by and watch what
developments occur.

A: (At this point, John Machado was introduced to the group to 5
field the question.) Many of you in attendance currently are
involved with building systems for the Navy, and you know
what current Navy requirements are. If you are actively
involved with guiding the requirements for NGCR, you will be
very familiar with future Navy and possibly commercial
systems requirements. Your familiarity with these new
standards will add to your competitive abilities.

Q: That is an explanation for why we should watch, not for why 3
we should participate.

Al: Without participants from industry, the Navy is not sure we
will ever meet NGCR objectives.

2-C-6



A2: (Dan Green, NSWC-Dahlgren, and also a member of the SAFENET
working group, provided additional comments.) There are
other reasons to participate. These working groups provide a
learning experience for your people. It gives them a chance
to work side by side with other people who are sometimes
competitors and who are involved with the same type of
products. It is also your opportunity to be involved with
the leading edge of industrial and Navy technology and get in
on the ground floor of defining that technology.

Q: What interest has the Army and Air Force expressed in NGCR?

A: There is currently no DoD planning to make NGCR a joint
service effort. The Army has expressed some interest in NGCR
and the Air Force is aware of the program. Both services are
watching closely.

Q: Has this effort been scoped to the point where, for example,
there are requirements for a particular platform?

A: We are currently examining aU requirements and need more
input. It is a difficult job.

At this point in the meeting, CDR Barbour asked the attendees
to chose a particular subgroup in which they would like to
participate. Each Subgroup received approximately the same
amount of interested parties. For the remainder of the day and
for half of Friday morning, the Subgroups held open discussions
among their members and attempted to identify issues and assign
them to focus groups created within each Subgroup.

Friday. 17 March

Subgroups reconvene.

Most of the morning session was a continuation of subgroup
meetings from the previous afternoon. At the conclusion of the
subgroup meetings, a brief presentation* was given by each of
the subgroup chairmen.

*NOTE: The "raw" viewgraphs presented by each of the subgroups

is included as an attachment to these minutes.

2-C-7



I
I

A "wrap-up" presentation was then made by Tricia Oberndorf.
She concluded:

- The schedule for the OSSWG is ambitious. It also is the
schedule! We need to keep pace with the SAFENET and
Backplane Bus working groups. 5

- There is a recognized need for support from industry,
but this working group support will not be funded by the *
NGCR Program Office. This is a cooperative endeavor.

- The use of E-mail/ARPANET is strongly encouraged for
working group participants. Each Subgroup chairman's i
account number is given in the handout and there will be U
additional accounts set up on a Subgroup basis.

- Comments are requested on the "NGCR OSSWG Procedures" i
document contained in the briefing handout package (near
the end).

Coordination among the three Subgroups is essential and
will be accomplished via E-mail, Subgroup schedules and
deliverable reviews, executive committee meetings, and
the meetings of the entire OSSWG which take place every
6 weeks.

- Coordination among the various NGCR working groups 3
(SAFENET, Backplane Bus, Conformance Test Committee,
etc.) will be established through the NGCR Program
Office.

- Document distribution among the Subgroups will take
place through the Subgroup chairmen.

- Administrative support for the OSSWG will be arranged
through the NGCR Program Office.

- Several copies of the video tape of the meeting may be
made available to be copied by interested parties.
Future OSSWG meetings at NSWC - White Oak would also be
video taped.

- Future OSSWG meetings may be extended to 2 1/2 days
(from the current 1 1/2).

Tricia also stated that the objectives for the first OSSWG
meeting have been met. They were: 3

- OSSWG participants got to know each other.

- The OSSWG executive committee received confirmation I
through working group participation that the original
plans and ideas for the OSSWG make sense.

- Progress was made, the OSSWG is off to a good start.

2-C-8 I



I - There have been presentations arranged for the nexti meeting:
-- A presentation on POSIX
S-- A presentation on DARPA projects.

A "wrap-up" presentation was also made by CDR Barbour. He
reiterated the Navy's desire to initiate a dialogue with industry
to:

- form a joint industry/Navy working group

- adopt industry standards (if feasible)

- take advantage of the best available technology in
industry

- ensure the availability within the industrial base of a
family of non-proprietary operating systems standards

- RAPIDLY FIELD TODAY'S TECHNOLOGY TO THE FLEET!

3 Schedule for future OSSWG meetings

The initial OSSWG meetings will take place in the Washington
D.C. area. Future meetings may be at other locations.

May 16-184
June 20-21
August 1-2

September 12-13
October 17-18
December 5-6

The next meeting (16-18" May) will be held at NSWC - White
Oak, Maryland with Registration at 0800 and the meeting start at

I0900.
I

*NOTE: change in original schedule for May meeting

II

I

I
3 2-C-9



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 16-18 MAY 1989

MEETING MINUTES

2-D-1



* I
I

The Next Generation Computer Resources (NGCR) Program
Operating Systems Standards Working Group (OSSWG) second meeting
was held May 16-18 at the Naval Surtdce Warfare Center (NSWC) in I
White Oak, Maryland. Approximately 100 representatives of
government, academia, and industry gathered to hear presentations
given to the plenary session on Tuesday morning. The group then
disseminated to the three on-going subgroups, with working
meetings taking place the remainder of Tuesday, all day
Wednesday, and Thursday mc~ning. Subgroup wrap-ups were
presented and the meeting concluded Thursday afternoon.

Tuesday. 16 May. 

CDR Rick Barbour, SPAWAR 324A, opened the meeting by
reiterating the charter and objectives of the OSSWG, and then
turned the floor over to the subgroup chairmen for brief status 3
briefings/reports.

Rich Bergman, the Requirements Subgroup chairman, stated that
the subgroup was continuing to identify the requirements for the
NGCR operating systems interfaces. At this meeting, the focus
groups would be formalized, the OS architecture model would be
reviewed, and an initial set of requirements for the Requirements i
and Operational Concepts documents would be formalized. Rich
also stated that the focus group members would be assigned tasks
to complete prior to the June OSSWG meeting. 3

Phil Hwang, chairman of the Available Technology Subgroup,
discussed several products of the subgroup, identified seven
focus groups, and outlined the activities and schedule for
deliverables. The subgroup planned to produce the Gpcrating
Systems Technoloy Report first draft by the end of this meeting
(or shortly after) and would also attempt to identify a I
reasonable set of Technology Survey issues for the June meeting.
Phil also identified plans for a summer OS technology workshop
and the development of a pool of real-time operating systems to I
survey and evaluate. The Subgroup had also scheduled two
speakers, James F. Ready (Ready Systems) and Marvin Shugarman
(BiiN Federal Systems), to make presentations to the Subgroup
Tuesday afternoon.

Tom Conrad, chairman for the Approach Subgroup, identified
the current Subgroup participants and prod,-ct milestones. The
POA&M for the Subgroup had been completed, the Abstract Model
would be available 7/89, the DID for the OCD would be completed
6/89, and the Evaluation Process Document draft was scheduled for i
9/1/89 with the final document due 1/1/90. Tom identified the
main plans for this meeting as completing a complete OCD DID
draft for review, discussing and revising the Abstract Model, and
devising a plan of action for the Evaluation Process definition.

Consistent with one of the March meeting "wrap-up" comments,
the OSSWG has bequn to coordinate its activities among the
various NGCR working groups. The next three presentations were
made by members of two of the other NGCR working groups 2

2 -D- 2I



representing SAFENET and the Backplane Bus efforts.

Dan Green (NSWC-Dahlgren) presented a briefing on SAFENET.
He noted that efforts were underway to complete the SAFENET I
standard and handbook, continue SAFENET II development, and begin
to develop user guides. Dan then identified key members of the
various SAFENET subgroups and the executive committee. To give
the audience a sense of the extent of SAFENET implementations,
Dan provided a partial list of "declared", "probable", and
"potential" SAFENET users. Because of Navy-unique requirements
and various shortcomings in commercial LAN standards, the working
group decided against adoption of a single existing standard for
SAFENET. The presentation portrayed SAFENET I as a
profile/combination of ISO, IEEE, and MAP protocols. Dan also
indicated that the working group was looking for help in defining
SAFENET "lightweight" protocols (SLWP), and that they were
currently working with the XTP design team and X3S3.3 committee
to resolve these. In closing, Dan identified several issues for
OSSWG consideration. He inquired as to the best method to
interface SAFENET to the NGCR OS, such as at the top of the
"transport" layer. Additionally, he questioned how to determine
data transfer requirements for the interface and suggested that
special services of the data transfer system be identified.

The next speaker was LCDR Harrison Beasley, SPAWAR 324, who
gave a brief overview of the NGCR Backplane Bus. LCDR Beasley
informed the group about the selection of the Futurebus Standard
for NGCR and reviewed the current status and schedule.

Dwight Wilcox of NOSC gave a more technically detailed
Futurebus presentation, specifically on the "Peri dic Phase
Adjustment Method of Distributed Clock Synchronization". The
presentation examined the potential applications, advantages, and
methods for synchronizing distributed clocks located on
individual interface cards in a distributed backplane bus
architecture. Dwight then gave instructions as to adjusting and
building adjustable rate clocks. He also touched upon the
concept of clock synchronization (via token passing) in a local
area network environment.

The final two presentations of the morning session addressed
the state-of-the-art in operating systems technology, POSIX and
Mach.

Dr. Douglass Locke, IBM Systems Integration Division, briefed
the group on "POSIX in Realtime Systems". Dr. Locke identified
POSIX as the "definition of an operating system interface". He
noted that: the Basic POSIX Interface Standard (IEEE 1003.1) was
completed in August, 1988; the Shells and Utilities Standard
(IEEE 1003.2) was now in the IEEE balloting process; the
Real-Time Standard (IEEE 1003.4) was scheduled for completion in
June, 1990; and the Ada Bindings Standard (IEEE 1003.5) would be
finished by March, 1990. No schedules were given for the
Secure/Trusted Standard (IEEE 1003.6), the Network Interfaces
Standard, or the Transaction Processing Standard.

2-D-3



i

Dr. Locke reviewed the POSIX standard functions, indicating !
that they were very similar to, and modelled after, UNIX
operating system functions. In fact, like UNIX, POSIX is written
in the C programming language.

The remainder of Dr. Locke's presentation focused on
real-time extensions for POSIX. The topics covered were priority
scheduling, asynchronous event notification, timers, shared
memory, real-time files, semaphores, IPC message passing, process
memory locking, asynchronous I/O, and synchronous I/O.

The final presentation of the Tuesday plenary session was
given by Dr. William Scherlis, Program Manager of Computer
Systems, DARPA Information Science and Technology Office (ISTO).
Dr. Scherlis briefed the group on the new, high performance,
portable operating system base, Mach.

Dr. Scherlis detailed the DARPA funded evolution of Berkeley
UNIX from AT&T UNIX, highlighting the new features such as
virtual memory, extended process control, a new file system, and U
advanced network support. He explained that the project to
provide BSD UNIX with major innovations has nearly reached its
logical end, and the critical research items that had been
developed (the new file system, application interfaces, OSI
interfaces, and POSIX) will be transferred to Mach. Dr. Scherlis
stated that Mach (completely new) will eventually replace
Berkeley UNIX as the base operating system in the U.S. R&D arena,
and that Mach will be object code compatible with Berkeley UNIX.
He also identified an NSA "Orange Book" compliant, multi-level
secure (unclassified to Top Secret) version of Mach, TMach, that 3
is scheduled to become available in FY 92.

In addition to enhanced OS performance, a strong feature of
Mach is its portability to a variety of architectures,

accomplished through extensibility of the basic Mach system and
emulation of other operating systems. 3

To conclude his briefing, Dr. Scherlis provided a list of
Mach users and a schedule of DARPA activities for distributed
systems in the upcoming fiscal years. These included meeting I
requirements for Mach support, security, real-time enhancements,
and suitability for military operating systems.

The remainder of the day consisted of Subgroup working

meetings.

Wcdnesday. 17 May

Subgroups reconvene.

Thursday, 18 MaY

Subgroups reconvene. 3
Most of the morning session was a continuation of Subgroup

2-D-4 3



I

meeting wrap-ups, with each individual focus group (within each
Subgroup) compiling several viewgraphs illustrating theirIrespective charters and planned activities. The "lead" person of
each focus group then presented the viewgraphs to the reassembled
OSSWG. The "raw" viewgraphs are included as an attachment to
these minutes. The following paragraphs do not provide the
detail of each focus group, but, instead, are oriented to reflect
the results on a Subgroup level.

Reuirements SubrouD

The Requirements Subgroup activities for this meeting
included reviewing their charter, reviewing pertinent
documentation (the Abstract Model draft, Implementation Sample,
and March meeting information), and formalizing five focus
groups. These are the Execution Model, Fault Tolerance,
Distribution/Real-Time, Security, and Management Issues focus
groups. The Subgroup produced a set of requirements for the
Initial Requirements Document and OCD, established a schedule,
and made individual assignments to its members.

For the June OSSWG meetings, the Requirements Subgroup will
develop the first draft of Execution Model requirements, and, in
early July, develop the first draft of the OCD. The first
revision of the OCD will be produced and reviewed during the
September meeting and presented to the OSSWG for the October
meeting. After incorporation of comments, the final OCD will be
reviewed during the December OSSWG sessions, then released for
broader review. The final OCD (for publication) will be released
next May.

Available Technolo-cy Subgroup

The Available Technology Subgroup had already organized into
seven separate focus groups at the March meeting. These were the
Architectures, Software, Fault-Tolerance, Real-Time, Framework,
Standards, and Security focus groups. During this gathering, the
Subgroup further explored their issues list to lower levels,
produced a draft of the Technology Report, initiated dialogue
with other Subgroups, and assigned tasks to its members.

Future plans for the Subgroup include a revision of the
Technology Report for the June OSSWG meeting, a survey of
real-time operating systems to evaluate, development of an
initial matrix of operating systems and characteristics, and an
examination of evaluation methodology and critera.

AR~roach SubgrouD

This Subgroup consists of the OCD DID, Abstract Model, and
Evaluation focus groups. During this set of meetings, the
Approach Subgroup completed a walk-through of the draft OCD DID
and Abstract Model, established a new baseline of documents,
developed a plan for generating an evaluation process report, and
met with other Subgroups. 2-D-5



i
I

The schedule for the OCD DID is as follows: Version 1.0,
5/25/89; Version 1.1, 6/16/89; briefing to OSSWG, 6/20/89. i

Closin Comments

The next OSSWG meeting will take place June 20-22 in Crystal i
City (Arlington), Virginia. The general opening session on the
20th and closing session on the 22nd will be at Vitro Corp. and
the break-out sessions will be held at Booz, Allen and Hamilton
Inc. Details are included as attachments to these minutes.

The tentative plenary session presenters for the June meeting
are Mike Kamrad of UNISYS Computer System Division, Roger Martin
of the National Institute for Standards and Technology (NIST,
formerly NBS), and members of the Approach Subgroup. Mr. Kamrad
will give a presentation on the ARTEWG (Ada Run-Time Environment
Working Group), Mr. Martin will speak about NIST software
standardization work, and the Approach Subgroup will present
their results on the OCD DID and abstract model of operating
systems services.

Tricia Oberndorf once again stressed the importance of the
use of E-mail by OSSWG participants. It is the most effective I
and efficient way to coordinate OSSWG documentation and
messages. For information on the NADC.ARPA machine, contact Carl
Schmiedekamp (NADC) at (215) 441-1779.

As the meeting came to an end, Tricia requested that the
entire OSSWG take on one additional responsibility for the June
meeting: be prepared to discuss and identify what we (the OSSWG)
need to standardize, such as operating system kernel functions
and the Ada run-time environment features. 3

CDR Barbour presented the closing address to the group,
congratulating the members on the progress that the group has
made and encouraging active future participation in the OSSWG. i

I
I
I
I
I

2-D-6



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

I MEETING 20-22 JUNE 1989

MEETING MINUTES

I2E

i
I
I
i
I
i

I
I
I 2--



I
The Next Generation Computer Resources (NGCR) Program

Operating Systems Standards Working Group (OSSWG) third meeting
was held June 20-22 at the Crystal City (Arlington) offices of
Vitro Corp. and Booz-Allen & Hamilton, Inc. Approximately 80
representatives of Government, industry and academia gathered to n
hear presentations given to the plenary group all day Tuesday.

Wednesday and Thursday were allocated to Subgroup working meetings
with wrap-up presentations given late Thursday morning.

Tuesday, 20 June.

CDR Rick Barbour, SPAWAR 324A, once again gave the welcome I
presentation to the group, noting that the OSSWG was approaching
several important July milestones for the Operational Concept
Document (OCD), the Abstract Model, and the Requirements State- I
ment. CDR Barbour stated that this meeting's objectives would be
to establish a consensus on the scope of the Operating Systems
Interface Standards. He also expressed a need for volunteers to
serve as OSSWG meeting hosts during 1990. The floor was then
turned over to the Subgroup chairmen for status reports.

Rich Bergman, Requirements Subgroup chair, outlined the i
Subgroup's progress since the May meeting. They have reviewed the
OCD DID, Abstract Model and other relevant information, in
addition to continuing to develop OS interface requirements. For
this meeting, the group planned to begin fitting requirements to
the OCD and to review the Execution Model.

Phil Hwang, chairman of the Available Technologies Subgroup, i
identified the accomplishments of his group and their current
plans. Phil said that they were several levels down in detail on
their Technology Survey Issues list and the list had also been
expanded. In addition, the Focus Groups have produced draft study
inputs concerning their respective areas and continue dialogue
with the other subgroups. During this meeting, the group planned I
to produce a new version of the Technology Report, a survey
evaluation of o' erating systems, and an initial matrix of
operating systems and characteristics. The Subgroup also planned i
to continued to develop the evaluation methodology and criteria
during this session. Phil also identified several potential risk
areas in meeting document milestones. These included Sub/Focus
group participation, the short time frame and the lack of
consensus on the scope of deliverables and the OSSWG charter.

Tom Conrad, of the Approach Subgroup, also reviewed the U
products and plans for his group. The OCD DID first draft was
released in May, with draft 1.1 scheduled for distribution
16 June. The Abstract Model draft 0.9 was available and would be I
presented to the OSSWG later Tuesday morning. Group comments to
the model would be incorporated into draft 0.99, 27 June, and an
Initial Release, 1.0 was planned for 30 June. Tom stated that the
group was also discussing approaches to the evaluation process and
was beginning work on a draft of the Evaluation Process Document.

I
2-E-2



The next presentation was made by Roger Martin of the
National Institute of Standards and Technology (NIST), formerly
the National Bureau of Standards (NBS). Roger began the

I presentation by stating a NIST objective to "provide (a) vendor
independent way for federal agencies to specify operating system
environment requirements which promote applications portability."
The presentation examined the use of the POSIX operating system
interface standards to achieve the NIST goal. It was noted by Mr.
Martin that POSIX alone will not be sufficient to achieve
portability for all applications, but, instead, there is a need
for an open systems architectural approach to applicationsIportability. The many benefits of an open systems architecture
were presented, followed by an architectural model called the
"applications portability profile (APP)." The Federal strategy
for the APP is to evolve it as an open process, leveraging
existing standards where possible and initiating new standards
development where needed. The strategy includes the development
of collaborative partnerships among government, public and private
sector participants as well as formal working groups in the
operating systems community. These partnerships will build a
consensus on open systems, defining functional characteristics,Iselectinm non-nroprietary standards, soliciting commitment from
open systems architecture product vendors and users, and
developing conformance tests (Editors note: similar to NGCR
strategy). Mr. Martin concluded his presentation with a history
of POSIX followed by a detailed accounting of all IEEE P1003.X
(POSIX related) standards development activities. He stated that
FIPS has adopted draft 12 of P1003.1, and will eventually
recognize the current draft, 13. There are 23 modifications of
IEEE P1003.1 in FIPS 151, including correction of technical errors
and setting mandatory requirements in 151 for options and
behavioral alternatives allowed by P1003.1 where portability would
be affected.

A briefing on the Ada Runtime Environment Working Group
(ARTEWG) was then given by Mike Kamrad of Unisys. Mike began by
reviewing the current concerns of the Ada community. These ranged
from the shortcomings of Ada to the lack of knowledge of Ada
users. He then gave the charter of the ARTEWG, a SIGAda sponsored
group of Ada users and implementors. The ARTEWG establishes
conventions, criteria, and guidelines for Ada runtime
environments. It also provides a mechanism for interface between
Ada users and implementors. The ARTEWG's initial plan of action
will be accomplished over the next two years, producing the
following baseline products: a catalog of implementation
dependencies for runtime environments, guidelines for effectively
using Ada runtime environments, and a catalog of Ada runtime
environment interface proposals with rationale and feasibility.
Mr. Kamrad noted that Ada implementation technology should be
further examined. There is a need for more technical and proof of
concept developments resulting in more knowledge being obtained
about Ada runtime requirements. He then spoke about current

-2-

2-E-3



I
ARTEWG activities, noting the conservative approach that ARTEWG
has observed in the Ada 9X program . Mr. Kamrad also gave a
graphically-oriented presentation of a compiled Ada program and
runtime environment. He illustrated the relationships of the
compiled and linked Ada code to the Ada executive in both a hosted 5
OS and "bare bones" machine environment. He pointed out that the
efficiency of the generated runtime environment is directly
related to the compiler vendor's ability to link the optimal
number of Program Library Language routines to code sequences and
data objects of the applications program.

Tom Conrad, Approach Subgroup chairman, then gave a
presentation on the recently developed OCD DID. Tom outlined the i
7 sectionsof the DID, detailing the proposed eventual contents of
each section. The sections are the Scope, Applicable Documents,
Mission, OSS Functions and Characteristics, Government Agencies, U
Notes and Appendix.

Dr. Carl Schmiedekamp, NADC, briefed the group on the OSSWG
Architectural Model for Embedded Operating Systems, more commonly
called the Abstract Model. Dr. Schmiedekamp's discussion ap-
proached the model from 4 different views: the Application
Domain, Interface, Services, and Process. According to draft
version 0.9, "the OSSWG architectural model for embedded systems
is a conceptual model which provides a context for the description
of application developers' requirements, a context for description I
and comparison of existing operating systems, and a framework for
the specification of Operating Systems Standards (0ss) for
embedded systems." The Applications Domain view illustrated the U
use of an NGCR-compliant OS by a variety of typical applications.
The interface view depicted a Local Processor Operating System
(LPOS) as the central node to a range of functional interfaces. I
The services view discussed the operating system in terms of
managing explicit and implicit services, both synchronous, such as
processing "request" queues, and asynchronous, such as processing
interrupts. Dr. Schmiedekamp then introduced the System Resource
Allocation Executive (SRAX). The SRAX acts as the single
operating system for the whole system (or series of LPOSs),
managing resources. The SRAX allows local processes to use remote
devices in a seamless manner.

The final presenter on Tuesday was Tricia Oberndorf (NADC) i
who directed an open forum on "defining the scope" of the NGCR OS
Standard. Tricia showed the group an emerging view of the OS.
This view depicted the OS as a collaboration of software modules
(termed "internal") communicating with the outside world through a
set of well defined interfaces. After a series of discussions, it
was decided that the precise definition of these interfaces would
evolve into the OS standard. The presentation addressed many of
the "loose ends" in the OSSWG efforts. Various OS alternatives
(such as kernels vs. full operating systems) were examined,
compared, and contrasted in an effort to address what (exactly) i
should be standardized in the OS area to best serve NGCR and

-3- i
2-E-4 i



platform applications software. The question of (distributed vs.
centralized) functional allocation and control was raised,
prompting further discussion of the Abstract Model. The group
agreed that no single entity could be labeled the "NGCR OS," and
that a more appropriate approach would be a family of cohesive
interface definitions, selectable to meet the needs of the
particular application. Tricia led the group in addressing 7
issues that she had previously developed. After several hours of
deliberation, all the issues were resolved. The results are as
follows:

Issue Resolution

Interface Aspects 1) Consider both interfaces for
applications programs and other
interfaces as necessary.

2) The OSSWG should not be con-
cerned with the internal
(inter-module) interfaces of the
operating system. We should only
define external interfaces.

Specification vs. The OS specification may specify an
Implementation entire set of services. An imple-

mentation may invoke a sub- or

superset of the interfaces in the
specification.

Layering Layering is implementation specific
and not of concern to the
specification.

Configurability Configurability, or, more appropri-
ately, tailorability, is desirable
in the standard.

"Native" OS Presence The presence of a native OS or
implementation on a "bare bones"
machine are of no consequence to the
standard.

Languages other than Ada Ada should be the only language used
in developing the OS standards, but,
realistically, the C language should
be considered. (POSIX is in C)

"Family" The OS "family" will most probably
- Meaning be a kernel with selectable
- Nature of Family additional services.
Relationships

I
-4-

2- E- 5



I
Wednesday. 21 June

Subgroups convene. i
Thursday. 22 June

The Subgroups reconvened Thursday morning from 8:00 am to
10:30 am. After the Subgroup meetings adjourned, the working
group as a whole reconvened to hear Subgroup reports and wrap ups I
from CDR Barbour and Tricia Oberndorf.

Approach Subaroup

Dr. Schmiedekamp presented the report for the Approach
Subgroup. He summarized their accomplishments for this meeting,
which included a final edit of the OCD DID, a draft outline for I
the evaluation process report and significant interaction with the
Requirements and Approach Subgroups to coordinate their efforts.
There were a number of additions to the OCD DID to reflect working I
group consensus on performance levels and to bring sections of the
OCD into agreement with the Abstract Model. The Subgroup did a
walk-through of the Abstract Model, produced a minor revision
(0.91) and identified the need for a more significant update to
move the interface discussion from the appendix into the main
text, and to incorporate the "family member" view of operating
systems. In addition, the Abstract Model has been renamed the
Reference Model. The Subgroup developed an outline of the Target
Domains of systems, which produces a matrix of 72 points in the
"family space." They are discussing ways to reduce this number to m
a managable number of families.

The group's evaluation report outline has 5 sections:
Introduction, Approach, Evaluation Criteria, Evaluation Process
and Results/Summary. The Evaluation Criteria will likely be
suplemented with sub-criteria. The group is looking at a matrix
approach to evaluation, however the large number of family members
could make this a significant effort. Two approaches to weighting
have been identified. The first is to develop a set of weights
for each feature for each important family member and evaluate
each OS against each member. The alternative is to weight each OS
feature for each family member, and then weight the importance of
the family members to develop an aggregate weighting scale for
evaluating candidate operating systems. The Subgroup hopes to
reduce the 72-point space to its 6-8 most important members for
evaluation. Plans for future work include availability of a final
OCD DID and a revised Reference Model via the ArpaNet by 30 June,
and, at the next meeting, restructuring the Subgroup to focus on
evaluation and to review the OS requirements in relation to the
Model.

-5- I
2-E-6 3



Available Technology SubQroup

Phil Hwang then gave the report for the Available Technology
Subgroup. At this meeting, they generated the next draft of the
Technology Issues report, developed a list of operating systems
for the survey and assigned each Subgroup member 2-3 OS's to
evaluate. Finally, the Subgroup developed a survey form for the
evaluation process, following the form of the Reference Model.
Surveys are due back from members in 3 weeks. The surveys will be
sent to OS vendors for a "sanity check," intended to ensure that
the various candidates are accurately represented. At the August
meeting the Subgroup expects to have the surveys back from the
vendors, and they will produce the next draft of the Technology
Issues report.

Phil followed the Subgroup report with the announcement of an
Operating Systems workshop, co-sponsored by the Navy, the
Institute for Defense Analyses (IDA), and the University of
Maryland, to be held 19-20 September at the University. The
workshop is intended to provide a forum to consider OS issues for
mission critical systems, and an opportunity for vendors to
discuss their products' application in that area. Some debate was
held regarding the scheduling of the Workshop, and it was agreed
that arrangement would be made to videotape the proceedings for
those OSSWG members who could not attend.

Requirements Subgroup

Rich Bergman presented the wrap-up report for the
Requirements Subgroup. This Subgroup reorganized their Focus
groups to continue their work; the new Focus groups are Security,
Fault Tolerance/Performance Monitoring, Multi-Languages Interface,
External Interfaces, and Real Time/Distributed Processing. Each
Focus group was assigned a set of services from the Reference
Model. Rich then discussed the work performed by each of the
Focus groups. The External Interfaces group worked on require-
ments for operator-machine interface (OMI) and the minimum re-
quirements for inclusion in the OS. A model for placement of the
OMI services was also developed. The Multi-Language group con-
sidered requirements for the interface of both the Ada runtime
environment and of other languages to the OS, developed Ada
interface requirements and discussed the interface needs for Ada
debugging and performance monitoring. An outline for discussion
of the various issues was developed. This Focus group also
considered extensibility of the OS, and the means by which appli-
cations could add new services to the system. It was suggested
that such issues could be placed in a section discussing
"non-standard" extensions. Input on these issues is sought from
the working group at large.

The Fault Tolerance/Performance Monitoring group considered a
number of requirements in their area. They developed a number of
assumptions about the interfaces to a fault tolerant kernel, and

6

2-E-7



i
also concluded that the OS could probably not protect against
defects in applications software. A triangle showing influences
on the OS illustrated the point that security, fault tolerance,
and performance considerations each pushed OS requirements in
different directions; the challenge to the working group was to
select a proper mix of the three. The Security focus group
documented a large number of requirements, updating and enlarging
the list from the previous meeting. The Real Time/Distributed
Processing group identified over 400 requirements, and refined I
that list down to 112 that were of concern for NGCR. Near term
plans for the Requirements Subgroup are writing an "initial
preliminary first draft" of the Requirements document and the OCD, i
and to continue to develop and refine the OS requirements. Rich
emphasized the need to get comments to Dan Juttelstad at NUSC.

Closing Comments i
Following the Subgroup reports, CDR Barbour presented his

wrap-up of the meetings accomplishments. Stating that progress is
"phenomenal" for three meetings, CDR Barbour indicated his feeling
that the OSSWG achieved a consensus on their goals on Tuesday, and
that the Subgroups were making good progress on meeting their I
respective milestones. He is actively seeking offers to host
meetings in 1990; one offer for a meeting in Honolulu is under
consideration. The basic requirements for hosting are adequate
rooms: a conference room or auditorium suitable for 70-90 people,
plus additional rooms for Subgroup and Focus group meetings, and
no cost to the Navy. Hotels are suitable, but a commitment from
the hotel for meeting space may be difficult to get unless
attendance can be guaranteed. Since "POSIX keeps popping up," CDR
Barbour is also looking for volunteers to monitor the progress of
POSIX, which holds 4 meetings per year. He hopes to brief the I
POSIX working group on NGCR requirements at their fall or winter
meeting.

Stephanie Alba from Booz-Allen spoke briefly about
coordination for the next meeting, which will be 1-3 August at the
Naval Surface Weapons Center, White Oak, MD. Due to security
issues at that facility, preregistration at least a week in
advance is needed. Attendees who are foreign nationals must
preregister as soon as possible.

Tricia Oberndorff wrapped up the meeting with several
topics. She showed the schedule of meetings for 1990, which have
been planned to avoid other meetings of interest to OSSWG members, I
and would like to be notified of any other conflicts with the
schedule. Currently one briefing is scheduled for the August
meeting; the topic is the Army Secure Operating System (ASOS), a
project which addressed requirements similar to those of NGCR.
Various working group members have requested tutorials on such
topics as Ada, security, fault tolerance, and Open Systems
Interconnection (OSI). Tricia may also schedule one or more such
tutorials for August. Discussion occurred on how to make those

-7 I
2-E-8



I.
available to the most members of the group; suggestions included
holding tutorials in the evening and/or video taping them. Tricia
emphasized the need to get comments to the appropriate individuals
on the various topics under consideration by the OSSWG, and
strongly encouraged members to get email accounts and use them.
She also reminded group members that they must focus on OS
interfaces and not implementation. In closing, she congratulated
the group on their program and thanked them for their efforts.

I
I
I
I
I
I
I
I
I
I
I
I

i 2-E-9



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 1-3 AUGUST 1989

MEETING MINUTES

2-F-1



I

The fourth meeting of Next Generation Computer Resources I
(l\CR) Program Operating Systems Standards Working Group (OSSWG)
was held August 1-3 at the Naval Surface Warfare Center (NSWC),
White Oak. Approximately 50 representatives of Government, m
industry and academia gathered to hear presentations given to the
plenary group Tuesday morning. The remainder cf Tuesday
afternoon, Wednesday, and Thursday were allocated to Subgroup I
working meetings with wrap-up presentations given late Thursday
morning.
Tuesday, 1 August.

CDR Rick Barbour provided we)coming remarks reminding the
group of the upcoming dates for " 3WG deliverables. He then
showed a chart of the OSSWG organization divided into Subgroups,
illustrating the respective focus groups within each. The floor
was then turned over to the Subgroup chairmen for their status I
reports.

Rich Bergman c the Requirements Subgroup stated that (at
this gathering) they would be reviewing and refining the Draft
Requirements Document and cross-checking requirements to the
Abstract Model (a.k.a. Reference Model). Phil Hwang, Available
Technology Subgroup chair, planned to complete Draft Version 0.2
of the Technology Report and continue work on the OS Survey and
OSSWG definitions document. Tom Conrad, Approach Subgroup chair,
announced the completion of Version 0.2 or the Evaluation Process I
and Version 1.01 of the Reference Model as well as continued work
on the definition of the Evaluation Process.

The first invited speaker to address the plenary session was
John Preusse, U.S. Army CECOM, who talked about the Army Secure
Operating System (ASOS). Mr. Preusse outlined the classified
information difficulties currently being experienced while
processing ATCCS wide area communications. He discussed how
overlooking security issues during the ATCCS operational concept I
has resulted in cumbersome data communications, requiring manual
reading and retyping of information because of a lack of a secure
computer interconnection system wide. Two possible alternatives
to this situation were reviewed, multilevel security implemented
in "trusted guards" between distinct system components, and
incorporating a COTS multilevel secure operating system to
integrate the individual systems in the command and control
network. Both were determined as having unacceptable
disadvantages. Mr. Preusse then presented ASOS as the
CECOM-developed OS for multilevel security and real-time I
response. A_2OS was designed for A1 security, supports Ada
applications, bnd implements real-time OS features. An additional
ASOS feature is "program sealing" for virus/worm protection. Mr. i
Preusse outlined the current schedule for porting ASOS to the
ATCCS system and then touched upon some of the issues current :o
this decision. These included the performance issues due to
multilevel security and the functional interface differences
between ASOS and Unix application program environments. The major
advantages of implementing ASOS were included as Mr. Preusse's

2-F-2



m

m concluding remarks: ASOS meets the Al multilevel security
requirements for ATCCS while providing real-time features and
protection against malicious software; even though there are
functional differences, ASOS does interface with Unix-based
software in addition to Ada applications programs; and there will
not be an ASOS-equivalent COTS OS because industry lacks the
incentive to develop one beyond the B2 level. To end the
presentation, Mr. Preusse addressed the group with several of the
"lessons learned" with ASOS development. He stressed that
security must be designed into a system at initial concept. He
also emphasized the importance of the early involvement of
security evaluators (i.e., National Computer Security Center) in
order to more easily certify the implementation of security
requirements.

The next presenter was Dr. Cy Ardoin, who gave an overview of
the issues confronting the Real-Time Embedded Systems and
Distributed/Parallel Systems Working Groups of the June Ada 9X
Workshop. The Real-Time group is concerned mainly with the speed
of the operational code, the size of the memory required for
operational code, and the correctness of the program. Dr. Ardoin
then quickly touched upon the specific issues being addressed by
the Real-Time working group, the Ada requirement involved, and
possible work-arounds or solutions to the problems. The problems
included: reliably turning off run-time checks, control over
parameter transmission, task type interrupts, bit operations,
volatile memory sharing, fixed point accuracy, and unsigned types
without overflow. The Distributed/Parallel Systems working group
focused on Ada in parallel and distributed processing
architectures, specifically, language support for future Ada
projects implemented on these types of systems. For this portion
of the brief, Dr. Ardoin identified problem areas addressed by the
working group and potential new Ada language requirements that
address the problem. The problem areas included: types of
distributed or parallel architectures, program partitioning,
support for fault tolerance and dynamic configurability,
inter-task communication, adaptive scheduling, memory management,
time representation in distributed systems, identification of
raised exceptions, and identification of control threads. To
conclude his presentation, Dr. Ardoin outlined the Ada 9X Project
requirements development process and identified the following
sources of information regarding 9X progress: the Ada 9X Project
Office, the Ada Electronic Bulletin Board, the Ada 9X Project
Plan, and the Ada 9X Project Requirements Workshop.I

Following the Ada 9X presentation, Tricia Oberndorf led the
OSSWG in a technical discussion attempting to better refine the
domain of the OS Standards within.the NGCR scope of future Navy
platforms. The first topic opened for discussion was the
distinction between a Network OS vs. a Distributed OS. The group3 proceeded to engage in several rounds of lively discussion while
trying to establish a definition for both concepts. Although they
failed to reach a consensus on exact definitions, the OSSWG did



i

agree that the OS should allow for global resource sharing on a I
platform basis. This prompted questions regarding the types of OS
functions that would be available at each "node" of the system.
Two differing arguments arose. The first was that, since the I
functions needed by the individual platform systems were far
ranging and often dissimilar, the system architecture should be
the driving design force and the OS should be tailored to that. i
The second argument was that there needed to be a defined set of
functions provided at each node, whereas the system designers
would be required to use these functions when determining the
system architecture. (Editorial note: this is much like the "who
came first" chicken vs. egg debate). This discussion spawned a
debate between the OS Standard defining a "loosely coupled" or
"tightly coupled" system. It was noted that, in some instances, I
time criticality and performance will demand a tightly coupled
definition of OS services. The final OSSWG consensus was to
consider the Ada 9X method of stating requirements that allow for
implementation specific approaches and have the requirement
wording appear as "the system shall not preclude... ."

Tricia also informed the group of the most recent NGCR i
co-chair meeting with the other working group co-chairmen. She
emphasized that the NGCR Program Office still needed to establish
an NGCR interface definition among the individual components (OS,
SAFENET, Backplane Bus). Tricia told the OSSWG that she had shown
the other NGCR working group chairmen the graphic representation
of OS system interfaces to their components and encouraged them to m
do the same for their particular efforts. Multiple views (from
the working group chairmen) are needed for a consensus on a
single, harmonious interface definition between components.

The OSSWG plenary session then ended, with Subgroup meetings
scheduled for the remainder of the afternoon.

Wednesday, 2 August U

Subgroups reconvened for all day sessions.

Thursday, 3 August

The Subgroups reconvened Thursday morning from 8:00 am to I
10:30 am. After the Subgroup meetings adjourned, the working
group as a whole reconvened to hear Subgroup reports and wrap ups
from CDR Barbour and Tricia Oberndorf.

Reuirements Subgroup

Rich Bergman gave a briefing on the progress of the
Requirements Subgroup. He stated that their progress had become
somewhat impeded by unresolved issues, the most significant being
the still-undefined relationship of interface requirements to
hardware, architecture, and application software requirements.



Additional issues are the definition of the Reference Model
hierarchy and the questions concerning the relationship between
the OS, Backplane Bus, and SAFENET standards. The final set of
remaining issues addressed the topics discussed by the Tuesday
plenary session; resource management and definition of a
minimum/maximum set of OS services. Rich then identified the
current schedule of events for the Requirements Subgroup. The
Requirements Document reissue and the Draft OCD are due to be
completed September 8.

The Available Technology Subgroup chairman, Phil Hwang, noted
their accomplishments. Version 0.2 of the Technology Report had
been completed and the OS Survey had been updated. Draft 0.3 of
the Technology Report is scheduled for August 18 with the last
Draft due September 14 and the Final slated for September 30.
Phil also called attention to the 1989 Workshop on Operating
Systems For Mission Critical Computing, which will be held
September 19-20 at the Marriot in Greenbelt, Maryland. Phil,
Tricia Oberndorf, and CDR Barbour will serve as committee
Co-Chairs for that workshop.

Tom Conrad then presented the status of the Approach
Subgroup. They had delivered the revised Reference Model (Version
1.01) to the OSSWG, developed a model of the Evaluation Process,
produced a revised draft (0.2) of the Evaluation Process Report,
outlined the content of the OSSWG semiannual report, and
established a new focus group to study the issues of NGCR
Conformance Testing for the OS Standards. Tom then presented
graphical views of the Evaluation Process from several levels of
detail. The detailed view of the Evaluation Process showed the
abstraction of OS evaluation criteria into technical service
classes (technical OS issues), programmatic issues, and
representative application domains (families of services, etc.).
The selection of an OS Standard will be derived from the filtering
algorithm's final result, determined from the scores awarded in
these three areas. The specifics of this process are included in
Tom's presentation, included as an attachment to these minutes.
Tom concluded his briefing with a list of actions which need to be
completed before the Evaluation Process can become finalized.

Wrap-up presentations were then given by CDR Rick Barbour and
Tricia Oberndorf. Rick told the group that he was impressed with
the current progress of the Subgroups. Tricia took this
opportunity to gain OSSWG consensus on the direction the OS
interface Standard is heading. She noted that we are not "mixing
and matching" functional modules to make up a working OS (i.e.
Vendor A's scheduler with Vendor B's interrupt handler), but,
instead, we must define the interfaces external to OS functions
and restrict our focus to related issues. Tricia suggested that
NGCR OS vendors should provide a minimal set of interface
services, selectable at SYSGEN. This triggered arguments to what
constitutes a "minimal set". She also reiterated that the OS
interface concept is still missing a hierarchial picture
demonstrating the management of system resources, such as is

2 - -



I

illustrated by the SRAX in the Reference Model. On the subject of i
Conformance Testing, Tricia pointed out that conformance testing
is not performance testing, but that a set of performance
benchmarks should be made available from the NGCR Program Office.
On the same subject, it was noted that, because the same amount of
services may not be required from every NGCR OS Standard Product,
levels of Conformance Testing may be required similac to the way
layers of OSI Protocols are certified. CDR Barbour then called
the meeting to an end, advising the group that the next OSSWG will
take place September 12-14 again at the NSWC, White Oak, MD. He
also changed the date of the December OSSWG, being held in San
Diego, CA, to 12/12 - 12/14. I

i
i
i
i
I
i
I
i
U
i
I
i

- -'i



METN 121 ETEBR18

I.
I
I
I
-I
I

I NEXT GENERATION COMPUTER RESOURCES PROGRAM

i OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 12-14 SEPTEMBER 1989

MEETING MINUTES

Ii
I
I
I
I
i

i 2-G-I



I

The fifth meeting of Next Generation Computer Resources I
(NGCR) Program Operating Systems Standards Working Group (OSSWG)
was held September 12-14 at the Naval Surface Warfare Center
(NSWC), White Oak. Approximately 65 representatives of I
Government, industry and academia gathered to hear presentations
given to the plenary group Tuesday morning. The remainder of
Tuesday afternoon, Wednesday, and Thursday were allocated to
Subgroup working meetings with wrap-up presentations given late
Thursday morning. I
Tuesday, 12 September.

CDR Rick Barbour provided welcoming remarks and asked OSSWG 5
members to check the current mailing list for accuracy regarding
their name, address, phone/fax, and ARPANET location. He then set
the tone for the meeting with a slide encapsulating the OSSWG
charter. He reminded the group that they were there to adopt or I
establish a commercially based family of operating systems
interface standards. This should be accomplished by determining
Navy needs in the operating systems area, examining existing or I
proposed commercial operating systems, selecting a "best fit"
based on Navy needs and operating system suitability, and
recommending appropriate changes to this "best f it" for Navy-wide I
in±orporation. CDR Barbour then showed the group the current
milestone schedule and emphasized that time was growing short to
the due date of the OSSWG Evaluation Report/Recommendation to the
NGCR Program Office. Noting that it was time to "stop cutting
bait and start fishing", CDR Barbour encouraged each of the
Subgroups to meet their individual milestone commitments and
coordinate their efforts to produce an effective evaluation i
package for a list of candidate OS interfaces in time for the
January 1990 meeting. The floor was then turned over to the
Subgroup chairmen for their status reports. 3

Phil Hwang, Available Technology Subgroup Chairman, gave a
quick summary of that group's current status and outlined plans
for this meeting. He noted that very few comments were generated
concerning the latest version of the Technology Report, but those
that were generated were excellent and incorporated into the new
version, which was available for review. The most significant I
comment was that the report itself was becoming too large, almost
unmanageable. Phil also related that the OSSWG Glossary had been
updated. He then reminded the OSSWG of the upcoming (September
19-21) MCOS workshop (Co-sponsored by SPAWAR) taking place at the
University of Maryland and he encouraged members of the group to
attend. For this meeting, Phil planned to "split-up" the
Technology Report into a number of documents and isolate the I
Abstract Model survey of OSs for use in the screening process.
Phil also announced plans to incorporate the proceedings of the
MCOS workshop into the Technology Report. Other plans for the I
group included finalizing the different sections of the Technology
Report and delineating the initial screening process that will be
used as a "first cut" for determining candidate OSs. Phil
reported that it will be no problem for the Available Technology

'-G;-2



.

m Subgroup to adhere to its milestone schedule.

Steve Howell then spoke for the Approach Subgroup. He
recapped the product responsibilities of that group, highlighting
finished products such as the OSSWG POA&M (March '89), OCD DID
(June '89) and Reference Model (July '89). Comments are still
being solicited for the Reference Model. Steve also illustrated
the upcoming products of the Approach Subgroup, the Evaluation
Process Report (due (draft) September '89, (final) January 90) and
the Semi-Annual OSSWG Public Report (October '89, April '90).
Since the last meeting, the Approach Subgroup has received and
incorporated comments to the Reference Model. They have also
released a new draft version of the Evaluation Process that
reflects comments concerning the previous draft. Additionally,
they have begun to assemble the Semi-Annual Public Report. For
this meeting, Sts've said that the Approach Subgroup would finalize
the Reference Model, achieve a consensus on mapping requirements
(generated by tlie Requirements Subgroup) to the Model, brief the
current (draft) Evaluation Process to the OSSWG in hopes of
resolving the remaining Evaluation Process issues, and assemble
information toward the first version of the Semi-Annual PublicReport.

U The Requirements Subgroup Chairman, Rich Bergman, was not
present at this meeting due to illness. Tricia Oberndorf gave a
brief overview of that groups status and plans. Tricia stated
that the group would not break into smaller groups this session
because of the need to refocus the Requirements Document. She
said that the document required much work in order to get it ready
for the October delivery date and the primary emphasis would be to
orient the requirements to those representative of an OS interface
versus those of an OS implementation.

Emily Siarkiewicz (USAF RADC) and Rammohan Varadarajan
(Odyssey Research Associates) briefed the group on the Air Force's
Secure Distributed Operating System (SDOS), which is still under

m development. A goal of SDOS is that autonomous hosts cooperating
at an applications level c n share common resources at local and
remote sites in a secure C environment. SDOS is modeled after
BBN's Cronus. Its environment is a layered, two-tiered
architecture where it performs object and process replication in a
client/server fashion. The typical SDOS distributed system
combines a "Client" and a "Manager" with each kernel (or resource
node). A node Manager creates and maintains an object database
that outlines the specific operations available on that node of
the distributed system. They also enforce MAC and DAC and perform
Audit functions. Services for remote resources are performed by
Clients. Clients invoke operations on objects (desired resources
in another node's Manager data base) through the use of a library
consisting of low level communications primitives, an intermediate
level program support library, and high level library calls. Mr.
Varadarajan suggested that the SDOS Security Policy, consisting of
a Mandatory Policy, a Discretionary Policy, and a Configuration
Policy, would be applicable to the NGCR OS interface standard. A
working SDOS system is expected by September, 1990

2-G-3



I

The next presentation was given by the Approach Subgroup. I
Tom Conrad, Approach Subgroup Chairman, emphasized that there will
only be two more meetings between this one and the the one where
the OSSWG is scheduled to evaluate candidate OS Standards. He I
stated that more input to the Evaluation Process is needed from
the other OSSWG Subgroups. Tom announced his plans to go over the
Evaluation Process as it currently stands, identify significant
issues to be resolved, and hold an "open forum" discussion
immediately after the presentation. Tom then introduced Steve
Howell to review the current Evaluation Process Model. Steve
showed an overview in terms of input, output, and key attributes. N
Inputs consisted of the evaluators themselves, the candidate OS
interface specifications, the criteria that will be used to
evaluate the candidates, and the weights assigned to criteria I
according to their relationship to key attributes. The output was
defined as a series of scores rating each candidate interface
specification against each key attribute. The key attributes were
identified as Service Classes, Programmatic Issues, and
Representative Application Sets. Steve then illustrated the
mapping of the components of the Evaluation Process Model. He
explained that hundreds of low level requirements, identified bythe Requirements Subgroup, would be translated into quantifiable

criteria, weighted according to their relevance to service
classes, programmatic issues, or representative applications. The
final score for a candidate specification will be derived by
evaluating the specification against the criteria established for
each of these attribute areas. After a series of questions, Tom
Conrad reviewed the remaining open issues of the Evaluation I
Process. These included:

- Agreement on the overall process-
-- Does the OSSWG concur?

- Agreement on representative application set -
-- There are many different types on a variety of Navy I

platforms. Which ones do we incorporate? How do we
represent them?

- Process to define evaluation criteria -

-- Hundreds of requirements have to be translated into
criteria mapped to service classes and programmatic I
issues. How many service classes?

- Process to define raw weights -
-- What is process to define them? What are the metrics? 1

- Process to define raw scores -
-- What do the numbers mean and how should they be I

interpreted? How do we put them in perspective?

- Filtering process -
-- Do we keep the highest scoring candidate for a single

representative application? How do we minimize inherent
biases or misunderstandings of the criteria?

2-G-43



Evaluator issues -
-- What should be the qualifications of the evaluators? Do

all evaluators score all areas of the candidate
specifications? Should there be a minimum number of
evaluators for each criterion? Do we employ the use of
experts?

- Form of results from process -
-- Do we want to give a one number result? Should the

results be graphed as a curve?

Tricia Oberndorf then continued the open forum discussion and
reinforced to the group the fact that these issues must be
resolved quickly. She also stressed that the OSSWG efforts will
result in an interface baseline, and, in all likelihood, the
candidate OS specifications will not meet all the requirements of
this baseline. A major reason for this is that we are looking for
an operating system interface specification and that the majority
of candidates are implementations of operating systems, not just
their interfaces. The capabilities of the family of interfaces
(the "library") to be incorporated as the NGCR standard will most
probably far exceed the capabilities of any single candidate OS.
However, Tricia then strongly stated that we are not out to design
or develop a standard, our purpose is to adopt one and modify it
as little as possible.

After receiving encouragement from CDR Barbour to resolve the
Evaluation Process issues during this meeting of the OSSWG, the
group broke for lunch and reconvened into Subgroups.

Wednesday, 13 September

Subgroups reconvened for all day sessions.

Thursday, 14 September

The Subgroups reconvened Thursday morning from 8:00 am to
10:30 am. After the Subgroup meetings adjourned, the working
group as a whole reconvened to hear Subgroup reports and wrap-ups
from CDR Barbour and Tricia Oberndorf.

Requirements Subgroup

Dan Juttelstad presented the progress of the Requirements
Subgroup. He reported that they had modified the Requirements
Document to conform with the Reference Model and also to reflect
interface requirements rather than OS iw-,lementations. Due to the
emphasis placed on reorienting the Requirements Document, the OCD
was not updated. The revised Requirements Document reflecting the
new format and emphasis will be available 9 October. Dan said
that the group will then fold the Reference Model and the new
Requirements Document into the appropriate sections of the OCD.
In closing, Dan told the group that the Requirements Subgroup will

2-G-5



i

meet for 5 days (16-20 October) at the next OSSWG (in Newport, RI) I
instead of the usual 3 days.

Available Technology Subgroup

Phil Hwang reviewed the accomplishments of the Available i
Technology Subgroup. Most notably, they restructured the
Technology Report into several documents of a more manageable
size. They also began to define the screening process that will
be used to select OS standard candidates for evaluation. He
expressed concerns over linking the screening process to the
actual Evaluation Process. Phil also showed the group the results
of a "first run" screening, and then presented a more definitive I
list of the 8 characteristics that the group will be using in the
final screening process.

Approach Subgroup

Tom Conrad presented the efforts of the Approach Subgroup. i
He reported that they had made some progress in coordinating the
Service Class definitions with the Requirements Subgroup. They
also established a detailed schedule for implementing the I
Evaluation Process (that schedule is included in this package).
Other progress included the determination of a weighting process
and a filtering algorithm (for the raw scores of the functional
and programmatic evaluations). Tom then tackled the issue of how I
to best prepare the evaluators for the January meeting where the
evaluation will take place. He suggested that each evaluator
receive a complete evaluation package (candidate specifications, I
evaluation criteria, scoring sheets, etc.) several weeks before
the meeting in order to start the process before arriving. The
meeting could then be used for discussions or to ask questions of
the various representatives of the candidate specifications. The
evaluators could then go home and complete the evaluation in the
next several weeks, finishing by 16 February '90. The draft
selection report would be completed in mid March, with the final
delivered to the NGCR Program Office in the beginning of April.
Tom then expanded on the filtering algorithm. He said that due to
the shear number of evaluators and number of criteria resulted in I
the selection of a "mean score" as the filtering algorithm. Tom
then described the results of the "weight" issues concerning the
Evaluation Process Model. One set of weights identifies the
relative importance of evaluation criteria to a particular service
class. This weight set will be derived by the OSSWG during the
December meeting where each criterion's contribution to a service
class will be scored on a 0-10 scale. These raw scores will then I
be averaged and normalized to produce weight set "1". Tom noted
that it was extremely important to accurately map the OS
requirements (derived by the Requirements Subgroup) to the U
evaluation criteria. The second set of weights identifies the
relative importance of OS service classes to a representative
application domain. These were derived by the Approach Subgroup
at this meeting. The criteria for establishing evaluators were

2-G-63



I

i also decided. To be eligible, you must be technically oriented
(versus marketing) and have participated in at least two OSSWG
meetings by the end of the December OSSWG (limit: 2 evaluators per
company/organization). It was also determined that all evaluators
must evaluate all the candidates, but not against all the
criteria. Tom then emphasized the enormous task each of the
evaluators will be facing. He presented figures representing the
potential number of pages of documentation (5000) to be read and
the number of score sheets to be filled out (340) by each
evaluator. Tom also revealed that the Approach Subgroup had
revised their approach to identifying representative
applications. The new approach consists of 8 application domains,
chosen to exhibit dirfering service class requirements. MoreI] information on these will be made available at a later date. Tom
concluded his presentation with a list of "Things to Do" and
"Things We Need". These lists are included as part of this
package.

The final wrap-up comments were given by CDR Barbour and
Tricia Oberndorf. Both congratulated the efforts of the OSSWG at
this session and again stated that our purpose is to select an
industry standard that meets the Navy's needs for Operating

* Systems interfaces. Tricia also encouraged the OSSWG to make
comments to the documents that are sent out on the net and to take
the commitments made to the OSSWG seriously.

The next OSSWG will meet 17-19 October (16-20 October for the
Requirements Subgroup) at NUSC in Newport RI. Everyone is
reminded to send a Visitor Request to the NUSC security office.

I
I
i

I
i

l

I

'I2-C-7



I
I
I

5NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

UMEETING 17-19 OCTOBER 1989
3MEETING MINU. TES

2 -t-



U

The sixth meeting of Next Generation Computer Resources 3
(NGCR) Program Operating Systems Standards Working Group (OSSWG)
was held October 17-19 at the Naval Underwater Systems Center
(NUSC), Newport, Rhode Island. Approximately 45 representatives I
of Government, industry and academia gathered to hear
presentations given to the plenary group Tuesday morning. The
remainder of Tuesday afternoon, Wednesday, and Thursday wereallocated to Subgroup working meetings with wrap-up presentations
given late Thursday morning.

Tuesday, 17 October. 1
CDR Rick Barbour provided opening remarks and reminded the

group about the upcoming December (12-14 in San Diego, CA) and U
January (22-26 in Mobile, AL) meetings. CDR Barbour then extended
his congratulations to the recipients of the NGCR Backplane Bus
contract award, Litton Corp., Raytheon Co., and Cable and Computer
Technology (CCT) Inc. The presentation then focused on the
meeting objectives. The group was instructed that it is time to
begin preparations for the January, 1990 evaluation process. CDR I
Barbour stressed the importance of each participant understanding
the scope of the remaining work and the short schedule. He then
reviewed the individual subgroup products and what he expected the 3
subgroups to accomplish by the end of this meeting. Specifically,
the Requirements Subgroup needed to complete reviewing the
requirements and finalize them for a new draft of the Requirements U
Document, the Available Technology Subgroup i;as instructed to 3
produce a "first cut" Candidate list, and the Approach Subgroup
was to further refine the evaluation process.

CDR Barbour then introduced the meeting's host, CDR John
Reed, the NUSC Executive Officer. CDR Reed gave the audience a
brief description of the NUSC mission, leadership abilities, and
goals. He then discussed the NUSC locations in New London,
Newport, and Andros island in the Bahamas in addition to providing
an overview of NUSC expertise.

Subgroup Reports

Rich Bergman, Requirements Subgroup Chairman, announced that
they had completed a first cut at Section 1 of the OCD. He also
stated that they had further refined the Requirements Document and
reviewed issues with the Reference Model, most notably, better U
resolution of SRAX and IRAX hierarchy. Rich then stated plans to
bring the OCD closer to a first draft, incorporate the current
list of requirements into the OCD, and justify each of the I
requirements for use as evaluation criteria.

Approach Subgroup Chairman, Tom Conrad, noted that his
Subgroup had generated version 0.4.13 of the Evaluation Process I
Document, refined the Reference Model, and reworked the
Representative Application Domain Set of the Evaluation Process 3

")-H-2 I



Model. Tom's intentions fur this meeting were to have the
Approach Subgroup finalize the scoring procedures, define the
Representative Application Domains and their associated weights
(weight set 2), and develop evaluation forms.

Jim Oblinger made the presentation for the Available
Technology Subgroup, as Chairman Phil Hwang was not able to attend
the meeting. Jim reported that the OS workshop held at the
University of Maryland was very successful and the preliminary
proceedings were currently available. He also said that the
Technology Report had been restructured at the last meeting and
was still being updated. The plans -'r the Subgroup at this
meeting were to continue working on the Technology Report and
complete the OS interface candidate prescreening.

The OSSWG was then given a presentation by Walter Shore,
Motorola Corp., on the Open Real-time Kernel Interface Definition
(ORKID). ORKID was developed by the VME International Trade
Association (VITA). It is promoted by that group as an open
real-time software interface that is not particular to any bus orI hardware architecture. The objective of the ORKID standard is to
provide a state-of-the-art open real-time kernel interface
definition that allows users to create robust and portable code
while allowing implementors the freedom to proliferate their
compliant product. Walter explained an ORKID system as a
collection of one or more interconnected nodes, with each node
being serviced by a computer with an ORKID compliant kernel onI which application programs run. Walter noted that a node is a
single entity in ORKID, although it may be implemented as a
multi-processor computer. Walter then reviewed the various
features of ORKID, including naming and object identification,
tasks and their operations, memory regions (for dynamic
allocation) and partitions (for fixed allocation), semaphores,
queues, events, exceptions, clocks, and timers. Walter finished
the briefing with a presentation of current ORKID status. ORKID
draft 1.0 has been available for public comment since July, 1989.
Comments are reviewed at each ORKID subcommittee meeting, heldI approximately every 3 months. A final version of ORKID will be
submitted for VITA approval within the next six months. Upon
approval from VITA, ORKID will be presented to other standards
organizations such as the IEEE and IEC.

The final briefing of the day was given by Tricia Oberndorf.
The topic of Tricia's presentation was the current list of
cross-working group (Backplane Bus, SAFENET, OSSWG, Conformance
Test) issues. They are:

The NGCR Model - There currently exists no overall NGCR
model. It is not clear where and how the individual NGCR
pieces fit together nor what such a model should look like.

Real Time - The scheduling approaches of each NGCR standard
need to be defined. The concept of a global clock must be
explored to ensure consistency between the Backplane,
SAFENET, and OS system components.

2-H-3



i

External Interface and Boundary Definitions - Determine where
the individual components (SAFENET, OS, Backplane Bus) begin
and end. Each standard should be capable of standing alone
as well as working together. NGCR standards should have the
capability of operating in non-NGCR systems (e.g., OS working
with a LAN other than SAFENET). 3
System Distribution - How to accomplish load leveling and

control management.

Performance Monitoring - Will there be minimal NGCR
configurations for the purpose of Conformance Testing? Will
there be performance testing as well (much like the ACVC 3
(conformance) vs. ACEC (performance) for Ada compilers)?

Security - What are the formal security requirements for each
standard? The NGCR Program should have a security model. I
Fault Tolerance/Recovery - How do we "warm start" to system
configuration? i

Ada - The OS Interface Standard has Ada interfaces but
SAFENET and the Backplane Bus Standards do not. 3
Tricia also touched upon other issues including:

reconfiguration, real-time (non-intrusive) tests, message passing
across the backplane, hardware and software prototyping, and I
nuclear survivability.

Wednesday, 18 October i
Subgroups reconvened for all day sessions.

Thursday, 19 October

The Subgroups reconvened Thursday morning from 8:00 am to
10:30 am. After the Subgroup meetings adjourned, the working
group as a whole reconvened to hear Subgroup reports and wrap-ups
from CDR Barbour and Tricia Oberndorf.

Requirements Subgroup 3
Rich Bergman presented the list of accomplishments and future

plans for the Requirements Subgroup. He stated that all the
requirements in the Requirements Document will have been frozen by I
the end of the week. The December issue of the Requirements
document will represent the final list. Additionally the
requirements will reflect those of an Interface Standard vice an
Operating System implementation. Rich also reported progress on
the evaluation criteria and planned to have the criterion for each
requirement defined before the December OSSWG meeting. In
closing, Rich acknowledged that the SRAX and IRAX hierarchy issues

2-1H-4 3



still need to be resolved.

Available Technology Subgroup

Jim Oblinger told the OSSWG that the major emphasis of his
Subgroup's efforts for this meeting were spent on completing a
prescreening of candidate OS interfaces. He then identified his
view of Available Technology Subgroup activities for the next two
OSSWG meetings. (Tom Conrad, Approach Subgroup Chairman, had
independently assembled a list of remaining activities for each of
the Subgroups, with slightly different associated dates and
assignments.) Jim then recounted the specific ground rules that
were employed in the prescreening process. Each of the candidates
was evaluated by the Available Technology Subgroup against both
positive and negative pre-selection criteria. After evaluating
each candidate, an overall rating was assigned reflecting the most
prominent positive or negative criteria associated with that
particular candidate. The final list of pre-screening candidates
consisted of those with an overall positive rating. This first
cut candidate list consists of (alphabetically): Alpha, ARTX,
CRONUS, iRMX, MACH, ORKID, POSIX, TRON, Trusted MACH, and VDIST.
Jim cautioned the group that this list is still subject to change,
with the final list to be determined by OSSWG consensus at the
December meeting.

Approach Subgroup

Tom Conrad began his presentation with a slide showing that
the Approach Subgroup had finalized the scoring process as well as
completed the descriptions of Representative Application Domains
and their associated weights (weight set 2). He then showed the
group the results of an initial poll that illustrated the number
of OSSWG attendees that had voluntarily chosen service classes by
which they would evaluate candidate OS interfaces. The results
indicated that several of the service classes were not well
represented by potential evaluators. Tom noted this and then
informed the OSSWG that service class representation would most
likely be a combination of elected and assigned responsibilities
to the evaluators. Tom then went over a detailed milestone
schedule depicting the activities required to establish
evaluator's packages, establish weight set 1, prepare for the
January meeting, and produce an evaluation/recommendation. The
focus of Tom's discussion centered on the fact that most of the
activities in each schedule were on the critical path with little
or no room for slippage. Tom finished his presentation with an
examination of each of the 8 Representative Application Domain
descriptions and the relative weighting of each against the
current 15 service classes

Wrap-up comments were given by CDR Barbour who congiatulated
the efforts of the OSSWG at this session and again stated that,
although significant progress has been made, there is much work to
be done.

2-H-5



I
The next OSSWG will meet 12-14 December at the Vacation Inn 3

in San Diego, CA. Everyone is reminded to make room reservations
no later that November 12.

i
I
I
i
I
i
I
I
I
3
I
I
I
i
i

2-H-6i



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 12-14 DECEMBER 1989

MEETING MINUTES

i 2-I-I



I
The seventh meeting of Next Generation Computer Resources

(NGCR) Program Operating Systems Standards Working Group (OSSWG)
was held December 12-14 at the Vacation Inn, San Diego,
California. Approximately 70 representatives of government,
industry and academia gathered to hear opening remarks Tuesday
morning. The remainder of Tuesday was devoted to the development
of Weight Set 1 for the individual service classes. Wednesday was I
allocated to Candidate presentations. Thursday's agenda consisted
of discussions on remaining issues, a dry run brief/evaluation of
a non-candidate OS interface (CAIS-A), and the announcement of the
final list of candidates for the NGCR OS Interface Standard.

Upon check-in for this conference, the registrants were asked
to inspect the OSSWG attendance record to verify their eligibility
to participate in the OSSWG evaluation process. Eligible
evaluators were then asked to select the service classes that they
would be responsible for scoring. i
Tuesday, 12 December.

CDR Rick Barbour provided the opening remarks. The group was i
instructad that preparations for the January, 1990 evaluation
process would be finalized at this gathering. CDR Barbour then
gave the potential evaluators instructions to ensure that each had
selected specific service classes to evaluate in conjunction with
submitting a formal intent/commitment letter to Tricia Oberndorf.
CDR Barbour stressed that it was absolutely necessary to satisfy I
these conditions in order to be considered eligible to perform
candidate evaluations. He then discussed the remaining schedule
and provided information on the next OSSWG meeting, scheduled to
take place in Mobile, AL.

Rich Bergman, Reqairements Subgroup Chairman, informed the
group of the weight assignment schedule that would be followed for I
the remainder of Tuesday. He emphasized the shortness of the
schedule and advised the group that the Tuesday session would not
end until all of the Weight Set 1 assignments were made.

Dr. Carl Schmiedekamp then gave a short presentation on
Weight Set 1, showing group assignments (the OSSWG was to be split
into two groups, each responsible for assigning weights to six
service classes), instructions for weighting criteria, and an
explanation of how a weight would be determined for each criterion
within a service class.

The remainder of the Tuesday morning session involved Tricia
Oberndorf leading the plenary group in assigning weights to each
of the evaluation criteria in the General Requirements service
class. The format consisted of Tricia reading the definition of
each requirement in that service class, the associated evaluation
criteria and corresponding weighting guideline, and rationale, i
sometimes followed by group discussion. Each participant then
assigned a weight (an integer value from 0 to 10) to that
particular requirement, with the understanding that blank entries
would receive a default weight of 5.

'2-1-2i



Due to time constraints and the large number of evaluation
criteria, the plenary session was then divided into two groups in
crder to conduct weight assignments in a parallel manner for the
Tuesday afternoon session. One group assigned weights to
evaluation criteria in the following six service classes: File
interface; Generalized I/O Interface; Network and Communication;
Reliability, Adaptability, and Maintainability; Resource
Management Interface; and System Initialization and
Reinitialization. The other group addressed the following six
service classes: Event and Error Interface; Process Management
Interface; Project Support Environment Interaction;
Synchronization/Scheduling Interface; Time Services Interface; and
Ada Language Support Interface. The Capability and Security
service class criteria were assigned weights separptely by a group
of security experts.

Wednesday, 13 December.

The entire Wednesday agenda consisted of scheduled
presentations by representatives of OS Interface Standard
candidates. These were:

Alpha - Dr. Doug Jensen, Concurrent Computer Corporation

ARTX - Dr. Dado Vrsalovic, Ready Systems Corporation

3 CRONUS - Ken Schroder, BBN Systems and Technologies Corp.

iRMX - Van Kane, Intel Corporation

i Mach - Rod Johnson, Open Software Foundation (OSF)

ORKID - Dick Vanderlin, Motorola

I POSIX - Dr. Doug Locke, IBM Corporation

I MTOS - Carol Sigda, Industrial Programming Inc. (IPI)

SDOS - Ken Schroder, BBN Systems and Technoiogies Corp.

Each presenter was allotted the same amount of time for a
presentation followed by a question and answer period.

I Thursday, 14 December.

The Thursday session was opened with general discussions,
where all attendees were encouraged to bring forth any subject
pertaining to the current selection process. CDR Barbour prompted
the audience by stating that, unless there were objections from
the audience, the final list of candidates would consist of those
that were presented the previous day. When no one voiced an
objection to the candidate list, CDR Barbour brought up the topic
of performance requirements. He stated that the OSSWG was
tracking many performance issues, but purposely avoiding in-depth
discussions concerning them to allow a better focus on identifying

2-1-3



I

the interfaces and related requirements that will define the basis
for the OS interface standard(s). CDR Barbour speculated that it
is conceivable that NGCR-certified OS products may be subject to
performance testing as well as conformance testing (much the same
as Ada compilers are tested by ACVC and ACEC suites). He also
touched upon the concept of an accompanying OS interface standard
addressing performance criteria. For the benefit of some in the I
group who were not familiar with NGCR Program plans, CDR Barbour
gave a brief description of the prototyping concept and how it
applies to OSSWG efforts.

Tricia Oberndorf then assisted CDR Barbour in answering
several questions, the most significant being "If the OS selection
process yields multiple standards (vice 1), how will they
eventually be merged into a single standard?" Tricia replied that
it is a strong possibility that the OS interface selection will
consist of several standards. She added that we have discussed U
the "family of interface sets" concept in past meetings, but, for
now, the OSSWG consensus is to wait and see what comes out of the
evaluation.

The majority of the afternoon session was dedicated to a "dry
run" brief/evaluation presented by Gary Pritchett of Softech. The
subject of the evaluation was CAIS-A, chosen, in part, because it I
is not a candidate for OSSWG selection. Mr. Pritchett instructed
half of the attendees to evaluate CAIS-A against the criteria of
one service class, with the other half evaluating it against a I
different service class. He then gave a presentation highlighting
the features of CAIS-A in each of the service class areas,
allowing for questions from the evaluators. The purpose of the
exercise was to give OSSWG evaluators first-hand experience in I
using the tools of the upcoming evaluation (candidate documents,
presentation materials, the OSSWG Requirements Document, scoring
sheets, etc.) as well as to gauge how well a candidate can address i
all the required evaluation criteria in a relatively short period
of time. (Mr. Pritchett gave an overview of CAIS-A and then
focused on 2 service classes in roughly 3 hours)

The Thursday session concluded with a discussion of Subgroup
business, followed by a presentation of the final candidate list
and wrap-ups from CDR Barbour and Tricia Oberndorf.

Rich Bergman, Requirements Subgroup Chairman, announced that
version 2.0 of the Requirements Document, including the new i
Security section, would be finished 12/20/89. This is the version
that will be used in the evaluation and will be sent to all
evaluators and candidates. 3

Dr. Karen Gordon, Available Technologies Subgroup, informed
the OSSWG that Mach and TMach would be presented as a single
candidate, as would CRONUS and SDOS. She also identified the
reproduction and dissemination of proprietary documentation as a
potential stumbling block that needs to be addressed prior to the
evaluation. Dr. Gordon's final point was that candidates who do
not provide a matrix cross-referencing their documentation to the

2-1-4



Requirements Document risk receiving low scores if the evaluators
have a difficult time locating information. The final candidates
for evaluation were announced as (alphabetically): Alpha, ARTX,
CRONUS/SDOS, iRMX, Mach/TMach, MTOS, ORKID, and POSIX.

Tom Conrad, Approach Subgroup Chairman, focused his comments
on the evaluation process. Tom noted that a total of 59
evaluators (17 Navy. 42 Industry) had received service class
assignments for the evaluation. He also provided a slide
depicting the number and type (Navy or Industry) of evaluators
assigned to each service class. Tom then showed the group the
list of Programmatic Issues that the OSSWG Navy members will use
to further evaluate the candidates. These were: Public Domain
Interfaces, Navy Influence, Maturity/Confidence, Documentation,
Timeliness, User Influence, Economics/Cost, and Commercial
Acceptance. Tom's slides are included with these minutes.

Tricia Oberndorf provided an explanation of how to evaluate
the candidates according to the "Distributed Systems"
requirements. She emphasized the need to evaluate the candidates
according to how the OSSWG "SRAX" (from the Model) requirements
are met. The difficulty of this is that "distribution"
requirements are not isolated to a single service class, rather,
distribution requirements fall across many service classes.

CDR Rick Barbour then provided his "wrap-up" comments.
Appropriate authority allowing the reproduction and dissemination
of candidate copyrighted/proprietary information for OSSWG use is
being obtained and should not cause a problem at the January
evaluation. Of note, the next NGCR OSSWG meeting will be held
January 22-26 at the Stouffer Riverview Plaza Hotel, 64 Water
Street, Mobile, AL 36602. He emphasized the importance of the
meeting to the evaluators, as the primary agenda will consist of
presentations from all the candidates. The evaluators will have
an opportunity to ask specific questions to assist them in their
evaluation. CDR Barbour then congratulated the group and
encouraged continuation of the same successful effort.

2-1-5



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 22-26 JANUARY 1990

MEETING MINUTES

2-J-1



I
The eighth meeting of Next Generation Computer Resources

(NGCR) Program Operating Systems Standards Working Group (OSSWG)
was held January 22-26 at the Stouffer Riverview Plaza Hotel,
Mobile, Alabama. Approximately 55 representatives of government,
industry and academia gathered to hear opening remarks Monday I
morning. The Operating System Interface evaluation process was

reviewed Monday morning. The remainder of the week was devoted to
candidate presentations correlating the OSSWG requirements to the
candidate operating system. A library of the candidate
documentation was made available during the week and time was
alloted on Wednesday morning for evaluation purposes. 3
Monday, 22 January.

CDR Rick Barbour provided the opening remarks. He first
introduced Neil Henderson of host Litton Data Systems. Neil
welcomed everyone and provided a brief orientation of Mobile. CDR
Barbour then provided the meeting objectives to initiate the
evaluation process, receive candidate briefings, and discuss the
March meeting. The agenda for the week was presented and it was
announced that a library containing copies of the candidate i
documentation would be made available all week. The next meeting
was announced to be held at Naval Surface Weapons Center (NSWC),
White Oak, MD. i

Tricia Oberndorf announced that a discussion on security
requirements for all those evaluating this service class will take
place on Tuesday. Also, Tricia encouraged participation by OSSWG I
members in the SIGADA 9X efforts. It is desirable to have the
OSSWG point of view represented at the 9X meetings.

Approach Subgroup Chairman, Tom Conrad, presented a brief
evaluation process status. He noted that the interactive
evaluation tool for submitting scores was running and that the
evaluation sheets had been updated. The Evaluation Process
Document is in versinn 0.8 and is available for comment. A dry
run of the evaluation process was perforiaed at thT ;an Diego
meeting and was fairly successful. Details of the status were I
deferred to his presentation later in the morning.

Jim Oblinger presented the status of the Available Technology 5
Subgroup, noting that the San Diego briefers were the final
candidates chosen for the evaluation. The candidate presentations
for this meeting had been identified as technically oriented.
Information on the candidate systems was being collected and
coordinated by Booz, Allen. Jim then explained the reasons for
the fluctuation in the candidate list between the San Diego
meeting and Mobile. Initially, CRONUS had been constrained in I
their ability to support the OSSWG evaluation effort and did not
plan on supporitng the evaluation. However, about two weeks prior
to Lhit, Preetirg, after talks with CDR Barbour, they reevaluated
their position and were participating. Industrial Programming
(MTOS), on the other hand, determined that they could nn longer I

I



support the OSSWG and had to drop out. Finally, Jim stated that
the Available Technology Report, version 0.7, was available in the
OSSWG repository for comment and identified the subgroup's desire
to finalize the document.

CDR Barbour briefly clarified Industrial Programming's view
point as to why they withdrew MTOS as a candidate. Their primary
concerns centered around copyright and proprietary issues. After
internal discussions, they felt unable to meet all the needs of
the OSSWG.

Tricia Oberndorf, filling in for Rich Bergman who was not
available due to travel constraints, gave the Requirements
Subgroup status. The requirements were finalized at the San Diego
meeting and are reflected in the version 2.0 document. Current
efforts of the group center around folding the Requirements
Document into the Operational Concept Document (OCD). The OCD is
due in May for review.

After the subgroup reports, Tom Conrad explained in detail
the entire evaluation process and what is expected from it. The
most important upcoming milestone in the process is the actual
scoring which is being kicked-off this week. It was desired that
all computations be completed by 23 February 1990, thus making the
9 February 1990 evaluation deadline important. Tom noted the
tight schedule that was needed to get the final report and
recommendations to the NGCR Program O"fice by early April.

The status of the documentation mailings was provided. As of
the meeting date, all evaluators should have received a
Requirements Document, one whole set of Evaluation Sheets, and
ORKID. ALPHA and POSIX were in the mail and should be received
shortly. ARTX and IRMX were currently being reproduced for
mailing, and CRONUS and MACH had just been received in Mobile.
Tom reiterated that copies would be made available at the hotel.
He then reviewed the evaluator assignments and noted that Weight
Set 2 was computed and publicly available.

There are a total of 71 evaluators: 25 Navy evaluators and 46
industry evaluators. Each service class is well covered by the
group, but any evaluator may evaluate additional service classes
if they desire. However, if an additional service class is
evaluated, it must be done for all seven candidates.

Submission of scores during the current meeting was
encouraged, noting that changes would be allowed after initial
submittal. There are three methods of submitting scores. The
first is by paper, however, the due date waz 2 February 1990 if
this option were to be exercised. The second method is by editing
electronic templates of the evaluation sheets, and the third
method is by using the interactive evaluation tool. Methods two
and three were to be explained by Carl Schmiedekamp later in the
morning.

2-3-3



U

Tom presented the results of the dry run evaluation in San
Diego. Service classes 9 and 13 were evaluated for a sample I
candidate. The results provided scores from 0 to 10, an average
score, a maximum score, a minimum score, and a standard
deviation. The dry run was useful in helping to get the bugs out m
of the process. A method for analyzing the rationale and comments
sections had not yet been developed.

Tom then went into a step by step review of the entire
evaluation process to provide a background to new members and a
refresher for others. The basic steps follow: 3

- 110 initial candidates selected
- List reduced to 10
- List further reduced to 7 I
- Evaluators were identified
- Requirements of an Operating System I/F Aeveloped
- Candidates to be scored by evaluators current)
- Scores will be combined using two weight sets
- Candidate scores will be charted showing relationships
- Recommendations will be made to SPAWAR 324 3
Tom explained the use of the two weight sets. Weight Set 1

was developed in San Diego and will not be available to the public
until all scoring has been completed. It relates the relative i
importance of specific criteria within a particular service
class. Weight Set 2 provides weights for eight representative
application domains, named after gemstones. The second weights,
which are public, map the importance of service classes to each
application domain.

Tricia Oberndorf briefed the group on what was expected at
the March meeting. The results will be charted in a number of
ways for analysis. It is expected that the analysis will not be
easy. Much of the meeting will be spent writing up the results of
the evaluation and the recommendations. Attendees will probably
be asked to write sections of the report at the meeting. As a
result, not much time is expected to be available for subgroup
meetings.

It is envisioned that there will be s veral alternatives for
selecting a baseline. Some of the possibilities include:

- 1 candidate as a single baseline (desired)
- Some combination of a kernel and an OS
- Several candidates, each good in specific areas
- Profiles (e.g., set for Real Time, set for Transactions)

The goal for the evaluation would be to obtain a single 3
baseline, but all possibilities must be considered. It is
expected to be a lot of work and everyone'z participation will be
appreciated. I

Carl Schmiedekamp then presented the use and understanding of

I



the evaluation forms, along with the various methods of
submittal. As stated previously, there are three methods of
submitting forms: paper, editing a downloaded set of forms, and
interactive evaluation tool. If submitting paper, the completed
forms should be mailed to:

Dr. Carl Schmiedekamp
Code 7033
Naval Air Development Center (NADC)
Warminster, PA 18974-5000

If submitting forms using the second method, the following
steps should be followed:

- Download a set of forms from the OSSWG archives (Carl
will also be e-mailing a set of forms to each
evaluator).

- Make copies of the appropriate service classes for each
candidate.

- Edit the forms using any editor. Be careful not to
change the base form, especially the symbols (e.g., *)
needed by the parsing tool to process the forms.

- E-mail the forms back to OSEVAL@NADC.ARPA .

The forms can be found in the OSSWG archives under General,
in a file called "all Hforms.text" for a full set of forms, or
individual forms by service class may be downloaded in files
following the format "sc##.text" (## is the service class number).

Finally, the interactive tool may be used to submit forms.
The tool will enable partially completed forms to be saved for
later editing and will submit completed forms. A drawback to the
tool is that it is slow if the user is not connected directly to
the NADC machine. The interactive tool can be used by logging
into the OSSWG archives (OSSWG@NADC.ARPA, password=NEXTGEN) or
working from an individual account on NADC.ARPA and invoking the
tool using the full path /USRI/OSSWG/EVALS/EVALUATE . To prevent
crashing the system, there is a limit of 6 users of the tool at
one time.

Carl then conducted a poll of the evaluators to get an
estimate on the probable methods of submission by the group. Six
evaluators chose submission by paper, 24 chose editing their own
copies of the forms, and 7 stated they will be using the
interactive tool.

Next, Carl reviewed the instructions for filling out the
evaluation forms:

- All fields are required in the evaluation form heading
- Service Class Numbers: already provided

2-J-5



- Evaluation name: fill in ycur name
- Evaluation ID: 4 digit number assigned
- Password: 6 characters assigned
- Candidate ID: must be one of the seven - ALPHA, ARTX,

CRONUS, IRMX, MACH, ORKID, POSIX
- Scores: range 0 to 10 (no default scores).
It was noted that all scores count the same, even though a

confidence level is requested. The Requirements Document states
how to score the candidates and what a particular score should
mean. This should help normalize the scores across evaluators.
Other methods were considered, but they did not really provide
meaningful information.

Carl also stated that the analysis will also provide the
error spread in the data through two methods. The first method is I
a calculated standard deviation. The second method uses the

confidence level put on the scoring sheets. An "H" (High) means
that the evaluator feels their score is close to the actual
score. An "M" (Medium) means that the evaluator feels they may be
off by about 2 points, and an "L" (Low) means that the evaluator
has low confidence in the score and may be off by as much as 3
points. No entry in this field will default to "M". This level I
will allow a more exact analysis of which scores are more accurate
due to evaluator certainty.

The Rationale/References section is provided for meaningful I
comments that are directly relevant to the specific criterion
being evaluated and the score given. There is no limit to the
length of information that can be put here or in the Comments.
The Comments section of the evaluation form is provided for
important information relevant to other criteria or items, bit not
directly relevant to the score. These two sections will be used I
in the Evaluation report. Carl requested that those who do
provide comments, write them as if they are explaining their I int
to someone else. This will enable easier incorporation into -he
final report.

Finally, the General Comments section at the end of each
service class provides a place for the evaluators to express their I
feelings about the candidate for the service class as a whole.

An issue was raised regarding the absence of an explicit
class for distributed requirements. Tricia Oberndorf responded i
that this was a point identified at the San Diego meeting.
Although requirements for a distributed system appear in the
General section, this doesn't give a direct weighting to
distribution. After much consideration, it was determined that
everyone should remember distribution when evaluating all
criteria. Evaluators should always keep distribution in the back I
of their minds during the evaluation and use the comments and
rationale sections to record the difference between single systems
and distributed systems. 3

Tricia also noted that there are two types of distribution:

I
2-J-6 3



transparent and explicit. Transparent distribution means that the
interface doesn't see or care how the distribution is handled.
Explicit distribution is directed or influenced by the interface
(perhaps through an explicit call). It is important to take both
types into account when performing the evaluation.

Jim Oblinger led off the candidate presentations by
explaining what was requested from each of the candidates. The
candidates were asked to present each service class, one at a
time, and then accept questions on that particular service class
after it was presented. They were also asked to state why their
candidate OS should be the one that the OSSWG selects as a
baseline. Finally, they should try to relate how the NGCR
components (terminology) correspond to the candidate components.
Presentations were to be scheduled for four hours.

Before each candidate presentation, the following reminder
was provided:

WE ARE HERE TO EVALUATE INTERFACES!
WE WILL BASELINE AN INTERFACE.

IMPLEMENTATIONS ARE INTERESTING AS PROOF-OF-CONCEPT ONLY

The OS Interface Standard candidate presentations then began
for the remainder of the week. The first presentation beginning
on Monday, 22 January in the afternoon.

ORKID - Richard Vanderlin, Motorola

Tuesday, 23 January.

POSIX Jim Isaack, Digital Equipment Corporation; Fritz
Shultz, OSF; Jim Hall, NIST; Steve Carter,
Bellcore; Mike Cossey, DOE Oakridge; Doug Locke,
IBM Corporation; Steve Deller, VERDIX Corporation

IRMX - Tim Saponas, Intel Corporation

Wednesday, 24 January.

The morning session was set aside for evaluators to use the
candidate materials made available at the hotel. A presentation
was scheduled for the afternoon.

Alpha - Doug Jensen, Concurrent Computer Corporation

Thursday, 25 January.

ARTX - Dave Nelson-Gal, Ready Systems Corporation

MACH/TMACH/RMACH - Brian Boesch, DARPA; Richard Rashid and

2-J-7



I
Hide Tokuda, Carnegie Mellon University 3

Friday, 26 January. 1
CRONUS/SDOS - Jim Berets, BBN Systems and Technologies

Corporation

After the final presentation, a short wrap-up was presented. U
Slides from the wrap-up follow the minutes. 3

Tom Conrad noted the missing evaluators at the meeting and
identified methods to get copies of the presentation materials to
these evaluators. Tom then reinforced some important I
considerations when performing the evaluation. He presented the
Evaluator's Commandments slide. Noting the short time allowed for
the evaluation by the schedule, it was announced that the
2 February 1990 deadline for paper submission of evaluation forms
would be moved to coincide with the electronic submission deadline
of 9 February 1990.

Tricia Oberndorf then spoke on behalf of the Requirements
Subgroup requesting that if anyone noticed problems with the
Requirements Document or had observations on it, please let the
Requirements Subgroup know.

CDR Barbour then provided wrap-up comments, first restating
that the next meeting will be held from 6-8 March 1990 at NSWC,
White Oak, Maryland. He then presented information on the OS
Prototype in response to numerous requests during the week. A CBD
announcement was made for Ada Programming Systems on i
10 January 1990, and an industry briefing is expected some time in
April 1990. For more details, contact Kar Chan (SPAWAR) at
(703)602-9207. Finally, CDR Barbour presented his wrap-up slide,
noting that all the meetings objectives had been achieved. The
9 February 1990 due date for evaluations was reinforced. It was
noted that everything possible was being done to get the
documentation out to the evaluators. Contact CDR Barbour if the
deadline is approaching and the documentation has not yet been

received. CDR Barbour then thanked the candidate presenters for
their efforts and the evaluators for their response and the
meeting was closed.

II
U
i

2-J-8 3



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 6-8 MARCH 1990

I MEETING MINUTES

II
I
I

I
I 2-K-i



I

The ninth meeting of Next Generation Computer Resources
(NGCR) Program Operating Systems Standards Working Group (OSSWG)
was held March 6-8 at the Naval Surface Warfare Center (NSWC),
White Oak, Maryland. Approximately 40 representatives of
government, industry and academia gathered to hear opening remarks
Tuesday morning. The current status of the Operating System
Interface evaluation was presented Tuesday morning along with I
preliminary results. The remainder of the day was devoted to an
analysis discussion of the preliminary data. On Wednesday and
early morning Thursday, the Subgroups met and discussed the
reports to be written after the evaluation is completed. The
meeting concluded on Thursday morning with Subgroup reports, a
wrap-up, and further discussion on interpreting the evaluation
results.

Tuesday, 6 March.

CDR Rick Barbour provided the opening remarks. He first
emphasized to the group that all data to be presented at the
meeting is preliminary and anonymous. The data is only being used I
as examples for discussion purposes. CDR Barbour then presented
the agenda and objectives of the meeting. He stated that the main
objectives were to arrive at a consensus on the evaluation
analysis details, develop an approach to the recommendations, and
create report outlines. CDR Barbour announced that Jim Oblinger
will be the Available Technology Subgroup Chairman, as Phil Hwang
will be unable to continue in this role. It was also announced
that copies of the NGCR Co-Chairs' Open Issues were being
distributed to help develop solutions to interoperability issues
between the NGCR standards.

Jim Oblinger opened the Subgroup reports with the Available
Technology Subgroup status. He stated that the subgroup had
worked on and was about to finalize the Available Technology
report within a week. Copies were made available for anyone to
review and provide comments, after which the report would be
published. Jim noted that it was important to discuss the issue I
of selecting a single candidate baseline versus some set of
candidates as a baseline, including a discussion of possible
groupings of the candidates. He then stated that the Available
Technology Subgroup, along with the Requirements Subgroup, would
be putting together an After Action Report outline at this
meeting.

Steve Howell then presented the Approach Subgroup status.
The software to perform the data analysis on the evaluation
numbers had been updated. This software was used to prepare I
preliminary results that will be presented at this meeting. In
addition, he stated that the subgroup will be presenting the
current evaluation status and a revised schedule of important
events. Steve then noted that the goal of the Approach Subgroup
at the current meeting would be to prepare outlines for theEvaluation Results Report and the Recommendation Report. I

1 2-K-2



The Requirements Subgroup status was presented by Dan
Juttelstad. He stated that for part of the meeting the subgroup
would be getting together with the Available Technology Subgroup
to develop the After Action Report outline. Additionally, the
subgroup would work on the Operational Concept Document (OCD)
which is due on 1 May 1990.

Carl Schmiedekamp then presented the preliminary data. He
first noted that evaluations are still arriving and that the data
presented only reflects the status of the evaluation as of
1 March 1990. To avoid influencing the evaluation results, the
seven operating system candidate's names were arbitrarily replaced
by days of the week to allow for the analysis discussion. Carl
reviewed the scoring algorithm that is being used, including the
use of Weight Sets 1 and 2. He then discussed the error
evaluation that is being performed. There are two types of error
estimates being calculated. One estimate is obtained by using the
standard deviation of scores within a particular criterion. The
other estimate uses the confidence factors of each criterion. The
error presented in the preliminary data analysis was chosen as the
larger of the two estimates. Carl noted that the error for a
criterion decreases as the number of evaluations increases. He
then showed some charts of the data including a sample candidate's
scores in all service classes, a sample candidate's individual
criterion scores for Service Classes 0 and 1, and all seven
candidate's weighted scores charted against each other for every
Service Class.

Next, Carl presented the Representative Application Domains
(RADs) preliminary results which were calculated using Weight Set
2. Carl noted that the RADs do not appear to reveal very much
since there is little variance between candidates for any single
RAD. As a result of this, an unweighted RAD was introduced,
called Glass, to provide a test case. The new RAD had similar
results to the other weighted RADs. The discussion of this was
deferred until later in the meeting.

Carl concluded by noting that a careful audit trail of the
evaluation forms was being maintained. He stated that as of
1 March 1990, there was an average of 6.3 evaluations per service
class. This is short of the desired minimum of 7 responses for
each service class.

Tom Conrad then presented the evaluation process status. He
showed the breakdown of evaluation responses in various ways
including by individual evaluator, by industry breakdown, and by
number of responses per candidate per Service Class. In the
latter analysis, it was evident that the response was relatively
low when enforcing the requirement that an evaluator's scores
would not count unless all seven candidates were evaluated in a
given Service Class.

Tom then reviewed the process of scoring that was used to
obtain the preliminary results and discussed the subsequent
actions. The immediate concern is to collect the straqgler data.

2-K-3
2



i

He noted that two complete sets of documentation were being made
available at the meeting for evaluation purposes. To guide
evaluator's in their efforts to finiFh quickly, Tom suggested that
each Service Class should be evaluated for all seven candidates
before the next class is started. Additionally, he urged that the
remaining evaluators put their efforts into the needed Service
Classes first (those with lower response). I

Separate from the need to finish the evaluations, it was
identified that a consensus on the recommendation process was
needed. The decision must be made whether to choose one candidate
or multiple candidates (e.g., SRAX-LPOS-KERNEL). Tom identified
the significant upcoming dates: 5

8 March Consensus reached on evaluation details and
outlines completed for the Evaluation Results
Report, the Recommendation Report, and the After
Action Report.

26 March Complete the automated analysis of the data.

6 April First drafts of reports due.

17-19 April SEI meeting to discuss the reports and the i
results.

30 April Deliver the OSSWG recommendation to SPAWAR 324. 5
The reports to be written will provide the following general

information: 5
Evaluation Process Report - What we did
Evaluation Results Report - What we found
Recommendation Report - What we concluded
After Action Report - What else must be done.

A discussion on how to analyze the data and what to do to get
results was initiated by Tricia Oberndorf. She noted that there
are many different views that could be taken to analyze the data.

One option would be to look at which candidate is the best in the
most Service Classes. If this were to be done, the Thursday i
candidate, which had the highest score in 8 service classes, would
be considered the best baseline candidate. A problem arises
however, in how to deal with the error. Some of the scores have
large variances which could change the results significantly. It
was suggested that a statistician's help might be needed. Tricia
also noted that the programmatic issues will be analyzed
separately from the technical analysis. I

A second approach that could be used i choWs- a passing
level at which candidates would be considered acceptable and then
grade from there. An example of this would be to draw a line at
"6.5" and look at scores above this. Unfortunately, this analysis

is inconclusive. 3

2-K-4 3



As another option, a total aggregate score could be obtained
for Service Classes 2 through 16, without weights. This method
would be similar to the Glass Representative Application Domain
(RAD) presented by Carl Schmiedekamp. If this analysis were to be
done, the top three candidates would have been Thursday, Tuesday,
and Saturday.

A fourth option would be to use the RAD scores. These scores
would show which candidates are well suited for a particular
application domain (e.g., real-time). In looking at the
preliminary results, however, the RADs tended to normalize the
candidates. As a result, no conclusive information could be drawn
from them. Since the RAD scores were incnclusive, three
hypothetical candidates were created to test the results. Each
new candidate had different attributes (e.g., security, Ada, fault
tolerance) and was scored in each Service Class with either a 0 or
a 10. The results of this test concurred with the preliminary
evaluation results.

Some ideas as to why the RAD scores did not vary were
discussed. One problem is that the application domains are
generally realistic, but there are no diametrically opposing
application domains. Thus, there is too much balance in the
RADs. Additionally, the candidates themselves are well balanced
as a result of the selection process. It could be concluded from
this that different baselines for each application are not
necessary.

Tricia then asked for further suggestions from the attendees
on how to evaluate the data. To start the discussion off, Tricia
presented the candidates scored against the "Big Six" requirements
(1. REAL-TIME, 2. DISTRIBUTED, 3. HETEROGENEOUS, 4. ADA,
5. SECURE, and 6. FAULT-TOLERANT). The results of this analysis
seemed to indicate that there were three candidates which tended
to score at the top of each requirement. Other suggestions
included looking at specific criteria and how a candidate scores
on particularly important criteria and looking at the Ada Language
Reference Manual and ARTEWG work as a new candidate. Tricia
suggested that these and any other new ideas be discussed in the
subgroup meetings.

CDR Barbour then presented and discussed an overview of the
programmatic requirements. In the evaluation analysis, the
programmatics were left unweighted, but were placed in a
hierarchical order of importance. He noted that the group may
want to weight the programmatic criteria. CDR Barbour stated that
the ranking was derived in conjunction with the NGCR Program
Office. It was not clear precisely how the scores would be used
at this time.

Tricia next presented the zcoring results of the
programmatics with a weighting according to the hierarchy.
Criteria 1 through 4 were given a weight of 10, criteria 5 and 6
were given a weight of 8, and criteria 7 and 8 were given a weight
of 5. As a result of this, Tuesday and Saturday, which had scored

4 2-K-5



i

relatively high in the technical analysis, scored above the other
candidates. However, Thursday, which scored very high in the
technical criteria, had the lowest score in the programmatic
evaluation. This makes the selection process even more complex.

A discussion then ensued regarding the characteristics of the
operating system candidates. The seven candidates consist of i
great extremes. They range from ORKID which is a scaled down
interface, to POSIX which is overly abundant, to CRONUS which is
distrubuted. Also, some are kernels while others are fulloperating systems, with variations in between. This is presently
not accounted for.

A suggestion was made by Mars Gralia to do a failure
analysis. To do this, assume a candidate is chosen and then see
if it would completely fail in an area where NGCR absolutely
needed it. Neil Henderson further suggested that since there seem
to be three top candidates, it might be useful to look at the
three and then pick holes in them. Eventually, they will fall
out, leaving a final baseline.

An analysis and discussion was then made by the working group
comparing Service Class scores of the top three candidates
(Tuesday, Thursday, and Saturday). The greatest difference in I
score between the three occurs in Service Class 3, Security.

An observation was made that a programmatic criterion appears
to be missing. The criterion regards the candidate being part of
an "open process", not just public domain. It was suggested that
the candidate should be under public control for standardization.
The need for an open process was discussed. It was noted that the I
cost of a publicly controlled Operating System Interface (OSIF)
should be relatively low and that no radical changes should
occur. On the negative side, however, the question of how to
maintain the standard arose. Additionally, it was noted that
large groups (e.g., POSIX) may take a long time to put out a
standard.

CDR Barbour then noted that it is possible for the group to
come to the conclusion that no candidate is satisfactory and that
the Navy should lead the development of a new interface. Although
this is not anticipated or desired, it is a possibility which
should be considered. He stated that the Navy is looking to theOSSWG experts to help it establish what to do and where to go.

A consensus was reached on the baseline documents for each
candidate. The candidates and their associated documentation are
as follows:

Alpha - Alpha Operating System, Kernel Interface
Specification (Part 7) 3

5
5 2-K-6 i



ARTX - VRTX32C User's Guide; MPV User's Guide; TNX-E
User's Guide; IFX User's Guide; RTAda User's Guide;
RTAda Board Support Package Developer's Guide;
ARTX32 Engineering Implementation

CRONUS - User's Reference Manual; Programmer's Reference
Manual; Software Design Document for the
Experimental Secure Distributed Operating System
Development

IRMX - iRMX Real-Time Kernel, Reference Manual; Nucleus
Concepts; Networking Services System Calls; I/O
System Concepts; Application Loader Concepts;
Configuration Guide

Mach - Kernel Interface Manual; Real-Time manual pages;
Kernel Modifications for the Implementation of the
Security Policy; Trusted Mach Shell; Trusted
Administrator Shell; Trusted Mach Audit Server
Interface Document; C Threads

ORKID - Open Real-Time Kernel Interface Definition

POSIX - P1003.1; P1003.2; P1003.4; P1003.5; P1003.C;
P1003.8

Possible groupings of the candidates were then discussed.
The possible categorization of the candidates which belong in each
category were as follows:

Distributed OS - Alpha, Mach, none
Real-Time Executive - ARTX, IRMX, ORKID, none
API - POSIX, none
Distributed Computing Environment - CRONUS, none

In addition to these groupings, it was stated that a
SRAX-LPOS-Kernel combination could also be considered.

Tricia discussed the definition of kernel to make sure
everyone agreed and was talking about the same thing. Initially,
the OSSWG defined kernel as primarily responsible for process
execution and interprocess communicaiton. For the purposes of the
discussion at the June 1989 OSSWG meeting, an Operating System was
defined as the full set of capabilities. A kernel was defined as
some LPOS minimal subset of this full set of capabilities which is
always required. Finally, an Ada Runtime System was defined as
the ARTEWG does.

After these definitions were re-established, a discussion on
the SRAX-LPOS-Kernel took place. Two suggestions were made. It
was stated that the OSSWG should not standardize on a kernel that
specifies a low-level set of primitives on which one builds
operating systems, but must look at applications to LPOS and SRAX
interfaces only (but cannot forget about LPOS to LPOS
interfaces). The second suggestion was to put kernels that are a

2-K-7
6



I

subset of an LPOS in the LPOS (recognizing that the kernels are a
subset intended to be seen by applications). From this
discussion, it was suggested that the Real-Time Executive and API
categories be combined.

Jim Oblinger then presented possible groupings of the
candidates for the baseline. He noted that various conclusions I
can be made by the OSSWG. It might be decided that a single

candidate meets the criteria and should be adopted. A second
possibility is that one candidate plus extensions will provide the
best solution. Third, more than one candidate might be selected
as a baseline. Finally, it may be decided that no candidates will
meet the criteria, in which case the OSSWG will create a new
standard. Jim then presented some of his ideas on how to combine I
the candidates to provide SRAX, LPOS, and kernel capabilities.

His ideas were then discussed.

The group then decided to take another look at the candidates
as scored against the "Big 6" requirements. The criteria used to
score the Big 6 were briefly discussed. It was stated that
combining multiple candidates will add levels of difficulty in
coordinating, tracking, standardizing, and modifying an OSIF.
This is a good argument for choosing one candidate. However, a
single candidate may be best fit for an LPOS, but miss conpletely i
for an SRAX. This also must be considered.

It was decided to look at the programmatics scores for each
candidate one more time. The final discussion before breaking for
the day involved looking at the top three candidates against each
Service Class. This analysis would take the form of identifying
each Service Class as a "must have" or "can be added". Tricia I
then explained the work that would be done for the next two days

in the subgroup meetings.

Wednesday, 7 March.

The subgroups met for all day meetings to discuss the report
outlines and writing assignments. I
Thursday, 8 March.

The subgroups met in the morning to complete their discussion I
of the reports. The entire group then reconvened for the subgroup
reports, final discussions, and wrap-up. The subgroup slides and
wrap-up slides follow the minutes. CDR Barbour opened the session
and called for the subgroup reports.

Rich Bergman presented the Requirements Subgroup report. The
Requirements Subgroup met with the Available Technology Subgroup
to discuss the After Action Report. From this meeting an outline
and writing assignments had been established. The Requirements
Subgroup then met on its own to concentrate on the Operational
Concept Document (OCD). The beginnings of a working draft already
exist. Issues were discussed and further writing assignments were
made. The schedule for the OCD is as follows:

7 2-K-8 3



Draft OCD - 10 April
Resolve Comments - 19 April
Deliver OCD - 1 May

Karen Gordon next gave the report for the Available
Technology Subgroup. She noted that they worked on the After
Action Report with the Requirements Subgroup and that writing
assignments are due by 16 March. The subgroup also worked on the
Evaluation Report which will provide summaries for the
candidates. An outline was established and writing assignments
were made. The drafts on the assignments are due by 23 March.
The Subgroup also discussed the selection of independent (yet
possibly multiple) baselines versus dependent (with multiple)
candidates combined into one baseline. It was decided that
independent and only one baseline should be chosen and then fill
in the holes.

Tom Conrad then gave the Approach Subgroup report. He first
presented the remaining evaluation milestones. The Approach
Subgroup discussed the technical data and results, and discussed
what to do next. They looked at the Big 6 and developed i set of
weights for an extended application domain. The candidates will
be rescored against this new set of weights. Tomn then noted the
Service Classes that need further evaluation by anyone who can.
The Service Classes that need evaluating are 2, 3, 4, 6, 7, 9, and
14. He stated that all data should be in by close of business on
12 March. The Approach Subgroup discussed the Evaluation Results
Report, developing an outline and writing assignments. The
Recommendation Report was also discussed. Regarding this report,
it was decided that it would be-wrong for the Approach Subgroup to
write the report since they created the method for evaluating the
candidates. The Recommendation Report will be written by both the
Requirements and Available Technology Subgroups. Finally, Tom
said that all reports should be given to Steve Howell who will
integrate them.

CDR Barbour then provided the wrap-up discussion. He noted
that the actual recommendation will not be decided until the April
OSSWG meeting in Pittsburgh. Therefore, all drafts should be
geared towards what may be expected and the details can be filled
in once the baseline is chosen. At the April meeting, the final
data and results will be discussed, and a baseline recommendation
WILL be selected. CDR Barbour informed the group that Mars Gralia
had a very brief questionaire to be filled out by the group to
determine the groups background and experience for the After
Action Report.

CDR Barbour then requested that on a voluntary basis all
industry and academic participants provide him with the amount of
money that they had spent so far in supporting the OSSWG. The
numbers will be kept confidential and are strictly for the Program
Office's information.

2-K-9
8



I

To close the loop on the documentation that has been U
distributed for evaluation purposes, CDR Barbour stated that all
evaluators have the responsibility to dispose of the documentation
properly. A letter will be sent to all evaluators stating this,
as well as a letter to the candidates thanking them for their
participation.

The meeting was wrapped-up with the next meeting information
and places to stay. The meeting will be held at the Software
Engineering Institute (SEI) at Carnegie Mellon University in
Pittsburgh, PA. To preregister for the meeting, call Stephanie
Alba at her new number, (301) 951-2011, or send e-mail to her at
ALBA@NADC.ARPA . Suggestions on hotels near the SEI are contained
in the slides which follow the minutes. Finally, CDR Barbour
noted that there appeared to be a consensus from the group that
the candidates sufficiently cover the requirements, but the
problem that lies ahead is to sort through the data and arrive at
a baseline decision.

II
I
I
I
I
I
I
I
I
I

92-K-lO 3



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 17-19 APRIL 1990

MEETING MINUTES

II
I
I
I
I
I
I
I

I 2-L-1



I

The tenth meeting of Next Generation Computer Resources (NGCR) Program I
Operating Systems Standards Working Group (OSSWG) was held April 17-19 at the Sottn are
Engineering Institute (SEI), Pittsburgh, Pennsylvania. Approximately 60 representatives of
government, industry and academia gathered to hear opening remarks Tuesday morning. The I
results of the Operating System Interface (OSIF) evaluation were presented on Tuesday
morning. The remainder of the day was devoted to an analysis discussion of the top three
candidates. On Wednesday morning, the Subgroups met and worked on writing the various I
evaluation reports. The OSSWG reconvened on Wednesday afternoon to further discuss the
evaluation results and to vote (arrive at a consensus), by anonymous ballot, on which of the
top three candidates should be the OSIF baseline. On Thursday morning, the results of the I
ballot were presented and the Portable Operating System Interface for Computer
Environments (POSIX) was announced as the OSSWG consensus recommendation. After
this, the subgroups met to finalize work on the evaluation reports. The meeting concluded i
on Thursday morning with the Subgroup reports and a wrap-up.

Tuesday, 17 April.

CDR Rick Barbour provided the opening remarks. After welcoming the group to
Pittsburgh, CDR Barbour introduced Helen Joyce of the SET. Helen provided administrative
information and gave a brief introduction to the local area. CDR Barbour then presented
the meeting agenda and the goals of the meeting. The ultimate purpose of the meeting was
to arrive at a consensus recommendation to the NGCR Program Office. Slides of CDR
Barbour's presentation and all subsequent presentations are contained in Enclosure 1.

Rich Bergman then initiated the subgroup reports by presenting the status of the
Requirements Subgroup. The subgroup had developed the Operational Concept Document
(OCD) Version 0.1, and provided inputs to the Recommendation Report, Evaluation ResultsReport, and the After Action Report. The plans for the April meeting were to refine the
reports based on comments and the results of the consensus.

The Available Technology status report was given by Jim Oblinger. They had been I
developing a draft After Action Report and provided inputs to the Recommendation Report.
For this meeting, the subgroup planned to work on finalizing the reports.

Tom Conrad presented the Approach Subgroup's status. The subgroup had produced
and distributed report outlines, and produced a draft Evaluation Results Report. The
Approach Subgroup also produced the Final Data Analyses. The final data was presented
at the meeting. In addition, the subgroup planned to finalize the Evaluation Process Report
and the Evaluation Results Report.

I

I
2 -L- 2i



Carl Schmiedekamp then briefed the OSSWG on the evaluation data results,
indicating how the evaluation scores were obtained or derived. Carl also explained how to
interpret the various handouts contained in Enclosure 1. First, the Extended Representative
Application Domains (ERADs) were explained. The ERAD scores were derived by
incorporating the appropriate Service Class 1 (General Requirements) criteria into the RADs
(Weight Set 2 plus weights for criteria in Service Class 1). This was done because Service
Class 1 contained important information pertinent to each of the RADs.

The overall scores for criteria, service class, and RADs were then explained. The raw
scores, consisting of one candidate's individual criterion score per evaluator, were averaged
over all evaluators who graded that criterion to obtain the criterion score. The criterion
scores were then weighted, using Weight Set 1, to produce a Service Class Score. The
Representative Application Domain (RAD) scores were then produced by weighted sum,
using Weight Set 2, over the Service Classes.

Next, Carl explained the two error calculations, Sigma and Rho, that were performed.
The Sigma error represents the standard deviation of raw scores in a criterion. It is used to
estimate errors in weighted sums. The Rho error is based on the confidence levels of the
evaluators. Since the Rho error tended to be less than the Sigma error, the Sigma error was
used in the evaluation results. In the handouts, the Sigma in a score is represented by a bar,
and the actual score calculated is the center of that bar denoted by a dark, bold line.

Tom Conrad next presented the Evaluation Process Results. He first reviewed the
evaluation process from the initial selection of over 100 candidates to the final data points
that were reviewed by Carl Schmiedekamp. This brought the process up to its current state
for the meeting.

Tom also reviewed the Navy, Industry, and Academic participation that has occurred
during the evaluation process. There have been 81 Navy and 226 Non-Navy participants
involved in the process in some way. Of these, 21 Navy and 27 Non-Navy participants
performed the actual scored evaluation. The names of these participants along with the
Service Classes they scored are included in Enclosure 1.

The technical Service Classes, 2 through 16, were then reviewed one at a time. In
each Service Class, the highest three or four scoring candidates were noted. Tom next
discussed Service Class 1, criterion by criterion, and then presented an average score of
Service Class 1 for each candidate. It was noted that the standard deviation (Sigma) goes
down when a greater number of evaluators scored a Service Class, or when a Service Class
has a greater number of criteria. From the analysis of the Service Class scores, it was
apparent that there was no clear winner, given the large standard deviations in the scores.

Each of the criteria in Service Class 0 were then presented along with an average
score for each candidate. Following this analysis, Tom presented the RAD scores. It was
noted that the Glass RAD was added for analysis purposes and uses a unary weight set.
Alpha scored the highest in all RADs followed by iRMX and POSIX.

In analyzing the RAD scores, it is apparent that each candidate's score is relatively
the same when the error is accounted for. It was noted, with some surprise, that each of the

2

2-L-3



I

candidate's scores matched very closely with the Glass RAD. In particular, the Ruby RAD I
was identified to be somewhat of a discriminator compared to the other RADs when
analyzing the weights. Yet, the scores did not support this.

Tricia Oberndorf provided some reasons as to why the RADs did not stand out. One i
possible explanation for this is that the RADs represent real-world applications where the
requirements vary widely across many criteria. As a result, the RAD scores tended to
balance each other out. Another possibility is due to the balance of strengths in each of the
candidates. No single candidate was overly concentrated in one area.

Tricia then led a discussion analyzing the results of the evaluation. The technical i
results were discussed first by reviewing the service class scores. Particular attention was paid
to the top scoring candidates in each service class. From this analysis, it was clear that
Alpha, iRMX, and POSIX consistently appear at the top. Concern was raised, however,
regarding a few of the low scores (sixth place) which POSIX received.

A discussion of the error (Sigmas) was then initiated. There were a number of ways i
to consider the error in evaluating the results. It was noted that a Sigma of greater than 3.16
in a score was significant because this is the standard deviation that would be expected from
a random number generator. For example, the scores for Alpha in Service Class 6 (File i
Interfaces) showed 20 criteria with Sigmas greater than 3.16. This indicates that there is
confusion in the understanding of the Alpha file system.

At the request of the group, Tricia presented the Sigmas for each of the essential
criteria. Essential criteria are defined as those requirements which correlate directly to one
of the "Big 6" requirements (real-time, heterogeneous, fault tolerant, Ada, distributed, and I
secure). Some of the large standard deviations are due to either a small number of
evaluators or a small number of criteria in a Service Class.

It became clear that some of the differences in scores were not significant given the
large Sigmas. This brought up the question of which scores are statistically significant. To
solve this problem, Tricia had consulted with a statistician at NADC. The statistician verifiedf
that the numbers already generated were valid, and introduced the analysis of variance. This
analysis compares two scores and their standard deviations to determine if the difference in
the scores is significant. Tricia had performed this analysis on a few of the Service Classes
which she presented. The group requested that the analysis be performed on the remainder
of the Service Classes to ensure that the differences in scores among all the candidates were
significant, and that the three candidates being discussed were truly the top three.

Next, the Extended Representative Application Domains (ERADs) were discussed.
It was noted that the relative scores for the ERADs were similar to the RADs, with Alpha,
iRMX, and POSIX the top three.

Another view of the service classes was then presented. This analysis identified the
candidates who scored greater than 7 (commonly considered a "passing" grade) in a given

service class. Particular attention was given to the top three candidates. In addition, service
classes were identified when one of the top three candidates scored less than 5 (often a
"failing" grade), noting that there may be some concern for that candidate in the particular

32i

2-L-4



area. Service classes that did not pose a concern were identified, since these services were
relatively easy to add to an interface.

It became evident from this analysis that each of the top three candidates would not
fulfill all of the needs of the NGCR OSIF Standard as submitted for evaluation. One area
in particular that did poorly across all the candidates is fault-tolerance. This is indicative of
the fact that fault-tolerance has traditionally not been a concern in the industry.

An in-depth comparison of the scores for each of the top three candidates in each
criterion was performed. In this analysis, potential "show-stoppers" were identified (those
with scores less than 5 on Essential criteria). Some debate arose over the definition of
show-stopper, as well as questions as to whether certain criteria were really "show-stoppers".
The full analysis was deferred until the results of the analysis of variance were complete.
However, it was noted that security capabilities were a major concern for all three
candidates.

Tricia noted that in performing and preparing the analyses, one additional cross-check
was done. Tricia looked at the raw evaluator scores and performed a relative ranking of the
top three candidates. From this, an individual "vote" for one of the candidates was derived
for each evaluator. The results of this informal analysis was consistent with the numbers that
have already been presented.

Tricia then asked the OSSWG if anyone believed that the three candidates (Alpha,
iRMX, and POSIX) were not actually the top ones to consider. After some discussion, an
opinion was brought forth that the evaluation may have been too subjective. It was noted,
however, that the process being performed here is very similar to that done on a large
proposal evaluation. One advantage that the OSSWG has is the unusually high level of
technical expertise gathered to perform the evaluation. Therefore, the subjectivity is actually
technical subjectivity and not personal opinion.

The technical analysis was wrapped-up by noting that the large standard deviations
indicate possible misconceptions in the candidates, possible problems with the documentation,
or perhaps varied interpretations of the requirements. The OSSWG was attempting to arrive
at an unambiguous answer when one may not exist for the selection of a baseline
recommendation.

The discussion then turned to the programmatic issues. The results of the weighted
average scoring placed POSIX and iRMX on the top, and Alpha scored at the bottom. Each
of the criteria were then analyzed individually.

It was suggested that commercial acceptance may not be a good measure of the
candidates. The reason for this is that commercial acceptance in 1990 probably reflects 1980
technology. Waiting for acceptance could make the technology old. Upon further discussion,
however, the general consensus among those who had evaluated this criterion was that they
had accounted for acceptance now as well as that projected in the future.

A discussion then insued on what capabilities were actually provided with each of the
top three candidates. It was noted that if POSIX were chosen, then the other systems would

4

2-L-5



U
still be available as implementations of POSIX (e.g., Alpha intends to be POSIX compliant)
that could also provide additional features. The danger in this is that a non-portable system I
could be built if the additional features were used. This led to a discussion on subsets and
profiles of the standard.

One idea put forward was to copy what the SAFENET Working Group had done and
adopt different standards into one Navy standard to cover all aspects of the OSIF. From this,
profiles or subsets of the standard would then have to be chosen for each application. It was
noted that the group may be discussing two mutually exclusive goals. One goal is to have
the standard be all inclusive for every application. The other goal is to choose a standardthat will apply to a dominant subset of applications. The suggestion was made to look at theSAFENET and Backplane Working Groups for lessons learned.

A concern was raised that if POSIX were selected as the baseline, could the Navy I
actually influence the standard at this point. It was noted that any group or individual could
affect a standard provided they are well organized and come with written proposals to the
group. This tended to be the majority opinion among the OSSWG members with many l
parallels drawn to standardization groups in the past (e.g., 802 and XTP).

Following the programmatic discussion, a "final" number was presented for each
candidate. Tricia noted that this number was being presented because most people
instinctively like to see an overall score, however, its significance is debateable. The score
was derived by taking the weighted programmatic score and multiplying it by the Glass I
ERAD (technical) score. From this analysis, the top three candidates remained Alpha,iRMX, and POSIX.

Wednesday, 18 April.

The subgroups met in the morning to discuss and write the evaluation reports. The
agenda was amended as a result of the previous evening's Executive Meeting and the full
OSSWG was reconvened in the afternoon to further discuss the evaluation results.

Tricia first presented the results of the analysis of variance. When performing the
analysis on all seven candidates, the previous results and conclusions were supported; Alpha,
iRMX, and POSIX are the top three candidates.

The requirements that show a statistically significant difference between candidates
were then presented and discussed. In this analysis, the "show-stoppers" that resulted from
non-significant results or non-essential requirements were removed. The results of this
showed, for the technical requirements, that POSIX led the three candidates with 23 "passing"
grades (> 7) and 24 "show-stoppers". Alpha was second with 19 passing grades and 26
show-stoppers, while iRMX had 6 and 40 respectively.

The definition of a show-stopper was briefly discussed once again. It was determined
that further discussion on the topic of show-stoppers was not warranted since a precise
definition did not exist. Additionally, it was noted that it is not apparent that there reallyare any show-stoppers.

5I

2-L-6



Rich Bergman then presented the results of the Requirements Subgroup's morning
session. The subgroup had identified the strengths, weaknesses, and risks of each of the top
three candidates. This presentation is contained in Enclosure 1.

An issue was raised regarding a discussion from the last OSSWG meeting in White
Oak on March 6-8. This discussion revolved around the combining/layering of the
candidates to establish a baseline. The group decided against such an option at that time.
A suggestion was then made to reconsider this sort of option with, for example, POSIX as
the generic baseline and Alpha as the standard for the SRAX (distribution). Some of the
group considered this as a viable alternative, but the overall consensus of the group was that
a single baseline should be chosen while using ideas from the other candidates, as
appropriate, to fill in the holes.

A 45 minute period was then alloted for the group to discuss each of the top three
candidates individually. These periods were strictly timed and comparisons between
candidates were not allowed. Alpha was discussed first, followed by iRMX and then POSIX.

Alpha Advocacy.

The point was raised that Alpha has the only realistic approach to real-time systems.
Since real-time appears to be the most important requirement, Alpha should be considered
the best candidate for the OSSWG baseline.

Dr. Karen Gordon then presented her thoughts regarding Alpha. She noted that the
purpose was to standardize on an interface between the operating system and the
applications. Since the Alpha candidate that was submitted is only the Alpha kernel, she
stated that it falls short in meeting the requirements of the OSSWG baseline. Additionally,
after discussing a number of Alpha's strengths and weaknesses, Karen proposed that the
weaknesses be changed to risks.

It was noted that one of Alpha's strengths is extensibility. An opinion was stated that
if this is a strength, then by definition, Alpha cannot be faulted for having weaknesses in an
area because Alpha should ultimately be able to be expanded to handle any weakness.

A suggestion to consider as a risk the fact that Alpha is only synchronous was made.
Additionally, it was suggested that object orientation be removed as a stength since this could
be extended to every one of the candidates. After some discussion, the group decided not
to change these issues in the strengths, weaknesses, and risks.

Doug Jensen noted that Alpha was submitted as a kernel and uses object orientation
as a model. However, it can also be looked at functionally and not just from an object
oriented point of view. Additionally, Alpha does not fully specify the interface. This can be
viewed in two ways. On one hand, it allows flexibility, making Alpha more open. On the
other hand, the interface is not as clear if it is not specified directly.

It was further noted that many of the functions of Alpha are not readily visible in the
kernel, making it hard to evaluate. For an LPOS candidate (Application Program Interface),
Alpha does not appear to provide the necessary functions since it was not designed to do this.

6

2-L-7



I

iRMX Advocacy. U
The session started by looking at the strengths and weaknesses of iRMX. It was

suggested that iRMX is extensible and that extensibility be added as a strength. As a I
candidate, it includes all the parts of the operating system. The group voted in favor of
adding extensibility as a strength.

The question was raised if iRMX plus POSIX could be considered as a candidate in
the same way as Alpha and POSIX. Though the two candidates are based on different
models, it was determined that the two candidates contain many overlapping services and
would not make a good combination.

It was noted that one of the important requirements for a candidate is to be i
compatible with Ada. As a result, the conceptual compatibility of iRMX with Ada was
discussed. The general consensus was that the necessary support for Ada is contained in
iRMX. I

The discussion then turned to the process of initiating a new standardization effort.
It was stated that it would not be easy to create a new standard that is close to an already
existing standardization effort (i.e., POSIX). It was noted that when initiating a standard, the
IEEE works by consensus. If the support from users and suppliers exists, then a standard is
typically allowed. For example, POSIX had close to 300 supporters at the outset of the I
standard. The fact that there already is an operating system interface standard should not
interfere with a new standard. 1! ,was also noted that iRMX has a very strong user group.

POSIX Advocacy.

A suggestion was made to add the uncertainty of the schedule for the POSIX
documents, other than 1003.1, as a risk. This led into a discussion of the document baseline
and the scheduled milestones for each of these documents. The current schedule was noted
as follows:

1003.1 (POSIX) - Published
1003.2 (Shell and Utility Application Interface) - in balloting
1003.4 (Realtime Extension) - in balloting (without threads)
1003.5 (Ada Binding) - balloting in Summer 1990
1003.6 (Security Interface) - drafts only, no ballots scheduled
1003.8 (Transparent File Access Interface for Networked Computer Environments) -

balloting by end of 1990

It was noted that changes to the 1003.1, 1003.2, and 1003.4 documents are highly n
unlikely at this time. However, additions to these documents can be made.

One downside of POSIX being an interface and not a product is that some features I
do not get standardized. This occurs because the participants cannot agree on all possible
implementations for the feature and do not want to make the standard limiting. As a result,

721

2-L-8



the feature is left out of the standard. In POSIX, the malloc (memory allocation) function
is an example of this.

In looking at the current status of POSIX, it can be seen that there will be holes in
the OSSWG requirements that need to be filled in. This can be done in one of three ways:
change/add to POSIX, find other standards, or make a Navy unique standard. It was noted
that there is precedence for all three of these in the Navy already.

Questions were raised regarding the coordination and integration of the "dot"
documents. The group was concerned about compatibilities between sections as well as
possible flaws in one document affecting another. It was noted that the overall POSIX group
works together to keep all of the "dot" documents compatible. This in fact is a strong goal
of the POSIX group and any incompatible parts of a document must be fixed before it is
accepted.

The inclusion of real-time as a weakness of POSIX was then discussed. It was noted
that real-time systems are currently being built with Unix. However, it was also noted that
showing existence does not prove a strength or weakness. After the discussion, a vote was
taken to remove real-time as a weakness. The vote failed and real-time remained on the
weaknesses list.

After the three candidates advocacy was completed, the OSSWG discussed the general
strengths, weaknesses, and risks. It was noted that Ada seems to be a problem overall. The
high variances in the scores imply that the knowledge of the OSSWG was not sufficient to
address Ada. It was agreed that none of the systems support Ada runtime semantics.
Support for Ada runtime semantics was added to the General Weaknesses list after a vote.

Distribution performance was then discussed. It was generally agreed that this is a
problem with current technology, although Alpha and iRMX are beginning to address it. The
group voted to remove distribution performance from the risks list and noted that it should
be discussed in the After Action report.

The issue of combining POSIX and Alpha was readdressed. It was noted that this
might be more appropriate as a next step after the baseline is established. Once a baseline
is chosen, the gaps will be identified and possibilities for filling those gaps will be discussed.
On the other hand, it was stated that the group might want to take advantage of the
combination immediately and make a statement by choosing the two candidates together.
The general consensus, however, was that choosing one baseline candidate now does not
preclude getting two (or more) candidates later.

Tom Conrad then displayed the RAD scores of the seven candidates, and urged the
group to recall all the data that had been presented for the baseline decision to be made.

CDR Barbour introduced the process that would be used to derive a definitive
consensus and select a single baseline candidate for recommendation to the NGCR Program
Office. He noted that the consensus by anonymous ballot would make the selection. All
OSSWG members were eligible to vote, but only evaluator votes would count for the

8

2-L-9



I
recommendation. Other votes would be used as advisory information. To bc chosen, a
candidate had to receive at least 50 percent of the vote.

Envelopes and paper were then distributed to the group and they were asked to selecta single candidate from the top three: Alpha, iRMX, or POSIX. The votes were collected
and it was announced that the results would be provided the following morning.

Thursday, 19 April. i
The OSSWG reconvened in the morning and the results of the previous day's ballot

were presented. Alpha had 12 votes that counted and 3 advisory votes, iRMX had 5 votes
that counted and 1 advisory vote, and POSIX had 18 votes that counted and 6 advisory votes.
Since POSIX received over 50 percent of the votes that counted, CDR Barbour announced
that POSIX will be the official recommendation that the OSSWG forwards to the Program I
Office. CDR Barbour opened the floor for comments. No comments were made.

The OSSWG broke into subgroups to develop the final details of the reports now that
a baseline recommendation had been selected. Late in the morning, the OSSWG reconvened
for subgroup reports and the final v.Tap-up. i

Rich Bergman presented the Requirements Subgroup report. The subgroup had
completed the draft version of the Recommendation Report and would be distributing it for
comments via ARPANET. Rich noted that the group would also continue to work on the I
Operational Concept Document (OCD), targeting the end of May for delivery to the Program
Office. Finally, Rich identified the subgroup's plans for the next meeting. The Requirements
Subgroup will begin reviewing the OCD Model and Requirements against POSIX, as well
as refine the OCD for its next release.

Jim Oblinger presented the Available Technology Subgroup report. Significant
updates were made to the After Action report and Jim outlined the process to incorporate m
these and solicit comments via ARPANET. The subgroup had also generated significant
inputs to the Evaluation Results Report. For the next meeting, Jim stated that the AvailableTechnology Subgroup will begin to draw the requirements out of POSIX to identify holes. I
The subgroup will also work to find ways to fill in the holes.

Tom Conrad then presented the Approach Subgroup report. A walk-through of the i
Evaluation Results report had been completed and Tom identified the plans to complete the
report and obtain comments, also via ARPANET. Tom noted that the OSSWG is now going
through changes based on the selection of a baseline. As a result, the subgroup will be
developing a new POA&M during the next meeting. Additionally, they will be arranging a
briefing of the results of the "Bidder's Conference" on the Operating System Prototype
Contracts. The Bidder's Conference will be held on 23 May 1990 at NUSC in Newport,
Rhode Island. Tom also noted that since no bias was found in the scoring from the
evaluators, it would not be discussed in the Evaluation Results report.

CDR Barbour then provided the meeting wrap-up. He first noted the next meeting
which is to be held on June 5-7 at NSWC, White Oak, Maryland. CDR Barbour stated that
the objectives of the meeting had been accomplished and the OSSWG is on target. Copies

9
2-L-1O



of the final reports will he distributed to all OSSWG members. Additionally, letters will be
sent to each evaluator identifying the proper steps to close out the evaluation (i.e., handling
of documentation).

CDR Barbour then thanked all of the members for participating and invited them to
continue participating in the future. He noted that schedule changes are anticipated as a
result of the decision made and the changing focus of the OSSWG. The group was then
congratulated on the tremendous effort and results that were achieved. CDR Barbour then
closed the meeting.

10

2-L- II



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 5-7 JUNE 1990

MEETING MINUTES

2-M-1



n
The eleventh meeting of Next Generation Computer Resources

(NGCR) Program Operating Systems Standards Working Group (OSSWG)
was held June 5-7 at the Naval Surface Warfare Center (NSWC) in
White Oak, Maryland. Approximately 45 representatives of
government, industry and academia gathered to hear opening remarks I
Tuesday morning. The Operating System Prototype (OSPROT) Industry

brief and the response from it was presented on Tuesday morning.
The latter part of the morning was devoted to strategizing for the
OSSWG to attend the POSIX meetings. In the afternoon on Tuesday
information on the NIST POSIX Conformance Test Suite was presented
and then the OSSWG discussed the Delta Document which will
identify the differences between the Requirements Document and i
POSIX. The subgroups then met for the remainder of the day and

all day on Wednesday. On Thursday morning, the OSSWG broke into
OSSWG/POSIX extension groups to organize and strategize for the
July POSIX meeting. The meeting concluded on Thursday morning
with the OSSWG/POSIX extension group and Subgroup reports and a
wrap-up.

Tuesday, 5 June.

CDR Rick Barbour provided the opening remarks. After
welcoming the group to White Oak, CDR Barbour provided brief
administrative information and presented the meeting agenda. He
then announced POSIX as the official Navy Operating Systen
Interface (OSIF) baseline selection. The goals of this meeting
were to strategize on the next phase of the OSSWG. This phase,
OSSWG Phase II, will involve identifying the differences between
POSIX and the OSSWG Requirements document and then influencing
POSIX as much as possible to incorporate these differences.
Slides of CDR Barbour's prczentation and all subsequent
presentations are contained in Enclosure 2.

Rich Bergman then initiated the subgroup reports by
presenting the status of the Requirements Subgroup. Since the n
last meeting, the subgroup has provided inputs to finalize the
evaluation reports, completed the Recommendation Report, and has
issued the Operational Concept Document (OCD) version 0.1A for I
comments. At the current meeting the Requirements Subgroup
planned to continue developing the OCD towards a July delivery to
SPAWAR.

Jim Oblinger provided the Available Technology Subgroup
status report. The group had completed the After Action Report
which will be released on 15 June 1990 as NUSC TD 6904, dated 1
June 1990. They also worked on producing the Available Technology
Report as a TD and attended the OSPROT Industry brief. The group
planned to start working on the POSIX to OCD Delta Document and
focus on OSSWG to OSPROT communication at this meeting.

Tom Conrad then presented the Approach Subgroup status. The i
subgroup had finalized the Evaluation Process and Evaluation U
Results Reports and participated in the OSPROT Industry brief.
They intended to draft a new OSSWG Plan of Actions and Milestones 3

1 2 -N-3



(POA&M) for this meeting. Tom then identified the key items that
the OSSWG needed to start considering and working on at the
meeting. These items are:

- Finalize the 5 reports (Recommendation, After Action,
Evaluation Process, Evaluation Results, and Available
Technology)

- Identify the POSIX baseline (which "dots" are included)

- Finalize the OCD

- Start work on the Delta Document

- Establish a strategy for moving the POSIX baseline to
meet the OCD requirements

- Define the OSSWG support role with respect to the OSPROT

- Define a Conformance Testing methodology

- Create a new POA&M and restructure the OSSWG to support
it.

Tom presented the organization of the OSSWG as it had been
structured for the baseline selection. He noted that the
organization of the OSSWG would need to change in the next phase
to support the goals listed above. This would be worked on by the
Approach Subgroup at this meeting.

Kar Chan presented the OSIF Evaluation Model Industry
Briefing and discussed what occurred at that briefing given on
23 May 1990. The briefing is contained in Enclosure 2. Part of
the discussion involved the contract structure flow for the OSIF
implementation between the OSSWG and OSPROT. Kar stated that the
OSSWG will deal with creating and updating the requirements and
the OSIF standard. The OSPROT will take the standard and any
changes identified by the OSSWG and enforce these upon the
implementation. The OSPROT will also feedback to the OSSWG any
issues that arise out of the implementation. It was noted that
the contract structure identified Backplane inputs but did not
identify the LAN working group. Kar stated that this will be
corrected.

The industry representatives present at the 23 May brief had
some concern over Ada requirements. They asked if other languages
could be used in addition to Ada, or perhaps not even use Ada.
The concern revolved around the fact that there may not be any Ada
operating systems that are POSIX compliant.

CDR Barbour then discussed Phase II of the OSSWG. He
presented an updated schedule for the OSSWG which includes
attending the POSIX meetings. One concern about the schedule is
that POSIX will be balloting on a number of "dot" documents in the
near-term and the OSSWG must act quickly to get involved. ("Dot

2

u toi mm m m m ~ n m m m m nnmn m w I?-N-3m



refers to the various POSIX extensions being developed to the
standard p1003.1. In this context, "dot 4" refers to the p1003.4 i
extension for real-time services). CDR Barbour identified the
near term OSSWG milestones to write the Delta Document, refine the
Abstract Model, and finalize the OCD by December. 3

It was noted that there has been very positive feedback from
the Navy on the work coming out of the OSSWG. CDR Barbour stated
that he had inquired about IEEE memberships for OSSWG members m
participating in POSIX. The Navy will not pay for the
memberships. To vote in IEEE ballots, you must be a member of
either the IEEE or the IEEE Computer Society. You need not be a |
member of both. The Computer Society membership costs about $40
and the IEEE membership costs about $100. (By the way, we gain
access to documents via our subscriptions.) CDR Barbour noted
that the POSIX subscription costs were being investigated.

Tricia Oberndorf next discussed the POSIX committees and the
OSSWG strategy. She presented all the current POSIX committees
and identified the specific groups of interest to the OSSWG. The
P1003.3 committee had been handling all test methods for every dot
group and will probably break out its responsibilities to each dot 1
group. The P1003.8 committee was responsible for all network -
services, but the network services have now been divided into a
few dot groups. Tricia also noted that the Technical Committee on
Operating Systems (TCOS) had withdrawn its support for P1003.13, m
Namespace and Directory Services.

Tricia stated that although P1003.1 is the key to POSIX, it i
is already published and is not likely to change at this time. As
a result, the OSSWG will concentrate its efforts in the other
groups. It was noted that if pressure from the ISO and European 3
communities cause changes in P1003.1, then the OSSWG will probably
want to participate at that time.

Tricia then discussed related efforts to POSIX by the IEEE. i
These groups include P1201.1, P1201.2, P1201.3, and P1201.4 which
are not of interest to the OSSWG. The P1237 committee on Remote
Procedure Calls (RPC), which has no current draft and is targeting
a Summer 1992 standard, is important to the OSSWG. Also, P1238.1
(OSI API) and P1238.2 (FTAM API) are important to the OSSWG.
Finally, Tricia suggested that a liason from the OSSWG should
attend the Control and Status Register (CSR) committee, P1212.

One area of major concern with POSIX is fault-tolerance.
Currently, there is no working group addressing fault-tolerance. I
This is an important area for the OSSWG and a strategy to address
it must be determined. 3

Tricia then discussed efforts by the IEEE that are related to
POSIX. The five areas that are most important to the OSSWG are:

- System Interface Work (real-time) I
- Distribution Services

I



- Security
- Conformance Testing
- Ada Binding

The OSSWG, it was stated, will need to divide into these
groups based on indicated interests of the members. Preferences
for POSIX committees were then collected by Tricia. She noted to
the group that, although POSIX tends to be dominated by vendors,
the OSSWG representatives (system users) at POSIX will have the
advantage of a well defined set of requirements.

Jim Hall of the National Institute of Standards and
Technology (NIST) briefed the NIST POSIX Conformance Test Suite
for FIPS 151-1. He first discussed FIPS in general and then keyed
on the POSIX conformace suite. Jim's presentation is contained in
Enclosure 2.

Next, Tricia discussed the Delta Document. The objectives of
the document are to form a basis for identifying enhancements to
POSIX and to use it ai an inclusion in the OSPROT RFP. In
identifying the gaps between POSIX and the OCD, one of several
options can be considered for each requirement not fulfilled,
including:

- Requirement is unnecessary and can be discarded

- Requirement is fulfilled by SAFENET

- Requirement was previously considered and discarded by
POSIX

- Requirement is nice to have, but not really needed or
worth working toward

- Requirement is "too far out" and it would be premature
to standardize at this time

- Requirement is a must ("got to have") and must be
included even if POSIX does not.

From the list of requirements being pursued, an approach to
take them into POSIX must be determined explaining the concepts,
rationale, and interfaces required.

A question was raised about handling conflicts with POSIX.
Tricia responded that if a necessary requirement conflicts with
POSIX, then the OSSWG will have to diverge from POSIX for this or
identify a profile around the problem.

Tricia emphasized that a final Delta Document is needed by
December 1990. This is an important deadline for meeting the
OSSWG's own needs. This is also important since the document will
be included in the OSPROT RFP expected around that time.

4

2-M-5



I

The point was raised that the POSIX committees often consider
whether an efficient implementation can be made before they
determine if it's worth standardizing on the interface. This led
to a discussion on performance issues. It was noted that the
OSSWG does not want to ignore performance, but it could not be the
major focus for the standard; it is a suitable topic for a
companion document. The Representative Application Domains (RADs) *
were identified as the best area for the OSSWG to identify
performance requirements. It was suggested that they could be
expanded to include performance issues.

For the remainder of the afternoon, the three OSSWG subgroups
met. The Requirements Subgroup concentrated on the OCD, the
Available Technology Subgroup concentrated on the Delta Document, m
and the Approach Subgroup concentrated on the POA&M.

Wednesday, 6 June. 3
The OSSWG worked in the subgroups for the entire day.

Thursday, 7 June. 1
The OSSWG broke into five STAR groups: System Interface Work i

(real-time), Distribution Services, Security, Ada Binding, and
Guide. (The conformance test group identified by Tricia on
Tuesday did not meet); the Guide (.0) was overlooked on Tuesday.
Each group was to identify a leader, the committees which each I
member would attend, and then strategize on the best way toapproach the POSIX committee in July.

CDR Barbour reconvened the OSSWG after the POSIX groups met. i
He suggested that each group leader contact the POSIX committee
chair in preparation foc the July meeting. He then initiated
reports from each of the POSIX groups by reporting on the Guide 1
(.0) group. They will be involved with interface issues and how
POSIX will work together. CDR Barbour will take the lead in this
group. I

Jim Leathrum reported for the Ada group. He noted that he
will take the lead for the group until August. They want to 3
coordinate closely with the P1003.4 (Real-time) committee and push U
P1003.5 (Ada binding) in that direction. They also want to
influence P1003.5 towards integrating with the other extensions as
well. I

Tony Carangelo reported for the Security group. Mark Karan
will take the lead at this time. The group wanted to identify the
strategy taken by the P1003.6 (Security) committee in creating the
current draft standard. They then want to identify the OSSWG
requirements which are not satisfied in the POSIX documentation
and influence the P1003.6 committee to include these features.
The group also intends to identify a set of additional
requirements for Navy systems which POSIX may be able to address -
and then introduce these into the committee.

5 2-M-6



The Real-time group report was given by Del Swanson. He
stated that the group will ask Frank Prindle to take the lead.
The group noted that the real-time POSIX committees are dynamic
and break into factions on issues. Their strategy will be to
introduce the OSSWG requirements into the committees, develop
allies, and continue to meet in the Real-time OSSWG group to
strategize and share ideas. The group identified multi-nodal
systems and fault-tolerance as areas not currently addressed by
POSIX that they would like to introduce.

Greg Bussiere reported on the Distribution group and will be
taking the lead. He noted that the group would inquire into the
P1003.13 committee which was disbanded and would monitor and/or
participate in P1212 CSRs. The group identified global memory
management, global time services, and message transfer protocols
as areas not covered within POSIX. The group hoped to keep close
to the Ada and Real-time groups to share ideas.

CDR Barbour then noted that he had been in contact with
groups within the Government which were interested in forming
alliances. Particularly, he mentioned NASA, NIST, and the DOE.
It is desirable for each group to get familiar with each other's
issues and go to POSIX in unison. These groups are not as
organized as the OSSWG, but they do have regular POSIX attendees.

The Subgroups then reported on their progress. Rich Bergman
began with the Requirements Subgroup report. The subgroup
completed a group review of the OCD version 0.1 and determined
that there would be no major modifications for the July version.
The only major modifications expected are to the Reference Model
and these would be included in the December version. All comments
to the OCD should be made to Dan Juttelstad by e-mail to
RQTSG@TECR.NOSC.MIL (formerly RQTSG@.NOSC-TECR.ARPA). The
subgroup planned to deliver the OCD version 0.2 to SPAWAR 324
prior to the July POSIX meeting.

Dr. Karen Gordon gave the Available Technology Subgroup
report. The subgroup had generated a draft cross-reference matrix
of OSSWG service classes versus POSIX committees, assembled 6
groups from the 16 service classes and assigned lieutenants to
coordinate the Delta Document comments, and developed a draft form
to submit those comments. They intended to investigate the
submission of these comments by e-mail. They planned to obtain
comments, categorize and discuss unfulfilled requirements, and
prepare the Delta Document as the comments are submitted. It was
noted that the Delta Document should also address holes that might
arise in the OSSWG Requirements as a result of studying POSIX.

The Approach Subgroup report was given by Tom Conrad. Tom
presented the OSSWG Phase Plan. Phase I has been completed and
Phase II is beginning. The OSSWG needs to organize itself within
a larger group (POSIX) and influence the standard to make it
usable to the Navy. In addition, there are still NGCR and OSSWG
items to complete.

6 2-M-7



U
Tom discussed the OSSWG organization for Phase II. The OSSWG

breaks down into two separate areas. One area is to cover POSIX
and is handled by the six functional groups which met on Thursday
morning. The other area is covered within the OSSWG by three
subgroups: Approach, OSIF Standard Evolution, and Product U
Transition. Tom then presented a schedule of the documents and
important events affecting the OSSWG. The relationships between
the OSSWG and the other NGCR working groups were shown. Tom noted
that the boundaries between the OSSWG and SAFENET and the OSSWG
and Backplane must be defined. He also emphasized that a
Conformance Test Methodology will be drafted and provided as input
to the NGCR Conformance Test group.

As the old OSSWG subgroups still have work on-going, Tom
stated that these old subgroups would still continue in their I
current form at least through July 1990. The new groups will

start up immediately and Tom requested that OSSWG members consider
which new subgroup they would like to participate in.
Additionally, the six POSIX groups will start up immediately.

CDR Barbour then provided the meeting wrap-up. He brought
attention to the next meeting in Danvers, Massachusetts, a
16-20 July 1990 which will occur in conjunction with the POSIX
meeting. The OSSWG will meet in separate meetings from POSIX on
the evenings of the 17th and 19th. CDR Barbour noted that the
size of OSSWG had decreased a little and that it is important to
assure a critical mass in all areas of work identified. He
reiterated that the POSIX documentation procurement and
distribution issues will be investigated. Additionally, CDR
Barbour stated that he will work on firming up alliances with the
other groups mentioned. He then thanked everyone for their hard
work and participation and adjourned the meeting.

7I

!

I
!
U

I
7

2-M-8



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 16-20 JULY 1990

MEETING MINUTES

2-N-I



I
The twelfth meeting of Next Generation Computer Resources (NGCR) Program

Operating Systems Standards Working Group (OSSWG) was held in conjunction with the
IEEE POSIX Working Group meetings in Danvers, MA, from 16-20 July 1990.
Approximately 35 representatives of government, industry and academia met in two
OSSWG evening sessions. The OSSWG meetings focused on areas in which the Navy could
significantly contribute to the POSIX efforts. Updates of the work being pertormed in the
POSIX working groups and information on the overall status and direction of the POSIX 3
standardization effort were provided.

Tuesday, 17 July. I
The meeting was opened by CDR Rick Barbour. He introduced the OSSWG

Co-Chairs, for the benefit of any new attendees from the POSIX group, and then discussed
the evening's agenda. First the OSSWG Subgroup Chairs would report on their group's
status, then the "Star" groups would breakout and discuss the integration of the OSSWG
into POSIX. In particular the Star groups were to address the status of their particular I
OSSWG requirements against POSIX features and schedules, and identify areas in which
the OSSWG can become actively involved.

The OSSWG Subgroup reports began with the Requirements Subgroup presented
by Rich Bergman. Version 0.2 of the Operational Concept Document (OCD) has been
released for review on E-mail. Rich requested that comments be provided as the document i
will be finalized in December.

Jim Oblinger provided the Available Technology Subgroup status report. The
collection of data for the Delta Document had begun and the group had received data from
the evaluation reports. During the POSIX meeting, the Available Technology group
intended to refine the data collection procedures among the Delta Document workers. Jim
noted that all Delta Document data should be submitted by the August OSSWG meeting.
At that meeting the analysis of the data will be discussed.

Steve Howell presented the Approach Subgroup status for Tom Conrad. The next
generation of the POA&M is being developed and a draft should be available at the August
meeting. The Evaluation Process and Evaluation Results Reports are still undergoing
internal review (editing) at NSWC-WO and should be available soon. At the August
meeting, the group will continue defining the direction of the OSSWG, especially given the
results of the first POSIX meeting. n

Following the OSSWG Subgroup reports, the Star Groups reported their initial
findings based on the first two days of POSIX meetings. CDR Barbour began with the
P1003.0 POSIX Guide report. The JTAP/ISO liason, Jim Isaac, had identified that the ISO I
community required that a language independent specification be written for the P1003.1
document. CDR Barbour noted that all upcoming PARs under POSIX must be language
independent; however, current PARs will not be rewritten and it is only suggested that they U
provide language independence. The 1003.0 group discussed the usage of "POSIX" as an
adjective or a noun. It was determined that POSIX is an adjective. This means that
"POSIX" will always be used with something else, such as a POSIX AEP or a POSIX Open

1 U
2-N-2



System. The group also discussed and is attempting to define what POSIX is and how to
create profiles. The OSSWG, along with AT&T, volunteered to provide Section 4.1 of the
1003.0 Guide. The 1003.0 group is targeting a mock ballot for January 1991.

Tricia Oberndorf then discussed the 1003.0 Guide and its purpose. It is intended to
be an umbrella document for P1003 to provide guidance and consistency among the various
PARs. It was identified that the guide needs a reference model, similar to the OSSWG
reference model, to explain what is meant by Open Systems and Operating Systems. This
will be approached by first defining services, and then discussing all standards which apply.
Finally, profiles will be identified. The group defined a profile as "a walk through the
standards, picking appropriate parts of each standard to build a coherent, open system."
The 1003.0 group will also identify areas of the reference model which are not currently
covered by the standards.

Tricia noted the profile discussions of the 1003.0 group, particularly the minimum
requirements to be considered a POSIX profile. POSIX compliance will probably be
defined as P1003.1 minus some part(s). POSIX compliance may also be defined as P1003.2
minus some part(s). These issues are being worked on by the group in addition to the
possibility of identifying a maximum set of standards for POSIX compliance.

The need to discuss how the OSSWG schedule relates to the OSPROT at future
meetings was identified. It was also noted that POSIX and the idea of profiles must begin
to be introduced into the Navy along with efforts to make this a Navy Policy.

Mars Gralia next discussed the Ada Binding (P1003.5) group's initial findings. He
noted that the 1003.5 work is not a run time environment, but identifies how an Ada
programmer gets access to POSIX services through Ada. The group consists of 12 people,
of which 6 are from the OSSWG. This gives the OSSWG a good deal of influence in the
group. The 1003.5 document is expected to go to ballot in August. Mars noted that the
document will be sent to the ISO community, but they are looking for language
independence. As a result, they will be asked what is needed to fix it and get it approved
rather than to review and approve it.

Although the 1003.5 document is going to ballot, there are a number of areas in
which the OSSWG can get involved. These include ballot resolution, liason to the 1003.3
testing group, liason to the language independence group, and liason to the 1003.10 group.
Mars noted that the Army CECOM has an agreement with another party to produce an
Ada binding to the 1003.4 Real Time document. This might be an area of interest to the
OSSWG. Finally, Mars noted that the 1003.1 document is incomplete when combined with
Ada. There are a number of inconsistencies which must be identified and resolved.

Gail Holmes presented the status of the Conformance Test (P10033) Star Group.
The group consists of approximately 30 members divided between two subgroups, P1003.3.1
and P1003.3.2. The first subgroup is involved with Test Methods for Measuring
Conformance to IEEE Standard 1003.1 - 1990, and the latter is for Test Methods for
Measuring Conformance to IEEE Standard 1003.2. The remainder of the conformance
tests for each dot group will be written by the individual group with guidance from the
1003.3 members. Gail then discussed the NIST involvement in validating POSIX compliant

2

2-N-3



I
systems. They have developed a test suite (NIST - PCTS: 15 1-1) designed against P1003.1,
version 12; however, the current version of the 1003.1 document is version 13. The second I
version of the test suite will be designed against 1003.1a. Other efforts related to the
conformance test efforts which could be of value include the Phoenix Project and X-Open.

Gail noted that the current documents being written are well established, thus the
major area of participation with these will be to get involved with the balloting efforts. The
future of the conformance testing for the remaining dot groups will be decided by the 3
Sponsor Executive Committee (SEC).

The Distribution Star Group report, which consists of 1003.8, 1003.12, 1003.13, 1237, 1
and 1238, was given by Greg Bussiere. All the groups, with the exception 1003.8, are
relatively immature. As a result, there should be a number of opportunities for the
OSSWG to provide influence. The 1003.8 Transparent File Access group has two OSSWG I
members attending. The group intends to develop two profiles, a full profile and a core
profile. They are working on draft 2 and expect to go to a mock ballot in September 1990.
Comparisons to the OSSWG requirements could not be made at this time.

The 1003.12 Protocol Independent Interface group is a new group with two OSSWG
attendees. This group intends to develop two documents, one in 6 months and the other I
in a year. The documents will be based on TCP and OSI profiling.

One member of the OSSWG attends the 1003.13 Name Space/Directory Services 3
group. The OSSWG requirements are very broad in this area and the 1003.13 group is
working at a lower level detail. The group has recently been reorganized. The document
will be based on X-Open, but the schedule is unknown. !

Greg noted that the 1237 group did not meet at this POSIX meeting and then
reported on the final group, 1238 FTAM. This is a new group and is very much interested
in the user's point of view. They have been working on two documents since April 1990.
These documents are Objectives, Requirements, and Definitions, and Strawman Function
Feature List. Their schedule is presently unknown.

Frank Prindle reported for the Real Time Star Group which consists of the 1003.4
and 1003.13 (formerly 1003.14) groups. The 1003.4 group is a relatively large group
consisting of close to 60 participants. Based on a quick first look, Frank noted that, minus
Ada, there seems to be about 50 percent compliance between the OSSWG requirements
and the 1003.4 standard. The Ada issues have been discussed within the 1003.4 group,
but there is a lack of interest in addressing them. They feel that their charter calls for C U
only. The issue may be addressed through threads. The OSSWG could be very influential
in swaying attitudes and helping to address these issues. I

The 1003.4 work has been divided into two parts: the basic 1003.4 document and
1003.4a P-Threads. The 1003.4 document just went to ballot. It was noted that much of
the document is in conflict with existing state-of-the-art developments (e.g., X-Open). The U
1003.4a document will probably go to ballot after the October meeting. The current
1003.4a document does not appear to match well with the OSSWG requirements. It was
noted that the OSSWG must give good, well supported reasons when voting against a

32 -

2-N-4



document to maintain good relations within POSIX. The suggestion was made to try to
form alliances within the group, especially with members who have previously been silent.
Frank also noted that there is talk of a new 1003.4 group forming to modify and enhance
the current document.

I-rank then reponed on the 03.13 Real Time AEP group. There is a lot of room
in this group for the OSSWG to get involved. This group's efforts are concentrating on
1003.1 and 1003.4 only. No distribution or security w6rk is currently scheduled. The group
will develop three profiles: a minimal embedded profile, a medium profile, and a full
capability profile.

Mark Karan concluded the Star Group presentations with the Security group,
P1003.6. The current 1003.6 document is well defined and should go to a mock ballot in
January 1991 and a full ballot after the April 1991 meeting. Version 5 of the 1003.6
document had been reviewed against the OSSWG Requirements and is consistent. It was
noted, however, that the document falls short of meeting all of the security requirements
that the OSSWG will need. The current version (7) of the 1003.6 document will be
reviewed against the OSSWG requirements.

The 1003.6 group has a strong vendor influence and the document is nearly
complete. The OSSWG influence to this document is minimal. However, a liason group
has been created which combines representatives of the 1003.6, 1003.7, and 1003.8 groups.
This group will be discussing how to integrate security with system administration and
distribution. The OSSWG can be of great influence in this area. The 1003.6 group does
not intend to profile at this time.

The OSSWG meeting adjourned until Thursday.

Thursday, 19 July.

CDR Barbour opened the session and identified the agenda for the evening. CDR
Barbour and Tricia Oberndorf would first discuss the relationship of POSIX to other
international standardization groups. Then Fritz Schultz of NIST was scheduled to discuss
the 1003.0 document followed by Star Group status reports.

Tricia Oberndorf discussed the makeup of the IEEE POSIX effort and compared
it to the ISO. The IEEE falls under the ANSI as an accredited standardization
organization. Under the IEEE are a number of societies, one of these being the Computer
Society. The Computer Society further breaks down into technical committees. The
Technical Committee on Operating Systems (TCOS) contains a Sponsor Executive
Committee (SEC), as one of a number of committees, which oversees the standardization
efforts including P1003, P1201, P1237, and P1238.

In describing the ISO breakdown, Tricia noted that the ISO in conjunction with the
International Electro-technical Committee (IEC) have formed Joint Technical Committee
1 (JTC1). JTC1 breaks down into Topical Study Groups (TSGs), Special Committees
(SCs), and then Working Groups (WGs). Internationally, POSIX (9945) falls under WG15

4

2-N-5



I
which is a subgroup of SC22 under TSG1. In addition to WG15, there are Rapporteur
Subgroups on Security, Internationalization, and Conformance Test.

CDR Barbour next discussed the role of the U.S.TAG for SC22, WG15. It is a
group of 18 liaisons headed by Don Terry of Hewlett Packard. The group represents U.S.
issues and positions to the ISO. CDR Barbour then presented the status of the P1003
groups in the international arena. The 1003.1 and 1003.2 efforts correlate to the ISO
9945-1 and 9945-2 groups, respectively. The 1003.3 documents must be recirculated to
WG15, while the 1003.4 effort is caught in the language independent specification issue
between the IEEE and ISO groups. Security, 1003.6, will be merged into 1003.1 in the ISO
arena. The 1003.7 efforts are behind, 1003.5 and 1003.9 are being sent to WG15, and the I
plans and schedule for 1003.0 have not been established at this time.

The status of the SEC, which oversees the standardization efforts, was then discussed. 3
CDR Barbour noted that the SEC is responsible for standardization procedures, mailings,
and revisions. The committee discussed the old 1003.13 Name Space and Directory
Services PAR which has been reintroduced for approval. The PAR was accepted, noting I
that progress must be shown in the near future. The SEC then delayed a motion to rescind
sponsorship of the P1224 X.400 Messaging PAR until Janary 1991. At that time the group
is expected to show a draft document. Finally, the group discussed the submission of a I
PAR for windowing.

The Star Groups then met to discuss the current status based on the POSIX 5
meetings. In addition, these groups were asked to identify any missing POSIX groups or
any existing POSIX groups which are not already being covered by :he OSSW(.
Furthermore, the groups were asked to identify issues that the- feel the OSSWG ,-ould
consider.

Gail Holmes reported first on the Conformance Test status. The 1003.3.2 document
is still being worked on while the 1003.3.1 document is on Draft 10 and is just being
updated. Gail noted that the proposal to have each of the dot groups write their own test
assertions is being met with some disapproval from the various groups. .

Frank Prindle then reported for the Real Time group. The 1003.4 draft balloting
was discussed and 3 issues were brought forth for the group to resolve. The 1003.4a group
discussed possible resolutions of the p-threads issues. The Real Time group will try to
make a strawman proposal (based on process management, signaling, and synchronization)
by the next POSIX meeting to bring the issues out in the 1003.4a group. Frank expressed
concern over the current p -threads, especially multi-processing and scheduling, and noted I
that they may conflict with the Navy's interests.

In the 1003.13 Real Time AEP group, the OSSWG is providing strong participation. I
The OSSWG participants have volunteered to identify and define three different sized
profiles, small, medium, and large, based on surface, subsurface, and air examples. 3

Frank noted that "distribution" does not seem to be a major concentration across
POSIX. In addition, concerns were raised over multiprocessing. The need for a
representative on the 1003.14 Multiprocessing group was identified. Frank stated that the

52I

2-N-6



OSSWG should be concerned with the language independence issue from both a political
standpoint and so that Ada and other languages will meet with less resistance in the future.

The Ada status report was presented by Mars Gralia. The 1003.5 group wrote a
pitch to th- SIG-ADA group identifying what is in the document in crder to gain their
support. The group also discussed what to do after balloting to clean up the document,
write test assertions, and handle the language independence issue. Mars agreed to look into
writing a PAR for a 1003.4 Ada Binding by January 1991. As part of this, Mars requested
that potential participants in the group let him know so he could provide a list to the 1003.5
Chair. This list of potential participants is needed for the PAR to determine the potential
impact on current 1003 efforts.

Mars noted that the relationship of 1003.5 to 1003.1 is not the main concern of the
OSSWG. The real concern will be over the binding of Ada to the 1003.4 efforts. He
further noted that an Ada binding to 1003.6 Security is not a major concern of the POSIX
community, but could be important to the OSSWG. Finally, Mars said that a 1003.5
binding to 1003.2 was being considered.

Greg Bussiere next presented the Distribution Star Group report. The 1003.8
document will go through a mock ballot in January 1991. It is not clear at this time who
will receive copies to review. This will be decided by the 1003.8 Chair. The other groups
falling under distribution are looking at mock ballots in the Summer of 1991. Greg noted
that the 1237 group will be meeting separately and someone may be needed to attend if a
Distribution group member cannot.

It was noted that the OSSWG SRAX level of the reference model may not be
covered by POSIX. A proposal by Martin Marrietta to the 1003.13 group was then
discussed. The proposal is for a real time distributed system and is contained in Enclosure
(2) to these minutes.

The Security report was presented by Mark Karan. Most of the work on the 1003.6
document is occurring in subgroups for Discretionary Access Control (DAC), Mandatory
Access Control (MAC), Audit, and Privilege. The language independence issue is a concern
to the group, but no work is currently being done pending the efforts of the 1003.1 group.
Mark noted that important issues regarding distribution and security will be addressed in
the 1003.6, 1003.7, and 1003.8 Liason group. This should be an area of concentration for
the OSSWG. It was also noted that a representative to the 1003.7 System Administration
group might be needed. Additionally, some potential holes which need to be studied
involve the relation of the 1003.6 document to the other dot groups (e.g., 1003.4).

CDR Barbour and Tricia Oberndorf then presented the 1003.0 Guide status report.
CDR Barbour noted that the OSSWG participants will take an active role in helping to
write the 1003.0 reference model which should be similar to the OSSWG reference model.
Additionally, he volunteered OSSWG expertise to flesh out the Graphics section of the
1003.0 document. He is expecting the NUSC personnel doing the Graphics study to actually
perform this work in conjunction with the Services section that Tricia and Carl
Schmiedekamp are performing. Most of the issues in the group revolve around POSIX
profiling and discussions on the use of the 1003.0 document.

6

2-N-7



I

Tricia noted that there is an issue over how much does the OSSWG really care that I
the results of its efforts become a POSIX approved profile. The benefit of this is that a
commercial product may become available which could be purchased off the shelf.
However, reality says that this may never come about, especially considering some of the I
apparently Navy unique requirements (e.g., Fault Tolerance).

Tricia raised the question of whether the current POSIX profiling efforts will be 3
enough to satisfy the OSSWG's needs. If the gemstones are considered, this is probably not
the case. Tricia looked at the Big 6 requirements against POSIX and placed the gemstones
in them. She noted that Ada occurred consistently across the gemstones and that Fault 1
Tolerance was a major weakness.

The idea of a POSIX standard profile was then discussed. The 1003.0 group noted
that any standard can be used in a profile. As a result, they had developed the idea of a
"corral" around standards that can be in a POSIX Standard Profile based on an Open
System. With this view, profiles would get tentative approval as a POSIX profile until they I
could go through a balloting process. This discussion was not resolved in the 1003.0 group.
Tricia noted that profiling might be an effective way for the OSSWG to bring its
requirements into POSIX by identifying what Navy applications need rather than just stating I
what should be done. These profiles should be well developed outside of the POSIX forum
before being introduced there.

Fritz Schultz was detained in a separate meeting and was unable to present the
1003.0 overview to the group. This will be rescheduled for another meeting.

Jim Oblinger noted to the group that the work on the Delta Document must be a I
top priority. There is a lot of work to be done before the August OSSWG meeting.

CDR Barbour then suggested that all OSSWG members sign-up through the IEEE
to obtain the 1003.0 document as well as the other dot documents of interest. He suggested
that everyone read and comment on the 1003.0 document, especially the profiling section.
CDR Barbour then emphasized that OSSWG members should volunteer to take charge in
as many areas as possible which could affect the OSSWG. He then requested that each of
the Star Group leaders provide the following information: 3

- an attendance list of companies attending the dot groups
- what have the OSSWG participants committed to
- holes in POSIX as it relates to the OSSWG

The next meeting of the OSSWG will be held on 28-30 August 1990 at NSWC,
White Oak, Maryland. All members attending this meeting should preregister with I
Stephanie Alba (301-951-2011 or e-mail alba@nadc.nadc.navy.mil) by 24 August 1990.
CDR Barbour then noted that it was apparent that the OSSWG had made an impact on
POSIX and emphasized the importance of remaining diplomatic. The meeting was then 3
adjourned.

I

2-N-8



NEXT GENERATION COMPUTER RESOURCES PROGRAM

OPERATING SYSTEMS STANDARDS WORKING GROUP

MEETING 28 - 30 AUGUST 1990

MEETING NUTES

2-u- I



The thirteenth meeting of Next Generation Computer Resources (NGCR) Program
Operating Systems Standards Working Group (OSSWG) was held at the Naval Surface
Warfare Center (NSWC) in White Oak, Maryland. Approximately 30 representatives of
government, industry, and academia attended. The OSSWG meetings focused on areas in U
which the Navy could significantly contribute to the POSIX efforts. Updates of the work
being performed in the POSIX working groups and information on the overall status and _
direction of the POSIX standardization effort were provided.

Tuesday, 28 August

The meeting was opened by CDR Rick Barbour. He presented the agenda for the
meeting and discussed the administrative details. Tricia Oberndorf added some comments
regarding e-mail accounts. Sign-up with her or Carl Schmiedekamp if you need an account.
If you have an account, please clean it up since they cost money to use, and cancel your 3
account if it is not used. CDR Barbour then discussed the objectives of the meeting. The
most immediate goal of the OSSWG is to work towards completion of the Delta Document.
Other objectives were to redefine the subgroup structure, define the boundaries of the
NGCR standardization areas, and develop balloting/commenting strategies for SAFENET I
and POSIX

Rich Bergman initiated the Subgroup reports with t.A. rements Subgroup. The
subgroup had concentrated on finalizing the Operational Concept Document (OCD). The
OCD is now relatively stable. Their plans for the week were to fine tune the OCD and U
support the development of the Delta Document. Rich noted that requested changes to the
Requirements in the OCD will be reviewed, but will be made at a later date. I

The Available Technology Subgroup report was given by Karen Gordon for Jim
Oblinger. The subgroup has been collecting data for the Delta Document. To facilitate this 3
data collection, the 16 Service Classes were divided into 6 groups with assigned leaders as U
the central contact. The Available Technology Subgroup intended to concentrate on the
Delta Document at this meeting. 3

Carl Schmiedekamp presented the Approach Subgroup status for Tom Conrad. Since
the last meeting, a draft POA&M had been developed for discussion at this meeting. The
Evaluation Process and Evaluation Results reports were in final publication, and the NIST -
POSIX Conformance Test Suite had been ordered. Plans for this meeting included revising
the POA&M for Phase II of the OSSWG, discussing the OSSWG Reference Model, and
finalizing the content of the Annual Report. U

Following the OSSWG Subgroup reports, Tricia Oberndorf reviewed the results of
the OSSWG's first POSIX meeting and the strategy of the OSSWG at POSIX. The Navy
was generally well received at the Danvers, Massachusetts POSIX meeting. OSSWG
members had volunteered for a large amount of work. As documents are completed, the
balloting of them within the "dot" groups must be tracked. Each Star Group should review
documents that pertain to them and share comments with the OSSWG. This is not to form

II
2-0-2 I



I
and vote as a block, but to share viewpoints across the OSSWG. The OSSWG must be
careful not to overwhelm POSIX and look like an antagonistic group. The logistics of the
balloting process should be discussed within the Star Groups as well as the means by which
to advise the OSSWG.

The Star Group leaders reported on their status and findings from the Danvers
meeting. CDR Barbour presented the Guide (1003.0) groups report. The purpose of theI1G3.0 document is to provide guidance and consistency among other POSIX dot. groups.
A mock ballot (internal review) is scheduled for January 1991. It had been determined that
POSIX should be used as an adjective. The 1003.0 group discussed what it means to be
POSIX compliant. One idea is that to allow vendors to call their products POSIX, the
products must be conformance tested to prove conformance to the standard. Conformance
testing is important, especially when testing areas where the standards wording allows
different interpretations. The 1003.0 group also struggled with the question of what a
POSIX profile should be. They are looking at the ISO standards as an example.

Regarding the conformance test issues, Neil Henderson suggested that the OSSWG
get together with the NIST and NGCR Conformance Test people to make quicker progress
and save the repetition of work. Thcia noted that the NIST Conformance Suite only deals
with 1003.1; however, the FIPS PUB is a good source to reference when writing the
Operating Systems Interface (OSIF) standard. The OSSWG is meeting with NIST to work
together and solve some of the OSSWG's issues.

Dan Juttelstad reported for Gail Holmes on the Conformance Test (10033) Star
Group. The 1003.3 group has determined that each POSIX dot group will write their own
test assertions with guidance from the Conformance Test group on how to write test
assertions. The 1003.3 group will write the test methods for 1003.1 (10033.1) and 1003.2
(1003.3.2). The earliest completion date for 1003.3.1 is April 1991, 10033.2 should be
complete in mid 1992. Gail's slides are included in Enclosure (2).

The Realtime (1003.4, 1003.13) report was given by Frank Prindle. ittle was done
on 1003.4 since the document is in the balloting process. Some discussion did occur on
problems with the file system and name space. The bulk of the activity at the Danvers
meeting was done on 1003.4a (p-threads). The Star Group needs to review the p-threads
and see where they fit into the OSSWG requirements. Frank noted that there is a general
sentiment among the community that some problems and inconsistencies exist for certain
realtime systems. Frank suggested that the OSSWG should go into the next meeting with
a written proposal on how the OSSWG requirements map to the p-threads. The 1003.13
group is developing Application Environment Profiles (AEPs). The OSSWG will have
considerable influence in this group.

Mars Gralia presented the status of the Ada (1003.5) Star Group. The 1003-5
document tells how an Ada programmer gets access to POSIX unique services. The
document went out for formal ballot in September 1990. The 1003.5 group has contacted
the ISO community and sent a draft for them to look at, but due to the language
independence issue, they were not asked to review it for acceptance. The 1003.5 group now

2

2-0-3



needs to write the test assertions for the document. A Project Authorization Request
(PAR) is being written for an Ada binding to the realtime world. An area that must be
looked at is Security within the Ada binding.

The Security (1003.6) Star Group status was reported by Mark Karan. The 1003.6
document is scheduled for a mock ballot in late 1990 and for formal ballot in the Summer 5
of 1991. The 1003.6 document provides security for the basic 1003.1 document and is fairly n

complete. There are a number of issues regarding Ada and Realtime security which must
be looked at. A POSIX liaison group has been formed between 1003.6, 1003.7, and 1003.8
to look at security issues in a distributed environment. Mark noted that the Star Group had
looked at the 1003.6 document (Draft 5) versus the OSSWG requirements and found that
a majority of the requirements are satisfied by POSDL j

Dan Juttelstad delivered the Distribution (1003.8, 1003.12 1237, 1238) Star Group
report for Greg Bussiere. The 1003.8 document covers Transparent File Access and is 3
scheduled for a mock ballot in September 1990. The 1003.12 group is working on a
Protocol Independent Interface. The 1003.13 group is a reorganization of an earlier group
and is working on Name Space and Directory Services. The 1237 and 1238 groups are 9
related to POSIX and cover RPC and FTAM, respectively.

After the Star Group reports, CDR Barbour then presented the official titles and 3
availability of the four evaluation documents created and published by the OSSWG. The
Recommendation Report For The Next Generation Computer Resources (NGCR) Operating
Systems Interface Standard Baseline and After.Action Report For The Next Generation
Computer Resources (NGCR) Operating Systems Interface Standard Baseline Selection Process
reports have been published as NUSC technical documents and are available through NTIS l
and DTIC. The Evaluation Process Report For The Next Generation Computer Resources U
(NGCR) Operating Systems Interface Baseline Selection and Evaluation Results Report For The
Next Generation Computer Resources (NGCR) Operating Systes Interface Baseline Selection n
reports are being published as NSWC technical documents and should be available in U
September 1990.

The Operational Concepts Document (OCD) was discussed by Dan Juttelstad. The I
latest version of the document is version 0.2, dated 11 July 1990. Dan reviewed the
document chapters and their status. Chapters 1 and 2 are solid, while Chapters 3 and 4 3
need some final comments. Appendix A is the Reference Model. Carl Schmiedekamp has
the latest version and the Appi,;ach Subgroup will work on updating it at this meeting.
Appendix B contains the Requirements and is expected to be updated after the Delta 3
Documem is complete. Dan noted that the OCD has been written generically and could -
use some editing to add a POSIX flavor to it.

CDR Barbour added that realtime and Navy specific issues must not be forgotten in
the Mission section of the OCD. It is important to keep in mind the "hard" problems which
NGCR and the OSSWG must also solve. The OSSWG charter is for all Navy systems.

Jim Oblinger then discussed the Delta Document. He presented a proposed outline

32 1

2-O-4 3



for the document. Jim then presented a Service Class vs. Dot Group matrix. A copy of this
and all of Jim's slides are contained in Enclosure (2). This matrix shows which POSIX dot
groups are expected to fulfill the service class requirements. Jim noted that the matrix is
probably incomplete and needs to be updated based on the POSIX meeting. Leaders had
been assigned to collect the data for the Delta Document.

The data that is required has been standardized on a form. Jim noted that complete
cross-reference of requirements to POSIX documents is desired because full compatibility
of requirements is probably not going to occur. Also, it is important to identify
inconsistencies between the POSIX documents, especially for the MIL-STD and prototypes.
For each Service Class, a chart of the criteria versus POSIX dots was created. The matrix
is then filled in with numbers to indicate if the particular document being looked at satisfies
the criterion. The numbers were proposed as follows:

I -> satisfies the requirement
2 -> interface exists, but is inappropriate
3 -> considered, but decision made not to include
4 -> not considered

It was noted that the situation where POSIX extensions discussed a requirement
(criterion) and excluded it because the requirement is not a good idea to standardize on
must be considered. In this instance, the OSSWG must then reconsider the requirement
and determine if the requirement is really valid or needed.

Jim then reviewed the Delta Document process. First the requirements are analyzed
and scored against POSIX. The requirements not satisfied will be listed. The lack of
coverage for each requirement will be analyzed, and then strategies to include the
requirement within POSIX or a means to satisfy it through other alternatives will be
developed. A question was raised at to whether the Delta Document will address POSIX
capabilities not contained in the OSSWG Requirements. It was felt that this could not be
done in the timeframe of the Delta Document since it will result in the documentation of
all of POSIX

A report on the NGCR Co-Chairs Meeting was given by CDR Barbour. He
presented issues that were discussed at the Co-Chairs meeting and recommendations that
were made to the Program Office System Engineer (Frank Deckelman). CDR Barbour also
reported on the Realtime Working Group which is studying some cross working group issues
that have been identified by the Co-Chairs. He noted that the realtime requirement is not
necessarily deterministic performance, but "bounded" performance. The issues raised in the
Co-Chairs meetings are designed to attain an NGCR viewpoint with participation from all
affected working groups. The Co-Chairs meet on a quarterly basis.

The meeting broke into the Subgroup meetings for the remainder of the day.

Wednesday, 29 August.

4

2-0-5



The OSSWG Subgroups met for the morning and for half of the afternoon. The I
OSSWG then broke into the POSIX Star Groups to strategize for the remainder of the day.

Thursday, 30 AugusL

The new OSSWG Subgroups met for the early part of the morning. The new 5
subgroups are: Approach, OSIF Standard Evolution, and Exploration & Transition. The
OSSWG then reconvened for the remainder of the meeting. CDR Barbour discussed the
new subgroups. He noted that, based on the sign-up, there was a disproportionate I
distribution of people in the three subgroups. The most important item for the OSSWG to
concentrate on is the Delta Document which falls under the OSIF Standard Evolution
Subgroup. Everyone, regardless of the subgroup they are in, should help with the writing 3
of the Delta Document.

The Star Groups were given an opportunity to relate any important discussions that !
occurred in their meetings. Mars Gralia discussed a balloting issue that arose in the Ada
Star Group (1003.5). He noted that the OSSWG should not block vote on the 1003-5 ballot. 3
However, ideas on different positions should be shared among the OSSWG via e-mail.
CDR Barbour added that e-mail is the fastest and best way to communicate and distribute
information to the OSSWG. He suggested the use of Booz, Allen to help with the location *
and dissemination of documents if needed. Contact Mark Karan (301-951-2739) for
information. It was suggested that the OSSWG expand its e-mail on POSIX issues to the
IEEE POSIX e-mail group. 3

A discussion took place on the number of people in each Star Group and attending
the POSIX dot groups. It was felt that some areas were well covered and some needed
more people. The suggestion was made to put out a list of the current coverage in the U'

POSIX dot groups and the number of people suggested to be in the group.

The old and new OSSWG Subgroups then reported on their progress, plans, and
issues. Rich Bergman started with the final Requirements Subgroup report. The OCD had
been wrapped-up. Comments will still be handled by Dan Juttelstad.,5

Jim Oblinger provided the final Available Technology report and the OSIF Standards
Evolution Report since the majority of the work was rolled over to the new subgroup. The 3
group discussed the Delta Document and analyzed the data that had already been received.
Jim presented one of the data sheets that had been completed in the subgroup meeting.
The Delta Document Outline had been modified to include a look at the Big 6
requirements and how they are satisfied. The 6 groups that were organized to collect the
data will be maintained to ensure the completion of the requirements data collection. Of
the 156 requirements to review, data had been received on 116 (75%) of them. 38 of the
requirements were discussed in the subgroup which led to the writing of some of the analysis
sections. Jim then discussed the plans to complete the Delta Document by the end of the 5
year.

It is important to identify which documents are part of the OSIF baseline for the

5

2-0-6 3



Delta Document. This will be based on which documents were used for the data analysis.
The latest versions of each of the documents must also be maintained. Carl Schmiedekamp
will add a star group directory and a POSIX dot group directory in the OSSWG Archives.
Jim also mentioned that the Available Technology Report is going through the process to
become a Technical Document and will be published soon.

The Approach Subgroup report, both old and new, was presented by Tom Conrad.
The new POA&M has been revised and refined. The subgroup discussed the Reference
Model status and have a plan to update it by December. The Annual Report was also
discussed. The presentation slides are included in Enclosure (2).

Tom presented the new OSSWG organization and the primary relationships between
groups. The OSSWG consists of the new subgroups previously stated as well as the POSIX
Star Groups. Each OSSWG member belongs to two groups: one of the subgroups and one
of the Star Groups. External to the OSSWG, the subgroups communicate with the other
NGCR Working Groups and the Star Groups communicate with the POSIX dot groups.

Tom briefly discussed the dot groups in POSIX which are not currently being
attended by the OSSWG but probably should be. The dot groups identified were: 1003.1,
1003.Z 1003.7, and 1003.14).

A timeline of the expected products from the subgroups was presented. The
subgroup responsibilities were explained and the subgroup membership was discussed.

Next, the Star Group membership and responsibilities were discussed. The
responsibilities include POSIX proposal packages, ballot identification, Ada bindings, and
meeting reports. The Star Group Meeting Reports are to be one to two page reports
providing information on meetings, ballots, and key issues from the POSIX dot group
meetings. A template for the reports is included in Enclosure (2). The reports should be
completed within two weeks of the meeting and should be output on e-mail to the Executive
Committee (execcomm@tecr.nosc.mil). Star Group Meeting Reports should be written for
the Danvers POSIX meeting by the appropriate individual.

Tom then discussed the Annual Report and presented a high-level outline. The
report will consist of three volumes: Executive Summary, Record of Progress, and Principal
Products. This report will be compiled in October.

The meeting wrap-up began with Tricia Oberndorf. The Navy Labs should note that
the four Technical Documents produced are not being sent directly to the OSSWG
participant's iab supervisors. It would be helpful if each lab made copies of the documents
and forwarded them to their Lab Commander and Technical Director (TD) with a personal
note indicating the current efforts and accomplishments of the OSSWG and NGCR.

Regarding e-mail, contact Carl Schmiedekamp if you need an account. Tricia asked
if the group felt that new e-mail lists were needed for the Star Groups. Contact Tricia with
the names of the group to set up a list. For balloting issues, messages and opinions should

6

2-0-7



be sent to the entire OSSWG (osswg@tecr.nosc.mil). If you want to be added to an e-mail
list, send a message to Tricia (tricia@nadc.navy.mil).

Tricia noted that the Ada 9X effort may need to be followed by the OSSWG. Ada
9X is updating the Ada Language Reference Manual. They are targeting a 1993 completion I
date for a new standard which should be backward compatible. It was suggested that a
briefing to the OSSWG on the 9X effort be arranged. Del Swanson will investigate this.

CDR Barbour then provided some final comments. He noted the next meeting which 3
will be held in conjunction with POSIX. The POSIX meeting will be held at the Westin
Hotel in Seattle, Washington from 15-19 October 1990. The OSSWG meetings will be held
on the 16th and 18th from 1800 to 2100 hours. I

The meeting objectives were reviewed and the progress discussed. The OCD is
almost complete, the progress made on the Delta Document was better than expected, the U
new subgroups have been set, and the standards boundaries were discussed. CDR Barbour
also noted that a number of comments had been received to establish balloting procedures
and strategies.

CDR Barbour discussed the current Joint Service drive for NGCR. It is starting to
happ n at the upper le-,is, based on a letter from an Assistant Secretary of Defense. CDR V
Barbour requested that everyone keep this in mind and contact him if you have any input.
Talking and promoting NGCR will help give the NGCR effort visibility in the community 5
and keep it moving forward. The meeting was then adjourned.

7I

!
!
U
I
I
I

I
7

2-0-8 3



Part 3

Principal Products

The major products produced by OSSWG from January 1989 through August
1990 include:

(1) White Paper on Network Operating Systems Standards (8/88)
(2) Plan of Action and Milestones for the OSSWG
(3) DID for Operational Concept Document for NGCR Operating

System Standard (8/89)
(4) NGCR OSSWG Reference Model, Version 1.02 (8/89)
(5) NGCR OSSWG Available Technology Report

Version 1.3 (9/90)
(6) Operating System Interface Standard Requirements,

Version 2.0 (12/89)
(7)* Evaluation Process Report for NGCR Operating Systems Interface

Baseline Selection (5/90)
(8)* Evaluation Results Report for NGCR Operating Systems Interface

Baseline Selection (5/90)
(9)* Recommendation Report for the NGCR Operating System Interface

Standard Baseline (6/90)
(10)* After-Action Report for the NGCR Operating System Interface

Standard Baseline Selection Process (6/90)

* These documents are not included in entirety but appended by reference.

3-A-I



NOSC White Paper

on

Network Operating Systems Standards

August, 1988

1 Introduction

The Next Generation Computer Resources (NGCR) Program is to
provide the standardization of Navy mission critical computer
interfaces and computer component interfaces. With these
standardized interfaces, industry will be better able to provide
computing resources that meet Navy needs.

The interface standards are to be widely available (i.e. non-
proprietary) and, if possible, widely utilized within industry.

The Network Operating System Interface Standard (NOSIS), the
subject of this paper, is one of the sets of standards which is
essential to the timely and cost effective acquisition of the
majority or the -text generation of Navy mission critical computing
systems. NOSIS assists the Navy in efficiently providing a wide
range of performance, compatible computing services, and
functionality levels.

2 Scope

The NGCR interface standards, while being incrementally
developed, are to be sufficiently in place so that the Navy can begin
acquiring systems utilizing those standards by 1994. Prototype
systems using the NOSI Standards are to be developed, with a contract
award scheduled for June 1990.

The period of NOS standards development begins in FY89 and
continues through FY95 and beyond. The initial NOS standards will be
available for use in acquisitions starting in FY93.

The initial range of applications include as many types of
computing as possible from just above the single dedicated processor
to as high as can be obtained on networked, heterogeneous,
modularized backplane bus architecture computing systems. Networking
to be done using NGCR LAN standards and, as appropriate, other MIL-
STD links.

125 3-B-I



I

3 Issues 5

3.1 Technical I

There are several areas of technical concern which should be I
considered during the development of a set of specifications for a
family of real-time distributed target operating systems. Some of the
major areas of concern are listed below with a brief description.
They are considered essential characteristics of the operating
system. A level of transparency offered to the user by the operating
system is assumed. No current distributed operating system design 3
adequately addresses the requirements, especially in the areas of
real-time constraints, multi-level security and fault tolmiolerance. The
following list in not in any prioritized order.

Real-Time

A tactical real-time command and control system must be able to
meet the timing requirements of a variety of periodic and aperiodic
requests. Research has shown that speed alone does not adequately
solve the problem of meeting these requirements. The mechanisms for
supporting real-time scheduling of system resources requires the I
integration of the hardware ahe operating system subcomponents in
a deterministic and predictable manner.

Distribution / Networking I
The C3 arena is naturally distributed and complex; therefore

future systems must integrate distributed resources. Not only must
the target operating system provide communication mechanisms, but it
must use them in such a way as to unify this distributed set of
system resources. All this must be done while still considering the I
real-time requirements of the system.

Heterogeneity of Functions / Processing Elements 3
The target operating system must support a heterogeneous

environment to allow for the incorporation of new technology and new
mission requirements. This supports one of the objectives which is to I
avoid a dependency on proprietary products. Heterogeneity should be
supported at many levels. Support for standard programming languages
such as Ada increases program portability. Possibly inconsistent I
object formats is a problem that needs to be considered. The ability
to convert data representations between a variety of targets is an
important operating system function to support. There are other areassuch as the file system structure and symbolic naming that need to be
considered in terms of a heterogeneous environment.

Array / Parallel Processing 3
The target operating system must be able to support various

a212 5
C00.48 3-B-2



:omputer architectures including parallel or multiprocessors. The
)perating system should be able to take advantage of such systems and
at the same time it must work in cooperation with the rest of the
listributed system.

Recovery / Damage Control/ Fault Tolerance / Survivability

Survivability and reliability are extremely important in a
:ommand and control environment. It is unacceptable to experience a
zotal loss of functionality and availability due to a single system
Eailure. The target operating system must offer a fault tolerant
environment through the dynamic replication and duplication of
services and resources. This environment must be fault tolerant at
ill levels from the network to the application and work as a
functional whole with the rest of the system.

Security

The target operating system should be able to protect system
integrity from inadvertent or malicious misuse. The system should
allow for multiple concurrent levels of security within a node as
well as across the distributed system. The security mechanism should
cnfnr tn av ilable and evolving DoD standards as appropriate.
Security is a particularly difficult issue to solve when coupled with
the performance requirements of tactical C2 systems. Speed
requirements along could push security mechanism into the hardware.

Data Flow and Throughput

Navy systems and applications are typically data and cpu
intensive. It is important that the target operating system
incorporate mechanisms for a variety of data flow requirements and
that the functions meetcertain levels of performance requirements.
It is equally as important and difficult to determine what are the
performance requirements of C2 applications. Dataflow and throughput
must be consider all levels including the system and network.

Performance

Database

i/o

Family / Architecture

3-B-3



I
Interface I
user, applications, backplane, HW/network, Lan) application -

language binding to application, user - cli definition, protocol vs
procedure calls. OS needs to interface with a bunch of thinks. System m
services will probably be queued separately from application.
resource management issues. I/O, backplane, hardware, network.

Host / Target Interface - relationship

host is for example a vax. It is where you do the development,
programming support, debugging and testing. Explain integration of 3
the two. Do you physically carry over a tape, have a direction
connection, or are connected by satellite to the ship (new software
can be load on target machine over the satellite?). Issues is how to I
get application to the target machine from the host machine or get
status reports from the target machine during run time. Seems to be
similar to D2 to Dl hand off or at least the other direction.

Domain 2 to Domain 1 Hand-Off

In addition to the essential characteristics, it is also i
important to consider the critical components necessary to support
these characteristics. Some of the major services considered
necessary are system-wide resource management, communications, timing I
services, synchronization, naming, addressing, access control,
authentication and storage management. Research supports the use of
objects, invocations, and threads in the development of distributed
systems. There is need to offer a variety of real-time scheduling
mechanisms and incorporate flexibility and evolvability through the
use of policy modules.

3.2 Policy !

4 Approach 3
The primary objective of the NOSISWG will be the development of

a set of interface standards for a family of real-time distributed
target operating systems. In support of this objective, it will also
be necessary to develop one or more prototype implementations and to
generate a variety of accompanying documents, including at least the
following:

operational concept 5
requirements (with rationale)

rationale for the set of interface standards 5
user and implementer guides

1 253 -

3-B-4



The NOSISWG should have primary responsibility for all decisions
nade with respect to the operating system interface specification and
accompanying products. It should be structured analogously to the
existing NGCR working groups, with a government Chairman and Co-
Thairman and a mixture of government, university and industry
participants. Meetings should be at least quarterly, possibly
supplemented by more frequent meetings of individual subgroups.

Before the NOSISWG is first convened, a lead laboratory should
be chosen and tasked to do further planning. This planning should
further develop and elaborate on the suggestions presented here for
organization, issues and products. The first NOSISWG meeting should
be attended by only government personnel. This is to ensure cohereiicce
and direction of the government objectives and requirements prior to
exposure of these to tha guneral community. Such an initial
government meeting can be pursued in parallel with the solicitation
of initial information from industry and universities.

Government participants should be solicited from at least each
of the Navy laboratories and PDSS activities. Other sources of
relevant expertise should also be investigated and tapped if
possible, including Navy testing activities, development and PDSS
organizations from the other services, and other federal agencies,
such as DARPA and NASA.

Industry and university participants should be solicited both
from known sources and through open solicitations such as in the CBD.
It should be assumed both that the government does not have
sufficient qualified personnel by itself to successfully complete
this project and that volunteers (whether from government, university
or industry) cannot be expected to be sufficiently regular or
dependFhlsA. Thus plans should be made to have two kinds of support
contracts. One would be administrative/secretarial in nature, the
other technical. The technical "contract" could in fact be several
contracts, each for a different sort of expertise, or it could be one
contract awarded to a sufficiently diverse team.

One of the first activities of the NOSISWG should be the
formulation of a charter. This activity will serve to focus and
channel the thinking of the participants. Any subgroups should also
formulate charters for their special objectives.

The NOSISWG should be free to form subgroup structures as they
are needed. These will most likely respond to different needs at
diff-rent stages in the life of the NOSIS activity. Initially it is
suggested that a subgroup structure be formed which is oriented
around the different kinds of issues presented in the last section.
These issues can be grouped in ways which afford an opportunity for
participants with similar interests and backgrounds to discuss a
logical group of related issues to better describe them and to get a
better understanding of their role in the entire NOSIS effort. Later
it is likely that a subgroup structure oriented around the products
or around a set of orthogonal concerns would be more productive. One

3-B-5



I

such structure might have a subgroup for each of Requirements, Scope 1
(i.e., the family and other architectural issues), Availability (of
technology to meet the emerging requirements) and Policy (such as the
issues involved in standardization).

The last item above is an important one for the NOSISWG to keep
in mind. The generation of a standard involves issues, such as those
discussed in the previous section, that are far removed from the I
technology involved in answering the requirements. These must be
taken into account at every stage along the way.

5 Available Technology I
No operating system exists which adequately meets the

requirements of tactical C2 systems. However, there exists a large
amount of expertise in government, universities and industry. The I
level of work being done by these various groups ranges from purely
theoretical to attempts to produce a product. The following is meant
to highlight some of the more extensive work being d--e and is by no
means to be considered a complete list. These groups could
potentially provide value'input to the development of NOSIS.

I
5.1 Technical Groups

Naval Ocean Systems Center (NOSC) I
NOSC is developing distributed operating systems (DOS) for Navy

C2 systems, under funding from ONT. The major concerns of the NOSC
group involve Navy distributed C2 system requirements and their
relationship to domain 1 and domain 2 operating system issues. The
approach is to monitor, participate, and influence DOS research and I
development with respect to these Navy requirements. This involvement
has included work with RADC, NSWC, NUSC, CECOM, JDL, DARPA, CMU, UVA,
BBN and IBM as well as numerous others. Experience has been gained
through the development of a DOS testbed which currently uses Cronus
and will include Mach and ARTS in FY89. Point of contact: Les
Anderson, Code 443, NOSC, San Diego, CA, 92152-5000, (619) 553-4139. 1

Rome Air Development Center (RADC)

RADC is developing a distributed operating system to meet the 3
requirements of BM/C3 systems. They fund numerous distributed
operating system projects such as those at BBN, CMJ, KSR, and
Honeywell which has lead to the development of systems such as Cronus
and Alpha. They are presently participating in a tri-service DOS I
experiment with NOSC and CECOM funded by the Joint Directors of
Laboratories (JDL). Point of contact: Dick Metzger, RADC, Griffiss

~IAir Force Base, NY, 13441-5700, (315) 330-2066.

12 5
* , 3-B-b

..I . .. . .. .



Naval Surface Weapons Center (NSWC)

NSWC is the primary support lab for the AEGIS tactical real-time
system. They (group N35) have extensive knowledge of current real-
time Navy executives and the needs of real-time applications. In the
past, they have funded real-time distributed operating systems
research at CMU and are presently worki-g with NOSC on issues dealing
with Navy tactical computers on LAN's. Point of contact: Daniel
Green, Bob Harrison, NSWC, Dahlgren, VA, 22448, (703) 663-4585.

CECOM

In the past, CECOM has done work in the area of distributed
operating systems. They funded the Command and Control Information
Utility (CCIU), an eiperimental distributed information processing
system developed by JPL. They are presently participating in a tri-
service DOS experiment with NOSC and RADC funded by JDL. Point of
contact: Frank Holloran, CECOM, Fort Monmouth, NY, (201) 554-4158.

Naval Underwater Systems Center (NUSC)

One of the groups at NUSC is working in the area of distributed
systems and distributed operating systems. They published a book
entitled "Design of Distributed Operating Systems" and several other
papers on fault tolerant and real-time systems. Point of contact:
Paul J. Fortier, NUSC, Newport Laboratory, Code 2222, Newport, RI,
02840, (401) 841-3703.

Ada Runtime Environment Working Group (ARTEWG)

The Ada Runtime Environment Working Group (ARTEWG) is a working
group sponsored by the Association for Computing Machinery (ACM)
Special Interest Group on Ada (SIGAda). Its goals are to establish
conventions, criteria, and guidelines for Ada runtime environments
that facilitate the reusability and transportability of Ada program
components, improve the performance of those components, and provide
a framework which can be used to evaluate Ada runtime systems. Since
Ada runtime will be a critical part of any NGCR system, it is very
important that this work be taken into account. In addition, the
ARTEWG represents a valuable group of volunteers who have put a lot
of time and effort into understanding the runtime needs of real-time
systems and who are very knowledgeable about many of the issues
facing the NOSISWG. Point of contact: Mike Kamrad, Honeywell Systems
& Research Center, Minneapolis, MN, (612) 782-7321.

National Aviation and Space Agency (NASA)

The National Aeronautics and Space Administration (NASA) Space
Station project is intended to field an elaborate space station
facility in the 1990's. The system will be highly computer-dependent
and involves many of the key features of the NOSIS: real-time,
distributed, heterogeneous, etc. This group of people has been
gathering information and experience for the last few years and would
be a valuable source of insight into potential NOSIS issues and

3-B-7



n

challenges. Point of contact: Ed Chevers, NASA Johnson Space Center, 1
Houston, TX, (713) 483-4281.

Advance Real-Time Technology (ART)

ART is an open project interested in the development of advanced
real-time technologies. The project is funded by ONR and presently
includes efforts by CMU, SEI and IBM-FSD. The objective of the ART I
project is to develop theoretical foundations, distributed real-time
system technology and programming language support that will
facilitate the development of distributed real-time systems with I
understandable, predictable, and maintainable behavior. They are
interested in the development of real-time scheduling theory,
distributed real-time operating systems and distributed real-time
databases. The project is presently developing a real-time DOS called
ARTS and an experimental system called Real-Time Mach. Point of
contact: Hide Tokuda, Computer Science Department, Carnegie-Mellon
University, Pittsburgh, PA, 15213, (412) 268-7672. I

BBN

BBN is involved in the development of network and network I
environments. They recently ported the Mach network operating system
to their Butterfly multiprocessor. They are also responsible for
developing the Cronus distributed operating system. See Cronus in 1
section 5.3 for more details. Point of contact: Andres Echenique,
BBN, 10 Moulton Street, Cambridge, MA, 02238, (617) 873-4304.

Carnegie-Mellon University (CMU)

There are several groups at CMU involved in research in the
areas of distributed operating systems and real-time distributed
operating systems. See ART, ARTS, Alpha, Mach in sections 5.1 and 5.2
for more details.

IBM

The IBM research groups at Owego and Manassas have been heavily
involved in real-time scheduling issues. The IBM-FSD group is
currently involved with the ART project and has developed a real-time
survivable network prototype. Points of contact: C. Douglass Locke,
IBM, Route 17C, Owego, NY, 13827, (607) 751-4291. Pat Watson, IBM- I
FSD, 9500 Godwin Drive, Manassas, VA, 22110, (703) 367-4536.

Kendall Square Research (KSR) 3
KSR is using the technology developed at CMU to produce a

commercial version of the Alpha real-time distributed operating
system for their new multiprocessor to be released in mid FY89. Point
of contact: E. Douglas Jensen, Kendall Square Research, One Kendal
Square, Cambridge, MA, 02139, (617) 494-1146. 3

I
l o12 5

CO~~E~ *3-B-8



Software Engineering Institute (SEI)

SEI is currently involved witi the evaluation of the Ada
language with respect to its ability to support the specifications of
real-time system scheduling. They are working with VERDIX, Honeywell,
IBM-FSD and CMU on a variety of real-time distributed system issues.
They are presently developing a real-time Ada operating system kernel
capable of running in a distributed processing environment. Point of
contact: Lui Sha, SEI, Pittsburgh, PA, 15213, (412) 268-7868.

Other

There is other research and development in the areas of real-
time and distributed systems. All of these groups, especially the
ones mentioned above, have value insight in to real-time and
distributed systems. IBM-FSD is participating in the ART project
funded by ONR under the Real-Time Initiative Program. There is an
operating systems group at the Defense Systems Branch of UNISYS in
Camarillo doing work with Mach and other prototype systems. Honeywell
has been researching issues involved with real-time Ada and have
worked closely with the ART group at SEI. Points of contact
available.

5.2 Real-Time Distributed Operating Systems

ARTS

ARTS is the real-time distributed operating system being
developed by CMU and the ART group. See ART in section 5.1 for more
details. Point of contact: Hide Tokuda, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA, 15213, (412) 268-7672.

Alpha

The Alpha kernel is being developed at CMU with funding from
ONR, RADC and NOSC. It is intended to support a range of system
solutions that effectively meet the requirements of various reliable,
distributed real-time command and control applications. It supports
decentralized management of global resources and has kernel level
support for atomic transactions and replication. It is presently
being used as the base operating system for a new multiprocessor
being developed by Kendall Square Research and was used for an SDI
demonstration by General Dynamics in FY88. Point of contact: J. Duane
Northcutt, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA, 15213, (412) 268-7678.

3-B-9



I
5.3 Distributed Operating Systems I

Cronus

Cronus is a distributed operating system being developed by BBN
and is funded by RADC, NOSC and ESD. It incorporates many desirable
DOS features such as heterogeneity, transparency and object oriented I
programming as well as high level features such as survivability and

replication mechanisms, multi-cluster and database access and
distributed monitoring and control facilities. Cronus is presently
being used by several Navy projects such as Fleet Command and Control
Battle Management Program (FCCBMP). It is also being used as a basis
for study at NOSC of Navy DOS requirements. Point of contact: Andres
Echenique, BBN, 10 Moulton Street, Cambridge, MA, 02238, (617)
873-4304.

Mach I
Mach is a multiprocessor-oriented operating system for a

distributed environment being developed at CMU and is funded by
DARPA. It approaches issues involved with multiprocessors, I
heterogeneity, transparency, and object oriented programming. Mach is
presently being used by several projects at CMU and being used and
extended by a number of corporations, universities and research I
laboratories. NOSC has plans to add Mach to its DOS testbed in
FY88-89. Point of contact: Rich Rashid, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA, 15213, (412) 268-2627.

Sprite

Sprite is an experimental network operating system under 3
development at the University of California at Berkeley and is funded
by DARPA. Motivation for the new operating system came from trends
toward networks, large memories and multiprocessors. Sprite is part U
of a large project called SPUR whose goal is to develop a high-
performance multiprocessor workstation with special hardware support
for LISP. Sprite focuses on issues involved with transparent network
file systems, large variable-size file caches, shared address spaces,
and process migration in a distributed environment. Point of contact:
John Ousterhout, Computer Science Division, University of California,
Berkeley, CA, 94720, (415) 642-0865.

V Distributed System

The V Distributed System is a network operating system being I
developed at Stanford University and is funded by DARPA, the National
Science Foundation and AT&T Information Systems. It is used to
explore issues in distributed systems and focuses on areas such as I
high performance interprocess communication including multicast,
process migration and the distributed scheduling of programs. There
is also research being conducted in the areas of replication, I
distributed atomic transaction management and multiprocessors. Point
of contact: David Cheriton, Stanford University, Computer Science

? *25i

3I



Department, Stanford, CA, 94305-2140, (415) 723-1054.

Other

There is other real-time and distributed operating system work
being conducted at universities such as the University of
Massachusetts, Georgia Institute of Technology, and the University of
Virginia. The list is too extensive to be completely list in this
paper.

5.3.1 Real-Time Centralized Operating Systems

ALS/N

ALS/N (Ada Language System / Navy) is the Ada compiler being
developed for the UYK43. The compiler will be test at NOSC in FY 89.

Harmony

Harmony originally came out of the Canadian National Research
Council and is now developed and marketed by DY-4 Systems (Nepean,
Ontario). Harmony is a real-time operating system that was originally
designed to be a multiprocessing kernel. A copy of the kernel resides
in each processor. Although other kernels such as MTOS and VRTX use
the same arrangement, Harmony data structures aren't replicated. The
kernel for each processor has its own data structures, and there's
typically little sharing of data between processors. Since global
memory is used less, contention for the multiprocessing bus - a
problem that plagues many multiprocessing kernels - is reduced.

Standard Distributed Executive (SDEX)

There are two versions of SDEX, one for the UYK-7 and the other
developed by the Canadian government for the Canadian frigate
program, targeted for the UYK-44. The SDEX has real-time priority
scheduling capabilities as well as message handling capabilities. It
is currently being used in a variety of mission critical systems in
the Navy.

VRTX

VRTX is manufactured by Ready Systems (Palo Alto, CA). Chief
among VRTX's facilities is multitasking. The task is to real-time
programming what the procedure is to more conventional programming; a
structural unit that can be considered separately from other units.
VRTX has been designed to maximize its performance for high-priority
tasks, unlike non-real-time systems, which are designed to be "fair"
and allocate an equal overhead to all tasks. VRTX is also a compact
system, occupying less than 6K bytes of code space. Most importantly,
VRTX is deterministic. Its behavior can be completely predicted in
all circumstances.

3-B-I



I
VxWorks 1
VxWorks operating system from Wind River Systems (Emeryville,

CA) is designed to debug and run real-time tasks developed on a Unix
system. Target computers can use 68000, 68010, or 68020 processors,
and can run alone or networked with other computers that run VxWorks
or Berkeley 4.2 Unix over Ethernet or a backplane bus. VxWorks uses
calls very similar to Unix calls.

5.4 Interface Standards 3
CAIS 3
The Common Ada Programming Support Environment (APSE) Interface

Set (CAIS) (DOD-STD-1838) is a set of Kernel APSE (KAPSE) level
interfaces designed to provide a portability base for tools written I
in Ada. It is in the form of Ada packages. The CAIS provides services
for an object management system, process management and input/output.
As an interface set for the host (APSE) system, it is not a candidate
itself for the NOSIS. But many of its features and the experience
gained in its development may well be relevant to the NOSISWG effort.
Point of contact: Duston Hayward, Code 423, NOSC, San Diego, CA,
92152-5000, (619) 553-4067. 3

Microprocessor Operating Systems Interfaces (MOSI) g
The Microprocessor Operating Systems Interfaces specification is

an Institute of Electrical and Electronics Engineers (IEEE) trial-use
standard issued in December 1985. It applies to program interfaces
for microprocessor operating systems; the interfaces are used by
microprocessor applications to interface with operating system
services. It is pointed out in the literature that the standard is
not an operating system standard; it defines a program interface to I
any cperating system. Its stated objective is to facilitate the
writing of portable application programs or sys. Like the CAIS,
its relevance to NOSIS is most likely to be in features that can be
studied and possibly applied to the NOSIS. Point of contact:
Secretary, IEEE Standards Board, 345 East 47th Street, New York, NY
10017. 3

Portable Operating System for Computer Environments (POSIX)

The UNIX operating system has its roots in Multics, a multi- 3
user, multi-tasking operating system developed in the late 1960s at
MIT. UNIX was created as a software development system by Bell
Laboratories in 1969, and underwent a number of revisions by Bell,
and was modified and enhanced by others. UNIX System III has served I
as the basis for many of the proprietary UNIX derived operating
systems available today. The new UNIX System V is the latest Bell
revision. Capabilities not present in Bell's latest system version I
are available from other sources, most notably the University of
California at Berkeley's computing center. The latest version of

.251
co.,48 -3-B-12



Berkeley UNIX is 4.3.

IEEE Standard 1003, IEEE Standard Portable Operating System for
Computer Environments is an attempt to define a standard operating
system interface and environment based on the UNIX Operating System.
They are to develop documentation to support application portability
at the source level. This is intended for systems implementors and
applications software implementors. There are several subgroups
within IEEE Standard 1003 considering issues such as security, real-
time, verification and Ada interface.

Open System Interface (OSI)

OSI is a set of standards being developed by the International
Standards Organization to enable heterogeneous computer systems to
interconnect and interwork regardless of their manufacturer's models,
complexity, or age. There is a seven-layer structure called the OSI
Reference Model and it provides the framework for defining the
requirements and standards. Many of the layers have been standardized
and should be considered by NOSISWG whenever appropriate. It is
unclear how an operating system properly fits into the OSI model.

5.5 OS Areas of Consideration

Define:

distributed:

real-time:

network:

3-B- 13



PLAN OF ACTION AND MILESTONES
FOR THE

OPERATING SYSTEMS STANDARDS WORKING GROUP (OSSWG)

Background

The Navy has a long history of developing and using standard computer
ducts. When computer technology was in its infancy, the Navy wielded
nificant influence in the market, setting its own requirements and
eloping its own computer designs, including Instruction Set Architectures
SAs). Standard computer implementations (i.e., buying "boxes") and upward
patible ISAs have been the foundation of the Navy's computer policy. This
icy has been motivated by the fact that software can adapt a common
puter design to meet many different applications. This allowed one design
achieve large production runs and lowered production, operation, and
ntenance costs. By limiting the number of computer types, it has been
sible to develop and maintain computer programs for many applications with
set of Navy-owned and -maintained support software for each computer

,e. Fleet spares, training, documentation, and support equipment
-uirements have been minimized, thereby increasing operational
ilability.

The Fleet today remains, as it always has been, highly dependent on its
lity to support the weapon systems which provide the force structure
defense. Uniqueness and lack of interchangeability are two of the

st enemies we face, because they each require more and more elaborateIrastructures to maintain weapon systems readiness. Nevertheless, one
not ignore the smaller role the Navy plays in the development of
Lputer systems compared to several years ago. Nor can the desire to
lize Commercial-Off-The-Shelf (COTS) and Non-Development Item (NDI)
items be ignored.

The advance of semiconductor technology has been extreme in the recent
it, and shows no sign of decline. The challenge, therefore, is how
insert new technology based on the tremendous commercial developments,
.hout sacrificing the operational requirements of the Fleet. In the
ocess, we must not allow technology to be used simply for the sake of
:hnology: the weapon system requirements must be well understood and
)t firmly in grasp.

No method currently exists to insert new technology into the Fleet at
breakneck pace at which it is being introduced. However, through the
of innovative development processes such as:

(a) extensive front-end work with industry to define standards,
(b) heavy utilization of simulation tools for design and test, and
(c) an overall plan for continuity for new platform starts and upgrades,

will be able to meet both Fleet requirements and Congressional desires.
these assumptions, the NGCR Program is based.

Tne NGCR Program's approach is an open systems architecture based on the
.ablishment of standards in 10 interface areas:

Multisystem Interconnects:
Local Area Network - SAFENET I
Local Area Network - SAFENET II
High Performance Local Area Network

Multiprocessor Interconnects:
Initial Backplane
High Performance Backplane
Switch Network 3-C-I

Operatina System



Data Base Management System
Programming Support Environment
Graphics Language/Interface

Application of these interface standards will change the Navy's approach from U
one of buying standard computers to one of procuring computing resources
which satisfy the interfaces defined by the standards. These standards will
be applied at the project level rather than a Navy-wide procurement level.

These interface standards will be based, to the greatest extent
possible, on existing industry standards. In cases where existing industry
standards do not meet Navy mission-critical needs, the approach is to further
enhance the existing standards jointly with industry, thus assuring the most U
widely-accepted set of commercially-based interface standards possible.

The Operational Requirements describe some of the desired 3
characteristics of the computer systems which can be procured using the new
interface standards:

a full-range family of computing resources, related through a set i
of interface standards, in a wide range of performance levels;
software compatibility at appropriate levels is a necessary part
of the "family" relationship U
integration of multiple, dissimilar (heterogeneous) processors

internal and external standard interconnection; i.e., an internal i
computer interconnection (bus) to provide for growtb in internal
capability by configuring more modules and an external interface
to provide for combining computing systems

incremental computing system growth; i.e., if a new function is
needed, new modules or computers would be added to a system, and
adding the new components would not require replacing the old system: U
the new components would perform the new function in cooperation with
the old; the simplest realization of this is interconnection of
computing elements on expandable backplane busses and local area I
networks; the ultimate realization of this is automatic, global,
dynamic task allocation among computing elements using a variety of
interconnections (this requires a high degree of software
transportability). I

An operating system interface standard is a key element in the
success of NGCR. The function of the OS is to control operation of all I
the computing system hardware and software elements in a coordinated,

uniform manner that is consistent with the needs of real-time
applications. The OS capabilities include system initialization and
fault tolerance/recovery, global resource allocation, and interprocess
communication. The OS will have components in each processing element.
The OS interface standard will not be a design of the OS component of
each processing system but will, in part, be a specification of an I
application task interface common to all computing elements. (The
appropriate specification level for this interface must be
determined.) This will provide a basis for system-wide dynamic task
and resource allocation. Global dynamic task and resource allocation
is the basis for system-wide fault tolerance and recovery in
heterogeneous processing systems. The OS will provide the ability to
achieve multi-level security at the system level. Conformance to other I
Navy directives requires that the OS be Ada-oriented.

The approach to the operating system has not yet been determined,
but it is clear that the above system characteristics and OS
requirements have some implications for the OS interface standard.
Most important of these is that the OS "standard" will most likely be
a family of compatible standards, although the exact nature of the I
family relationship is yet to be determined. 3-C-2



Objective

The primary objective of the OSSWG is to establish a commer-
.ly-based family of operating systems interface standards for
in the development and deployment of Navy MCCR applications
.ems in the mid-1990s and beyond. In order to accomplish this
ctive, the OSSWG shall: (a) identify Navy applications systems
iirements; (b) identify existing and evolving operating systems
mology; (c) determine the applicability of identified opera-
; systems capabilities to the requirements; and (d) make re-
iendations to the Program Office (SPAWAR-324), particularly
Lrding the establishment of NGCR operating system interface
idards.

Organization

The OSSWG will be structured analagously to the existing NGCR
zing groups, with a Navy military Chairman, a Navy civilian Co-
Lrman and a mixture of government, industry, and university
:icipants. The OSSWG will form subgroups as they are needed.
3e will respond to different needs at different stages in the
:se of the OSSWG activity. All subgroups will be chaired by
r personnel, either military or civilian. The Chairman will
the ultimate responsibility for any products of the subgroup.

Ltional partitioning of a subgroup into special focus groups
L be made, as appropriate. Attachment 1 identifies the par-
Lpating government agencies.

Meetings of the OSSWG will be held approximately every six
:s, possibly supplemented by more frequent meetings of indi-
ial subgroups.

Approach

The optimum result would be identification of a set of
;ting industry standards for operating system interfaces,
rices, and protocols that address existing and envisioned
iirements for Navy systems. However, neither the require-
:s nor the possible solution set is obvious.

Consequently, the approach taken here will be to engage
istry in a dialogue that will result in articulation of both
Navy requirements and also current technology as regards
7ating system interfaces, services, and protocols. It will
) be necessary to identify a suitable process for evaluation
:he marketplace in light of the requirements. To accomplish
;, the OSSWG will establish three initial subgroups: a Re-
7ements Team, a Current Technology Team, and an Approach
f. Figure 1 provides an overview of the work and inter-
itionships of these teams.

3-C-3



IAN Backplane

WG \ Bus WG

I

I REQUIREMENTS TEAM * *

I I\I\
I v I

Navy Requirements Draft I
Requirements Report Evaluation

Criteria I

POAM Abstract OCD Evaluation
A Model of DID Process 3

/ OS Services ^ Definition I
/ I Document/ / ^ iII

/ / I/ 11 11I
I I I I I I

I APPROACH TEAM 0 * 3I I II I ,

POAM OCD Evaluation
DID Process I

Definition
Document

Technology Model of Glossary I
Report Existing ^A QS I

/ A I I 1 11
/ / I I

/ / i1 1 1
I I I I i I I

I AVAILABLE TECHNOLOGY TEAM * * I
II Ii I I I I

i111i111 i
/ / / / / / /
1 2 3 4 5 6 7

NOTES:
* Responsible Team

0 Limited Involvement
1 OCD
2 Assessment
3 OSSWG Phase II Plan
4 Recommend Baseline Standards to SPAWAR 324
5 Prototyping
6 Revisions to Standards
7 1993 Draft Standards for OS interfaces, services, and I

protocols
3-C-4I



Figure 1 - OSSWG Roadmap

ilestones and Deliverables

(R) = Requirements Subgroup
(AT)= Available Technology Subgroup
(AP)= Approach Subgroups

Products Start Deliver

(R) Interim Req. Statement now 3/1/89

(R) Requirement Statement 4/1/89 6/1/89

(R) "OCD" 6/1/89 6/1/90 (ver. 1.0)

Initial (amalgous of existing stds doc) 8/89 (ver. 0.1)
Interim (cleaned up, ready for feedback) 12/89 (ver. 0.2)
Draft 3/90 (ver. 0.3)

(AT) Draft Tech Report now 3/1/89

(AT) Final Draft Tech Report 3/9/89

(All) Glossaary inputs to Jim 0. now 3/3/89

(AT) Glossary 3/9/89

(AT) Perform Evaluation 7/90 11/90 *Spec avail
for prototy

(AP) POA&M draft now 3/1/89

final 3/9/89

(AP) Abstract Model now 7/89

(AP) DID outline for OCD now 6/89

(AP) Evaluation Process draft now 11/89
final 6/90

:hment 1 - Government Participants

.y Abrams Naval Air Test Center
Anderson Naval Ocean Systems Center
Rick Barbour Space & Naval Warfare Sys. Cmd.

i Bergman Naval Ocean Systems Center
Brouhard Naval Ocean Systems Center

;ory Bussiere Naval Underwater Systems Center
io Cavallo Naval Air Development Center
-e Cecil Crane Naval Weapons Support Center
Conrad Naval Underwater Systems Center 3-C-5



Linda Elderhorst Naval Air Test Center
LT Karl S. Fairbanks, Jr Naval Weapons Center
Manchi Gadbois Naval Ocean Systems Center
Karen Gordon Institute for Defense Analyses
Dan Green Naval Surface Warfare Center - Dahlgren
Carl Hall Naval Weapons Center
Steve Howell Naval Surface Warfare Center
Phil Hwang Naval Surface Warfare Center - White Oak
Russell Johnston Naval Ocean Systems Center
Dan Juttelstad Naval Underwater Systems Center
Ben Krug Naval Avionics Center
Larry Lindley Naval Avionics Center
Warren Loper Naval Ocean Systems Center
John Machado Space & Naval Warfare Sys. Cmd.
Tricia Oberndorf Naval Air Development Center
Jim Oblinger Naval Underwater Systems Center
James Reagan Naval Surface Warfare Center - Dahlgren
George Robertson Fleet Combat Direction Systems
Carl Schmiedekamp Naval Air Development Center
Gail Sullivan Naval Ocean Systems Center
Charlie Webster Naval Air Development Center

I
I
U
I
I
I
I
I
I
I
I
I

3-C-6I



DATA ITEM DESCRIPTION

FOR

OPERATIONAL CONCEPT DOCUMENT

FOR

NEXT GENERATION COMPUTING RESOURCES (NGCR)

OPERATING SYSTEMS STANDARD

VERSION 1.5

September 18, 1989

Approach Subgroup

3-D-]



I
Data Item Description Version 1.5

September 18, 1989

I
Table of Contents I
Section 1 - SCOPE 3

1.1 Identification ................................. 1-01
1.2 Purpose ..................................... 1-01
1.3 Introduction ................................ 1-01

Section 2 - APPLICABLE DOCUMENTS

Section 3 - MISSION 3
3.1 Mission Need Requirements .................... 3-01
3.2 Primary Mission ................................ 3-01
3.3 Secondary Mission ............................. 3-02
3.4 Operational Environment .......................-
3.5 rupport Environment ........................... 3-02

Section 4 - OPERATING SYSTEMS STANDARD FUNCTIONS AND
CHARACTERISTICS

4.1 Operating System Standard Functional Areas .. 4-01
4.2 Performance Levels for Operating Systems Standard

Functions .................................. 4-02

Section 5 - GOVERNMENT AGENCIES 3

Section 6 -NOTES 3

Section 10 - APPENDIX i

;PPENDIX A - Glossary of Terms I
A.1 Acronyms and Abbreviations ................... A-01 i

Appendix B - Abstract Model

i



Data Item Description Version 1.5

September 18, 1989

PREPARATION INSTRUCTIONS:

The Operational Concept Document describes the
rationale for the Operating Systems Standard and its
operational and support environments. It al?.-
describes the functions and characteristics of the
standard in relationship to the Next Generation
Computer Resources (NGCR) program.

The OCD represents a consensus among user
agencies, industry and academia on the operational
concept of the Operating Systems Standard.

Section/paragraph numbers in the OCD shall

correspond to the numbers used in this DID.

Only cited documents shall appear in Section 2.

Section 4 shall define the requirements of the
Operating Systems Standard. Only Section 4 shall use
"shall" as defined in MIL-STD-490A, Section 3.2.3.6.
In writing a requirement, there must be a method by
which it can be tested.

0-02

3-D-3



I
Data Item Description Version 1.5

September 18, 1989 I

Section 1

SCOPE

The Operational Concept Document (OCD) describes
the mission of the Operating Systems Standard and its
operational and support environments. It also
describes the functions and characteristics of the
standard in relationship to the Navy Next Generation
Computer Resources (NGCR) program.

Thi. section shall define the scope of the Next
Generation Cuiuj-uting Resources (NGCR) Operating Systems
Standard. It shall identify the schedule for
introduction and use of the Operating Systems Standard.
This section shall be numbered 1. and divided into the
following paragraphs. I
1.1 Identification I

This section shall be numbered 1.1. This section
shall contain a description of the NGCR program and the
goals of this standards development.

This section shall begin with the following
paragraph: "This Operational Concept Document describes
the mission of the Next Generation Computer Resources
(NGCR) Operating Systems Standard (OSS) and its
operational and support environments. It also
describes the required functions and characteristics of I
the OSS within the NGCR program."

This section shall further describe the
relationship of the OCD to other documents produced by
the OSSWG (i.e., describe the documentation tree).

1.2 Purpose

This section shall state the purpose of the
Operating Systems Standard and identify its applicationI
domain.

1.3 Introduction 3
This section shall summarize the purpose and

contents of the OCD. It shall contain a description of
the need for a standard, an indication of the
industry/academia/Navy collaboration in generating the

1-01

3-D-4 3



Data Item Description Version 1.5
September 18, 1989

standard, and a roadmap to the document. The roadmap
is not a duplicate of the table of contents. There
should be descriptive sentences corresponding to the
content of each section of the document.

The relevance of other existing szandards and
policies shall be discussed in this section.

1-02

3-D-5



i
Data Item Description e Version 1.5.

September 18, 1989I

Section2 I
APPLICABLE DOCUMENTS 3

It is recommended that Mil-Std 490A, 483, and 962B
be invoked in the writing of the Operating Systems i
Standard.

All documents iisted here must be cited in the
OCD.I

I
i
I
I
i
I
I
I
I

I

I
2-01

3-D-63



Data Item Description Version 1.5
September 18, 1989

Section 3

MISSION

This section shall describe the application of the
standard. The rationale for a standard shall be
provided. An overview of the NGCR Operating Systems
Standards program shall be discussed.

3.1 Mission Need Requirements

This section shall provide a description of
application domains (including operational platforms)
to be supported by an Operating Systems Standard.
Issues such as requirements for portability,
reuseability, training, non-development items, (NDI)
multilevel security, reliability, real time
performance, Ada runtime support, and support for
distributed systems shall be addressed.

Refer to documents (TADSTANDs, Navy Instructions,
policy statements, and the like) in which requirements
are stated.

3.2 Primary Mission

Sections 3.2 and 3.3 describe the justification
for the standard. Based on an analysis of operational
system rzlirements, a decision must be made as to
primary and secondary missions.

An incomplete list of examples of possible primary
and secondary missions might include:

o User related support. (applications needs
for OSS)

o Support for Interface to other NGCR
standards.

o Ability to maximize use of NDI. Ability to
define Navy requirements for industry in
order to provide input to operating systems
development groups.

o Provide portability. Utilize state of
practice technology at minimum cost for
development. Maximize ability to upgrade
systems in terms of cost and time.

3-01
3-D-7



I
Data Item Description Version 1.5 USeptember 18, 1989

o Provide a uniform base across all Navy
systems. Promote ease of acquisition, I
maintenance, systems design, software
development.

3.3 Secondary Mission

(See Primary Mission) I
3.4 Operational Environment 3

Describe the intended approach to validating and
using the Operating Systems Standard, the need for
identifying agents responsible for establishing and
executing relevant policy, the plan for maintenance of
a library of accredited implementations, and other
practical aspects related to selection and/or
implementation of Operating Systems Standards. These
issues must be discussed both with respect to new
starts and upgrades to existing systems. 3

Describe the environment in which the standard
will be applied and how it will be applied.

Describe support provided to Program Managers,
Acquisition Managers, systems designers and developers,
integrators, end users, operatins system software
vendors and implementors, and others in operating
system selection.

Support may include: evaluation criteria, trained
personnel, reduced program cost, quality assurance,
independent validation and verification.

Discuss the degree to which the Stai,"'ard can be I
tailored to reflect various levels of complexity and
functionality of operating system requirements that may
be found in the application domain. Describe how an
operating system can be qualified for a subset of the
Standard's requirements.

Define classes of applications to be supported. i
3.5 Support Environment

Describe the procedures that will be put in place
during development and after deployment of the standard
to maintain the Operating Systems Standard as a living I
document.

I
3-02

3-D-8



Data Item Description Version 1.5
September 18, 1989

The configuration management process, revision
mechanism, and acceptance procedures for operating
system standard validation shall be defined.

Identify the agent responsible for maintenance of
the Operating System Standard. Procedures for
notification of the OSS maintainer of decisions by
program managers to tailor or to seek waiver from the
Standard should also be documented here. This will
support appropriate evolution of the standard and
facilitate the identification of "reusable tailorings."

This section also may be used to describe the
process used to select/develop the Operating Systems
Standard.

3-03

3-D-9



I
Data Item Description Version 1.5

September 18, 1989 I

Section 4 i
OPERATING SYSTEMS STANDARD FUNCTIONS AND

CHARACTERISTICS

This section shall describe the Operating Systems
Standard functional areas in terms of the critical
interfaces addressed. These critical interfaces are
described in detail in the Abstract Operating Systems
Model found in Section 10. The required services and I
protocols appropriate for each functional area are
described here. These requirements will be derived
from the operating system interface requirements
defined by the requirements subgroup.

4.1 Operating System Standard Functional Areas 3
This section shall define the requirements for the

functional areas of NGCR Operating Systems interfaces.

Subsection 4.1.x shall describe Interface Area x.
The interfaces to be addressed are: 3

Ada Run-Time Environment Interface (ARTEI)
Binary Application Program Interface (BAPI)
Data Base Kernel Interface (DBKI)
Local Device Interface (LDI)
Graphics Kernel Interface (GRKI)
Local Area Network Interface (LANI)
Local Hardware Interface (LHWI) I
Local Processor Operating System (LPOS) to
LPOS Interface (OSOSI)

Man-Machine Interface (MMI)Source Application Program Interface (SAPI)
Project Support Environment Interface (PSEI)

Subsection 4.1.x.y shall describe service i
requirement y within Interface Area x. The
requirements to be addressed are:

Language Support Services
Architecture Dependent Services
Capability and Security Areas I
Data Base Services
Data Interchange Services
Event and Error Management Services
File Services
Generalized I/O Services
Man-Machine Interface (MMI) Services

4-01

3-D-lO



Data Item Description Version 1.5
September 18, 1989

Networks and Communications
Process Management Services
Project Support Environment Services
Reliability and Adaptability Services
Resource Management Services
Synchronization and Scheduling Services
System Initialization and Reinitialization Services
Time Services

4.2 Performance Levels for Operating Systems Standard
Functions

This section shall describe the computer system
configurations for each of the Operating Systems
Standard performance levels. Each performance level
will comprise a subset of the interface requirements
defined in 4.1.

Performance levels will be a result of application
system performance requirements.

The abstract model defines a preliminary set of
performance levels.

Subsection 4.2.x shall describe a hardware
configuration model as described in the abstract model.

Subsection 4.2.x.y shall describe a performance
level for this configuration.

4-02

3-D-11



I
Data Item Description Version 1.5

September 18, 1989

Section 5 1
GOVERNMENT AGENCIES

This section shall identify the standards
development, support and user agencies within the major
Navy organizations along with their responsibilities. I

I
I
I
I
I
I
U
I
U
U
I
I

5-01
3-D- 12



Data Item Description Version 1.5
September 18, 1989

Section 6

NOTES

6-01
3-D- 13



i
Data Item Description Version 1.5

September 18, 1989

Section 10 1
APPENDIX

I
I
i
I
i

I
I
I
I
i
I
I
I

10-01 -- 4 I



Data Item Description Version 1.5
September 18, 1989

APPENDIX A

Glossary of Terms

A.1 Acronyms and Abbreviations

A-01

3-D-15



Data Item Description Version 1.5
September 18, 1989

Appendix B I
Abstract Model 3

I
I
I
I

B-01

II
I
I
I
I

I
I
I

B-O1
3-D-16l



Data Item Description Version 1.5
September 18, 1989

Section 10

Appendix A

Glossary of Terms

10.1 Acronyms and Abbreviations

10-01 3-D-17



Data Item Description Version 1.5

September 18, 1989

Appendix B3

Abstract Model

J-01 -D-1



Data Item Description Version 1.5
September 18, 1989

Section 6

NOTES

6-01
3-D-19



NGCR
(Next Generation Computer Resources)

OSSWG
(Operating Systems Standards Working Group)

Reference Model
Version 1.02
1989 Aug 6

3-E-1

(printed 9/6/89)



Table of Contents
List of Figures

1. Introduction 1...................................................................... I
1.1. Multiple System Views ...................................................... 2
1.2. Abstraction and Levels of Aggregation ................................... 2
2. System Overview Model .................................................... 5
2.1. Single Node/Application Model ............................................. 6
2.2. Network/Application Model ................................................ 8
2.3. Network Communication Model ........................................... 9
2.4. Program Distribution ......................................................... 10
2.5. System Resource Allocation Executive(SRAX) ......................... 11
3. Critical Interfaces View ..................................................... 14
3.1. Ada Run-Time Environment Interface (ARTEI) ......................... 15
3.2. Binary Application Program Interface (BAPI) ............................ 15
3.3. Data Base Kernel Interface (DBKI) ....................................... 16
3.4. Graphics Kernel Interface (GRKI) ......................................... 16
3.5. Local Area Network Interface (LANI) ........................................ 16
3.6. Local Device Interface (LDI) ................................................ 17
3.7. Local Hardware Interface (LHWI) ........................................ 17
3.8. LPOS - SRAX Coordination Interface (LSCI) .......................... 17
3.9. LPOS to LPOS Interface (OSOSI) ......................................... 17
3.10. Project Support Environment Interface (PSEI) .......................... 18
3.11. Source Application Program Interface (SAPI) ............................ 18
3.12. User-Machine Interface (UMI) ............................................. 18
4. Operating System Services ..................................................... 19
4.1. Language Support Services ................................................. 19
4.1.1. Ada Language Support Services .............................................. 19
4.1.1.1. Full Ada Language Support ............................................... 19
4.1.1.2. Exception Propagation to OS ................................................ 19
4.1.1.3. Interrupt to Task Mapping ..................................................... 19
4.1.1.4. Priority ........................................................................ 20
4.1.1.5. Rendezvous .................................................................... 20
4.1.2. Support for Other Languages .............................................. 20
4.2. Architecture Dependent Services ........................................... 20
4.3. Capability and Security Services ........................................... 20
4.3.1. Prevention of Unauthorized Access ....................................... 21
4.3.2. Prevention of Data Compromise ........................................... 21
4.3.3. Prevention of Service Denial ................................................ 21
4.3.4. .i.Security Administration ................................................... 21
4.4. Data Base Services ........................................................... 21
4.5. Data Interchange Services ................................................... 22
4.6. Event and Error Management Services .................................... 22
4.7. File Services ................................................................... 22
4.7.1. Naming and Directory Services ................................................ 22
4.7.2. Real-time Files ............................................................... 22
4.7.3. File Modification Primitives ................................................ 23
4.7.4. File Support Services ........................................................ 23
4.8. Generalized I/O Services .................................................... 23
4.9. Graphics Kernel Services ........................... ..... .... . ..... 23
4.10: LPOS to LPOS Communication Services ................................ 23

1,14.11. User-Machine Interface (UMI) Services .................................. 24
4.12. Networks and Communications ........................................... 24
4.12. 1. Network Control and Status ................................................ 24
4.12.2. Inter-Process Communication .................................................. 24
4.12.3. Distributed Voting ............... ............................................ 25

1 3-E-3



Table of Contents
4.12.4. Remote Resource Allocation .............................................. 25
4.12.5. Naming ................................. . . ...................... 25
4.13. Process Management Services ................................................. 25
4.14. Project Support Environment Services ........................................ 25
4.15. Reliability, Adaptability and Maintainability Services ................... 26 i
4.15.1. Fault Tolerance Services .................................................... 26
4.15.1.1. Fault Detection ................................................................... 26
4.15.1.2. Fault Isolation ................................................. . ........... 26 I
4.15.1.3. Fault Recovery ............................................................... 27
4.15.1.4. Fault Diagnosis .............................................................. 27
4.15.2. Fault Avoidance ............................................................. 27
4.15.3. Software Safety ............................................................... 27
4.15.4. Status of System Components ............................................. 27
4.15.5. Reconfiguration ............................................................... 27
4.15.6. Maintainability ............................................................... 28 I
4.16. Resource Management Services ........................................... 28
4.16.1. Memory Management Servicus ............................................. 28
4.16.2. Device Management Services ............................................... 28 I
4.17. Scheduling Services ............................................................. 28
4.18. Synchronization Services ................................................... 29
4.19. System Initialization and Reinitialization Services ....................... 29
4.20. System Operator Services .................................................. 30
4.21. Time Services ................................................................ 30
5. Target Domains .......................................................... 30
5.1. Target Processor Interconnection .......................................... 31 I
5.1.1. Single Processor Systems ...................................................... 31
5.1.2. Multiprocessor Systems .................................................... 31
5.1.3. Distributed Systems ......................................................... 31 I
5.1.3.1. Backplane Interconnection ................................................. 31
5.1.3.2. LAN Interconnection ........................................................ 31
5.1.3.3. Full Network Interconnection .................................................. 32
5.2. Security ...................................................................... 32 I
5.2.1. Targets with No Security Requirements ................................. 32
5.2.2. Targets with Discretionary Access Control Requirements ................. 32
5.2.3. Targets with Mandatory Access Control Requirements ..................... 32 i
5.3. Robustness .................................................................... 33
5.3.1. Reliability and Availability ................................................. 33
5.3.2. Software Safety ............................................................... 33 I
5.3.3. Maintainability .......................................... 33
5.4. Richness of the Set of OS Services ......................................... 33
5.5. Real-Time Requirements ..................................................... 33
5.5.1. Non-Real-Time Target Systems ........................................... 33
5.5.2. Real-Time Target Systems ................................................. 34
5.5.3. Critical-Time Target Systems .............................................. 34
Appendix A. NGCR OSSWG Background .................................................. A-1
Appendix B. Acronyms ...................................................................... B-1

Inde ............................................................................... 1-1

3-E-4



List of Figures

Figure 1-1 4

Figure 1-2 4

Figure 2-1 5

Figure 2-2 7

Figure 2-3 9

Figur= 2-4 10

Figure 2-5 12

Figure 2-6 13

Figure 3-1 14
Figure 3-2 16

oiii 3-E-5



OSSWG Reference Model Vers. 1.02

OSSWG Reference Model for Embedded Operating Systems

Next Generation Computer Resources (NGCR)
Operating Systems Standards Working Group (OSSWG)

Approach Subgroup
Model Focus Group

The OSSWG Reference Model for embedded operating systems is a
conceptual model which provides a context for the description of ap-
plication developers' requirements, a context for the description and
comparison of existing operating systems, and a framework for the
specification of Operating Systems Standards (OSS) for embedded
systems.*

1. Introduction

The OSSWG reference model is a conceptual model which provides a context for appli-
cation program developer's requirements, for comparing existing operating systems and for
standards specification. It provides a minimum, common set of conceptual embedded sys-
tem building blocks with associated interfaces and functionality. Many of these system
building blocks will be the results of other parts of the NGCR project. See Appendix A for
background information on the NGCR project.

Consider the International Standards Organization (ISO) Open Systems Interconnect (OSI)
reference model as an example of a reference model. That model defines seven protocol
layers and associates each network communication function with one and only one layer.
The model does not, however, specify a given protocol or protocol implementation for a
given layer.

This OSSWG reference model is a model with the full embedded system as its scope, in-
cluding some aspects of the project support environment. The model provides the basis for
defining a set of concepts and conventions used by the system developer in designing and
implementing the control system for the computer resources employed in the embedded
system. Objectives of this model include supporting the portability and reusability of soft-
ware components of the system and providing for the interoperability of software and
hardware components. It will certainly allow for more compact and correct procurement
specifications.

Many operating systems are built on a set of abstractions that make certain aspects of an
application's execution "invisible" to the application itself. While this higher level view of
the system can be valuable to the application programmer, this model will need to make
some of those aspects visible so that the functionality of the operating system can be dis-
cussed and evaluated. Therefore the discussion of an operating system feature or aspect in
the model does not necessarily imply that that feature should be easily or directly accessible
to an application program.

The operating environment of operating systems built to the NGCR Operating Systems
Standards will differ greatly depending upon the size and requirements of the system and
its intended mission. It is expected that systems using an operating system compliant with

*Some of the text for this document is "reused" from a draft version of the POSIX System Architecture whose

authors were Fritz Schultz, Jim Isaacs. Dale Harris. Sunhil Mehta, Al Weaver, Richard Scott and Doug Stevens.

1 3-E-7



OSSWG Reference Model Vers. 1.02 1
the NGCR OS standards will not use all the features discussed here, or specified by U
OSSWG requirements documents, but will use tailored subsets for each particular
application system.

A reference model must satisfy conflicting requirements similar to those encountered in
more traditional modeling disciplines. The model must be structured enough to encourage
the generation and use of standards and standard components. Yet it must also be flexible
enough to accommodate tailored and special purpose components necessary to meet real- I
world needs. The reference model should also:

* be simple
* accommodate existing and imminent embedded systems standards, both hardware

and software
• allow incorporation of both standards-based and proprietary subsystems
* reflect the full scope of application program developer's functional requirements
* allow system scaling
• accommodate new embedded system technology
* provide a means for comparing existing operating systems
* provide direction for future standardization and integration efforts

Note that the definition of this model is an engineering task and not a scientific one. There
are many possible models, and while it might be interesting to contemplate an optimal one,
an adequate solution is all that is required. Note that this model is intended to be con-
ventional within computer science. The intention is not to break new ground, but to es-
tablish simple terminology and concepts for identification and resolution of architectural is-
sues. I

1. 1. Multiple System Views 5
This model is actually composed of multiple views of embedded systems and their operat-
ing systems' interfaces. No one viewpoint seems sufficient to concisely describe the needs
and goals of the NGCR OSSWG program. 1
First, in section 2., a model is developed which provides an overview of the system con-
sidered. The overview model defines system elements, to expose interfaces across which
service requirements should be satisfied. The elements are chosen to expo.se those inter-
faces which are significant to the embedded system's developer.

Second, section 3. describes the important or critical interfaces between the embedded op-
erating system and entities external to the operating system.

Section 4. then describes the basic services available across the interfaces of the operating
system. The services are defined in a generic way, based on the model and current indus-
try practice.

Section 5. finally discusses various application domains. This is a brief description of how I
the target systems differ with respect to several important requirements. The intent is to il-
lustrate and bound the large variation that is expected among systems that may use the op-
erating systems standards.

1.2. Abstraction and Levels of Aggregation

The model is described from the application developer's perspective, i.e. the model U
records the embedded system developer's perception (mental model) of the overall large
distributed, embedded system and some aspects of its project support environment.

2 3-E-8 3



OSSWG Reference Model Vers. 1.02

This point of view is used so that:

1. application developers will have the proper services to meet their requrements
and

2. vendor implementation will not be constrained unnecessarily.

In addition to the application develope- there is the application user and the system operator
who will interact with an NGCR OSS compliant system. The application user is the end
user of the system who may have no knowledge of the operating system interfaces used to
provide the functionality seen when the system is used. The system operator, if there is
one for a particular system, has special privileges and utilities to modify the system's
database and configuration to meet changing needs of a mission. The system operator is
expected to have some knowledge of the functions of the operating system and the structure
of the particular application.

The developer's point of view has several levels of abstraction, with different objects being
more significant at each level. For this model the fi, e levels of abstraction are:

* System Design Level; which is concerned with the integration of multiple applica-
tion programs into a cohesive systerr.

" Program Design Level; which is concerned with the integration of application
modules and system services.

" Operating System Level which is concerned with the organization of and inter-
faces to the system services provided by the operating system. This is the SAPI
( Source Application Program Interface) Level.

• Logical Device Level; which is concerned with the logical devices from which the
system is composed.

" Physical Device Level; which is concerned with the physical devices from which
the system is composed.

Figure 1-1 shows the system designer's viewpoint, where the major objects are applica-
tions and the system's devices. This view does not describe the system hardware. The
system might represent one hardware processor or a large number of processors. At this
level of abstraction the system is composed of one or more application programs which in-
teract with each other, with the devices in the system and with the users via the User-Ma-
chine Interface (UMI).

Figure 1-2 shows a diagram of an application from the program design abstraction level.
The internal boxes, each labeled "Service Group", represent modules providing qystem
services. Those modules may be linked with the application code or may be part of the al-
ready resident operating system code. At this level the application designer sees the appli-
cation as composed of application modules and OS modules which interact to perform the
activities of the application.

The Source Application Program Interface level of abstraction focus on three entities: the
application's code, the Source Application Program Interface (SAPI) and the operating
system. The SAPI is the program designer's means to access the functions and objects of
the operating system. The system's devices and other software entities are seen as being
available through the serviccs of the OS.

The Logical Device Level is concerned with the high level devices attached to or accessible
to the system. At this level the particular characteristics of a specific device are hidden by
its device driver and the operating system.

3 3-E-9



OSSWG Reference Model Vers. 1.02 1
SYSTEM 3

n

LOYSICAL DEVICES

Figure 1-1
System Designer's View of the System

The Physical Device Level is the level seen by the writer of the device driver and by the ap- i
plication developer if the device needs to be accessed at a low, physical level for some spe-
cial application.

A P P L I C A T 1 0 N

, , /
," : I

L' 0~ ', CAL I C a l

/ ' %,' Group n

'I I
PHYSICAL Service

PEOSICAL DIVICES

Figure 1-2 I
Application Programmer's View of System

I
43-E-I0 3



OSSWG Reference Model Vers. 1.02

2. System Overview Model

The full embedded system is represented by Figure 2-1.

Process Process .. . .... etc.

OSSWG Application Program Interface

NGCR PSE
System Inter- Project

Environment face Support
Environment

Locali Network . .etc.
,evice

Figure 2-1
Local Processor Node Model from Applications Perspective

Figure 2-1 represents the embedded system as viewed by a system developer, this view
corresponds to the program design level of abstraction. External features visible to the ap-
plication developer include a variety of devices used to display and enter data. These de-
vices include sensors and effectors which provide a means for the system to interact with
the real world.

When an application is developed on the project support environment (PSE) the program-
mer accesses the application program interface (API) at the source code level through some
particular language binding.

All run-time features can be conceptualized as being contained within the NGCR system
block. All of the operating system features may be available locally or remotely. Some of
the OS functions may be performed remotely if the system is a distributed system with
multiple processor nodes. The term "processor node" is used to describe a single hardware
subsystem which executes at any particular time, a single thread of control. A processor
node may actually be constructed with multiple hardware processors, linked for self-
checking and/or redundancy or may be a processor with auxiliary processors (such as
floating point or I/0 processors) attached. The aspect of the processor node that is singular
is that it contains one and only one thread of control for its local operating system. Usually
a processor node corresponds to one copy of an operating system but in systems with
closely coupled processor nodes one copy of the operating system may support more than
one processor node.

5 3-E- II



OSSWG Reference Model Vers. 1.02 1
Two assumptions form the basis for the system overview model: I

1. The application software system is represented as the execution of a collection of
processes, where a process executes on a single processor node and contains a
single, schedulable thread of control as seen by the local operating system.

2. Some mechanism for communications among these processes exists, whether
communicating processes are located on the same or different nodes.

The following parts of section 2. describe the basic elements of the distributed OSSWG
system and the relationships among them. This discussion defines the paradigm for the
descriptions of services, interfaces and target domains which follow in sections 3 through
5.

2.1. Single Node/Application Model i
Figure 2-2 identifies the major elements of a local processor node important to the embed-
ded system developer and the relationships among them. Whiie the Local Processor Oper-
ating System is shown as a single block its implementation is undefined by this model and
it could be structured in many ways. For example it may very well consist of a proprietary
OS, not compliant with the NGCR OSS, with specific NGCR OSS services and interfaces I
implemented "on-top-of" that proprietary OS.

Later this model will be integrated into a distributed environment, but initially the processor
is defined as an isolated processor node. The elements include:

* Application Programs
* Local Processor Operating System (LPOS)
* Application Program Interface (API) I
• Local Devices
• Project Support Environment (PSE) 3

One or more application processes may run on the processor simultaneously, as repre-
sented by the process rectangles at the top of the figure. The applications run as indepen-
dent software entities and communicate among themselves via a variety of communications
mechanisms provided or managed by the local processor operating system.

The applications make use of devices attached to the local processor to perform a wide I
variety of actions. These local devices are represented along the bottom edge of the figure,
and they
include sensors, effectors, networks and direct connections to other computing systems.

The Local Processor Operating System (LPOS) allocates the shared local devices among
the applications competing for these resources. Processor time, memory, and other finite
processor resources are also shared among the applications, mediated by the operating
system. The LPOS also supports communication and cooperation with other LPOSs atother processor nodes of the system. 3
The block labeled LPOS in the figure actually contains only the run-time elements of the
operating system which usually run in supervisor mode or protected mode. These elements
of the LPOS are the parts that handle system service requests from the application pro- I
grams. Other parts of the LPOS may run as server processes or as library routines linked
with application programs. These server processes may have special authorizations or

6 3-E-12



OSSWG Reference Model Vers. 1.02

capabilities but are scheduled and serviced by the run-time elements of the LPOS in the
same manner as user processes.

The LPOS alio supports an Ada Run-Time Environment (ARTE). The Source Application
Program Interface (SAPI), the compiler vendor supplied compilation library and interface
code generated by the compiler together form the complete ARTE. A good interface stan-
dard should not depend on whether the ARTE functions are implemented in the low level
run-time elements of the OS or in code from the Ada compilation system. While it is
expected that the OS will support the needs of programs written in Ada, other languages
and their run-time support will also be needed for particular projects.

Application Server
Process Process ... .etc.

OSSWG Application Proqram Interface

0 Inter_ Project
OS I face Support

Environment

LOCAL PROCESSOR OPERATING SYSTEM

L Local Device Interfaces

I [Local ] Network I ... etc.Devic
3 Figure 2-2

Local Processor Node Model from OS Perspective

I In order for the OS to protect system integrity and ensure system database consistency,
applications competing for system resources must access all system resources via system
service requests. The formal definition of these requests (or system calls) defines an
Application Program Interface (API). The API will specify a sufficient interface between
the application program and the underlying operating system and includes the operating

system services which are described in section 4.

The API has several different representations. One set of representations is represented by
the Source Application Program Interface (SAPI) which is a programming language bind-
ing to the API for some particular source language. For each language allowing service
requests to the operating system there is a Source Application Program Interface. The
SAPI is a set of subprogram calls to be invoked to access operating system services. This
is the representation used by the programmer and is a primary interface used in the PSE.
Another representation is the Binary Application Program Interface (BAPI) which is the
calling mechanism used by the compiled code to access the operating system routines
which are not part of the application code. The name Binary Application Program Inter-
faces is meant to imply that this interface is at the machine code level. The BAPI will in
most cases be LPOS implementation and processor dependent, but might be standardized
for a single processor type or a family of processors to allow some degree of portability of
compiled code across different implementations of the LPOS. Each of the critical operating
system interfaces is listed and briefly discussed in Section 3.

IU .7 3-E-13



OSSWG Reference Model Vers. 1.02 1
The Project Support Environment Interface (PSEI) is the block on the diagram between the 5
LPOS and the PSE. This interface allows communication between the PSE and the LPOS
in a development environment. This interface may not be subject to standardization at this
time, depending on an analysis of the risks and benefits of such a standard PSEI. The PSEI I
provides the following services:

• Down-Loading of compiled programs
* Up-Loading of execution-time debugging information
• Remote Control of the embedded system by the user of the PSE, including the

execution of debuggers running partially on the PSE an partially on the target
system. I

Note that these kinds of operations are similar to those required for coordination of user
programs running on multiple, distributed processors except that very detailed knowledge
of the execution environment on the target will need to be communicated back to the PSE.
Most of the functionality of this interface may be available from the SAPI/BAPI.

The Local Device Interfaces block in the figure is the set of device drivers used by theLPOS to access the different devices. The interface between the device drivers and the I
LPOS is the Local Device Interface (LDI).

The most important interface, for OS standardization, is the SAPI. With a standard Source 3
Application Program Interface an application routine can be transported to a new target
system by recompiling the source code. A standard SAPI will also support interoperability
and software reuse at both the subprogram and subsystem level.

A development version of the embedded system may have a Real-Time Non-Intrusive
(RTNI) testing device attached to it for monitoring the system's performance and debug the
application (and perhaps the system) software. An RTNI device is not shown in the model
because a truly non-intrusive device will not be "visible" to the software or to the operating
system of the tested system. An RTNI device may under some conditions or modes (e.g.
during test setup) be visible to the system as a special purpose device and an NGCR OSS I
compliant operating system should be capable of communication with such a "visible"
device. The RTNI system may itself contain a computer system that uses an NGCR OSS
compliant operating system to run applications that collect data about the tested system. 3
2.2. Network/Application Model

We now expand the system to expose network-related interfaces. Setting aside the local
node model for the moment, figure 2-3 relates the application processes to a conceptual
model based upon the OSI reference model for network services.*

Applications gain direct access to the network services at levels 4 through 6 via service re-
quests specified in the API. The network is just another system resource allocated among
the competing processes, although it is an important one. Both connection-oriented and I
connectionless data transport services may be available.

In some cases, it may be desirable for processes located on the same node to communicate 3
via network services. For example, if it is possible that one of the communicating pro-

*A detailed tutorial on the OSI Reference Model is available in "ISO 7409 -Open Systems Interconnection 3
Model - Basic Reference Model". Note that the OSI layer 7 (Application Layer) represents, in the
Network/application Model, the applications running above the OSSWG API.

8 3-E-14



OSSWG Reference Model Vers. 1.02

cesses could potentially be moved to a different processor nne, the use of network ser-
vices makes sense. If the processes will always be located on the same node, other meth-
ods may improve performance. This is an application-level architectural decision that has
substantial impact on design and implementation of distributed system applications. The
actual source level interface for local and remote communication between processes may be
the same with the responsibility falling to the OSs and/or compilation systems to determine
the location of a process and facilitate the proper communications.

I Level:

Application Server ..etc.
s Process Nroces

Aplication 7 OSSWG Application Program Interface

LOCAL PROC18OR CPZRATIhG SYSTE
I .. m...... .......... ... .... o..

Presentation Application Options

Session 5
..Transport 4

Transport

Network 3 Options

Data Link 2 Network
Mgmt.

PhVsical 1 Process

Local Area Network PhVsical Medium

Figure 2-3
Network Model from Applications Perspective

I
2.3. Network Communication Model

Figure 2-4 integrates the node/application and network/application models into an element
of a local area network coupled distributed system.

No new elements are introduced in this integrated model. A major feature of this model is
the integration of the network protocols with the operating system on the local node. Note
that the upper network protocol layers are closely associated with the operating system.
This is driven by the fact that the session layers provide communications services among
processes. The process is an operating system construct and is managed by the operating
system, while the session and datagram services are network constructs and are managed
by the protocol software. This requires close coordination and integration between these
software elements. This can be a major source of difficulty during development, integra-
tion, and operations.

Note that the application process must pass service requests to the operating system via the
API to gain access to network services. As discussed above, the API provides data com-
munications transparency to the applications. This means that the complexity of the net-

I work is hidden from the applications behind the API.

9
3-E- 15

...I imm l l ml i l



OSSWG Reference Model Vers. 1.02 1
Network management functions may be associated with any network layer. Figure 2-4
shows network management processes associated with the upper protocol layers, as well as
with the lower layers. This is due to the fact that the upper layers are closely associated
with the operating system and may use operating system services to perform network I
management functions. The lower layers, however, are more closely associated with the
physical media and may not have direct access to the processor. 3

Application IIServer Network 3
Process Mgmt. ... etc.

OSSWG Application Proqram Interface 3
P SE

Inter- Project
IPo face Support

Local Environment
Cs- -Network Services Services

Network 
I

MgmtI. Local Device
Process Interfaces

Local Area Network Physical Medium .

Figure 2-4
Integrated System Node 1

Often the operating system allows the application programmer to refer to entities attached to
the local network by logical names rather than by network address. That capability can be
very useful for separating the specification of the location of an entity from the code that
uses it, however some applications will need to refer to network entities by their physical
address. 3
2.4. Program Distribution I
Many Navy computer languages do not have any support for concurrency but rather de-
pend upon the facilities provided by the operating system via calls to OS services. The Ada
language is one exception because it has language level support for concurrency, other ex- I
ceptions are languages designed for signal processing. With respect to programs written in
languages that support concurrency, there are two levels of concurrency. Either level (or
both) may be mapped to OS processes. The first is the Ada task level where each unit
corresponds to an Ada main subprogram or an Ada Task. Concurrency at this level con-
siders the relative priorities and scheduling of Ada tasks within the program and their
communication vi,. language constructs. The second level of concurrency, the program
level, correspordis to a single Ada program together with all of its dependent tasks. I
Concurrency at this level considers the relative importance of the individual programs in the
system competing for system resources. Also program-to-program communication is via

10 3-E-16 3



OSSWG Reference Model Vers. 1.02

the operating system or shared data because the Ada language provides no communication
facilities at this level outside of file input-output.

When an application is to be distributed across multiple processor nodes that may not share
common memory, there are several ways to partition Ada programs. Two of the partition-
ing methods correspond to the levels of concurrency above. A program can be distributed
at the Ada task level with the OS, compilation system or the developer deciding where each
task is to execute. Distribution at this level would require communication across processor
nodes with full Ada tasking semantics. Distribution at the program level means that a pro-
gram and all of its tasks execute on a single processor node. If distributed processing is
needed then the application developer must divide the application into separate programs
that communicate via calls to the communication facilities of the OS. This is current prac-
tice in real-time systems including Ada based systems.

Distribution can also be at the "virtual node" level. A virtual node consists of a collection of
related Ada library units. A program may be one virtual node, which corresponds to the
program level distribution or a program may be composed of several virtual nodes which
together contain all the library units of the program. A virtual node is assigned, by the de-
veloper or the OS, to a particular processor node. More than one virtual node of a program
can be executing on the same processor node, but a virtual node may execute on only one
processor node at one time-

2.5. System Resource Allocation Executive(SRAX)

Conceptually the SRAX is the single operating system for the whole system if one exists; it
manages systems resources across processors so that to the applications developer of the
system, or some aspects of it, appear to be controlled by a single centralized operating sys-
tem. The SRAX primarily is responsible for scheduling and allocating resources that affect
more than one local processor node, but since most resources are local to some local
processor node the SRAX must cooperate with or control the local scheduling mechanisms.
Note that the coordination across local processor nodes includes nodes that have different
types of processors. The communication between the different Local Processor Operating
Systems requires a set of functions and protocols that may not be part of the Application
Program Interface.

A platform may have several SRAX-level clusters of local processor nodes that share a
communication network but do not cooperate with each other for resource sharing at the
operating system level. Effectively this would provide multiple SRAX systems that can
communicate across a network. Also on the network may be simple independent systems
that may not need any inter-processor coordination and only have the LPOS part of an
operating system with no SRAX level OS.

Figure 2-5 shows two nodes of a multi-node system. Many embedded applications require
that the nodes of the system be able to coordinate services and resources. This can be done
all at the application level with the application programs communicating with each other and
then with their individual LPOS which will be fully supported by the API; such an applica-
tion system would have no need for SRAX level services. The LPOSs could also commu-
nicate and coordinate resource usage directly via the SRAX which may provide such ser-
vices as dynamic load leveling and automatic reconfiguration.

I
S11 3-E-17



OSSWG Reference Model Vers. 1.02 1
Application Server Network I
Process Process Mgmt. ... etc.

Process

OSSWG Application Program Interface

L0CAL PROCZSSOR OPERaDIG SYSTEM (1) PSE

Inter- Project
IPC face Support I

Local Environmentos (1)

Network Services Services I

NetworkI
Mgmt. Local Device

Process Interfaces

Local Area Network Phvsical Medium

Application Server Network
Process Process Mgmt. . . etc.

Process

OSSWG Application Proqram Interface

LOCAL PROCESSOR OPMD%3!DG SYSTEM (2) PSE P
IcInter- Project

IPC face Support

Local Environment
os (2)

Network Services Services

Network
Mgmt. Local Device

Process Interfaces

Local Area Network Physical Medium

Figure 2-5 1
Distributed System Nodes I

There are many ways that the SRAX could be implemented.It could be implemented as a
single centralized program running on a single processor. It could be implemented in a
fully distributed manner such that every local processor node has its own portion of the
SRAX program Parts of the SRAX could even be implemented in hardware for high per-
formance. The SRAX could be implemented in an hierarchical manner with higher level
SRAX components doing more global coordination of resources while lower level SRAX I
components coordinate the use of resources that are more local or that require faster re-
sponse times. Realistic implementations would probably have some services centralized

12 3-E-18



OSSWG Reference Model Vers.. 1.02

and others distributed on some or all of the local processor nodes. Even with a centralized
implementation there may be one or more "backup" processors that could take over execu-
tion of the centralized part of the SRAX if the initial one fails. Figure 2-6 is a diagram of
the different parts of the operating system and their location for one simple implementation
scheme. The SRAX in the figure has two components: the centralized part (SRAX - C) and
the local part (SRAX - L). The centralized part executes on one processor and coordinates
the other processors, while the local part of the SRAX and the individual LPOS parts
execute individually on each processor.

Process1 Process

.....................,

............ ss

f Proces FProcess 0
"%.R.

SRAXX - L LPOS =

D vc....................... D e

................. . Process Process ...

,SRAX - L I.,OS

".......................... I ...

Figure 2-6
LPOS and SRAX parts of the Operating System

The different parts of the SRAX communicate with each other to schedule the resources of
the system. It is this communication which makes system level control possible but also
can potentially cause a severe communication load on the system.

13 3-E-19



OSSWG Reference Model Vers. 1.02

3. Critical Interfaces View 3
This section discusses Operating System interfaces that are necessary to meet the goals of
the NGCR project. These interfaces are defined by the entities that the OS and application
programs must interact with (see Figure 3-1.). These interfaces arise from the ned for the
different components to be integrated into a cooperating system. Not all of the interfaces
are visible to the applications developer and not all need to be standardized, but all of the
interfaces will be present in one or more implementations. The interfaces may be provided
by compiler or operating system vendors or by the application programmer rather than
being part of the NGCR OSS or any other NGCR standards.

Safenet !On-Board IDBMSI

S BackplaneI IMem,,ory,I I
Timers,

q t NGCRI

Node

Devices Graphics Application

Software

ProjectI

Support
Environment

Figure 3-1 1
Entities that Interact with the OS I

The viewpoint taken is that of the Local Processor Operating System (LPOS), i.e., the
component of the total operating system that executes on a local processor node. An LPOS
may communicate with other LPOS instances via the backplane, via a local area network 3
and via shared memory. The following interfaces are discussed:

I
I
I

14 3-E--20I



OSSWG Reference Model Vers. 1.02

(ARTEI) Ada Run-Time Environment Interface
(BAPI) Binary Application Program Interface
(DBKI) Data Base Kernel Interface
(GRKI) Graphics Kernel Interface
(LAND Local Area Network Interface
(ILDI) Local Device Interface
(LHWI) Local Hardware Interface
(LSCI) LPOS - SRAX Coordination Interface
(OSOSI) LPOS to LPOS Interface
(PSEI) Project Support Environment Interface
(SAPI) Source Application Program Interface
(UMI) User-Machine Interface

3.1. Ada Run-Time Environment Interface (ARTEI)
(Ada Run Time Environment <-> Application Software)

This is the interface between the application Ada programs and the run-time environment
required by the Ada programming language. Figure 3-2 shows that the ARTE may be im-
plemented in three parts, part loaded with each application program from the Ada Run-Time
library provided by the compiler vendor, part which is generated by the Ada compiler dur-
ing the translation of the Ada program and part which is a subset of the OS interfaces. It is
an issue as to how much of the necessary ARTE is part of the operating system and how
much should be provided by the compilation system of a compiler vendor. Most likely
some parts of this interface will be provided to allow applications to modify or "tune" the
run-time system and other parts of the interface will only be used by compiler generated
code. Standardization of the interface to the OS part of the Ada services will allow the effi-
cient integration of the Ada Run-Time Environment and the LPOS. This interface is one
aspect of the more general High Order Language Binding Interfaces which may include
language bindings and run-time support for such Navy languages as CMS-2 and Lisp.

3.2. Binary Application Program Interface (BAPI)
(Binary Application Software <-> LPOS)I

This interface is the machine code level calling sequences to the LPOS. It is the binary
level version of the SAPI. This is logically the same interface as the Source Application
Program Interface described below but may require a separate standard if the compiler ven-
dors are to be decoupled from the LPOS vendors. As an example of a BAPI, some ma-
chines use a set of software interrupt instructions to call operating system routines; the spe-
cific interrupt numbers and the specific conventions for parameter passing are part of the
BAPI. Without a common interface at the binary level a separate version of each compiler
(or at least its code generator) may be required for each different implementation of the
LPOS software, and code compiled by different compilers may not operate together. Note
that even with standardization of the BAPI, we have at best a set of standards, one for each
processor or processor family.

I
I

15 3-E-21



OSSWG Reference Model Vers. 1.021

................... Apicto

I
Pt o foo°oo°°o the Ada o°°° Run-Time Eniomn (ARTE)°°°1

3.3.°ata-ase °erne Interfac (D• Ko ) 3 oo oo°°o

..................

parts of system levelt copnnLOS DSetc) be fulyineraed(ie b prto

t T LTbra w part of te S eto.cm............ l :
• . o . . . ......... . .. .. . .. . . i p m at ,,

bualtsinf the APS BM a haveTbe vionmto o('The)wihcol ed I
poor DM efrac.I h ata base kernel I nterface isofgeerlIseulesIt

inef(e(A a Bas oe per-at Byste anaheefoent sertem inerae.I
codse spraeseial uiroe inut-erfasce ha i rednire thse systlems I

3..araphic sste erone nterac (GRKIBM ),bflyinertd(e.bpatf
thT);theefreth (Gra ais angage Sy-te (DBS) muthv3ficetacs

cialtzed low- teTBsitgrtdwihlwlevel OSfntosfrpromneraons If special seves aroe neededo I
thentsms vd thiseee interfaces willtbe required.DBt is ntcera this pintewhethe theapiat pro-

gramt interfae (API) will ayvet be sufiietiorth nee of " the piS, ang uagIn eae o

implementation.. ... 3vte

3..pocrBM reaoNetwork Intefatabae (enlntreis)fgnrlusflest

apcTonporstethis interface separatesthe bPOSasftwaretfro the lclaeneorstar/hatprwrem
sustemThe (GPI an AEto teforatn maystproad theirefe o a setarof interfaces t

igue -> I

Partsnaton ofteAaRnTm Evrnet(RE

3.3. Datal Basea Ketwork Interface (LAI)I
(Data asnl <-area aetwr Mangeen PSystem

toeTh B teTBis integratspaaested wth lowaefoh levl arofe Ohnetorsw/dae OSmo

nsustm h GRSFNTefr a provide the nee interfaces for th DBSTeD setf interfaces hDBS ysemuss oaces te -C o peiaizd S omoens.Wihot DK
built~~1 into2 th ISaDM a aet ebit"o o f'h S hc ol edt

poor~~ DBSpromne I th abaekreinefcisognrlueunsso



OSSWG Reference Model Vers. 1.02

that the LPOS software can use. If the SAFENET standards do not p -ovide usable inter-
faces then the OSSWG OSS will need to define these important inteilaces.

3.6. Local Device Interface (LDI)
(Local Devices <-> LPOS )

The LPOS software can be written with device drivers included for the specific system de-
vices, but a more modular system would be possible if there were standard device driver
interfaces. Device driver interfaces make it easier to add new devices to the system or to re-
arrange the configuration of devices. The LDI can be at two levels: at the LPOS to device
level if the device drivers are custom built into the LPOS or at the LPOS to device driver
level if a device driver interface is defined for the LPOS. Defining a device driver interface
allows a new device to be added to an existing OS by adding a new device driver rather
than requiring a new version or modification of the OS.

3.7. Local Hardware Interface (LHWI)
(Local Hardware <-> LPOS)

This interface is usually hidden (i.e., proprietay to the LPOS vendor). This interface is
hardware dependent and should probably not be standardized by the NGCR effort. This
interface includes as a subset the interface to the backplane. While the backplane hardware
itself will be built to NGCR standards there may not be a standard, board-level, hardware
interface to the backplane. This interface to the backpiane and other local hardware will
then depend on the design of a particular board. The CSR standardization effort, which is
affiliated with the backplane effort, is standardizing some of the board-level register
assignments but will most likely leave a lot of room for hardware specific register assign-
ments.

3.8. LPOS - SRAX Coordination Interface (LSCI)
(LPOS <-> SRAX)

This 'interface' is primarily a set of protocols, data formats and conventions that provide
communication between an LPOS and the SRAX. The functionality provided by this
interface, to a large degree, determines the amount of coordination of LPOSs available to
the SRAX component. If there are more than two levels in the operating system hic--rhy
then there may be the need for multiple interfaces. This interface may be hidden (i.e., pro-
prietary to the operating system vendor) in a system where both the LPOS and SRAX are
developed as a single system.

3.9. LPOS to LPOS Interface (OSOSI)
(LPOS <-> LPOS)

This interface allows one LPOS to communici;,: with other LPOS instances in the system
and allows instances to share resources and to cooperate with each other. This interface is
needed if the goals of reliability and dynamic reconfiguration in a heterogeneous system are

17
3-E-23



OSSWG Reference Model Vers. 1.02

to be provided by the operating system rather than being available only if supplied by the
application software. The scope of the services provided by this interface depends on the I
level of coordination needed among die separate processor nodes. Note that these inter-
faces are not application program interfaces although the OSOSI may be necessary to sup-
port the fuctionality provided by some parts of the application program interfaces.

An example of the type of communication reeded is when two LPOS nodes share a mem-
ory board across the backplawx the twc n-ces must coordinate with each other to allocate I
and use the memory. Without an OSOSI the application developer will have to perform all
the memory management coordination in the application. Another example of the kinds of
messages needed are those to coordinate the live insertion or removal of processor boards
in a running system as supported by the NGCR backplane.

3.10. Project Support Environment Interface (PSEI) I
(Project Support Environment <-> LPOS)

This interface provides a means for the PSE to interact with the LPOS for loading software,
testing, debugging etc, In many systems this interface would be removed before the sys-
tem became operational The standardization of this interface will make it easier to have a I
common PSE for different LPOS instances. Some systems will have a different, hardware
based, non-intrusive testing interface to the LPOS. The non-intrusive testing interface is by
its design invisible to the LPOS hardware and software and therefore is not important to the
NGCR OS Standards effort even if it is of extreme importance to a particular project.

3.11. Source Application Program Interface (SAPI) I
(Source Application Software <-> LPOS) I

This interface is the one that is normally thought of when OS interfaces are being dis-
cissed. This is the interface (or set of interfaces) which the applications programmer uses
to develop embedded systems. This is the high order language bindings (Ada etc.) to the I
OS system calls. The BAPI is the compiled, binary version of this interface.

3.12. User-Machine Interface (UMI)
(User <-> Application) 1

The User-Machine Interface is the interface between the application user and the application
programs. The hardware used for this interface is often some combination of special pur-
pose display devices and user input devices. This interface can be considered a special form
of device interface for which a standard set of device driver commands would be useful Lo
promote software transportability and easy movement of development engineers among
projects and users among embedded systems. Any standardization at this level may come I
out of the NGCR Graphics Language/Interface working group. Many existing operating
systems have ve'y little support for the UMI except for perhaps a command line parser

I
18 3--:



I OSSWG Reference Model Vers. 1.02

I 4. Operating System Services

This section describes the major groups of operating system services that may be requirdI of the NGCR OS. Not all of these services require a programming interface; therefore we
can describe the services as either explicit or implicit services. Explicit services are those

that can be accessed from an application program (via the API) and generally are only pro-
vided when requested. Implicit services, on the other hand, are services that the OS pro-
vides without a direct request. An example of an implicit service is the prevention of one
program from writing over the memory of another. An example of an explicit service is a
call to an OS routine to output a block of memory to some device.
The OS services often are available at or support more than one of the interfaces described
in section 3. For each of the services in this section is listed the associated interfaces.

4.1. Language Support Services

Service's Interfaces: ARTEI

Navy languages and their standard libraries have specific OS needs that the NGCR OSS
should meet. This section emphasizes the needs for Ada support because that language is
currently required for all new weapon systems and major modifications to weapon system
programs.

4.1.1. Ada Language Support Services

These services support the use of the Ada programming language. This section describes
some special needs of the language which may be addressed by services within the system.

4.1.1.1. Full Ada Language Support

While an NGCR OSS compliant operating system may be implemented in various lan-
guages it should support the execution of programs written in Ada. At the least this means
that the operating system together with the compiler's rn-time library should include all
necessary parts of an Ada Run Time Environment (ARTE).

For highest efficiency some parts of the ARTE should be an integral part of the operating
system although the interface definition itself need not depend on thE . integration. An ex-
ample of an integration problem is that of task scheduling. Many current implementations
of an ARTE "on top of" an existin- npt-rating system schedule Ada programs as single en-
tities. If an Ada task is running and becomes blocked, the OS does not consider other tasks
in that program for execution, but only considers other programs.

4.1.1.2. Exception Propagation to OS

When an exception from an application or hardware event is propagated to a operating
system this service handles the communication of the event to the proper application rou-
tine.

4.1.1.3. Interrupt to Task Mapping

When an interrupt occurs, this service will ensure the correct mapping from interrupt to
Ada task is made (even when the interrupt and tasks are located on separate processor
nodes of an SRAX level distributed operating system).

19 3-E-25



OSSWG Reference Model Vers. 1.02 1
4.1.1.4. Priority 1
These services support the full priority semantics of the Ada tasks. 3
4.1.1.5. Rendezvous

These services support the rendezvous of tasks (from tasks being implemented as within 3
one single process to tasks being implemented as distributed processes).

4.1.2. Support for Other Languages 5
Other languages have fewer requirements on the OS than Ada. The C language itself places
almost no requirements on the OS. The usual C language libraries, however, require sim-
pie services like byte stream I/O and the ability to create and receive signals. The CMS-2 I
language also has few requirements on the OS. Lisp requires support for garbage collec-
tion whirh can be provided by the hardware and the OS or provided by the Lisp Run-Time
system. U
4.2. Architecture Dependent Services 3
Service's Interfaces: LDI, LHWI, LANI, GRKI, OSOSI

These services allow the system to interface with non-NGCR resources such as computers,
networks, and operating systems. This will facilitate portability, technology insertion and
the reality that the NGCR system will need to interface with many existing systems which
will be in use for many decades to come. These services may allow the system to interface
with today's Navy standard computers such as the AN/UYK-44 or AN/UYK-43 as well as
special purpose computers such as the AN/UYS-1. This set of services also includes
means to access the special hardware features of a system and is in effect a standard way to
access non-standard functions I
4.3. Capability and Security Services I
Service's Interfaces: all interfaces13

These services support the ability of the system to control usage such that system integrity
is protected from inadvertent or malicious misuse. These protection services provide a
mechanism for the enforcement of the policies governing resource usage. Note that many
of the security services are implicit services, i.e., they are provided without an explicit re-
quest to the operating system. There are two distinct classes of system access with which
operating system services must be concerned: physical access and logical access. 3
Security services at the physical level are used to protect against security compromise,
given unauthorized personnel may have physical access to system hardware. Typically, the
physical access is to a terminal and/or terminal/display cables; however, physical access
may also include network cables, central processing units, disk drives or tape drives. Dif-
ferent types of physical access by unauthorized personnel may require different operating
system services and/or hardware to support secure operation. For example, if unauthorized
personnel have physical access to the network cable, then services may be needed to sup-
port the encryption of any secure data passing through dihe network. This ", because a per-

I
20 3-E-26



OSSWG Reference Model Vers. 1.02

son may hook a data reading device to the cable without needing to get access via the oper-
ating system.

Logical access is the ability to interact with the operating system via a terminal/display. Se-
curity services at the logical level can be implemented through passwords and watchdog
timers.

Capability services attach operation lists which limit functions' (processes') ability to act on
resource objects. This is to ensure the resources are not misused. Access to resources can
be protected by services using capability lists as well as access lists, lock/key mechanisms,
global tables or through dynamic protection structures services.

4.3.1. Prevention of Unauthorized Access

Access to the system may need to be guarded from attempted access by unauthorized per-
sonnel. The points of access to the operating system which we typically are concerned with
are through the SAPI or PSEI. Given the mode of operation (system high, multi-level,
open) at which the system is operating, these services differ and have differing implications
on other system services (such as reliability, naming etc.) and system performance.

4.3.2. Prevention of Data Compromise

These services prevent access of data by users not authorized to the data. These services
may be implemented using access lists on files (and directories) and/or encryption of data
or in other ways.

4.3.3. Prevention of Service Denial

These services ensure that a service request will be met by the operating system in a rea-
sonable time if the requestor is authorized to use the service. These services ensure that a
bandit user or process cannot cause system malfunction by monopolizing system services
or resources.
4.3.4. .i.Security Administration;:.

This category involves services to allow the managing of the security system including the
administration of permissions to personnel, data, and services as well as capability lists. In
addition, it permits the administration access mechanisms (passwords or whatever) and
services whicii allow the system to switch modes of operation. The services will likely be
accessed by the system operator with security responsibilities through the system operator
services.

4.4. Data Base Services

The database management system in an embedded system has several functions, including
access control, consistency checks, maintaining consistent copies for fault-tolerance and
security. The need for Data Base Services as part of the OS arises because of the interaction
of the DBMS's need for performance and multi-level security needs. If parts of the OS are
part of a Trusted Computing Base (TCB) for a multi-level secure system, then the lower
level parts of the database management system (the "database kernel") will have to be part
of that TCB or be built "on top of' the OS. The Data Base Services may be specialized
services for use to support a DBMS or they may be of general use for application pro-
grams. The NGCR Data Base Working Group has the responsibility for defining inter-
faces for a full DBMS.

21 3-E-27



OSSWG Reference Model Vers. 1.02 1
I

4.5. Data Interchange Services

Service's Interfaces: OSOSI, SAPI

This set of services provides data conversion among different data representations. One
scheme for providing these services is to have a single canonical representation for the im-
portant data types (integer, real, time etc.) and then each implementation of the OS or com-
piler would provide conversion functions between the canonical representations and its
own internal representations. 3
4.6. Event and Error Management Services

Service's Interfaces: ARTEI, DBKI, GRKI, LANI, LDI, LI-W , UMI, OSOSI, PSEI, I
SAPI

These services provide a common facility for the generation and communication of asyn-
chronous events among the system aind application programs. A major use of the event
services is to report error conditions, but they may be used by device drivers and the OS to
provide an indication of some condition to the application programs. 3
4.'. File Services 3
Service's Interfaces: BAPI, DBKI, LDI, LANI, OSOSI, SAPI

These services allow the system and applications to create permanent storage locations for I
data. The data is stored on files and the files are organized in directories. Files are managed
and accessed through logical names by the many system components that use the files,
such as the application, system operator, and program support environment.

4.7.1. Naming and Directory Services

These services allow the access of files and directories through logical names rather than
the actual hardware device naming conventions. The services may allow sharing of files at
various levels. For example, the services may not allow any shared naming of files and di-
rectories between systems, or thev may allow shared files by explicit naming, or they may
allow shared files by implicit naming. The directory services present a view or views of the
directory structure to the application or systemn operator. I
4.7.2. Real-time Files

Real-time systems often need special files to ensure fast, predictable and consistent per-
formance in time critical situations. The need for a known response time for a given 1/ 0
function drives the design of these files and services. One service may preallocate the com-
plete disk space needed for a file at creation time, while another guarantees that records
within files are aligned in an optimal way (such as along word boundaries). Services may
support the access of records within the file in ways that make response time constant or
bounded, such as direct access. 3

I
22 3-E-28



OSSWG Reference Model Vers. 1.02

4.7.3. File Modification Primitives

Primitive services for files and directories include the ability to read a portion of the file,
write to a portion of the file, open access to a file, create a new file, close access to a file,
and delete a file. These services may be very complex. For example, the access to read or
write may be direct (by record number), sequential (one record at a time) or indexed (by a
key).

In addition, services may be needed to support the merging, appending, splitting, and
copying of files. The services may need to support a variety of file structures such as
linked, segmented, contiguous, serial or directory.

4.7.4. File Support Services

Additional services support the physical devices on which the files and directory reside.
These services include the dismounting/mounting of medium, the formatting of medium,
and the partitioning of media.

4.8. Generalized I/O Services

Service's Interfaces: DBKI, LANI, LDI, LHWI, UMI, OSOSI, SAPI

Generalized I/O services provide higher level constructs and functions for doing I/O to de-
vices that do not fit well into the common file I/O paradigm. These services include non-
blocking 1/O and I/O to special devices. In non-blocking I/O output or input is initiatedunder program control but the program continues execution while the transfer takes place.
Many special hardware devices may need I/O supervised by the operating system.

4.9. Graphics Kernel Services

Service's Interfaces: GRKI

This interface provides low-level access to graphics services. The NGCR Graphics Lan-
guage/Interface may require low-level access for performance reasons. It is not clear at this
point whether the application program interface (API) will be sufficient for the needs of the
Graphics Language/Interface (GII) implementation.

4.10. LPOS to LPOS Communication Services

Service's Interfaces: OSOSI, SAPI

Thcse services support a standardized way of passing information between LPOSs of
NGCR operating system(s). It is to be determined whether LPOSs within an NGCR oper-
ating system implementation can be supplied by different vendors and plugged into the
NGCR operating system. If this is the case, services must support a common set of proto-
cols so that the LPOSs of the system are able to coordinate services and resources with
each other. This coordination may be done all at the application level with various applica-
tion programs communicating with each other through their individual LPOS. This would
be fully supported by the SAPI. Alternately, the LPOSs could also communicate and co-
ordinate resource usage directly with each other via the SRAX. This would provide the
primitives for such services as automatic dynanc load leveling and automatic reconfigura-

23 3-E-29



OSSWG Reference Model Vers. 1.02 1
tion. In either case the support of LPOS to LPOS communication will require a common set 5
of OS level messages and protocols whether it is provided by the application, by agreement
of the vendors or as part of the NGCR OSS.

4.11. User-Machine Interface (UMI) Services

Service's Interfaces: UMI, SAPI, PS 3
"These services allow I/O to be interchanged between the system and the user of the emhed-
ded system through the SAPI or PSEI in an efficient and standardized way. Services that
may be included are menu services, windowing services, command line services, parsing
services, and pointer device services. These services will interface with low level device
services as needed, while presenting a higher level view to the human user. Higher level
interfaces for much of this set of services may be provided by the Graphics Lan- I
guage/Interface Working Group (GI4IWG) of NGCR rather than the OSSWG. Note that
the User-Machine Interface Services provide the building blocks ( menu utilities, command
parsers etc.) for building the user interface while the system operator services make avail- I
able system status and control functions to appropriate application programs with the
proper security level.

4.12. Networks and Communications 3
Service's Interfaces: BAPI, LANI, LHWI, OSOSI, SAPI 3
These services involve the information exchange between the local processor nodes of an
NGCR system. 3
4.12.1. Network Control and Status

These services provide authorized users the capabilities to determine the status of network 3
components and to control network working parameters. Many of these service2 logically
reside in the LPOS. Other control and status services, however, logically reside in the
SRAX. 3
These services include system startup configuration, network restart, network initialization,
network security, network scheduling network monitor, network configuration
management, and time. They provide services that allow the network to efficiently use its I
resources. These services may make use of the OS scheduling services described in the
scheduling services section, section 5.17.

4.12.2. Inter-Process Communication

This service allows a local processor node's local operating system to request a procedure,
function or transaction to be performed on another processor node or logical resource.
There are various forms of inter-process communication, some of which specify the re-
ceiver, some specify the sender, some are synchronous (i.e., delay the sender until the I
communication is completed), some are asynchronous etc. The particular forms that need
to be specified by the NGCR OSS are to be determined.

I
3-E-30

24 3



OSSWG Reference Model Vers. 1.02

4.12.3. Distributed Voting

This service allows the application to request and collect 'votes' or answers from applica-
tions distributed across some communication medium. The request may require processing
and/or information from the voters, and the answers returned by the voters may be simple
(yes/no) or complex. The resulting votes will be analyzed by either distributed voting ser-
vices, other services (such as reliability services) or application program(s). Distributed
voting services will handle situations where a vote is not received in the appropriate time.
This service will likely make use of the synchronization and time services.

4.12.4. Remote Resource Allocation

This service allows a local node to allocate for usage a resource which is physically located
at another node within the set of cooperating local processor operating systems or within
the set of processors controlled by an SRAX level operating system.

4.12.5. Naming

These services allow the usage of system resources through logical names rather than the
actual hardware device naming conventions. Furthermore, they allow the resources of other
processor nodes to be accessed via a logical name so that no knowledge of the resource's
location is needed and the resource's location may change over time. Logical names are
also used by security services to hide resources from unauthorized processes by only let-
ting authorized processes know the logical name that is needed to use the physical resource.

The logical name to physical name relationship can be one to many, many to one, or many
to many. Many times one physical resource may have multiple logical names as well as
one logical name representing a 'bank' of available physical resources. These services must
provide the proper resolution of names, logical and physical, in all of these cases.

4.13. Process Management Services

Service's Interfaces: ARTEI, DBKI, OSOSI, PSEI, SAPI

Typically the following process management services are required by appli-
cation programs:

a) Create a process and make it ready for execution
b) Destroy a process and recover its resources
c) Evaluate a reference to a process
d) Evaluate a connection to a process, where a connection is logical communica-

tion path between any two processes.

4.14. Project Support Environment Services

Service's Interfaces: PSEI

During the system development process there is a need for the Project Support Environ-
ment (PSE) to communicate with the system under development. The operating system in
the target will need to support that communication. These services may not be available at
the Application Program Interface (API) but may be accessed via a different interface.
These services may also be removed from the system when it is deployed. The types of

25 3-E-31



OSSWG Reference Model Vers. 1.02 U
services included here are down-loading of compiled programs and data into the targetsystem, uploading to the PSE of program results and trace information and the interactive Udebugging by a developer on the PSE of an application running on the target system.

4.15. Reliability, Adaptability and Maintainability Services I
Service's Interfaces: BAPI, DBKI, LDI, LANI, LHWI, OSOSI, SAPI

Robustness of a system or application is many times a desirable feature. The services sup-
porting robustness (iehability, adaptability and maintainability) are often implied services in
that there is not a direct interface to these services through the SAPI layer of the operating
system. Reliability and adaptability services deal with the need for the system to perform
functions that the application requests in a timely manner, whenever possible. Reliability is
the ability to correctly perform a job to completion, adaptability is the ability to change the
system's logical makeup (or jobs to do) over time, while maintainability is the ability to I
keep the system in operating condition. A highly adaptable system can facilitate the relia-
bility of application's functions.

4.15.1. Fault Tolerance Services

These services allow the system to react to the loss or incorrect operation of system com-
ponents at various levels of abstraction (hardware, logical, services etc.). The classical
model of fault tolerance has a three step approach. The three steps are fault detection, fault
isolation, and fault recovery. Typically implementations divide these steps into substeps or
integrate them into one or two steps. Additionally, fault diagnosis services support the I
other steps in the treatment of a fault.

Various fault tolerance strategies, such as checkpointing and voting, are implemented as a 3
collection of services comprising one or more of the steps in the fault tolerance classical
model. For example, services involved in implementing a 3 node voting scheme will in-
clude a vote comparator service (fault detection), vote analyzer service (fault isolation/fault
diagnosis), a service to pass the majority 'answer' through (fault recovery) as well as a I
service to disable the faulty resource and reconfigure the voters (fault recov-
ery/reconfiguration). 3
Service categories 'fault tolerance' and 'event and error management' may share services
with each other.

4.15.1.1. Fault Detection

Fault detection services are concerned with determining when a fault has occurred in the
system. Fault detection services are both passive and active. Active services are those
which attempt to determine the status of various system components by testing those com-
ponents. Passive services, on the other hand, try to ascertain system components by pas-
sively gathering information and watching the behavior of the system.

4.15.1.2. Fault Isolation

Fault isolation services attempt to determine the component at fault and segregate the faulty
component from the rest of the system. Services may be shared between the fault detection
and isolation service library in that they perform both functions. 3

2
26 3-E-32

i



OSSWG Reference Model Vers. 1.02

4.15.1.3. Fault Recovery

Fault recovery services attempt to bring the system into a consistent state. These services
may be very interrelated to the scheduling services, network services and data base services
depending on the recovery scheme used.

Redundancy of resources is many times needed to support fault recovery. Resources may
be data, process, processor, disk drive etc.

As parts of the system fail, it may no longer be possible to satisfy all the requirements of
the application. Services to support graceful degradation may be used to ensure that critical
activities do not fail.

4.15.1.4. Fault Diagnosis

These services deal with the system's ability to analyze the attributes of a system fault.and
determine it's cause. These services tend to be very interrelated with fault detection and
fault isolation services.

4.15.2. Fault Avoidance

These services involve the avoidance of faults before a failure in the system component oc-
curs. If a system can detect that the operation of a component is approaching the edge of its
operational range then a standby or backup component could be phased in to replace it.
Another form of fault avoidance is logging of shocks, temperature extremes etc. so that it
can be predicted that a component will not meet its expected service life.

4.15.3. Software Safety

These services involve the system's ability to keep application software from causing harm
to the system's software, hardware or user. For instance, a process may attempt to write
into another process's memory space without permission.

A good example of a reliability method which may provide software safety is a bounds
checker. The checker compares an answer supplied against the bounds. If it is not within
the bounds, the bounds checker will not allow the answer to propagate, possibly causing
damage to the system's integrity. Additionally, it may send a fault message (or security vi-
olation information, depending on the type of answers expected) to the proper service.

To enhance software safety, other services and processes should be only given the re-

sources necessary to complete their job.

4.15.4. Status of System Components

These services involve the obtrusive and non-obtrusive diagnosis of the state of system
components. For further explanation of these services see fault detection and fault diagno-
sis services. These services may additionally need to record and/or display information
concerning performance, configuration, and general system information.

4.15.5. Reconfiguration

These services allow the system to reconfigure its view of the world. This services allow
the system to substitute different resources to perform system functions such as substitut-

27
3-E-33



OSSWG Reference Model Vers. 1.02 3
ing a new physical I/O channel to support a logical channel. These services are part of the 3
API but their use may be restricted to specially authorized programs such as those used by
the system operator.

4.15.6. Maintainability U
Maintainability services provide support for the maintenance of the embedded system. A
major component of that support is the collection and logging of information about the op- I
eration of the system. Typical information to be logged are:

" Software and hardware errors during operation
• Processes which failed or almost failed to meet scheduled deadlines
* Performance metrics for system tuning
* Times when the system operated in extreme environmental conditions
* Errors reported during startup self-testing
* Attempts to violate rules of the systems security policy

4.16. Resource Management Services 3
Service's Interfaces: ARTEI, DBKI, LANI, LDI, LHWI, OSOSI, PSEI, SAPI

These services are involved in the management of the systems resources. Resources in- -
clude CPU, memory, I/O and other physical devices. Services which manage the usage of
the CPU are described in Process Management Services, section 5.13.

4.16.1. Memory Management Services

These services support the usage of the LPOS main memoy(s). These services supply a
virtual view of the memory or memories on the computer as seen by applications and per- I
form the proper mapping of virtual to physical memory (performing any swapping of
memory paging needed in the process). Memory management services provide storage to
allow process and data migration as well as initialization. The memory manager many times I
receives requests for service from the process management services to allocate and deallo-
cate memory for process usage. The major services of memory management fall into five
categories: allocating physical memory; mapping of logical address to physical storage;
memory sharing;, extending memory (virtual storage); and protecting user information.

4.16.2. Device Management Services 3
These services attempt to remove the dependencies on physical resources. The service user
sends information to and from the devices by way of logical data structures and/or device
service requests. These services mainly serve to supply four functions: device allocation, I
device control, device status, and device access.

4.17. Scheduling Services I
Service's Interfaces: ARTEL, LANI, LDI, LHWI, OSOSI, PSEI, SAPI

These services schedule or arbitrate the usage of various resources of the NGCR OS, par-
ticularly the CPU. The scheduling services must be able to queue up requests to use a par-
ticular resource. This situation is made more complicated by the common need to schedule
processes to run cyclically at a fixed period. When the resources become idle, the scheduler i
must select one of the 'requestors' of the resources to grant use the resource. These
services are listed separately rather than under the services that use scheduling to emphasize 3

28 3-E-34 I



OSSWG Reference Model Vers. 1.02

Ithat there should be uniformity and consistency of scheduling across the range of
resources.

Typically there are at least two types of scheduling occurring in an operating system: short-
term and long-term. Long-term schedulers determine which possible requestors at a given
time may actually request a resource. The short-term scheduler selects from among the ac-
tive 'requestors' which currently have need of the resource and allocates the selected'requestor' to the resource. For example, if the requestors are processes and the resource is
the CPU, then the long term scheduler manages the movement of processes from inactive
(waiting in batch queues or in hibernation) to active (in wait or execute). The short-termscheduler, on the other hand, would determine which process should execute next on theCPU. Hybrid services between the two may also be available in the operating system.

* When a request for a resource is submitted to the operating system (at some local operating
system node), it is not always serviced at that local node. The most advantageous way to
service the request may result in part or all of the work being performed at a different pro-
cessor node. Several reasons may cause this to occur including load balancing, resource
availability, computation speedup, hardware preference, and software preference. These
services may hide from the application the fact that the functionality was being performed ata different node. This has the advantage that the code needs to know little about the system

on which it is running. Alternately, the services may allow the user to specify directly onwhich logical resource the function should be executed.

3 Te priority scheduling of resources allows the requestor to have associated with it its im-
portance to use the service. More complex schemes also have a criticalness of the request
which is used for graceful degradation purposes. The scheduler(s) will use the priority in-
formation to arbitrate resource requests and to queue requests in the specific order. A pri-
ority scheduler may need to support multi-level queues to support proper execution.

Preemptive schedulers will deallocate a resource from a requestor when certain events oc-
cur. Usually this is when a requestor of a higher priority requests the resource or a speci-
fied time limit for the resource has expired.

1 4.18. Synchronization Services

Service's Interfaces: ARTEI, LDI, LHWI, SAPI, LANI, OSOSI, DBKI

These services are involved in the ability to synchronize the operations of other services,
functions, processes and/or resources. Services such as distributed voting and remote re-
source allocation will need to use these services in order to accomplish their required func-
tionality. Synchronization services are needed for both the local processor operating sys-
tem's operation and the control of the distributed system. Synchronization services may3 need to use system monitoring services in order to adjust to system changes.

4.19. System Initialization and Reinitialization Services

U Service's Interfaces: DBKI, GRKI, LANI, LDI, LHWI, OSOSI, PSEI, SAPI

System initialization includes a complete restarting of the software, starting up the attached
hardware subsystems devices, doing subsystem and system self tests and completely
initializing the database.

2
3 29 3-E-35



OSSWG Reference Model Vers. 1.02 U
System reinitialization includes restarting the software while using the existing database in- 5
formation. The software may have to be reloaded and the database may have been reestab-
lished by a system recovery. Attached hardware subsystems devices may be reinitialized.

Reinitialization should include a function to restart applications redistributed to other pro- I
cessors after a processor module failure. Within a processor, there should be a function to
initialize applications in a system with the existing software but with the database reinitial-
ized. Also within a processor, there should be a function to restart the applications in a I
system with the existing software and database retained.

4.20. System Operator Services I
Service's Interfaces: SAPI, PSE 3
The system operator needs to access and control the operating system in order to allow the
system to perform properly. If a system has an operator the major functions that need to be
supported are system control, reconfiguration and status reporting. This service today is
usually implemented through a command language interpreter which is an application pro- I
gram that provides access to these services. Note that the User-Machine Interface Services
provide the building blocks ( menu utilities, command parsers etc.) for building the user
interface while the system operator services make available system status and control
functions to appropriate application programs with the proper security level.

4.21. Time Services i

Service's Interfaces: ARTEI, LHWI, OSOSI, SAPI 3
The following time management services are likely to be needed:

a) Local Time of Day which includes the time based upon a 24 hour or 12 hourclock.

b) Measurement of elapsed time.

c) Distributed Time which would be a capability to coordinate Local Time of Day
maintained by any LPOS.

d) Requests that a Process be delayed for a specified elapsed time.

e) Requests that a Process be delayed until a specific time. 3
f) Requests for process notification at a specific time or after a specified delay. I

5. Target Domains

The domains in which the NGCR OSS are expected to be used vary greatly and vary in
several different ways. This section discusses important ways that the target systems differ
and the major implications these differences may have on an operating system and on the
NGCR Operating Systems Standards. It is expected that there will be a need to tailor or
subset the Operating Systems Standards for particular target systems. One concept is that
the OSS may not be one standard but a family of standards, each member engineered for a
particular class of target systems but having much in common with other members of the 3

30 3-E-36



OSSWC Reference Model Vers. 1.02

I family of standards. Another concept for tailoring is that there will be only one complete
set of interfaces implemented with a small OS kernel and a compilation system that links in
with each application only the functions or services needed by that application. A third
tailoring method could be to expect the OS vendors to provide an OS tailoring tool so that a
general OS can be tailored by the system engineer to fit the needs of a particular targeti system.

Note that there are multiple dimensions along which OS needs vary. This implies that there
is no simple way to create a family of OS standards which meets the needs of the different
target domains and is also smah in the number of member standards.

5. 1. Target Processor Interconnection

The processor interconnection, i.e., the means of communication between processors, canvary from a single processor system with no connection to other processors to an LPOSsystem connected via a full network to many other processors of various types.

5.1.1. Single Processor Syr! .ms

In a single processor system the OS has little if any need to support network communica-
tion services except as an alternate API for Inter-Process Communication (IPC). If there is
more than one program on the processor then some form of inter-process communication
will often be needed to allow the application programs to coordinate with each other.

I 5.1.2. Multiprocessor S3 stems

A multiprocessor system is one where multiple processors share common memory. The
sharing of common memory allows the implementation of fast synchrcrzation as well as
fast communication between processors. Many multiprocessor systems have local (or pri-
vate) memory in addition to the shared memory. This can increase the efficiency of execu-
tion of programs, but having to support two varieties of memory can add to the complexity
of the OS.

* 5.1.3. Distributed Systems

A distributed system is one which has multiple processors without any shared memory.
There are three kinds of distribution but real systems are often complex combinations of
th, three kinds of distributed and multiprocessor systems. The kinds of distribution are
classified according to the interconnection mechanism:

• Backplane Interconnection
i Local Area Network Interconnection
* Full Network Interconnection

5.1.3.1. Backplane Interconnection

Processors which are interconnected by a high speed backplane have a fast communication
mechanism, but depend upon the ca:rabilities of the backplane hardware for synchroniza-
tion and commurdcation. The operating systems in a backplane interconnected system need
to use more complex synchronization techniques which tend to be somewhat slower than in
multiprocessor systems, however the SAPI for those services may not differ.

I 5.1.3.2. LAN Interconnection

I
3 31 3-E-37



OSSWG Reference Model Vers. 1.02 3
In an LAN interconnected system the processor to processor communication is via the local 3
area netwo.k. This kind of distribution is limited to processors that are on the same local
network without any storage of messages between nodes of the network. In this type of
system the reliable communication needed for inter-process communication (PC) can beachieved via simple send and acknowledge schemes although the communication speedadds significant w erhead drn-i compared to backplane interconnection.

5.1.3 3. Full Network Interconnection 3
In a fidl network interconnected system there are multiple LANs or at least multiple LAN
segoc -its with bridges and/or gateways watch use store and forward communication
schemes. The lack of a direct network connection between processors significantly
incre,. zes the complexity and overhead required to produce a reliable IPC. Depending upon
the orguiization of the SAPI the difference in complexity may not be visible to the
applicaton designer except as longer communication delays of a particular implementation.

5.2. Security 3
A major goal of the NGCR pogram is to ,rovide systems which can be used to meet the
security needs of the Navy. The security needs of a project vary with the project and can
be met in a variety of ways. For this model w t ,All group the security needs according to I
the type of access control required.

5.2.1. Targets with No Security Requirements

Many Navy systems have no special security requirements because they either do not pro-
cess classified or sensitive material or because they operate in facilities that meet the se-
curity requirements with physical security alone. For these systems the OS would prob-
ably not implement the security services. For compatibility with secure systems, however,
there may be limits on the functionality provided by the OS through the API.

5.2.2. Targets with Discretionary Access Control Requirements

Many non-embedded computer systems provide some form of Discretionary Access Con-
trol (DAC) , usually via passwords and file permissions. The Department of Defense -
Trusted Computer System Evaluation Criteria defines the classes of computer security or
trustedness provided by computer systems. Class C systems provide discretionary access
control which is a means of restricting access to objects based on their identity or the iden-
tity of the groups to which they belong. Supporting discr, tionary access controls requires
that there be interfaces to the OS by which the permissions, passwords etc. can be
changed. Also required is a means of reporting or processing access violations.

5.2.3. Targets with Mandatory Access Control Requirements

Mandatory Access Control (MAC) is a means of restricting access to objects based on the
sensitivity of the information contained in the objects and the formal authorization of sub-
sects to access information of such sensitivity. MAC adds only minor interface require-
ments but can significantly increase the amount of implicit services required of the OS.

II
32 3-E-38



OSSWG Reference Model Vers. 1.02

* 5.3. Robustness

Robustness refers to how well the system can be expected to continue operation and how
quickly it can be repaired when some part malfunctions, it also refers to features of a sys-
tem that prevent unsafe actions from taking place.

5.3.1. Reliability and Availability

Reliability and availability can be achieved by fault avoidance and/or fault tolerance. Fault
avoidance is achieved by increasing the reliability of the hardware components and apply-
ing conservative design practices. Fault avoidance is primarily achieved via hardware de-
sign. Fault tolerance is achieved by the use of redundancy and requires software support.
S7ault tolerance is concerned with data integrity and processing integrity. Data integrity
deals with providing survival of data when components fail and is closely linked with
database system technology (data replication, atomic transactions etc.). Processing in-
tegrity tries to insure correct and continuous processing across instances of component
failure. Processing integrity is especially important in safety-critical real-time systems.

5.3.2. Software Safety

Software safety has the goal of preventing any unsafe action even in the face of incorrect
software processing. Software safety often involves independent monitors (either softwareSor hardware) which check the "reasonableness" of results or actions of the system.

5.3.3. Maintainability

Maintainability of a system describes how quickly and correctly system errors or failures
can be determined and corrected. The OS can provide services that aid in maintainability
including the logging of system errors (hardware and software), reporting of built-in-test
results and usage logs for scheduling preventative maintenance.

5.4. Richness of the Set of OS Services

The target domains of the NGCR OSS vary in the number of OS functions needed. A
small, single purpose system or one with an extreme emphasis on performance may need a
very small, finely tuned OS; a general purpose system may need many services to be pro-
vided by the OS. This is somewhat a matter of philosophy. One view is that the NGCR
OSS should be a minimal set of interfaces, leaving to the particular project the job of im-
plementing higher level functionality in a project specific manner. Another view holds that
the NGCR OSS should be a full set of interfaces so that there can be a large amount of
software portability among projects.

* 5.5. Real-Time Requirements
Real-time computing is dead-line driven; i.e., computing that involves intricately inter-
twined computation deadlines (often imposed by external stimuli) on short time scales.
While the NGCR OSS are for embedded systems, not all embedded systems have real-time
requirements and those target systems with real-time requirements have various needs.

5.5.1. Non-Real-Time Target Systems

Some embedded systems are used for applications that have no stringent time demands.
Examples of these systems are systems used for planning and for maintenance support.

33
3-E-39



OSSWG Reference Model Vers. 1.02

These systems still need an efficient high performance operating system but the results'
correctness do not depend upon their being available at a particular time.

5.5.2. Real-Time Target Systems 3
Real-time systems are probably the most common targets for me NGCR OSS compliant
operating systems. Therefore the OSS must surely support the needs of embedded real-
time systems. Common OS real-time requirements include the ability to specify a dead-line
for completion of a process, the ability to specify that a process is to be run cyclically with
a specific period, the ability to specify that one process or program is more important to the
system than another and the ability to rearange the importance of processes or programs as
the operating mode of the system changes.

5.5.3. Critical-Time Target Systems 3
Critical-time targets are those which have real-time response requirements that, if not met,
result in system failure. These systems may even require that results not arrive too early,
but precisely when it is needed. Examples of these target systems are many safety critical 3
systems such as flight control systems. To support these target systems the OSS will need
to allow flexible and predictable scheduling.

,I

I
I
I
I
I
I

34 3 -E- 40 I



I Appendix A

I
A. NGCR OSSWG Background

The U.S. Navy has embarked on a new computing resources standardization effort called
Ne- Gee. tio'e Compttr Resources (NGC2R). This programii dtsigned to fulfiUi the
Navy's need for standard computing resources while allowing it to take advantage of com-
mercial products and investments and to field new technology advances more quickly and
effectively. The program revolves around the selection of standards in 10 interface areas.
One cf these is an operating system standard. The general requirements for this operating
system are that it be Ada-oriented, real-time, distributed/networked, multi-level secure,
reliable and realizable on heterogeneous processors. The effort to establish such an inter-
face standard was initiated at the start of 1989 and will draw on industry expertise. An ini-
tial operating system interface standard is expected in 1993 and the final standard is ex-
pected to be usable in the procurement of Navy systems in 1995.

The Navy has a long history of developing and using standard computer products. When
computer technology was in its infancy, the Navy wielded significant influence in the mar-
ket, setting its own requirements and developing its own computer designs, including In-
struction Set Architectures (ISAs). Standard computer implementations (i.e., buying
"boxes") and upward compatible ISAs have been the foundation of the Navy's computer
policy. This policy has been motivated by the fact that software can adapt a common com-puter design to meet many different applications

But the Navy's current computer standardization approach is having difficulty remaining
competitive in an environment where rapidly changing technologies permit more efficient
and effective solutions to the range of Navy computing system requirements.

Thus the objective of the NGCR program is to restructure the Navy's approach to acquisi-
tion of standard computing resources so as to take better advaitage of commercial advances
and investments. It is expected that this new approach will result in reduced production
costs (through larger quantity buys), reduced operation and maintenance costs, avoidance
of replication of Navy RDT&E costs (for separate projects to develop similar computers),
and more effective system integration.

The proposed new approach is an open systems approach base/. on the establishment of
standards in 10 interface areas:

Multisystem Interconnects:
Local Area Network - SAFENET I
Local Area Network - SAFENET 11
High Performance Local Area Network

Multiprocessor Interconnects:
Initial Backplane
High Performance Backplane
Switch Network

Operating System
Data Base Management System
Programming Support Environment
Graphics Language/Interface

Application of these interface standards will change the Navy's approach from one of buy-
ing standard computers to one of procuring computing resources which satisfy the inter-

I
I A- 1I 3-E-41



Appendix A I

faces defined by the standards. These standards will be applied at the project level rather
than a Navy-wide procurement level.

These interface standards will be based, to the greatest extent possible, on existing industry
standards. In cases where existing industry standards do not meet Navy mission-critical
needs, the approach is to further enhantv the exisdig standards jointly with industry, thus
assuring the most widely-accepted set of commercially-based interface standards possible.

The NGCR Operational Requirements describe some of the desired characteristics of the
computer systems which can be procured using the new interface standards:

" a full-range family of computing resources, related through a set of interface stan-
dards, in a wide range of performance levels; software compatibility at appro-
priate levels is a necessary part of the "family" relationship

" integration of multiple, dissimilar (heterogeneous) processors U
" internal and external standard interconnection; i.e., an internal computer intercon-

nection (bus) to provide for growth in internal capability by configu.-ing more
modules and an external interface to provide for combining computing systems I

* incremental computing system growth; i.e., if a new function is needed, new
modules or computers would be added to a system, and adding the new com-
ponents would not require replacing the old system. 5

An operating system interface standard is a key element in the success of NGCR. In this
work the OS is that set of functions which control operation of all the computing system
hardware and software elements of a platform in a coordinated, uniform manner that is
consistent with the mission of the platform. The OS provides functions for system and
platform management and control The OS functions include system initialization, fault tol-
erance and recovery, global resource allocation and inter-process communication. The OS
will have components in each processing element. The OS interface standard is not a design
of the OS component of each processing system but is, in part, a specification of an appli-
cation program interface common to all computing elements. (The appropriate specification
level for this interface must be determined). This provides the basis for system-wide
dynamic task and resource allocation. Global dynamic task and resource allocation is the
basis for system-wide fault tolerance and recovery in heterogeneous processing systems.
Some implementations of the OS Standards will provide the ability to achieve multi-level I
security at the system level. Conformance to other Navy directives requires that the OS be
Ada-oriented.

The above system characteristics and OS requirements have some implications for the OS
interface standard. Most important of these is that the OS "standard" will most likely actu-
ally be a family of compatible interface standards, although the exact nature of the family
relationship is yet to be determined.

AI
I
I

A-2 3-E-42



I Appendix B

I
B. Acronyms

API Application Program Interface
ARTE Ada Run Time Environment
ARTEI Ada Run-Time Environment Interface
BAPI Binary Application Program Interface
CPU Central Processing Unit
DAC Discretionary Access Control
DBKI Data Base Kernel Interface
DBMS Data Base Management System
GL/I Graphics Language/Interface
GI1IWG Graphics Language/Interface Working Group
GRKI Graphics Kernel Interface
IL0 Input / Output
IPC Inter-Process Communications
ISA Instruction Set Architecture
ISO International Standards Organization
LAN Local Area Network
LANI Local Area Network Interface
LDI Local Device Interface
LHWI Local Hardware Interface
LPOS Local Processor Operating System
MAC Mandatory Access Control
NGCR Next Generation Computer Resources
OS Operating Systems
OSI Open Systems Interconnect
OSOSI LPOS to LPOS Interface
OSS Operating Systems Standards
NGCR Operating Systems Standards Working Group
PSE project support environment
PSEI Project Support Environment Interface
ROM Read Only Memory
RPC Remote Procedure Call
RT Real Time
RTNI Real-Time Non-Intrusive Testing
SAPI Source Application Program Interface
SAPI Source Application Program Interface
SRAX - C SRAX - Centralized Part
SRAX - L SRAX - Local Part
SRAX System Resource Allocation Executive

I 1B Trusted Computing Base

User Machine Interface

I
I
I

IB-1 3-E-43



I Index

I
Acronyms, I
Ada, II
Ada Language Support Services, 19
Ada Run-Time Environment, 7, 15
Ada Run-Time Environment Interface, 15
Ada task level concurrency, 10
Adaptability, 26
API, 5, 7, 9
application developer, 3
application program interface, 5, 7
Application Programmer's View of System, 4
application user, 3
Architecture Dependent Services, 20
ARTE, 7
ARTEI, 15
availability, 33
Background, A- I
Backplane, 21
Backplane Interconnection, 31
BAPI, 7, 15
Binary Application Program Interface, 7, 15
Capability, 20, 21
checkpointing, 26
concurrency, 10
Critical Interfaces View, 14
Critical-Time Target Systems, 34
DAC, 32
Data Base Kernal Interface, 16
Data Base Kernel Interface, 15
Data Base Management System, 16
Data Base Services, 21data conversion, 22

Data Interchange, 22
DBKI, 15, 16
DBMS, 16, 21
Device Management Services, 28
Directory, 22
Discretionary Access Control, 32
Distributed System Nodes, 12
Distributed Systems, 31
Distribution, 11
encryption, 20, 21
Event and Error Management, 22
Exceptior' Propagation, 19
Explicit services, 19
family of standards, 30
Fault Avoidance, 27, 33
Fault Detection, 26
Fault Diagnosis, 27
Fault Isolation, 26
Fault Recovery, 27
fault tolerance, 33
Fault Tolerance Services, 26

I-1 3-E-45



Index i

File Modification Primitives, 23 1
File Services, 22
File'Support Services, 23
Full Ada Language Support, 19 3
Full Network Interconnection, 32
Generalized I/O Services, 23
GL/I, 23
GL/IWG, 24 U
Graphics Kernal Interface, 16
Graphics Kernel Interface, 15
Graphics Kernel Services, 23
GRKI, 15, 16
Implicit services, 19
Initialization, 29
Integrated System Node, 10
Inter-Process Communication, 24, 31, 32
Interrupt to Task Mapping, 19
Introduction, 1 I
IPC, 31, 32
ISO, 1
LAN Interconnection, 31
Language Support Services, 19
LANI, 15, 16
LDI, 8, 15, 17
levels of abstraction, 3
LHWI, 15, 17
Local Area Network Interface, 15, 16
Local Device Interface, 8, 15, 17 I
Local Hardware Interface, 15, :7
Local Processor Node Model from Applications Perspective, 5
Local Processor Node Model from OS Perspective, 7
Local Processor Operating System, 6
Logical Device Level, 3
LPOS, 6, 23, 24, 28
LPOS and SRAX, 13 I
LPOS to LPOS Communication Services, 23
LPOS to LPOS Interface, 15, 17
LPOS to SRAX Coordination Interface, 17 I
LSCI, 17
MAC, 32
Maintainability, 26, 28, 33
Mandatory Access Control, 32
Memory Management Services, 28
Multiprocessor Systems, 31
Naming, 22, 25 I
network, 21
Network Communication Model, 9
Network Control and Status, 24
Network Model from Applications Perspective, 9
Network Security, 21
Network/Application Model, 8
Networks and Communications, 24
NGCR, 1NGCR OSSWG Background, A-I

1-2 3-E-46 3



Index

No Security Requirements, 32
Non-Real-Time Target Systems, 33
Operating System Level, 3
Operating System Services, 19
operator, 3, 30
OSI, 1
OSOSI, 15,17
OSS, 1
OSSWG, I
OSSWG Background, A-I
Physical Device Level, 3, 4
Prevention of Data Compromise, 21
Prevention of Service Denial, 21
Prevention of Unauthorized Access, 21
Priority, 20
process, 6, 7, 9, 20, 21, 25, 27, 28, 29
Process Management Services, 25
Processor Interconnection, 31
processor node, 5
Program Design Level, 3
Program Distribution, 10
program level concurrency, 10
project support environment, 5, 25
Project Support Environment Interface, 8, 15
Project Support Environment Services, 25
PSE, 5, 25
PSEI, 8, 15
Real-Time, 33
Real-time Files, 22
Real-Time Non-Intrusive Testing, 8
Real-Time Target Systems, 34
Reconfiguration, 27
Reinitialization, 29
Reliability, 26, 33
Remote Resource Allocation, 25
Rendezvous, 20
Resource Allocation, 25
Resource Management Services, 28
Robustness, 26, 33
RTNI, 8
SAPI, 3, 7, 8, 15, 18
Scheduling Services, 28
Security, 32
Security Services, 20
signal processing, 10
Single Node/Application Model, 6
Single Processor Systems, 31
Software Safety, 27, 33
Source Application Program Interface, 3, 7, 15, 18SRAX, 11, 23, 24

Status of System Components, 27
Support for Other Languages, 20
Synchronization Services, 29
System Design Level, 3

1-3
3-E-47



Index -

System Designer's View of the System, 4 U
system operator, 3
System Operator Services, 30
System Overview Model, 5
System Resource Allocation Executive, 11
system service requests, 6, 7
System Views, 2
tailoring, 31
Target Domains, 30
Target Processor Interconnection, 31
task, 20
TCB, 21
Trusted Computing Base, 21
UMI, 15, 18, 24
user, 3
User-Machine Interface, 15, 18, 24
virtual node, 11 I
Voting, 25, 26

1
I
I
I
I
I
I
I
I
I
I

I-4 3-E-48 3



I NGCR

(Next Generation Computer Resources)

OSSWG

I (Operating Systems Standards Working Group)

AVAILABLE TECHNOLOGY REPORT

Version 1.3

09/14/1990

3- -



Table of Contents

ISection I.. ............ 1

U 1.1 scope IROUCIN..................1
1.2 Purpose. .. ........................ 1

* Section 2...............3

BACKGROUND..............3
2.1 Operating Systems.......................................3
2.2 Distributed Systems.....................3
2.3 Real-Time Systems....................4
2.4 Real-time Distributed Systems .............. 6

Section 3.................7

AVAILABLE TECHNOLOGY SURVEY AND SYNOPSIS 7
3.1 Introduction......................7
3.2 operating Systems Synopses...............7

3.2.1 ACCENT......................7I3.2.2 Alpha......................7
3.2.3 ALS/N......................8
3.2.4 AMOEBA......................8
3.2.5 ARGUS.......................813.2.6 ARTS.........................8I3.2.7 AT 4. ...................... 9

3.2.10 BuiN OS....................9
3.2.11 BSO Real-ime Craft OS.............9I3.2.12 CAIS-A....................10
3.2.13 CCIU-OS........................................10
3.2.14 C-Executive....................1033.2.15 CHAOS/GE ................... 10
3.2.16 Choices....................11
3.2.17 CLOUD.....................11
3.2.18 CMP/OS....................11
3.2.19 CRONUS....................12
3.2.20 CRYSTAL....................12
3.2.21 CXOS.......................12I3.2.22 DARK.....................12
3.2.23 DINOS.......................12
3.2.24 DRAGON/MELODY ................. 13I3.2.25 E1.8.......................13
3.2.26 EDEN.......................13
3.2.27 ELXSI......................13
3.2.28 FlexOS....................14

3.2.29 43RS ...................... 14

3-F-3



3.2.30 GALAXIE . . . . . ..... ..... . . . 14
3.2.31 GUARDIAN (Tandem) ............... 14
3.2.32 GUARDIAN (Honeywell)...............14
3.2.33 HARMONY....................14
3.2.34 HARTOS....................15
3.2.35 HERBERT-Il..................15
3.2.36 HOPS.....................15I3.2.37 HP-UX.....................15
3.2.38 HXDP.....................16
3.2.39 IDRIS.....................16I3.2.40 iRZ.....................16
3.2.41 ISIS.....................16
3.2.42 508 ..................... 16
3.2.43 LOCUS.....................16
3.2.44 MACH.....................17
3.2.45 Maruti....................17
3.2.46 MEDUSA....................18I3.2.47 MP ...................... 18
3.2.48 MIKE.....................18
3.2.49 MIMAS.....................19
3.2.50 MOSI.....................19
3.2.51 MTOS.....................19
3.2.52 MONET.....................19
3.2.53 ORKID.....................19I3.2.54 08-9.......................................19
3.2.55 Pave Pillar:.................20
3.2.56 PHOENIX....................20I3.2.57 POSI ..................... 20
3.2.58 P508 (SCG)..................21
3.2.59 P505 (Honeywell)...............21
3.2.60 Regulus....................21
3.2.61 RIG...........................................21
3.2.62 RMS68K....................21
3.2.63 RS/M....................21I3.2.64 RTU.....................22
3.2.65 SCOMP....................22
3.2.66 SDEX/44...................22I3.2.67 SDOS.......................22
3.2.68 SDX.....................22
3.2.69 SHOSHIN...................23
3.2.70 SIRIUS-DELTA.................23I3.2.71 spring Kernel.................23
3.2.72 SPRITE....................23
3.2.73 StarLite......................23a3.2.74 STAROS....................24
3.2.75 TCNA.......................24
3.2.76 TRON.....................24I3.2.77 V DISTRIBUTED SYSTEM ............. 25
3.2.78 VersaDOS...................25
3.2.79 VRTX.....................25
3.2.80 VXWORKS....................25

3.2.81 WI1505.....................25

ii

3.-F-4



3.2.82 ZTS-200 ...... .................. 26 3
3.2.83 ZMOB-OS ...... .................. 26

Section 4 ... ........... . 27 3
DETAILED OPERATING SYSTEMS SURVEY ...... . 27

4.1 Introduction ...... ................... 27
4.2 r3sliminary Operating Systems Survey Summary 1

Results ........ ..................... 27
4.2.1 Alpha Survey Summary ... ............ . 27
4.2.2 Advanced Real-Time Operating System (ARTS)

Survey Summary. ....... ............... 37
4.2.3 ARTX Survey Summary .... ............ . 42
4.2.4 ATES 43 Survey Summary ... ........... ... 46
4.2.5 CAIS-A Survey Summary .. ........... . 52
4.2.6 Clouds Survey Summary .. ........... . 57
4.2.7 ................................... 61
4.2.8 43RSS S uey Sulary .... ............ 69
4.2.9 iRMX Survey Summary ... ........... . 78
4.2.10 Mach Survey Summary ... ............ ... 87
4.2.11 MTOS Survey Summary ... ............ ... 93
4.2.12 RSS/M Survey Summary ... ........... . 93
4.2.13 BDEX/44 Survey Summary .. .......... 99
4.2.14 SDX Survey Summary .... ............ 107

4.2.15 Spring Kernel Survey Summary ....... 115
4.2.16 SPRITE Kernel Summary Sm................ 118
4.2.17 V System Survey Summary ... .......... . 122

4.3 Preliminary Related Standards Survey Summary . . . 127
4.3.1 ARTEWG Survey Summary ... .......... . 127
4.3.2 ORKID Survey Summary ................ 129
4.3.3 Open Systems Interconnection (OSI) Survey

Suimmary ....... ................... 129
4.3.4 rOSIX Survey Summary ... ........... 134

Section 5 .. .. ........ .... 143 3
References .. ........... . 143

I
I
i
!

iii I

3-F-5



I

I Section 1

INTRODUCTION

The objective of the Next Generation Computer Resources (NGCR)
Program is to standardize Navy mission critical computer interfaces
and computer component interfaces. With these standardized
interfaces, industry will be better able to provide computing
resources that meet Navy needs. The interface standards are to be
widely available (i.e., non-proprietary) and, if possible, widely
utilized within industry.

The NGCR Operating Systems Standards (OSS) is one of the sets
of standards which is essential to the timely and cost effective
acquisition of the majority of the next generation of Navy mission
critical computing systems. NGCR OSS assists the Navy in
efficiently providing a wide range of performance, compatible
computing services, and functionality levels.

The primary objective of the NGCR Operating Systems Standards
Working Group (OSSWG) will be the selection from commercial
stanuards and, where these standards are nr1.". available or are not
adequate, the development in conjunction with industry of a set of
interface standards for a faiily of distributed target operating
systems to cover the complete spectrum of Navy combatant and other
mission criti-al use.

n 1.1 scope

The NGCR interface standards, while being incrementally
developed, are to be sufficiently in place so that the Navy can
begin acquiring systems utilizing those standards by 1996.
Prototype systems using the OSS are to be developed with o, contract3 award scheduled for September of 1990.

The period of NGCR Operating Systems Standards development
began in FY89 and continues through FY95. The initial OSS will be
available for use in acquisitions starting in FY93.

The initial range of applications includes as many types of
computing as possible, from just above the single dedicated
processor to as high as can be obtained on networked,
heterogeneous, modularized backplane bus architecture computing
systems. Networking is to be done using NGCR Local Area Network
(LAN) standards and, as appropriate, other MIL-STD links.

-- 1.2 Purpose

The Available Technology Subgroup of the NGCR OSSWG
(OSSWG-ATSG) has conducted a survey and analysis of operating
systems technologies. The results of the survey and analysis are

IIdocumented in this NGCR OSSWG Operating Systems Technology Report.

3 3-F-7



I

The results documented here will be used to aid the work of i
the OSSWG Requirements and Approach Subgroups as well as the entire
OSSWG in developing the NGCR OSS. 3

2I

iI
I
I
i
I
I
I
I
I
i
I

I
3-F-8!



I
I

Section 2

I BACKGROUND

In this section, basic operating systems concepts and
terminology are reviewed.

2.1 operating Systems

I [JENSE81, PETER84, TANEN85]

There are many definitions and approaches for describing
operating systems. Peterson and Silberschatz open their book
[PETER84] with the following statement:

"An operating system is a program which acts as an interface
between a user of a computer and the computer hardware. The
purpose of an operating system is to provide an environment in
which a user may execute programs. The primary goal of an
operating system is thus to make the computer system convenient to
use. A secondary goal is to use the computer hardware in an
efficient way."

Traditional operating systems have been built with the above
incentive. However, the development of microcomputers and
distributed architectures changed both the emphasis and the order
of significance of the goals as listed above. Tanenbaum and Van
Renesse [TANEN85] express it as follows:

3 "An operating system is a program that controls the resources
of a computer and provides its users with an interface or virtual
machine that is more convenient to use than the bare machine."

I 2.2 Distributed Systems

3 [DAVIES81, SLOMA87, CHAMB84]

A multi-programmed system is cne that provides the
interleaved execution of two or more programs on a single
processor. In this case, the operating system must coordinate the
use of the hardware resources among the running user programs. The
coordination of the use of processor time is called scheduling.
The coordination of all other resources (memory, file storage, I/O
devices, etc.) is called resource allocation. A multi-programmed
system must protect each user from other users that are executing
during the same time period. In addition, many multi-programmed
systems provide support for interprocess communication (IPC) and
sharing of data between cooperating processes.

In computer systems consisting of more than one processor and
more than one memory unit, the problem of coordinating the use of

!3

3-F-9I



these hardware resources is further complicated. This resource
allocation / scheduling function can be performed in one process
of the system (centralized) or by a set of processes running on a
set of processors in the system (distributed). Centralized
techniques are simpler and similar to techniques used in single
processor systems. For this reason they are often used in
tightly-coupled, multi-processor systems. However, the resource
allocator / scheduler process itself is a system resource. The 1
single instance of this resource often creates a bottleneck in the
system and results in poor system reliability. In addition, this
technique requires total system state information to reside in one
location. This is often very difficult in loosely-coupled,
wide-area networks of processors. It becomes even more complicated
when one tries to define what a distributed operating system is.
Jensen [JENSE81] considers global management to be the key concept:

"A distributed operating system is one which provides the 3
same sort of global resource management that a centralized
(uniprocessor or multiprocessor) OS does, but without depending on
the existence of physically or logically centralized resources such
as shared primary memory or global system state. Thus, a
distributed OS differs from a network OS in its objective of
providing global resource management (such as multi-node
co-scheduling) for one or more distributed applications rather than I
resource sharing (such as network file services and remote
procedure calling) among separate applications. And a distributed
OS differs from a centralized (uniprocessor or multiprocessor) OS
in its approach of not depending on the existence of physically or
logically centralized resources. Consequently, a distributed OS
is able to provide traditional system-wide OS resource management
services even though the processors have disjoint primary memories
and are physically dispersed and loosely coupled by a communication
subnetwork. Note that global resource management involves more
than providing the abstraction of a single machine through network I
transparency; it requires that resources be managed as an actual
single machine in the best interests of the entire system."

2.3 Real-Time Systems i
[AGRAW89, STANK88] 3

In the context of this report, real-time systems, and
critical time systems, also referred to as hard real-time systems
in the literature, are defined as those systems in which the I
functional correctness of the system depends not only on the
correctness of the logical results of computations performed by the
system, but also on the times at which the results are produced.
Mission critical real-time, or critical-time, systems are
characterized by the fact that severe consequences will result if
logical as well as timing correctness properties of the system are
not satisfied. Typically, such a system consists of a controlling

4I

3-F-O 



m

I system and a controlled system. Thus, the controlled system can
be viewed as the environment with which the computer interacts.

Most of the hard real-time computer systems are
special-purpose and complex, require a high degree of
fault-tolerance, and are typically embedded in a larger system.
Also, real-time systems have substantial amounts of knowledge
concerning the characteristics of the application and the
environment built into the system. A majority of today's systems
assume that much of this knowledge is available a priori and,
hence, are based on static designs. The static nature of many of
these systems contributes to their high cost and inflexibility.
Future generation hard real-time systems should be designed to be
dynamic and flexible, but this requires different approaches to
analysis and design of not just the OS but also the applications.

Timing constraints for tasks can be arbitrarily complicated,
but the most common timing constraints for tasks are either
periodic or aperiodic. An aperiodic task has a deadline by which
it must finish or start, or it may have a constraint on both start
and finish times.

An NGCR real-time system must be able to meet the timing
requirements of a variety of periodic and aperiodic requests.
Research and system building experience have shown that speed alone
does not adequately solve the problem of these requirements. The
mechanisms for supporting real-time scheduling of system resources
requires the integration of the hardware and the operating system
subcomponents in much more deterministic and predictable manners.

Ideally, the computer should execute critical-time tasks so
that each task will meet its timeliness requirement, whereas it
should execute the non-critical tasks in accordance with
application-specified policy (e.g., the average response time of
these tasks is minimized). The need to meet the requirements of
individual critical-time tasks is one issue that makes the problem

m of designing a real-time system a difficult problem.

Low-level application tasks, such as those that process
information obtained from sensors or those that activate elements
in the environment, typically have stringent timing constraints
dictated by the physical characteristics of the environment. A
majority of sensor processing is periodic in nature. Some of these
periodic tasks may exist from the point of system initialization,
while others may come into existence dynamically.

Consequences of not meeting timing constraints are usually
applications dependent. For embedded Navy operational systems,
catastrophic results. may occur if critical-time task deadlines are
missed. Resources needed for highly critical tasks in such systems
generally have to be preallocated so that the tasks can execute
without delay. Other non-critical-time or "soft" tasks may also

I5
3 3-F-I I



I

have time constraints associated with them, but missing those
deadlines may have much less severe effects. In most systems, I
there is a corplicated mix of critical-time, soft real-time, and
non-real-time tasks.

While traditional real-time systems have been focused on
low-level sampled data subsystem applications (such as pipelined
signal processing and sensor/actuator feedback control), the I
requirement for meeting stringent real-time constraints is
expanding into larger, more complex, more distributed systems, such
as C31 and surface/subsurface combat platform management. Such
applications are intrinsically more dynamic and stochastic in their
behavior and thus violate the premises which underlie almost all
conventional real-time operating systems (JENSE88]. Another
important distinction between real-time and non-real-time operating I
systems is the balance of performance optimization between normal
and exception cases. Non-real-time systems, both software and
hardware (cf the RISC CPU approach), optimize performance of the I
normal case and are willing to pay a significant penalty in
exception cases. But real-time systems are often required to
perform their best in exception cases such as hostile attack orfailures, even if that means somr of the normal, most frequent I
cases must suffer higher overhead LJENSE88).

In summary, mission critical real-time systems differ from 3
traditional systems in that deadlines or other explicit timing
constraints are attached to tasks; the systems are in a position
to make compromises; and faults, including timing faults, may cause
catastrophic consequences. This implies that, unlike many
non-real-time systems where there is a separation between
correctness and performance, for real-time systems, these factors
are very tightly interrelated. Thus real-time systems solve the
problem of missing deadlines in ways specific to the requirements
of the target application.

2.4 Real-time Distributed Systems

Many of the Navy's applications areas, including the C3
arena, are naturally distributed and complex; therefore, future
systems must integrate distributed resources. Not only should the
target operating system provide communication mechanisms, but it
should use them in such a way as to unify this distributed set of I
system resources. All this must be done while still considering
the real-time requirements of the system.

6

3-F-12



I
U

Section 3

AVAILABLE TECHNOLOGY SURVEY MD SYNOPSIS

3.1 Introduction

In this section, fielded operating systems and areas of
operating systems research of interest to the NGCR OSS Program are
surveyed. The survey is by no means complete.

3.2 operating Systems Synopses

3.2.1 ACCENT

Accent is the operating system designed for Spice, a large
network of personal workstations at the Computer Science Department
of Carnegie-Mellon University. Begun in 1980, this system is
intended to support the research community of CMU as a general
purpose distributed LAN. Accent is a communication oriented,
object based operating system providing a multi-process user view.

Each process has a disjoint address space and communicates with
other processes via "ports". Communications are node transparent,
thus servers are also node transparent. Accent provides all user
resources via interprocess communication ports. Even internode
communication and virtual storage are performed via user-levelprocesses, so any multilateral control, decentralized or otherwise,
is processed at the user level. (RASHIS] (BALL82] [LOCKE84]

3 3.2.2 Alpha

Alpha is an OS for the mission-critical integration and
operation of large, complex, distributed real-time systems (e.g.,
DoD C31,combat platform and battle management). Alpha is a global
OS, and explicitly manages all resources directly with actual
application-specified task completion time constraints. Its
performance is optimized for important exception cases rather than
the most frequent cases. Alpha is object-oriented, and includes
real-time distributed data management mechanisms (for maintaining
problem-specific consistency and correctness constraints)
integrated into its kernel. Alpha arose from the Archons Project
at CMU, and was funded by many DoD and industry organizations. A

I prototype has been operational there and at General Dynamics Corp.
since Fall 1987. The focus of the Archons Project has moved to
Concurrent Computer Corp. in Boston MA, where it continues to be
sponsored in part by DoD, and includes a second-generation Alpha
design and implementation. Alpha is portable, non-proprietary, and
in the public domain for U.S. Government use. The initial ports
are on 68030-based and MIPS-based multiprocessors; these
multiprocessors are networked with the NGCR standard XTP real-time
transport protocol running on FDDI. Alpha can co-exist with UNIX

* 7

3 3-F-13



on any node, and a POSIX-compliant version is planned. Additional
versions of Alpha being developed jointly by Concurrent and its U
partners include a multilevel secure one, and a compatible subset
for traditional low-level sampled data subsystems. Pilot versions
of Alpha will be installed at various Government and industry I
contractor facilities in Fall 1990. Point of contact: E. Douglas

Jensen, Concurrent Computer Corporation, Technology Way, Westford,
MA 01886, (508)-392-2999

3.2.3 ALS/N

ALS/N (Ada Language System / Navy) is the Ada compiler being i
developed for the UYK43. The compiler will be tested by a number
of Navy labs including NOSC and NSWC in FY89. i

3.2.4 AMOEBA

Amoeba is a distributed operating system being developed at
the Vrije Universiteit in Amsterdam, The Netherlands. This system I
is composed of a number of processors in a pool, none of which are
dedicated to a single user. This is in contrast to, for example,
Accent, which is a set of distributed personal workstations, each
of which is dedicated to a single user, but which can use resources
from other connected workstations and hosts.

Amoeba views the system as a collection of processes with i
disjoint address spaces and ports, using 3.2.message communications
for all interprocess communications.

At the operating system level, very little decentralized
resource management takes place. Resources such as disk, files,
and names, are encapsulated by processes operating at the user
level. No team decisions are made at the operating system level,
since each node acts unilaterally. [TANEN81] [LOCKE84]

3.2.5 ARGUS

3.2.6 ARTS I
Advance Real-Time Technology (ART) is an open project

interested in the development of advanced real-time technologies.
The project is funded by ONR and presently includes efforts by CMU,
SEI and IBM-FSD. The objective of the ART project is to develop
theoretical foundations, distributed real-time system technology U
and programming language support that will facilitate the

development of distributed real-time systems with understandable,
predictable, and maintainable behavior. They are interested in the
development of real-time scheduling theory, distributed real-time
operating systems and distributed real-time databases. The project
is presently developing a real-time DOS called ARTS and an
experimental system called Real-Time Mach. Point of contact: Hide
Tokuda, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA, 15213, (412) 268-7672.

8

3-F-14 i



U 3.2.7 ARTX

The Ada Real-Time Executive (ARTX) is a real time operatingI system from Ready Systems (Palo Alto, CA). ARTX implements the full
range of Ada Semantic operations, including the complete Ada
tasking model. It has many of the features of their VRTX system.
Ready Systems have RTAda-MP, which supports tightly-coupled
multiprocessor systems (680x0 based). It adds Ada multiprocessing
capabilities to ARTX.

1 3.2.8 ABOS

g 3.2.9 ATES 43

ATES 43 is designed to operate in a complex of UYK 43
multiprocessor computers. It is an evolution from ATES, an
operating system in use on the early CG 47 Class ships. ATES 43
will be used on the later CG 47 Class ships and on the DDG 51 Class
ships. It provides a uniform fault tolerant message passing
protocol among processes whether in the same or differentreccomputers.call
computers. It will recover automatically from all single point
hardware and software faults. It provides for preemptive prioritybased scheduling within a computer and limited priority based

scheduling among processes in different computers.

3.2.10 DUN 08

SBiiN OS was the operating system of the BiiN family of
multiprocessor computers. BiiN/OS was designed to operate in a
distributed computing environment; multiple, geographically
distributed BiiN computers could be unified into a single
"distributed" system through the BiiN/OS. BiiN/OS addressed fault
tolerance, real-time, and security concerns. With respect to fault
tolerance, it dynamically configured hardware modules to provide
three levels of fault tolerance, which represented different
tradeoffs betwpe- '%u1- tolerance and performance. With respect
to real-time, it proviaed traditional real-time application
support, including preemptive, priority-based scheduling over a set
of multiprocessors. With respect to security, it provided
discretionary access control through a combination of capabilities
and access control lists. In addition, BiiN/OS offered a
UNIX-compatible operating system environment through its BiiN Open
Standard Interface Extension (BOSIX) tools. Points of contact:
Steve Tolopka, Andy Crump, BiiN, 2111 N.E. 25th Avenue, Hillsboro,Oregon, 97124-5961, (1-800) 252-2446. The BUN project is no
longer active.

3.2.11 BSO Real-time Craft OS

Boston Systems Office (BSO), Waltham, MA developed the
BSO/Realtime Craft Operating System. The operating system is
packaged in a PROM containing executable code. Interface libraries

* 9

3 3-F-15



are available for programming in C, Pascal, Ada and other higher
level languages. The response speed of the system does not degrade
as the number of tasks increases, and an unlimited number of tasks
can be handled. Versions are available for use with 8086, 68000
and 32000 families of processors. [Falk p66]

3.2.12 CAIS-A 3
See CAIS-A in section 4.

3.2.13 CCIU-O 3
In 1981, CECOM (the U. S. Army Communications-Electronics

Command) established the Command and Control Information Utility
(CCIU) program at the Jet Propulsion Laboratory (JPL). The program I
was oriented toward a survivable distributed information processing
system architecture to organize automated tactical Command and
Control resources.

A demonstration system which implemented most of the major
survivability features, but was of reduced functionality was
written in Modula 2 within a VMS shell and runs on a network of VAX
processors. [DAVIS87]

3.2.14 C-Executive 3
C-Executive real-time operating system is from JMI Software

Consultants, Spring House, PA. It is written in C and provides a
C-language environment. Data-move routines in C-Executive are
optimized for byte-oriented operation. About 95 percent of the C
source code in which C-Executive is written remains the same
regardless of the processor used with C-Executive. It runs on 14
different processors, and will soon be available for some I
reduced-instruction-set computer processors. Functions performed
by assembly-language code in C-Executive include context switching,
task scheduling and interrupt handling. Device drivers are written I
in C. (Falk p58]

3.2.15 CHAOS/GEM 5
The Generalized Executive for Multiprocessors (GEM) operating

system (as used in Ohio State University's Adaptive Suspension
Vehicle) uses a process-mailbox program model and supports multiple
models of communication which may be chosen so as to best implement
the inter-subsystem communication semantics of the application
domain. The Concurrent Hierarchical Adaptable Object System
(CHAOS) extends GEM to support the notion of objects interacting
via invocations. Objects can be of different weights and a variety
of invocation primitives are provided.

The GEM kernel was developed originally for Intel
8086/MultibusI-based multiprocessors and has been used on a number
of robotics applications. It has recently been upgraded to operate
on Intel 80386/MultibusII-based multiprocesso-s, taking advantage i

10I

3-F-16 I



I

I of protected virtual memory, MultibusII message passing, and 80386
debugging features.

CHAOS was developed as a library executing on the GEM kernel.
It has now been ported to run on the MACH system using the
C-Threads library. Versions of this port are available for a Sun
workstation and an Encore MMAX.

(1989 Workshop on Operating Systems for Mission Critical
Computing, September 19-21, 1989.3

j 3.2.16 Choices

The Choices family of operating systems is designed as a
toolkit for building efficient parallel, distributed, real-time,
embedded and high-performance operating systems. It exploits class
hierarchies and object-oriented programming to facilitate the
construction of customized operating systems for both shared memory
and networked multiprocessors. The system is entirely written in
C++ except for a few lines of assembler. [Campbell, R.H., J.H.
Hine, and V.F. Russo, University of Illinois at Urbana-Champaign,
"Choices for Mission Critical Computing", from the 1989 Workshop
on Operating Systems for Mission Critical Computing, September
19-21, 1989.1

3.2.17 CLOUD

Clouds is a distributed operating system being developed at
the Georgia Institute of Technology. It has received major funding
from NSF, NASA, and RADC. Originally, the primary design goal of
Clouds was the support of reliable, fault-tolerant distributed
computing. The object/thread programming model (in which the
traditional "process" is decomposed into an object, which serves
as an abstraction of storage, and a thread, which serves as an
abstraction of computation) was conceived as a means to an end, the
end being reliable, fault-tolerant distributed computing. However,
it has become an end in itself; the support and exploitation of the
object/thread programming model is now the overriding theme of the
Clouds research. Research topics include operating system support
for objects, replication and consistency management using objects
in a distributed environment, and programming
language/methodology/tools support for programming distributed
applications using objects. Points of contact: Rich LeBlanc and
Partha Dasgupta, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA, 30332,3 rich@gatech.edu, partha@gatech.edu.

3.2.18 CMP/O8

3 A Common Module Processor (CMP) and Operating System have
been developed at Hughes Aircraft Company. Some features include
real-time, mission critical avionics, combined signal and data
processing, and Ada support written in Ada. [Miyahara, G.K. and
Cynthia L. Allyn, Hughes Aircraft Company, "Realtime Operating

3 3-F-17



I

System for Secure, Mission Critical Avionics Systems" from the 1989
Workshop on Operating Systems for Mission Critical Computing, I
September 19-21, 1989.]

3.2.19 CRONUS

Cronus is a distributed operating system being developed by
BBN and is funded by RADC, NOSC and ESD. It incorporates many i
desirable DOS features such as heterogeneity, transparency and
object oriented programming as well as high level features such as
survivability and replication mechanisms, multi-cluster and
database access and distributed monitoring and control facilities.
Cronus is presently being used by several Navy projects such as
Fleet Command and Control Battle Management Program (FCCBMP). It
is also being used as a basis for study at NOSC of Navy DOS m
requirements. Point of contact: Andres Echenique, BBN, 10 Moulton
Street, Cambridge, MA, 02238, (617) 873-4304.

I
3.2.20 CRYSTAL

Charlotte is the operating system being constructed as part
of the Crystal project, intended to provide a facility for
performing research into distributed applications at the University
of Wisconsin. Crystal is an outgrowth of the earlier Arachne and
Roscoe projects at Wisconsin.

Charlotte's model of computation is that of a hierarchically
arranged set of processes passing messages within a statically
defined partition of the entire network. The partition is set up
manually by a host, and the kernel limits interprocess
communication to processes within each partition. It is through
the partitioning that multiple "jobs" are executed.

Process management is performed by multilateral management I
of a set of process controllers (squad of processes). Each member
of the process management controller set maintains its version of
the state of the set of nodes which it controls, as well as I
information on other node sets. [FINKEL83) [LOCKE84]

3.2.21 CXOS

3.2.22 DARK

Distributed Ada Real-Time Kernel (DARK) was developed by The i
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA. It was tested on a distributed 68020 target,
integrated with Inertial Navigation System, and Beta tested at n
several acceptor sites. [1989 Workshop on Operating Systems for
Mission Critical Computing, September 19-21, 1989.]

3.2.23 DINOS 3
The Distributed Network Operating System (DINOS) is the

operating system of a network of distributed processors called the I
12

3-F-18 I



I

m Siemens Local Network (SIELOCnet) implemented as a research effort
by Siemens AG, Munich, Germany. The network is connected by an
optical bus providing high speed communications.

DINOS is designed to be a decentralized operating system for
controlling the SIELOCnet system. The model of computation for
DINOS is a hierarchically structured set of user processes. A
group of processes with a common address space is the distributed
unit, while a group of distributed units performing a single job
is an execution unit. A distribution unit is allocated to a single3 processor. [FRIED83] [SCHMID82] [SCHMID83] [LOCKE84]

3.2.24 DRAGON/MELODY

DRAGON SLAYER is a distributed operating system with an

adaptive file system called MELODY. They were designed for
realizing a distributed real-time system working in a hazardous
environment. Future work with this system will be in a distributed
testbed environment which is at Wayne State University, Detroit,
MI. [Wedde, H.F., Ghasem S. Alijani, Dorota Baran, Gookhai Kang,
Bo-Kyung Kim, "DRAGON SLAYER/MELODY: Distributed Operating Support
for Mission Critical Computing" from the 1989 Workshop on Operating
Systems for Mission Critical Computing, September 19-21, 1989.]

m 3.2.25 E1O.S

The 10.S system is a distributed telephone exchange switching
processor. The primary design goal is high reliability in theI presence of one or two processor failures. The system architecture
consists of a set of task forces (logical machines) which share a
common address space, reside on a single node, and contain one or
more processes. These task forces are centrally allocated to the
available nodes. Individual processes communicate by messages and,
in the case of processes within a particular task force,3 potentially by shared memory. [GATEF81] [MAISON8I] [LOCKE84]

3.2.26 EDEN

3 Eden is a project of the University of Washington, Seattle,
Washington to build and use a distributed computing environment.
Its primary research interest is in the user interface to the
distributed environment and to facilitate research into distributed
computing. [LOCKE84]

n 3.2.27 ELXSI

EMBOS is the operating system for the ELXSI System 6400
multiprocessor developed by ELXSI, Santa Clara, California. Since
this system is actually implemented as a shared memory
multiprocessor (with up to fourteen CPUs), it should perhaps not
be described here, but its operating system specifically prohibits
the use of any interprocess shared memory, either within or above
the operating system level. [OLSON83] [LOCKE84]

* 13

3 3-F-19



I
U

3.2.28 FlexOS

FlexOS is a modular real-tiwe operating system developed by 3
Digital Research (Monterey, CA). Modular operating systems let
users select only those functions they need. Stripped of
unnecessary modules, the operating system then places less demand
on computer resources. The FlexOS operating system on each
computer has a kernel and a memory manager, but the use of other
FlexOS modules is optic:al. [Falk p64] I

3.2.29 43RSS 3
See 43RSS in section 4.

3.2.30 GALAXIE

GALAXIE is a decentralized system designed by the Centre
National d'Etudes des Telecommunications, Lannion Cedex, France,
to provide real-time control for the operation of a telephone I
switching exchange. This is a decentralized system prototype
consisting of a set of 8080 and Z80 processors and suitable
communications links.

The operating system uses decentralized control to handle
process loading, process-processor binding , topological maps,
hardware configuration, and processor naming. Loading and process-
processor binding decisions are made with the assistance of the
applications programmer who can override the automatic decisions,
or who provides software to assist in making those decisions.
[ANDRE82] [LOCKE84]

3.2.31 GUARDIAN (Tandem)

3.2.32 GUARDIAN (Honeywell)

Guardian is a real-time, multi-microprocessor operating
system designed for decentralized control of embedded systems. It
was developed by Honeywell for an architecture consisting of six
microcomputer processing elements and twelve shared memories fully
interconnected by a crossbar switch. I

This was basically a research effort, investigating the
possibility of implementing a secure version _f MULTICS. It was
primarily a paper system which never actually went into production.
Work on GUARDIAN was terminated in the ea.ly 1970s. (Carl Reinert)

3.2.33 HARMONY 3
Harmony originally came out of the Canadian National Research

Council and is now developed and marketed by DY-4 Systems (Nepean, I
14

I
3-F- 20 I



I

I Ontario). Harmony is a real-time operating system that was
originally designed to be a multiprocessing kernel. A copy of the
kernel resides in each processor. Although other kernels such as
MTOS and VRTX use the same arrangement, Harmony data structures
aren't replicated. The kernel for each processor has its own data
structures, and there's typically little sharing of data between
processors. Since global memory is used less, contention for the
multiprocessing bus - a problem that plagues many multiprocessing
kernels - is reduced. This system does not offer any
security-relevant features. Point of Contact: Jeremy James,
Manager of Software Technology, DY-4 Systems Inc. (613) 596-9911.

3.2.34 HARTOS

HARTOS is the distributed real-time operating system for
HARTS (Hexagonal Architecture for Real-Time Systems). It is being
developed at The University of Michigan. (1989 Workshop on
Operating Systems for Mission Critical Computing, September 19-21,1989.)

3 3.2.35 HERBERT-II

HERBERT-II by Arizona State University and Codex Corporation,
Tempe, AR, is a modification to Codey ISOS, a Unix-like operating
system. It has a distributed file syster and a simple distributed
database management system. Herbert-II has used the International
Standards Organization (ISO) defined protocols (i.e., physical,
datalink, network, transport, session, presentation, application).
It has been implemented on three smart terminals manufactured by
Codex.3 [MILLE83]

3.2.36 HOPS

Honeywell CSDD has been doing research and development on
software fault tolerance and distributed systems. They have
implemented a runtime for executing fault tolerant distributed
applications and language and translator support for their
development. The system is called HOPS (Honeywell Object oriented
Programming System). A subset of a typical BM/C3 application .has
been implemented using the language support to evaluate the fault
tolerance and distributed system mechanisms. Point of contact: Jon
Silverman hi-csc!wilbur!silver@umn-cs

I 3.2.37 HP-UX

This product was deveioped by Hewlett-Packard, of Fort
Collins, CO. HP-UX is organized as a hybrid real-time Unix.
Hewlett-Packard inserted 1ernel pre-emption points throughout the
kernel code. It allows pre-emption of an in-process kernel service
in order to schedule a higher priority real-time program in
response to an interrupt. Additional real-time features were

3 15

3 3-F-21



I
implemented as extensions. (Rauch-Hindin) 3
3.2.38 HXDP

The Honeywell Experimental Distributed Processor (HXDP) was i
developed as a research effort into real-time distributed
processing by the Honeywell Systems and Research Center,
Minneapolis, Minnesota. This was an early investigation into the I
issues of distributed computers in a real-time environment.

The HDPX executive computational model consists of a set of
processes and messages. Processes (Virtual Processing Elements)
are active entities which receive messages when they are ready,
sending messages as needed. The executive does not concern itself
with ensuring the reliable transmission, receipt, or sequencing of
individual messages, other than ensuring that each message, if I
delivered, is individually unchanged during transmission.
[BOEBERT78A] [BOEBERT78BJ [CORNHILL79] [JENSE78] [LOCKE84]

3.2.39 IDRIS i
IDRIS is a large operating system used for both

general-purpose and real-time computing. It was developed by
Whitesmiths, Westford, MA. IDRIS supports the Posix
standardization effort. [Falk p60]

3.2.40 iRMX

See iRMX in section 4. i
3.2.41 ISIS

The ISIS system is an extension of a conventional distributed 3
operating system to support fault tolerance. It insulates the
application programmers from the details of fault tolerant
programming. This system is currently running at Cornell i
University and current work is aimed at integrating the ISIS more
fully into the operating system. The project is supported by DARPA
and NSF [BIRMAN85]. 3
3.2.42 KSOS

The design of the Kernelized Secure Operating (KSOS) was
developed by the Ford Aerospace and Communications Corporation
(FACC) and Logicon and funded by NSA, DARPA, and the Navy
[LANDW83]. This system was verified and rated at the Al level.
The KSOS project is no longer active.

3.2.43 LOCUS 3
LOCUS is a distributed UNIX operating system developed at

UCLA for use by the UCLA computer science research community. The
primary goal was to build a system with multiple processors running

16

3-F-22 I



U

U UNIX, with a replicated location transparent file system.
The computational model for LOCUS is exactly that of UNIX.

Programs written for a uniprocessor VAX UNIX can generally execute
S without change on LOCUS. [POPEK8l] [WALKE83] [LOCKE84]

3.2.44 MACH

I Mach is a multiprocessor-oriented operating system for a
distributed environmert being developed at CMU and is funded by
DARPA. It approaches issues involved with multiprocessors,
heterogeneity, transparency, and object oriented programming. Mach
is presently being used by several projects at CMU and being used
and extended by a number of corporations, universities and research
laboratories. NOSC has plans to add Mach to its DOS testbed in
FY88-89. Point of contact: Rich Rashid, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, PA, 15213,3 (412) 268-2627.

3.2.44.1 RTMach

3 The goal for Real-Time Mach (RTMach) is to migrate the ARTS
scheduler and scheduling tools to Mach. Also modifying Mach's
virtual memory management to support locking threads in memory.
Point of contact: Hide Tokuda, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA, 15213, (412) 268-7672.

I 3.2.44.2 Trusted Mach

The Trusted Mach project is a DARPA-sponsored research effort
of Trusted Information Systems, Inc. The goal is to build a version
of Mach - Trusted Mach - that meets the B3 level of protection as
specified in the National Computer Security Center (NCSC) Trusted
Computer System Evaluation Criteria (TCSEC), the so-called "Orange
Book" [TCSEC 85]. The project adopts the idea of "incremental
reference monitors." At the lowest level is the Trusted Mach
Kernel. At the intermediate level is the reference monitor
composed of the kernel and a trusted name server. At the highest
level is the reference monitor composed of the kernel, a trusted
name server, and other trusted servers. Thus far, work has
concentrated on the kernel level of a single machine. At this
time, the Trusted Mach project is utilizing a Spring 1988 version
of Mach. Sinc this version is not kernelized, the effort cannot
yield a trusted operating system. The unkernelized version of Mach
is serving as a platform for research into multilevel security, not
as a base upon which to build a trusted system. The development
of a trusted version is tied to the completion of Mach
kernelization. Points of contact: Steve Walker, Marty Branstad,
Trusted Inform -.:on Systems, Inc., 3060 Washington Road (Route 97),
Glenwood, MD, ?1738.
3.2.45 Maruti

U Maruti is a real-time distributed operating system being

3 17

3 3- F-2 3



I
developed at the University of Maryland. it has been funded, in I
part, by the U.S. Army Strategic Defense Command and the Office
of Naval Research. MARUTI focuses on real-time and fault-tolerance
requirements. It supports both in an object-oriented framework.
With respect to real-time requirements, MARUTI supports guaranteed
service scheduling. That is, once it accepts a task, MARUTI
guarantees that the timing constraints of the task will be met.
It utilizes replication and consistency control mechanisms to I
implement user-specified fault-tolerance constraints. Point of
contact: Ashok Agrawala, Department of Computer Science, University
of Maryland, College Park, MD, 20742, (301) 454-4968,
agrawala@mimsy.umd.edu.

3.2.46 MEDUSA 3
The Medusa operating system was developed by Carnegie-Mellon

University. It is a distributed operating system for Cm*
multimicroprocessor architecture. It is a message passing n
operating system which has distributed, disjoint utilities. The
Medusa operating system is divided into disjoint utilities.
Utilities are distributed among the various available processors,
with no guarantee that any particular processor contains a copy of
the code for any particular utilities. Since no processor is
guaranteed to be capable of executing any particular piece of code,
it may be necessary for a program's flow of control to switch I
processors when it invokes a utility function. In Medusa, messages
provide a simple mechanism for cross-processor function invocation.
The invocation message contains parameters for the function
invocation, as well as an indication of a return pipe; the return
pipe is analogous to a return address for a subroutine call. It
does provide some insight into architectures where certain function
(utilities) may not be available on all processor but may exist on I
only special purpose processors (a symbolics processor, a signal
processor). 5
3.2.47 MFX

The Message Flow Modulator (MFM) system is based on a model
of message filtering. It was developed at the University of Texas
using Gypsy and the Gypsy tools. Both the design and the code have
been verified. In spite of this state-of-the-art verification, the
MFM system is only rated at the C2 level. This is because the
message filtering model does not include the multi-level and
compartmented labeling facilities required for the B level. This
work was funded and is currently being used by the Navy [LANDW83]. I
3.2.48 MIKE

MIKE is the operating system of the Distributed Double-Loop I
Computer Network (DDLCN) being developed at the Ohio State
University, Columbus, Ohio, to investigate fundamental problems in
distributed processing and local networking. MIKE is a meta-

18

3-F-24 I



U

I operating system (i.e. it is built on top of the existing host
operating systems) providing the appearance of a distributed system
to applications software running on the hosts. The hardware
architecture is constructed as part of OSU's research into
communications media, and is not tailored for operating system use
other than for communications. [LIU82] [TSAY8l] [LOCKE84]

1 3.2.49 MIMA

MIMAS is a network operating system currently under design
at the University of Strathclyde, Glasgow, Scotland. This system
is being planned for the purpose of investigating the structure and
operation of a decentralized operating system on a local area
network. [BLAIR82] [LOCKE84]

3.2.50 MOSI

U Microprocessor Operating Systems Interfaces (MOSI) was
prepared by Working Group 855 of the Microprocessor Standards
Committee, sponsored by the IEEE Computer Society. This interface
standard (IEEE Std 855) designates the capabilities required by
various microprocessor-based applications. MOSI is no longer
active.

1 3.2.51 MTOS

The multiprocessor, multitasking operating system (MTOS) was
developed by Industrial Programming, Inc. It is a family of
available real-time operating systems which include MTOS-UX/386 (a
fully dynamic system supporting complete intertask coordination,
synchronization and resource management) and MTOS-UX!Ada (a dynamic
operating system that can handle multiprocessing for a real-time
executive and the Ada language. Applications can be written in a
high-level language or in assembler to request any one of the MTOS
services.

3 3.2.52 MUNET

MuNet is a distributed processing system developed at the
Massachusetts Institute of Technology, Cambridge, Massachusetts.
The system ha been designed to study distributed processing with
particular emphasis on the construction of an extensible (and
contractible) computer with the property that increases in
processing capability can be made linearly with respect to cost.
This extensibility is achieved by using topologies in which each
node is connected only to a bounded set of neighbors via point-
to-point intc aces. (HALSTEAD80) (LOCKE84]

3.2.53 ORKID

3.2.54 O8-9

* 19

3-F-25



i

OS-9 was developed by Microwave Systems (Des Moines, IA) OS-9 i
runs on 680x0 and maybe other microprocessors. It is a real-time
operating system that offers high degree of configurability. Users
can easily customize I/O file management and drivers. It is I
written in assembly language. [Falk p65]

3.2.55 Pave Pillar 3
The Ada Avionics Real-Time Software (AARTS) Operating System

(AOS) is designed for the PAVE PILLAR avionics technology. The AOS
is used to provide control for and system services to the Mission
Data Processors. The Mission Data Processors will be one or more
VHSIC 1750A modules. There may be multiple mission processors.
The modules communicate via redundant inter-module communications 3
buses (PI-Bus). The AOS is a straight forward operating system that
provides system services to the program application(s) and special
control functions. Additionally, the AOS has a fault-tolerant
capability provided by redundant resources and a distributed
control strategy.

3.2.56 PHOENIX I
The PHOENIX Project, at the University of Virginia, is

researching the problems associated with (1) developing a I
high-performance UNIX for embedded applications with real-time
response requirements, (2) modifying an operating system and
applications remotely without halting the computer, and (3)
recovering after power failure or crash. Currently a
high-performance version of UNIX, written in Modula, is being used
to evaluate techniques that address these problems. This project
is supported by the Army Research Office [COOK85a]. The PHOENIX, I
also UNIX-based, focuses on needs that are important to the
platform systems, (i.e., real-time response updates, and recovery
for embedded applications). 3
3.2.57 POSIX

The IEEE Portable Operating System (POSIX) interface standard i
is based on earlier UNIX operating system interfaces. This
standard defines an application program interface to an underlying
set of operating system functions; it does not specify the i
structure, functions, or performance of the underlying operating
system beyond the specific functionality visible at the application
program interface level.

This standards committee, IEEE P1003, has created an initial
version of the interface standard which completed balloting in
August, 1988, and is therefore identified as IEEE 1003.1-1988. In
addition, this committee includes a number of smaller working
groups which are expected to present extensions or
application-specific interfaces for this standard for official
balloting before 6/90; draft versions of these extensions are

20

3-F-26 I



I

I currently available. The working groups include 1003.2 (Shells and
System Utilities), 1003.3 (Test Method Specifications), 1003.4
(Real-Time Extensions), 1003.5 (Ada Bindings), 1003.6 (Security),
1003.7 (System Administration), 1003.8 (Networking Services) and
1003.9 (Fortran Language Binding).

3.2.58 P08 (SCG)

Probable Operating System(PSOS) was developed by Software
Components Group, Santa Clara, CA. It features Real-time kernel
which is used as the kernel base for several other real-time
operating systems such as Regulus and VxWorks. Has file and debug
options that can be added. (Falk p57-58]

3.2.59 PS05 (Honeywell)

The Probably Secure Operating System (PSOS) is a
capability-based system. The design was formally specified and
verified but an implementation was not initiated. The design was3 developed by FACC and Honeywell and was funded by NSA [LANDW83].

3.2.60 Regulus

Regulus was developed by Alcyon, San Diego, CA It features
a real-time version of Unix compatible with Unix System V. It uses
pSOS kernel in combination with its own version of Unix. It runs3 on 80386, 680x0, and 32000. Real-time enhancements to Regulus
include multitasking priority based scheduler, memory areas that
can be directly accessed and shared by tasks, and intertask event
signaling. (FALK p58]

3.2.61 RIG

The Rochester Intelligent Gateway (RIG) is designed as a
"front end" system to provide a uniform interface between a user
terminal and any of a variety of mainframe time-sharing systems.
Designed about 16 years ago, it is in use as a heterogeneous
distributed system providing for research into distributed
algorithms, computer vision analysis, and design automation for
VLSI. RIG was intended to provide an extensible, flexible "glue"
to construct a coherent time-sharing system for a research
community. [BALL76] [LANTZ82] [LOCKE84]

3 3.2.62 RMS68K

RMS68K was a product was developed by Motorola Semiconductor
Products, Inc for the 68K family of processors.

3.2.63 RSS/M

3 See RSS/M in section 4.

3 21

3 3-F-27



3.2.64 RTU 3
3.2.65 SCOMP

The Honeywell Secure Communications Processor (SCOMP) 3
received an Al rating. This system used a hardware box called the
SPM, security protection module, to monitor transfers on the bus
without CPU interference resulting in faster performance than KSOS 3
achieves. This work was funded by Honeywell, NSA, DARPA, Defense
Communications Agency, and the Navy. The system is currently used
by several government agencies [FRAIM83].

3.2.66 BDEX/44

See SDEX/44 in section 4. 3
3.2.67 BDOB

The Secure Distributed Operating System (SDOS) is in m
experimental development at Odyssey Research Associates, Inc (ORA).
The system is being designed and built to meet TCSEC B3 security
and assurance requirements. SDOS borrows many of it.. concepts from
Cronus, such as the basic object-oriented client-server model.
However, the system architecture has been redesigned to provide
multi-level security, enhanced identification and discretionary I
access control, configuration security, audit, COMSEC protection
and TCSEC assurance. (Varadarajan, R., J.R. McEnerney, and D.G.
Weber, Odyssey Research Associates, "The Secure Distributed
Operating System - An Overview" from 1989 Workshop on Operating
Systems for Mission Critical Computing, September 19-21, 1989.]

3.2.68 SDX m

Standard Distributed Executive (SDX) is a real time executive
which operates in a multicomputer environment via the Shipboard I
Processing and Display System (SHINPADS; NOTE: SHINPADS is a
registered trademark of the Canadian Department of National
Defence) Serial Data Bus (SDB) network. SDX supports the United
States Navy and Canadian Navy standard 16-bit general purpose I
computers: the AN/UYK-20, AN/UYK-20A, AN/UYK-502, AN/UYK-505, and
AN/UYK-44 computers. SDX was developed by Unisys, St. Paul, MN.

SDX was based on SDEX/44 (a U.S. Navy standard executive for
16-bit computers) and supports real time priority scheduling as
well as message handling capabilities. SHINPADS SDB systems
implement hardware and software redundancy and reconfigurability
to provide fault tolerance.

The SDX based Distributed Operating System (DOS) provides
real time error detecticn, error isolation, hardware
reconfiguration, and software reconfiguration capabilities. The
System Loader component of DOS supports the loading of
configurations or individual modules into remote processors via the
SDB.

22

3-F-28 I



I

I For more information see SDX in section 4.

3 3.2.69 SHOSHIN

Shoshin is a distributed testbed computer developed by the
University of Waterloo, Waterloo, Ontario, Canada. Shoshin was
developed to serve as a testbed by researchers in distributed
software engineering and distributed algorithms. [TOKUDA83) [LAU83]
[LOCKE84)

I 3 .2.70 SIRIUS-DELTA

The Delta real-time transaction based operating system has
been developed under the auspices of the French Ministry of
Industry and the Institut National de Recherche d'Informatique et
d'Automatique (INRIA), France. This research project has as its
primary goal the design of a data base system, and the Deltaoperating system is designed to support a real-time distributed
data base. [GLORIEUX81] [LELANNSI] [SEDILLOT80) [LOCKE84J

I 3.2.71 Spring Kernel

The Spring project at the University of Massachusetts is
conducting research into next generation hard real-time systems.
The project has four major thrusts: the development of dynamic,
distributed, on-line real-time scheduling algorithms; the
development of the Spring Kernel, a distributed real-time system;Ithe development of multiprocessor nodes to support the kernel and
the scheduling algorithm; and the development of real-time tools.
Point of contact: John Stankovic, University of Massachusetts,
Dept. of Computer and Information Science, Amherst, Ma, 01003,
(413) 545-0720.

3.2.72 SPRITE

Sprite is an experimental network operating system under
development at the University of California at Berkeley and is
funded by DARPA. Motivation for the new operating system came from
trends toward networks, large memories and multiprocessors. Sprite
is part of a large project called SPUR whose goal is to develop a
high-performance multiprocessor workstation with special hardware
support for LISP. Sprite focuses on issues involved with
transparent network file systems, large variable-size file caches,
shared address spaces, and proass migration in a distributed
environment. Point of contact: John Ousterhout, Computer Science
Division, University of California, Berkeley, CA, 94720, (415)
642-0865.

3.2.73 StarLite

StarLite is a research project that is exploring new ideas
for operating system structuring, interface design, analysis, and

* 23

3 3-F-29



I

implementation. The prototyping environment, which executes on Sun
workstations, supports the development and execution of software
for uni- or multi-processors, as well as distributed systems.
StarLite provides a standard UNIX interface together with an
implementation strategy that addresses the critical system needs
of high-performance, openness, and predictability. (Cook, R.P.,
Department of Computer Science, University of Virginia, "The
StarLite Operating System" from the 1989 Workshop on Operating I
Systems for Mission Critical Computing, September 19-21, 1989.]

3.2.74 STAROS

StarOS is an operating system developed for the Cm* computer
at Carnegie-Mellon University. Cm* is a large asymmetric shared
memory multiprocessor developed in a research project into
distributed processing, containing 50 DEC LSI-11 microproccessors.
StarOS was developed to provide an object-based testbed to allow
experimental user software to take advantage of the Cm* design. I
[JONES79] [TRIGG81] [LOCKE84]

3.2.75 TCNA 3
The Tightly Coupled Network for VHSIC Architecture operating

system has been developed by the Westinghouse Electric Corporation
for the RADC. It is designed to run on the Westinghouse Electric I
Corporation's Tightly Coupled Network for VHSIC architecture. The
operating system consists of four parts: (1) Local Operating System
(LOS) - which resides in each of the processing modules. It i
provides the task management, task scheduling, I/O interfaces,
debugging capabilities, and fault-tolerance facilities; (2) Cluster
Operating System (COS) - which resides in multiple general purpose
computers in each cluster of the TCNA. It makes decisions that
effect the entire cluster; (3) Regional Operating System (ROS) -
which resides in multiple general purpose computer modules within
each region. It controls placing modules off-line due to failure; i
and (4) Group Operating System (GOS) - which reside in three
identical general purpose processors, all of which receive the same
information and vote on what action to take. Point of contact: 3
TBS.

3.2.76 TRON 3
Tron is an operating system standard that was originally

initiated by Ken Sakamura, University of Tokyo. It has gained wide
support in Japan including companies such as NTT, Fijitsu,
Mitsubishi, and Toshiba. TRON designates a family of
architectures, operating system kernels, and VLSI CPU chips. It
is an open specification intended to foster the development of
compatible products by many vendors. There are several versions
of the TRON architecture; ITRON, for embedded industrial systems,
BTRON, for business oriented workstations, CTRON (central TRON),
for large fileservers in a networking environment and MTRON (macro

24

3-F-30



m TRON), for interconnecting "intelligent objects". [SAKAM87)

m 3.2.77 V DISTRIBUTED SYSTEM

The V Distributed System is a network operating system being
developed at Stanford University and is funded by DARPA, the
National Science Foundation and AT&T Information Systems. It is
used to explore issues in distributed systems and focuses on areas
such as high performance interprocess communication including
multicast, process migration and the distributed scheduling of
programs. There is also research being conducted in the areas of
replication, distributed atomic transaction management and
multiprocessors. Point of contact: David Cheriton, Stanford
University, Computer science Department, Stanford, CA, 94305-2140,
(415) 723-1054.

m 3.2.78 VersaDOS

VersaDOS was an operating system developed by Motorola
Semiconductor Products, Inc. for early microprocessors (8-bit) and
later, 68K family of processors.

3.2.79 VRTX

VRTX is manufactured by Ready Systems (Palo Alto, CA). Chief
among VRTX's facilities is multitasking. The task is to real-time
programming what the procedure is to more conventional programming;
a structural unit that can be considered separately from other
units. VRTX has been designed to maximize its performance for
high-priority tasks, unlike non-real-time systems, which are
designed to be "fair" and allocate an equal overhead to all tasks.
-VRTX is also a compact system, occupying less than 6K bytes of
code space. Most importantly, VRTX is deterministic. Its behavior
can be completely predicted in all circumstances.

3.2.80 VXWORKS

The VxWorks operating system from Wind River Systems
(Emeryville, CA) is designed to debug and run real-time tasks
developed on a Unix system. Target computers can use 68000, 68010,
or 68020 processors, and can run alone or networked with other
computers that run VxWorks or Berkeley 4.2 Unix over Ethernet or
a backplane bus. VxWorks uses calls very similar to Unix calls.

13.2.81 WISOS

The WIS Operating System, funded by the Joint Project
Management Office, is designed to aid in the modernization of the
World Wide Military Command and Control System (WWMCCS). It
provides a minimal kernel to optimize local area network IPC and
provides fast context switches. It provides clearly delineated
address spaces, basic mandatory access control, and communication

3 25

33-F-31



I
control to help support security in the kernel. Outside the
kernel, security is supported y "alias" processes and an
authentication agent. Its multi-level, modular design is suited
for evolutionary change. The status of a prototype, written in
Ada, is unknown at this point. Information is needed. The WIS I
Operating System also addresses fault-tolerant, secure, real-time
programming in a distributed environment and is designed
specifically for battle management support.

3.2.82 XTS-200

3.2.83 ZMOB-OB I
ZMOB is a "mob" of 256 processors developed at the University

of Maryland at College Park, Maryland. The operating system for I
ZMOB is called MOBIX, and has been designed to facilitate
artificial intelligence and general computer science research
[Trigg 81]. The operating system is designed to allow ZMOB to act
as an extension of the host, making normal forked UNIX processes
run in a truly parallel fashion by shipping them to individual Z80
processors for execution. [BANE81] [LOCKE84]

I I
l
I
I
I
I
I
I
I

26

3-F-32



Section 4

DETAILED OPERATING SYSTEMS SURVEY

4.1 Introduction

After collecting the brief product descriptions as in section
3, the next step was to collect more detailed technical
information. This information was collected and organized based
on the 16 service classes as described in the NGCR OSSWG Reference
Model Document.

4.2 Preliminary Operating Systems Survey Summary Results

4.2.1 Alpha Survey Summary

I Alpha is intended for an unconventional but vital and rapidly
growing segment of the real-time field: the mission-critical
integration and operation of large, complex, distributed real-time
systems, such as: DoD C31, battle management, and combat platform
management; industrial factory and plant automation; and even
commercial online transaction processing.

Integration and operation brings coherence to physicallyI separated computing nodes, and involves providing:
* a user interface for distributed application programming;
* system-wide (i.e., trans-node) resource management for
functionality such as control and coordination (i.e.,
execution correctness and data consistency), and fault
recovery, in support of distributed application programs;
* interoperability with other systems;
* man/machine interfacing. (OSSWG refers to such an OS as an
"SRAX".)
Thus, Alpha is optimized for (but not limited to) large,

complex, distributed real-time applications characterized by the
uncertainty which pervades warfare (and many other endeavors):
predominately aperiodic tasks; dynamic and stochastic behavior;
demand for resources which usually exceeds the supply; and
requiring run-time resolution of resource dependencies and
conflicts. Despite these attributes (which are diametrically
opposed to those of traditional real-time low-level sampled data
subsystems), the application tasks nonetheless have
mission-critical time constraints, both hard and soft.

To accommodate such environments, Alpha departs from the
traditional real-time approach of statically defining exactly what
will happen only under a necessarily limited number of anticipated
operational conditions. Instead, Alpha strives to be exceptionally
dependable with respect to effectiveness, survivability, and
safety, by dynamically adapting so as to do the best (as defined
by the users) that it can under the current resource and mission
conditions--e.g., ensuring that as many as possible of the most
important of time constraints are met, in accordance with

27

3-F-33



user-specified policies. To this end, Alpha manages all physical
and logical resources directly with application-defined actual task
completion time constraints (deadlines are a simple special case)
and relative importances, instead of using artifactual priorities.
Alpha is able to behave as deterministically as the application I
actually requires and is willing to pay for (e.g., in excess assets
and reduced flexibility), and is able to present deterministic
abstractions for the users if desired; but it seeks to accomplish
these ends as much as possible with non-deterministic means in
order to improve robustness and cost-effectiveness (analogous to
the use of non-determinstic routing in long distance telephone and
wide area data networks).

Alpha's design and implementation also reflect the nature of
its application domain in that its performance is optimized for the
most important exception cases, such as arise in emergencies due I
to hostile attack or faults, rather than for the most frequent
(normal) cases as is ubiquitous practice in non-real-time systems
(cf. the RISC philosophy).

The approaches to incorporating a global (system-wide) OS in
a system can be placed into three major classes:
1) it may be an application on the local OS's--e.g.,
BBN's Cronus and Apollo's NCS; I

2] it may co-exist with the constituent subsystem local OS's
(e.g., UNIX, ARTX) on partitioned processors of their nodtl
multiprocessor hardware;
3] it may be native on its own system integration and operation

hardware nodes, which then physically and logically connect to the
subsystem local nodes and OS's.

The first of these does not provide the global OS adequate
authority to meet Alpha's coherent computing responsibilities.
Alpha can readily accommodate the second case--e.g., Release 3 will
co-exist on multiprocessor nodes with Concurrent's real-time UNIX I
and JMI's C Executive initially. But Alpha is intended more for
the third case because of both technical reasons-- e.g., superior
performance can be achieved--and logistical ones--e.g., minimized
impact on the many subsystem contractors and on the pre-existing
subsystems. Such a configuration would typically include:

* conventional low-level real-time sampled data subsystems,
in which centralized applications and local OS's like ARTX or
UNIX execute on local hardware nodes, and interface with local
i/o devices;
* all integrated into a single coherent computer system by a
new system integration and operation subsystem, in which
distributed applications and the Alpha distributed OS execute
on an additional set of distributed hardware nodes;
* all interconnected with (one or more instances of) SAFENET.
Alpha includes a kernel having an open, specified client

interface (among other interfaces), which is subject to potential
standardization. Certain non-reai-time OS's take the approach of I
providing a minimal kernel for managing hardware resources, and
moving as much OS functionality as possible up to user state
programs (sometimes termed "servers"). Alpha shares this

28

3



I

I pilosophy and its benefits in general, but adapts it to better
meet the requirements of the large, complex, distributed real-time
application environment. For example, Alpha includes kernel-level
mechanisms for distributed atomicity, permanance, and concurrency
control; these support its real-time distributed object store and
fault tolerance facilities which are clients of the kernel. Alpha
carries the principle of poli<y/mechanism separation to great
lengths in order that application-specific cost/performance
tradeoffs can be applied to all of its services.

The client programming model presented by Alpha's kernel is
an object one. Depending on the OS built on Alpha's kernel, the
kernel abstractions can either be confined for use by the remainil.1,
layer(s) of the OS which may in turn provide the applications with
a different set of abstractions (fc-- example, Concurrent will offer
an optional POSIX compliant--and -.as less capable--interface), or
be passed upward to the applications augmented with additional or
modified services (which is what the native Alpha OS does).

Alpha arose as the first systems effort of Jensen's Archons
Projcct on new paradigms for real-time decentralized computer
systems, which began in 1979 at CMU. Alpha design was started in
1985 and the prototj-e ("Release 1") was operational at CMU and at
its initial early user General Dynamics/Ft. Worth in the Fall of
1987. Alpha was sponsored at CMU primarily by the USAF Rome Air
Development Center (RADC) and the US Naval Ocean Systems Center
(NOSC). It was also sponsored in part by DARPA and a number of
industrial corporations, including IBM, General Dynamics, and Sun
Microsystems.

In response to requests from Alpha soonsors and prospective
users that the technology be expeditiou:ly transitioned from
research into practice, the focus of Alphi activity moved (to
Kendall Square Research briefly and then) in the Fall of 1988 to
Concurrent Computer Corp./Boston. It continues to be sponsored in
part there by RADC, with additional support from Concurrent.

Concurrent is performing an all new, second generation,
commercial quality Alpha design and implementation in a series of
increasing functionality releases. The first is Release 2, which
is scheduled for pilot installation at a number of major Government
and industry facilities in the Fall of 1990, with subsequent
releases to follow.

Releases 2 and beyond are portable, non-proprietary, open,
and in the public domain for U.S. Government use; licenses for
non-Government uses are intended only to control what can be called
the "Alpha" OS. Alpha will initially be released on Concurrent's
MIPS-based multiprocessors interconnected with FDDI (NGCR's SAFENET
II hardware and XTP transport protocol), and will be ported to
other manufacturers' hardware.

Both RADC and Concurrent still sponsor Alpha research at CMU,
and will add work at MIT beginning in 1990. Concurrent is teamed
with several other industrial organizations in various aspects of
Alpha design, including:

* a B3 multilevel -ecure Alpha with SRI International;
* a version of ARTX/VRTX with Ready Systems which ,-- Alpha

* 29

3-F-35



compatible-- providing the Alpha programming model (in addition to
the traditional VRTX-32 one), so that the same software development
techniques and tools can be used for both local centralized
application programming and global distributed application
prograaming, and having an "SRAX-to-LPOS" interface with Alpha
which facilitates a collection of local ARTX's being integrated
into a large, complex, distributed system (this same kind of Alpha
compatibility will be offered in a version of Concurrent's
real-time UNIX RTU, and is being negotiated with several other
vendors of commercial real-time OS's and execs);
* a real-time distributed data architecture system for Alpha with

Xerox;
* an expert system-based adaptive fault tolerance strategy

subsystem with GE.
A number of DoD's top 10 prime contractors are also actively

engaged with Concurrent in transition and experimental evaluation
of Alpha in applications such as: ground-based battle management,
C31, and air defense; combat systems on surface and subsurface
ships; and avionic mission management. Similarly, civilian
industrial factory automation (most notably automobile
manufacturing) and commercial financial institutions are i
considering Alpha. (Because these contractor, industrial, and
commercial corporations all expect their potential use of Alpha
would provide them competitive advantages, most of them presently
require that we not disclose their identities).

4.2.1.1 Operating System Service Classes

4.2.1.1.1 General Requirements

Alpha is a general-purpose real-time distributed OS,
optimized to support the entirely different computing paradigm I
required for large, complex, distribututed real-time applications.
It is extremely adaptable so as to be readily configured for a wide
range of problem-specific functionality, performance, and cost
requirements (including being configureable as a traditional, small
scale, low-level uniprocessor/multiprocessor OS). Alpha does not
accept the traditional view that its real-time responsibility to I
the user ends with rapid interrupt response and context switching
times; in large, complex real-time applications, the strong
correlation between starting a task quickly and it completing on
time is not present; thus Alpha continues to provide run-time
resolution of dynamically arising resource dependencies and
conflicts for all tasks according to their time constraints and
importances.

Similarly, Alpha's distribution services are not limited to
internode communication and resrurce sharing via conventional
network utilities. Because a distributed real-time system is i
mission-oriented, it runs distributcd applications which require
distributed (internode) resource management. Conspicuous among
these requirements are distributed task: integrity--continuing
computational progress despite errors and partial (i.e., node or

30 3
i- r i



U communication) failures; and concurrency control--maintaining
correct collective execution and mutually consistent distributed
(replicated and partitioned) data, despite asynchronous concurrent
execution. Alpha meets these distributed application requirements
with unusual real-time distributed data and execution management
mechanisms in its kernel and facilities in its system and user
layers.

Alpha's native programming model (user interface) is a new
object-oriented one especially suitable for writing distributed
real- time applications, with threads which reliably and
transparently span physical nodes bearing their attributes such as
time constraints, robustness, etc., and with block-structured
mechanisms for time constraints, transactions, and exception
handling. This programming model will also be offered by
Concurrent on its real-time UNIX, and and Ready Systems on its
ARTX/VRTX (others are being planned).

Alpha is constructed on a small kernel of powerful, general
mechanisms which are used in a uniform manner: for example, all
physical and logical resources--such as CPU cycles, I/0, memory
pages, synchronizers, atomic transactions--are managed according
to the same user-specified policy for dealing with task completion
time constraints and importances; every type of exception, from
time constraint expiration to transaction abort to node failures
to hardware checks, is handled with the same block structured
construct; and any application can access any resource--code, data
items, devices, processors--as though everything were local to it.

Access to the kernel facilities is through a kernel interface
library. The initial libraries are for programming in C and C++.

4.2.1.1.2 Architecture Dependent Interfaces

Alpha encapsulates i/o devices, special-purpose hardware
units, and external systems as objects; for example, when UNIX is
installed as a co-resident OS on Alpha nodes, it appears as an
object to Alpha.

4.2.1.1.3 Capability and Security Interfaces

Alpha's lowest level mechanisms for protection are
capabilities and separate address spaces for each object instance
and thread. Alpha system and application entities can use kernel
services to enforce restriction on the propagation of capabilities
among protection domains.

Abstractions such as access lists, users, groups, etc., can
be implemented by system-level objects, using the capablity
mechanisms. Attributes such as groups, users, etc., can be
attached to threads and will be automatically propagated by the
kernel along with the thread as it moves through the distributed
system; thus every activity can have an associated ideiitity for
access control purposes.

A B3 multilevel secure version of Alpha is being developed
in conjunction with SRI International.

* 31

I -i-i



I

4.2.1.1.4 Data Interchange Interfaces I
Because Alpha is homogeneous in the sense that its nodal

instances are designed and implemented to the Alpha specification,
no data interchange services in the usual sense are necessary
within an Alpha system. Data interchange services will be provided
at Alpha's application layer for communication with other systems.

4.2.1.1.5 Event and Error Management Interfaces

Alpha employs the same block-structured mechanisms for error i
management as for transactions and time constraints. An exception
handling clause can be associated with each type of error, each
instance of an error, each object operation invocation, or any I
desired combination of these. After Alpha performs its own cleanup
in response to errors, it vectors the affected thread to the
appropriate application-specified exception handling clause.

4.2.1.1.6 File Interfaces

Alpha is object oriented and thus provides an object store i
rather than a traditional file system.

Any object may be declared permanent, in the sense that a
non-volatile representation of the object's state resides in the I
object store. Any object may support atomic transaction-
controlled updates to its permanent representation, thus providing
for consistent, failure-atomic typed data storage. The object
store is capable of supporting directory objects to map logical
names into object capabilities (which are, themselves,
system-provided logical names, and are used exclusively, even
within the kernel, except within the object store implementation I
itself).

Should a particular file interface be required, it is
possible to create a permanent object class whose interface
provides the required file semantics (e.g., operations such as
open, close, read, write).

Because Alpha's object store is based on the real-time data
management mechanisms in its kernel, all file services are I
inherently real-time. Alpha also provides for the traditional
style of real-time OS secondary storage and file system features,
such as pre-allocation of resources, synchronous (non-cached) i
writes, and contiguous files.

4.2.1.1.7 Generalized I/O Interfaces

All i/o takes place as operation invocations on objects.
Alpha's general i/o facility provides for generic i/o operations
on device objects.

Release 2 of Alpha includes a simple command interpreter
modeled after the UNIX shell. A version of Alpha is planned which
includes POSIX compliance. i

32

I
3-v- 3S



I Release 2 of Alpha can also coexist and communicate with UNIX
on the same node, or on different nodes. Non-time-critical
man-machine interactions can be supported by the UNIX system.

4.2.1.1.8 Networks and Communications

Alpha is a distributed OS in that its instances not only
communicate but also cooperate at the kernel level in order to
efficiently accomplish decentralized management of global resources
and provide a real-time distributed programming model. This is in
contrast to distributed OS's that have essentially uniprocessor
kernels, in which even the lowest levels of communication are
provided by client-level programs, while the kernel itself simply
provides access to the network device. Communication across
protection domains in Alpha is provided through object operation
invocation. If the invoking object and the invoked object are on
different nodes in a distributed system, the invocation is
implemented as a reliable RPC, with special enhancements in support
of time-driven orphan detection and elimination, distributed
exception handling, and global time- driven resource management.

Operation invocation provides location-transparent
distributed access to objects and resources (encapsulated by
objects) across the system. All resources are named by
kernel-supported logical identifiers (capabilities), and the Alpha
invocation protocols support network-wide logical addressing using
these identifiers. The use of logical naming at the lowest levels
of the system allows transparent name mappings that can be
one-to-many, many-to- one, or many-to-many, in addition to the
usual one-to-one. These mappings are supported at the network
level, using logical addressing and the broadcast and multicast
capabilities of the underlying communication medium. Each logical
identifier in Alpha is globally unique.

Alpha's RPC is built on the NGCR SAFENET XTP real-time
transport protocol (Concurrent was contracted by the USN to work
with Protocol Engines, Inc. and the SAFENET committee to define
XTP's real-time feature.

Below XTP, Alpha includes communication software for the NGCR
SAFENET II FDDI and Ethernet LAN networks.

Since Alpha can co-exist in a multiprocessor node with UNIX,
it can have access via shared memory to all UNIX network and
communication services such as TCP/IP.

4.2.1.1.9 Process Management Interfaces

I Alpha is object-oriented, its programming model being based
on passive threads. Object instances and classes can be created
and deleted dynamically, as can threads.

Alpha's kernel provides primitives for object and thread
management, including the above functions and others. References
to objects and threads (capabilities) are evaluated when they are
invoked.

A single thread executing in a single object instance is a

I 33

3-F-39



reasonable approximation of the classical notion of a "process."All communication above the kernel of Alpha, both among and Iwithin its instances, is object operation invocation.

4.2.1.1.10 Project Support Environment Interfaces

Alpha is currently an execution environment OS, although it
provides the mechanisms required to support a future native
software development. Software development is presently done on
UNIX either remotely or locally (when UNIX is installed on one or
more Alpha nodes).

Source-level symbolic debugging of the kernel code (written
in C++) is currently operational, using a modified version of the
GN" gdb debugger's remote debugging facilities. This is a generic
low-level debugger interface that is applicable to I
multiple-language debugging. It is planned that this will be
expanded to application-level debugging as system implementation
progresses.

4.2.1.1.11 Reliability, Adapatability, and Maintainability
Interfaces 3

Alpha provides kernel-level mechanisms for atomic
transactions and replication. Application-specific policies at the
system level define consistency, correctness, recovery, etc. for
threads and objects, as well as the replication strategy.

Alpha's capability-based location-transparent naming of
objects supports the transparent application of a number of
higher-level fault tolerance techniques, such as replication,
n-modular redundancy at the object level, and others.

Although certain faults can be masked from the application,
others require action on the part of the application and must be
visible to it. Alpha manifests most faults to the user as
exceptions. Alpha provides a block-structured exception handling
facility. Examples of exceptions include thread break, failed
object operation invocation, time constraint expiration,
transaction abort, divide by zero, etc. Applications are provided
with the facilities they require to clean up and exit gracefully
in the face of asynchronous termination of an application I
routine--a general resource tracking facility makes it possible to
maintain the consistency of application and system resources.

Alpha also provides mechanisms for dynamic reconfiguration, i
including location transparent naming and object migration. Alpha
programming constructs rupport fault containment by providing
separate, hardware-protected address spaces for every object and
thread. The kernel is also protected, and runs at the supervisor
protection level. The system attempts to minimize objects'
exposure to faults by confining an oject's representation to one
node, as much as possible. Also, capabilities provide kernel
protection of access to objects (i.e., objects cannot connect to
other arbitrary objects to which they have not been granted
access).

34

3-F-4 0 !. . . . . " " ! ! I I I I iI



Threads, which are inherently distributed entities, recover
easily from node failures. Alpha fully supports threads as a
distributed programming abstraction, and provides thread repair
(time-driven orphan detection and elimination, and restart at the
earliest point of breakage) to recover from node failures.

Concurrent is teamed with General Electric's Advanced
Technology Laboratories in a contract to investigate expert system
based adaptive fault tolerance techniques for Alpha: the dynamic
varying of the system's fault tolerance strategies in order to
utilize the system's resources most efficiently in realizing the
degree and kind of fault tolerance required by the system at any
point in time.

4.2.1.1.12 Resource Management Interfaces

Alpha accepts responsibility for performing the management
of global resources, both physical and logical, in the best
interests (i.e., to meet the time constraints of) the entire
distributed application suite. Forcing applications to perform
their own resource management in a large, complex, distributed
real-time system results in lower-performance, error-prone,
recurring, inconsistent, and higher-cost solutions. Alpha's
resource management is directed by application-specific policies.
All resource contention in Alpha is resolved on the basis of the
urgency and importance of the contending activities, in the context
of the system's mission. Alpha seeks to manage resources so as to
maximize (as nearly as possible) the value accrued to the system
as a result of completing activities.

4.2.1.1.13 Synchronization and Scheduling Services

Scheduling is a specific case of resource (processor cycle)
management, and Alpha performs it in a manner uniform with that of
all other resources--i.e., using kernel level mechanisms which are
employed by a system layer resource management policy. The initial
policies provided include a series of best-effort algorithms which
exploit time-value functions, plus conventional real-time (e.g.,
rate-monotonic) and non-real-time (e.g., SPT, FIFO).

Concurrent application activities are embodied as threads;
each thread specifies a set of parameters that apply to a
particular interval of its execution. These parameters determine
a particular time-value function, and provide other information,
such as an estimated computation time for the activity. Such time
constraints may be nested, which allows finer-grained control and
improved modularity. Time constraints may be varied dynamically
at run-time. The resource management parameter interface is
designed to support a wide variety of resource management policies.
Because the information it provides is policy-independent, and
based on actual requirements rather than artifacts of a particular
resource management facility, it can be used across the system in
any context.

Alpha's kernel therefore has observability of the actions of

35

3-F-41



I
activities, where they are currently executing, their time
constraints and importance values, whether they are involved in I
atomic transactions (and which ones), which nodes they span,
whether they are active or blocked, which resource and other
activity dependencies need to be resolved.

Alpha's kernel provides semaphores and locks, from which more
sophisticated synchronization constructs can be created at the
system and application layers. The kernel also provides I
transaction mechanisms which may be used for global synchronization
schemes.

4.2.1.1.14 System Initialization and Reinitialization Interfaces

Alpha's kernel provides primal objects and threads, and
recovery operations for permanent objects. System level I
initialization and reinitialization services are being defined.

4.2.1.1.15 Time Services Interfaces i

Alpha's kernel provides conventional time of day and both
logical and physical time services (e.g., delay an interval or
until a specific time), in addition to the time-value function
facilities. A distributed global clock synchronization service is
being planned at the system layer; provisions to support such
synchronization are being devised for the communication software i
in the kernel.

4.2.1.1.16 Ada Language Support Interfaces

An Ada binding to Alpha's kernel has been defined but has not
yet been implemented.

4.2.1.2 Additional Characteristics

4.2.1.2.1 Proprietary or Open 3
Alpha is portable, non-proprietary, and in tne public domain

for U.S. Government use. Alpha licenses are available for
commercial purposes. I
4.2.1.2.2 Qualification as a Standard

Alpha is a DoD-sponsored. non-proprietary, multipurpose,
portable OS for an application domain currently populated entirely
by one- of-a-kind, special-purpose OS's: large, complex,
distributed real-time systems. Because Alpha is still a pilot
project and not yet commercially available, its exposure to
potential users has been carefully controlled. Nonetheless, strong
interest in Alpha is being expressed by the DoD contractor
community for ground, surface and subsurface ship, air, and space
applications. Interest in Alpha also has arisen from key factory
automation applications such as automobile manufacturers.

36

3-F-42
I

E l | pp



I|

l4.2.1.2.3 Platform Flexibility

Alpha is intended to be highly portable. It is implemented
primarily in C++ with a small amount of hardware-dependent code.
The initial ports are to MIPS and 680x0 multiprocessors.

4.2.1.3 References

[CLARK88], (JENSE88a], [JENSE88b], [JENSE88c], [JENSE89),
(NORTH87], (NORTH88a], (NORTH88b], (NORTH88c], (NORTH88d),
[NORTH88e], [NORTH88f], [NORTH88g], (NORTH88h], [REYNO88a],
(REYNO88b), [TRULL88].

4.2.2 Advanced Real-Time Operating System (ARTS) Survey Summary

The Advanced Real-Time Operating System (ARTS) is a
distributed real-time operating system being developed under the
Advanced Real-Time Technology Project (ART). The projects is a
combined effort being conducted by Carnegie Mellon University
(CMU), the Software Engineering Institute (SEI), and IBM. It is
sponsored by the Office of Naval Research (ONR) under the
Distributed Tactical Decision Making (DTDM) program. "The
objective of the ART project is to develop theoretical foundations,
distributed real-time operating system technology and programming
language support that will facilitate practitioners in developing
distributed real-time systems with an understandable, predictable,
and maintainable behavior." [1, p. 2) ARTS synthesizes the results
of real-time distributed systems research. Some of the areas the
research group is investigating are real-time processor scheduling,
real-time local area networks, real-time synchronization, real-time
distributed database management and real-time cache management.
As each of these research area matures they are incorporated into
ARTS.

ARTS is concerned primarily with the needs of the target but
does provide an interface to and support tools for the host
machine. ARTS runs on the bare machine, not on top of an existing
operating system. The tools run on an existing operating system and
require X-windows, UDP and a C compiler. ARTS is presently under
going development which makes it difficult to summarize it in terms
of OSSWG interface requirements. Basic operating system functions
and scheduling have been implemented on a single processor. Network
scheduling was to be implemented by September 1989. Once network
scheduling is implemented, the remote or distributed aspects of
ARTS can be implemented, for example, the ability to do a remote
invocation. Database feature., should be added within the next
year. End-to-end scheduling of all system resources in a
distributed environment and in real-time is still under
development. For the most part, when reading this survey,
interfaces that involve a single node are implemented and ones that
involve remote nodes are part of the design but not implemented at
present.

37

3-F-14 3



I

4.2.2.1 Operating System Service Classes: i

4.2.2.1.1 General Requirements

ARTS was designed to support distributed, real-time
applications which require a high degree of reliability. It
provides bounded operating services times and context switching. I
At present, ARTS is implemented on a 68000 based architecture but
is not dependent on this architecture. The design of ARTS is based
on the object model promoting modularity, and extensibility. Being
a research vehicle it lacks completeness. ARTS presently supports I
the C and C++ languages. Insufficient knowledge of ARTS interfaces
prohibits comment on areas such as semantic consistency,
cohesiveness and pragmatics.

4.2.2.1.2 Architecture Dependent Interfaces

ARTS has a UDP service which allows the target to interface
with many of the commercial system that also support UDP. This is
how the ARTS host and target communicate at present. There will
be a special set of services provided for interface to a variety
of networks, including Ethernet, token ring and IBM's Real-Time
Communications Network (RTCN). ARTS does not interface to Navy
standard computers such as the AN/UYK-44. i
4.2.2.1.3 Capability and Security Interfaces

Characteristics of the object-oriented model used in ARTS I
support access control. The implementation of security in ARTS has
not been emphasized heavily.

4.2.2.1.4 Data Interchange Interfaces

There are limited data interchange interfaces available.

4.2.2.1.5 Event and Error Interfaces

The extent of event and error interfaces is unknown. I
4.2.2.1.6 File Interfaces

ARTS supports non-real-time access to UNIX files using the
UDP mechanisms. An application can use all the basic UNIX files
services such as naming and directory services and primitives, such
as read, write, open, close, on files.

ARTS does not provide real-time file access at present.
Access time to UNIX file using UDP over an ethernet is
unpredictable and non-deterministic. The UNIX access to files is
a convenience and not intended t - work in conjunction with a
real-time task. At present, all data needed by a task is stored
in main memory. There is a real-time database effort but the i

38

3-F-44

• • a a al I El II



status is unknown.

4.2.2.1.7 Generalized I/O Interfaces

There is limit generalized I/O interfaces available.

4.2.2.1.8 Networks and Communications

ARTS places a strong emphasis on the ability to provide
network and communication services. These services are needed to
support the distributed features of ARTS. ARTS hopes to serve as
a testing ground for a variety of networks such as token ring and
SAFENET II and network protocols such as XTP and VMTP. The initial
research on network services is completed and implementation has
begun. There is an effort to provide coordination betweenprocessor and communication scheduling.

4.2.2.1.9 Process Management Interfaces

ARTS supports local and remote creation and destruction of
objects. Some primitives include run, choose, block and kill. At
the object and thread level there are additional primitives such

as ObjectFreeze and Thread Fetch.
LPOS to LPOS communication is supported in combination with

the object-oriented model. A variety of protocols are supported
including XTP, VMTP and RTP. The object-oriented model hides
details from the application. An application simply performs an
invocation on an object. This feature has been implemented on a
single processor and will be extended to multi-processors in the
future. The object model provides a consistent LPOS to LPOS
communication service. Primitives include Request, AsyncRequest,
AsnycRequestAll, GetReply, Accept, Reply, CheckRequest and
CheckReply.

4.2.2.1.10 Project Support Environment Interfaces

The Project Support Environment for ARTS is typically a UNIX
based machine. The application developer has all the usual support
tools provided by UNIX plus some additional tools provided by ARTS.
Down loading is supported through a shared partition on a file
server. Theie are two tools provided with ARTS at present, the
Scheduler 1-2-3 and the Advanced Real-Time Monitor/Debugger (ARM).
"The goal of the toolset is to incorporate a system-wide scheduling
analysis which includes communication and synchronization among
real-time objects. Our schedulability analyzer, called Scheduler
1-2-3, is a X11-window based interactive schedulability analyzer
for creating, manipulating, and analyzing real-time task sets. It
employs methods ranging from closed form analysis to simulation to
determine wnether a feasible schedule exists for a given task set
and what the schedulable bound is for that set. ARM is also a
Xll-window based tool designed to analyze and visualize the runtime
behavior of the target nodes in real time. ARM allows us to reach

39

3-F-45



n

into a remote target and view the scheduling events which are
extracted using event traps in the Integrated Time-Driven Scheduler
(ITDS) object of the ARTS Kernel." [2,p. 20]

4.2.2.1.11 Reliability, Adaptability, Maintainability Interfaces

Reliability is supported by the object model and ARTS ITDS.
The Real-Time Invocation manager and Object/Thread Management
mechanisms are responsible for fault detection, fault isolation and
fault recovery. These mechanisms also guarantee that tasks will be
accomplished in a timely fashion based on deadlines.

Adaptability is also supported by the object model. For I
example, since the ARTS scheduling policies are developed as
objects, one poLicy can easily be replaced by another without
necessitating changes in other parts of the system. This feature I
is extended to the application using the object model.

Maintainability is support by the object model which
modularizes functions into manageable units and isolates data from
corruption. Maintainability is also supported by providing time
predictable services and a set of real-time tools. Programmers are
better able to produce predictable systems that lack ad hoc
characteristics.

4.2.2.1.12 Resource Management Interfaces

ARTS provides virtual memory management services that are
modeled after Mach. Hard real-time tasks are allowed to be pinned
in memory to avoid worst case context switching time. "By hard
real-time task, we mean that the task must complete its activity I
by its "hard" deadline time, otherwise it will cause undesirable
damage or fatal error to the system. The soft real-time task, on
the other hand, does not have such a "hard" deadline, and it still I
makes sense for the system to complete the task even if it passed
its "critical" time." [2, p. 6] ARTS does not support process
migration at runtime. Instead it can move an object by stopping
the object on one machine and restarting it with the appropriate
parameter at another.

ARTS uses some of Sun's proprietary device driver software
that has been modified to have real-time characteristics. ARTS
supplies device drivers for ethernet, token ring, clock and tty.

4.2.2.1.13 Synchronization and Scheduling Interfaces 3
The Arts kernel supports a variety of real-time scheduling

algorithms such as Rate Monotonic and Earliest Deadline First. It
also supports traditional scheduling algorithms such as Round Robin
and Fixed Priority. The ARTS Kernel allows the user to choose from
a variety of policies and to switch policy at run time. The
scheduling policy used by the scheduler to decide who gets a
resource next is separate from the mechanisms to actually allocate
and deallocate the resources. This allows new scheduling
algorithms to be added to the system easily. The major effort has

40

3-F-46



I

been on developing a variety of CPU scheduling algorithms. More
recently, disk, network and memory scheduling algorithms have been
investigated. Selected algorithms will be added to ARTS in the
near future. They have also been developing various scheduling
techniques and tools that allow the programmer to determine the
ability to schedule a given task set on a system wide bases. "By
system-wide schedulability analysis, we mean that a system designer
should be able to analyze or predict, at the system design stage,
whether the given real-time tasks having various types of system
and task interactions (e.g., memory allocation/deallocation,
message communications, I/O interactions, etc.) can meet their
timing requirements." [2, p. 1]

ARTS scheduling algorithms help to prevent service denial.
ARTS guarantees that given a set of tasks or task that it will
complete each job before it's deadline. Some of the algorithms
that have not been implemented yet, such as best effort, guarantee
that given a set of tasks that can not all meet their deadlines,
that the best effort will be made to complete the most the system
services.

3 4.2.2.1.14 System Initialization and Reinitialization Interfaces

There are interfaces for loading, initializing and shutting3 down ARTS.

4.2.2.1.15 Time Services Interfaces

3 ARTS supports a variety of timing services. Most important
is the ITDS mentioned earlier.

3 4.2.2.1.16 Ada Language Support Interfaces

One of the major areas of the ART project is to develop a
distributed real-time Ada runtime environment. The effort was to
combine state-of-the-arts software engineering results with both
the scheduling algorithms provided by the theory group and the
services provided by the ARTS effort. The Ada work was being
conducted by SEI. It is unknown whether or not this work has been
integrated into ARTS.

3 4.2.2.2 Additional Characteristics

4.2.2.2.1 Proprietary or Open

ARTS is the result of research work that is funded by various
DoD agencies. The source code is available upon request and the
interfaces are open for implementation by all vendors.

1 4.2.2.2.2 Qualification as a Standard

3 ARTS does not qualify as a standard.

* 41

3--3



4.2.2.2.3 Platform Flexibility

ARTS is implemented on a 68000 based architecture and
supports interfaces to several types of networks. The design does
not preclude additional architectures.

4.2.2.3 References 3
(LEHOC86B] (TOKUD89]

4.2.3 ARTX Survey Summary H
Ready System's Ada Real-Time eXecutive (ARTX) is designed to

implement the critical "kernel" services of an Ada multitasking
real-time Runtime System for embedded microprocessor applications
(Motorola 68000 microprocessors family and Intel 80386
microprocessor). ARTX schedules the processor and allocates CPU
time among a number of concurrent tasks; it also allocates blocks

of available memory to these tasks and implements intertask
communication and synchronization. Furthermore, it supports a full
range of Ada semantic operations, including the complete Ada
tasking model. Its real-time capabilities may be elaborated as
follows: 3

* ARTX consists of deterministic algorithms with fixed,
specified timing for task rescheduling, rendezvous calls and
accepts, memory allocation, interrupt latency, and I
interrupts-off time.

* ARTX's timing is independent of system load. That means
that, as system requirements change and more capabilities (tasks
or other system objects) are added to the system, ARTX's timing I
is not affected.

* ARTX supports a fully preemptive scheduler so that the
highest priority task in the system will always be executing. I

* ARTX allows task priority to be changed at run-time.
* ARTX provides additional communication and synchronization

primitives besides the standard Ada rendezvous. These
primitives are accessed from the applications code via a
packaged interface and include mailboxes, queues, semaphores,
and event flags.

* ARTX supports two alternatives for servicing interrupts,
using Ada rendezvous entries which are flexible or using Ada
procedure calls which are fast but not as flexible.

ARTX is also upwardly compatible with Ready Systems' industry a
standard kernel VRTX32, so that application tasks written in other
languages (C, Fortran and assembly language) can be easily
integrated into the system without any changes. 3
4.2.3.1 Operating System Service Classes

4.2.3.1.1 General Requirements I
42 3

3-F-48 3



I
U

ARTX supports mixed-mode applications where a number of tasks
may co-exist in the same target system, may be written in a varietv
of languages (for example C, Fortran, Pascal and assembly language)
and may interact in various ways through the underlying ARTX
capabilities ( this because ARTX is upwardly compatible with

3 VRTX32).

4.2.3.1.2 Architecture Dependent Interfaces

I No explicit features

1 4.2.3.1.3 Capability and Security Interfaces

No explicit features

5 4.2.3.1.4 Data Interchange Interfaces

Differences in type representation by various programming
languages (Ada and C) within the ARTX environment are handled by
the cross Ada and C compilers.

4.2.3.1.5 Event and Error Management Interfaces

ARTX uses Event Flag to signal occurrences of events to
tasks. It also detects event overruns, and it provides
synchronization features such as: a) a task can wait for one of
several events to occur, b) a task can wait for a total of several
events to occur, c) many tasks can be waiting for the same events
to occur.

ARTX also utilizes the Ada exception mechanism for
communicating error conditions. Exception handling features a
complete traceback of the exception propagation. It provides
information on the entire call chain of the exception, extending
all the way to the originating Ada source line.

1 4.2.3.1.6 File Interfaces

4.2.3.1.6.1 Naming and Directory Interfaces

ARTX can be extended to provide file services by including
the READY SYSTEMS' Input/Output File Executive (IFX). IFX is a
file manager to provide file and directory handling functions for
disk devices. The Disk I/O module of the IFX provides the MS-DOS
compatible File Manager. The disk file operations are as follows:
1) formatting and initialization, 2) file management calls (open,
close, create, delete, and rename files), 3) operations on
directories (make and remove), 4) file locking, 5) volume mounting
and dismounting, 6) I/O operations (transferring data to and from
files).

4.2.3.1.6.2 Real-time Files

I 43



i

ARTX's IFX provides a buffer cache manager which reduces I/O i
operations to disks by maintaining a cache of frequently used
sectors. Also, Interrupt Service Routines can make direct calls to
IFX resulting in better serial operations.

4.2.3.1.7 Generalized I/O Interfaces

IFX's Stream I/O module handles I/O for byte-stream devices
such as terminals, printers, pipes and other serial communications
devices. The Stream I/O module consists of the Circular Buffer
Manager and the Line Editor. The Buffer Manager is used for the
high-speed binary communication between computers. The Line Editor
is used with CRT terminals and printers. i

4.2.3.1.8 Networks and Communications

ARTX can be configured to provide a multi-processor networked
runtime environment by using its two companion components RTAda-MP I
and RTAda-Net. RTAda-MP for shared memory multiprocessing; and
RTAda-Net for multiprocessor communication over local area
networks.

RTAda-MP supports a multiprocessor system organized as a
"cluster." A cluster consists of two or more processors with local
memory global or shared memory; a system bus which connects the i
processors; ARTX and RTAda-MP on each processor; and Ada
application software. It provides three layers of interprocess
communication and synchronization services. The lowest layer is
the Physical Layer, which provides unbuffered communication between
nodes. The Channel Layer is built on top of the Physical Layer and
provides node-to-node message passing mechanism ( channel is a
buffered, virtual connection between two Ada tasks on two different I
processors that allows the tasks to send and receive messages).
The highest layer is the Remote Procedure Calls(RPC), which allow
inter-processor procedure calls synchronously or asynchronously. I

RTAda-Net allows ARTX based system to network with other
systems that support TCP/IP and sockets (i.e., Sun/UNIX). For
example, real-time applications in a RTAda-Net environment can uses
ARTX to gather, control, and allocate real-time processes while a
more familiar interface (such as VAX/VMS with TCP/IP, or Unix BSD)
can be used for data storage, or as a system monitor in a
non-real-time environment.

4.2.3.1.9 Process Management interfaces

ARTX supports complete Ada tasking model. It provides system
calls for creating and deleting tasks (processes), suspending and
resuming tasks execution. It performs task scheduling using the
preemptive priority-based techniques. Each task is assigned a
priority when it is created. When more than one task is ready to
run, ARTX always select the highest priority task. Optionally,
ARTX schedules tasks of equal priority on a time-sliced basis.

44 I
3-F- 50



When time-slicing is enabled, equal-priority tasks run to the

user-specified time-sliced value in round-robin fashion.

4.2.3.1.10 Project Support Environment Interfaces

No explicit features

4.2.3.1.11 Reliability, Adaptability and Maintainability
Interfaces

No explicit features

4.2.3.1.12 Resource Management Interfaces

Storage Management
ARTX's approach to dynamic memory allocation is based on the

needs of real-time multitasking applications; that is speed and
predictability. Because of all variable-block allocation schemes
can, under certain conditions, produce unpredictable response
times, ARTX allocates and release memory storage in fixed-size
blocks and a free pool may be subdivided dynamically into
partitions to obtain space efficiency. A task can minimize wasted
memory by allocating from the partition with block size closest to
the actual amount of memory it needs. Therefore, the real-time
executive can manage the memory pool without searching overhead and
without external fragmentation.

4.2.3.1.13 Synchronization and Scheduling Interfaces

ARTX provides Dijkstra counting semaphores for mutual
exclusion to gain or relinquish exclusive control over a shared
resource such as memory, and I/O device, etc. It also uses mailbox
and queue for data transfer, synchronization and mutual exclusion.
Event Flags is also used for intertask synchronization.

ARTX performs task scheduling using the preemptive
priority-based techniques. Each task is assigned a priority when
it is created. When more than one task is ready to run, ARTX
always select the highest priority task. Optionally, ARTX
schedules tasks of equal priority on a time-sliced basis. When
time-slicing is enabled, equal- priority tasks run to the
user-specified time-sliced value in round-robin fashion.

4.2.3.1.14 System Initialization and Reinitialization Interfaces

ARTX provides a system call for ARTX initialization.

4.2.3.1.15 Time Interfaces

Real-Time clock Services is based on the notion of a clock
tick; a tick is derived from an interrupt generated by a hardware
timer. ARTX maintains a clock counter which accumulates ticks; if
increments the counter whenever an interrupt service routine issues

45

3-F-51



I
a system call. A high-resolution relative time clock like ARTX's
is essential for embedded applications. U
4.2.3.1.16 Ada Language Support Interfaces

ARTX supports complete Ada tasking operations (e.g.
rendezvous, task creation and termination, task completion and
abort, select, and delay). It also supports full range Ada
semantic operations (e.g. exception handling, input/output and
dynamic memory allocation).

4.2.3.2 Additional Characteristics I
4.2.3.2.1 Proprietary or Open

ARTX is proprietary.

4.2.3.2.2 Qualification as a Standard

ARTX is upwardly compatible with Ready Systems' industry
standard real time kernel for microprocessor VRTX32. g
4.2.3.2.3 Platform Flexibility

ARTX is targeted to MC 68000 family microprocessors and Intel 3
386 microprocessor.

4.2.3.3 References

4.2.4 ATES 43 Survey Summary 3
ATES 43 is designed to operate in a complex of UYK 43

multiprocessor computers. It is an evolution from ATES, an
operating system in use on the early CG 47 Class ships. ATES 43
will be used on the later CG 47 Class ships and on the DDG 51 Class
ships. It provides a uniform fault tolerant message passing
protocol among processes whether in the same or different I
computers. It will recover automatically from all single point
hardware and software faults. It provides for pre-emptive priority
based scheduling within a computer and limited priority based I
scheduling among processes in different computers. A more detailed
description follows.
FUNCTIONS OF ATES 43

ATES 43 is one of the operating systems used in the AEGIS
combat system. Specifically it is used in SPY-ID, C&D, WCS, UTS,
ADS, and ACTS. ATES 43 has evolved to support the needs of the
application programs it supports. It is tailored to these and to I
the UYK 43 computer on which it executes.

The following information on ATES 43 functions is taken from
section 1 of the "AEGIS TACTICAL EXECUTIVE SYSTEM (ATES/43) USER'S 3

46

I
3-F-52 I



MANUAL, 30 June 1988, AEGIS SHIPBUILDING PROGRAM" with slight
changes to improve readability in this document.

ATES 43 DESCRIPTION
Design and development of ATES 43 is based on several

objectives that evolved from past user experience and AEGIS DDG
mission requirements. These objectives include:
a. Provide an operating environment that responds in a
predictable, user-controlled manner to stimuli from both program
modules and the AN/UYK-43.
b. Manage and use fully the resources of the AN/UYK-43.
c. Protect itself from out-of-bounds parameters presented in
requests for services, memory access, and hardware failures.
-. Rapidly recover frz- _."A?/UYK-43 hardwar.e and uumputei pILcoblnm

errors in order to met the high availability requirements for DDG
AWS.
e. Provide for an external system clock to allow synchronization

of programs and data in several computers.
f. Provide program protection during loading and initialization.
g. Provide a common interface for ATES 43 standard peripherals.
h. Provide for computer program architectures required by the
tactical and simulation elements, including (1)multi-tasking;
(2)repetitive and demand-driven tasks; (3)time-critical,
non-time-critical, and time-sliced tasks; (4)Common Service
Routines (CSRs); and (5)Subroutine. A computer program is composed
of modules (processes), procedures, and data segments. ATES 43
manages the interaction among these components.
i. Provide a logical I/O capability to support the use of

redundant data paths and the reconfiguration of a computer program
to an alternate computer.
j. Provide for on-line program debugging, system/program
performance measurement, and recording.

Whether or not objectives are met depends on how the user
directs ATES 43.

BASIC OPERATIONS
ATES 43 provides for the basic Operator Communication Device

(OCD) operations common to AEGIS Weapon System (AWS) computer
programs, and it maintains the integrity of user programs by
performing all the interrupt-state operations and executing all of
the privileged instructions within the AN/UYK-43 computer. The user
controls these basic operations with specification language
statements at system build time, and with Executive Service
Requests (ESRs), OCD inputs, and messages to ATES 43 task-state
modules during system operation. Common operations provided with
the OCD are:
a. Program loading b. Utilities c. Data recording d. Testing e.

System resource monitoring
The user can provide additional OCD modes of operation.

A special program development operation, Split ATES 43,
allows two ATES 43 programs to operate independently ari
simultaneously within one AN/UYK-43 enclosure. Each program uses

47

3-F-53



I
one CPU, one IOC, and up to five memory units.

4.2.4.1 operating System Service Classes

The following paragraphs identify and briefly define the 16 i
functions provided by ATES 43. With the exception of IPL/43
(Initial Program Load), all the ATES 43 components are part of the
operational program loaded by IPL/43. I
4.2.4.1.1 General Requirements

The Utility Processing Function provides performance I
measurements and debugging support capabilities. Performance
measurements include system and module statistics, executive trace
information for debugging, and timing measurements. Debugging I
support includes inspecting and changing memory, setting
instruction or data breakpoints, selecting data output on
breakpoints, enabling/disabling the P-history file, printing load
maps, and accepting a core dump. These tasks can be performed at
an OCD or by messages from user modules.

4.2.4.1.2 Architecture Dependent Interfaces i
No explicit features

4.2.4.1.3 Capability and Security Interfaces

No explicit features i
4.2.4.1.4 Data Interchange Interfaces

No explicit features 3
4.2.4.1.5 Event and Error Management Interfaces

Error Processing and Recovery (EP&R) Function: The EP&R
Function is responsible for processing all errors from computer
equipment or program failures. It initiates reporting and i
recording of the errors and controls user-specified error recovery m
scenarios. These recovery scenarios are specified by the user at
system build time.

The Interrupt Processing
Function receives and interprets all interrupts, whether they

are generated as a result of software or hardware actions, and
transfers control to the ATES 43 components for further processing.

The Diagnostic Approval Function approves or disapproves
diagnostics recommended by the FTSRM Interface Module (FIM) or by
the operator (via the System Resource Function) in accordance with
the system operating conditions and the requirements provided by
the user at system build time.

48

3-F-54 I



4.2.4.1.6 File Interfaces

The Data Recording Function extracts ATES 43 executive or
user-selected, memory-resident data and records this data on
magnetic tape for subsequent reduction and analysis by AEGIS Data
Recording System (ADAR) or an ADAR-compatible program. The data
recording function uses a comon tape handler with device
processing. The extraction points are specified by the user at
system build time.

4.2.4.1.7 Generalized I/O Interfaces

The Device Processing Function provides the interface between
(1)ATES 43 components and user modules, and (2) the AYES 43
standard peripheral devices. Currently, ATES 43 supports the
following peripheral devices for the AEGIS Weapon System.
a. One magnetic tape unit (RD-358A) with up to 4 tape drives
b. Two disk units (AEGIS UYH-3V, DDG modified) c. Two operator
communication devices (OL-267) d. One printer (Data Products
BP-1500/600)
The I/O Processiing

Function is responsible for initiating all I/O operations
except intercomputer operations. It processes all I/O interrupts
received from the interrupt processor. The user specifies the
channel and memory access attributes that are honored by the I/O
processor.

4.2.4.1.8 Networks and Communications

Message Processing Function: The Message Processing Function
is responsible for the distribution and routing of messages from
one module to another within a computer and, via intercomputer
processing, between computers. Message types, distribution and
routing are specified by the user system build time.

The Intercomputer Communication Processing Function
establishes intercomputer links, transmits and receives messages,
gathers and scatters table data, reports link status, and processes
interrupts received from the interrupt processor on intercomputer
channels. The user logically enables communication on the channels
and coordinates the processing, distribution, and routing code
tables in each computer. These tables are specified by the user
at system build time.

4.2.4.1.9 Process Management Interfaces

The Loading Function is performed by IPL/43, a stand-alone
program. Once IPL/43 is boot loaded, it provides prompts to the
OCD operator to load a Tactical Load File (TFL), an ATES 43
compatible load file, or a bootblock-formatted file. Subsequently,
IPL/43 is used by the reload functions. Instruction and data
segments are loaded into separate memory units as defined by the

49

3-F-55



user at System build time.
The Background Loading Function is responsible for loading

a backup copy of the program. A backup copy of the computer
program will be loaded while the primary copy of the program is
running. To minimize conflict with the operation of the primary I
copy, this background loading from disk will be carried out one
segment at a time with the disk services provided by the Device
Processing Function.

The Command-Activated Remote Load (CARL) Function allows the
user to load a computer program into one AN/UYK-43 computer from
another (remote) AN/UYK-43 computer. The computer to be loaded
must have an RS-449 interface between its Display Control Unit
(DCU) and an I/O channel of the remote AN/UYK-43. ATES 43 provides
the DCU and IPL/43 commands for loading a computer program from
disk. i
4.2.4.1.10 Project Support Environment Interfaces

Common Service Routines (CSR)s are a group of reentrant I
task-state routines that provide common services for ATES 43 and
user modules within the computer program. Selected ATES 43
routines may be included in the computer program along with I
user-supplied routines at system build time. The ATES 43 CSRs
include mathematical routines, format conversion routines, and
ESRs. These CSRs are accessed by a subroutine call, which I
eliminates the ESR processing-time overhead.

4.2.4.1.11 Reliability, Adaptability and Maintainability
Interfaces I

No explicit features 3
4.2.4.1.12 Resource Management Interfaces

Memory Management Function: The Memory Management Function
allocates and reclaims temporary storage shared by ATES 43 i
components and user modules. Memory management allocates blocks
of memory as requested, and it reclaims the uncataloged blocks of
memory when requested or when a module exists and the block is no
longer needed. The size and distribution of temporary storage is
specified by the user system build time.

The System Resource Monitoring Function provides the I
following services:
a. Monitors the status of the hardware modules that make up the

computer enclosure, and informs the operator of any status change.
b. Notifies the AEGIS ORTS computer and a user-designated

task-state module of requested hardware-module status changes.
c. Displays requested executive queue statistics on the printer

during system operation. I
d. Provides a means of software enabling/disabling hardware

modules.
e. Carries out requests for diagnostics and tests on selected

50 U
3-F-5h I



system components.
f. Switches processing control to the backup copy of the program,

or initiates a load from disk at the request of ATES 43 or the OCD
operator.
g. Prints a physical-to-logical channel translation table for
configured IOC channels upon request.
h. Enables/disables software program modules.
i. Prints module-fault and single-bit error data.

4.2.4.1.13 Synchronization and Scheduling Services

Scheduling Function: The Scheduling Function registers in the
priority scheduling queue the requests for dispatching modules in
accordance with designated priorities and throttling. It maintains
this queue by incorporating scheduling request information in the
queue and ordering the entries according to their assigned
priority. One priority-scheduling queue serves both CPUs.

The Dispatching Function selects the highest priority request
from the priority scheduling queue and transfers CPU control to
that module at the specified entrance. (A module can have up to
seven entrances. Since each can be scheduled individually and
carries out different functions a module can be thought of as
encompassing up to seven threads of control or processes. However
two threads of control from a single module cannot be in execution
concuxrently.) This function also preempts the currently dispatched
module when another module from the scheduling queue has a higher
priority preemption level. The preempted module is suspended and
will be dispatched again in its turn.

4.2.4.1.14 System Initialization and Reinitialization Services

The Resident
Initialization Function receives control from either IPL/43

or from the Error Processing and Recovery Function. Control is
received from IPL/43 immediately after a program load or reload.
Control is received from the error processor when a switch to the
backup copy of ATES 43 is made. ATES 43 initializes itself and
then dispatches user modules at their initialization entrances.
Initialization is terminated as defined by the user.

4.2.4.1.15 Time Services Interfaces

The System Clock Processing Function controls the interface
between the AN/UYK-43 and the AEGIS external clocks. It enables
users to set and monitor master and slave clocks, and it contains
a clock implant instruction in each IOC, which can be set to jump
to a specified channel program every millisecond.

4.2.4.1.16 Ada Support Interfaces

No explicit features

51

3-F-57



I
4.2.4.2 Additional Characteristics

4.2.4.3 Referenco s

(AEGIS]

4.2.5 CAIS-A Survey Summary I

The Common Ada Programming Support Environment (APSE)
Interface Set (CAIS) revision A (CAIS-A) is a DOD standard for a
kernel APSE (KAPSE) interface. It has been designated MIL-
STD-1838A. It supersedes DOD-STD-1838 (commonly called CAIS-I or
sometimes just CAIS) and is a superset of it. As a KAPSE interface I
set, it defines interfaces for an APSE at the operating system
level. It is Ada-oriented and seeks to provide a portability
interface for project support tools. It is concerned with
interface needs in the host, not the target, environment. It may
be implemented either piggy-backed on an existing operating system
or directly on a bare machine. g
4.2.5.1 Operating System Service Classes

4.2.5.1.1 General Requirements 3
No other language bindings have been defined for CAIS-A, nor

were any other languages explicitly taken into account during the
definition of CAIS-A models or services.

. . Arcit~Lre Dezontant Tnterfces 3
CAIS-A includes interfaces for interfacing with other

systems. These come in two forms.
The first is the ability to import and export data. This in

turn cores in two forms. The first is interfaces which will import
a file from an underlyinq OS to the CrTS-A database and,
conversely, from a CAIS-A database to an underlying OS file. rne
second is interfaces which import and export information from/to [
a Common External Form (CEF). The CEF provides a canonical form
in which to capture the information in a CAIS-A database and to
recreate it at a new CAIS-A-based installation. I

The second is the ability to interact with other systems
through a gateway node. The other system may or may not be a
CAIS-A-based system; it need only be capable of properly E
interpreting the protocols which can be utilized via the gateway
node.

4.2.5.1.3 Capability and Security Interfaces 3
CAIS-A provides both discretionary access control (DAC) and

mandatory access control (MAC). These have been designed in I
52

3-F-58 I



accordance with the TCSEC and are intended to make it possible to
achieve a B3 implementation. Because CAIS-A is trying to provide
the minimal set of interfaces needed to assure portability of tools
and because very few tools are concerned with both administration
of security and being portable, CAIS-A provides no interfaces for
authorization of access (e.g., logon) or for administration of
security; it is assumed that the implementation will provide such
services. In particular, there are no special CAIS-A interiaces
for creating or manipulating groups (see below).

CAIS-A DAC is based on groups of users who can assume a given
role. Roles are defined with respect to a given node and cover
such rights as read, write, execute, read- attributes,
write-relationships and control (i.e., the right to change the
rights. When a process is executing on behalf of a user in a
certain role, it can perform on that node those operations which
are allowed by each of the granted rights. A qroup may be as small
as one user and as large as all users on the system. A
hierarchical structure of groups can be defined; any (sub)group can
be included in more than one group. Each process has a default
role, which is a default group under which it will always execute.
In addition, a process can dynamically adopt and relinquish groups
as it proceeds with its functions. Rights can also be denied as
well as granted.

CAIS-A MAC interfaces are minimal, in keeping with requests
from the security community thdt CAIS-A not dictate a particular
security policy. Labeling of nodes and processes is provided for,
but almost no semantics are defined. In particular, a
SECURITYVIOLATION exception is provided, but there are no
specifics as to when a particular implementation must raise it.
This is in keeping with the desire to provide a set of interfaces
which could be implemented to achieve MAC, but which would not
penalize those who wanted to implement it and use it under
circumstances which did not require MAC precautions.

4.2.5.1.4 Data Interchange Interfaces

Although CAIS-A provide a caronical form for external data
representation (see item 2 above), it is not at the level of
represL..ntation of low-level data types such as discussed in the
Reference Model for these services.

4.2.5.1.5 Event and Error Management Interfaces

CAIS-A utilizes the Ada exception mechanism for communicating
error conditions. This is supplemented with a status code
mechanism which provides more complete information, since many
exceptions can be raised for multiple reasons.

CAIS-A also provides a mechanism by which the implementation
can be requested to monitor an attribute on a given node. When the
value of this attribute changes, a user-defined process is
automatically invoked.

53

3-T:-59



n
4.2.5.1.6 File Interfaces

CAIS-A does not provide a file system in the traditional
operating system sense. Instead it has used an entity-
relationship-attribute (ERA) model (called the node model) to unify I
the traditionally separate worlds of data (file) services, process
management and input/output. In the node model, every important
aspect of the system (e.g., files, directories, processes, devices,
groups) is represented as a node with attributes, relationships and
possibly contents. Paths can be traversed through the system by
following the relationships. Names are applied to these
relationships, so any node in the system can be identified by at I
least one pathname (i.e., the name that results frum the
concatenation of the relationship names as the relationships are
traversed).

Using this node model, the user can store data according to
a number of paradigms. One common usage is to mimic a hierarchical
file/directory structure as is often found in conventional file
systems. This hierarchical "backbone", however, is supplemented
with the added benefits of a full ERA system.

Because of the nature of relationships in general and some
particular features of the CAIS-A node model, every node may have, n
in addition to its primary pathname, any number of other pathnames.
Thus, one process may access a node by one name and another process
may access the same node by a completely different name. File
(node) sharing is simple.

CAIS-A has no provisions for real-time files. All normal
primitives for file (node) modification are available, including
creating, opening, closing, reading, writing, renaming, copying and Ideleting. These services are largely provided by I/O packages which

completely mimic Ada's Chapter 14 I/O.

4.2.5.1.7 Generalized I/O Interfaces

All forms of CAIS-A I/O are very similar. They are unified
by the I/O Model which governs how file/device nodes can be
connected with processes to achieve I/O. Packages are provided
which are oriented towards certain classes of devices (e.g.,
terminals, magnetic tape) and services provided follow in the style U
of the Ada Chapter 14 I/O.

4.2.5.1.8 Networks and Communications 3
CAIS-A can be implemented as a distributed system. This can

be done transparently to the applications system; in addition,
CAIS-A provides interfaces which an application can use to direct
some aspects of distribution and networking.

There are no services for administering or controlling the
network itself. There are services for directing (actually,suggesting) that a process be run on a particular processor or that
a file node be created on a particular device. Some status about
the configuration can also be ascertained. As the configuration 3

54 I
3-P- 0O I



is represented by nodes in the node model, the naming provided is

exactly like that of the rest of the node model.

4.2.5.1.9 Process Management Interfaces

CAIS-A provides a full range of normal process management
primitives: create, invoke, abort, suspend, resume and various
status inquiries. Inter-process communication is provided in a
manner that is uniform with the overall I/O model, making
communication between processes indistinguishable from
communication between a process and a file node. Processes can be
invoked (in which the parent awaits the completion of its child)
or spawned (in which the parent proceeds in parallel with its
child). Processes occur in trees, and some primitives can be
applied to the entire process tree.

4.2.5.1.10 Project Support Environment Interfaces

CAIS-A does not include any explicit project support
environment services. It is possible to use CAIS-A features to add
packages which provide such features (e.g., host- target
communications). CAIS-A does not include any special interfaces
which would support the needs of a debugger (e.g., break or
single-step).

4.2.5.1.11 Reliability, Adaptability and Maintainability
Interfaces

No explicit features

4.2.5.1.12 Resource Management Interfaces

CAIS-A provides no memory management services.
CAIS-A's resource model does address the needs of device

management services. Through its representation in the node model,
the resource model can be used to provide information and bervices
related to device allocation, availability, and control.

4.2.5.1.13 Synchronization and Scheduling Interfaces

Synchronization is provided by CAIS-A through the use of two
mechanisms. One is local node-level synchronization through the
use of node handles, which use the intents which a process has
declared with respect to a particular node to coordinate its access
with that of other processes. This level of synchronization is
used every time a node is opened. The second is transactions, which
provide the ability to treat a sequence of operations as ar atomic
action with the guarantee that either all the operations will
succeed or the system will be left in state in which none of the
operations occurred. This can be used as a by- product of process
invocation or as an independeit action.

CAIS-A considers scheduling to be the responsibility of the

55

3-F-hl



implementation and does not reflect any particular scheduling 3
approaches at the level of the interfaces. It does not involve
itself with task scheduling, leaving that to the particular
compilation/run-time system being used. 3
4.2.5.1.14 System Initialization and Reinitialization Interfaces

These are considered to be the responsibility of the 3
implementation and are not covered in the CAIS-A interfaces.

4.2.5.1.15 Time Interfaces 3
CAIS-A relies on Ada semantics for some time services. No

others are provided. 3
4.2.5.1.16 Ada Language Support Interfaces

CAIS-A was defined in accordance with the concepts of Ada to i
the greatest extent possible. It does not address Ada tasking; it
assumes that the Ada compilation system takes care of Ada semantics
and deals only with processes, which are defined to be executing
Ada programs. The ARTE is independent of CAIS-A. Likewise, CAIS-A
(the standard) does not get involved with exception propagation,
interrupt-to- task mapping, priority of tasks or rendezvous. The
CAIS-A process model does not mimic the Ada tasking model.

4.2.5.2 Additional Characteristics:

4.2.5.2.1 Proprietary or Open

CAIS-A is fully open for implementation by all vendors. It
is the product of a joint DoD/industry team. I
4.2.5.2.2 Qualification as a Standard 3

CAIS-A is a DoD standard sponsored by the Ada Joint Program
Office. It has been formally balloted among the services and other
federal agencies, in accordance with the rules for establishing a
DoD standard. This balloting included several hundred reviewers
from industry as well as some recognized interested organizations
such as EIA and SIGAda. 3
4.2.5.2.3 Platform Flexibility

CAIS-A is intended to be implementable on any of a wide 3
variety of architectures which include machines from virtually any
vendor.

4.2.5.3 References I

MIL-STD-1838A. The Common Ada Programming Support
Environment (APSE) Interface Set. 6 April 1989

56

3-F-()2 3



4.2.6 Clouds Survey Summary

The Clouds project was initiated at the Georgia Institute of
Technology in 1979. Since then, it has received major funding from
NSF, NASA, and RADC. Currently, the Clouds project exists as part
of a larger NSF-sponsored project called DARE (for Distributed
Application Research Environment).

Clouds is a distributed operating system for a cluster of
general purpose computers interconnected by a medium to high speed
local area network. Its goals may be elaborated as follows:

o Reliability and fault tolerance: In the beginning, the primary
design goal of the Clouds distributed operating system was thesupport of reliable, fault-tolerant distributed computing. While
reliability/fault tolerance remains as a major goal, the emphasis
has shifted, as explained in the next paragraph.
o Object/thread model: The object/thread programming model was

originally conceived as a means to an end, the end being reliable
and fault tolerant distributed computing. However, it has become
an end in itself; the support and exploitation of this advanced
programming paradigm is now the overriding theme of the Clouds
research. Research topics include operating system support for
objects, replication and consistency management using objects in
a distributed environment, and programming
language/methodology/tools support for programming distributed
applications using objects.
o "Minimalist" philosophy for distributed operating system

design and implementation: The Clouds operating system supports a
minimal set of functions necessary to run a distributed system.
The object/thread model provides a structured persistent memory,
doing away with the need for long-term storage in the form of a
file service and complicated I/O system. The operating system does
not incorporate services such as printing, databases, and graphics,
either, since these can be effectively implemented as user level
applications. The kernel of the Clouds operating system is also
minimal, in keeping with this philosophy.

4.2.6.1 Operating System Service Classes:

4.2.6.1.1 General Requirements

The first language being supported on the Clouds system is
C++. The language has been somewhat modified (by adding keywords)
to support entry points, segmented data, persistent data, and
permanent and temporary memory allocation. The C++ programs define
objects (and not processing). Support for single inheritance iscomplete, and support for multiple inheritance is being designed.

The language defines the inheritance scheme, as Clouds does not
define inheritance (but does have the mechanisms to implement
inheritance and sharing effectively).

57

3-F-63



I

4.2.6.1.2 Architecture Dependent Interfaces i
The Clouds researchers plan to support Clouds-UNIX

interoperability, of two distinct flavors. First, Clouds services
should be made available to UNIX users and programs, through a
Clouds library on UNIX, in a way that would enable a cluster of
Clouds machines to serve as a back-end distributed system to UNIX I
workstations. Second, established UNIX services (e.g., mail, text

processing, etc.) should be made available to Clouds users, through
a "UNIX gateway." 3
4.2.6.1.3 Capability and Security Interfaces

Clouds utilizes capabilities for object naming. Each Clouds 3
object is named and accessed by its capability, which is globally
unique and location-independent.

At this point in time, protection is not a goal of the Clouds
project. Therefore, although capabilities could be utilized for
protection as well as for naming, they currently are not being
utilized for this purpose. 3
4.2.6.1.4 Data Interchange Interfaces

Not incorporated into the operating system proper as an 3
explicit service. However, it may be viewed as being supported by
adherence to conventions.

4.2.6.1.5 Event and Error Management Interfaces U
Object-based error handling and event management will be

provided by Clouds. However, the exact nature of these services I
is not completely defined at this time.

4.2.6.1.6 File Interfaces 3
A conventional file can be viewed as a special case of a

Clouds object, namely one with file data in its data space and file
operations, such as read and write, which can be invoked by I
threads.

However, in the Clouds programming paradigm, the need for
having files goes away. Programs do not need to store data in
file-like entities, because they can keep the data in the
(permanent) data space of objects.

Just as Clouds does not have files, it does not provide
user-level support for file (or disk) I/O. The system creates the
illusion of a huge virtual memory space that is permanent, and thus
the need for using disk storage form a programmer's viewpoint is
eliminated.

4.2.6.1.7 Generalized I/O Interfaces i

58

3 -F-64 I



No explicit features

4.2.6.1.8 Networks and Communications

Clouds provides two modes of interprocess communication, both
stemming from the Clouds paradigm of global persistent objects,
which can be shared on a system-wide basis. In particular, objects
can be invoked using either one of two mechanisms: remote procedure
call (RPC) or distributed shared memory (DSM). Using RPC, the
thread migrates to the home site of the object and executes there;
using DSM, the invoked object is demand paged to the site of the
invoking thread. The mechanisms have orthogonal advantages and can
be chosen for optimum performance.

4.2.6.1.9 Process Management Interfaces

Clouds adopts the object/thread model. The object serves as
an abstraction of storage, and the thread as an abstraction of
computation. Object invocations serve as the integrating
mechanism. These abstractions are summarized below:

o Object: In Clouds, an object is an instance of an abstract
data type. It is a passive entity, in particular, a
persistent virtual address space. It is used to encapsulate
all data, programs, devices, and resources.
o Object Invocation: Objects are accessed via (and only via)
object invocations, to operations defined on the objects.
o Thread: The thread is the active entity in Clouds, the
unit of computation and concurrency that is used to execute
the code in objects. Threads traverse objects, independently
of machine boundaries, via object invocations. Threads are
implemented as lightweight processes. A thread that spans
machine boundaries is implemented by several processes, one
per machine.
Clouds is a distributed operating system. Its kernel is

replicated at each node that participates as part of a Clouds
distributed system. The kernels implement Clouds IPC. System
services, provided by system objects, are invoked using Clouds IPC.

4.2.6.1.10 Project Support Environment Interfaces

No explicit features

4.2.6.1.11 Reliability, Adaptability, and Maintainability
Interfaces

Clouds is being designed to offer a range of
consistency-preserving mechanisms, from "best effort" to absolute
consistency.

The consistency preserving mechanisms are based on attaching
consistency labels to the operations declared in the objects. The

59

3-F-65



I
labels allow the operations to update the objects with (1)
transaction-like semantics, for preserving inter-object consistency
of data, (2) locally atomic semantics for preserving the
consistency of data locally within one object, or (3) best-effort
semantics like the way processes in conventional systems update
memory and files.

Ongoing research is addressing rault tolerance using
replicated data and computation.

4.2.6.1.12 Resource Management Interfaces

Storage Management Interfaces 3
In Clouds, emphasis is placed on the object as an abstraction

of storage. The object is viewed as unifying the concepts of file
space (long-lived storage) and memory space (volati)e storage, but
essential for computation), by providing a persistent virtual
address space. Since objects provide permanent storage, the need
for a traditional file system is eliminated; the file system is
replaced by object memory. Object memory is stored on disk and I
demand paged. The demand paging happens with storage on the local
machine, if the invocation uses RPC. The demand paging occurs over
the network if the invocation uses DSM.
General Resource Management Interfaces

The Ra kernel manages the low-level scheduling of threads,
demand paging, and segment and memory allocation. All other
resource management tasks are done at the higher level through
system objects. Currently, the system objects under implementation
will do object management, task management, naming, and partition
management. More will be implemented as the system evolves. One I
of the points of the Ra approach is to be flexible and avoid beinglocked into any particular resource management scheme.

4.2.6.1.13 Synchronization and Scheduling Interfaces N
No explicit features 3

4.2.6.1.14 System Initialization and Reinitialization Interfaces

No explicit features 3
4.2.6.1.15 Time Interfaces

No explicit features i
4.2.6.1.16 Ada Language Support Interfaces 3

Ada, as well as some other languages, will be supported on
Clouds at a later date.

4.2.6.2 Additional Characteristics

4.2.6.2.1 Proprietary or Open 3
60

I
3-F-66 I



Open, since it is a government-sponsored academic research

project.

4.2.6.2.2 Qualification as a Standard

The Clouds project is directed at exploring a non-
conventional methodology or paradigm for building operating
systems. It is meant to demonstrate the utility and effectiveness
of the new methodology. It is based on a minimalist philosophy,
to allow for customization. Its focus, at this point in time, is
still on the fundamental paradigm that it advocates. As the system
matures, the researchers will likely explore higher level system
services in more detail.

4.2.6.2.3 Platform Flexibility

Clouds defines a methodology that advocates unifying a
distributed system using a set of global, persistent address spaces
along with necessary structuring, naming, and consistency support.
It couples long term storage with addressable memory, and decouples
processing from storage. Clouds also demonstrates the following:

o This environment can be built using a structured, portable
minimal kernel and plug-in system services.
o Most operating system services can be handled at the

application level, allowing for customization.
o Management of shared persistent memory can be handled
effectively in a distributed system.
o Consistency of persistent memory can be handled.
o Fault tolerance can be achieved and fine tuned through
replicated objects and replicated computations.

The current prototype runs on a set of Sun 3/60 machines on
an Ethernet. The design does not preclude any form of machine from
multiprocessors to embedded systems or any form of networking.

4.2.6.3 References

[BERNA], [DASGU88], [GIT86), [PITTS88]

4.2.7
Cronus has been under development at BBN Laboratories since

1981. It is sponsored by the Rome Air Development Center (RADC).
Cronus is an environment to support coherent integration of

heterogeneous computer systems. Typically, the computer systems
fall under a common administrative domain, and are interconnected
by one or more high-speed local area networks. The computer
systems may also be interconnected by wide area networks, via an
internet (such as the DARPA Internet). Each set of computer systems
is called a "cluster." The initial focus of Cronus has been on
intracluster communication and cooperation; however, more recently,
consideration has been given to intercluster aspects. The goals of

61

3-F-67



I
Cronus may be elaborated as follows:
o The ultimate goal of Cronus is to integrate heterogeneous

computer systems into an effective general-purpose distributed
computing environment for the development and execution of
large-scale applications.
o Heterogeneity is the key concept. The hallmark of Cronus is
its support of heterogeneity -- of both hardware and software
resources. The motivation for this emphasis is threefold: (1) to
allow applications and users to take advantage of the unique I
functionality offered by various hardware and software resources,
(2) to allow existing software to continue to be used, and (3) to
allow familiar computing environments to continue to be used.
o In particular, Cronus is designed to interoperate with, rather

than to replace or totally encapsulate, constituent (i.e, native)
operating systems.
o In addition to heterogeneity, the Cronus project places major
emphasis on providing comprehensive support for large-scale
distributed application development.

The Cronus approach is to introduce layers of software on top I
of constituent operating systems (or, in some cases, on bare
hardware). Cronus is based on the object model; each system
resource is a typed object, and is accessed through operations
defined by the type. The object model provides an extensible
architecture, in that application developers can cast
application-specific resources in terms of new object types, which
can be defined as subtypes of existing types.

Cronus supports heterogeneity by serving as a by- passable
layer of abstraction between application programs and constituent
operating systems. Through this approach, application programs I
gain access to a coherent, uniform (object-oriented) system
interface, regardless of computer system base; however, they also
retain conventional access to constituent operating system
resources and services.

The Cronus distributed operating system consists of the
following components:
o Cronus kernel: The Cronus kernel supports the Cronus object

model. Namely, it implements the basic abstractions of object,
operation invocation, and (Cronus) process, as defined below. It
must be installed and run on each host participating in the Cronus I
distributed system. Typically, it is implemented as an applicatic'n
process of the constituent operating system.
o Cronus system services: Cronus system services provide the
traditional operating system services, plus additional services
specifically designed for the support of distributed application
development. Each system service is implemented by one or more
manager processes (i.e., servers), which run above the Cronus I
kernel as Cronus processes. Current system services include an
authentication service, a catalog service, a configuration service,
a file service, and a type definition service. I

The distributed computing architecture supported by Cronus
includes the following components as well:
o Application services: An application service is one or more 3

62

I
3-F-68 I



processes developed by application programmers to manage the
resources that make up applications. An application is typically
composed of several services responsible for several different
object types.
o Clients: Clients are processes that use services. While any

service may act as a client to another service, most clients are
processes that interact directly with users, such as user commands,
utilities, and application-specific graphical user interfaces.

4.2.7.1 Operating System Service Classes

4.2.7.1.1 General Requirements

The fundamental assumption underlying Cronus programming
support is that large-scale applications will be developed in
accordance with the object model, just as Cronus itself is. Under
this assumption, the key to application development is the
definition of new object types to represent application-specific
resources and the development of new object managers to embody the
newly defined object types. Therefore, Cronus programming support
focuses on automating the process of develdinq iiew object
managers. In particular, Cronus seeks to relieve the application
developer's coding burden through the use of a non-procedural
program development specification language. Cronus takes
non-procedural specifications of a new object type, and
automatically generates code for skeletal object managers
(including multitasking for concurrent operation processing,
message parsing and validation, access control checks, operation
dispatching, data conversion between canonical and system-specific
data representations, and stable storage management), as well as
for RPC client stubs. The code generation process relies upon the
Cronus libraries; the skeletal object managers incorporate
procedure calls to Cronus library routines for many functions
(e.g., data conversion between the canonical and system-specific
representations of common data types). The application developer
completes the object manager by providing routines that implement
the operations defined by the new object type.

Cronus programming support also includes (1) extensive
subroutine libraries, including interprocess communication
routines, data conversion routines, and RPC interfaces to Cronus
objects; (2) a set of user commands; (3) a set of operator
commands; (4) operations inherited by all objects, for access
control, monitoring and control, debugging, and replication and
migration support; (5) a program to be used in conjunction with a
local debugger, to assist in object manager debugging; (6) source
management control software; and (7) a bug tracking facility.

Programming support was initially focused on C, but it is now
being extended to Common Lisp and Ada. Application components have
also been written in FORTRAN.

4.2.7.1.2 Architecture Dependent Interfaces

63

3-F-69



I
No explicit features

4.2.7.1.3 Capability and Security Interfaces

In Cronus, protection is achieved through access control 3
lists. The access control list for an object specifies which users
or groups of users have which access rights to the object.
Privileges associated with access control lists can be defined
separately for each object type. These privileges are specified
by the application developer, allowing access controls to be
customized for each type. Authentication (of the identity of a
user) is implemented by an authentication manager, which subjects
a user to a password-based authentication procedure upon login.

Multilevel security was investigatcd in a research project,
the Secure Distributed Operating System (SDOS) Project. Among the I
conclusions of the project was the following [Casey 87, p.19]:
"Thus, the host operating system(s) on top of which SDOS [i.e.,
secure Cronus] is implemented must have a minimum of a B2 rating,
and ratings of B3 or Al are more desirable." GEMSOS, a product of
Gemini Computers, Inc., of Carmel, California, was selected as the
best candidate for serving as a multilevel secure constituent
operating system.

4.2.7.1.4 Data Interchange Interfaces

Cronus uses the technique of canonical data representation
to solve the problem of data interchange in a heterogeneous
computing environment. Programs process data in formats directly
supported by the systems on which they are implemented. When data
is transferred to another network component, it is encoded into a
canonical form using appropriate conversion routines. The reverse
process takes place on the receiving end. Cronus takes I
non-procedural specifications of a new object type, and
automatically generates code for data conversion between canonical
and system-specific data representations.

4.2.7.1.5 Event and Error Management Interfaces

Cronus routines that detect errors generally signal a failure I
by returning a special value distinguished from the set of normal
return values. Routines returning numeric results can return ERROR,
and routines that return pointer can return NULL. Before returning, I
these routines generally set the "ErrorBlock" -- a global structure
in the program that records error conditions. Then, the calling
routine has the option of attempting error recovery action using
the information it find in the ErrorBlock, resetting the ErrorBlock
with its own interpretation of the error, or simply returning the
error indication provided by the lower-level routine. 3
4.2.7.1.6 Files Interfaces

Cronus provides a file system for storing information just 3

3-F-70

I



as do other operating systems. Cronus files are objects, so they
are accessible through the same object-oriented, location
independent IPC facility as are other Cronus system entities.
Files in the Cronus files system are accessible from any and all
hosts in the Cronus cluster automatically. Cronus will locate a
file and direct operations to that file's object manager
transparently, hiding the distributed nature of the file system,
and providing an interface to the application program or user that
is simple and powerful.

Though, different file types are implemented as different
object types, the object-oriented nature of Cronus allows all of
these file types to respond to a common set of operations through
the mechanism of inheritance. Currently, two Cronus file types are
available:
o COS Files (Constituent Operating Systems Files): ordinary
local host operating system files that have been made into
objects and are accessible from anywhere within Cronus.
o Reliable Files: characterized by special facilities for
synchronizing access by multiple simultaneous readers and
writers, by enhanced read and write operations that can
simplify application programs, and by enhanced survivability
in the face of system failures.

4.2.7.1.7 Generalized I/O Interfaces

Devices, such as line-printer, tape-driver, or terminal, are
integrated into the Cronus system as sub-types of a generalized I/O
object, which supports a generalized set of I/O operations. File-
like interfaces for device I/O are supported for most devices.

4.2.7.1.8 Networks and Communications

Network Control and Status
The monitoring and control system (MCS) for Cronus includes

monitoring and control of hosts and of the Cronus functions on
these hosts, of the network substrate and of gateways.
Interprocess Communication

Cronus interprocess communication (IPC) is designed to
support operation invocations from clients to object managers,
where the invocations can be synchronous or asynchronous, and can
have one or many targets. It is implemented as a series of layers.

At the lowest layers, collectively referred to as the network
layer, are standard data communication protocols, which are
typically implemented by the constituent operating systems.
Currently, Transmission Control Protocol (TCP), User Datagram
Protorol (UDP), Internet Protocol (IP), and Ethernet are utilized.
However, other protocols could be substituted easily.

Above the network layer is the layer designated as the IPC
layer. This layer implements three communication primitives:
Invoke, Send, and Receive. In a typical scenario, Invoke would be
used by a client process to invoke an operation on an object.

65

3-F-71



I
Using Invoke, the client references the object by name (not
location, thereby ensuring host-independent, network-transparent I
access to objects), and this causes a message to be sent to the
process serving as object manager of the target object. The object
manager would retrieve the message from its message queue via the I
Receive primitive, perform the requested operation, and then send
a reply to the client via the Send primitive. The operation would
actually be performed by a lightweight process (or task, in Cronus i
terminology) created by the object manager; thus, operations can
be performed concurrently. Finally, the client would receive the
reply via the Receive primitive. The separation of the client's
Invoke from the subsequent Receive allows for asynchrony and
concurrency. It should be noted that the Send is simply an
optimization of the Invoke. It allows a message to be sent
directly to a process, instead of to the prccess manager. I

Above the IPC layer is a layer designated as the message
encodement layer. This layer is responsible for encoding and
decoding messages, using canonical (system- independent) data
representations. Cronus defines canonical data representations for
many common data types and structures. It also offers
extensibility by supporting the creation of new canonical types
from existing ones.

At the highest layer is a protocol designated as the
Operation Protocol. This layer defines a set of standards for
interpreting messages between clients and managers, and supports I
a synchronous remote-procedure-call-like (RPC-like) programminginterface for operation invocation.

Naming I
Cronus has a two-level naming system. At the high level is

a hierarchical symbolic name space. At the low level is the flat
name space of Unique Identifiers (UIDs). A UID is a 96-bit object I
identifier, which is guaranteed to be unique over all objects over
all time within a cluster; sixteen bits of the UID specify the
object's type, and the remaining bits establish uniqueness. The
Cronus catalog, which is implemented as a distributed entity by the
catalog managers, provides the mapping between symbolic names and
UIDs. 3
4.2.7.1.9 Process Management Interfaces

Since Cronus is based on the object model, the basic 5
abstractions are objects and operation invocations. To implement
the object model, the Cronus kernel introduces the process as a
kernel-supported object type. Thus, the basic abstractions of
Cronus are the following:

o Object: In Cronus, an object is an instance of an abstract
data type, where a type can be defined as a subtype of a
parent type, and hierarchical inheritance is supported.
Objects are passive entities.
o Operation Invocation: Objects are accessed via (and only
via) operation invocations. (This abstraction is inherent in I

66

3-F- 72 i



the object abstraction.)
o Process: Processes are the active entities in Cronus.
They are used to implement object managers, as well as
application programs that execute on Cronus. An object
manager is the entity that is responsible for manipulating all
of the objects of one or more given types on a given host
using the operations defined by the types. The Cronus system
managers are simply Cronus-provided object managers, for
Cronus-defined object types. The Cronus process abstraction
corresponds to the process abstraction found in conventional
operating systems, and is typically implemented as a
constituent operating system process that executes in user
space.
Cronus Kernels communicate with one another using the Cronus

Peer to Peer protocol. Reliable delivery of datagrams is
guaranteed through the use of TCP as the transport mechanism. The
Peer to Peer Protocol includes a specification for establishing TCP
links between Kernels and for closing them down. A provision is
also included to send low effort datagrams and broadcast/multicast
messages between Kernels using UDP datagrams.
4.2.7.1.10 Project Support Environment Interfaces

The Tropic (Transportable Operation Interface for Cronus)
program allows a user to invoke arbitrary operations on Cronus
objects (e.g., interactive debugging of an object manager on the
target system).

4.2.7.1.11 Reliability, Adaptability and Maintainability
Interfaces

Cronus supports object migration and object replication.
With respect to replication, the Cronus project has recently
adopted the philosophy of application- specific replication
management. Namely, Cronus has progressed from an inflexible
weakly consistent replication strategy to a flexible "version
voting" replication strategy. In the weakly consistent replication
strategy, updates were propagated on a best-efforts basis, and
object managers would periodically (e.g., upon their host coming
back up after being down) utilize Cronus-provided mechanisms to
bring their copies up to date. In the version voting replication
strategy, version vectors (one for each replicated object, giving
host location and version number pairs) are used to keep track of
copies and consistency, and read and write quorums can be set to
provide the application-desired balance between availability and
consistency.

Cronus delivers replication support to application developers
through its object manager programming support tools. When
specifying a new object type, the application developer defines a
replication policy by selecting a Cronus-supported replication
strategy and then specifying values for the parameters of the
selected strategy.

Two replication strategies are now available. The first,

67

3-F-73



I
referred to as version voting, mandates application- specified vote
quorums to perform read and update operations. Version vectors are
used to detect and correct inconsistencies. The second replication
strategy, referred to as weak consistency, it that provided by
precious versions of the Cronus manager development tools. BBN
will be looking into other algorithms for replication. Based on
the object type definition, Cronus automatically generates the code
that implements the specified replication policy. i

Cronus can also dynamically locate objects on invocation,
ensuring that clients will always be able to access a copy of an
object (providing one is available).

Atomic transaction support is being investigated in the
context of distributed database management systems, as a part of
the Cronus Distributed Database Management System Project.
4.2.7.1.12 Resource Management Interfaces I

In Cronus, global resource management is approached according
to the principle of policy/mechanism separation. That is, Cronus
provides mechanisms, and the mechanisms enable object managers to
cooperatively enforce object type-specific policies. The mechanisms
include: (1) the ability of object managers to query the status of
their peer object managers, one of which must be installed at each
host where objects of the given type exist, (2) the ability of
object managers to redirect requests to peer object managers, and
(3) the ability of applications to indicate preferred hosts. These
mechanisms support high-level resource management; low-level I
resource management is performed by the constituent operating
systems. These mechanisms have been used in several services to
implement specific management policies, such as dynamic load
balancing during Cronus file creation.

4.2.7.1.13 Synchronization and Scheduling Interfaces

Cronus provides concurrency control for sensitive regions via
the Start Concur and EndConcur routines. These are used in an
object manager to bracket critical sections of code and provide
concurrency control for accesses to the object database. This
permits multiple operations to access the same object without fear
of creating any inconsistencies in that object or it object
database.

Semaphores are provided to control access to critical data
structures. Since Cronus object managers may consist of multiple
threads within a single process, semaphores can be used when data i
whose integrity must be insured may be shared by one or more tasks.
The semaphore package causes threads to sleep when they are waiting
to enter critical sections, and be awakened when the resource they
are awaiting is available.

Cronus object managers use a coroutine package which provides
a C programming interface for priority-ordered, non-preemptive
multiple threads of execution within a single constituent operating
system process, along with mechanisms for synchronization and
mutual exclusion of critical sections.

68

3-g T

I



4.2.7.1.14 System Initialization and Reinitialization Interfaces

Cronus object managers are asynchronous independent processes
which are started by the system when it boots or by other processes
(users).

4.2.7.1.15 Time Interfaces

Via constituent (i.e., native) operating systems.

4.2.7.1.16 Ada Language Support Interfaces

Programming support is now being extended to Ada, as noted
under General Requirements.

4.2.7.2 Additional Characteristics

4.2.7.2.1 Proprietary or Open

Sponsored by Rome Air Development Center (RADC).

4.2.7.2.2 Qualification as a Standard

Essentially, the Cronus approach to dealing with
heterogeneity is to introduce a layer of "standardization," in the
form of the Cronus environment, between constituent operating
systems and application programs. The issue is the utility,
effectiveness, appeal, and acceptability of the Cronus environment.
To date, Cronus has received only isolated support outside of BBN.

4.2.7.2.3 Platform Flexibility

Cronus has achieved high portability. It is written in the
C programming language. Machine-dependent code is confined to a few
modules. Cronus has been ported to a new machine in as little as
two man-weeks.

Cronus implementations exist for the following systems: DEC
VAX with VMS, Ultrix, and BSD Unix; SUN 2,3,4 and Sun 386i with Sun
UNIX; MASSCOMP with RT UNIX; Symbolics Lisp Machine with Genera;
and IBM PC/AT with SCO Xenix. Cronus implementations are planned
for multiprocessor architectures.

4.2.7.3 References

[BBN88a], [BBN88b], [BBN88c], (BBN88d], [BERET85a], [BERET87],
[CASEY87], [DEAN87], [DEAN88], [GURWI86], [SCHAN85], [SCHAN86a],
[SCHAN86b], (VINTE87], [VINTE88]

4.2.8 43RSS Survey Summary

69

3-F-75



I
The AN/UYK-43 Runtime Support Software (43RSS) is a United

States Navy standard operating system for the U.S. Navy standard
AN/UYK-43 computer. 43RSS is an outgrowth of SDEX/7 and the ModX2
Common Program, a U.S. Navy standard operating system for the
AN/UYK-7 computer. 43RSS is a real time tactical executive i
operating system that accommodates all the physical and functional
features of the AN/UYK-43. Thirteen components currently make up
43RSS: 3

a. Standard AN/UYK-43 Executive (SDEX/43) - basic control for
real time system operation by coordinating the use of the
AN/UYK-43 resources through services such as task scheduling, I
dispatching and initial interrupt handling.

b. Common Systems - memory storage for routines and data
which are available for use by all system software. I
c. Common Peripheral - a general purpose, common interface
between system software or the operator and the standard 1
shared peripheral devices.

d. File Handler - an efficient means for users to create,
manage, and maintain files on disk and magnetic tape.

e. Dynamic Modular Replacement (DMR) - AN/UYK-43 memory
management and loading and deleting of system software.

f. Fault Tolerant and System Reconfiguration Module (FTSRM)
Interface Module (FIM) - system access to and coordination of
the error processing and isolation features embedded in the
AN/UYK-43 FTSRM and on-line diagnostics firmware.

g. Fault Acceptance Module (FAM) - management of system
software configuration loads, reconfiguration, and diagnostics
test decisions. 3
h. Host Interface Adaptor (HIA) Device Module - provides a
generic interface, in combination with AN/UYK-43 executive
software, to embedded AN/UYK-43 HIA devices, including the i
68030-based Time Critical Subfunction (TCS) Coprocessor.

i. PC Debug - microprocessor-based program providing remote I
manipulation of the AN/UYK-43 Display Control Unit (DCU) and
access to AN/UYK-43 software to efficiently debug and monitor
programs real time.
j. Resident Debug - basic software checkout functions
completely resident in the AN/UYK-43.

k. Utility Package (UPAK) - off-line tools for initial system 3
building and for loading, maintenance, and preliminary
checkout of software.

70

I
I



I

1 1. Data Extraction - on-line tool for capturing specified
system operational data at specified times and in a
well-defined format for subsequent data reduction.

m. On-line Data Extraction - tool for taking data captured
by the Data Extraction module, selecting and correlating
specified items, and producing formatted printer reports.
Customers may use this tool in an operational environment on
board ship or in a stand-alone mode under 43RSS in the
laboratory.

4.2.8.1 Operating System Service Classes

4.2.8.1.1 General Requirements

-- Through the MTASS and SHARE program generation systems, 43RSS
supports software written in the CMS-2 and MACRO Assembly
languages.

4.2.8.1.2 Architecture Dependent Interfaces

Hardware - 43RSS is built to execute on and make the best use
of the AN/UYK-43 computer. 43RSS is an outgrowth of SDEX/7 and the
ModX2 Common Program which ran on and utilized the AN/UYK-7
computer.

Software - SDEX/43 supports modularly structured software
consisting of various module entrances (e.g., successor, message,
time dependent, background). SDEX/7 also supported this kind of
software. However, SDEX/43 has also captured the functionality of
the Multiprocessor Computer Executive Program (MCEP) and now also
supports software with a task structure. In contrast to modules,
these tasks have a single thread of execution. They release
control to wait on Input/Output (I/O), on a timed event, or for
signalling by another task.

1 4.2.8.1.3 Capability and Security Interfaces

43RSS is not rated for security at this time. An analysis
of 43RSS has been done specifying the changes that would be
necessary for C2 and B1 ratings.

43RSS does not provide a nuclear safety option at this time.
Should a system require nuclear safety in the future, enhancements
to 43RSS could provide capabilities similar to those provided by
SDEX/44.

I4.2.8.1.4 Data Interchange Interfaces

Common Peripheral converts and formats data for output to
peripheral devices.

4.2.8.1.5 Event and Error Management Interfaces

Event Management

71

3-F-77



i
Both File Handler and Common Peripheral provide a semaphore

option to suspend requesting applications software until I/O 
processing completes.

Error Management
Error processing in FAM is table driven where the tables

specify recovery options selected by the system designer for the
various classes and subclasses of errors.

43RSS error recovery routines pass control to 43RSS system U
initialization processing. Eventually, control passes to the 43RSS
FAM component which can do any of the following:

- Load/delete application software by individual programs or by I
configurations of programs during real time operations. FAM can do
this automatically on FAM initialization or through commands from
the system operator. I

- Process hardware and software error interrupts which include
isolating hardware module failures and establishing the optimal
recovery option.

- Display the current operational status of AN/UYK-43 hardware
modules and peripheral equipment.

- Roll out critical data during system execution and allow for
reloading the critical data upon reinitializing the system. I

- Display hardware and software errors and also display therecommended diagnostics associated with each error.

4.2.8.1.6 File Interfaces i

The File Handler and Common Peripheral components provide the
I/O functions in 43RSS. The File Handler provides a file system
for magnetic disk and magnetic tape. The file system supports two
types of files: block-level and record-level files. Block-level
I/O maps logical-sized blocks onto physical cylinders, tracks, I
sectors, etc., of the target mass storage de-ice. File Handler
passes data directly to the user specified buffer area from the
mass storage device. Record-level I/O provides an indexed logical
record file structure for a file. Users obtain data through the I
use of an indexed-random access or sequential indexed order access.
Each record within a file has a user-defined fixed length. Blocks
of data are passed from the mass storage device to the File Handler U
system buffers where the record of data is passed to the user.

4.2.8.1.7 Generalized I/O Interfaces 3
SDEX/43 provides the means for user modules to initiate and

control I/O operations. This includes initiating I/O in response
to a hardware interrupt, registering to receive CP control
following an I/O interrupt, enabling or disabling external
interrupts on an I/O channel, or calling SDEX/43 to initiate an I/O
transfer. I

The Common Peripheral (CP) component manages user software
access to system peripheral devices. This access controls I/O,
converts and formats data, coordinates multiple peripheral devices 3

72

3
3-F-78 I



I

I within a category and monitors the integrity of communications with
the peripheral devices. CP manages queueing and dequeueing on its
I/O channels and notification of the user when I/O has completed.

Various kinds of information and control are available to a
43RSS system operator. PC Debug and Resident Debug provide an
operator interface either through a PC or through a designated
system control console. In the case of PC Debug, the operator uses
menus to access functions and may use a Job Control Language to
generate command runstreams. UPAK provides commands to display and
modify main memory and control peripheral devices. Data Extraction
and On-line Data Reduction allow the operator to specify parameters
and control execution through a system console. Through the
designated system console, the operator can use the Common
Peripheral component to specify I/O channel assignments, control
magnetic tapes, and communicate messages to user software. The
operator can use the Common System component to set peripheral
devices operable or inoperable. The operator can use DMR to get
information about how main memory is mapped. The operator can use
FAM to control I/O channel assignments, control the system software
configuration, control hardware diagnostics, and roll system data
in and out from disk.

43RSS provides general purpose operator notification and
recovery processing if an error interrupt occurs. In most cases,
on-line operator help functions are available.

4.2.8.1.8 Networks and Communications

43RSS has participated in the SAFENET committees. As an item
in its PI program, 43RSS has a plan to implement a SAFENET User
Agent interface for its users. 43RSS implemented the interface to
the TCS Coprocessor using a message passing scheme patterned on the
SAFENET User Agent interface protocol.

4.2.8.1.9 Process Management Interfaces

43RSS arbitrates the allocation of AN/UYK-43 Central
Processor Unit (CPU) resources to user software according to the
priority, message passing, periodic, background, and immediate
processing requirements of real time, tactical systems.

43RSS provides for the creation, initiation, and normal and
forced termination of user software. DMR establishes software in
the system as it loads the software. Executive Service Requests
(ESRs) to SDEX/43 result in the necessary housekeeping to initiate
the software and to terminate the software.

SDEX/43 schedules and dispatches software according to the
following type of entrances:

a. Successor - for high priority real time processing
b. Message - for internal communication between modules
c. Time dependent - for periodically repeated processing
d. Background - for processing not executed on a real time
basis
e. I/O interrupt - for processing executed as a result of I/O

73

3-F-79



controller (IOC) channel monitor interrupts
f. Time critical - for processing executed at a specific time
interval as controlled by the IOC monitor clock.
SDEX/43 queues the first four entrance types. Successor and

time dependent entrances may be time sliced. Background entrances U
are always time sliced. SDEX/43 does not queue I/O interrupt and

time critical entrances; they receive immediate processor control
when they occur.

Currently, 43RSS provides intercomputer communication and
control for an I/O channel. This service provides for message
transfer, including determining if the receiver is local or remote
and directing the message accordingly; clock synchronization; and I
maintaining status of the remote computer.

43RSS has participated in the SAFENET committees. As an item
in its Product Improvement (PI) program, 43RSS has a plan to I
implement a SAFENET User Agent interface for its users. 43RSS has
implemented the interface to the TCS Coprocessor using a message
passing scheme patterned on the SAFENET User Agent interface
protocol.

4.2.8.1.10 Project Support Environment Interfaces

43RSS is coded and maintained using the U.S. Navy standard
Machine Transferable Support Software for the U.S. Navy Standard
Computers (MTASS) and SHARE program generation packages. System
build is thus facilitated for software developed on MTASS or CMS-2Y
systems. The MTASS host computers include the Unisys 1100 series;
the IBM 360, 370, and 4341 series; and the DEC VAX-1I/780. SHARE
is hosted on the AN/UYK-7 and AN/UYK-43 computers.

4.2.8.1.11 Reliability, Adaptability, and Maintainability
Interfaces 3
Reliability

43RSS, through the SDEX/43, FIM, and FAM components, extends
the fault tolerant capabilities of the AN/UYK-43 to provide a
comprehensive AN/UYK-43 fault tolerant system. SDEX/43 provides
registration of a module for error responsibility. In a system
making use of the full fault tolerant capabilities of the AN/UYK-43 i
and 43RSS, the error module is FAM.

SDEX/43 provides module access to CPU and IOC confidence
testing and to the AN/UYK-43 firmware FTSRM for modifying FTSRM
parameters, requesting a hardware module resource check, requesting
on-line hardware diagnostics, entering interrupt sanity
processing, and requesting a system reload. SDEX/43 also provides
for reading the AN/UYK-43 execution address history table, using
the CPU and IOC hardware breakpoints, and using software
breakpoints.

FIM provides for initialization of FTSRM parameters and in i
its regular processing makes use of FTSRM functions: updating
hardware resources status, executing on-line diagnostics and
processing errors. FIM also performs, on a cyclic basis and under

74

I
3-F-80 I



I

system direction, CPU and IOC confidence testing to improve system
reliability and fault detection capabilities. It makes diagnostic
recommendations based on modules that FTSRM has found suspect and
on interrupt status codes to FAM as well as supplying FAM and FTSRM
parameters and error data. FAM manages program load and
reconfiguration, rolls in and out critical data for orderly module
start-up, and makes diagnostics test decisions.

Adaptability
Users tailor 43RSS to their particular system requirements

through ordering parameters. These ordering parameters may specify
compile-time options. Instructions and data for an option are not
included in the compiled version of 43RSS for a user if the user
did not select that option. Other ordering parameters define
system parameters such as table sizes and the hardware
configuration. If a system requirement is not satisfied by an
available option, customers can request Engineering Change
Proposals (ECPs) to 43RSS through the U.S. Navy.

43RSS has an active PI program which is designed to keep pace
with the AN/UYK-43 hardware PI. It, therefore, includes items such
as:
- Expanded Memory Reach - provides access to more than 8000 base
registers being added to the AN/UYK-43.
- Time Critical Subfunction (TCS) Coprocessor - provides an
interface to the AN/UYK-43 embedded 68030-based coprocessor.
- Local Area Network (LAN) - provides an interface to a SAFENET
compatible LAN.

- Embedded Memory Subsystem - provides access to AN/UYK-43
embedded mass memory.

43RSS PI program is also designed to keep pace with
developing user system needs such as the ability to run ALS/N Ada/L
software with existing CMS-2 software in a mixed language system.

Maintainability
The Data Extraction component gathers data during such

activities as system integration and certification, shipboard
dock-side tests, sea trials, operational patrols, and training.
The Data Extraction module captures system operational data and
outputs it in a well defined format for subsequent data reduction.

4.2.8.1.12 Resource Management Interfaces

Memory Management
43RSS provides for the dynamic loading and management of

AN/UYK-43 main memory (currently up to 20M 32-bit words) and the
control of the user software view of memory through hardware base
registers.

The DMR component is responsible for the required software
loading and the management of the AN/UYK-43 memory. DMR assigns
memory for loading of required program segments, for loading
program segments or configurations of programs, and for memory
segments requested by user software. It provides for loading

75

3-F-81



I
instructions and data in different memory banks for more efficient
memory access, for loading in semi-conductor memory or core memory,
and for loading in or not in a memory back containing the 43RSS
executive software. Users can send requests to DMR to
acquire/release blocks of memory and to load/delete module
segments.

DMR uses one of three memory allocation algorithms selectable
by a user ordering parameter: first-fit consolidates memory usage
in the lowest available memory units, best-fit reduces memory
fragmentation, or worst-fit reduces memory access conflicts.

DMR maintains the locations of all segments in memory and
consolidates and identifies all unassigned memory.

The original AN/UYK-43 computer provided eight task state
base registers for a 512K (8 registers of 64K words) view of memory
for task state applications software. SDEX/43 aids user software
in using this view by loading the base and memory protection
registers according to the user software direction. The AN/UYK-43
is currently being enhanced to provide 8176 new base registers and
43RSS is likewise being enhanced to provide its users access to
these base registers.
Device Management

Common Peripheral contains all the device drivers for the
43RSS system. Although the File Handler manages the files on
magnetic disk and magnetic tape, Common Peripheral performs the
actual I/O. Common Peripheral currently supports magnetic tape,
magnetic disk, keyboard/print/display, and line printer devices.

4.2.8.1.13 Synchronization and Scheduling Interfaces 3
SDEX/43 provides for the use of software semaphores.

Semaphores allow for module entrance synchronization and
rendezvous, as well as controlled access to system code and data.

Both File Handler and Common Peripheral provide a semaphore
option to suspend requesting applications software until I/O
processing completes.

The scheduling services provided by 43RSS are discussed in
the Process Management section above.

4.2.8.1.14 System Initialization and Reinitialization Interfaces

43RSS provides system initialization, and system reload and
restart with or without saved data. I

The 43RSS DMR component loads and initializes the 43RSS
operational system. Initially, DMR receives control from the
firmware FTSRM bootstrap program, establishes and initializes the
various parts of the AN/UYK-43 hardware and firmware as required, U
and initializes the 43RSS executive and base program modules. DMR
then performs the required software loading, provides memory
management, and responds to operator requests for load and resource I
information printouts.

In the case of both boot load and restart processing, DMR
receives control from the FTSRM bootstrap routines, initializes the 3

76

I
3-F-82 I



executive, loads the required software, and activates it by sending
each loaded module a preset message. The preset message allows the
loaded modules to initialize and begin normal processing. If the
operator has specified a restart at the computer control panel and
rolled out data is available, FAM will perform restart processing.
FAM will load the applications modules it is responsible for, roll
in saved data, and send the loaded modules restart preset messages.

4.2.8.1.15 Time Interfaces

SDEX/43 provides user access to the various AN/UYK-43
hardware clocks and the software real time clock. In general, read
access is available. Write access is also available for the
AN/UYK-43 calendar clock and users can change the tick rate for the
AN/UYK-43 real time clock not being used for system timing.

4.2.8.1.16 Ada Language Support Interfaces

43RSS is currently pursuing providing support for Ada
software developed under ALS/N Ada/L to run in a mixed CMS-2 and
Ada software system.

4.2.8.2 Additional Characteristics

4.2.8.2.1 Proprietary or Open

43RSS is sponsored by NAVSEA PMS 412.

4.2.8.2.2 Qualification as a Standard

43RSS is a U.S. Navy standard operating system for the
AN/UYK-43.

4.2.8.2.3 Platform Flexibility

43RSS is only targeted for the AN/UYK-43 computer.

4.2.8.2.4 Application Domain

4 The following projects use some or all of the components ofI 43RSS:

- Aegis Cruiser
- Trident Submarine
- (CVN) Cruiser

- AN/UYK-43 Operational Test System (OTS)
- CCS MK II

- SSN Submarine (SOS/43)
- AN/UYK-43 Relational Data Base Management System (43RDBMS)
- LHD-I Amphibious Ship
- LHD-2 Amphibious Ship

77

3-F-83



I

- CG-34 Cruiser I
- Runtime Support Software/Rehosted Simulation Control Program

(RSS/RSCP)
- German Navy Frigate F-123 ship.

4.2.8.2.5 Testability and Performance Evaluation Mechanism

43RSS provides various tools for both software debug and 3
system monitoring. SDEX/43 provides mechanisms such as user
selectable recording of various events, breakpoints, and access to
the AN/UYK-43 jump and interrupt return history. The PC Debug
component provides for control of the AN/UYK-43 Display Control
Unit as well as mechanisms similar to those provided by SDEX/43 and
other dumps and system monitoring information in operator oriented
formats at a personal computer. Resident Debug provides for system I
monitoring and test by an operator through the system
keyboard/display. UPAK provides for off-line dumping of AN/UYK-43
registers and memory locations. Data Extraction and On-line Data i
Reduction provide for the extracting and on-line reducing ofoperational system data.

4.2.8.3 References i
[KRUEM89]

4.2.9 iRMX Survey Summary

The Distributed iRMXO Operating System is the newest member
of the iRMX family of operating systems which has served as the i
base operating system for thousands of real-time applications. The
Distributed iRMX Operating System has been designed to extend the
capabilities of the traditional iRMX operating systems to serve as
the basis for the construction of real-time multicomputer systems
consisting of multiple single board microcomputers interconnected
by a high-speed, message oriented bus. This operating system i
provides both functional distribution and transparent
multiprocessing. Functional distribution is realized through the
assignment of various tasks (e.g., program development, file
management, real-time application processing) to separate
components of the distributed system. The program development
function is provided by a separate single board microcomputer
running the UNIXl Operating System. The real-time application
processing component is implemented as a distributed system with
the components of the system consisting of single board
microcomputers based on the Intel 386 microprocessor. This object I
oriented operating system is implemented on each host of the
real-time system comprising the real-time and file management
components. Each instance of the Distributed iRMX Operating System
cooperates with other instances residing on other hosts in the
real-time system to unify the management of the system's resources.
The result is a transparent, multiprocessing environment that
encourages the construction of distributed, real-time applications.

78

3-F-84



The target for the Distributed iRMX Operating System is a
multiple computer system consisting of multiple 386 CPU-based
single board microcomputers interconnected via the MULTIBUSO II
bus. The effective bandwidth of the MULTIBUS II bus represents a
significant improvement over traditional LAN-based systems. The
individual copies of the Distributed iRMX Operating System running
on each of the single board microcomputers cooperate to provide to
the user a unified collection of resources. The user is presented
with an environment for constructing distributed real-time
applications that contains programming constructs familiar to a
user of a standard uniprocessor real-time system.

iRMX is a registered trademark of Intel Corp.
IUNIX is a registered trademark of AT&T Bell Laboratories.

386 is a trademark of Intel Corp.
MULTIBUS is a registered trademark of Intel Corp.
iRMK is a trademark of Intel Corp.
The loosely coupled nature of the target hardware had a

significant impact on the design of the Distributed iRMX Operating
System. We realized early the advantages of functional
distribution and as mentioned earlier decided to make that a
fundamental part of our design. In particular, we chose to use the
standard UNIX Operating System to serve as the basis for the
program development component, and let the Distributed iRMX
Operating System provide the environment for executing the
real-time applications including real-time computation and I/O
processing. Thus, users are provided with a familiar environment
for program development as well as data input and data analysis
while a physically separate subsystem is provided to support the
much different demands of real-time processing. The ability to
share files combined with transport level communication support
combines the functionally separated components into a single
system.

The Distributed iRMX Operating System is a hierarchically
designed operating system consisting of the following layers:

* The iRMX Kernel: the base of the full operating system is the
iRMX Kernel, which is also sold as a stand-alone product. The
Kernel provides typical kernel facilities including task
management, interrupt management, time management, and basic
device management. In addition, the Kernel provides both data
link and transport access to the MULTIBUS II bus. The Kernel is
designed to be flexible allowing users to easily extend its
capability. This has proven useful to users of the stand-alone
kernel product as well as the developers of the full operating
system. A unique capability of the Distributed iRMX Operating
System is the direct access to the facilities of the Kernel made
available to users of the operating system. In most other
systems, this access is limited to the modules of the operating
system.

* The Nucleus: the Nucleus runs on top of the Kernel providing

79

3-F-85



a greater level of protection for the basicservices offered by the
Kernel. In addition, it is at this level where the notion of
distribution is introduced. Examples include support for remote
job creation and intra and interprocessor mailbox communication.

* Network Transport Communication: in contrast to the MULTIBUS i
II Transport protocol implemented by the iRMX Kernel which is
intended to provide a transport facility optimized for the
MULTIBUS II bus, the full operating system also offers a generic
network transport service called the OSI Transport Service (OTS).
This facility views the MULTIBUS II bus as a network and includes
a gateway to allow the MULTIBUS II system to be connected to
other networks (e.g., a traditional LAN). m

* I/O System: The I/O System is functionally partitioned into

client and server portions to provide full file sharing services
to any host in the system. Full flexibility is provided for I
multiple clients, multiple servers, and to support bothintelligent and non-intelligent I/O controllers.

4.2.9.1 Operating System Service Classes I
4.2.9.1.1 General Requirements

The Distributed iRMX Operating System is an object oriented
operating system. Interfaces are provided for the creation,
deletion, and manipulation of specific system objects. In
addition, a set of generic object operations are also provided
(e.g., get object type, lock/unlock an object against deletion).
Users are provided interfaces to create new object types. In
addition, there is support for users creating managers for the new
object types including associating additional data with various
objects in order to customize the objects and establishing handlers
to be invoked upon creation and deletion of jobs, the operating I
environment for tasks.

Two levels of interface are available to users of the
Distributed iRMX Operating System. The higher level is the
operating system level described in the preceding paragraph. The
lower level is the kernel level. An implementation of the kernel
level interface is also currently available in a separate kernel
product, the iRMX Kernel. As with the operating system level
interfaces, the kernel level interfaces are object oriented. They
differ somewhat in that they provide somewhat more control to the
user than the operating system level interfaces. i

The interfaces are not tied to any particular architecture or
implementation. They all follow a standard format that includes
the following parameter ordering:

(1) token: used to identify the object being manipulated. This
is a 32-bit entity that is not interpreted directly by the user.
It is created by the operating system when the object is I
created, passed to the user, and used by the user in further calls
to object manipulation interfaces.
(2) miscellaneous parameters: various parameters specific to

80

3-F-86 i
" m l l lI



the interface.
(3) flags: a bit map identifying various applications of the

interface.A common flag bit is the scope bit that indicates whether
the operation is to be limited to the local job (local environment)
or applies to the entire distributed system.
(4) status: exception status returned to the user.

The current implementation provides interfaces for C and PL/M
applications. The same interface format is used for both
languages. In fact, a common reference manual is used to support
both languages. Users also have access to the interfaces provided
by the underlying kernel, the iRMX Kernel. The iRMX Kernel also
provides interfaces to Ada and Fortran applications. Again, there
exist no differences in the interfaces provided for the various
languages.

4.2.9.1.2 Architecture Dependent Interfaces

As mentioned above, the Distributed iRMX Operating System is
an object oriented system that provides the user with the ability
to add new objects and define new operations for manipulating these
objects. The support for distribution can be made transparent
allowing users to view the system as a cohesive set of resources.
Partitioning is along logical boundaries, the job or operating
environment, rather than physical processor boundaries. The
Distributed iRMX Operating System is implemented on top of the iRMX
Kernel which provides a virtual machine environment to the
operating system. The iRMX Kernel has already been implemented on
two vastly different architectures, the 386 and the 960 (a RISC
architecture).
Communication interfaces are provided at a number of levels. This
includes a simple mailbox communication mechanism, a request
response communication mechanism, and a network transport facility.
The mailbox communication inteL.ce. zre Lil,-- simple. Each
mailbox is an object that is referenced by a token. The send
interface simply takes a token, a pointer to a message, and the
length of the message. The message is either copied to a task
already waiting at the mailbox or copied into the mailbox if no
tasks are waiting. The request-response communication interfaces
are somewhat more general and thus more powerful. Users have the
ability to associate a transaction id with each message, thus
enabling users to wait for response messages to specific request
messages. In addition, users can separate a message into separate
control and data parts. These interfaces allow a user to send a
message consisting of a collection of disjoint fragments chained
together. In addition, interfaces are provided to support a
fragmentation protocol in which one task can either send or receive
a complete message while the task on the other end deals with the
transmission as a series of transmissions of message fragments.
Finally, the Distributed iRMX Operating System provides network
transport communication interfaces.

While the current implementation of the Distributed iRMX
Operating System doesn't provide any support for high performance,

81

3-F-87



shared memory multiprocessing, it should be easily extendible to
provide this support. In general, we believe very little I
additional support will be required. For example, the existing
shared memory synchronization facilities (e.g., semaphores) need
not be modified to provide support in a shared memory environment. I
Only the implementation will need modification.

4.2.9.1.3 Capability and Security Interfaces 3
The Distributed iRMX Operating System uses a privilege ring

protection mechanism. Associated with each object is a privilege
level which limits access to the object. Associated with each task
is a privilege level. A task's privilege level must equal or
exceed that of an object in order to manipulate the object. When
an object is created it is assigned the same privilege level as the I
task that is performing the creation. The object's privilege level
can by dynamically adjusted, but it cannot be increased beyond that
of the privilege level of the task requesting the change. The
privilege mechanism is also used to limit access to certain
interfaces. This limit is defined during the operating system
configuration process.

4.2.9.1.4 Data Interchange Interfaces

There is no direct support in the Distributed iRMX Operating
System interface for data interchange services.

4.2.9.1.5 Event and Error Management Interfaces

The Distributed iRMX Operating System provides a full range
of interrupt management and exception management facilities. As
a real-time operating system, the timeliness and predictability of I
delivery of interrupts is of utmost concern. Al interfaces that
have the potential for blocking for unpredictable periods of time
include a timeout parameter that specifies time in milliseconds.
Interfaces are provided for selectively disabling/enabling
interrupts. In addition, the priority of interrupts is tied to the
task priority scheme in such a fashion that a task running at a
particular priority will implicitly disable interrupts of equal and
lesser priority. This provides users with closer control over the
processing of internal work while dealing with asynchronous
external events. Interrupts can be handled in one of the following i
three methods:
(1) Interrupt Handler: this is a procedure that is invoked in

the context of the currently running task. While this is the
fastest method for dealing with interrupts, it also has a couple
of limitations. First, during the handling of the inter- rupt by
the interrupt handler, all interrupts are disabled. Second, it
is not safe to execute most of the other system calls during I
processing by the interrupt handler.
(2) Interrupt Task: this is a separate task assigned to

processing the interrupt. A task switch to the interrupt task U
8 2 3 - F - 8 8

I



occurs upon reception of the interrupt signal. Thus, the
interrupt is processed in the context of a special dedicated task.
This is slower than the interrupt handler facility but eliminates
the two limitations of the handler technique described in the
preceding item.
(3) Interrupt Handler/Task Pair: this combines the best of both

of the two preceding techniques. Both an interrupt handler and
an interrupt task are assigned to handle an interrupt. When an
interrupt is received, the interrupt handler will be invoked
in the context of the currently running task. While this
handler executes, the limitations identified previously for the
interrupt handler apply. If the processing required for the
interrupt is sufficiently small, all work can be handled by the
handler alone. If more extensive processing is required, a
special interface is provided to allow the interrupt handler to
signal the interrupt task of the arrival of the interrupt. The
handler then exits and a task switch to the interrupt task occurs.
The interrupt task looks like any other task except that it is
designed around a big loop where it waits for an interrupt signal
and then processes that interrupt. The full set of system
calls are available to the interrupt task.

As mentioned at the start of this section, all blocking
interfaces contain a timeout parameter. In addition, there is a
special alarm facility available in the kernel level interfaces.
This facility allows for the definition of a single shot or repeat
alarm that will result in the invocation of a handler procedure in
the event the specified timeout value is reached.

The Distributed iRMX Operating System also defines a flexible
exception management facility. Users can specify whether they wish
to handle exceptions from system calls in-line or with a handler.
They can make their selection for each privilege ring as well as
on a per job or per task basis. Users can also raise an exception
with the aid of a special interface.

In addition to handling the traditional exception management
needs, a special facility for dealing with host failure in a
distributed environment is defined. From an implementation point
of view, the Distributed iRMX Operating System provides a software
watchdog timer facility to monitor the liveness of the various
hosts in the system. Hcst failure and reset situations are
detected by dedicated software watchdog timer tasks executing on
each host. When each host detects the failure or reset condition,
a reconfiguration message indicating the effected host and a
failure or reset indication is sent to the reconfiguration
mailboxes that have been registered with the software watchdog
timer. Those operating system type managers that need to perform
recovery actions will dedicate a recovery task to this activity.
This task will create a mailbox and register it with the software
watchdog timer. An operating system interface has been defined to
also allow user applications to register mailboxes with the
software watchdog timer in order to allow them to participate in
the recovery process.

To further isolate problems caused by remote host failure and

83



l I
reset, the tokens used to access objects contain incarnation
information used to distinguish a token created on a failed host
from that created on a new incarnation of that host. As mentioned
earlier, the token is not directly interpreted by the user. The
presence of this field in the token, though, allows the operating
system implementation to detect references to objects on a failed
host and reject these requests.

4.2.9.1.6 File Interfaces I
The Distributed iRMX Operating System includes a full

featured distributed I/O system that implements basically a I
Berkeley Unix file system. Access control and the ability to
read/write an arbitrary number of bytes of data in an arbitrary
location in a file is provided as in the Berkeley Unix system.
Locking at the byte level is supported. The I/O interfaces can
either be executed synchronously or asynchronously. The distributed
architecture is used for defining the I/O system. In particular,
the I/O system is viewed as consisting of two types of components, I
front-ends and file servers. The file management interfaces are
implemented by the front-ends who send the appropriate messages to
the file servers which directly manipulate the media.

4.2.9.1.7 Generalized I/0 Interfaces

A procedural protocol between the file server and the device
driver has been defined for the Distributed iRKX Operating System.
This enables user configurable device drivers to be supported, thus
allowing access to a wide variety of devices with interfaces at a I
file level of abstraction.

4.2.9.1.8 Network and Communications Interfaces 3
The Distributed iRMX Operating System provides network

transport communication interfaces that are functionally equivalent
to Unix TLI but have object orientation to make them similar to the
other Distributed iRMX interfaces. In addition, interfaces
supporting a name service allowing network addresses to be
cataloged and retrieved by symbolic name is provided. I
4.2.9.1.9 Process Management Interfaces

The Distributed iRMX Operating System defines the concept of I
a job as the operating environment for one or more tasks. A job
is somewhat like a Unix process and a task is somewhat like a Unix
thread or lightweight process. It defines an environment for the
creation of objects including tasks. The memory used in the
creation of objects by tasks operating within a job is obtained
from a common memory pool allocated to the job. Objects created
with a local scope specification can only be accessed by tasks
operating within the job. Objects created with global scope can
be accessed from outside of the job.

84

3-F-90

!



Interfaces are provided for the creation and deletion of
jobs. Jobs can either be created as independent (first level) or
dependent jobs. Dependent jobs have the notion of a parent. The
Distributed iRMX Operating System defines the notion of a jcb tree
representing the complete set of parent-child relationships for all
jobs in the distributed system. Independent jobs are defined to be
the children of a fictional root job. The parent-child
relationships are maintained across processor boundaries.
Parent-child relationships are particularly important in terms of
actions that occur in the event of explicit job deletion or
implicit job deletion resulting from host failure. In either case,
the operating system enforces the principle of not allowing
orphans. Thus, the entire subtree rooted at a deleted job will
automatically be deleted by the operating system. Jobs can also
be suspended/resumed. In this case all tasks within a job are
suspended/resumed.

Operations on tasks include create, delete, suspend, and
resume. Tasks can be created in either a ready or suspended state.
A sleep primitive is also available to allow a task to perform a
timed wait. The time parameter to the sleep primitive is defined
in units of milliseconds.

The following three basic interprocess communication
facilities are provided:
(1) Semaphores: basic counting semaphores are provided. The

wait and signal interfaces, called receive unit and send unit,
allow a user to receive/send multiple units with a single
call.
(2) Mailboxes: mailboxes provide a simple message exchange

facility that allows communication between tasks residing on
different hosts.
(3) Ports: ports provide a more full featured message

communication facility that supports request/response
communication, provides separation of messages into control and
data parts, allows the message to consist of multiple fragments
chained together, and provides the ability to send or receive a
message in multiple fragments while the other communicating
partner deals with the message as a single unit.

4.2.9.1.10 Project Support Environment Interfaces

The Distributed iRMX Operating System is designed to operate
with a symbolic static and tasking debugger that has been
customized to be aware of various operating system objects. The
debugger interface defines the ability to disassemble code, examine
registers, read/write memory, single step, single step with
stepping through procedures, setting/clearing code and data
breakpoints. The breakpoint facility has been enhanced to supportI the Distributed iRMX Operating System environment by allowing the
user to restrict the scope of a breakpoint to a job or a task. In
addition to these basic debug facilities, a set of operating system
awareness extensions have been provided to allow display of
operating system objects and key system data structures (e.g., job

85

3-F-91



I
tree, ready queue on a particular processor). The debugger
interface is designed to allow the user to debug a distributed
application with little or no regard to knowledge of the location
where the application is running. i
4.2.9.1.11 Reliability, Adaptability, and Maintainability
Interfaces

The Distributed iRMX Operating system allows users to U
configure handlers for various hardware faults. In addition to
handling traditional uniprocessor faults, support is provided for
detecting and recovering from host failure. This capability is I
provided by the software watchdog timer facility described in the
Event and Error Management Interfaces section.

I
4.2.9.1.12 Resource Management Interface

When the Distributed iRMX Operating System is configured,
users can define the memory to be assigned to various logical
memory pools used for allocation of objects at runtime. The
386-based implementation of the Distributed iRMX Operating System
utilizes the hardware memory protection facilities. This includes I
bounds checking, access rights checking, and privilege ring
protection.

4.2.9.1.13 Synchronization/Scheduling Interface

The Distributed iRMX Operating System uses a preemptive,
priority based scheduling mechanism. Users can control the
scheduling mechanism at a variety of levels. In particular at the
time the operating system is configured, users can control the use
of time slicing through the establishment of the value of the i
real-time fence. This corresponds to a task priority value and

indicates that tasks of equal or higher priority are not time
sliced. In addition, users can dynamically modify task priorities
as well as the timeslice interval for a task. At the kernel level,
users can dynamically associate any number of handlers to be
invoked upon task creation, task deletion, task switch, and task
priority change. These lower level interfaces provide a powerful I
mechanism for implementing a wide variety of scheduling policies.

In terms of task synchronization, a semaphore mechanism
discussed in Section 5.2.8.1.9 is provided.

4.2.9.1.14 System Initialization and Reinitialization Interfaces

The 386, MULTIBUS II implementation of the Distributed iRMX i
Operating System provides interfaces for accessing the interconnect
space register set of various hosts in the system. Interconnect
space registers are used to provide an area for data exchange I
between various hardware, firmware, and software components with
emphasis placed on the needs for such communication during system
initialization.

86

3-F-92

I



4.2.9.1.15 Time Services Interface

The Distributed iRMX Operating System provides interfaces to
read and set a clock on each host. In addition at the kernel
level, interfaces are provided for programming a Programmable
Interval Timer (PIT) device. As mentioned in Section 5.2.8.1.5,
an alarm facility is defined at the kernel level.

4.2.9.1.16 Ada Language Support Interface

No special Ada support is currently provided. As mentioned
in Section 5.2.8.1.1, an Ada binding is currently provided for the
iRMX Kernel interfaces. No interface changes exist between those
provided for Ada, C, PL/M, and Fortran.

4.2.9.2 Additional Characteristics

4.2.9.3 References

4.2.10 Mach Survey Summary

The Mach project was initiated at Carnegie Mellon University
(CMU) in 1984 as the operating system effort of DARPA's Strategic
Computing Initiative (SCI). Mach was envisioned as an operating
system that would (1) provide a uniform (UNIX-compatible) software
base across the architectures existing at the time, as well as the
new advanced architectures being developed as part of the SCI, and
(2) support the interconnection of these architectures into
distributed computing environments. Its goals may be elaborated
as follows:

o Mach was designed to extend UNIX functionality to
multiprocessor architectures, ranging from (1) uniform access,
shared memory multiprocessors (UMA, for Uniform Memory
Architecture) (e.g., Encore Multimax, Sequent Balance), to (2)
differential access, shared memory multiprocessors (NUMA, for
non-UMA) (e.g., BBN Butterfly, IBM RP3), to (3) multicomputer
architectures (NORMA, for No Remote Memory Access Architecture)
(e.g., hypercube).

o Mach was designed to extend UNIX functionality to large memory
architectures.

o Mach was designed to extend UNIX functionality to distributed
computing environments, in which diverse architectures (i.e.,
uniprocessors, multiprocessors) interconnected by high speed
networks support distributed applications.

o To take advantage of the vast supply of UNIX-based software,

87

3-F-93



U
Mach was designed to offer (and continues to offer) UNIX
compatibility (specifically, binary compatibility with 4.3 BSD).

Although Mach offers UNIX compatibility, it is not intended
to be bound to UNIX. The current, evolved vision is for the Mach
distributed operating system to be based on a minimal kernel upon i
which multiple operating system environments can be built. At this
point, the kernelization is not complete, and some UNIX
functionality is still embedded in Mach kernel code. When the
kernelization is complete, it will be possible to emulate operating m
system environments other than UNIX 4.3 BSD on top of the Mach
kernel.

4.2.10.1 Operating System Service Classes

4.2.10.1.1 General Requirements

An interface specification language, MIG (Mach Interface
Generator), has been developed for Mach. MIG generates C or Common
Lisp RPC stubs.

4.2.10.1.2 Architecture Dependent Interfaces

No explicit features

4.2.10.1.3 Capability and Security Interfaces

Naming and Protection
As noted in the IPC section, the Mach kernel uses

capabilities, in the form of ports, for naming and protection on I
a single system.

The network message servers extend the protection to the
network environment, by implementing mechanisms to protect both the
messages sent over the network to network ports and the network I
port capabilities.

Security - Trusted Mach I
The Trusted Mach project is a DARPA-sponsored research effort

of Trusted Information Systems, Inc. The goal is to build a
version of Mach - Trusted Mach - that meets the B3 level of I
protection as specified in the National Computer Security Center
(NCSC) Trusted Computer System Evaluation Criteria (TCSEC), the
so-called "Orange Book" [TCSEC 85].

The project adopts the idea of "incremental reference U
monitors." At the lowest level is the Trusted Mach Kernel. At the
intermediate level is the reference monitor composed of the kernel
and a trusted name server. At the highest level is the reference U
monitor composed of the kernel, a trusted name server, and other
trusted servers. Thus far, work has concentrated on the kernel
level of a single machine. Mach's ports are serving as the I
protected objects in Trusted Mach; its tasks (through their
threads, which are the active entities) are serving as the
subjects. Extensions are being developed to meet the TCSEC

88

3-F-94

I



I

I requirements for both discretionary and mandatory protection.
At this time, the Trusted Mach project is utilizing a Spring

1988 version of Mach. Since this version is not kernelized, the
effort cannot yield a trusted operating system. The unkernelized
version of Mach is serving as a platform for research into
multilevel security, not as a base upon which to build a trusted
system. The development of a trusted version is tied to the
completion of Mach kernelization.

Security - Strongbox
Strongbox is built on top of Camelot and Mach. It is based

upon the new concept of "self-securing" programs, i.e., programs
that can run securely on distributed operating systems (such as
Mach) that provide only minimal security facilities.

Two key algorithms implemented by Strongbox are zero
knowledge authentication and fingerprinting.

It should be noted that Strongbox is (currently) concerned
with the security issues that arise from protecting the privacy of
data and ensuring the integrity of data from alteration; security
issues of denial of service, covert channel analysis, and traffic
analysis of message patterns have not been considered, although
they could be.

4.2.10.1.4 Data Interchange Interfaces

Matchmaker is an interface specification language for use
with existing programming languages. Differences in type
representation by various programming languages within each machine
are handled by Matchmaker. Data representation issues across
machine boundaries are handled through message server processes.
Byte reordering and machine specific conversions are performed by
the message servers with the responsibility for conversion always
resting with the receiving host.

4.2.10.1.5 Event and Error Management Interfaces

Mach utilizes message passing for the invocation of exception
handlers. When a thread raises an exception, a message is sent to
its thread exception port to notify its error handler, which
executes in a separate thread. If no handler exists or the handler
fails to recover the exception, the message is forwarded to the
exception port of the task in which the exception-incurring thread
exists.

A debugger can intercept unhandled exceptions for all threads
in a task by attaching itself to the task exception port. This
enables a debugger to coexist with error handlers, in that the
debugger is aware only of those exceptions not handled by an error
handler.

4.2.10.1.6 File Interfaces

The current vision is for Mach to be based on a minimal

89

3-F-95



I
kernel upon which multiple file systems can be built. At this
point, the kernelization is not complete, and the UNIX file system I
(4.3BSD) functionality is still embedded in Mach kernel code.

4.2.10.1.7 Generalized I/O Interfaces 3
Currently, the UNIX I/O interface is used with low-level

device drivers residing in the Mach kernel. Virtual-memory based
file-mapping replaces buffer management in the standard I/O
libraries.

4.2.10.1.8 Networks and Communications I
Interprocess Communication

Mach interprocess communication (IPC) is based on the port
and message abstractions. Ports are the reference objects in Mach,
and, as such, are viewed as playing the same role as capabilities
in an object-oriented system. Objects such as tasks, threads, and
memory objects are represented as ports, and operations on these
objects are performed by sending messages to the ports that
represent them. Only tasks with send rights to a port can send
messages to it, and only the (single) task with receive rights to m
a port can receive messages from it.

Messages can be sent and received synchronously (as in Remote
Procedure Calls (RPCs)) or asynchronously. They can contain I
capabilities. In fact, the only way for a task to acquire a
capability is to receive it in a message.

Iii Mach, the kernel itself implements local IPC only.
Howev-r, a user-state task, called the network message server, m
transparently extends IPC into a network environment. This task
maintains mappings of local "proxy" ports to global "network"
ports. It forwards messages using network protocols of its choice.

NamingI
The Netmsgserver passes all the Mach IPC message between

machines. It also provides network wide port register and lookup
functions.

The Environment Manager can register or look up ports or
named strings but does not communicate with other Environment
Managers.

4.2.10.1.9 Process Management Interfaces

Basic Abstractions
Mach divides the process abstraction into two orthogonal

abstractions: the task and the thread. A task is a collection of
system resources. These include a virtual address space and a set
of port rights. The thread is the basic unit of computation; it I
is the specification of an execution state within a task. Mach
allows multiple threads to execute within a single task.

90

3-F-96 I

I



I

Operations on tasks and threads are invoked by sending a
message to a port representing the task or thread. Threads maybe
be created, destroyed, suspended, and resumed.

Tasks are related to one another in a tree structure by
task-crc-*ion operations. Regions of virtual memory may be marked
for future child tasks as either inheritable read/write,
copy-on-write, or as neither.

Mach is a distributed operating system. A copy of the Mach
kernel runs at each participating node. The kernels cooperate to
provide a single unified distributed system. The network message
server passes Mach IPC messages between machines.

4.2.10.1.10 Project Support Environment Interfaces

No explicit features

4.2.10.1.11 Reliability, Adaptability, and Maintainability
Interfaces

Reliability and Fault Tolerance - Camelot and Avalon
Camelot is a distributed transaction processing facility

built on top of Mach. As such, it addresses the requirements of
reliability and fault-tolerance. Its basic abstraction is the
transaction. A transaction is a collection of operations that
exhibits three properties: atomicity, permanence, and
serializability.

Avalon is built on top of Camelot and Mach. It is implemented
as a preprocessor for C++. It provides language support for
reliable distributed systems based on atomic transactions.
4.2.10.1.12 Resource Management Interfaces

Storage Management
Mach places major emphasis on virtual mei,.ory management,

especially in the areas of portability, advanced functionality, and
memory/communication integration. In regard to portability, Mach
virtual memory management assumes minimal hardware support, and is
carefully constructed to isolate machine-dependent code into a
single module. Not ably, it achieves improved performance, even
while it minimizes hardware dependencies.

In regard to advanced functionality, Mach supports large,
sparse virtual address spaces; memory mapped files; shared
libraries; copy-on-write virtual copy operations; copy-on-write and
read/write memory sharing between tasks, through inheritance (which
is specified on a per-page basis as shared, copy, or none) of
memory regions from a parent task to a child task; and
user-provided memory objects and pagers.

In regard to memory/communication integration, the Mach
project emphasizes the complementary roles that memory and
communication can play. Namely, Mach uses memory mapping
techniques (i.e., copy-on-write sharing) to accomplish
communication; an entire address space may be sent in a single
message with no actual data copy operations performed. In the

91

3-F-97



I
other direction, Mach implements virtual memory through its IPC
facilities; in particular, it maps process addresses Lnto memory
objects, which are represented by ports and accessed via messages.
This is what enables user-provided memory objects.

4.2.10.1.13 Synshronizatiou and Scheduling It1:zfaces

Real-Time Mach
Mach provides constructs for protection of critical regions

and synchronization. Lock and unlock primitives are used with
mutex variable to provide mutual exclusion. Wait and signal
primitive are used with condition variables to provide I
synchronization.

At a higher level, Matchmaker and MIG provide a
synchronous/asynchronous RPC interface.

Real-Time Mach provides an integrated time-driven scheduler,
with support for both periodic and aperiodic threads. Rate
monotonic scheduling policies are used for periodic threads. Value
function scheduling policies (derived from Locke's thesis, as was
Alpha's) are used for aperiodic threads. Real-Time Mach uses
piecewise linear approximations to continuous value functions for
efficiency. For a collection of periodic and aperiodic threads, I
the periodic threads are scheduled first, and then the aperiodic
on a best effort basis.

Real-Time Mach implements policy/mechanism separation.
Currently, seven scheduling policies are implemented. Different I
applications or experiments can utilize different policies.

Tools and a test bed have been developed to support Real-Time
Mach. They allow workloads to be specified, and schedules to be i
constructed, examined, simulated, and monitored.

Currently, Real-Time Mach has been applied only in a
uniprocessor environment and only to CPU scheduling. Plans call
for it to be applied in a multiprocessor environment and to other
resource types (e.g., memory, I/O). Also, impacts of interactions(requiring synchronization) among threads remain to be considered. f
4.2.10.1.14 System Initialization and Reinitialization Interfaces

4.2.10.1.15 Time Interfaces i
Based on UNIX.

4.2.10.1.16 Ada Language Support Interfaces

Mach threads (light-weight processes) could be used to handle
Ada tasking.

4.2.10.2 Additional Characteristic

4.2.10.2.1 Proprietary or open

Mach is open. It has been widely distributed (to over 200 3
92

3-F-98 Ii
I m I |I



institutions, 2/3 of which are corporations, 1/3 universities).

4.2.10.2.2 Qualification as a Standard

il i;1iitiating thA hach t APPA aimed to capitalizp nn
the de facto standard status of UNIX. Mach's UNIX compatibility is
fundamental to its success and popularity. The Mach project is
meant to rebuild the core of UNIX while retaining its external
interfaces.

DARPA is participating in the various UNIX standardization
efforts, such as POSIX and OSF. It definitely wants to exert its
influence and make Mach a dominant operating system. Inasmuch as
UNIX qualifies as a standard, Mach also does.

4.2.10.2.3 Platform Flexibility

As pointed out in the introduction, Mach was designed to
extend UNIX functionality to multiprocessor architectures, ranging
from (1) uniform access, shared memory multiprocessors (UMA, for
Uniform Memory Architectu.re) (e.g., Encore Multimax, Sequent
Balance), to (2) differential access, shared memory multiprocessors
(NUMA, for non-UMA) (e.g., BBN Butterfly, IBM RP3), to (3)
multicomputer architectures (NORMA, for No Remote Memory Access
Architecture) (e.g., hypercube). Mach was designed to extend UNIX
functionality to large memory architectures. Mach was designed to
extend UNIX functionality to distributed computing environments,
in which diverse architectures (i.e., uniprocessors,
multiprocessors) interconnected by high speed networks support
distributed applications.

Mach has achieved high portability. It typically takes less
than three man-months to port Mach to a new hardware base.

Mach's performance has been measured and compared to that of
other operating systems. Initial indications are that its
performance is generally competitive with other UNIX
implementations such as SunOS, and markedly better in some cases
(fork operation, large compilation). Its multiprocessor performance
has also been measured and shown to be competitive with, for
example, other Sequent and Encore operating systems. A key to
Mach's performance gains is its implementation of virtual memory
and its integration of virtual memory and communication.

4.2.10.3 Reference:

[ACCET86], (BARON88], [COOPE87], [DRAVE88], [JENSE85a], [JONES86],
[LEBLA88], (LEHOC86), [LOCKE86), [RASHI87a), [RASHI87b], [SANSO86],
(SPECT88), [TCSEC85), [TEVAN87], [TIS88], [TOKUD87], [TOKUD88a],
[TOKUD88b], (YEE88], [YOUNG87]
4.2.11 MTOS Survey Summary

4.2.12 RSS/M Survey Summary

The Runtime Support Software/Minicomputer (RSS/M) is a United

93

3-F-99



I
States Navy standard executive system for the U.S. Navy standard
general purpose, 16-bit computers (the AN/UYK-44, AN/AYK-14,
AN/UYK-20, and AN/UYK-20A). RSS/M is comprised of four components:
SDEX/M - Kernel real time executive SCS/M - CMS-2 supervisor CROS/M
- SPL/I(M) common real time operating system CIOS/M - Common I
Input/Output (±/O) subsystem.

RSS/M executes in a multileveled structure composed of the
kernel level, the supervisor level, and the user level. The
supervisor level consists of a supervisor, I/O subsystem, user
written supervisor programs, and user written device drivers. The
SDEX/M kernel executes programs in the context of parallel,
asynchronous tasks. I

SCS/M and CROS/M provide access to all supervisor and kernel
level services.

CIOS/M provides management of a complete set of I/O
facilities. It is device independent and does not contain drivers
for specific devices. Device drivers are provided by the user.
An USH-26 device driver is available for the AN/UYK-44 target.

FDEX is a non-standard executive based on SDEX/M targeted at
the AN/AYK-14. This executive provides faster response through
lower executive overhead by allowing access to kernel functions by
use- programs located at the supervisor level. It uses the same I
structure as SDEX/M and is not described in detail in this summary.

4.2.12.1 Operating System Service Classes I
4.2.12.1.1 General Requirements I

The user programs previously mentioned are programmed in
CMS-2, 16-Bit Assembly Language (MACRO), or SPL/I. SCS/M supports
the MTASS/M and MTASS CMS-2 and 16-Bit Assembly languages. CROS/M I
supports the SPL/I language.

4.2.12.1.2 Architecture Dependent Interfaces

Hardware - RSS/M is built to run on U.S. Navy standard
16-bit computers. Software - RSS/M supports a task structure.
That is, segments of software which cooperate to perform a desired U
function. Tasks are dispatched according to priority and a set of
dispatching rules.

4.2.12.1.3 Capability and Security Interfaces

RSS/M does not provide security beyond that provided by the
16-bit computer hardware. During system generation, the user
determines the hardware protection for each page address register.
These page address registers are loaded by SDEX/M during system
initialization or reinitialization.

4.2.12.1.4 Data Interchange Interfaces

94
3-F-100 i

I



RSS/M does not provide data interchange services.

4.2.12.1.5 Event and Error Management Interfaces

Event Management
RSS/M is an event driven system. An event occurs due to one

of the following: a hardware interrupt, passage of time, an SDEX/M
detected error, termination of a task, or at user request. When
the event occurs, the Event Management System (EMS) or specialized
event facilities responds as follows: ignores the event, activates
a task, signals a semaphore, or some combination of the above.

EMS identifies every event with a unique event ID, provides
event registration or cancellation, and performs the requested
actions when the event occurs. Event tasks have higher priority
than non-event tasks and interrupts at its class or below are
locked out. A supervisor program or user task registers with EMS
for an event. This registration defines: its class (priority),
event type (normal or timed), whether a timed event is
time-critical or time-dependent, when a timed event is to occur and
the period between occurrences, event processing requested (e.g.,
signal semaphore), address of task to be activated, and parameter
to be passed to the event task.

When an event occurs that is registered with EMS, the action
requested during registration is performed. This includes
signalling a semaphore, activating an event task, cancelling a
non-recurrent event, and/or scheduling the next occurrence of a
recurrent event.
Erro Management

Error management of hardware errors (i.e., memory resume,
parity, or protection errors) and software errors are handled by
two functions: the interrupt handler and the error handler.

The interrupt handler processes interrupts using two methods.
One method generates an event in response to a hardware interrupt
and the other method allows the user to specify an interrupt
handler which captures the interrupt. The event generated by an
interrupt runs in executive mode with all Class 1 and 3 interrupts
of equal or higher priority class locked out. The user interrupt
routine is used in situations where timely interrupt response is
required. This routine captures an interrupt and receives control
with all interrupts locked out. If an interrupt does not have an
event or captured handler associated with it, SDEX/M provides
default event processing which either performs as cold start of the
system or returns control to the event dispatcher.

The error handler receives control when an Executive Service
Request (ESR) provides incorrect parameters. The error causes a
Class 1 or 2 event to be scheduled depending on the state of the
executive at the time of error detection. Different event
subclasses differentiate between fatal, warning, and cautionary
errors. Application systems register for all possible error events
indicating the event task to be scheduled. If there is no
registration for an event, SDEX/M provides default event processing
which either performs a cold start of the system or returns control

95

3-F-101



I
to the event dispatcher. 3
4.2.12.1.6 File Interfaces

RSS/M provides no file services. i
4.2.12.1.7 Generalized I/O Interfaces

SCS/M provides access to the I/O procedures of CIOS/M and
CIOS/M compatible device drives. This is an optional feature which
manages a set of I/O operations as well as providing direct access
to device drivers. Device drivers, except for the AN/USH-26
cartridge magnetic tape, are written by users.

CIOS/M provides a task with a set of general I/O operations
and manages I/O requests. The services provided allow the user to I
open a device, close a device, restart a device, and queue an I/O
request.

CIOS/M provides and manages a set of device independent I/O
operations. An application system can include device handlers to
communicate with an operator terminal through CIOS/M operations.

4.2.12.1.8 Networks and Communications I
No explicit features

4.2.12.1.9 Process Management Interfaces

Task management supports the segmentation of software into
small, independent units which cooperate to perform a desired
function. Task management controls scheduling, dispatching, and
task state. Tasks are dispatched according to priority and a set
of dispatching rules. The execution time environment for a task I
is established and maintained by this function.

Each task has a number of characteristics. These
characteristics are: a. Tasks exist in one of two major states:
blocked and unblocked. b. Each task is assigned a priority. The
running task is always the highest priority unblocked task. c.
Tasks can have either normal dispatching or round-robin
dispatching. Round-robin tasks share the CPU with other U
round-robin tasks, each executing for a period of time. d. Tasks
have assigned dispatch order. For tasks of the same priority, the
dispatch order is determined by the order in which they were I
created. e. In multiprocessor configurations, tasks have a
processor affinity. That is, the task runs on the master only,
the slave only, or by any available processor ("don't care").
f. Tasks are either user activated or event activated.

Since all unblocked tasks must be assumed to be running all
the time, semaphores and critical sections are used to control
accessed to shared data and resources.

4.2.12.1.10 Project Support Environment Interfaces

9 6 3-F- 02

U
.... .......... . . . .m m lm~n I



RSS/M systems are built and supported by standard U.S. Navy
support software: MTASS/M, Level 2, and MTASS. All three systems
generate the SDEX/M executive tablez ueU to specify system
configuration.

4.2.32.1.11 Reliability, Adaptability, and Maintainability
Interfaces

Reliability
RSS/M provides an error management function to detect and

recover from errors.
Adaptability

Some SDEX/M capabilities are selectable by the user at SDEX/M
compile time by the use of compile time parameters. In addition
to the processor configuration and data structure sizing, the
compile time parameters select memory management support,
cautionary error checking, history recorder, and the In-Flight
Performance Monitor (IFPM). Additionally, users may write their
own supervisory programs and I/O device drivers to extend RSS/M
capabilities.

Maintainability
The history recorder function of SDEX/M and SCS/M is provided

as a debug tool for the diagnosis of system failures and also as
a debug tool to aid software development. The history recorder
generates a runtime log of system usage which may be analyzed
off-line by the Performance Monitor tool to gauge system
performance. The log contains records for task dispatch,
interrupts, events, ESRs, and other supervisor defined activities.
Each record identifies the record type and information specific to
the record (e.g., dispatch address, task ID, external interrupt
data, semaphore value). The Performance Monitor provides a summary
of CPU usage for all tasks and information regarding I/O channel
utilization.

The In-Flight Performance Monitor (IFPM) provides AN/AYK-14
users to ability to verify the functionality of hardware modules.

4.2.12.1.12 Resource Management Interfaces

Memory Management
Memory management in the SDEX/M versions targeted for

expanded memory 16-bit computers supports use of both physical
memory in excess of 64K and memory access protection. Memory
access tables provide virtual address to physical address
translation. Additional services allow the user to modify this
translation.

This function controls the task address space and the
supervisor address space. The task address space is prepared when
a task is dispatched, when a supervisor program requests a change,
and when a cold start initialization is performed. SDEX/M also
supplies Kernel Service Requests (KSRs) to modify the virtual
memory requirements defined at system generation time. Supervisor

97

3-F-103



i
programs can access an arbitrary area of memory through a window.
Transient segments are provided to allow virtual overlays. U

Memory management in AN/AYK-14 dual processors divides the
available task address space using the task processor affinity
characteristic.
Device Management

SCS/M provides access to the I/O procedures of CIOS/M and
user written device drivers. CIOS/M provides and manages a set of U
device independent I/O services available to the supervisor program
and the applications which it supports. Physical device drivers
use CIOS/M services: open a device, close a device, restart a
device, and queue an I/O request. User I/O requests select read, I
write, and control operations, and specify completion processing.
Completion processing can include signalling a semaphore or having
user specific processing performed.

4.2.12.1.13 Synchronization and Scheduling Interfaces

Synchronization Services I
RSS/M provides for the user with software semaphores.

Semaphores are used to block and unblock tasks. The standard
completion procedure for CIOS/M (STDCMSCP) s~i s a semaphore upon
completion of an I/O request.

RSS/M also provides critical section support. A critical
section raises the current task's priority so it can only be m
preempted by a Class 1 event task.

Scheduling
RSS/M scheduling services are discussed in the Process

Management section above.

4.2.12.1.14 System Initialization and Reinitialization Interfaces i

RSS/M is initially started by bootstrap loading into the 16
bit computer. A user specifies an initial task to be activated or
an initial event to be registered. During both initialization and
reinitialization, RSS/M clears all tasks, events, and semaphores
from its executive tables, and then starts the initial task or
event. A user can specify if reinitialization should execute a
cold start (user variables are not reinitialized) or a bootstrap
load. u
4.2.12.1.15 Time Interfaces

A task can register timed events. These events are
associated with a time value (either an absolute time or a length I
of time in the future) at which the event is caused. Periodic
events can also be registered.

Supervisor level software can also register for time-outs.
A time-out functions like a non-persistent time critical event
except it is associated with a supervisor procedure rather than an
event task. i

98
3-F-104 I

I
. . . . l~ mi i iI



I

I RSS/M uses the 16-bit computer's real time clock (RTC) and
monitor clock to provide these entrances. ESRs are provided to
read, change, and adjust the RTC value.

4.2.12.1.16 Ada Language Support Interfaces

I There is no programming support for Ada.

4.2.12.2 Additional Characteristics

4.2.12.2.1 Proprietary or Open

Sponsored by NAVSEA PMS 412.

4.2.12.2.2 Qualification as a Standard

RSS/M is a U.S. Navy standard for 16 bit computers.

4.2.12.2.3 Platform Flexibility

RSS/M is targeted at only U.S. Navy standard 16 bit
computers.

4.2.12.2.4 Application Domain

There are currently 16 different projects using RSS/M. These
projects include DDG-51, PLRS, EPLRS, and ACDS.

4.2.12.2.5 Testability and Performance Evaluation Mechanism

The history recorder function of SDEX/M and SCS/M is provided
as a debug tool for the diagnosis of system failures and also as
a debug tool to aid software development. The history recorder
generates a runtime log of system usage which may be analyzed
off-line by the Performance Monitor tool to gauge system
performance. The Performance Monitor provides a summary of CPU
usage for all tasks and information regarding I/O channel
utilization. The In-Flight Performance Monitor (IFPM) provides
AN/AYK-14 users with the ability to verify the functionality of
hardware modules.

4.2.12.3 References

[GESAL89]

4.2.13 SDEX/44 Survey Summary

The SDEX/44 real time executive system is a United States
Navy standard executive system for the U.S. Navy standard general
purpose, 16-bit computers (the AN/UYK-44, AN/UYK-20, and
AN/UYK-20A). SDEX/44 will also support the AN/UYK-44 Enhanced
Processor. SDEX/44 is part of NAVSEA PMS 412's Navy Support

99

3-F-105



I
Software/Standard Embedded Computer Resources (NSS/SECR). The
SDEX/44 system is comprised of four components: SDEX/44 - Kernel
real time executive PHM - Peripheral Handler Module DM - Debug
Module EPM - Error Processing Module.

SDEX/44 is designed to provide real time control functions 3
for 16-bit programs called user modules. SDEX/44 provides basic
kernel executive functions. A complete system can be formed by the
addition of site-specific system functions and user modules. There
are eight types of entrances within a user module. These entrance
types are: - Initialization entrance - Error entrance -
Time-critical immediate entrance - I/O immediate entrance -

Successor entrance - Message entrance - Time-dependent entrance I
- Background entrance.

DM is an extension of the kernel which provides debugging
tools to the user. u

PHM operates as a user module and provides a library of
device handlers to support a standard set of peripheral devices.
In addition to handlers in this library, a user may write a device
handler using the same design as a PHM handler. PHM gives real
time control of these devices and provides a standard format for
all I/O requests. PHM manages queueing and dequeueing on I/O
channels and notification of the user when I/O has completed. I

EPM operates as a user module and enhances SDEX/44 error
processing.

4.2.13.1 Operating System Service Classes i
4.2.13.1.1 General Requirements

The SDEX/44 system is designed to interface with user
programs consisting of one or more separate modules which are
programmed in MTASS/M or MTASS CMS-2 or 16-Bit Assembly Language
(MACRO).

4.2.13.1.2 Architecture Dependent Interfaces 3
User modules can communicate with other Navy standard

computers (i.e., both 16 and 32 bit standard computers) or
commercial computers using the SDEX/44 I/O management function I
and/or PHM.

4.2.13.1.3 Capability and Security Interfaces 1
SDEX/44 provides support for Navy systems that must conform

to nuclear safety requirements. The SDEX/44 executive, PHM, and
EPM incorporate compile-time options to include or omit the nuclear
safety feature. The SDEX/44 system implements a nuclear safety
feature in accordance with guidelines contained in Joint Cruise
Missile Project JCMPINST 8020.1 CH-2. These requirements fall into I
the following categories: - Separate code and data areas - Protect
application/user modules from accessing each other's code and data
areas - Remove dead code - Detect any attempt to access or change

100

3-F-106 I
I



a protected area.
A nuclear safe version of SDEX/44 is currently undergoing a

nuclear safety audit.

4.2.13.1.4 Data Interchange Interfaces

There are no data conversion services provided by SDEX/44.

4.2.13.1.5 Event and Error Management Interfaces

I/O management can be performed by SDEX/44 or by a user
written interrupt handler. A compile-time option indicates which
interrupt handler should be used. SDEX/44 I/O management is
interrupt driven. When an I/O interrupt is received from the
computer, the SDEX/44 kernel passes CP control to the user module
registered for the I/O channel. During PHM initialization, PHM
registers with SDEX/44 for control of interrupts on the I/O
channels associated with its device handlers. I/O processing by
SDEX/44 and PHM is described in the following paragraphs.

SDEX/44 provides several means for user modules to initiate
and control I/O operations. This may be done using the initiate
I/O option for time-critical registration, registering to receive
CP control following an I/O interrupt, calling SDEX/44 to enable
or disable externals interrupts on an I/O channel, or calling
SDEX/44 to initiate an I/O transfer.

For I/O interrupt registration, a user module selects an
immediate and/or a successor entrance. When an I/O interrupt is
received from the 16-bit computer hardware, SDEX/44 looks at the
user registration for the interrupt. If an immediate entrance is
selected, the user module receives CP control at the entrance. If
a successor task entrance is requested, SDEX/44 places the
successor task on a scheduling list.

If a user module calls PHM with an I/O request, PHM will
initiate the I/O to/from the selected peripheral device or will
place it in a queue if the device is already busy. Once the I/O
request completes, the user is notified by scheduling a successor
and/or message task, resuming a suspended successor task, or
signalling a semaphore.

Error Management
Error management includes detection of hardware and software

errors in the system. The SDEX/44 error management function allows
users to register for control when an error is detected. If EPM
is included in the system, it registers for all errors recognized
by SDEX/44 and the user can register with EPM for control when an
error is detected. EPM maintains a round-robin table of all errors
that have occurred. If no user has registered for control, EPM
provides default error processing. If DM and EPM are not included
in the system, SDEX/44 uses the computer's Jump Keys to notify the
user when an error occurs.

SDEX/44 supports three error processing options: - Return to
the point of error - Return to the top of the scheduling loop -

101

3-F-107



i
Reinitialize the system.

The errors detected by the error management function include:
a. Class I (Hardware errors): power tolerance and memory resume.
b. Class II: instruction fault, floating point over/underflow,

real time clock overflow, executive mode fault, and memory protect i
fault. c. Class III: I/O interrupt on unregistered channel and

user I/O queue overflow. d. Required/Optional Executive Service
Request (ESR) errors: errors generated by an ESR call. 3
4.2.13.1.6 File Interfaces

PHM provides the capability for a user module to generate a
file handler. The user would act as a intermediary for all
accesses to the file device and would call PHM to perform the I/O
requests to the physical device.

4.2.13.1.7 Generalized I/O Interfaces

As stated in event services, SDEX/44 provides the means for i
user modules to initiate and control I/O operations. This includes
initiating I/O in response to a hardware interrupt, registering to
receive CP control following an I/O interrupt, enabling or i
disabling external interrupts on an I/O channel, or calling SDEX/44
to initiate an I/O transfer.

During PHM initialization, PHM registers with SDEX/44 for
control of interrupts on the I/O channels associated with its
device handlers. PHM gives real time control of its peripheral
devices and provides a standard format for all I/O requests. PHM
manages queueing and dequeueing on its I/O channels and I
notification of the user when I/O has completed. Queued I/O
requests are processed on a first-in, first-out (FIFO) basis. PHM
receives control from SDEX/44 when the I/O transfer completes. The i
user is notified by scheduling a successor and/or message task,
resuming a suspended successor task, or signalling a semaphore.
Man-Machine Interface (MMI) Services

PHM provides keyboard devices which allow an operator to
interface with user software. PHM provides the capability to
modify channel assignments for the physical devices it controls.
PHM also allows an operator to send a message to a user module. I
Operator response is also requested when an error is detected on
a peripheral device (e.g., when a magnetic tape unit is off line).

4.2.13.1.8 Networks and Communications

There are no network capabilities within SDEX/44. i

4.2.13.1.9 Process Management Interfaces

SDEX/44 uses a layered task dispatching algorithm in which
the different task types (i.e., successor, message, time-dependent,
and background) are checked for dispatching in a user specified
order. a. Successor tasks receive control in response to a user 3

102

3-F-108 I



I

I request. b. Message tasks receive control to process messages
from other tasks. c. Time dependent tasks receive control on
a time related basis. d. Background tasks receive control on a
time available basis.

Selection of a task for execution is based upon its tier
priority such that all tasks of a specified type are given CP
processing time after all tasks of a higher priority type areI completed and before tasks of a lower priority type are begun.
When no tasks are located for execution in the lowest priority task
type, the scheduling function resumes its search at the highest
priority task type. Designation of task type priorities is
accomplished by using SDEX/44 compile-time parameters defined by
user requirements. By using a compile-time parameter, users may
select or omit each of the possible task types. Also, the number
of each task type is selectable at compile-time.

Successor tasks are processed using the priorities designated
when the tasks were scheduled with SDEX/44. Tasks designated as
having the same priority are processed on a FIFO basis at their
particular priority level. There is a maximum of 31 separate
priority levels, but a compile-time parameter defines the exact
number of levels. Successor tasks are placed on the scheduling
list in three ways: in response to an I/O interrupt, in response
to a time-critical interrupt, or by being scheduled by a task. A
successor task can be preempted if a higher priority successor is
scheduled in response to an I/O or time-critical interrupt, or by
an executing task. Binary and counting semaphores can also be used
to synchronize successor task operation. There are ESRs which allow
a successor task to wait on a semaphore and allow a task to signal
a semaphore. PHM has a completion option which signals a successor
task when an I/O operation completes. SDEX/44 also supports
reentrant successor tasks. Each successor receives a unique data
area which is not initialized before the task receives control from
SDEX/44.

Message tasks are processed on a FIFO basis. There are system
and local messages in SDEX/44. System messages provide the
capability to pass data which was previously stored in an SDEX/44
storage area. Local messages provide the capability of passing
data which was previously stored in a storage area which is shared
by the sending and receiving modules.

A time-dependent task is selected to receive control strictly
on a round-robin basis. Timing parameters associated withI time-dependent tasks are used by the scheduling function to
determine when the tasks are due for execution. These tasks can
be recurrent at user specified rates or non-recurrent.

Background tasks are processed on a round-robin basis and
receive control on a time-available basis. These tasks are selected
for execution in the same manner as time-dependent tasks with anSadditional prmtrwhich defines the time between ssesos

However, background tasks are unconditionally suspended when a
monitor clock or I/O interrupt is received. These tasks can be
recurrent at user specified rates or non-recurrent.

DM provides an operator interface to keyboard devices

1 103

3-F-i09



I
allowing the operator to inspect and change memory locations,
examine executive tables, enter software breakpoints or snapshots, I
or write a bootable system tape.

LPOS to LPOS Communication Services
Through the SDEX/44 I/O management function and PHM, users

can communicate with other Navy standard or commercial computers.
The format of the data is defined by the user. 3
4.2.13.1.10 Project Support Environment Interfaces

SDEX/44 systems are built and supported by standard U.S. U
Navy support software: MTASS/M, Level 2, and MTASS. All three
systems generate the SDEX/44 executive tables used to specify
system configuration.

4.2.13.1.11 Reliability, Adaptability, and Maintainability
Interfaces

Reliability
The SDEX/44 system supports a nuclear safety feature, and

also provides an error management function to detect and recover I
f roi errors.

Adaptability I
Many of the capabilities and features of the SDEX/44 system

are selectable by the user at SDEX/44 compile-time by the use of
compile-time parameters which define a unique version. These
parameters allow the user to select only those features within the
SDEX/44 kernel, DM, PHM, and EPM which support specific
configuration needs. Life cycle support of the SDEX/44 system
includes five versions of the executive. By excluding unneeded I
capabilities, the memory requirements of the SDEX/44 system can be
decreased.

There are currently 123 different versions of SDEX/44 which
have been delivered to users. Currently, there are 4A projects
actively using SDEX/44. These projects include Enhanced Modular
Signal Processor (EMSP), Aegis cruiser, and Vertical Launch System
(VLS).

Maintainability
SDEX/44 provides resource monitoring tables which collect

data on task entrances, interrupt history, and Executive Service

Requests. These tables, plus the EPM error log, provide a history
of system operation. Additionally, system operation can be
monitored by using the Module History feature which collects data I
pertaining to all tasks associated with a particular user module
or the Successor History option which provides the history for an
individual successor task. 3

During SDEX/44 initialization, a subset of AN/UYK-44 built
in tests (BIT) can be run to verify the hardware.

As a Navy standard, SDEX/44 users receive life cycle support

104

3-F-I 10

I



I for their project. This support includes new revision releases,
telephone support, Support Software Trouble Report and Engineering3 Change Proposal support, and up to five new user versions.

4.2.13.1.12 Resource Management Interfaces

Memory Management
The memory management function in expanded memory SDEX/44

versions (AN/UYK-20A or AN/UYK-44) controls the virtual memory
facilities within the computer. This function prepares the virtual
memory environment before a user module receives CP control and
supplies ESRs to modify the virtual memory requirements defined at
system generation time (i.e., page register protection provided by
the hardware, transient segments). Transient segments are provided
to allow the virtual overlays.

Additional ESRs support dynamic runtime memory allocation.
SDEX/44 manages a pool of user defined free physical memory. From
this pool, users may allocate blocks of physical memory and then
define the blocks as a new part of a user module or as belonging
to a successor task. Through this method, users may redefine and
expand/decrease their modules at run time. Successor task
reentrancy, which provides unique data segments for each entrance
of a successor task, is also supported by the bank of free physical

mmemory.

Device Management
PHM provides a standard format for all I/O requests

regardless of device type. Secondary memory management on disks
and magnetic tapes is available using the PHM device handlers.
These handlers allow users to access data on these devices.

U4.2.13.1.13 Synchronization and Scheduling Interfaces

The scheduling services provided by SDEX/44 are discussed in
the Process Management section above.

Binary and counting semaphores can be used to synchronize
successor task operation. There are ESRs which allow a successor
task to wait on a semaphore and allow a task to signal a semaphore.
PHM has a completion option which signals a successor task when an

I/O operation completes.

4.2.13.1.14 System Initialization and Reinitialization Interfaces

The SDEX/44 system initialization provides the means to set
SDEX/44 and user modules to their initial state during computer
start-up or restart. For expanded memory systems such as the
AN/UYK-20A and the AN/UYK-44 which have multiple page address
register (PAR) sets, the page registers are loaded with the values
specified by the user at system generation time (i.e., MTASS/M

SYSGEN, or MTASS Linkage Editor and Tape Builder/M).
Once the SDEX/44 kernel completes its initialization, CP

control is given to each user module to initialize its state. A

105

3-F-Ill



I
module may schedule task entrances and other responsibilities by
requesting executive services. In addition, modules may set
themselves to initial processing states. Once the module has
initialized itself, it returns CP control to SDEX/44. When all
modules are initialized, the SDEX/44 initialization function passes U
CP control to the SDEX/44 scheduling function to begin system
processing.

4.2.13.1.15 Time Services Interfaces

SDEX/44 uses the clock on a 16-bit computer (which measures
time in milliseconds) for time related entrances (time-dependent),
time available entrances (background), as well as time-critical
entrances. The time-dependent, background, and time-critical
entrances can be recurrent at user specified rates or i
non-recurrent.

For time-critical entrances, the computer's monitor clock is
used to generate a hardware interrupt, the time-critical immediate
entrance receives CP control at the user specified time. In I
addition to the immediate entrance, a time-critical registration
also allows a successor task to be scheduled and/or I/O to be
initiated. I

In addition, a successor task can suspend its operation for
a fixed time interval. Before the task suspends itself, it must
schedule a time-critical or time-dependent entrance. The time to
begin execution at the entrance specifies the suspension time
interval. ;hpn the entrance receives CP control, it resumes the
suspended successor task by calling SDEX/44.

ESRs are also provided to allow the user to update the time
values associated with time dependent, background, and
time-critical entrances, or to update the computer's clock value.

4.2.13.1.16 Ada Language Support Interfaces

There is no programming support for Ada.

4.2.13.2 Additional Characteristics

4.2.13.2.1 Proprietary or Open i
Sponsored by NAVSEA PMS 412.

4.2.13.2.2 Qualification as a Standard

SDEX/44 is a U.S. Navy Standard Executive for 16-bit.
computers.

4.2.13.2.3 Platform Flexibility 3
SDEX/44 is targeted at only U.S. Navy Standard 16-bit

computers.

106

3-F-112 1
I



U

I Application Domain
There are currently 123 different versions of SDEX/44 which

have been delivered to users. Currently, there are 44 projects
actively using SDEX/44. These projects include Enhanced Modular
Signal Processor (EMSP). Aegis cruiser, and Vertical Launch System(VLS).

I Testability and Performance Evaluation Mechanism
To aid a user during project development, DM and EPM provide

enhanced debugging support. EPM enhances the SDEX/44 error
management function by maintaining a round-robin table of all
errors that have occurred during system execution and providing
default error processing. DM receives CP control when an
unregistered error is detected by SDEX/44 or an operator has
entered a software breakpoint. DM allows the user to examine the
state of the system by providing dumps of executive tables, history
tables, the EPM error log, memory areas, and hardware status. InIaddition, DM provides software breakpoints, snapshots, and patching
capability. This information can be displayed on either a display
or a printer by using PHM or DM device handlers. In addition, the
contents of memory locations can be displayed or modified by using
DM capabilities.

Users can improve SDEX/44 system performance by removing
unneeded features, such as debugging aids. These features are
controlled by compile-time options within SDEX/44, PHM, DM, and
EPM.

3 4.2.13.3 References

[HALEE89]

I 4.2.14 SDX Survey Summary

The Standard Distributed Executive (SDX) is a real time
executive which provides the capability to operate in a
multicomputer environment via the Shipboard Integrated Processing
and Display System (SHINPADS - Note: SHINPADS is a registered
trademark of the Canadian Department of National Defence) Serial
Data Bus (SDB) network. The SDB network supports up to 255
computers connected via a 10 MBPS electrical bus. SDX supports
the standard U.S. and Canadian Navy 16 bit general purposeIcomputers (AN/UYK-44, AN/UYK-20, AN/UYK-20A, AN/UYK-502, and
AN/UYK-505). SDX is also SDEX/44 compatible. Some SDEX/44
programs can run under SDX. SDX programs are generally not able
to run under SDEX/44. The SDX based Distributed Operating System
(DOS) is comprised of four components:
SDX - Kernel real time executive3- DSMR - Dynamic System Monitoring and Reconfiguration Module
SL - System Loader Module
BOOT - Bootstrap loaders.

SDX provides real time and time critical control functions
for software units called modules. Systems or programs are

107

3-F-i13



I
comprised of modules. Each module may have multiple types of
entrances for CP control to be received from the executive. SDX
supports the following types of module entrances: time critical,
message, Input/Output (I/O), successor, time dependent, and
background. U

SDX provides the following types of functional capabilities:
Initialization
Scheduling
I/O management
Interrupt management
Error management
Bus Handler
Resident Monitor
Resident Loader
Executive Service Requests.

SHINPADS SDB systems implement hardware and software
redundancy and reconfigurability to provide fault tolerance. DSMR
provides real time error detection, error isolation, hardware
reconfiguration, and software reconfiguration capabilities. DSMR
provides a user interface to allow applications to monitor or
direct reconfiguration. I

SL is a loader module which supports the loading of
configurations (initial BOOT load) or individual modules into
remote processors via the SDB.

Bootstraps are routines which reside in Non Destructive Read
Only (NDRO) memory and support the initial loading of computers via
the SDB. 3
4.2.14.1 Operating System Service Classes I
4.2.14.1.1 General Requirements

The SDX system is designed to interface with user programs 3
consisting of one or more separate modules which are programmed in
MTASS/M or MTASS CMS-2 or 16-Bit Assembly Language (MACRO).

4.2.14.1.2 Architecture Dependent Interfaces I
The DOS is specifically designed to operate in a SDB network

of Navy standard 16 bit computers. SDX can operate as a local I
executive only. SDX user modules can communicate with other Navy
standard computers (i.e., both 16 and 23 bit standard computers)
or commercial computers using the SDX I/O management standard 16
and 32 bit peripheral or intercomputer communication.

4.2.14.1.3 Capability and Security Interfaces 3
SDX supports the read, write, and execution protect functions

provided by the Navy standard 16 bit computers and MTASS. 3
108 3

3-F-I 14

I



A.2.14.1.4 Data Interchange Interfaces

There are no data conversion services provided by SDX.

4.2.14.1.5 Event and Error Management Interfaces

Event Management
SDX allows user modules to register entrances to process

specific interrupts and interrupt types (External Interrupt, Input
Monitor, Output Monitor). When an interrupt is received, CP control
is passed to the appropriate module entrance. I/O entrances may
be registered as successor or time critical entrances.

SDX supports I/O related Executive Service Requests (ESRs)
which allow the user module to enable/disable interrupts, initiate
I/O, or change interrupt save areas for a particular channel.

Error Management
Error management includes detection of hardware and software

errors in the system. The SDX error management function allows
users to register for control when an error is detected. Users may
request responsibility for any subset of possible errors. If no
user is registered for responsibility of the type of error
detected, SDX uses the computer's Jump Keys to notify the user when
an error occurs. Error information is available in the computer's
General Registers at the time of the error stop.

SDX supports three error processing options: return to the
point of error, return to the top of the scheduling loop, or
reinitialize the system.

The errors detected by the error management function include:

a. Class I (Hardware errors): power tolerance and memory resume.

b. Class II: instruction fault, floating point over/underflow,
real time clock overflow, executive mode fault, and memory protect
fault.
c. Class III: I/O interrupt on unregistered channel and user I/O

queue overflow.
d. Required/Optional ESR errors: errors generated by an ESR

call.

4.2.14.1.6 File Interfaces

The DOS does not provide file management services. The SL
module does require an interfacing File Management module to
support loading of modules from a mass storage device.

4.2.14.1.7 Generalized I/O Interfaces

As stated in event services, SDX provides the means for user
modules to initiate and control I/O operations. This includes
initiating I/O in response to a hardware interrupt, registering to
receive CP control following an I/O interrupt, enabling or

109

3-F-i!5



disabling external interrupts on an I/O channel, or calling SDX to
initiate an I/O transfer.

The DOS does not provide a man-machine interface. An
application communicates operator actions to the DOS via ESR calls
and implementing a user interface module which communicates with U
the DMSR module.

4.2.14.1.8 Networks and Communications 3
The DOS operates in a SHINPADS SDB system. This system

supports up to 255 distributed processors connected via a linear
bus. Each processor communicates to the network via a local
SHINPADS node. The SHINPADS nodes are microprocessors which are
responsible for bus data exchange and command protocol.

Communication between processors is via messages. Users 1
schedule messages via ESR calls. Users are also able to register
to receive selected broadcast message types. Messages are
scheduled as point-to-point (selected by module number), broadcast
(only registered modules will receive), or by System Identifier u
(each module has a unique identifier). Physical destination
mapping and SDB formatting is done by the Bus Handler function of
SDX. mThe SDB network provides hardware redundancy of cables,
nodes, and processors. The distributed network supports softw:are
redundancy as well. The DSMR module is responsible for managing
these redundancies. The DSMR module provides real time, time
critical system monitoring and reconfiguration capabilities which
fully utilize the fault tolerance provided in the redundant
distributed network.

4.2.14.1.9 Process Management Interfaces 3
The scheduling function of SDX is responsible for allocating

the resources of the CP according to established hierarchical
algorithms. Tasks are placed on various queues in response to
ESRs, interrupts, or time related eligibility. Once queued, CP
control is relinquished to the appropriate task by individual task
dispatch processors. The scheduling function scans the queued
tasks for the highest priority task according to the followingpriority tiers:

a. time critical 3
b. priority level 0 message
c. I/O
d. priority level 1 message
e. successor
f. priority level 2 message
g. time dependent
h. priority level 3 message U
i. background.

In addition to the overall task priority scheme, the following 3
110

3-F-I1
r



rules govern task dispatch:

j. If no task is queued and/or eligible for dispatch, control
returns to the top of the dispatch loop and the process is
repeated.
k. Any immediate task type may not suspend processing of any other
immediate task type.
1. Any immediate task type may suspend processing of any
non-immediate task type.
m. Any suspended non-immediate task type will be resumed (from
point of suspension) prior to dispatching control of any other
non-immediate task.
n. User suspended successor or background tasks remain suspended
and ineligible for dispatch until a Resume Suspended Task ESR is
performed. At that time, the task will be eligible for dispatch.

Time critical, priority 0 message, and I/O tasks are
considered immediate entrances. The other task entrances are
non-immediate. Priority level 0 messages generate a class III
interrupt and are therefore processed as an immediate entrance.

SDX supports multiple priorities of successor tasks. The
number of priorities supported is an aqsembly timp parameter.
Tasks are first-in first-out (FIFO) within tier and priority.

Time dependent tasks become eligible for dispatch based on
a Real Time Clock (RTC) value. When the associated time value has
expired, they become eligible based on tier priority. Time
dependent tasks may be scheduled once or on a periodic basis.

Background tasks are dispatched on a time available basis.
Background tasks may be scheduled for execution once or on a
periodic basis. Users may specify minimum intervals between
background task initiations and suspensions.

Through the SDX I/O management function, users can
communicate with other Navy standard or commercial computers. The
format of the data is defined by the user.

SDX is designed to operate in a distributed network with
multiple copies of SDX as an LPOS communicating with each other.
This is discussed in more detail in Networks and Communication.

4.2.14.1.10 Project Support Environment Services

SDX systems are built and supported by standard U.S. Navy
support software: MTASS/M, Level 2, and MTASS. All three systems
generate the SDX executive tables used to specify system
configuration.

4.2.14.1.11 Reliability, Adaptability, and Maintainability
Interfaceu

Reliability
The SDX system provides an error management function to

detect and recover from errors.

111

3-F-I 17



Adaptability
SDX and DSMR have system supplied data elements which allow

the user to tailor the functionality and size to meet their
specific needs. These items are all selectable at assembly time.
This allows tailoring within each individual processor as well as i
the whole SDB network. This ability allows the DOS to support a

variety of hardware and software configurations.
The SDX based DOS currently supports the Marine Air Traffic

Control and Landing System (MATCALS), Canadian Patrol Frigate
(CPF), Tribal Class Update and Modernization Program (TRUMP), and
Infrared Search and Target Designation (IRSTD) programs. 3
Maintainability

SDX maintains a detailed error log pertaining to hardware and
software errors detected by each processor. System operation can I
be monitored by using the Module History feature which collects
data pertaining to all tasks associated with a particular user
module or the Successor History option which provides the history
for an individual successor task.

The DOS provides various health monitoring, test and loopback
features to monitor and report the health of nodes, cables, and
processors throughout the SDB network. I

Site specific changes may be isolated to modifying system
supplied data elements. This reduces risk and complexity of
maintenance. 3
4.2.14.1.12 Resource Management Services

Memory Management i
The SDX memory management function controls the virtual

memory facilities within the computer. This function prepares the
virtual memory environment before a user module receives CP control I
and supplies ESRs to modify the virtual memory requirements defined
at system generation time (i.e., page register protection provided
by the hardware, transient segments). Transient segments are
provided to allow the virtual overlays.

SDX maintains an area of global memory. Users may assign
blocks of this memory. This area may also be used for message
exchange, I/O buffers or chains. Use of this area for shared I
memory purposes decreases the total size of program data required
and can simplify the virtual memory mapping requirements. The size
of the area is an assembly time parameter which may be expanded at I
link time.

Device ManagementSDX does not directly manage any devices other than the
SHINPADS node which is the network interface.

4.2.14.1.13 Synchronization and Scheduling Interfaces 3
The scheduling services provided by SDX are discussed in the

Process Management section above. 3
112

3-F-1 18 i
I



SDX provides a synchronized system time. This is discussed
in the Time Services paragraph.

4.2.14.1.14 System Initialization and Reinitialization Interfaces

The SDX system provides hardware, node, system, and local
module initialization. SDX determines the type of processor it isIexecuting in and performs the appropriate interrupt and page
register initialization. SDX initializes communication with its
local node and establishes SDB network communication.

Once SDX completes system initialization, SDX queues an
initialization message to each user module to initialize its state.
A module may schedule task entrances and other responsibilities by
requesting executive services. In addition, modules may set
themselves to initial processing states. Once the module has
completed initialization processing, it returns control to the SDX
dispatch loop. Page registers are loaded to the appropriate values
as part of the dispatch function for any module task.

4.2.14.1.15 Time Interfaces

SDX uses the local hardware clock on a 16-bit computer for
time related entrances (time dependent), time available entrances
(background), as well as time critical entrances. The time
dependent, background, and time critical entrances can be periodic
at user specified intervals or can be scheduled for a single
occurrence.

SDX maintains a synchronized system time which is available
to users via ESR call. This provides a Greenwich Mean Time (GMT)
synchronized throughout the distributed network whose increment is
in milliseconds. The SHINPADS nodes support a high priority
interrupt called a Time Synchronization External Interrupt. This
interrupt has known propagation and transfer delays, and is
therefore the mechanism used to maintain the synchronized time.

For time critical entrances, the computer's monitor clock is
used to generate a hardware interrupt, the time critical immediate
entrance receives CP control at the user specified time. In
addition to the immediate entrance, a time critical registration
also allows a successor task to be scheduled and/or I/O to be
initiated.

In addition, a successor task can suspend its operation for
a fixed time interval. Before the task suspends itself, it must
schedule a time critical or time dependent entrance. The time to
begin execution at the entrance specifies the suspension time
interval. When the entrance receives CP control, it resumes the
suspended successor task by calling an SDX ESR.

ESRs are also provided to allow the user to update the time
values associated with time dependent, background, and time
critical entrances, or to update the computer's clock value.

4.2.14.1.16 Ada Language Support Services

113

3-F-I 19



There is no programming support for Ada. 3
4.2.14.2 Additional Characteristics

4.2.14.2.1 Proprietary or Open 3
Property rights to the DOS are shared by Unisys Corporation,

the Canadian Department of National Defence (DND), and the U.S.
Navy.

4.2.14.2.2 Qualification as a Standard 3
SDX is not established as, nor adheres to any existing

standard. It is compatible with SDEX/44 which is a U.S. Navy
Standard Executive for 16-bit computers.

4.2.14.2.3 Platform Flexibility

SDX is targeted at only Navy Standard 16-bit computers. I
4.2.14.2.4 Application Domain 3

SDX can operate as a local operating system. Its main domain
is SHINPADS based fault tolerant systems.

4.2.14.2.5 Testability and Performance Evaluation Mechanism I
SDX calculates and provides to the user processor utilization

and bus I/O statistics at each local processor.
To aid a user during the project development, a set ofdistributed tools have been developed. These include:

Network Monitor
Network Monitor is a software program which communicates with

a modified node to allow passive extraction of message and commands
from the SDB. Network Monitor initiates extraction based on user I
defined trigger sequences of commands and/or messages and extracts
user defined types of message and commands. Network Monitor
supports pre or post event extraction. Network Monitor also allows
users to send messages on the bus bases on a trigger event.
Network Monitor provides a performance monitoring capability which
will report SDB utilization and the mix of the types of messages
and commands present on the SDB network.

Distributed Debug
The Distributed Debug allows an operator at a control console

to perform debug functions in any computer in the SDB network
(local and/or remote). Debug functions provided include:

Inspect and change (data or instructions) I
Dump memory
Snapshot breakpoint
Trap messages

114
3-F-120I

I



I

Send messages
Calculate execution time of a code segment
Read a module history
ESR trace
Create and insert patch files.

Distributed System Test and Evaluation Program (DSTEP) DSTEP
is a test tool which allows isolation of hardware errors (hard or
intermittent faults) to the lowest replaceable unit of equipment
in the SDB bus transmission system (i.e., cable, connector, node

I card).

4.2.14.3 References

[COURT89]
4.2.15 Spring Kernel Survey Summary

The Spring Kernel is part of the Spring Project under
research and development at the University of Massachusetts. This
current research is directed by Dr. John A. Stankovic. Primary
emphasis in distributed hard real-time systems and techniques is
being developed on hardware and software testbeds at the
university. Spring is implemented within the commercially
available VRTX(tm) operating system. The kernel is used to
interface to a higher level form of operating system such as VRTX.

The Spring Project views new and sophisticated applications
as
[RAMA891:
o Large and complex
o Functioning in physically distributed environments
o Having to be maintainable and extensible due to their

evolving nature and projected long lifetimes
o Consisting of many interacting time-critical components
o Resulting in severe consequences if logical and timing

correctness are not met
o In order to achieve the major goals of high performance
(i.e., the need to be fast) and predictability, the following
areas are being explored in a synergistic fashion:

o Scheduling algorithms for distributed
time-critical systems

o Operating system support for time-critical systems

I o ArchiLectural support for time-critical systems
o Tool support for building time-critical systems
o Protocols for time constrained communication
The following concepts are used to create a flexible, yet

predictable system:
o resource segmenzation/partitioning
o functional partitioning
o selective preallocation
o a priori guarantee for critical tasks
o an on-line guarantee for essential tasks
0 integrated cpu scheduling and resource allocation

3 115

3 3-F-121



I
o end-to-end scheduling 3

4.2.15.1 Operating System Service Classes I
4.2.15.1.1 General Requirements

Emphasis is on language support, per se. U
4.2.15.1.2 Architecture Dependent Interfaces 3

None are described in literature

4.2.15.1.3 Capability and Security Interfaces

None are described in literature or emphasized in the effort

4.2.15.1.4 Data Interchange Interfaces i
No emphasis is placed on data interchange services in this

effortI

4.2.15.1.5 Event and Error Management Interfaces

Event management is accomplished by using a bounded SENDW and
a RECVW prinitive or by providing enough information to the
schedules so that it is handled by the schedules in pre-allocation
of resources. Bounded waits of SENDW(T) and RECVW(T) prinitive are
accounted for in the scheduling process. T is the maximum time wait
(bounded wait) parameter. IPC messages are handled by the SENDW(T)
and RECVW(T) as well as SEND and RECV (no wait), ALARM (immediate I
highest priority transmission), BROADCAST and
TIMED-VIRTUAL-CIRCUIT. Lost messages are the responsibility of the
application and no error management for IPC is provided.

No other error management services are emphasized

4.2.15.1.6 File Interfaces 3
Fixed sized file blocks are used

4.2.15.1.7 Generalized I/O Interfaces i

I/O is divided into fast and slow I/O. Fast I/O is
considered as periodic I/O and is handled by a separate processor.
Slow I/O is handled by a dedicated front-end processor.

The I/O system is considered a separate processor entity from
the Spring Kernel. 3
4.2.15.1.8 Networks and Communications

No specific network services are provided. A network is, 3
116

3-F-122

I



I

I however, assumed to implement the distributed computer system. The
global schedules adapts certain parameters and LPOS information to
changing environmental conditions over the networked resources.

When messages are broadcast to nodes to attempt to find one
which can guarantee to execute a task within hard real-time
constraint, the task is not communicated. All tasks which can
execute at one or more nodes are pre-stored at those nodes.

4.2.15.1.9 Process Management Interfaces

1 IPC messages are broadcast to each LPOS from the LPOS
attempting to schedule a task, but needing to find an LPOS which
can guarantee a task its real-time requirement.

4.2.15.1.10 Project Support Environment Interfaces

3 No YT3plicit features

4.2.15.1.11 Reliability, Adaptability and Maintainability
Interfaces

Reliability is enhanced since a task (which must execute
logically correctly and within time constraint to avoid an
application fault) is less likely to have a failure.

The meta level controller adapts the LPOSs to changing system
environment conditions.

4.2.15.1.12 Resource Management Interfaces

All resources (CPU time, memory, file space, etc.) is divided
into fixed-size blocks. All tasks which have widely varying
worst-case times to average execution time are assumed to be
subdivided into tasks which are more nearly equal in terms of such
times. Fixed resource size is a key element in the Spring Kernel.Various primitive to obtain, create, delete, destroy, etc., objects
and resources are provided.

4.2.15.1.13 Synchronization and Scheduling Services

The basic philosophy of the Spring Kernel is the scheduling
of critical tasks such that they are guaranteed to have all
necessary resources and to meet their hard real-time deadlines.
scheduler, there are four, operate on separate processors; the
applications run on application processors.

The lowest level is a local dispatcher for tasks. The local
schedule locally guarantees that an incoming new task can meet its
deadlines; it can also be used as a time planner for AI
applications determining how to solve a problem(s). The third is
a distributed scheduler which is used to find nodes other than the
current local one which could guarantee the task meets its
requirements if the local one cannot. Last is the Meta Level
Controller which can adapt the various parameters and switches

117

I 3-F-123



1
scheduling algorithm as made necessary by changing system
environmental conditions. The latter two are not part of the Spring I
Kernel itself.

4.2.15.1.14 System Initialization and Reinitialization Interfaces

No special emphasis is provided

4.2.15.1.15 Time Services I
No special emphasis is provided

4.2.15.1.16 Ada Language Support Interfaces

No explicit features

4.2.15.2 Additional Characteristics 3
4.2.15.2.1 Proprietary or Open

Open since it is a government-sponsored academic research

project.

4.2.15.2.2 Qualification as a Standard 1
This effort focuses on the technical paradigm, particularly

the schedules, that is implemented. An application to Kernel
interface or operating system to Kernel interface is not emphasized
or optimized. 3
4.2.15.2.3 Platform Flexibility

An objective of the Spring Project is to provide a flexible,
extendable distributed hard real-time system. It is considered
flexible since the kernel can be used in various ways to satisfy
differing systems. It is extendable since the underlying hardware Iis not constrained in resource types or system size.

4.2.15.3 References

[BIB88], [STAN88], [STAN 88-1], [RAMAM89], [RAMAM89-1], [HUAN 89]

4.2.16 SPRITE Survey Summary I
SPRITE is a current research and development O.S. at the

computer Science Division of the University of California,
Berkeley, Director of the effort is John K. Ousterhout. I

SPRITE is designed for a set of cooperating hosts that
communicate over a network, the details of which are hidden from
the user. Specifically, it targets networks or workstations. I

118

I
I



3 SPRITE is an operating system designed to accommodate large
memories, files, networks, etc., which may typify future
distributed systems. Central to the SPRITE distributed operating
system is a shared file system with distributed file caching. Also
included in the research are transparent remote procedure calls as
well as virtual memory management process migration and network

* transparency as viewed by the user.

4.2.16.1 Operating System Service Classes

4.2.16.1.1 General Requirements

Workstations considered in this research use LISP as a
primary language.

4.2.16.1.2 Architecture Dependent Interfaces

3Details and management of architectural dependent services
are not visible to the user/application. The application considers
itself to have all resources available locally.

4.2.16.1.3 Capability and Security Interfaces

Not specifically addressed in SPRITE

4.2.16.1.4 Data Interchange Interfaces

Not specifically addressed in SPRITE

4.2.16.1.5 Event and Error Management Interfaces

Not specifically addressed in SPRITE

4.2.16.1.6 File Interfaces

SPRITE distributed file system provides three kinds of file
systems: local, remote, and pseudo-file-system. The
pseudo-file-system implements foreign file systems, but at a user
level outside of the SPRITE kernel. Directory and file warning is
UNIX-like, and the name space is distributed. The single name
space is shared by all SPRITE hosts in the system. Its
distribution is hidden by the operating system. A prefix table
mechanism at each node contains path names and host identification
and is used to implement the distributed single name space.
Whereas many operating systems set configuration dependent data at
initialization, SPRITE readjusts the distributed file system
(prefix) tables at any detection (system wide) of a workstation or
-twn-k -or-nfiguration.

Concurrent and sequential write-sharing is permitted on
files. Concurrent write-sharing courses file caching (described
below) to be disabled and all file references to go to the server.
Sequential write-sharing allows one user to open a file for a

119

3-F-125



I
write-sharing after another has finished. Delayed caching is
compensated for by the SPRITE kernel. In delayed caching, the
application node cache holds most recent (30 seconds maximum) data,
even after file closing.

File caching of significantly large size is performed on each I
node to reduce file I/O bottlenecks. This feature capitalizes on

the large physical memory available for implementation. Caching
used some novel techniques to improve I/O performance and yet
ensure that sequential file use by application delivers the correct
copy of data. Data can be more current in a previous user's cache
than in the file. Server-user and Server-previous user
communications ensure flushing of "dirty" data blocks and delivery I
of clean data. After a 30-second delay, blocks are written from
application cache to server cache; 30 seconds later, from server
cache to disk. This policy is based on actual statistics of data U
file usage in UNIX at Berkely.

4.2.16.1.7 Generalized I/O Services

Not specifically addressed in SPRITE

4.2.16.1.8 Networks and Communications 3
IPC is not specifically addressed in SPRITE, but RPC (for

LPOS-LPOS use only - see 10 above) is so addressed.
SPRITE is a distributed multiprocessor system implemented

around a transparent shared hierarchical file system and based on
a network such as a ten-megabit ETHERNET. The user/application
should see the processes, resources, and data in a manner similar I
to time-shared UNIX.

4.2.16.1.9 Process Management Interfaces

Remote procedure calls (RPCs) are used when one kernel (LPOS
equivalent), needs to call a procedure on a remote SPRITE node.
Multiple RPCs from the calling node may exist and a receiving node I
may simultaneously process a number of RPCs to execute procedures.
RPC is implemented on top of a special-purpose network protocol.
Implicit message acknowledgment is used to reduce message overhead. I
RPC message fragmentation is allowed.

RPC is used only for LPOS-LPOS communication to activate
execution of remote processes called by an application. No other
use of RPC is made by SPRITE.

4.2.16.1.10 Project Support Environment Interfaces U
Not specifically addressed in SPRITE

4.2.16.1.11 Reliability, Adoptability and Maintainability 3
Interfaces

No explicit features I

120

3-F-126

I



4.2.16.1.12 Resource Management Interfaces

Processes can be migrated to idle processors in the network.
Upon return of the home users, foreign processes that migrated in
can be migrated out to other hosts. Process migration occurs by
"freezing" the process at its current node, transferring its state
(registers, execution state, virtual memory, and file access) to
the new node, "unfreezing" it at the new node.

Backing files are used in virtual memory management. Frozen
processes virtual memory is stored in such backing files, and
information about the files is transferred to the new node which
can retrieve file blocks as necessary.

Virtual memory is managed using fixed blocks in the real
memory and in the file system. Using the standard SPRITE file
system to simplify process migration and to capitalize on server
caches. Backing files are used for swapped out pages.

4.2.16.1.13 Synchronization and Scheduling Services

Not specifically addressed in SPRITE

4.2.16.1.14 System Initialization and Reinitialization Interfaces

Not specifically addressed in SPRITE

4.2.16.1.15 Time Interfaces

Not specifically addressed in SPRITE

4.2.16.1.16 Ada Language Support Interfaces

No explicit features

4.2.16.2 Additional Characteristics

4.2.16.2.1 Proprietary or Open

Open as it is government-sponsored research.

4.2.16.2.2 Qualification as a Standard

None. Time-shared UNIX is its application I/F model.

4.2.16.2.3 Platform Flexibility

No explicit features

4.2.16.3 References

(WOOD89)

121

3-F-127



I
4.2.17 V System Survey Summary

The V distributed operating system, developed under the
leadership of David Cheriton at Stanford University, is designed
for a cluster of workstations interconnected by a high-performance
network. It has been running at Stanford University since 1982.
It currently runs on SUN and MicroVAX workstations, which are
interconnected by a 10-megabit Ethernet. Its goals can be
elaborated as follows:
o The V project strives for minimization of the kernel.
o The V project strives for high performance, in particular,

high-performance interprocess communication. o V's target I
application domains include real-time, interactive timesharing,
and batch applications. Real-time requirements have always been
a major consideration. Interactive timesharing has been the
primary application, though. V is used to transform a cluster of
workstations into a distributed system that offers users the same
resource and information sharing capabilities traditionally
provided by a centralized timesharing system. Recent work has I
investigated the possibility of supporting large distributed
parallel applications.

The V distributed operating system consists of the following I
components:I

o V kernel: The design of the V kernel is based on two key
concepts. The first is that a kernel should be "minimal." Namely,
it should implement an interconnection mechanism between
applications and system services, but not the system services
themselves. Thus, interprocess communication (IPC) lies at the Icore of the V kernel. The second key concept is that the kernel
must satisfy the following "integrity constraint": the kernel
cannot depend upon the correctness of anything outside of itself
for its own correctness. If the kernel fails, then it must be
either the kernel's fault or the hardware's fault. This integrity
constraint limits the minimization (of the kernel) that can be
achieved. Currently, the V kernel includes the following servers
in addition to the IPC facility: a communication server (which
implements the management component of IPC), a time server, a
process server, a memory management server, and a device server. I
However, the design is periodically re-examined to determine
whether further reduction of the kernel is possible.
o V system servers: These servers provide the traditional
operating system services. They are implemented above the kernel,
at the user process level, as multiprocess programs (based on
lightweight processes). They are accessed through the V IPC
mechanism. Current servers include a file server, a printer I
server, a display server, a pipe server, an Internet server, and
a team server (which manages the execution of programs). Servers
under development include a log server for optical disk storage
and a time synchronization server.

4.2.17.1 Operating System Service Classes

122

3-F-128 I

i



4.2.17.1.1 General Requirements

The V distributed operating system offers programming support
in the form of various run-time libraries. The libraries implement
conventional programming interfaces such as Pascal I/O and C stdio.
V also offers a set of system commands.

4.2.17.1.2 Architecture Dependent Interfaces

Internetwork Communication
V incorporates a system server known as the Internet server,

which implements the DoD TCP/IP suite of protocols.

4.2.17.1.3 Capability and Security Interfaces

Regarding protection, each process is encapsulated in an
address space, and can communicate with other processes only via
IPC.VMTP, the transport protocol underlying V IPC, incorporates
security mechanisms, including "entity domains" and encryption.
In VMTP, direct communication can occur only on an intra-domain
basis, thus ensuring the isolation between security levels required
for mandatory access control. The idea is to have one domain per
security level. Entities can belong to more than one domain, so
trusted servers could communicate with users of different security
levels. Encryption can be used as a mechanism to facilitate the
secure authentication of subjects required for discretionary access
control.

4.2.17.1.4 Data Interchange Interfaces

No explicit features.

4.2.17.1.5 Event and Error Management Interfaces

V incorporates an exception server outside the kernel. The kernel
process server causes the exception-incurring process to send a
message describing its problem to the exception server. The
exception server then takes action, for example, invoking an
interactive debugger.

4.2.17.1.6 File Interfaces

File Server
V implements file services outside the kernel via the file

server, which implements a UNIX-like file system.
The file system utilizes a contiguous allocation scheme that

results in most files being data contiguous on the disk.

Naming
V has a three-level naming system. At the highest level are

123

3-F-129



i
character-string names, which are used for permanent objects such
as files. At the next level are object identifiers, which are used
for transient objects such as open files. At the lowest level are
entity identifiers, which identify transport-level endpoints (such
as processes or groups of processes).

4.2.17.1.7 Generalized I/O Interfaces

The V project has developed a uniform I/O interface called the i
UIO interface as its system-level I/O interface (as opposed to its
application-level I/O interface, which is implemented by the
run-time libraries). The UIO interface is based on an abstraction i
known as the UIO object, which corresponds to an open file in
conventional systems. The UIO interface provides some support for
record I/O, locking, atomic transactions, and replication. It
further supports the notion of optional and exceptional
(escape-mode) functionality.

4.2.17.1.8 Networks and Communications 3
Interprocess Communication

V IPC is message-based. It has two distinguishing features.
First, it is optimized for request-response behavior. Typically,
a server runs as a dedicated process or team of processes. A client
requests a service by sending a message to the server, and then
waiting for the response. The request-response transaction (which
is sometimes referred to as Remote Procedure Call (RPC) in the V
literature) is considered fundamental in V. It directly implements
the predominant fetch operation (typified by file read); namely, U
a client sends a request for data and receives the data in the
server's corresponding response.

Second, V IPC supports multicast, both as a multi-
destination delivery mechanism and as a binding (or logical
addressing) mechanism. Multicast is considered fundamental to the
implementation of problem-oriented shared memory, and has proved
invaluable in the implementation of the V distributed operating I
system itself.

A transport level protocol, known as the Versatile Message
Transaction Protocol (VMTP), has been developed to support V IPC. I
In addition to request-response and multicast transactions, VMTP
also supports forwarding and streaming. In regard to streaming,
it should be noted that VMTP, unlike other transport protocols,
strives first for low delay, and then attempts to build high I
throughput capabilities (e.g., streaming) on top of the low delay
foundation.

In part to support real-time applications, VMTP provides
datagram message transactions, prioritized message transmission and
delivery, and conditional message delivery (i.e., delivery only if
the receiver is awaiting a message when the message arrives).

Pipe Server
V incorporates a pipe server that implements UNIX-like pipes. 3

124

3-F-1 30 I
I



I
I

4.2.17.1.9 Process Management Interfaces

Basic Abstractions
In the V literature, the V kernel is described as a "software

backplane." Just as a hardware backplane provides slots, power, and
communication, the V kernel provides address spaces, lightweight
processes, and interprocess communication (in the form of message
transactions). Thus, the basic abstractions of the V kcrnel are
the following:

o Address space: The V kernel separates the conventional process
abstraction into two components. The first component is the
address space, which holds programs (and open files).
o Lightweight process: The second component of Lhe process
abstraction is the lightweight process, which is the locus of1 control within an executing program. Multiple lightweight
processes may exist within an address space, and are referred to
as a "team" of processes.
o Message transaction: Processes communicate via message
transactions. In the basic scenario, a client sends a request
message to a server, and then blocks (awaiting a response message).
The server receives the request message, performs the requested
service, and then replies tn the client with a response message.

Kernel Process Server
The kernel process server implements operations to create,

destroy, query, modify, and migrate processes.
The V kernel is replicated at each participating network

node. The kernels cooperate to provide the image of a single
unified distributed system, in which processes execute in address
spaces and communicate using V IPC. Kernel services (e.g., process
management, memory management, communication management, device
management) are themselves invoked via V IPC.

4.2.17.1.10 Project Support Environment Interfaces

No explicit features.

4.2.17.1.11 Reliability, Adaptability, and Maintainability
Interfaces

Reliability and Fault Tolerance
V supports the notion of a process group as a set of

processes identified by a "group identifier." The processes may
reside at any node in the distributed system. The process group
mechanism and multicast communication are used to implement
distributed and replicated services. Both distribution and
replication enhance reliability and fault tolerance.

125

3-F-131



I
4.2.17.1.12 Resource Management Interfaces

Storage Management
In V, an address space consists of ranges of addresses,

called regions. The memory management system 1) binds regions to I
portions of open tiles (UIO objects), 2) manages physical memory
as a cache for data from the open files, and 3) maintains the
consistency of the cached data. The transfer of pages into the
cache, as well as the mapping, is done on demand.

In part to support real-time applications, V enables programs
to be specified as memory-resident.
Device Management

The kernel device server implements access to devices
supported by the kernel, including disk, network interface, mouse,
frame buffer, keyboard, serial line, and tape. The device server I
is device-independent code that interfaces between the
process-level client and the driver modules for the individual
devices. The device server implements the UIO interface.

Process-level servers (e.g., file server, Internet server,
display server) implement extended abstractions using the basic
interfaces provided by the kernel device server.

4.2.17.1.13 Synchronization and Scheduling Interfaces

In regard to processor scheduling, the kernel provides simple 3
priority-based scheduling. In the uniprocessor ca.,e, the kernel
allocates the processor to the highest priority process in the
ready queue. In the multiprocessor case, a process is associated
with a processor and its ready queue. The kernel schedules
processes so that each processor is always executing the highest
priority process in its own ready queue. In addition, the kernel
periodically attempts to balance the load by changing the I
process-to-processor associations.

Above the kernel, a dedicated scheduler process implements
a higher level of scheduling. The scheduler manipulates priorities
to effect time-slicing among interactive and background processes.
A number of high priority levels are reserved for real-time
processes and are not subject to the priority manipulations of the
scheduler.

4.2.17.1.14 System Initialization and Reinitialization Interfaces 3
No explicit features

4.2.17.1.15 Time Interfaces

One of the V kernel servers is a time server. The kernel time
server maintains the current time of day, and it enables a process
to read the time, set the time, and delay for a specified period
of time. An operation for awaking a process that is delaying is
also provided.

Time synchronization across nodes is implemented by a process

126

- I
• • m m mI



I

* outside the kernel.

4.2.17.1.16 Ada Language Support Interfaces

No explicit features

4.2.17.2 Additional Characteristics

4.2.17.2.1 Proprietary or Open

The protocols and interfaces are open.

4.2.17.2.2 Qualification as a Standard

The V project emphasizes protocols and interfaces as a means
of defining and building distributed systems. Efforts are underway
to promulcate some of its protocols, most notably VMTP, through the
DoD data communication protocol standards process. The naming and
I/O protocols represent significant contributions to distributed
system technology, and have played major roles in the development
of the V distributed operating system. Other protocols of interest
include ones for remote execution, migration, time synchronization,
and atomic transactions.

4.2.17.2.3 Platform Flexibility

V is a distributed operating system designed for a cluster
of workstations interconnected by a high-performance network. It
currently runs on SUN and MicroVAX workstations, which are
interconnected by a 10-megabit Ethernet.

V is being extended to run on shared memory multiprocessor
machines. Targets include the DEC Firefly multiprocessor
workstation and VMP, a shared memory multiprocessor machine
designed and built at Stanford.

4.2.17.3 References

Primary [CHERI84], [CHERI85a], [CHERI85b), [CHERI86a], [CHERI86b],
[CHERI87a], [CHERI87b], [CHERI88a), [CHERI88b], [CHERI88c),
[CHERI88d), [FINLA87], (KANAK87], [TANEN85), [THEIM85]
4.3 Preliminary Related Standards Survey Summary

4.3.1 ARTEWG Survey Summary

ARTEWG is sponsored by ACM SIGAda to establish conventions,
criteria and guidelines for Ada program components, improve the
performance of those components, and provide a framework which can
be used to evaluate Ada runtime systems. ARTEWG serves as a forum
for users to interface effectively with Ada implementors, thereby
encouraging development of runtime environments that meet users'
needs. Since its formation in May 1985, ARTEWG has grown to
include over 400 members.

127



The purpose of ARTEWG is to study sets of strategies, based
on detailed investigation of the technology and requirements that
will accelerate Ada runtime environments technology and then
successfully incorporate that technology into the development of
embedded real-time applications. The documents generated by these I
evaluations provide a frame work for executing and capturing the

technical content of the Ada runtime environment. It is the hope
of ARTEWG that these recommendations will be adopted as a
masterplan.

ARTEWG consists of three working subgroups with additional
task forces to consider Ada issues. The three principal subgroups: 3
o Identify real-time dependencies in the language
o Analyze real-time requirements I
o Define interfaces to standard real-time packages of auxiliary

services and to required real-time kernel services.
Among the issuoes in the on-going discussion are the proposed

changes to the Ada for the 1990s - Ada9X.
ARTEWG has the responsibility to maintain documents with the

continuing process of identifying tasks which provide the technical
content for enhancing/completing other documents. The baseline I
documentation set consists of:

Catalogue of Runtime Implementation Dependencies Catalogue
of Interface Features and Options Survey of Mission Critical
Application Requirements Framework for Describing Ada Runtime
Environments Runtime Transportability Handbook.

Additionally, several other by-product documents providing
guidelines for evaluating Ada runtime dependencies will be
published. A draft proposal for a Statement of Work to create an
Ada Runtime Dependencies Guide is in the works. The Guide, aimed
at all segments of the Ada community, is designed to become an I
umbrella document, where many of the other ARTEWG documents willbe summarized.

4.3.1.1 Catalog of Ada Runtime Implementation Dependencies I
The Ada language was designed to avoid being tied to current

technology, thus enabling the advances in technology to be readily
accepted. For this reason, the Ada language was designed to be
implementation independent. As a result, there are places in the
language definition where implementors can decide on how a language I
feature is to be performed. For example, a discussion of the ways

in which Ada compilers can be different in terms of real-time
issues and still be valid Ada is continuing.

The Catalog of Interface Features and Options (CIFO)
comprises a list of proposed interfaces for predefined packages
that provide runtime services, such as dynamic priorities and
non-preemptable sections. It is designed to improve the U
effectiveness of Ada applications and their supporting runtime
environment implementations. The question of how to specify such
services will be considered.

128

3-i- F ._

I



I

I The idea that the runtime might give added facilities such
as dynamic priorities must be studied. Certain issues are not3 specified in the language and this is still valid Ada. The
language can be extended by the use of packages. The definition
of these packages is at issue.

This catalogue is also being used as the basis for the Space
Station Runtime Environment.

Among the deficiencies of the conventional Ada environment
for an embedded system are:

I no" time scheduling
no dynamic properties
no predictable delays
no task/program kill/restart
no startup/termination/exits

All of the above items are required in an embedded system
environment, plus multiple I/O connections (discretes, etc.);
multiple timers; fast application interrupts; and application
specific operating system features such as inter-processor
communication and control. A user customizable runtime executive
is part of a possible solution. In this case, validation issues
are not raised since the compiled code is never touched and the
validated runtime code never modified.

4.3.1.2 Challenge of Ada Runtime

I A White Paper presenting an evaluation of the state of Ada
runtime environment technology was released last fall. It provides
a set of recommendations on how this technology can be elevated to
a level suitable for embedded real-time applications, while
maintaining the portability of Ada software.

3 4.3.1.3 Future Directions

ARTEWG has, thus far, been successful as a part-time
volunteer industry group. It has been a significant factor in
making the Ada community aware of the needed improvements in
runtime environments. ARTEWG is continuing with its Plan of Action
for detailed study, investigation and evaluation. However, it is
looking to expand its evaluation with specific recommendations to
DoD to ensure long-term improvements of Ada runtime environment
technology.3 4.3.2 ORKID Survey Summary

4.3.3 Open Systems Interconnection (OSI) Survey Summary

3 4.3.3.1 OSI Basic Reference Model

The OSI model is a framework for a set of standards being
developed by the International Standards Organization to permit
subsystems, which utilize heterogeneous hardware and software

1 129

3-'-! 35



I
computer components, of systems to interconnect and interwork. The
set of standards being developed in accordance with this framework
is frequently referred to as the ISO OSI standards. This framework
is described in "ISO IS-7498, Information Processing Systems - Open
Systems Interconnection - Basic Reference Model". I

This set of standards includes those required to permit
people and computer processes to interact among themselves, those
required to manage the communication and interaction aspects of the
system, and those required to permit the data exchange which
supports the above. Standards in the first two classes are
directly relevant to the work of the OSSWG in those instances when
the system components (people and computers) are physically I
distributed. It should be noted that the IOS OSI set of standards
does not directly address many of the concerns of an operating
system within the bounds of a single computer, such as process
scheduling and memory management. They do address many items which
are of concern both within the bounds of a single computer and
across computers such as program loading, program abort, fault
tolerance, and naming issues.

To further explain this model the following extracts from
IS-7498 are provided.

4.3.3.2 Purpose of Model

The purpose of Lhis International Standard Reference Model
of Open Systems Interconnection is to provide a common basis for
the coordination of standards development for the purpose of
systems interconnection, while allowing existing standards to be
placed into perspective within the overall Referenz l:odel. n

The term Open Systems Interconnection (OSI) qualifies
standards for the exchange of information among systems that are
"open" to one another for this purpose by virtue of their mutual
use of the applicable standards.

The fact that a system is open does not imply any part icular
system implementation, technology or means of interconnection, but
refers to the mutual recognition and support of the applicable I
standards.

It is also the purpose of this International Standard to
identify areas for developing or improving standards, and to I
provide a common reference for maintaining consistency of all
related standards. It is not the intent of the International
Standard either to serve as an implementation specification, or to
be a basis for appraising the conformance of actual
implementations, or to provide a sufficient level of detail to
define precisely the services and protocols of the interconnection
architecture. Rather, this International Standard provides a
conceptual and fun-tional framework which allows international
teams of experts to work productively and independently on the
development of standards for each layer of the Reference Model of
OSI.

The Reference Model has sufficient flexibility to accommodateadvances in technology and expansion in user demands. This

130
3-F-136 I

I
| ,I



I

flexibility is also intended to allow the phased transition from
existing implementations to OSI standards.

While the scope of the general architectural principles
required for OSI is very broad, this International Standard is
primarily concerned with systems comprising terminals, computers
and associated devices and the means for transferring information
between such systems. Other aspects of OSI requiring attention are
described briefly.

As standards emerge to meet the OSI requirements, a small
number of practical subsets should be defined by the standards
developers from optional functions, to facilitate implementation
and compatibility.

The Reference Model serves as a framework for the definition
of services and protocols which fit within the boundaries
established by the Reference Model.

4.3.3.3 Related OSI Standards

Concurrently with the preparation of this International
Standard, work is in progress within ISO on the development of OSI
standards in the following areas:

a) virtual terminal protocols;
b) file transfer, access and management protocols;
c) job transfer and manipulation protocols;
d) common application services and protocols;
e) Presentation layer services and protocols;
f) Session layer services and protocols;
g) Transport layer services and protocols;
h) Network layer services and protocols;
i) Data Link layer services and protocols;
j) Physical layer services and protocols;
k) OSI management protocols.

4.3.3.4 Scope and Field of Application

This International Standard describes the Reference Model of
Open Systems Interconnection. It establishes a framework for
coordinating the development of existing and future standards for
the interconnection of systems and is provided for reference by
those standards.

This International Standard does not specify services and
protocols for OSI. It is neither an implementation specification
for systems, nor a basis for appraising the conformance of
implementations.

4.3.3.5 Open Systems Interconnection Environment

In the concept of OSI, a real system is a set of one or more
computers, associated software, peripherals, terminals, human
operators, physical processes, information transfer means, etc.,
that forms an autonomous whole capable of performing information
processing and/or information transfer.

131

3-F-137



I
An application-process is an open system which performs the i

information processing for a particular application.
Application-processes can represent manual processes,

computerized processes or physical processes.
Some examples of application-processes that are applicable

to the open system definition are the following:
a) a person operating a banking terminal is a manual

application-process; 3
b) a FORTRAN program executing in a computer center and accessing
a remote database is a computerized application-process; the remote
database management systems server is also an application-process;
and
c) a process control program executing in a dedicated computer

attached to some industrial equipment and linked into a plant
control system is a physical application-process.

OSI is concerned with the exchange of information between
open systems (and not the internal functioning of each individual
real open system).

OSI is concerned only with interconnection of systems. All
other aspects of systems which are not related to interconnection
are outside the scope of OSI.

OSI is concerned not only with the transfer of information
between systems, i.e. transmission, but also with their capability
to interwork to achieve a common (distributed) task. In other
words, OSI is concerned with the interconnection aspects of I
cooperation (see note at end of this section) between systems,
which is implied by the expression "system interconnection."

The objective of OSI is to define a set of standards to
enable real open system to cooperate. A system which complies with
the requirements of applicable OSI standards in its cooperation
with other systems is termed a real open system.

4.3.3.6 Modeling the OSI Environment

The development of OSI standards, i.e. standards for the
interconnection of real open systems, is assisted by the use of U
abstract models. To specify the external behavior of
interconnected real open systems, each real open system is replaced
by a functionally equivalent abstract model of a real open system
called an open system. Only the interconnection aspects of these
open systems would strictly need to be described. However, to
accomplish this, it is necessary to describe both the internal and U
external behavior of these open systems. Only the external
behavior of open systems is retained as the standard of behavior
of real open systems. The description of the internal behavior of
open systems is provided in the Reference Model only to support the
defintion of the interconnection aspects. Any real system which
behaves externally as an open system can be considered to be a real Uopen system.

This abstract model is used in two steps.
First, basic elements of open systems and some key decisions

concerning their organization and functioning, are developed. This

132

3-F-138 i
I



I
constitutes the Reference Model of Open Systems Interconnection
described in this International Standard.

Then, the detailed and precise description of the functioning
of the open system is developed in the framework formed by the
Reference Model. This constitutes the services and protocols for
OSI which are the subject of other International Standards.

It should be emphasized that the Reference Model does not,
by itself, specify the detailed and precise functioning of the open
system and, therefore, it does not specify the exterral behavior
of real open systems and does not imply the structure of the
implementation of a real open system.

The reader not familiar with the technique of abstract
modeling is cautioned that those concepts introduced in the
description of open systems constitute an abstraction despite a
similar appearance to concepts commonly found in real systems.
Therefore real open systems need not be implemented as described
by the model.

Throughout the remainder of this International Standard, only
the aspects of real systems and application-processes which lie
within the OSI environment are considered.

NOTE: Cooperation among open systems involves a broad range
of activities of which the following have been identified:
a) interprocess communication, which concerns the exchange of
information and the synchronization of activity between OSI
application-processes;
b) data representation, which concerns all aspects of the creation

and maintenance of data descriptions and data transformations for
reformatting data exchanged between open systems;
c) data storage, which concerns storage media, and file and
database systems for managing and providing access to data stored
on the media;
d) process and resource management, which concerns the means by
which OSI application-processes are declared, initiated and
controlled, and the means by which they acquire OSI resources;
e) integrity and security, which concern information processing
constraints that have to be preserved or assured during the
operation of the open systems; and
f) program support, which concerns the definition, compilation,
linking, testing, storage, transfer, and access to the programs
executed by OSI application-processes.

Some of these activities may imply exchange of information
between the interconnected open systems and their interconnection
aspects may, therefore, be of concern to OSI.

The International Standard covers the elements of OSI aspects
of these activities which are essential for early development of
OSI standards.

4.3.3.7 References

A sample of the ISO standards and standardization work of
interest to OSSWG are the following:

133

3-F-139



I
[OSIa], [OSIb], [OSIc], [OSId], [OSIe], [OSIf), [OSIg], [OSIh].

4.3.4 POSIX Survey Summary I
The IEEE Portable Operating System (POSIX) interface standard

is based on earlier UNIX operating system interfaces. This
standard defines an application program interface to an underlying
set of operating system functions; it does not specify the
structure, functions, or performance of the underlying operating
system beyond the specific functionality visible at the application
program interface level. I

This -tandards committee, IEEE P1003, has created an initial
version of the interface standard which completed balloting in
August, 1988, and is therefore identified as IEEE 1003.1-1988. In i
addition, this committee includes a number of smaller working
groups which are expected to present extensions or
application-specific interfaces for this standard for official
balloting before 6/90; draft versions of these extensions are
currently available.

In this section, we describe the characteristics of the POSIX
interface standard, including information from current draft I
extensions of the 1003.2 (Shells and System Utilities) working
group, the 1003.4 Real-Time Extensions working group (Draft 7), and
the 1003.5 Ada Bindings working group, using the framework of the
NGCR-OSSWG Reference Model.

4.3.4.1 Operating System Service Classes 3
4.3.4.1.1 General Requirements

The POSIX standard is currently expressed in terms of the C
language, but is planned for language-independent revision for
future releases.

4.3.4.1.2 Architecture Dependent Interfaces i
By its nature, the POSIX interfeae definition is architecture

independent; this has been a primary requirement during its
definition, and one which has been rigorously enforced by the many
processor vendors participating in its definition. Beyond the
POSIX standard, conforming implementations are expected to provide
implementation-defined services to support specific architectures,
but they are constrained to do this in ways which will not violate
the POSIX standard. 3
4.3.4.1.3 Capability and Security Interfaces

The current standard specifies file-level permissions for
read, write and execute by the owner, a specified group of users,
or all users. Further security facilities are planned and are
under consideration by a POSIX Security working group 1003.6. Prior

134

3-F-140 3
i



B

to the definition of such security extensions, conforming
implementations are free to extend the standard to provide
appropriate discretionary and mandatory access controls required
to conform to NSCS Orange Book security requirements.

4.3.4.1.4 Data Interchange Interfaces

POSIX provides a "pipe" facility for serial communications
between processes using the standard file service interfaces. For
this facility, each process opens its end of the pipe, which then
transmits characters between them.

Additionally, the POSIX 1003.4 Real-Time Extension provides
support for message passing as a form of interprocess communication
(shared memory is an alternate form, which is also supported.) It
views the capability of passing messages with both high and
deterministic performance as being crucial in real-time systems.
It implements message passing through "message queue special
files," i.e, objects named within the file system (although this
definition places message queues in the file system name space,

this does not imply that the function need be handled by the file
management portions of the operating system; neither does it
necessarily imply a FIFO queueing discipline.). Message queue
special files can be opened for use by multiple sending and
receiving processes.

Functions
The POSIX 1003.4 message passing facilities provide the

following functions:

o creating a message queue special file.
o Opening and closing a specified message queue special

file.
o Sending a message to a specified message queue special

file.
o Sending a message to a specified list of message queue

special files, thus providing a multicast capability.
o Receiving a message from a specified message queue special
file, asynchronously or synchronously.
o Allocating (by the sender) and freeing (by the receiver)
a system-provided "message buffer" to hold the message.
o Setting the values of and getting the values of attributes

of a specified message queue special file.
o Getting the status of a specified message queue special
file.

4.3.4.1.5 Event and Error Management Interfaces

A "signal" mechanism is provided which allows operating
system or application defined events to be sent to a process. The
process may elect to handle the signal asynchronously or to ignore
it, in which case the process will be terminated, along with its
children. If two signals arrive before the first is handled, the

135

3-F-141



first will be lost; the signal mechanism is therefore considered
unreliable.

The POSIX 1003.4 Real-Time Extension provides an additional
service; an event mechanism is available providing for delivery of
reliable asynchronous event notifications. I

POSIX 1003.4 views asynchronous event notification as being
essential in real-time systems. It strives to provide a general
purpose, uniform, reliable interface that has both determinism and
high performance. Its asynchronous event notification facilities
consist of the following: (1) event definition data structure, (2)
event trap routine function prototype definition, and (3) the
functions cited below. In defining an event, a user specifies an I
event trap routine, an application-defined event value to be passed
to the event trap routine identifying the source of the event, the
event clans (i.e., a grouping of related events, including a
priority in case of multiple event occurrences) within which the
event trap routine executes, and the event class mask to be in
effect during execution of the event trap routine.

Examples of predefined asynchronous events defined in the I
POSIX 1003.4 Real-Time Extensions standard include asynchronous I/O
completion, timer expiration, message arrival, as well as
user-defined events. I
Functions

The POSIX 1003.4 asynchronous event notification facilities
provide the following functions:

o Changing or examining the event class mask of the invoking
process.

0 Waiting for asynchronous event notifications for specified
event classes, in one of two modes.

o Causing a specified application-defined event to be raised for
the invoking process. I
o Changing the number of queue entries to be used to hold events
which have been raised but not yet delivered to the invoking
process.
o Achieving reliable exits from event trap routines via non-
local jumps.
o Associating a specified signal with a specified event class. u

4.3.4.1.6 File Interfaces

The POSIX file system consists of a hierarchically organized
set of files. The hierarchy consists of a set of file directories
which in turn contain pointers either to other directories or to
individual files. File descriptors may be entered into more than
one directory; a file is not deleted until it is removed from the
last directory in which it is entered. In addition, the file
system may contain "special" files which are visible in a
directory, but may or may not have representations in permanent |
storage and do not imply that their associated functions are
performcd by the file management portions of the operating system.
They are used for operations which cross process boundaries, such

136

3-F-142 i

I



I as semaphores and shared memory.
The POSIX 1003.4 Real-Time Extensions define three extensions

to the file services for use in developing real-time and database
applications. These services are called:

I Real-Time Files
II Asynchronous I/Oj III Synchronized I/O.

I Real-time Files
The POSIX 1003.4 Real-Time Extensions draft views the

capability of performing I/O operations with both deterministic and
high performance as being crucial in real-time systems. It
recognizes that contiguous files are a traditional mechanism for
providing deterministic high performance I/O, since most real-time
systems utilize rotating magnetic disks as their file storage
media, but rather than provide a specific interface to contiguous
files, it provides a more general interface to "real-time files."
Of course, an implementation may choose to implement real-time
files using contiguous files, but it is not forced to do so. An
implementation is free to take advantage of advanced or

I non-traditional media that can provide deterministic high
performance without relying on contiguity, within a framework
provided by the POSIX 1003.4 real-time file facilities.

The approach that POSIX 1003.4 takes to real-time file
support is to make some critical (performance-related) attributes
of the operating system's implementation of files and I/O not only
visible to applications but also to some extent application
controllable (i.e., at least "influenceable," through hints related
to characteristics of the application, which the operating system
can take into account).

Deterministic high performance means predictable (i.e, time
bounded) and very short delay times.

Functions
The POSIX 1003.4 real-time file facilities provide the

following functions:

o Creating a real-time file.
o Communicating to the system desirable attributes of a
specified (previously created) real-time file.
o Getting the actual attributes of a specified real-time

file or of real-time files of a specified file system.
o Obtaining a suitably aligned buffer of a specified size

either from a specified data area or from the system.

II Asynchronous I/O Interfaces
The POSIX 1003.4 Real-Time Extensions provide an additional

capability to perform file I/O asynchronously, allowing processes
to perform multiple concurrent I/O operations concurrently with
computations on I/O data.

Functions

137

3-F-143



The POSIX 1003.4 asynchronous I/O facilities provide the
following functions: 

o Asynchronously reading and writing a specified file.
o Initiating a list of I/O requests with a single systrm call. I
o Cancelling a specified asynchronous I/O request; or,cancelling all asynchronous I/O requests to a specified file.

III Synchronized I/O Interfaces i
In addition, the POSIX 1003.4 Real-Time Extensions working

group recognizes that some applications require assurance of I/O
completion, particularly in database applications. It views the U
capability of receiving such assurance as being vital in real-time
systems. The POSIX 1003.4 Real-Time Extensions draft refers to I/O
that is to be done with assurance of completion as "synchronized
I/O."

Two types of synchronization are defined in POSIX 1003.4: 3
o Synchronized I/0 data integrity completion.
o Synchronized I/O file integrity completion.

Functions
The POSIX 1003.4 synchronized I/O facilities provide the

following functions: 3
o Specifying that 1/0 completion for a zpecified file is to be
(re-)defined as either synchronized I/O data integrity completion
or as synchronized I/O file integrity completion. I
o Requesting that all outstanding I/O requests for a specified
file are to be "completed" in accordance with the definition of
either synchronized I/O data integrity completion or as i
synchronized I/O file integrity completion.

4.3.4.1.7 Generalized I/O Interfaces 3
Device I/O in POSIX is handled in the same way as file I/O.

Device access is made through the normal file system operations,
although additional primitives are available to control devices.

4.3.4.1.8 Networks and Communications

POSIX itself does not (now) address communications directly. 3
Conforming POSIX implementations are free to provide any level of
communications control desired, including transparent distributed
facilities in which the existence of multiple processors is not I
visible to the application.

4.3.4.1.9 Process Management Interfaces i

The POSIX 1003.1-1988 standard offers "heavy-weight" process
concurrency. Each process has a separate address space, and shares 3

138
3-F-144 i

i



file descriptors and other control structures with its parent.
Operating system primitives to manage processes are very easy to
use (i.e., fork() and exec()).

A proposal to add "light-weight" a concurrency model (called
"threads") within a POSIX process is under active consideration by
the POSIX 1003.4 Real-Time Extension working group. This would
provide for multiple threads of control to exist within processes,
including mutual exclusion primitives (e.g., mutex). These threads
would carry very little state information (i.e., stack pointers and
registers) which would make them extremely "light weight" and thus
allow extremely fast implementations. They would be priority
scheduled in the same way as POSIX processes (see Synchronization
and Scheduling Interfaces), using the same set of possible
priorities.

At the POSIX application interface, no functions are provided
for inter-LPOS services. Conforming implementations are expected
to provide such services transparently using normal POSIX
functions, or using implementation-defined extensions.

4.3.4.1.10 Project Support Environment Interfaces

The POSIX interface description does not explicitly describe
project support environment services.

4.3.4.1.11 Reliability, Adaptability and Maintainability
Interfaces

The POSIX interface standard includes extensive error
checking for every service, defining a complete set of error
returns when errcrs are detected, as well as an asynchronous error
facility (i.e., signals and events). Actual management of error
conditions, including reconfiguration, is intended to be handled
by applications using these error indications with standard POSIX
functions.

4.3.4.1.12 Resource Management Interfaces

The POSIX 1003.2 Shells and Utilities working group includes
user-accessible memory management services (e.g., malloc()) which
provide for memory allocation within the process memory space. The
POSIX process model provides for the process memory spaces to be
mutually disjoint; thus, the memory management services need not
be included in the POSIX kernel services.

The POSIX 1003.4 Real-Time Extension, however, views the
shared memory paradigm as being an important, traditional,
high-performance mechanism for interprocess communication in
real-time systems. It thus supports shared memory objects as
"shared memory special files," i.e., objects named within the
standard file system (the use of the file system name space does
not imply that management and mapping of shared memory need be
implemented using the file management services of the operating
system). It enables shared memory special files to be mapped into

139

3-F-145



I
a process's virtual address space. 3
Functions

The POSIX 1003.4 shared memory facilities provide the
following functions: I
o Creating a shared memory special file. Opening and closing a

specified shared memory special file.
o Mapping (and unmapping) a specified segment of a specified

shared memory special file into a process's virtual address space
at a specified address.

In addition, the POSIX 1003.4 Real-Time Extension working
group supports the notion that a process should be able to lock its I
address space, or specified re(-ions thereof, into memory. Such a
capability is viewed as being crucial to deterministic high
performance, which is essential in real-time systems. 3
Functions

The POSIX 1003.4 process memory locking facilities provide
the following functions:

o Locking and unlocking specified regions of a process's address
space into memory.

4.3.4.1.13 Synchronization and Scheduling Interfaces

The POSIX 1003.4 Real-Time Extension adopts the binary I
semaphore as the basic means of process synchronization. It notes
that the binary semaphore is a "minimal" synchronization mechanism,
and that other mechanisms such as counting semaphores and monitors 1
can be implemented on top of the binary semaphore. It supports
semaphores as "semaphore special files," i.e., objects named within
the file system (although it must be noted that the standard does I
not imply that the semaphore functions need be performed by the
file management portions of the operating system. In fact, the
standard explicitly defines this facility in such a way as to allow
implementations to avoid system calls for successful semaphore
accesses.).

Functions 3
The POSIX 1003.4 semaphore facilities provide the following

functions:

o Creating a semaphore special file. i
o Opening and closing a specified semaphore special file.
o Doing a P-operation (Dijkstra, "Co-operating Sequential

Processes", 1968) on a semaphore represented by a specified [
semaphor3 special file.
o Doing a V-operation on a semaphore represented by a specified

semaphore special file. I
The POSIX standard (IEEE 1003.1-1988) currently does not

define the process scheduling to be performed. The POSIX 1003.4
Real-Time Extension, however, views preemptive, dynamic 3

140

3-F-146 1
I



priority-driven scheduling as being fundamental to real-time
systems. It supports two variants of preemptive,
',ynamic-priority-driven scheduling. The variants are distinguished
by the way in which processes of equal priority are scheduled. In
the first variant, runnable processes of equal priority are
scheduled according to a first-in-first-out (FIFO) policy.(It
should be noted that if a process sets its priority to its current
priority, the process is viewed as"entering" the queue; so, it
becomes the last, or newest, member of the queue, regardless of its
previous position.)In the second variant, runnable processes of
equal priority are scheduled according to a round-robin (RR)
policy, with a specified time slice.

Functions
The POSIX 1003.4 scheduling facilities provide the following

functions:

o Setting the priority of and getting the priority of a
specified procesz.
o Setting the "scheduling policy" of and getting the scheduling

policy of a specified process.

4.3.4.1.14 System Initialization and Reinitialization Interfaces

The POSIX interface specification leaves system
initialization and reinitialization services to be defined by the
implementation.

4.3.4.1.15 Time Interfaces

The POSIX 1003.1-1988 standard provides for interrogating and
reading time and date, as well as a sleep() function to delay for
a set period of time. The standard defines these functions in
units which are, however, unacceptably coarse for use by real-time
systems.

The POSIX 1003.4 Real-Time Extension to POSIX provides
additional fine resolution interfaces to system-wide timers and to
per-process interval timers that make time visible to processes and
enable processes to schedule timer events in a variety of useful
ways. It views such interfaces as being essential to real-time
systems, which are distinguished by the significance of the role
that time and timing constraints play in them.

Functions
The POSIX 1003.4 timer facilities provide the following

functions:

o Setting the value of, getting the value of, and getting the
resolution of a specified system-wide timer.
o Creating and destroying a per-process interval timer, based

upon a specified system-wide timer and a specified delivery
mechanism (signals, events, or implementation-specific).

141

3-F-147



o Setting the value of, getting the value of, and getting the
resolution of a specified per-process interval timer.

4.3.4.1.16 Ada Language Support Interfaces

The POSIX Ada Binding working group, IEEE P1003.5 is
currently defining an interface to POSIX from the Ada language;
this interface is expected to enter formal balloting by 6/90. The
Ada language interface will provide access to all POSIX functions;
initially, the Ada bindings working group is targeting 1003.1-1988,
but plans to target the real-time extensions from 1003.4
immediately following the initial 1003.1-1988 work. Similarly, the I
POSIX interface must support all Ada functionality.

As with many commercial operating system interfaces, the
POSIX process semantic model currently provides a poor match to Ada
tasking, although the provision (in the POSIX 1003.4 Real-Time
Extensions) of asynchronous I/O is expected to significantly
improve the ability of Ada implementations to support Ada tasking
within the prr-cz r'odel by removing opportunities for blocking
system calls issued by one Ada task to block the entire Ada program
in the POSIX process. Beyond the POSIX process model, a
light-weight concurrency mechanism within a POSIX process (i.e., I
threads) is also under active consideration by the 1003.4 Real-Time
Extensions working group; if accepted, its presence is expected to
significantly improve the semantic match between POSIX and Ada
tasking, greatly enhancing the suitability of POSIX to handle Ada
tasking (see Process Interfaces description). In addition, the
timer and event mechanisms (also defined in the 1003.4 Real-Time
Extensions) can be used etfectively to implement the Ada delay and I
exception mechanisms.

4.3.4.2 Additional Characteristics

4.3.4.2.1 Proprietary or Open

As an IEEE standard, POSIX is fully open for implementation 1
by any operating system vendor.

4.3.4.2.2 Qualification as a Standard 3
The POSIX standard is controlled by IEEE (P1003 committee).

4.3.4.2.3 Platform flexibility

There are no known hardware platforms unable to support a
conforming POSIX impleme-taticn

4.3.4.3 References i
[POSIX89]

I
142

3-F-148 I
I



4-159

Section 5

References

Literature References

[ACCET86] Accetta, M., Baron, R., Bolub, D., Rashid, R., Tevanian,
A., Young M., "Mach: a New Kernel Foundation for UNIX Development,"
Technical Report, Dept. of Computer Science, Carnegie Mellon Univ.,
June 1986.

(ADA83] Reference Manual for the Ada Programming Language, U.S. DOD
(ANSI) MIL-STD 1815a-1983, February 1983.

[AEGIS] "AEGIS Tactical Executive System (ATES/43) User's Manual,"
ACD 3106B, 30 June 1988, AEGIS Shipbuilding Program (PMS400),
Prepared By Naval Systems, RCA Electronic Systems Department,
Government Electronic Systems Division, GE Aerospace, Moorestown,
NJ 08067.

[AGRAW87] Agrawala, A., and Levi, S., "On Real-Time Operating
Systems," University of Maryland Computer Science Technical Report,
CS-TR-1838, April 1987.

[AGRAW89] Agrawala, A Real Time Systems, McGraw-Hill Press, 1989.
To be published.

[ALMES83] Almes G.T., A.P. Black and E.D. Lazowska and J.D. Noe,
The Eden System: A Technical Review, University of Washington
Department of Computer Science, Technical Report 83-10-05, October
1983.

[ALMES83A) Almes, G.T., Integration and Distribution in the Eden
System., In IEEE International Workshop on Computer Systems
Organization (New Orleans LA), pages 62-71, IEEE, March 29-31,
1983.

[ALMES83B] Almes, G.T.; Black, A.P.; Lazowska, E.D.; Noe, J.D., The
Eden System: A Technical Review., Technical Report 83-10-05,
University of Washington, October, 1983.

tANt 2] Andre, J.P.; Petit, J.C.; Derriennic-Le Corre, H.,
Dynamic Software Reconfiguration in a Distributed System (Galaxie),
In IEEE International Conference cn Communications, ICC '82:The
Digital Revolutionn (Philadelphia PA), pages 5G.4.:, IhEE, June 13-
17, 1982.

(ARORA86] Arora P., Rz'na S. and C -t . , _" ii'ut__Termination

143

3-F-149



Detection Algorithm for Distributed Computations, Inf. Proc,
Letters, Vol. 22, No. 6, pp. 311-314, May 1986.

[BAKER86] Baker, T.P. and G.M. Scallon, "An Architecture for
Real-Time Software Systems," IEEE Software, pp. 50-58, May 1986. U

[BALL76] Ball, J.E., Feldman, J.; Low, J.R.; Rashid, R.; Rovner,
P., RIG, Rochester's Intelligent Gateway: System Overview, IEEE
Transactions on Software Engineering SE-2(4):321-328, December,
1976.

[BALL82] Ball, J.E.; Barbacci, M.R.: Fahlman, S. E.; Harbison, 3
S.P.; Hibbard, P.G.; Rashid, R.F.; Robertson, G.G.; Steele, G.L.
Jr., The Spice Project, Technical Report, Computer Science Research
Review, Carnegie-Mellon University, 1982. 3
[BANE81] Bane, R.; Stanfill, C.; Weiser, M., Operating System
Strategy on ZMOB, In 1981 IZEE Computer Society Workshop on
Computer Architecture for Pattern Analysis and Image Database I
Management (Hot Springs VA), pages 125-132, IEEE, November 11-13,
1981.

[BARON85] Baron, Robert V., Rashid, Richard F., Siegel, Ellen H.,
Tevanian, Avadis Jr., and Young, Michael "MACH: A Multi-
Processor-Oriented Operating System and Environment," Technical
Report, Carnegie-Mellon University, Department of Computer Science, I
1985.

[BARON88] Baron, Robert V., MACH Kernel Interface Manual, Computer n
Science Department, Carnegie Mellon University, Draft Paper,
February 15, 1988. I
rBAYER79) Bayer, R., Graham R., and Seegmuller G (editors), Flynn,
M., Gray J., Jones A., Lagally K., Opderbeck H., popek G., Randell
B., Saltzer J., and Wiehle H., Operating Systems: An Advanced
Course, Springer-Verlag, Berlin, Germany, 1979.

[BBN88a] BBN Laboratories Incorporated, Operator's Reference
Manual, Release 1.3, September 15, 1988.

[BBN88b] BBN Laboratories Incorporated, Programmer's Reference
Manual, Release 1.3, September 15, 1988. 3
[BBN88c] BBN Laboratories Incorporated, Tutorial Documents, Release
1.3, September 15,1988. 3
(BBN88d] BBN Laboratories Incorporated, User's Reference Manual,
Release 1.3, September 15, 1988.

[T'n35a] L Beets, J.C., R.A. Mucci and R.E. Schantz., "Cronus: A
Testbed for Developing Distributed Systems." Proceedings of the
IEEE Military CiulA..atlon C -zL..e Oc73r -2 . 9% 3

144

3-F-150 U



Boston, MA. IEEE Communications Society CH85CH2202-0.

[BERET85b] Berets, J.C., R.A. Mucci, R.E. Schantz and K.J.
Schroder., "The C2 System Internet Experiment: Interim Technical
Report No. 1." BBN Report No. 6073 prepared for the Rome Air
Development Center, BBN Laboratories, October 1985.

[BERET87J Berets, James C. and Richard M. Sands, "Introduction to
Cronus: A Distributed Operating System," Draft Paper, BBN
Laboratories Incorporated, January 1987.

[BERNA88] J.M. Gernabeu Auban, P.W. Hutto and M.Y.A. Khalidi, M.
Ahamad, W.F. Appelbe, P. Dasgupta, R.J. LeBlanc and U.
Ramachandran. Clouds - A Distributed Object-based Operating System:
Architecture and Kernel Implementation, European UNIX Systems User
Group Autumn Conference (EUUG), October 1988.

[BERNA89] J.M. Bernabeu Auban, P.W. Hutto and M.Y. A. Khalidi, M.
Ahamad, W.F. Appelbe, P. Dasgupta, R.J. LeBlanc and U.
Ramachandran. The Architecture of the Ra: A Kernel for Clouds,
Proceedings of the 22nd Hawaii International Conference on System
Sciences, January 1989 [Also available as GIT-ICS-88/250].

[BERNA] Bernabeu Auban, Jose M., et al., "The Architecture of Ra:
A Kernel for Clouds," School of Information and Computer Science,
Georgia Institute of Technology.

[BERNS87] Bernstein, P.A., V. Hadzilacos, and N. Goodman,
"Concurrency Control and Recovery in Database Systems," Addison-
Wesley Publication Co., 1987.

[BERRY86] Berry, G., Cosserat L., The ESTREL Synchronous
Programming Language, Ecole Nationale Superiere des Mines de Paris,
France, March 1986.

[BIB88] Bizabani, Sara R. et al., "The Integration of Deadline and
Criticalness is Hard Real-Time Scheduling," COINS Technical Report
88-82, University of Massachusetts.

[BIRMA85a] Birman, Kenneth P., "Replication and Fault-Tolerance in
the ISIS System," Proceedings of the Tenth ACM Symposium on
Operating Systems Principles, pp. 79-86, 1985.

[BIRMA85b] K.P. Birman and others, An Overview of the ISIS Project,
Distributed Processing Technical Committee Newsletter, IEEE
Computer Society, Vol.7, No. 2, October 1985.

[BLACK85] Black, Andrew P., Supporting Distributed Applications:
Experience with Edcen," Proceedings of the Tenth ACM Symposium on
Operating Systems Principles, pp. 181-193, 1985.

[BLAIR82] Blair, C.!.; Hutchison, D.; Shepherd, W.D., MIMAS - A

145

3-F-151



Network Operating System for Strathnet, In Proceedings of the 3rd
International Conference on Distributed Computing Systems
(Miami/Fort Lauderdale, FL), pages 212-217, IEEE, October 18-22,
1982.

[BLAZE76] Blazewicz, J., "Scheduling Dependent Tasks with Different
ARrival Times to Meet Deadlines," Proceedings of the International
Workshop on Modelling and Performance Evaluation of Computer
Systems, pp. 57-65, 1976.

[BOCiM83] Bochmanr, G., Distributed Systems Design, Springer-
Verlag, Berlin Germany, 1983.

[BOEBERT78A] Boebert, W.E.; Franta, W.R.; Jensen, E.D.; Kain, R.Y.,
Decentralized Executive Control in Distributed Computer Systems,
In Proceedings of COMPCON 78, pages 254-258, IEEE, November, 1978.

[BOEBERT78B) Boebert, W.E.; Franta, W.R.; Jensen, E.D.; Kain, R.Y.,
Kernel Primitives of the HXDP Executive, In Proceedings of COMPCON
78, pages 595-600, IEEE, November, 1978.

[BOKHA81] Bokhari, Shahid H. ,"A Shortest Tree Algorithm for Optimal 3
Assignments Across Space and Time in a Distributed Processor
System," IEEE Transactions SE-7, 6, pp. 583-589, November 1981.

[BOURN83] Bourne, S., The UNIX System, Addison-Wesley Publishing I
Co., London England, 1983.

[BROCK86] Brock, Larry D., and Lala, Jaynarayan "Advanced i
Information Processing System: Status Report" Proceedings of
NAECON, May 1986. I
[BROWN82] Brownbridge, D.R., Marshall, L.F., and Randell, B., "The
Newcastle Connection or UNIXes of the World Unite!" Software
Practice and Experience, Vol. 12, pp. 1147-1162, 1982. 1
[CARAN89] Carangelo, Antonio, Jr., "Computer Security Products
Technology Overview for Navy Program Next Generation Computing
Resources (NGCR)" DRAFT, the MITRE Corporation, Bedford, MA, 01730, m
July 14, 1989.

[CASEY87] Casey, Thomas A., Jr., Doug Weber, and Stephen T. Vinter,
"The Secure Distributed Operating System Project: Final Report,"
Report No. 6678, BBN Laboratories Incorporated, October 1987.

[CASPI86] Caspi, P., Halbwachs N., "A Functional Model for I
Describing and reasoning Time Behavior of Computer Systems, " Acta
Informatica, Vol 22, No. 6, pp. 595-628, March 1986.

[CHAND83] Chandy K., Misra J. and Haas L, "Distributed Deadlock
Detection," ACM Transaction on Computer Systems Vol 1, No. 2, pp.
144-156, May 1983.

146

3-F- 152

I



(CHENG88] Cheng, S.C., J.A. Stankovic, and K. Ramamritham
"Scheduling Algorithms for Hard Real-time Systems" A Brief Survey,"
in Stakovic, J and Ramamritham, K., Hard Real-Time Systems
Tutorial, IEEE Computer Society Press 1988.

[CHERI83] Cheriton, D., and W. Zwaenepoel, "The Distributed V
Kernel and its Performance for Diskless Workstations," Operating
Systems Review, 17(5): 128-140, October 1983.

[CHERI84] Cheriton, David R., "The V Kernel: A Software Base for
Distributed Systems," IEEE Software, pp. 19-42, April 1984.

[CHERI85a] Cheriton, David R. and Paul J. Roy, "Performance of the
V Storage Server: A Preliminary Report," Proceedings of the ACM
Conference on Computer Science, March 1985.

[CHERI85b] Cheriton, David R. and Willy Zwaenepoel, "Distributed
Process Groups in the V Kernel," ACM Transactions on Computer
Systems, Vol. 3, No. 2, pp. 77-107, May 1985.

[CHERI86a] Cheriton, David R., "Problem-oriented Shared Memory: A
Decentralized Approach to Distributed System Design," Proceedings
of The 6th International Conference on Distributed Computing
Systems, pp. 190-197, May 1986.

[CHERI86b] Cheriton, David R., "VMTP: A Transport Protocol for the
Next Generation of Communication Systems," Proceedings of SIGCOMM
86, pp. 406-415, August 1986.

[CHERI86c] Cheriton, David, Liu, Mike, Smith, Alan, Stankovic,
Jack, Roby, Clyde, and Salasin, John, "WIS Operating System
Specification," 1986.

[CHERI87a] Cheriton, David R., "Effective Use of Large RAM Diskless
Workstations with the V Virtual Memory System," Computer Science
Department, Stanford University, February 16, 1987.

[CHERI87b] Cheriton, David R., "UIO: A Uniform I/O System
Interface," ACM Transactions on Computer Systems, Vol. 5, No. 1,
pp.12-46, February 1987.

(CHERI88a] Cheriton, David R. and Timothy P. Mann, "Decentralizing
a Global Naming Service for Improved Performance and Fault
Tolerance," to appear in ACM Transactions on Computer Systems,
1988.

[CHERI88b] Cheriton, David R., "Exploiting Recursion to Simplify
RPC Communication Architectures," Computer Science Department,
Stanford University, Draft Paper, March 21, 1988.

[CHERI88c] Cheriton, David R., "The V Distributed System,"

147

3-P-153



Communications of the ACM, Vol. 31, No. 3, pp. 314-333, March 1988. 1
[CHERI88d] Cheriton, David R., "VMTP: Versatile Message Trarisaction
Protocol," RFC 1045, SRI Network Information Center, February 1988. I
[CHOU82) Chou, Timothy C.K, and Abraham, Jacob A., "Load Balancing
in Distributed Systems," IEEE Transactions on Software Engineering, 1
SE-8,4, pp. 401-412, July 1982.

[CLARK85] Clark, David D., "The Structuring of Systems Using U
Upcalls," Proceedings of the Tenth ACM Symposium on Operating
Systems Principles, pp. 171-180, 1985. I
[CLARK88] Clark, R. K., Kegley, R. B., Keleher, P. J., Maynard, D.
P., Northcutt, J. D., Shipman, S. E. and Zimmerman, B. A., "An
Example Real-Time Command and Control Application on Alpha,"
Archons Project Technical Report #88032, Department of Computer
Science, Carnegie-Mellon University, March 1988.

[COOK85a] Cook, Robert P., "PHOENIX, A High Performance UNIX with 5
an Emphasis on Dynamic Modification, Real-Time Response and
Survivability," Submitted to Army Institute for Research in
Management, Proposal No. CS-DOD/Army-3184-36, July 1985. 5
[COOK85b] Cook, Robert P., and Auletta, Richard J., "StarLite, A
Visual Simulation Package for Software Prototyping" Technical
Report, University of Virginia.

[COOPE87] Cooper and Draves, "C Threads," Computer Science
Department, Carnegie Mellon University, Draft Paper, 2 March 1987.

[CORNHILL79] Cornhill, D.T.; Boebert, W.E., Implementation of the
HXDP Executive, In Proceedings of COMPCON 79, pages 219-221, IEEE,
February, 1979.

[COURT89] Courtright, J. and B. Haleen, "SDX Survey Summary" 3
[DASGU88] Dasgupta, Partha, Richard J. LeBlanc, and William F.
Appelbe, "The Clouds Distributed Operating System: Functional
Description, Implementation Details and Related Work," Proceedings I
of The 8th International Conference on Distributed Computing
Systems, pp. 2-9, June 1988.

[DAVIE81] Davies, D.W., et al., Distributed Systems - Architecture I
and Implementation. Edited by B.W. Lampson, M. Pau, and H.J.
Siegert. Springer-Verlag, New York, 1981. 1
[DAVIS87] Davis, Y.S., H.C. Younger, M.L. Lavin, "Command and
Control Information Utility (CCIU)," prepared for INFOCOM '87.

148

3-F-154

1



(DEAN86) Dean, M.A., R.M. Sands, and R.E. Schantz., "Canonical Data
Representation in the Cronus Distributed Operating System," Paper
submitted to the ACM SIGCOMM '86 Symposium on Communication
Architecture and Protocols, February 1986.

[DEAN87) Dean, Michael A., Richard M. Sands, and Richard E.
Schantz, "Canonical Data Representation in the Cronus Distributed
Operating System," Proceedings of the IEEE Infocom '87, pp. 814-
819, March 1987.

[DEAN88] Dean, Mike, "Cronus, A Distributed Operating System: Ada
Integration Investigation," Cronus Project Technical Report No. 7,
Report No. 6797, BBN Laboratories Incorporated, April 1988.

[DHALL78] Dhall, S.K., and C.L. Liu "On a Real-Time Scheduling
Problem," Operations Research, Vol. 26, No. 1, pp. 127-140,
February 1978

[DIJKS80] Dijkstra E., Scholten C., "Termination Detection for
Diffusing Computation," Inf. Proc. Letters, Vol 11, No. 1, pp. 1-4,
August 1980.

[DIJKS83] Dijkstra E., Feijen W., Van Gasteren A., "Derivation of
a Termination Detection Algorithm for Distributed Computation,"
Inf. Proc. Letters, Vol 16, pp. 217-219, June 1983.

[DRAVE88] Draves, Richard R., Michael B. Jones, and Mary R.
Thompson, "MIG - The MACH Interface Generator," Computer Science
Department, Carnegie Mellon University, Draft Paper, February 26,
1988.

[EFE82] Efe, K., "Heuristic Models of Task Assignment Scheduling
in Distributed Systems," IEEE Computer, pp. 50-56, June 1982.

[ESPRI89] Esprit Systems Consulting Inc., "Structural Analysis for
Real-Time System," P.O. Box 1486, WestChester, PA, 19380, January
30 - February 3, 1989.

[FINKEL83) Finkel, R.; Solomon, M.; DeWitt, D.; Landweber, L., The
Charlotte Distributed Operating System: Part IV of the First Report
on the Crystal Project., Technical Report, University of Wisconsin,
1983.

(FINLA87] Finlayson, Ross S. and David R. Cheriton, "Log Files: An
Extended File Service Exploiting Write-Once Storage," Proceedings
of the 11th Symposium on Operating System Principles, pp. 139-148,
November 1987.

(FISHE86] Fisher, David A. and Weatherly, Richard M., "Issues in
the Design of a Distributed Operating System for Ada," Computer,
pp.38-47, May 1986.

149

3-F-155



i
(FRAIM83] Fraim, L.J., "SCOMP: A Solution to the MLS Problem,"
Computer, pp. 26-34, July 1983. I
[FRIED83] Friedrich, C.R.; Eser, F.W., Management Units and
Interprocess Communication of DINOS., Siemens Forsch.- and I
Entwicklungsber. (Germany) 12(l):21-27, January, 1983.

[GARCI83] Garcia-Moli 'a, H., "Using Semantic Knowledge for
Transaction Processing in a Distributed Database" ACM Transaction Uon Database Systems, Vol 8, No. 2, June 1983.

[GAREY75] Garey, M.R., and D.S. Johnson, "Complexity Results for 3
Multiprocessor Scheduling Under Resource constraints," SlAM Journal
of Computing, pp. 397-411, 1975. I
[GAREY77] Garey, M.R. and D.S. Johnson "Two-Processors Scheduling
with Start-times and Deadlines," SIAM Journal on Computing, Vo.
6, pp. 416-426, 1977. 3
[GATEF81] Gatefait, J.P.; Surleau, P.; Konrat, J.L., Execution
Mechanisms for Administration Programs in the E10.S System., In IEE
Fourth International Conference on Software Engineering for I
Telecommunication Switching Systems (Coventry England), pages 130-137., IEE, July 20-24,1981.

[GELER85] Gelernter, D., "Generating Communication in Linda," ACM U
Transaction on Computer Systems, January 1985.

[GESAL89] Gesalman, Paul and Barbara Haleen, "RSS/M Survey Summary" i
[G1T86) The School of Information and Computer Science, Georgia I
Institute of Technology, "Effective Distributed Computing: A
Reliable Object-Based Environm.nt for Computer Science Resenrch,"
A Proposal to the National Science Foundation's Co-ordinated
Experimental Research Program, September 15, 1986.

[GLORIEUX81] Glorieux, A.M.; Rolin, P.; Sedillot, S., User Services
Offered by the Application Protocol Implemented in SIRIUS-DELTA, I
In Networks from the User's Point of View, Proceedings of the IFIP

TC-6 Working Conference COMNET '81 (Budapest, Hungary), pages 107-
115, IFIP, May 11-15, 1981. i

[GOODB82) Goodbody, R.L., "C31 System Engineering and Integration
Concepts," NOSC Technical Document 538, San Diego, CA, July 1982. 3
[GRIEF86] Greif, I., R. Seliger and W. Weihl Atomic Data
Abstractions in a Distributed Collaborative Editing System,
(Extended Abstract) Conference Recorc of the thirteenth Symposium I
on Principles of Programming Languages, ACM SIGACT/SIGPLAN, St.Petersburg Beach, FL., January 1986.

150

3-F-156 I

I



[GORWI86) Gurwitz, R.F., M.A. Dean, and R.E. Schantz., "Programming
Support in the Cronus Distributed Operating System." From
Proceedings of the 6th International Conference on Distributed
Computer Systems, IEEE Computer Society Press Washington DC, pp.
486-493, May 1986.

(HALEE89] Haleen, Barbara, "SDEX/44 Survey Summary"

[HALSTEAD80] Halstead, R.J. Jr; Ward, S.A., The MuNet: A Scalable
Decentralized Architecture for Parallel Computation, In Proceedings
cf the Seventh Annual Symposium on Computer Architecture, pages
139-145, IEEE, 1980.

[HERLI87] Herlihy, M.P. and J.M. Wing, Avalon: Language Support for
Reliable Distributed Systems. Proceedings of the 17th International
Symposium on Fault-Tolerant Computing, July 1967

[HOOD86] Hood, P. and Grover, V., "Designing Real-Time Systems in
Ada," SofTech, Inc., Waltham, MA Tech Report 1123-1, January 1986.

[HUAN 89] Huang, J., et al., "Experimental Evaluation of Real-Time
Transaction Processing", COINS Technical Report 89-48, April 1989.

[JAHAN79] Jahanian F., and A.K. Mok, "Safety Analysis of Timing
PRoperties in Real-Time Systems," IEEE Transactions on Software
Engineering, SE-12(9) pp. 890-904, September 1986.

[JENSE78] Jensen, E.D., The Honeywell Experimental Distributed
Processor--An Overview, IEEE Computer 11(l):28-38, January, 1978.

[JENSE81] Jensen, E.D., "Decentralized Control, "Distributed
Svstems: An Advanced Course, Springer-Verlag, 1981.

[JENSE85a] Jensen, E. Douglas, C. Douglass Locke, and Hideyuki
Tokuda, "A Time-Driven Scheduling Model for Real-Time Operating
Systems," Proceedings of IEEE Real-Time Systems Symposium, -.

112-122, December 1985.

[JENSE85b] Jensen, E.D. et al Decentralized System Contrl,
Technica' Report RADC-TR-85-199, Carnegie Mellon University and
Rome Air Development Center, April 1985.

[JENSE88a] Alpha Preview: A Briefing and Technology Demonstration
for DoD. Archons Project Technical Report #88031, Department of
Computer Science, Carnegie-Mellon University, March 1988.

[JENSE88b] Jensen, E. D., Northcutt, J. D., Clark, R. K., Shipman,
S. E., Maynard, D. P. and Lindsay, D.C. The Alpha Operating System:
An Overview. Archons Project Technical Report #88121, Department
of Computer Science, Carnegie-Mellon University, December 1988.

[JENSE88c] Jensen, E.D., "Alpha: A Real-Time Decentralized

151

3-F-157



i
Operating System for Mission-Critical Systcn! integration and
Operation," Proc. Symposium on Integrated Computing Environments
for Large, Complex Systems, University of Houston Research
Institute for Computer and INformation Sciences, 1988.

[JENSE88d] Jensen, E.D., Test, J.A., Reynolds, F.D., Burke, E.,
Hanko, J.G. Alpha Release 2 Design Summary Report. Technical Report
#88120, Kendall Square Research Corporation, September 1988. 1
[JENSE89] Jensen, E. D., Northcutt, J. D., Clark, R. K., Shipman,
S. E., Reynolds, F. D., Maynard, D. P., and Loepere, K. L. Alpha:
An Operating System for the Mission-Critical Integration and
Operation of Large, Complex, Distributed Real-Time Systems 1989
Workshop on Operating Systems for Mission-Critical Computing,
August 1989.

[JESSOP82] Jessop, W.H.; Noe, J.D.; Jacobson, D.M.; Baer, J.L.; Pu,
C., The Eden Transaction-Based File System., In Proceedings of the
Second Symposium on Reliability in Distributed Software and
Database Systems (Pittsburgh PA), pages 163-169. IEEE,July 19-21,
1982. 5
[JONES79] Jones,A.K.; Chansler, R. J., Jr.; Durham, I; Schwans, K.;
Vegdahl, S. R.; StarOS, a Multiprocessor Operating System for the
Support of Task Forces, In Proceedings of the Seventh Symposium on
Operating Systems Principles (SIGOPS), ACM, 1979.

[JONES86] "Mach and Matchmaker: Kernel and Language Support for
Object-Oriented Distributed Systems," Proceedings of the 1st Annual
ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), September 1986.

[KANAK87] Kanakia, Hemant (Electrical Engineering Department) and
David R. Cheriton (Computer Science Department), "The VMP Network
Adapter Board (NAB): High-Performance Network Communication for
Multiprocessors," Stanford University, December 14, 1987.

[KANDL89] Kandlur, Dilip D. ,Daniel L. Kiskis, and Kang G. Shin
(Department of EE and CS University of Michigan), "A Real-Time I
Operating System for HARTS" from the 1989 Workshop on Operating
Systems for Mission Critical Computing, September 19-21, 1989. I
[KERMA79] Kermani, P. and L. Kelinrock, "Virtual Cut-through: A New
Computer Communication Switching Technique, Computer Networks, Vol.
3, pp. 267-286, 1979. 3
[KRISH87] Krishna, C.M., K.G. Shin, and I.S. Bhandari, "Processor
Tradeoffs in Distributed Real-Time Systems," IEEE Trans. Comput.,
Vol. C-36, No. 9, pp. 1030-1040, September 1987. I
(KRUEM89] Kruempel, K. and B. Haleen, "43RSS Survey Summary"

152

3-F- 158 I
I



[LAMPO78] Lamport, L., "Time, Clocks, and Ordering of Events in a
Distributed System," Communications of the ACM, Vol. 21, No. 7, pp.
558-565, July 1978.

(LAMPO82] Lamport, L., R. Sh-stak and M. Pease, "The Byzantine
Generals Problem," ACM Trans. on Prog. Lang. and Systems, Vol. 4,
No. 3, pp. 382-401, July 1982.

[LAMPO86] Lamport, L., "On Intecprocess Communication parts I and
II," Distributed Computing Vol. 1, No. 2, pp. 77-101, Springer-
Verlag 1986.

[LANDW83) Landwehr, Carl E., "The Best Available Technologies for
Computer Security," Computer, pp. 86-100, July 1983.

[LANTZ82] Lantz, K.A.; Gradischnig, K.D.; Feldman, J.A.; Rashid,
R.F., Rochester's Intelligent Gateway, IEEE Computer 15(10): 54-
68, October, 1982.

[LAU83] Lau, F.; Bei, J.; El-Bakoury, H.; Radia, S.; Tokuda, H.;
Manning, E., Shoshin User's Guide, Technical Report, Computer
Communications Networks Group, Institute for Computer Research,
University of Waterloo, September, 1983.

[LAZOWSKA81] Lazowska, E.D.; Levy, H.M.; Almes, G. T.; Fischer,
M.J.; Fowler, R.J.; Vestal, S.C., The Architecture of the Eden
System., Operating Systems Review 15(5):148-159, December, 1981.

[LEBLA88] Leblanc, Thomas J. and Barton P. Miller, editors,
"Summary of ACM Workshop on Parallel and Distributed Debugging,"
held May 5-6, 1988, University of Wisconsin, Madison, Wisconsin,
ACM Operating Systems Review, Vol. 22, No. 4, pp. 7-19, October
1988.

[LEHOC86a] Lehoczky, J.P. and Sha, L., "Performance of Real-Time
Bus Scheduling Algorithms", ACM Performance Evaluation Review,
Special Issue, Vol 14, No. 1, May 1986.

[LEHOC86b] Lehoczky, John P., Hide Tokuda, Lui Sha, and Dennis
Cornhill, "ART: An Advanced Real-Time Technology Project," Computer
Science Department, Carnegie Mellon University, Draft Paper,
November 28, 1986.

[ LELANN81] LeLann, G., A Distributed System for Real-Time
Transaction Processing, IEEE Computer 14(2):43-48, February, 1981.

[LEVI86] Levi, S., Plateau B., "A Distributed Algorithm for
Deadlock and Termination Detection of Distributed Computations,"
University of Maryland Technical Report CS-TR-1750, University of
Maryland, Department of Computer Science, December 1986.

[LINT79] Lint, Bernard, "Communication Issues in Parallel

153

3-F-159



Algorithms and Computers," Ph.D. Dissertation, Computer Science
Department, University of Texas, May 1979. I
[LISKO83] Lisko, B, and R. Scheiffler. Guardians and Actions:
Linguistic Support for Robust Distributed Programs, ACM I
Transactions on Programming Languages and Systems, Vol. 53, July1983.

[LISK087] Liskov, B., D. Curtis, P. Johnson and R. Scheiffler. I
Implementation of Argus, Proceedings of the 11th ACM Symposium on
Operating Systems Principles, November 1987.

[LIU73) Liu, C.L., and J.W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment," Journal of the
Association for Computing Machinery, Vol. 20. pp. 46-61, January
1973 .

[LIU82] Liu, M.T.; Tsay, D.P.; Lian, R.C., Design of a Network
Operating System for the Distributed Double-Loop Computer Network
(DDLCN), In Local Computer Networks, Proceedings of the IFIP TC 6
International In-Depth Symposium on Local Computer Networks
(Florence, Italy), pages 225-248, IFIP, April 19-21, 1982.

[LOCKE84] Locke, C. Douglass, Decentralized Operating Systems A
Survey, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1984 3
[LOCKE86] Locke, C. Douglass, Best-Effort Decision Making for
Real-Time Scheduling, Ph.D. Dissertation, Carnegie Mellon
University, 1986.

[LORIN80] Lorin, H., "Aspects of Distributed Computer Systems,"
John Wiley and Sons, New York, 1980.

[MAS] Ma P., Lee E., Tsuchiya M., "Design of Task Allocation
Scheme for Time Critical Applications," IEEE Proceedings - Real
Time Systems Symposium, Miami Beach FL December 1981.

[MAISON81] Maisonneuve, M.; Levy, J.P.; Konrat, J.L., EI0.S
Operating System for a Distributed Architecture., In IEE Fourth I
International Conference on Software Engineering for
Telecommunication Switching Systems (Coventry, England), pages 124-
129., IEE, July 20-24, 1981.

(MARZU85] Marzullo, K., Owicki S., "Maintaining the Time in a
Distributed System," ACM Operating Systems Review, Vol 19, No. 3,
pp. 44-54, July 1985.

[MILLE83] D.S. Miller, et al: "A Distributed Operating System for
a Local Area Network." Proceedings of the Second Annual Phoenix I
Conference on Computers and Communications, IEEE Computer Society,

1983, pp. 281-288.

154

3-F-160

I



(MOK83] Mok A., "Fundamental Design Problems for the Hard Real Time
Environment," MIT Ph.D. Dissertation, Cambridge, MA, May 1983.

[MOVAG84] Movaghar, A., and Meyer, J.F., "Performability Modeling
with Stochastic Activity Networks," Proceedings of the Real-Time
Systems Symposium, pp. 215-224, 1984.

[NGCR89a] NGCR OSSWG Reference Model, Version 1.03, December 6,

1989.

[NGCR89b] NGCR OSSWG Requirements Document, Version x.x, Date.

(NORTH87] Northcutt, J.D., "Mechanisms for Reliable Distributed
Real Time Operating Systems - The Alpha Kernel," Perspectives in
Computing, Academic Press, Vol. 16, 1987.

[NORTH88a] Northcutt, J. D. and Clark, R. K., "The Alpha Operating
System: Programming Model," Archons Project Technical Report
#88021, Department of Computer Science, Carnegie-Mellon University,
February 1988.

[NORTH88b] Northcutt, J. D. and Shipman, S. E., "The Alpha
Operating System: Program Maintenance Manual," Archons Project
Technical Report #88123, Department of Computer Science,
Carnegie-Mellon University, December 1988.

[NORTH88c] Northcutt, J. D. and Shipman, S. E., "The Alpha
Operating System: Programming Utilities," Archons Project Technical
Report #88041, Department of Computer Science, Carnegie-Mellon
University, April 1988.

[NORTH88d] Northcutt, J. D., "The Alpha Distributed Computer System
Testbed," Archons Project Technical Report #88033, Department of
Computer Science, Carnegie-Mellon University, March 1988.

[NORTH88e) Northcutt, J. D., "The Alpha Operating System: Kernel
Programmer's Interface Manual," Archons Project Technical Report
#88111, Department of Computer Science, Carnegie-Mellon University,
November 1988.

[NORTH88f] Northcutt, J. D., "The Alpha Operating System:
Requirements and Rationale," Archons Project Technical Report
#88011, Department of Computer Science, Carnegie-Mellon University,
January 1988.

[NORTH88g] Northcutt, J. D., Clark, R. K., Shipman, S. E. and
Lindsay, D. C., "The Alpha Operating System: System/Subsystem
Specification," Archons Project Technical Report #88122, Department
of Computer Science, Carnegie-Mellon University, December 1988.

(NORTH88h] Northcutt, J. D., Clark, R. K., Shipman, S. E., Maynard,
D. P., Lindsay, D. C., Jensen, E. D., Smith, J. M., Kegley, R. B.,

155

3-F-161



I
Keleher and Zimmerman, B. A., "Alpha Preview: A Briefing and
Technology Demonstration for DoD," Archon= Project Technical Report I
#88031, Department of Computer Science, Carnegie-Mellon University,
March 1988.

[OLSON83] Olson, R. A.; Kumar, B.; Shar, L.E., Messages and
Multiprocessing in the ELXSI System 6400., In IEEE, Proceedings of
the Spring 1983 COMPCON, pages 1-4,IEEE,1983. 3
[OSIa] DIS 7498-4 Open Systems Interconnection - Systems Management
Overview i

[OSIb) DIS 9072-1 Remote Operations, Part 1 Model, Notation and
Service Definition i
[OSIc] DIS 9506-1 Industrial Automation Systems - Systems
Integration and Communications - Manufacturing Message
Specification, Partl: Service Definition 3
[OSId] DIS 9594-1 The Directory, Part 1: Overview of Concepts,
Models, and Services [OSIe] DP 10040 Open Systems Interconnection
- Performance Management Working Document m
[OSIf] IS 7498-4 Open Systems Interconnection - Basic Reference
Model DIS 7498-3 Open Systems Interconnection - Basic Reference
Model - PART 3: Naming and Addressing

[OSIg] IS 8471-1 File Transfer, Access, and Management (FTAM), Part
1: General Introduction

[OSIh] IS 8824 Specification of Abstract Syntax Notation 1 (ASN.l)

[PETER84] Peterson J., Silberschatz A., Operating System Concepts,
Addison-Wesley Publishing Co., Reading, MA, July 1984.

[PITTS88] Pitts, David V. and Partha Dasgupta, "Object Memory and i
Storage Management in the Clouds Kernel," Proceedings of The 8th
International Conference on Distributed Computing Systems, pp.
10-17, June 1988.

[POPEK79) Popek G., "Issues in Kernel Design," in Operating
Systems: An Advanced Course, Bayer, R., Graham R., and Seegmuller I
G - editors, Springer-Verlag, Berlin, Germany, 1979.

[POPEK81] Popek, G.J., et. al., "LOCUS: A Network Transparent, HighReliability Distributed System," Proceedings Eighth Symposium of
Operating Systems Principles, Pacific Grove, CA, December 1981.

[POSIX89] POSIX Realtime Extension for Portable Operating Systems, 3
P1003.4/Draft 6, Draft 7, May 19, 1989

[PROJE89] Project Technology, Inc., "Object Oriented Systems 3
156

3-F-162 3
I



Analysis Information Models," 2560 Ninth Street, Suite 214,
Berkeley, CA 94710, March 6-9, 1989.

[QUIRK85J Quirk W. (editor), Verification and Validation of Real
Time Software, Springer-Verlag, Berlin, Germany, 1985.

[RAMAC88a] Ramachandran, U., M. Ahamad and M. Khalidi, Unifying
Synchronization and Data Transfer in Maintaining Coherence of
Distributed Shared Memory, Technical Report, GIT-ICS-88/23, School
of Info. and Computer Science, Georgia Tech.

[RAMAC88b] Ramachandran, U., and Y.A. Khalidi, Memory Management
Support for Object Invocation. Technical Report GIT-ICS-88/03.
School of Information and Computer Science, Georgia Tech.

[RAMAM84] Ramamritham, K., and Stankovic, John A., "Dynamic Task
Scheduling in Distributed Hard Real-Time Systems," Software, July
1984.

[RAMAM89] Ramamritham, Krithi, et al., "Overview of the SpLilag
Project," Dept. of Computer and Information Sciences University of
Massachusetts, January, 1989.

[RAMAM89-1] Ramamritham, Krithi, et al., "Efficient Scheduling
Algorithms by Real-Time Multiprocessor Systems," COINS Technical
Report 89-37, Dept. of Computer and Information, Science,
University of Massachusetts

[RANDE82) Randell, B., "Structuring of Distributed Computing
Systems," Technical Report, Newcastle upon Tyne University, 1982.

[RASHI8l) Rashid, R.F. and G.G. Robertson. Accent: A Communication
Oriented Network Operating System Kernel. Proc. of the Eighth
Symposium on Operating Systems Principles, Operating Systems Review
15(5):pp 64-75, December 1981.

[RASHI87a] Rashid, Richard F., "From RIG to Accent to Mach: The
Evolution of a Network Operating System," Computer Science
Department, Carnegie Mellon University, August 28, 1987.

[RASHI87b] Rashid, Richard, et al., "Machine-Independent Virtual
Memory Management for Paged Uniprocessor and Multiprocessor
Architectures," Proceedings of the ACM Conference on Architectural
Support for Programming Languages and Operating Systems, October
1987.

[RAZOU86] Razouk, R.R. T. Stewart and M. Wilson, "Measuring
Operating System Performance on Modern Microprocessors,"
Performance 86, pp. 193-202, 1986.

[READY86] Ready, J.F., "VRTX: A Real-Time Operating System for
Embedded Microprocessor Applications," IEEE Micro, pp. 8-17,

157

3-F-163



I
August, 1986. 3
[REYNO88a] Reynolds, F.D., Hanko, J.G., Jensen, E.D. Alpha Release
2 Preliminary System/Subsystem Description. Technical Report
#88122, Concurrent Computer Corporation, December 1988.

[REYNO88b] Reynolds, F.D., Hanko, J.G., Test, J.A., Burke, E.,
Jensen, E.D. Alpha Release 2 Kernel Interface Specification.
Technical Report #88121, Concurrent Computer Corporation, December
1988.

[RICAR81] Ricart G., Agrawala A., "An Optimal Algorithm for Mutual 3
Exclusion in Computer Network," Communication of the ACM, Vol. 23,
No. 1, pp. 9-17, January 1981 I
[RUSHB83] Rushby, J.M., and Randell B., "A Distributed SecureSystem," Computer, pp. 55-67, July 1983.

[SALTZ79] Saltzer J., "Naming and Binding of Objects," in Operating I
Systems: An Advanced Course, Bayer, R., Graham, R., and Seegmuller
G - editors, Springer-Verlag, Berlin, Germany, 1979. 3
[SANSO86] Sansom, Robert D., Daniel P. Julin, and Richard F.
Rashid, "Extending a Capability Based System into a Network
Environment," Technical Report CMU-CS-86-115, Computer Science
Department, Carnegie Mellon University, April 24, 1986.

[SCHAN85] Schantz, R., et al., "CRONUS, A Distributed Operating
System: Phase 1 Final Report," Report No. 5885, BBN Laboratories I
Incorporated, January 1985.

[SCHAN86a] Schantz, R., R.H. Thomas, and G. Bono "The Architecture m
of the Cronus Distributed Operating System," From: Proceedings of
the 6th International Conference on Distributed Computer Systems,
IEEE Computer Society Press, Washington, DC, pp. 250-259, May 1986. 3
[SCHAN86b] Schantz, R., et al., "CRONUS, A Distributed Operating
System: Cronus DOS Implementation, Final Report," Report No. 6183, I
BBN Laboratories Incorporated, March 1986.

[SCHMID82] Schmidtke,F. E., A Communication Oriented Operating 3
System Kernel for a Fully Distributed Architecture, In Pathways to
the Information Society. Proceedings of the Sixth International
Conference on Computer Comrunication (London, England), pages 757-
762., international Council of Computer Communication, September I
7-10, 1982.

[SCHMID83] Schmidtke, F. E., Operating System for an Optical-Bus 3
Local Network., Siemens Forsch.- and Entwicklungsber. (Germany)
12(l):16-20, January, 1983.

158

3-F-164 I

I



[SCHWA87] Schwan, K.P., Gopinath and T. Bo, "CHAOS: Kernel Support
for Objects in the Real-Time Domain,"IEEE Transactions on
Computers, pp. 904-916, August 1987.

[SEDILLOT80] Sedillot, S., and Sergeant, G., The Consistency and
Execution Control Systems for a Distributed Data Base in SIRIUS-
DELTA, Paper proposed to IFIP 80 Congress.

[SELVI86] Selvin, Manny, "Distributed Processing Relative to
Distributed Command, Control, Communications (DC3)." MITRE Report
prepared for Joint Directors of Laboratories C3 Research and
Technology Program, January 1986.

[SHANK84] Shankar A.U., Lam S.S, "Time Dependent Communication
Protocols," Tutorial: Principles of Communication and Networking
Protocols, S.S. Lam (ed), IEEE Computer Society, 1984.

[SHANK86] Shankar, A.U., Lam, S.S., "Construction of Sliding Window
Protocols," CS-TR-1647 Computer Science Department, University of
Maryland, February 1986.

[SPECT88] Spector, Alfred Z. and Kathryn R. Swedlow, editors, Guide
to the Camelot Distributed Transaction Facility: Release 1,
Computer Science Department, Mach/Camelot, Carnegie Mellon
University, Draft of February 4, 1988.

[STANK85] Stankovic, John A., Ramamrithm, Krithivasan and Kohler,
Walter H., "A Review of Current Research and Critical Issues in
Distributed System Software," Distributed Processing Technical
Committee Newsletter, pp. 14-47, March 1985.

[STANK87) Stankovic, J.A. and K. Ramaamritham, Proceedings of the
Real-Time Systems Symposium, pp. 146-157, December 1987.

[STAN88] Stanhovic, John A., et al., "The Design of the Spring
Kernel," COINS Technical Report 88-85, Dept. of Computer an
Information Service, University of Massachusetts.

[STAN 88-1] Stanhovic, John A., et al., "The Spring Kernel: A New
Paradigm for Real-Time Operating System," COINS Technical Report
88-97, Dept. of Computer and Information Service, University of
Massachusetts, November, 1988.

(STARK85] Stark, Gene, "Foundations of a Theory of Specification
for Distributed Systems," Ph.D. Dissertation, Massachusetts
Institute of Technology, 1985.

[STONE77] Stone, Harold, "Multi-processor Scheduling with the Aid
of Network Flow Algorithms," IEEE Transactions on Software
Engineering, SE-3, pp. 85-93, January 1977.

(STONE81) Stonebraker, Michael, "Operating System Support for

159

3-F-165



I

Database Management," CACM, pp. 412-418, July 1981. 3
[TANENSI] Tanenbaum, A.S. and S.J. Mullender. An Overview of the
Amoeba Distributed Operating System. Operating Systems Review, Vol.
13, No. 3, pp. 51-64, July 1981.

[TANEN85) Tanenbaum, Von Renesse, R., "Distributed Operating
Systems," ACM Computing Surveys, Vol 17, No. 4, pp. 419-470,
December 1985.

[TCSEC85] "Department of Defense Trusted Computer System Evaluation
Criteria," National Computer Security Center, DoD 5200.28-STD,
December 1985.

[TEVAN87] Tevanian, Avadis, Jr., Architecture-Independent Virtual I
Memory Management for Parallel and Distributed Environments: The
Mach Approach, Ph.D. Thesis, Technical Report CMU-CS-88-106,
Computer Science Department, Carnegie Mellon University, December
1987.

[THEIM85] Theimer, Marvin M., Keith A. Lantz, and David R.
Cheriton, "Preemptable Remote Execution Facilities for the V- i
System," Proceedings of the 10th Symposium on Operating System
Principles, December 1985.

[TIS88] Trusted Information Systems, Inc., "Trusted Mach I
Presentation," Ellicott City, Maryland, December 7, 1988.

[TOKUDA83] Tokuda, Hideyuki; Radia S.R.; Manning, E.G., Shoshin OS: 3
a Message-based Operating System for a Distributed Software
Testbed, In Proceedings of the Sixteenth Hawaii International
Conference on System Sciences, 1983 (Honolulu HI), pages 329-338, I
University of Hawaii, University of Southwestern Louisiana, January5-7, 1983.

[TOKUD87] Tokuda, Hideyuki, James W. Wendorf, and Huay-Yong Wang, i
"Implementation of a Time-Driven Scheduler for Real- Time Operating
Systems," IEEE 8th Real-Time Systems Symposium, December 1987. 3
[TOKUD88a] Tokuda, Hideyuki, Makoto Kotera, and Clifford W. Mercer,
"A Real-Time Monitor for a Distributed Real- Time Operating
System," ACM SIGOPS/SIGPLAN Workshop on Distributed/Parallel
Debugging.

[TOKUD88b] Tokuda, Hideyuki, and Makoto Kotera, "Scheduler 1-2-3:
An Interactive Schedulability Analyzer for Real-Time Systems,"
Computer Science Department, Carnegie Mellon University, February
15, 1988. 3
(TOKUD89] Tokuda, Hideyuki, Mercer, Clifford, W., and Ishikawa,
Yutaka, "The ARTS Distributed Real-Time Kernel and its Toolset,"
Carnegie Mellon University. 3

160
3-F- 166 1

I



[TOPOR84) Topor R., "Termination Detection for Distributed
Computation," Inf. Proc. Letters, Vol. 18, pp. 33-36, January 1984.

[TRIGG81] Trigg, R., Software on ZMOB: An Object-Oriented Approach,
In 1981 IEEE Computer Society Workshop on Computer Architecture for
Pattern Analysis and Image Database Management (Hot Springs VA),
pages 133-140, IEEE, November 11-13, 1981.

[TRULL88) Trull, J. E., Northcutt, J. D., Clark, R. K., Shipman,
S. E. and Lindsay, D. C. An Evaluation of Alpha Real-Time
Scheduling Policies. Archons Project Technical Report #88123,
Department of Computer Science, Carnegie-Mellon University,
December 1988.

[TSAY81] Tsay, D.P.; Liu, M.T., MIKE: A Network Operating System
for the Distributed Double-Loop Computer Network (DDLCN), In
Proceedings of COMPSAC 81m IEEE Computer Society's Fifth
International Computer Software and Applications Conference
(Chicago, IL), pages 388-402, IEEE, November 16-20, 1981.

[VINTE87] Vinter, Stephen T., et al., "The Cronus Distributed DBMS
Project: Functional Description," Report No. 6660, BBN Laboratories
Incorporated, October 1987.

[VINTE88] Vinter, Stephen T., et al., "The Cronus Distributed DBMS
Project: Program Specification," Report No. 6854, BBN Laboratories
Incorporated, June 1988.

[WALKE83] Walker, Bruce, Popek Gerald, English Robert, Kline
Charles, and Thiel, Greg., "The LOCUS Distributed Operating
System," In Proceedings of the Ninth ACM Symposium on Operating
Systems Principles, October 10-13, 1983.

[WEIHL83] Weihl, W. and B. Liskov, Specification and Implementation
of Resilient Atomic Data Types, Symposium on Programming Language
Issues in Software Systems, June 1983.

[WIRTH77] Wirth, N., "Toward A Discipline of Real Timing
Programming," Communications of the ACM, Vol 20, No. 8, pp. 577-
583, August 1977.

[WOOD89] Wood P.C., "SPRITE Survey Summary"

[WULF74] Wulf, W.A. and others, HYDRA: The Kernel of a
Multiprocessor Operating System, Communications of the ACM, Vol.
17, No. 6, June 1974.

[YEE88] Yee, Bennet S., J.D. Tygar, Alfred Z. Spector, "Strongbox:
A Self-Securing Protection System for Distributed Programs,"
Technical Report CMU-CS-87-184, Computer Science Department,

161

3-F-167



U

Carnegie Mellon University, January 4, 1988. 3
[YOUNG87] Young, Michael, et al., "The Duality of Memory and
Communication in the Implementation of a Multiprocessor Operating
System," Proceedings of the 11th Symposium on Operating Systems
Principles, November 1987.

[YUAN87] Yuan, Xiaoping, Tripathi, Satish, and Agrawala, Ashok, U
"Scheduling in Real Time Distributed Systems - A Review" University
of Maryland, UMIACS-TR-87-62, CS-TR-1955, December 1987. I

U
i
I
i

1
i
i
I
i
I
I
I

162

3-F-168 I

I



VERSION 2.0
21 December 1989

Next Generation Computer Resources

Operating System Interface Standard

Requirements

VERSION 2.0
21 December 1989

3-C,- 1



VERSION 2.0
21 December 1989

TABLE OF CONTENTS

1 INTRODUCTION.............................................................. 1
1.1 Scope ... .............................................................. 1
1.2 Term inology ................................................. I........
.2 REQUIREM ENTS ......................................... ................... 1

2.1 GENERAL REQUIREMENTS ........................ .......................... 1

2.1.1 Scope .. ....................................................... .......
2-1.2 D esign O bjective ....................................................... 2
2.1.3 Basic Senices ......................................................... 2

2.1.4 Architecture Independence . ............................................... 2
2.1.5 M odularity . ........................................................... 3
2.1.6 E xtensibility . .......................................................... 3
2.1.7 U niform ity . ........................................................... 3
2.1.8 C om pleteness . ......................................................... 4
2.1.9 Language Independence . ................................................. 4
2.1.10 Ada 'Language Binding Syntax ............................................ 4
2.1.11 Other Language Binding Syntax ........................................... 5
2.1.12 Language Binding Syntax Uniformity.......................................5
2.1.13 Language Binding Syntax Name Selection .................................... 6
2.1.14 Syntactic Pragm atics . ................................................... 6
2.1.15 General Semantics ..................................................... 6
2.1.16 Semantic Consistency...................................................7
2.1.17 Error Conditions....................................................... 7
2.1.18 Semantic Cohesiveness ................................................ 7
2.1.19 Semantic Pragmatics ................................................... 8
2.1.20 Reaction to Blocking Services . ............................................ 8
2.1.21 Bounded Operat Ing Systems Services Times and Context

Switching .. ......................................................... 8
2.1.22 Configurability . ....................................................... 9
2.1.23 Transaction Scheduling Inforr,,ation ........................................ 9
2.1.24 Access Control ....................................................... 9
2.1.25 T ransparency ....................................................... 70
2.1.26 R esilience . .......................................................... 10
2.1.27 Network Partition ........................................ ............ 10
2.1.28 Reference ......................................................... 11
2.1.29 Reallocation ........................................................ 11

2.2 ARCHITECTURE DEPENDENT INTERFACES .................................... 12
2.2.1 Non-NGCR System Interfaces ......................... ................... 12

23 CAPABILITY AND SECURITY INTERFACES ..................................... 12
2.3.1 A udit D ata Storage .................................................... 12
2.3.2 A udit G eneration ..................................................... 12

2.3.3 Audit Record Contents .. .......................... ...................... 13
2.3.4 A udit D ata M anipulation ................................................ 13

I



I

VERSION 2.0 3
21 Decemoer 1989

2.35 D evice Labels ........................................................ 13
2-3.6 Basic DAC .. .............. ........................................... 13 I
23.7 DAC Inclusion/Exclusion .. .... .......................................... 14
2.3.8 DAC Propagation . ..................................................... 14
2.3.9 Labelling of Expot C an,,els ............................................. 14 I
23.10 Setting Communication Labels ........................................... 15
2.3.11 Identification and Authentication ......................................... 15
23.12 Labelling of Human Readable Output ...................................... 15 I
23.13 Subject and Object Lbelling ............................................ 16
23.14 Label Contents . ...................................................... 16
23.15 Mandatory Access Control Policy ......................................... 16
23.16 MAC M anipulations . .................................................. 16 3
23.17 Object Reuse .. ......................................... ............. 17
23.18 User Notification of Sensitivity Label ......... ............................ 17
2.319 Sensitivity Label Query . ................................................ 17
23.20 System Integrity . ..................................................... 17
23.21 Identification of Users Based on Roles ..................................... 18
2.3.22 Least Privilege . ...................................................... 18 I
23 .23 Trusted Path . ........................................................ 18
23.24 Trusted Recovery . .................................................... 19

2.4 DATA INTERCHANGE INTERFACES ........................................... 19 1
2.4.! Data Interchange Services (Data Format Conversion) ........................... 19

2.5 EVENT AND ERROR INTERFACES ............................................. 19 I
2.5.1 Event and Error Receipt ................................................ 19
2.5.2 Event and Error Distribution ............................................. 20
2.53 Event and Error Management ............................................ 20 I
2.5.4 Event Logging . ....................................................... 20
2.5.5 Enable/Disable Interrupts ............................................ .. 21
2.5.6 M ask/Unmask Interrupts .. ...................................... ........ 21 3

2.6 FILE INTERFACES . .......................................................... 21
2.6.1 Contiguous Read of a File ............................................... 21
2.6.2 Protect An Area W ithin A File . ........................................... 21
2.63 File M anagement Scheduling ............................................. . 22
2.6.4 File Management Suspend/Resume Por Process ............................... 2
2.6.5 File Management Block Requests .. .................. ...................... 22 I
2.6.6 Round Robin File M anagement ........................................... 23
2.6.7 Open a File .. ................................. ....................... 23
2.6.8 Point W ithin a File . .................................................... 23
2.6.9 R ead a File .......................................................... 242.6.10 C lose a File ................................................. ...... 24
2.6.11 D elete a File ... ..................................................... . 4 
2.6.12 Create a Director. ................................................... 24
2.6.13 Specifying Default D irectory ......................................... .. I
2.6.14 DCe te a Directory ....... ............ ................................. 25

2.6.15 Shadow Files .............................................. ......... 25 U
2'%16 Create a File ......................................................... 25

3-G- I
3-G-4 g



VERSION 2.0
21 December 1989

2.6.17 Ouery File Attributes .. ................................................ 26
2.6.18 M odify File Attributes ................................................. 26
2.6.19 W rite a File ........................................................ 26
2.6.20 W rite Contiguous a File ................................................ 27

2.7 GENERALIZED I/O INTERFACES ............................................. 27
2.7.1 Device Driver Availability . ............................................... 27
2.7.2 O pen D evice ......................................................... 27
2.7.3 Close D evice . ......................................................... 27
2.7.4 Transm it D ata . ....................................................... 28
2.7.5 Receive Data . ........................................................ 28
2.7.6 Device Event Notification . ............................................... 28
2.7.7 Control Device . ....................................................... 29
2.7.8 I/O Directory Services . ................................................. 29
2.7.9 Device Management Suspend/Resume For Processes ........................... 29
2.7.10 M ount/Dismount Device ............................................... 30
2.7.11 Initialize/Purge Device . ................................................ 30

2.8 NETWORK AND COMMUNICATIONS INTERFACES ............................... 30
28.1 Interface to and Control of Navy Standard Inter Processing Unit Busses ............. 31
2.8.2 lIterfaces to and Control of Other Network and Communication

Entities ........................................................... 31
2.8.3 Reliable Virtual Circuit Communications .................................... 32
2.8.4 Unreliable Virtual Circuit Communications .................................. 32
2.8.5 Reliable Datagram Transfer . ............................................. 32
2.8.6 Unreliable Datagram Transfer ............................................ 32

2.8.7 Request - Reply Service . ................................................ 33
2.8.8 Unreliable Broadcast/Multicast Service ..................................... 33
2.8.9 Reliable Broadcast/Multicast Services ...................................... 33
2.8.10 Atomic Broadcast/Multicast Services ...................................... 34

2.9 PROCESS MANAGEMENT INTERFACES ........................................ 34
2.9.1 Create Process . ....................................................... 34
2.9.2 Term inate Process . .................................................... 34
2.9.3 Start Process ......................................................... 35
2.9.4 Stop Process .. ...... .................................................. 35
2.9.5 Suspend Process . ...................................................... 35
2.9.6 Resum e Process . ...................................................... 35
2.9.7 D elay Process . ........................................................ 36
2.9.8 Interprocess Communication . ............................................. 36
2.9.9 Examine Process Attributes .............................................. 36
2.9.10 M odify Process Attributes . .............................................. 36
2.9.11 Exam ine Process Status ................................................ 37
2.9.12 Process Identification .................................................. 37
2.9.13 Save/Restart Process ................................................... 37
2.9.14 Program M anagement Function .......................................... 38

2.10 PROJECT SUPPORT ENVIRONMENT INTERFACES .............................. 38
2.10.1 D ebug Support ... .................................................... 38

~iii

~3-G-5



VERSION 2.0
21 December 1989

2.10.2 Execution History . .................................................... 39 3
2.11 RELIABILITY, ADAPTABILITY, MAINTAINABILITY INTERFACES .................. 40

2.11.1 Fault Information Collection . ............................................ 40
2.11.2 Fault Information Request .............................................. 40 I
2.113 Diagnostic Tests Request ............................................... 41
2.11.4 Diagnostic Tests Results . ............................................... 41
2.11.5 Operational Status .................................................... 41
2.11.6 Fault Detection Thresholds ............................................. 412.11.7 Fault Isolation ....................................................... 422.11.8 Fault Response . ...................................................... 42
2.11.9 Reconfiguration ...................................................... 43

2.11.10 Enable/Disable System Component ...................................... 43
2.11.11 Performance M onitoring . .............................................. 43
2.11.12 Set Resource Utilization Limits . ......................................... 43 I
2.11.13 Resource Utilization Limits Violation ..................................... 44
2.11.14 Checkpoint Data Structures ............................................ 44

2.12 RESOURCE MANAGEMENT INTERFACES ..................................... 44
2.12.1 Virtual M emory Support ............................................... 44
2.12.2 Virtual Space Locking ................................................. 45
2.123 Dynamic Memory Allocation and Deallocation ............................... 45
2.12.4 Dynamic Memory Protection ............................................ 45
2.12.5 Shared M emory . ..................................................... 46
2.12.6 Allocate, Deallocate, Mount, Dismount Services .............................. 46 U
2.12.7 Designate Control .................................................... 46
2.12.8 Release Control . ..................................................... 47
2.12.9 Allocate Resource .................................................... 47
2.12.10 Deallocate Resource . ................................................. 47
2.12.11 System Resource Requirements Specification ............................... 48
2.12.12 System Resource Capacity ............................................. 48 3

2.13 SYNCHRONIZATION AND SCHEDULING INTERFACES .......................... 48
2.13.1 Process Synchronization ................................................ 48
2.13.2 Mutual Exclusion .................................................... 49 I
2.133 Cumulative Execution Time of a Process ................................... 49
2.13.4 Attach a Process to an Event ............................................ 49
2.13.5 Transaction Scheduling Information ....................................... 50
2.13.6 Scheduling D elay ..................................................... 50
2.13.7 Periodic Scheduling ................................................... 50
2.13.8 M ultiple Scheduling Policies . ............................................ 50
2.13.9 Selection of a Scheduling Policy .......................................... 51 I
2.13.10 Modification of Scheduling Parameters .................................... 51
2.13.11 Precise Scheduling (Jitter Management) ................................... 51

2.14 SYSTEM INITIALIZATION AND REINITIALIZATION INTERFACES ................. 52
2.14.1 Im age Load . ........................................................ 52
2.14.2 System Initialization and Reinitialization .................................... 52
2.14.3 Shutdown .. ............................................... .......... 52

ivI

3-G-6 I



VERSION 2.0
21 December 1989

2.15 TIME SERVICES INTERFACES ............................................... 53
2.15.1 Read Selected Clock .................................................. 53
2.152 Set Selected Clock .................................................... 53
2.15-3 Synchronization of Selected Clocks ........................................ 53
2.15.4 Select a Primary Reference Clock ........................................ 54
2.15.5 Locate the Primary Reference Clock ...................................... 54
2.15.6 Tim er Services ...................................................... 54
2.15.7 Precision Clock ...................................................... 55

2.16 ADA LANGUAGE SUPPORT INTERFACES ..................................... 55
2.16.1 Create Task (Ada) ................................................... 55
2.16.2 Abort Task (Ada) .................................................... 55
2.163 Suspend Task (Ada) .................................................. 56
2.16.4 Resum e Task (Ada) .................................................. 56
2.16.5 Terminate Task (Ada) ................................................. 56
2.16.6 Restart Task (Ada) ................................................... 57
2.16.7 Ada Task Entry Calls ................................................. 57
2.16.8 Ada Task Call Accepting/Selecting ....................................... 57
2.16.9 Access Task Characteristics (Ada) ........................................ 57
2.16.10 Monitor Task's Execution Status (Ada) ................................... 58
2.16.11 Access to a Precise Real-Time Clock (Ada) ................................ 58
2.16.12 Access to a Time-of-Day Clock (Ada) .................................... 58
2.16.13 Dynamic Task Priorities (Ada) .......................................... 59
2.16.14 Scheduling Policy Selection (Ada) ....................................... 59
2.16.15 Memory Allocation and Deallocation (Ada) ................................ 59
2.16.16 Interrupt Binding (Ada) ............................................ .... 60
2.16.17 Enable/Disable Interrupts (Ada) ........................................ 60
2.16.18 Mask/Unmask Interrupts (Ada) ......................................... 60

2.16.19 Raise Exception (Ada) ................................................ 60
2.16.20 Ada Input/Output Support ............................................. 61

3-G-7



I

VERSION 2.0 3
21 December 1989

1 INTRODUCTION U
1.1 Scope

This document provides the Department of the Navy's requirements for the definition and specification of an
Operating System Interface for the Next Generation Computer Resources (NGCR).

1.2 Terminology

Precise and consistent use of terms has been attempted throughout the doctment. 3
Potentially ambiguous terms used in the document are defined in the Glossary for the NGCR. Some definitions
tailored to the context of this document are provided in the sections of the document where they are used. 3
Additionally, the following verbs and ';rb phrases are used throughout the document to indicate wi.ere and to
what degree individual constra;nis apply. Any sentence not containing one of the following verbs or verb phrases
is a definition, explanation or comment. I
"PROCF'S" indicates an operating system scheduiable entity. Other terms shall be qualified by a specific
programming language, (i.e., Ada task, Pascal procedure, "C" program, etc.)

"SHALL PROVIDE" indicates a requirement for the operating system interface to provide interface(s) with
prescribed capabilities. 3
"SHALL SUPPORT" indicates a requirement for the operating system interface to provide interface(s) with
prescribed capabilities or for operating system interface definers to demonstrate that the capability can be
constructed from operating system interfaces. 1
"SHOULD PROVIDE" indicates that the requirement is a desired goal of the OSIF.

2 REQUIREMENTS I
2.1 GENERAL REQUIREMENTS 5
2.1.1 Scope

2.1.1.1 Definition 1

The OSIF shall provide interfaces sufficient to support a wide range of Navy target applications.

2.1.1.2 Metric I
2.1.1.3 Rationale 3
It is intended that the OSIF will be used by applications from missile guidance systems to large command and
control systems to completely integrated platforms. This range of target applications is very demanding, and it I
is known that there is no one operating system that can satisfy all possible application systems. But the goal of

3-G-8 3



VERSION 2.0

21 December 1989

will take highest priority in determining the appropriate features of the OSIF.

2.1.2 Design Objective

2.1.2.1 Definition

The OSIF should provide interfaces sufficient to promote compatibility, interoperability, transportability, and
reusability between applications and maintainability of applications.

2.1.2.2 Metric

2.1.2.3 Rationale

This requirement addresses the reasoning behind the development of the OSIF. These are the qualities which
are desired in applications and which can be promoted by the operating system interface. "Interoperability" is
the ability of two applications to share data. "Transportability" is the ability to move an application from one
implementation of the OSIF to another with minimal changes to the source code. "Reusability" is the ability to
reuse portions of one application's source code or other pertinent aspects (e.g., design, tests) in the generation
of another application. "Compatibility" is the general ability of two applications to coordinate with one another
in their operation, even if they were not originally designed to do so. "Maintainability" addresses the qualities
which improve the ability to maintain the application.

2.13 Basic Services

2.13.1 Definition

The OSIF should provide simple-to-use mechanisms for achieving common, simple actions. Facilities which
support less frequently used features should be given secondary consideration.

2.13.2 Metric

2.1.3.3 Rationale

The OSIF should be understandable and usable. Thus this requirement encourages the selection of a set of
interfaces where the frequently used ones (at compilation time) are simple to use, possibly at the expense of less
frequently used facilities being more difficult to invoke. This requirement also suggests concentration on
supporting those application actions that are likely to have the broadest utility.

2.1.4 Architecture Independence

2.1.4.1 Definition

The OSIF shall be machine-independent and implementation-independent. The OSIF shall be implementable
on a wide variety of processors, configurations and architectures.

2.1.4.2 Metric

2.1.4.3 Rationale

3-G-9



I

VERSION 2.0 1
21 December 1989

The OSIF must depend on no properties of specific computers and on no properties of specific implementations. 3
The features should also be chosen to have a simple and efficient implementation in many machines and
hardware architectures and configurations (including distributed configurations). Transportability can only be
achieved where the OSIF itself can be implemented on a wide range of machines without revealing or relying
on machine or implementation dependencies.

2.1.5 Modularity-

2.1.5.1 Definition

The OSIF should be partitioned such that the partitions can be understood independently. 3
2.1.5.2 Metric

2.1.53 Rationale I

This criterion promotes understandability and permits application writers to employ a subset of the OSIF, which
will be important for many applications. It should be noted that there can be multiple versions of some
partitions within the standard. Independent understanding implies that there should be no undocumented
dependencies between partitions.

2.1.6 Extensibility

2.1.6.1 Definition 3
The OSIF should facilitate development and use of extensions of the OSIF; e.g., OSIF interfaces should be
composable so that they can be combined to create new interfaces and facilities, or it should be possible to add

new interfaces for new functions.I

2.1.6.2 Metric

2.1.63 Rationale

The state-of-the-art and the state-of-the-practice in computer technology are rapidly changing. It is impossible
to fully list all interfaces that will be required in all future application domains. Therefore, the list of specialized
interfaces must be extensible.

2.1.7 Uniformity 3
2.1.7.1 Definition

The OSIF should be based upon a consistent set of unifying well-defined conceptual models. all OSIF features
should uniformly address aspects such as Liatus return, exceptional conditions, parameter types, and options.

2.1.7.2 Metric I
2.1.7.3 Rationale 3
The design of the OSIF should minimize the number of underlying concepts and unifying principles. A unifing

331

3-C- 103



VERSION 2.0
21 December 1989

principle is a model which unifies (a subset of) the interfaces. It should have few special cases and should consist
of features that are individually simple. These models should also be consistent with one another. However,
these objectives are not to be pursued to the extreme of providing inconvenient mechanisms for the expression
of some common, reasonable actions.

2.1.8 Completeness

2.1.8.1 Definition

The OSIF should provide a complete set of facilities for all elements of its underlying conceptual models.

2.1.8.2 Metric

2.1.8.3 Rationale

Since one of the major goals of the OSIF is transportability, it must provide a sufficient set of facilities to support
applications so they do not have to utilize facilities outside of the OSIF. While it is desirable that the OSIF be
complete and provide all facilities for applications, a requirement that mandates all facilities for all applications
is recognized to be unachievable in practice. The goal for OSIF should be to optimize the degree of
completeness, compromising between all possible facilities and those that can be implemented widely. The things
within the conceptual models of the OSIF can, in all probability, only be manipulated by the OSIF interfaces.
Hence all desired manipulations must be catered for by the OSIF. Simple examples are:

if there is a facility to create something, then there should also be a facility to delete it

if there is a facility to set a value, then there should also be a facility to examine it.

2.1.9 Language Independence

2.1.9.1 Definition

The OSIF should include a clear description of its interfaces which is independent of any particular programming
language binding.

2.1.9.2 Metai'

2.1.93 Rationale

Although Ada is the language of primary interest to the Navy, other languages will be important as well. For
example, the NGCR objective of being able to purchase commercial-off-the-shelf components often involves such
popular languages as 'C', and Navy systems in the 21st century might well incorporate intelligent subsystems
which are written in popular artificial intelligence languages. The best way to evolve a standard which can
withstand such demands is to develop the services in a language-independent way, thus allowing the development
of any number of compatible language bindings. In order to achieve this, the basic description must be complete,
consistent, unambiguous, and abstracted away from the details of any particular programming languages, but
capable of accommodating a variety of languages.

2.1.10 Ada Language Binding Syntax

4

3-G-1 I



I

VERSION 2.0 1
21 December 1989

2.1.10.1 Definition i
The OSIF shall have an Ada language binding consistent with the language independent model. The OSIF Ada
binding syntax shall be expressed as Ada package specifications, as defined by the Ada standard I
(MIL-STD/ANSI-1815A). It shall provide a fully-documented interface from Ada to all operating systemfacilities for which there is no appropriate Ada language construct.

2.1.10.2 Metric i

2.1.103 Rationale 3
The interface should be fully specified in Ada (possibly in addition to other languages) to prevent ambiguities
from arising concerning how the specification language maps to Ada. All ambiguities in specification will result
in reduced portability. There will be many interfaces which provide facilities that are not directly supported by I
the Ada language that will be necessary for an application to have access to. It must be easy for the Ada
programmer to gain access to these facilities.

2.1.11 Other Language Binding Syntax i
2.1.11.1 Definition

The OSF should have a variety of language bindings, consistent with the language independent model. The
syntax of each shall be presented in a manner consistent with good practice for that language.

2.1.11.2 Metric

2.1.11.3 Rationale

A number of language bindings other than Ada will also be desirable. Each should exhibit good style for that
language and be presented according to the accepted standard for the language, if such a standard

2.1.12 Language Binding Syntax Uniformity

2.1.12.1 Definition i

Each OSIF language binding should employ uniform syntactic conventions and should not provide several
notations for the same concept. 3
2.1.12.2 Metric

2.1.12.3 Rationale 3
OSIF language binding syntax issues (including, at least, limits on name lengths, abbreviation styles, other naming
conventions, and relative ordering of input and output parameters) should be resolved in a uniform and I
integrated manner for the whole OSIF language binding. Understandability and usability of the OSIF are the
intents of this criterion. Users should not have to unnecessarily learn different syntactic approaches for using
different OSIF features. The use of several notations for the same concept leads to confusion, and
non-uniformity is a recipe for errors in use and difficulty in production of applications.

53 1

3-G- 123



VERSION 2.0

21 December 1989

2.1.13 Language Binding Syntax Name Selection

2.1.13.1 Definition

The OSIF language bindings should avoid coining new words (literals or identifiers) and should avoid using
words in an unconventional sense. Identifiers (variable names) defined by the OSIF language bindings should
be natural-language words or industry-accepted terms whenever possible. The language bindings should define
identifiers that are visually distinct and not easily confused. The language bindings should use the same name
everywhere in the interface set, and not its possible synonyms, when the same meaning is intended.

2.1.132 Metric

2.1.133 Rationale

Understandability of the OSIF specification is the intent of this criterion.

2.1.14 Syntactic Pragmatics

2.1.14.1 Definition

The OSIF language bindings should impose only those restrictive rules or constraints required to support the
design objectives (Refer to Section 2.1.2)

2.1.14.2 Metric

2.1.143 Rationale

Although it would be ideal if no such restrictions were required, practical considerations dictate that some limits
will exist in all implementations. Where necessary to support the design objectives, such restrictions should be
clearly articulated by the OSIF specification. If they are not necessary to support the design objectives (e.g., if
they are present for the convenience of the OSIF or its implementers), then they are not desirable in the OSIF.

2.1.15 General Semantics

2.1.15.1 Definition

The OSIF should be completely and unambiguously defined. The specification of semantics should be both
precise and understandable. The semantic specification of each OSIF interface shall include a precise statement
of assumptions (including execution-time preconditions for calls), effects on global data and services, and
interactions with other interfaces.

2.1.15.2 Metric

2.1.15.3 Rationale

This is a call for adequate, usable documentation. It is critical for the ability of independent vendors to develop
implementations which can be used readily, both alone and together. Note that the requirement does not
prescribe the degree of formality of the language to be used for specifying the OSIF semantics, admitting options
from free-form English (as long as it is complete and precise) to a formal semantics specification approach.

6

3-G- 13



VERSION 2.0 3
21 December 1989

2.1.16 Semantic Consistency I
2.1.16.1 Definition

The description of OSIF semantics should use the same word or phrase everywhere, and not its possible
synonyms, when the same meaning is intended.

2.1.162 Metric I
2.1.163 Rationale 3
The use of cynonyms, while desirable in novels, has no place in technical documents such as this and only lead
to confusion.

2.1.17 Error Conditions

2.1.17.1 Definition

The OSIF language bindings shall employ appropriate mechanisms to report exceptional situations that arise in
the execution of OSIF facilities. The OSIF specifications shall include error conditions for all situations that
violate the preconditions specified for the OSIF interface. The OSIF specification shall define error conditions I
that cover all violations of implementation-defined restrictions.

2.1.17.2 Metric 3
2.1.173 Rationale

This requirement demands that the OSIF provide the means for the implementation to inform the user (i.e., an I
application) whenever an operation does not complete normally-, this allows the application to take appropriate
action. The use of the Ada exception mechanism is expected for the Ada language binding. However, use of
the exception mechanism does not preclude the utilization of status return values by an Ada binding to provide I
supporting diagnostic information. Thus it would be possible to have a single exception representing a number
of different (but related) error conditions, with the identification of the specific error condition via some status

parameter. I
2.1.18 Semantic Cohesiveness

2.1.18.1 Definition I
Each OSIF interface should provide only one function. 3
2.1.18.2 Metric

2.1.183 Rationale 3
This criterion is a statement of the basic principle of software cohesion. It should be interpreted as making
undesirable an interface design with a small number of entry points, each entry point delivering a range of
dissimilar services, with particular services being selected dynamically by the value of one or more of the
parameters. Such a design would almost certainly not provide simple-to-use interfaces for performing simple

7I

3-G-14 3



VERSION 2.0
21 December 1989

common actions. While there can always be instances argued where one person views as several (sub)funcuions
what someone else views as an atomic function, this should be the exception rather than the rule. The
overloading of sub-program names allowing the selection of different sub-programs depending on the types of
the parameters is acceptable. Such an approach has the advantage of reducing the number of unique
sub-program names within the OSIF. When used to extreme, overloading can lead to a reduction in the clarity
of the OSIF and should be used with care.

2.1.19 Semantic Pragmatics

2.1.19.1 Definition

The OSIF specification shall enumerate all aspects of the meanings of OSIF interfaces and facilities which must
be defined by OSIF implementers. OSIF implementers will be required to provide the complete specifications
for these implementation-defined semantics.

2.1.19.2 Metric

2.1.19.3 Rationale

This calls for the equivalent of Appendix F of MIL/ANSI-STD-1815A, containing a list of specific sections or
aspects of the OSIF specification where implementation dependencies (presumably due to machine dependencies)
are allowed to affect OSIF semantics. This list needs to be accompanied by a statement that no other
implementation dependencies are allowed other than those listed, and that each OSIF implementation must
include documentation stating the implementation characteristics for each item on the list.

2.1.20 Reaction to Blocking Services

2.1.20.1 Definition

The OSIF shall defie what happens if a process calls on a service and that service cannot be completed in a
timely manner.

2.1.20.2 Metric

2.1.203 Rationale

An application process may request an OS service which can be initiated immediately, but will not be completed
until some later time. Examples would be delay services, I/O services on a device, file I/O services when svstem
buffers are empty or full, and synchronization services. In these circumstances, the OSIF must defie the effect
on the requesting process and the overall effect on the scheduling of the requesting CPU. Many applications will
require blocking of the requesting process, to allow other processes to use this CPU as defined by the scheduling
algorithm; other applications may require that the requesting process continue to execute in parallel with the
requested service (possibly being notified when the service is complete) or be notified that the service cannot
be provided immediately (the application would repeat the request later). Busy wait within the OS is generally
not an acceptable approach.

2.1.21 Bounded Operating Systems Services Times and Context Switching

2.1.21.1 Definition

3-G-15



I

VERSION 2.0 I
21 December 1989

The OSIF shall support the prediction of operating system service completion times. The OSIF shall be 3
implementable such that these service times are bounded. The OSIF implementer will be required to document
the service times.

2.121.2 Metric

2.1.213 Rationale 3
In order for a scheduler to predict performance with any degree of precision it is necessary to have a bound on
the time that it can be expected to take for a requested operating system service to complete and to have access
to the information necessary for the prediction of completion times. It is also important that the OSIF be U
implementable such that these service times are bounded and can be known for a given implementation.

2.1.22 Configurability 3
2.1.22.1 Definition

The OSIF shall be implementable such that application projects have the ability to configure the implementation I
to be optimal for the specific application.

2.1.22.2 Metric I
2.1.223 Rationale

In certain situations, the user of an operating system will want to emphasize certain aspects of the operating I
system which in other situations the user (or another user) may wish to de-emphasize. Toward that end, the user
must be able to configure the OSIF implementation and, for example, to select from a variety of scheduling
options and synchronization mechanisms. There must be no penalty in space or time for services not used, and
optimization for certain patterns of usage must be available.

2.1.23 Transaction Scheduling Information 3
2.1.23.1 Definition

The OSIF shall provide the ability for a process to specify its response requirements for services.

2.1.23.2 Metric

2.1.233 Rationale

Many forms of application processing, in particular database management transaction processing (for hard
real-time systems), need to be scheduled so as to meet the response requirements of all transactions as well as
the response requirement of all the application tasks co-resident with it. This service is not necessarily provided
simply by the ability to dynamically set priorities. 3
2.1.24 Access Control

2.1.24.1 Definition I

93

3-G-16 3



VERSION 2.0
21 December 1989

The OSIF shall provide a mechanism to allow only certain subjects (i.e., processes) to make use of particular
objects (e.g., files, devices). That is, access to certain objects may be limited to only certain application software
entities.

2.1.24.2 Metric

2.1.243 Rationale

A means must be provided to limit the access to certain s, stem objects (e.g., files, devices or ports) to only those
software entities with sufficient privileges. A mechanism which achieves this on a limited, predefmed basis for
only some objects would not completely fulfill this requirement.

2.1.25 Transparency

2.1.25.1 Definition

The OSIF shall provide for the identification of and access to processes and data, irrespective of their physical
location.

2.1.25.2 Metric

2.1.253 Rationale

For many applications it will be necessary (or at least desirable) to be able to access processes and data via
logical names rather than via physical location. Note that this requirement does not preclude other ac.ss
methods which do relate to physical location.

2.1.26 Resilience

2.1.26.1 Definition

The OSIF shall be implementable so that, when physical resources are lost, OSIF facilities which do not depend
on these rescurces may continue to be used.

2.1.26.2 Metric

2.1.26.3 Rationale

This requirement is intended to preclude the design of an OSIF such that the operation of an implementation
must be dependent on the availability of the complete set of resources.

2.1.27 Network Partition

2.1.27.1 Definition

The OSIF shall be implementable so that partitions of the set (e.g., network) of physical resources car usefully
work in isolation and the partitions may be rejoined after recovery.

2.1.27.2 Metric

10

-,G- 17



I

VERSION 2.0 I
21 December 1989

2.1.273 Rationale

This requirement is pra,arily conceined with the support for an OSIF implementation which is based on a
distributed architecture. An OSIF implementation, based on a distributed network of processors and other
physical resou-ces, which could only operate when all processors and interconnections were available would,
particularly ii- a warfare environment, be a severe disadvantage. Indeed, this requirement should be read to
demand that if a network fragments, then each segTI!ent which has sufficient resources to continue operation
should do s.. The OSIF must also facilitate subsecuent reintegration of the network allowing the partial
fragments to be recombined. The OSIF should, in particular, not be defined such that the only possible
d,tributed implementation would be one that depended upon a single system- wide resource for its operation.

2.1.28 Reference

2.1.28.1 Definition 3
The OSIF shall provide a means to reftei to distirct ph.:.sical resources (e.g., computational, storage) that are used
to implement specific OSIF facilities.

.1.28.2 Metric

2.1.283 Rationale

While physical distribution may be transparent to most applications, there are circumstances under which specific
parts of applications (most notably those concerned with system status and fault tole rance) may require or have
knowledge about the allocation of application components to equipment in the underlying computer
configuration. This requirement states that there must be a means for applications to be built to take advantage
of such knowledge. Note that these capabilities will always be optional OSIF features in the sense that
applications may choose never to reference physical resources and always to leave their mappings (and even the
possibility of distributed implementations) up to OSIF implementers. Application writers should also be aware
of possible sacrifices in transportability when using such features. u
2.1.29 Reallocation

2.1.29.1 Definition 5
The OSIF shall provide a means to control (or influence) tie marn .er in which the physical resources are
associated with specific OSIF facilities.

2.1.29.2 Metric

2.1293 Rationale

Certain applications may require particular operations to dynamically control the allocation of application
comp nents to underiving equipment in distributed configurations. This requirement states that there must be
a means for applications to be built with such capabilicy. Note that these capabilities will always be optional
OSIF features in the sense that applications may choose never to reference physical resources and always to leave
their mappings (and even the possibility of distributed implementations) up to OSIF implementers. Application
writers should also be aware of possible sacrifices in transportability when using such fe. 'res.

3-G-I 8



I I

I VERSION 2.0
21 December 1989

2.2 ARCHITECTURE DEPENDENT INTERFACES

2.2.1 Non-NGCR System Interfaces

2.2.1.1 Definition

The OSIEF shall support non-NGCR-based systems by providing a subset of its services to those systems. As a
minimum this subset shall include:

- Download, initialize, start, and stop

- Ability to share resources, particularly peripheral devices

- Process-to-process message communication

- Ability to pass operational status information

S2.2.1.2 Metric

2.2.13 Rationale

The Navy has a large investment in existing non-NGCR-based systems. These systems will continue to be in use
for years to come and are likely to need to interface to some degree with NGCR-based systems. Additionally
they may need a method to gracefully transition to NGCR-based systems. The non-NGCR-based systems for
their part will be required to change to accommodate the interface subset.

23 CAPABILITY AND SECURITY INTERFACES

23.1 Audit Data Storage

23.1.1 Definition

The OSIF shall support the storage and maintaina~ility of audit data.

I 23.1.2 Metric

23.13 Rationale

The TCSEC (section 4.1.2.2) requires storage and maintenance of audit data for all systems at level C2 and3 above. This requirement does not specify what events are recorded in the log, wich is implementation specific.

23.2 Audit Generation

3 23.2.1 Definition

The OSIF shall support generation of audit records.

I 23.2.2 Metric

3 12

3 3-G- 19



I

VERSION 2.0 I
21 December 1989

2.3.23 Rationale I
The TCSEC (section 4.1.2.2) requires the capability to generate audit records for all systems at level C2 and
above. This requirement does not specify whether any privileges are required to use this feature.

2.33 Audit Record Contents

233.1 Definition I
The OSIF shall support generation of audit records which uniquely identify the subject, event, and object being
operated upon. 3
23.3.2 Metric

2.3.3.3 Rationale

The TCSEC (section 4.1.2.2) requires that data in the audit trail contain specific information which is used to
identify the subject (e.g., process and user ID), object (e.g., data file), and the event which caused the audit
record to be generated.

2-3.4 Audit Data Manipulation I
2.3.4.1 Definition

The OSIF shall support the manipulation of audit data.

2-3.4.2 Metric

2.3.4.3 Rationale

The TCSEC (section 4.1.2.2) rtquires facilities to manipulate audit data for all systems at level C2 and above.
Such facilities may include audit data analyzers and report generators.

2.3.5 Device Labels

2.3.5.1 Definition

The OSIF shall support the assignment of minimum and maximum security levels to all devices. I
2.3.5.2 Metric 3
2.3.5.3 Rationale

The TCSEC (section 4.1.1.3.4) requires that all deices have minimum and maximum security levels for all
systems at level B2 or above. This requirement includes both physical devices (e.g., disks, terminals) and logical I
devices (e.g., interprocess communication).

2.3.6 Basic DAC I

13 3
3-G-20 3



VERSION 2.0
21 December 1989

23.6.1 Definition

The OSIF shall support a mechanism for the enforcement of discretionary access control (DAC) based on users
and groups.

23.6.2 Metric

23.63 Rationale

The TCSEC (section 4.1.1.1) requires that minimal DAC facilities (for level C2) include enforcement based on
a user and group mechanism. or levels B3 and above, the requirement is for access Control Lists (ACLs).

2.3.7 DAC Inclusion/Exclusion

2.3.7.1 Definition

The OSIF shall support the manipulation of access rights to specifically include or exclude access based on users
or groups.

2.3.7.2 Metric

23.7.3 Rationale

The TCSEC (section 4.1.1.1) requires that the DAC mechanism specifically allow for inclusion based on
individual users or groups for levels C2 and above. For levels B3 and above, the TCSEC also requires that the
DAC mechanism allow for exclusion based on individual users or groups.

23.8 DAC Propagation

23.8.1 Definition

The OSIF shall provide controls to limit propagation of access rights.

2.3.8.2 Metric

2.3.8.3 Rationale

The TCSEC (section 4.1.1.1) requires that DAC rights granted to a user or group not be propagated to duother
user or group. In general, this is interpreted to mean that only the owner of an object (or a privileged user) may
change the DAC on that object. This facility is required for security levels C2 and above.

23.9 Labelling of Export Channels

2.3.9.1 Definition

The OSIF shall support the restriction of the set of labcls to be exported over each export channel.

2.3.9.2 Metric

14

3-G-21



VERSION 2.0 1
21 December 1989

2.3.93 Rationale m

The TCSEC (section 4.1.13) requires labelling of all imported and exported data. Further, it requires restrictions

on labels exported over each export channel. It also requires that labels be retained with the data exported. This

facility is required at systems rated BI or above.

23.10 Setting Communication Labels

23.10.1 Definition

The OSIF shall support features to set or change each communication channel and I/O device to either I
single-level or multi-level.

2.3.10.2 Metric

2.3.10.3 Rationale

The TCSEC (section 4.1.1.3.2) requires that communications channels and I/O devices (e.g., tape and disk
drives) be marked as single-level or multi-level, and provide mechanisms to set or change that marking. This
facility is required for systems rated 131 or above.

23.11 Identification and Authentication

23.11.1 Definition

The OSIF shall provide a protected mechanism to uniquely authenticate users' identity.

23.11.2 Metric 3
23.113 Rationale

The TCSEC (section 4.1.2.1) requires that a sign-on procedure be used to uniquely identify users. The
technology required is not specified, although it is typically a user ID and password. Storage of authentication
data must be protected (e.g., protection of passwords). This facility is required for all secure systems.

23.12 Labelling of Human Readable Output

23.12.1 Definition m
The OSIF shall support the marking of human readable sensitivity labels on all human reAdable output.

23.12.2 Metric

23.123 Rationale m
The TCSEC (section 4.1.1.3.2.3) requires labelling of all human reAdable output. This typically means labelling
the top and bottom of each page of hard copy output. This facility is required for all systems at levels Bi and

above.

15Gm 3

m mmmlmm m mm mmmmm l tm mmmmmmmmmmm In m lm mmmmmmm m m3-m-2m2



VERSION 2.0
21 December 1989

2.3.13 Subject and Object Labelling

23.13.1 Definition

The OSIF shall support labelling (i.e., setting and changing) of each subject and object.

23.13.2 Metric

23.133 Rationale

The TCSEC (section 4.1.1.3) requires that each subject and object in the system be labelled. This facility is
required of all systems at levels bl and above.

2.3.14 Label Contents

2.3.14.1 Definition

The OSIF shall support the definition of a label for the system (i.e., classification, categories, markings, and
special handling designators).

23.14.2 Metric

23.143 Rationale

The TCSEC (section 4.1.1.4) requires labels contain classifications and categories at the B1 level and above.
Markings and special handling requirements are not explicitly required by TCSEC.

2.3.15 Mandatory Access Control Policy

2.3.15.1 Definition

The OSIF shall support a security policy based on subject and object labels.

23.15.2 Metric

23.15.3 Rationale

The TCSEC (section 4.1.1.4) requires that a policy exist and be enforced regarding access to subjects and objects
based on a security policy. This requirement does not specify what the policy should be. However, TCSEC
specifies characteristics of the policy (e.g., no write-down, no read-up, use of classifications and categories).

2.3.16 MAC Manipulations

23.16.1 Definition

The OSIF shall support the manipulation of labels based on the security policy.

2.3.16.2 Metric

16

3-G-23



I

VERSION 2.0 3
21 December 1989

23.163 Rationale

The TCSEC (section 4.1.1.4) requires that all manipulation of MAC labels be in accordance with the security
policy for systems at level B1 or above.

23.17 Object Reuse

2-3.17.1 Definition 3
The OSIF shall provide that all objects are sanitized prior to allocation to a user.

23.17.2 Metric

23.173 Rationale

The TCSEC (section 4.1.1.2) requires such sanitization of all objects in the system to prevent unauthorized
disclosure of information. Note that "objects" in this case refers to hardware elements (e.g., registers and
memory) in addition to traditional objects such as files and disk space. This facility is required for systems at I
levels C2 or above.

23.18 User Notification of Sensitivity Label

23.18.1 Definition

The OSIF shall support the prompt notification to a terminal user of each change in security level associated with I
that user during an interactive session.

23.18.2 Metric I
23.183 Rationale

The TCSEC (section 4.1.133) requires that the user be notified of such changes for levels B2 and above. I
23.19 Sensitivity Label Query

23.19.1 Definition

The OSIF shall support the user's query of the subject's complete sensitivity label. 3
23.19.2 Metric

23.19.3 Rationale

The TCSEC (section 4.1.1.3.3) requires that the user have access to the complete sensitivity label (including
special handling requirements) for systems at level B2 and above.

23.20 System Integrity

23.20.1 Definition

17G3

3-G-24 3



I
VERSION 2.0
21 December 1989

The OSIF shall support features that can be used to periodically validate the correct operation of the hardware
and firmware.

23.20.2 Metric

23.203 Rationale

The TCSEC (section 4.13.1.2) requires that diagnostic and confidence tests be available to
verify the correct functioning of the hardware at levels C1 and above.

I 23.21 Identification of Users Based on Roles

2.3.21.1 Definition

I The OSIF shall support the identification of users based on roles.

23.21.2 Metric

23213 Rationale

The TCSEC (section 4.1.1.4) requires that various roles be provided with varying privileges, at a minimum this
separates the roles of operator, system administrator, and security administrator. This facility is required at levels
B2 and above.

23.22 Least Privilege

23.22.1 Definition

The OSIF shall support the principle of least privilege.

23.22.2 Metric

23.223 Rationale

3 The TCSEC (section 4.1.3.1.4) requires that least privilege be used at levels B2 and above. The exact privileges
required are not defined here.

23.23 Trusted Path

2.3.23.1 Definition

I The OSIF shall support a trusted communication path between the user and the system, activated exclusively by
the user.

I 2.3.23.2 Metric

2.3.23.3 Rationale

The TCSEC (section 4.1.2.1.1) requires that a trusted path be provided which provides for communication

I18

3-G-25



VERSION 2.0
21 December 1989

between the system and the user without possibility of interception by any software other than the operating
system. This facility is required at level B2 and above.

23.24 Trusted Recovery

23.24.1 Definition

The OSIF shall provide procedures and/or mechanisms to assure that after a discontinuity recovery without a
protection compromise is obtained.

23.24.2 Metric

2.3.243 Rationale

The TCSEC (section 4.13.1.5) requires that cystems at level B3 and above provide a trusted recovery mechanism.
Such a mechanism is used for recovery after a failure (e.g., a system crash) which left the system in an unknown
security state to a secure state.

2.4 DATA INTERCHANGE INTERFACES I
2.4.1 Data Interchange Services (Data Format Conversion)

2.4.1.1 Definition

The OSIF shall support an access to services that perform data conversion, (e.g., files, CPUs, or compilers).

2.4.1.2 Metric

2.4.13 Rationale U
Operating systems must handle data from various sources. In order to properly transmit data froi. one source
to the other, and to perform operations on data, the operating system needs a canonical data format that is
unaffected by the external environment. The operating system shall provide service routines that support
conversion of one data format to another for a TBD set of processor internal data 3
2.5 EVENT AND ERROR INTERFACES

2.5.1 Event and Error Receipt

2.5.1.1 Definition

The OSIF shall provide for the receipt and coordination of event and error information. I
2.5.1.2 Metric

2.5.13 Rationale

Event and error information includes information available through such interfaces as to the hardware/firmware,
the network, and the program support environment as well as to the applications software. The Fault

19

3-G-26



I
l VERSION 2.0

21 December 1989

Information collection requirement (Refer to Section 2.11.1) also applies to the error information collection part
of this requirement.

2.5.2 Event and Error Distribution

2.5.2.1 Definition

The OSIF shall provide for the distribution of event and error information.

2.52.2 Metric

I 2.5.2.3 Rationale

This requirement is a necessary corollary to the Event and Error Receipt requirement (Refer to Section 2.5.1).
The Fault Information Request requirement (Refer to Section 2.11.2) also applies to the error information
distribution part of this requirement.

2.5.3 Event and Error Management

2.53.1 Definition

I The OSIF shall support the timely delivery of interrupt and other asynchronous events to system components
and shall support the implementation of user-selectable error processing alternatives, alternatives shall include
as a minimum filtering, retry, ignore, and accumulate occurrences.

2.53.2 Metric

2.533 Rationale

For many applications the OSIF must provide for the timely delivery of interrupt and other signal information
to system components such as the operator and application software. This includes, particularly in a tactical
application, supporting the capability to display alerts to an operator at the system console. The Fault Detection
Thresholds requirement (Refer to Section 2.11.6) also applies to this requirement.

2.5.4 Event Logging

2.5.4.1 Definition

IThe OSIF shall support logging events to application-defined storage. The types of events and event sources
shall be dynamically selectable/deselectable.

I 2.5.4.2 Metric

2.5.43 Rationale

Examples of event sources are specific processors or memory modules. By providing event and source
selectability, this requirement provides for saving information that is more relevant to the application while
conserving storage resources.

* 20

3-G-27



I

VERSION 2.0 3
21 December 1989

2.5.5 Enable/Disable Interrupts 3
2.53.1 Definition

The OSIF shall provide the ability to enable and disable interrupts. I
25.5.2 Metric

2.5.3 Rationale

This requirement provides for interrupts as a whole to be turned on and off. The mask/unmask interrupts
requirement, on the other hand, provides for individual interrupts to be made known/unknown.

2.5.6 Mask/Unmask Interrupts 3
25.6.1 Definition

The OSIF shall provide the ability to mask and unmask events. 3
2.5.6.2 Metric

25.63 Rationale I
A system requires this capability during such activities as interrupt processing to lock out interrupts of a lower
class from occurring or to mask out the interrupts from particular I
2.6 FILE INTERFACES

2.6.1 Contiguous Read of a File
9

2.6.1.1 Definition

The OSIF shall provide a capability to access information from an opened file in a contiguous stream.

2.6.1.2 Metric 3
2.6.13 Rationale

DBMS systems often read large blocks of data from the storage device to use as indices into other files. Such
reads must be performed as quickly as possible. Limiting the number of seeks that a storage device must use
(due to file fragmentation) can result in performance optimization. This function permits the access to a file
that is contiguous on the storage medium.

2.6.2 Protect An Area Within A File

2.6.2.1 Definition

The OSIF shall provide a mechanism that restricts a ile from access by requesters other than the requestor
imposing the restriction. I

216 8

3-G-28 3



VERSION 2.0

21 December 1989

2.6.2.2 Metric

2.6.2.3 Rationale

In order to protect simultaneous access and updates to a portion of riles, the requestor of the access should be
able to protect a section of the file until the user is finished updating. This is often called a file, byte, or record
locking capability.

2.6.3 File Management Scheduling

2.6.3.1 Definition

The OSF shall support a capability to specify a response -equirement for the service being requested for file
management.

2.6.3.2 Metric

2.6.33 Rationale

For hard deadline real-time systems file managers must schedule their service processing based on the response
requirements of the requests submitted by the users. FIFO scheduling is unacceptable for real-time applications.
The file managers must also support the notion of preemption.

2.6.4 File Management Suspend/Resume For Process

2.6.4.1 Definition

The OSIF shall permit a requesting process to indicate whether it wishes to wait for completion of the requested
service before continuing processing or to continue without waiting. In support of the latter instance, a means
shall be provided to enable the requesting task to know the status of its service request.

2.6.4.2 Metric

2.6.43 Rationale

In real-time applications it is often necessary to request data and then to suspend processing until the data is
available. It is also often the case that the task has no need to wait on the completion of the service before it
continues processing. For example, if the request is posting data to a file, it is usually unnecessary, even
undesirable, for the task to wait, especially in a distributed environment.

2.6.5 File Management Block Requests

2.6.5.1 Definition

The OSIF shall support the capability to update or retrieve a set of contiguous records in a file.

2.6.5.2 Metric

2.6.5.3 Rationale

2 2

3-G-29



I
VERSION 2.0 3
21 December 1989

Often in real-time systems the position of a record in a file correlates to a time at which the information was
derived. It is often necessary to read records that cover a particular span of time and to do so as expeditiously
as possible. File managers should plan their accesses to minimize seek and latency when acting on these block
requests. u
2.6.6 Round Robin File Management

2.6.6.1 Definition

The OSIF shall support a form of file access wherein after a user specified number of records have been written,
new records will begin to overlay old records. Also, support access requests for records that are based on
relative position from newest/oldest record in file.

2.6.62 Metric 3
2.6.63 Rationale

Real-time systems keep historical files based on system requirements for coverage of some period of time. For
example, two hours of track history may be required on-line for rapid access. If a record is written to the file

every 10 seconds then the file will be 720 records long. The user
wants to update the fle such that the 721st record overlays the 1st record. The user should not have to manage

the file pointers.

2.6.7 Open a File

2.6.7.1 Definition

The OSIF shall provide a capability to open a file for use.

2.6.7.2 Metric

2.6.7.3 Rationale 3
The user of a file must be able to indicate that the file is in use so that the operating system can maintain the
necessary status and buffers. This function can also become a form of protection for file usage. A possible
implementation (or requirement) would be that the file would be available to read, write, execution, or deletici.
to one, a group, or many users.

2.6.8 Point Within a File I
2.6.8.1 Definition I
The OSIF shall provide a capability to position the next access point within a file.

2.6.8.2 Metric 3
2.6.8.3 Rationale

Some method must be provided to allow random access to a file on storage medium. I
23

3-G-30 3



VERSION 2.0

21 December 1989

2.6.9 Read a File

2.6.9.1 Definition

The OSIF shall provide -, zapability to access information from an opened file.

2.6.9.2 Metric

2.6.9.3 Rationale

Some method must be provided to access data from a f"t on a storage medium.

2.6.10 Close a File

2.6.10.1 Definition

The OSIF shall provide a capability to close a file that has been opened.

2.6.10.2 Metric

2.6.103 Rationale

Operating systems often restrict the number of files that can be "open" at one time. In order to release files that
are no longer needed, the operating system user should be able to close a file that is opened.

2.6.11 Delete a File

2.6.11.1 Definition

The OSIF shall provide a capabi:y to have a file physically removed from a storage medium.

2.6.112 Metric

2.6.11.3 Rationale

In addition to maintaining an organized storage medium and minimizing information redundancy, the operating
systems needs to provide a capability to delete files that are sensitive in nature.

2.6.12 Create a Directory

2.6.12.1 Definition

The OSIF shall provide a capability to add a directory to the storage structure on the storage medium.

2.6.12.2 Metric

2.6.12.3 Rationale

In order to have a useful file system, there must be some mechanism to maintain separn.te user areas on the tile

24

3-G-31



VERSION 2.0 3
21 December 1989

storage medium. A possible implemeatation might be a hierarchical file system. Creating a directory enables
an operating system user to add a user area. I
2.6.13 Specifying Default Directory

2.6.13.1 Definition

The OSIF shall provide the capability to specify a processes default directory. 3
2.6.13.2 Metric

2.6.13.3 Rationale i
In order to have a useful file system, there must be some mechanism to maintain separate user areas on the file
storage medium. A possible implementation might be a hierarchical system. changing the current directory
enables an operating system user to conveniently access a user area without providing path information.

2.6.14 Delete a Directory

2.6.14.1 Definition

The OSIF shall provide a capability to remove a directory' from the storage structure on the storage medium. 3
2.6.14.2 Metric

2.6.143 Rationale I
In order to have a useful file system, there must be some mechanism to maintain separate user areas on the fide
storage medium. A possible implementation might be a hierarchical system. Deleting a directory enables an
operating system user to remove an unwanted user area.

2.6.15 Shadow Files 3
2.6.15.1 Definition

The OSIF shall support the creation, reading, writing, maintenance, and deletion of multiple identical 3
instantiations of a file. The multiple instantiations shall be viewed at the OSIF boundary as a single object.

2.6.15.2 Metric 5
2.6.15.3 Rationale

Applications will aeed a mechanism to maintain files at multiple locations or redundantly to satisfy performance
or reliability requirements.

2.6.16 Create a File I
2.6.16.1 Definition 3

253

3-G-32



VERSION 2.0
21 December 1989

The OSIF shall provide a capability to create a file.

2.6.16.2 Metric

2.6.163 Rationale

The user must be able to create a file, declaring attributes to be associated with the file, to be used for
subsequent application specific storage/retrieval.

2.6.17 Query File Attributes

2.6.17.1 Definition

The OSIF shall provide a capability to query the attributes of a file.

2.6.17.2 Metric

j 2.6.173 Rationale

Each file has attributes associated with it (e.g. file size, creation date, modification date, owner, permissions,
storage type, access privileges). The user must be able to query the attributes in order to become aware of the
current state of the file. This is especially true for attributes that are dynamic and for attributes that are not
under direct control of the user.

I2.6.18 Modify File Attributes

2.6.18.1 Definition

IThe OSIF shall provide a capability to modify the attributes of a file.

12.6.18.2 Metric

2.6.183 Rationale

Each file has attributes associated with it (e.g. file size, creation date, modification date, owner, permissions,

storage type, access privileges). The user must be able to modify the attributes in order to respond to changing
mission capabilities.

1 2.6.19 Write a File

2.6.19.1 Definition

The OSIF shall provide a capability to write information to an opened file.

2.6.19.2 Metric

2.6.193 Rationale

I Some method must be provided to write data to a File on a storage medium.

I 26

I 3-G-33



I

VERSION 2.0 3
21 December 1989

2.6.20 Write Contiguous a File 3
2.6.20.1 Definition

The OSIF shall provide a capability to write information to an open contiguous file. 3
2.6.20.2 Metric

2.6.203 Rationale 

Some method must be provided to write data to a contiguous file on a storage medium.

2.7 GENERALIZED I/O INTERFACES

In the following requirements device is used to indicate physical (i.e., a printer) or logical (i.e., pool of buffers) 3
resources.

2.7.1 Device Driver Availability

2.7.1.1 Definition

The OSIF shall provide the interfaces necessary to support the addition of device drivers. 3
2.7.1.2 Metric 3
2.7.13 Rationale

In order for an operating system to be expandable, a new device driver will have to be added and an explicit
interface is needed to do this without having to go back to the vendor to incorporate this new driver.

2.7.2 Open Device 3
2.7.2.1 Definition

The OSIF shall provide the ability for a process to request the services of a particular device.

2.7.2.2 Metric

2.7.23 Rationale I
An interface is needed to allow processes to request devices in the system and use the services of that particular
device. In Ada terms, this interface would be used by packages such as TEXT 10 when doing an OPEN on a
file. In SAFENET terms, this interface may be used by applications wishing to use the primitive
SA REGISTER req as outlined by the SAFENET standard. This primitive allows the user of SAFENET to
receive a USAP ( User Service Access Point ) identification, which for all intents and purposes is a logical device
that only that process or application can use, which gives it rights to the network.

2.7.3 Close Device 3
27-3

3-G-343



I

VERSION 2.0
21 December 1989

3 2.73.1 Definition

The OSIF shall provide the ability for a process to indicate that the services of a particular device, which had
been previously allocated, are no longer needed.

2.732 Metric

3 2.733 Rationale

Once the device has been allocated and is no longer needed by a process, there needs to be a way to indicate
i to the operating system that this process is ready to release its control of the device. An example, in terms of

Ada, of a process which would use this interface would be the TEXT 10 procedure CLOSE file. In SAFENET
terms, this interface may be used by applications or processes wishing to use the primitive SA CANCEL-req.
This allows the application to give up its USAP identification, which is essentially saying its giving up its control
of the logical device, which is access to the network.

2.7.4 Transmit Data

1 2.7.4.1 Definition

The OSIF shall provide the ability to transfer specified block(s) of data to a device which has been previously
opened by a process.

2.7.4.2 Metric

2.7.43 Rationale

An interface to allow a process to communicate with a device which it has already acquired is needed so useful
work can be done with this device. The TEXT 10 procedure PUT would be an example of a process which
would use this interface. In SAFENET this interface would allow appfications wishing to use the service which
is indicated by the primitive SASEND req access to that service.

2.7.5 Receive Data

£ 2.7.5.1 Definition

The OSIF shall provide the ability to receive data from a device that has been previously opened by a process.

1 2.7.52 Metric

3 2.7.5.3 Rationale

Processes will need an interface to use which will allow them to receive data from a device which has been
previously assigned to it. In terms of Ada, the package TEXT 10 would need this interface for its procedure
named GET. The SAFENET service which is accessed by the primitive SAREQUEST req could be accessed
by applications through this interface to receive data from other nodes in the system.

£ 2.7.6 Device Event Notification

1 G2

3-C- 35



I
VERSION 2.0 3
21 December 1989

Refer requirements within Section 2.5: Event and Error Interfaces. I
2.7.7 Control Device

2.7.7.1 Definition 3
The OSIF shall provide the mechanism to request a device to perform an action pertinent to the device.

2.7.72 Metric

2.7.73 Rationale

Processes need the capability to indicate some action to take place at a particular device through the operating
system interface. An example, using Ada, may be the procedure found in the package TEXT 10 called RESET
file. This procedure may need some interface to the operating system to carry out the action requested. The
SAFENET service which is accessed by using the primitive SA DISCONNECTIreq could possibly be accessed
by applications through this interface. an example would be sound an audible alarm, abort an ongoing activity
on a device, and initialization of a device. Other examples may be sounding an alarm, aborting an ongoing
activity on a device, etc.

2.7.8 I/O Directory Services

2.7.8.1 Definition

The Interface shall support the use of Directory Services to map between logical names and physical devices or 5
address and attributes of the devices.

2.7.8.2 Metric 3
2.7.8.3 Rationale

A service must be provided to keep track of all the peripheral devices and their attributes. This service may be
centralized or distributed. Its existence implies a name registration function and authority to insure the
uniqueness of global names. The directory services function may be part of the basic operating system functions
or it may be a part of the capabilities of a supporting subsystem such as SAFENET or a file management
subsystem.

2.7.9 Device Management Suspend/Resume For Processes 5
2.7.9.1 Definition

The OSIF shall permit the requesting process to indicate whether it wishes to wait for completion of the 5
requested service before continuing processing or to continue without waiting. In support of the latter instance,
a means shall be provided to enable the requesting process to know the status of its service request.

2.7.9.2 Metric

2.7.9.3 Rationale 5
29-6

3-G-36 3



VERSION 2.0
21 December 1989

In real-time applications it is often necessary to request data and then to suspend processing until the data isavailable. It is also often the case that the process has no need to wait on the completion of the service before
it continues processing. For example, if the request is posting data to a device, it is usually unnecessary, even

undesirable, for the process to wait, especially in a distributed environment.

2.7.10 Mount/Dismount Device

1 2.7.10.1 Definition

The OSIF shall support the capability to mount and dismount a logical or physical device.

12.7.10.2 Metric

2.7.103 Rationale

Of particular concern are handling for traditional devices such as removable disk and tape storage entities. This
mechanism may also be used to cause logical devices to become visible or invisible.

MOUNT- The action of mounting a logical or physic-i device causes that entity to become a visible
resource that may be referenced by device identifier and commonly by some logical name
associated with a particular instantiation of media associated with the device. Associated with
the mount capability is the implied ability to specify access rules to be applied to the mounted
entity.

2.7.11 Initialize/Purge Device

2.7.11.1 Definition

The OSIF shall support device-dependent initialization and deinitialization (purge) functions for logical and
physical devices.

12.7.11.2 Metric

2.7.11.3 Rationale

Disk and tape devices (and media) need to be formatted, erased, labeled, unlabeled, etc. Logical devices can
apply these same functions to provide functions such as network connection initialization, etc.

12.8 NETWORK AND COMMUNICATIONS INTERFACES

In a system using components based on NGCR standards there will frequently be a hierarchy of networked
communication, data storage and processing functions. At the base of this hierarchy may be a number of
processing or storage units on a single board connected by an on-board bus. At the next level will be
FUTUREBUS+ or non-NGCR backplane busses (e.g. VME). At the next level there may be SAFENET, MIL-
STD-1553B data busses or non-NGCR defined LANs. At the highest level, but outside the scope of this set of
requirements, there may be communications among systems on different Navy platforms.

In some application domains and for some application functions, the OSIF must provide explicit access to
networked communication, data storage, and processing functions for both NGCR-defined communication

I 3o

~3-G-37



I

VERSION 2.0 3
21 December 1989

components and similar non-NGCR-defined components. This is in addition to the implicit use of these
capabilities implied in many other requirements.

Two processes make up a communications transaction regardless of their location. This includes either across
a communications link or the two processes may possibly be residing on the same processor.

2.8.1 Interface to and Control of Navy Standard Inter Processing Unit Busses 3
2.8.1.1 Definition

The operating system shall provide explicit interfaces to and control of FUTUREBUS +, SAFENET, and
MIL-STD-1553B in accordance with the standards or specifications defining each.

2.8.12 Metric

2.8.13 Rationale

These three sets of standards cover a broad range of capabilities. The OSIF, in addition to other functions, must
provide the architecture, control and management structure to integrate these components into a usable and
functioning whole.

FUTUREBUS + is an emerging IEEE set of standards for backplanes used to interconnect processing units and
other boards within a card cage. Among other capabilities it provides a precise common time of day clock and
inter-process message passing for the FUTUREBUS + interconnected devices. I
SAFENET is the Navy's subset of International Standards Organization (ISO) Open System Interconnection
(OSI) standards. These are supplemented by additional specifications and implementation agreements drawn
from the Manufacturing Automation Protocol (MAP 3.0) specification, Government Open Systems
Interconnection Profile (GOSIP, FIPSPUB 146) and SAFENET Working Group agreements. It provides services
ranging from a variety of message communication services, to a file management and access system (FTAM),
to support for the management of all components of the communication system. It permits users to also
incorporate components based on ISO application layer standards not explicitly included in SAFENET.

MIL-STD-1553B is an older LAN with much lower performance characteristics than SAFENET. It only provides
defined capabilities at the lower layers of the ISO/OSI model. However because of cost considerations and
familiarity with its capabilities in the air community it may well continue to be used. The OS then must provide
the architecture, control and management structure to integrate this component into the total system.

..8.2 Interfaces to and Control of Other Network and Communication Entities

2.8.2.1 Definition 3
The OSIF shall support explicit interfaces to the capabilities of multiple standard and proprietary backplane
busses and LANs. i

2.8.2.2 Metric

2.8.2.3 Rationale 3

3-G-38 3



VERSION 2.0
21 December 1989

The OSIF must be capable of interfacing to a variety of proprietary and standard LANs and backplanes so as
to support program transportability. This is needed to enable it to be used with specialized systems that cannot
economically be modified to use Navy standards. In the area of backplanes VME and MULTIBUS are commonly
used standards. Equipment such as DEC computers frequently use proprietary backplanes. In the area of LANs
the INTERNET standards (particularly TCP/IP) are frequently used.

2.8.3 Reliable Virtual Circuit Communications

2.83.1 Definition

The OSIF shall provide for the selection of reliable virtual circuit communications.

2.83.2 Metric

2.833 Rationale

Certain applications require the ability to transfer data between processes via a connection oriented
communications link. This link is established between processes and maintained for the transfer with error
detection and correction support.

2.8.4 Unreliable Virtual Circuit Communications

2.8.4.1 Delinition

The OSIF shall provide for the selection of unreliable virtual circuit communications.

2.8.4.2 Metric

2.8.43 Rationale

Certain applications call for the transfer of data over a connection oriented link between processes but can
withstand a certain amount of error rather than the overhead associated with a reliable link. An example of such
data is voice information.

2.8.5 Reliable Datagram Transfer

2.8.5.1 Definition

The OSIF shall provide for selection of reliable datagram transfer communications.

2.8.5.2 Metric

2.8.53 Rationale

Certain applications require the ability to transfer aperiodic information and do not require the establishment
and maintenance associated with a connection oriented transfer. Yet they require an acknowledgment that the
information was successfully received at the destination.

2.8.6 Unreliable Datagram Transfer

32

3-G-39



VERSION 2.0 1
21 December 1989

2.8.6.1 Definition I
The OSIF shall provide for the selection of unreliable datagram transfer. I
2.8.6.2 Metric

2.8.63 Rationale

Certain applications require the ability to transfer information without the overhead associated with connection
oriented transfers and acknowledgments. These situations allow for the information to be sent with no assurance
it properly arrives.

2.8.7 Request - Reply Service

2.8.7.1 Definition

The OSIF shall support the ability to select request - reply communication services. 1
2.8.7.2 Metric

2.8.73 Rationale I
Certain applications require communication services in the form of a request and a reply. In these situations,
a requesting process sends a datagram containing the request and associated data to a service process. Upon I
receipt of the request the service process performs any processing necessary and creates a datagram containing
the request information and sends it to the requesting process.

2.8.8 Unreliable Broadcast/Multicast Service

2.8.8.1 Definition 3
The OSIF shall provide for the selection of an unreliable broadcast/multicast communication services.

2.8.8.2 Metric 3
2.8.83 Rationale

Certain applications require the ability to send a single message to all (broadcast) or several (multicast) I
destinations. In these situations it is sometimes desirable not to have the overhead associated with connection
oriented transfers and reliable services. I
2.8.9 Reliable Broadcast/Multicast Services

2.8.9.1 Definition 3
The OSIF shall provide for the selection of reliable broadcast/multicast communication services.

2.8.9.2 Metric i

33G1

3-G-40 3



VERSION 2.0

21 December 1989

2.8.93 Rationale

Certain applications require the ability to send a single message to all (broadcast) or several (multicast)
destinations. In these situations it is sometimes desirable to insure the proper reception of the information at
all or some of the destinations.

2.8.10 Atomic Broadcast/Multicast Services

2.8.10.1 Definition

The OSIF shall provide for the selection of a reliable, atomic broadcast/multicast for communications services.

2.8.10.2 Metric

2.8.103 Rationale

Certain applications require the ability to send a single message to all (broadcast) or several (multicast)
destinations. In these situations, synchronized behavior of the destinations is important so the communications
subsystem must be able to guarantee that all destinations will receive the message within a stated time after the
message is sent. by necessity, atomic messages must use a *reliable" broadcast/multicast service.

2.9 PROCESS MANAGEMENT INTERFACES

2.9.1 Create Process

2.9.1.1 Definition

The OSIF shall provide the ability to create processes with specified attributes.

2.9.1.2 Metric

2.9.1.3 Rationale

Processes and their environments need to be created prior to their execution. Attributes may include such things
as process name, process priority, stack size, scheduling attributes, memory allocation, etc.

2.9.2 Terminate Process

2.9.2.1 Definition

The OSIF shall provide the ability to delete a process and recover all associated resources of that process.

2.9.2.2 Metric

2.9.23 Rationale

The OSIF must provide the service of deleting a process from being executed. In addition the operating system
shall provide the ability of recovering all the deleted process resources I so directed.

34



I

VERSION 2.0 1
21 December 1989

2.93 Start Process I
2.9.3.1 Definition

The OSIF shall provide a mechanism to designate a process as being ready to execute.

2.93.2 Metric

2.9.33 Rationale

The OSIF must proved the service of submitting a designated process to the processors scheduling queue.

2.9.4 Stop Process

2.9 4.1 Definition

The OSIF shall provide the ability to make a process unavailable for scheduling. 1
2.9.4.2 Metric

2.9.43 Rationale 3
There are situations where processes are stopped from execution yet remain in a "wait state" where they maybe
restarted. Under these situations the OSIF must maintain the process and its environment, yet not consider it
for scheduling until specifically notified.

2.9.5 Suspend Process

2.9.5.1 Definition

The OSIF shall provide the ability for a process to suspend itself or another process from execution such that 3
the suspended process retains resources, rights and privileges and execution may be continued.

2.9.5.2 Metric

2.9.53 Rationale

The OSIF must provide the service of stopping a process from execution, yet maintain the process, the processes I
environment, and the processes data such that the process may be
"continued" from the point of execution at which it was suspended. a
2.9.6 Resume Process

2.9.6.1 Definition 3
The OSIF shall provide the ability to continue the execution of a process that has been previously suspended.

2.9.6.2 Metric U

35G 2

3-G-42 3



I
VERSION 2.0

21 December 1989

2.9.6.3 Rationale

The OSIF shall provide a service to allow a previously suspended process to continue execution from the pointj at which it was suspended.

2.9.7 Delay Process

2.9.7.1 Definition

The OSIF shall provide the ability to delay the scheduling of a process for a specified time period.

2.9.7.2 Metric

j 2.9.73 Rationale

This service allows for a process to be identified for scheduling prior to the actual time it is desired for the3 process to be scheduled.

2.9.8 Interprocess Communication

2.9.8.1 Definition

The OSIF shall provide the ability for processes to exchange information.

12.9.8.2 Metric

2.9.83 Rationale

The OSIF must provide service(s) which allow processes to exchange data. These processes may or may not exist
on the same processor. Examples of interprocess communication interfaces are shared files, lock files, shared
memory, message passing, streams, pipes, fifos, signals, sockets, and access to higher level network services such
as name servers and TCP/IP protocols.

2.9.9 Examine Process Attributes

2.9.9.1 Definition

3The OSIF shall provide the ability for processes to examine the attributes of a particular process.

2.9.9.2 Metric

1 2.9.93 Rationale

Processes need the ability to read, analyze, and/or display the attributes of a particular process. Attributes mayIinclude such things as process name, process priority, stack size, scheduling attributes, memory allocation, etc.

2.9.10 Modify Process Attributes

2.9.10.1 Definition

36

3-G-43



VERSION 2.0 1
21 December 1989

The OSIF shall provide the ability for processes to modify the attributes of a particular process. 3
2.9.10.2 Metric

2.9.10.3 Rationale

Processes need the ability to modify the attributes assigned to a process when it was created when the
significance of that process in the overall operation of the system changes. Examples of attributes that may
require modification are process priority, stack size, scheduling attributes, memory allocation, etc.

2.9.11 Examine Process Status 3
2.9.11.1 Definition

The OSIF shall provide the ability for processes to examine the current status of a particular process. I
2.9.11.2 Metric

2.9.113 Rationale

Processes need the ability to determine if another process has been created, started, deleted, stopped, suspended, 3
etc.

2.9.12 Process Identification 5
2.9.12.1 Definition

The OSIF shall support the unambiguous identification of processes. I
2.9.12.2 Metric 5
2.9.123 Rationale

Processes need the ability to identify other processes in the system in an unambiguous manner for such things
as interprocess communication and examining the status of other processes. This includes different processes
within the system and multiple copies of a single process within the system.

2.9.13 Save/Restart Process I
2.9.13.1 Definition 5
The OSIF shall support the ability for processes to be restarted from a saved state.

2.9.13.2 Metric 3
2.9.133 Rationale

The state of a process (as reflected in its execution status and local environment) is often the cumulative result I
of hours of running within a mission critical system. It is commonly required in such systems to checkpoint the

37

3-G-44 3



VERSION 2.0
21 December '989

state of critical processes so that they may be restarted frtn a known good s.ate if bardware or software faults
are later detected.

2.9.14 Program Management Function

2.9.14.1 Definition

The OSIF shall provide multiprogramming support.

2.9.14.2 Metric

2.9.143 Rationale

This permits multiple Ada "programs" to be activc simultaneously within a common processor. This requires the
assignment of memory and processing resources to the programs.

2.10 PROJECT SUPPORT ENVIRONMENT INTERFACES

2.10.1 Debug Support

2.10.1.1 Definition

The OSIF shall support the debugging of applications, specifically supporting the following capabilities:

- Examine Registers : the OSIF shall support a mechanism to exaraine registers of a selected
resource in the system environment.

- Alter Register- : the OSIF shall support a mechanism to alter registers of a selected resource
in the system environment.

- Set/Clear Breakpoint : the OSIF shall support a mechanism to set/clear multiple breakpoints.

- Set/Clear Watchpoints: the OSIF shall support a mechanism to set/clear multiple watchpoints.

I Single Step Execution : the OSIF shall support a mechanism to single step the execution of a
software program.

- Continue Execution : the OSIF shall support a mechanism resume execution of a program after
a breakpoint or watchpoint is encountered. The program shall resume execution at the next
logical instruction.

- Examine Memory : the OSIF shall support a mechainsm to read the contents of a process's
address space.

- Alter Memory : the OSIF shall support a mechanism to modify the contents of a process'
address space.

- Query Process Environment : the OSIF shall support a mechanism to examine the state of a
process.

38

3-G-45



£

VERSION 2.0 1
21 December 1989

Query Call Stack : the OSIF shall support the ability to determine the calling sequence of a
process.

2.10.1.2 Metric

2.10.13 Rationale

Rationale for each of the ten required Debug capabilities is as follows: I
- Examine Registers : In order to fully access the state of the system, the programmer must be

able to access CPU registers. I
- Alter Registers : In order to control the state of the machine at a given point in execution, the

user must be able to modify register values.

- Set/Clear Breakpoint : debugging tools require the ability to halt execution of the code at
pre-determined points to examine the state and status of the programming environment.

- Set/Clear Watchpoints : debugging tools require the ability to halt execution of the code when
certain conditions or states occur to examine the state and status of the programming
environment. 3

- Single Step Execution : debugging tools require the ability to examine the state and status
changes that occur when each line of code (instruction) is executed.

- Continue Execution : debugging tools require the ability to resume normal execution of the
program after it has been halted/stopped for examination of the programming environment.

- Examine Memory : debugging tools requires the ab;lity to examine the memory within the
address space of a program.

- Alter Memory : debugging tools requires the ability to modify the memory within the address
space of a process.

- Query Process Environment : debugging tools require the ability to examine the state and status I
of the programming environment resulting from the execution of a process and does not
exclude the states of associated queues and stacks (run, delay and entry queues, etc.). 5
Query Call Stack : debugging tools require the ability to examine the trail of calling sequences
(e.g., providing the ability to determine "How did we get here?"). 5

2.10.2 Execution History

2.10.2.1 Definition 5
The OSIF shall support the ability to monitor the execution history of a process, including such information as:

Frequency of calls I
3o

3-G-46 3



r

I VERSION 2.0
21 December 1989

3 Length of calls

Missed deadlines

Length of queues

5 - Tasking of runtime systems (e.g., number of context switches, CPU time used)

Dynamic paging activity

3 - Memory allocation (e.g., number of requests, block sizes, fragmentation, length of use)

- What OS services are being used (e.g., passing labels)

2.10.2.2 Metric

I 2.10.2.3 Rationale

In order for a performance monitor to create a history of events, the OS must provide the above information.

2.11 RELIABILITY, ADAPTABILITY, MAINTAINABILITY INTERFACES

2.11.1 Fault Information Collection

3 2.11.1.1 Definition

The OSIF shall provide for specifying the collection of available fault information.

2.11.1.2 Metric

5 2.11.13 Rationale

An application must be able to determine that a non-recoverable fault has occurred, either by detecting the fault
through information available to it or by receiving some signal from other systems/devices that a fault has been
detected. This information is needed to increase the relability of the system. This requirement provides a subset
of the services required under Event and Error Interfaces (Refer to Section 2.5).

5 2.11.2 Fault Information Request

2.11.2.1 Definition

The OSIF shall provide foir the receipt of fault information on request.

I 2.11.2.2 Metric

2.11.2.3 Rationale

3 The system must be able to determine that a non-recoverable fault has occurred, either bv detecting the fault
through information available to it or by recciving some signal from other systems/devices that a fault has been

5 40

13-G-47



S

VERSION 2.0 1
21 December 1989

detected. This information is needed to increase the reliability of the system. Receipt of fault information can 5
be through active quer) or via a table that the application can access. This requirement provides a subset of the
services required under Event and Error Management (Refer to Section 2.53).

2.113 Diagnostic Tests Reques

2.113.1 Definition 3
The OSIF shall provide for the initiation of diagnostic tests on specific request. The OSIF shall support initiation
of diagnostic tests at specified intervals. 3
2.11.2 Metric

2.1133 Rationale 3
Examples of these tests are Built In Test Equipment (BITE) tests, when software can initiate them, and firmware
diagnostic tests of hardware components. 3
2.11.4 Diagnostic Tests Results

2.11.4.1 Definition 3
The OSIF shall provide the ability to determine the results of diagnostic tests.

2.11.4.2 Metric

2.11.43 Rationale 3
Receipt of the results of diagnostic tests can be through active query or via a table that the application can
access. These diagnostic tests can be those initiated under the Diagnostic Tests Request requirement (Refer to
Section 2.11.3) or self tests independently initiated by the affected system component. S
2.11.5 Operational Status

2.11.5.1 Definition I
The OSIF shall provide access to the operational status of all system components. I
2.11.5.2 Metric

2.11.5.3 Rationale 5
System components include both software and hardware components such as buses, memory modules, processors,
and I/O channels. Status indications include on, off, faulty, suspect, and the relief of a previously reported fault
or overload condition.

2.11.6 Fault Detection Thresholds 5
2.11.6.1 Defir;ion

41-3

3 -C 4 I



I

I VERSION 2.0
21 December 1989

The OSIF shall provide for specifying fault detection thresholds. These shall include but not be limited to:

- number of retry attempts, if applicable, that shall be made before an error is determined to be3 a non-recoverable fault

- maximum number of correctable errors that, if detected within a specified time, will classify the3 component as suspect or treat the collective errors as a non-recoverable fault

2.11.6.2 Metric

2.11.63 Rationale

The thresholds cited in the definition are required to detect intermittent faults. This requirement also applies
to the Event and Error Management requirement (Refer to Section 2.53).

2.11.7 Fault Isolation

1m 2.11.7.1 Definition

gThe OSIF shall support the isolation of faults to a particular component.

2.11.7.2 Metric

5 2.11.73 Rationale

Not only must an operating system interface provide detailed error information but it must also support localizing
the fault so that applications software can be reconfigured and equipment repaired or replaced. Component,
as used in the definition, refers to both hardware and software components.

5 2.11.8 Fault Response

2w.11.8.1 Definition

The OSIF shall provide for the specification of actions to be taken on the occurrence of a fault. The OSIF shall
support at least the following actions:

- Restart at a specified point for a specified fault

- Use of specified comjl3nents as backup for faulty components

5 - Stop when a specified minimum set of components is no longer available

- Schedule a specified process

- Report to another node

3 2.11.8.2 Metric

2.11.83 Rationale

3 3-G-49



I

VERSION 2.0 1
21 Decsmber 1989

Navy applications, particularly those that are platform deployed, have traditionally required ever increasing fault 3
tolerant coverage. Part of that coverage has included providing a variety of fault responses to cover not only
various kinds of faults but also various mission and processing requirements.

2.11.9 Reconfiguration

2.11.9.1 Definition 3
The OSIF shall support the dynamic reconfiguration of hardware and software.

2.11.9.2 Metric 3
2.11.93 Rationale

The set of available configurations for a particular implementation can be predetermined at system build time.
These configurations will specify various configurations of the software to accommodate such variables as changes
in mission requirements and operating in degraded modes. They will also specify the configurations that make
sense for an implementation such as minimum memory requirements. The purpose of this requirement is to I
allow an implementation to make the best use of available hardware and software resources.

2.11.10 Enable/Disable System Component 3
2.11.10.1 Def'iition

The OSIF shall provide the ability to enable or disable a specified system component on request.

2.11.10.2 Metric 3
2.11.103 Rationale

This requirement supports reconfiguration. Examples of hardware components are processors, memory modules, I
and buses. Groups of software components could be subsystems or Ada programs.

2.11.11 Performance Monitoring 3
2.11.11.1 Definition

The OSIF shall support queries for snapshots of rcsource utilization. 7he OSIF shall support enabling or 3
disabling monitoring of each resource.

2.11.11.2 Metric 5
2.11.113 Rationale

Snapshots are defined to be of a specified time exposure (as opposed to instantaneous). m

2.11.12 Set Resource Utilization Limits 3
2.11.12.1 Definition

43

3-G-50 3



5

IVERSION 2.0
21 December 1989

3 The OSIF shall support pre-defining and dynamically adjusting over and under utilization limits for a process
on a specified resource.

3 2.11.12.2 Metric

2.11.123 Rationale

W Limits can be set at system build and then modified runtime per process and resource combination.

3 2.11.13 Resource Utilization Limits Violation

2.11.13.1 Definition

The OSIF shall support the detection and reporting of a process which violates its utilization limits for a
resource.

5 2.11.13.2 Metric

2.11.133 Rationale

3 Once a limit is violated the application may examine overall system performance and the situation to determine
if a fault exists or if this load is consistent with operating demands. This requirement correlates directly to the
Set Resource Utilization Limits requirement, 2.11.12.

1 2.11.14 Checkpoint Data Structures

5 2.11.14.1 Definition

The OSIF shall support the ability to replace specified existing data structures with those same structures as they5appeared at a certain point in the past.

2.11.14.2 Metric

3 2.11.143 Rationale

Reconfiguration and diagnostics require the ability to move data structures in and out of memory. For example,
in the event of the failu. . of a global memory module and consequent reconfiguration, applications could be
warm-started in place, passing a pointer to the last checkpointed copies of mission-critical data structures.

2.12 RESOURCE MANAGEMENT INTERFACES

2.12.1 Virtual Memory Support

2.12.1.1 Definition

The OSIF shall support the selection of the virtual memory utilization parameters.

3 2.12.1.2 Metric

1 44

3 3-G-51



I

VERSION 2.0 1
21 December 1989

2.12.1.3 Rationale 5
On processor architectures supporting a larger virtual address space than the size of physical memory, the
operating system implementation will generally support the virtual memory mapping hardware. The paging
algorithm used, and other virtual memory support parameters will need to be tailored to the application.

2.12.2 Virtual Space Locking 3
2.12.2.1 Definition

The OSIF shall provide the capability to lock certain application specified regions of virtual code and data space 3
into physical memory, and for the subsequent release of such locks.

2.12.2.2 Metric 3
2.12.23 Rationale

Fo- !irne-crit'cal pnrtions of applications, paging data and/or code to a secondary (mass) storage device would 3
not allow for high performance access. For fault tolerant applications, the fault handling logic cannot be placed
on a device that is likely to fail.

2.123 Dynamic Memory Allocation and Deallocation

2.12.3.1 Definition I
The OSIF shall provide for allocation of a block of virtual or physical memory of the size specified and for
deallocation of a previously allocated block. I
2.12.3.2 Metric

2.12.33 Rationale 5
An application entity may require a global heap for its own dynamic memory management (e.g. the Ada run-time
library), for dynamic load or relocation of code, for temporary buffers, etc. Such blocks, when no longer required
by the application, should be re-entered into the pool of available physical memory.

2.12.4 Dynamic Memory Protection I
2.12.4.1 Definition

The OSIF shall provide the ability to query and set memory protection attributes. 5
2.12.4.2 Metric

2.12.4.3 Rationale I
Mission critical systems must guard against erroneous memory references (whether the result of software bugs,
a security breach, or a hardware fault). While rilere is no foolproof approach to this, hardware memory
protection provides a substantial level of confidence; but only if the OS interface provides for tailoring the

45G 2

3-G-52



I

IVERSION 2.0
21 December 1989

memory protection to the application's needs. Any arbitrary block of memory may contain code, read/write data,
read-only data, or (perhaps in multi-level secure systems) write-only data. Memory protection requirements on
a block may change over its lifetime.

Specification is required for all static code and data areas; any block of memory obtained through dynamic
memory allocation may have its attributes specified during allocation. Memory protection attributes for any
(static or dynamic) block should be alterable at run-time. Protection violations should result in error events
(Refer to Section 25.3).

3 2.12.5 Shared Memory

2.12.5.1 Definition

3The OSIF shall support concurrent access, by several processes, to specified areas of physical memory.

2.12.5.2 Metric

1 2.12.53 Rationale

The concept of Ada library units requires shared memory for both code and data. Time critical applications
often cannot tolerate the overhead of message passing, rendezvous, or other forms of interprocess (or inter-task)
communication. Applications are responsible for sensible use of the shared memory resource (see
Synchronization and Scheduling Interface, Mutual Exclusion).

For virtual storage architectures, this will require a many-to-one mapping from virtual memory spaces to the
shared physical page(s). Where the several processes are distributed across several processors separated by
backplane or network interfaces, this will implicitly require interprocessor communication and synchronization.

2.12.6 Allocate, Deallocate, Mount, Dismount Services

3 2.12.6.1 Definition

The OSIF shall support the allocation of devices to processes, and subsequent deallocation of these devices. For3 devices with removable media, the OSIF shall also support mounting and dismounting of media.

2.12.6.21 Metric

12.12.6.3 Rationale

It is in the nature of some devices that they may be opened by several processes (i.e. shared), but many devices
must be accessed exclusively by one process at a time. Some devices support opening of mountable volumes,
and the OS should also provide explicit interfaces to specify the mounting and dismounting of such volumes.
Control over such details is often left to an ad-hoc interface to device drivers, but these common requirements5 are better handled via explicit application/OS/dcice-driver interfaces.

2.12.7 Designate Control

1 2.12.7.1 Definition

* G4

3 3-G-53



I

VERSION 2.0 1
21 December 1989

The OSIF shall provide the means to designate responsibility for maintaining the status and determining the 3
configuration of a system resource.

2.12.7.2 Metric 3
2.12.7.3 Rationale

A basic purpose of an operating system is to regulate the control of system resources. This interface may be I
pre-run-time (static designation of control) or run-time (dynamic designation of control). The unit of software
assuming the responsibility may be the operating system itself. 3
2.12.8 Release Control

2.12.8.1 Definition 3
The OSIF shall provide the means to release a previously assumed system resource status and configuration
responsibility. 3
2.12.8.2 Metric

2.12.83 Rationale 3
Responsibilities that software can assume at runtime need also to be able to be revoked and reassigned. This
shall allow the operating system to designate responsibility for the system resource to another unit of software
via the "Designate Control" interface.

2.12.9 Allocate Resource 3
2.12.9.1 Definition

The OSIF shall provide a means to designate particular process resources for use by a particular process. 5
2.12.9.2 Metric

2.12.93 Rationale !

A basic purpose of an operating system is to regulate the control of system resources. The allocation request
shall actually be honored by the entity currently designated as controlling the resource. Examples of units of
system resources are an I/O channel, a block of physical memory, response to a specific class of hardware
interrupt, a brea.point register, a co-processor user identifier, and a connection over a LAN. The software
making the allocation may be the operating system itself or may be application software assuming status and
configuration responsibilities.

2.12.10 Deallocate Resource 3
2.12.10.1 Definition

The OSIF shall provide a means to relinquish particular system resources from a particular process. I

47 3
3-G-54 3



I

VERSION 2.0
21 December 1989

I2.12.10.2 Metric

2.12.103 Rationale

Resources that software can assume at runtime need also to be able to be revoked and reassigned.

j 2.12.11 System Resource Requirements Specification

2.12.11.1 Definition

j The OSIF shall provide the ability to specify system resource requirements.

2.12.11.2 Metric

2.12.113 Rationale

The ability to modify the allocation of system resources based on operational need is supported by this
requirement. Specification of resource requirements before requesting resource allocation is required for
effective management of resources, especially to prevent deadlock among contenders for the resources.

2.12.12 System Resource Capacity

2.12.12.1 Definition

I The OSIF shall provide a query of the storage or workload capacities of the system resources.

I 2.12.12.2 Metric

2.12.12.3 Rationale

The application (or entity controlling a resource) needs to know the availability and capacity of a resource to

effectively allocate it during system operation.

j2.13 SYNCHRONIZATION AND SCHEDULING INTERFACES

2.13.1 Process Synchronization

I 2.13.1.1 Definition

The OSIF shall provide an explicit mechanism by which two processes may synchronize their execution.

2.13.1.2 Metric

j2.13.13 Rationale

Processes require the ability to synchronize their execution in real time applications.

In order to ensure predictable performance this may include access to low-level synchronization mechanisms to
ensure proper communication protocols.

1 48

3-G-55



U

VERSION 2.0 3
21 December 1989

Synchronization should prohibit priority inversion situations.

2.13.2 Mutual Exclusion

2.13.2.1 Definition

The OSIF shall provide mutual exclusion and shall support mutual exclusion with timeouts. 3
2.13.2.2 Metric

2.13.2.3 Rationale 3
The system must have a low level mutual exclusion mechanism available to all users. If mutual exclusion is
implemented with semaphores, then the semaphores must have operations available to create/destroy them, to
claim/release them, and for priority queuing of processes waiting for a semaphore. Time-out mechanisms for
processes waiting on semaphores must also be available. Developers must also be able to query the status of
a semaphore. All resources must have the ability to control critical sections for mutual exclusion. This is
necessary for both safety and security. Processes that request a shared resource must have the ability/option
to withdraw their request via a time-out, which may be zero; i.e., immediate withdrawal if the resource is not

immediately available.

2.133 Cumulative Execution Time of a Process

2.13.3.1 Definition 3
The OSIF shall provide the ability to access the cumulative execution time of a process.

2.133.2 Metric I
2.13.33 Rationale 3
When the scheduler is responsible for aperiodic process, it needs a means of determining the cumulative
execution time so that priorities -f the processes may be adjusted. The operating system interface must provide
a means for applications software to monitor and establish the rules for scheduling and execution of aperiodic
processes (Refer to Section 2.13.10).

2.13.4 Attach a Process to an Event 3
2.13.4.1 Definition

The OSIF shall support the ability to attach a process to an event. 5
2.13.4.2 Metric

2.13.43 Rationale "

The application must be able to provide the schcduler the information necessary to attach a process to an
interrupt. This allows a process to respond to an external stimulus and helps to obtain more flexible scheduling.
An example of an attached process is an event handler.

49-3

3-G.-56 3



VERSION 2.0
21 December 1989

2.13.5 Transaction Scheduling Information

2.13.5.1 Definition

The OSIF shall provide the ability for a process to specify its response requirements for services.

2.13.52 Metric

2.13.53 Rationale

Scheduling in hard real time systems must be done in a fashion to meet deadlines. For transactions that require
a sequence of operations across a distributed system, the scheduling mechanisms involved require the ability of
scheduling processes with respect to deadline requirements.

2.13.6 Scheduling Delay

2.13.6.1 Definition

The OSIF shall support the ability to delay the scheduling of a process.

2.13.6.2 Metric

2.13.6.3 Rationale

(Refer to Section 2.9.7)

2.13.7 Periodic Scheduling

2.13.7.1 Definition

The OSIF shall provide for the periodic scheduling of a process.

2.13.7.2 Metric

1 2.13.73 Rationale

In real time systems, certain process require the ability to be scheduled at a specific periodic rate. The rate may
be specified with respect to a mean delta with a plus and minus limit of variance.

2.13.8 Multiple Scheduling Policies

I 2.13.8.1 Definition

The OSIF shall support multiple scheduling policies.

2.13.8.2 Metric

2.13.8.3 Rationale

1 50

3-G-57



VERSION 2.0 1
21 December 1989

Different applications require that different scheduling algorithms.

2.13.9 Selection of a Scheduling Policy

2.13.9.1 Definition i
The OSIF shall support the ability to select the scheduling policy to suit the need. i

213.9.2 Metric

2.13.93 Rationale 3
It is perceived that once a scheduling algorithm is selected for an application, it remains static under normal
conditions. However, mode changes or workload extremes may require dynamic alterations in scheduling
policies. To meet this requirement, scheduling policies must be able to be altered without system reinitialization.

2.13.10 Modification of Scheduling Parameters 3
2.13.10.1 Definition

The OSIF shall support the ability to modify the values of the controllable scheduling parameters. 3
2.13.10.2 Metric

2.13.103 Rationale I
Certain applications require the ability to dynamically modify the scheduling algorithms parameters used for
selection of the process to be submitted for execution. I
The scheduler will need the freedom to change the priority of a process dynamically. As the system operates,
different processes will assume prominent positions and therefore require higher priorities. This adjustment of
priorities must be dynamic in order to maximize system performance. The policies by which the priority
adjustments are made must be controlled by the application software.

2.13.11 Precise Scheduling (Jitter Management) i
2.13.11.1 Definition 5
The OSIF shall provide the ability for an application to indicate to the scheduler an exact specified time for
starting a process.

2.13.11.2 Metric

2.13.11.3 Rationale 3
The scheduler must be able to guarantee the process is executed at the exact time specified and is not unduly
delayed. g
In real-time systems, completion of a scheduling event too early can be as bad as completion of a scheduling

3-G-58 3



VERSION 2.0
21 December 1989

event too late, i.e., to miss a deadline. This phenomena is known as "jitter" and can cause performance problems

in real-time systems. In order for real-time systems to perform as predicted, and to ensure stability, schedule
must be met as closely as possible. It is not appropriate to complete an event early if it can be avoided. This
is one of the things that separates real-time systems from time-sharing systems.

2.14 SYSTEM INITIALIZATION AND REINITIALIZATION INTERFACES

2.14.1 Image Load

2.14.1.1 Definition

-- The OS:F shall provide the capability to perform initial and reinitial executable image load (including data) both
locally and remotely to and for each and all processor(s) throughout a system.

2.14.12 Metric

3 2.14.13 Rationale

The OSIF must support and provide the capability to load and reload initialize and reinitialize an executable
image into each and all processor(s) throughout a system, both locally and remotely. This includes initial (c. ld
start) and reinitial (cold, reconfigured (re)start and/or warm, reconfigured (re)start) of the OSs own designated
processor and all others.

3 2.14.2 System Initialization and Reinitialization

2.14.2.1 Definition

3 The OSIF shall support the capability to initialize and reinitialize all system resources.

2.14.2.2 Metric

5 2.14.23 Rationale

A distributed, multiple processor, real-time system must be initialized from a cold start and reinitialized after
a cold start or warm (re)start such that the system configuration information necessary to execute the functions
of the system is properly loaded in the different system components. This includes all communications,
input/output ports, data storage and access components, etc. This means that the Operating System Interface
must support all necessary system initialization and reinitialization functions for a given application. This is not
limited to image load, initialization, or re-initialization.

5 2.143 Shutdown

2.14.3.1 Definition

IThe OSIF shall provide the capability to perform planned, orderly shutdown at the local and remote levels for
each and all processor(s) throughout a system.

2.14.3.2 Metric

3-G-59



I

VERSION 2.0 1
21 December 1989

2.1433 Rationale

The OSIF must provide the capability to perform planned, orderly shutdown operations when required under
crisis and non-crisis situations. This is good resource management policy in all situations up to the most
catastrophic crash event in order to attempt an orderly recovery.

2.15 TIME SERVICES INTERFACES

2.15.1 Read Selected Clock

2.15.1.1 Definition 5
The OIF shall provide the ability to read selected clocks.

2.15.12 Metric I
2.15.13 Rationale 3
The OSIF must have a facility for applic. tions to read a selected clock, or Eet of clocks, in a system. Many
applications have the need to time stamp data either to coordinate events taking place in different parts of the
system or to record when events take place so that data may be later properly processed or time ordered.

2.15.2 Set Selected Clock

2.15.2.1 Definition I
The OSIF shall provide the ability to set selected clocks.

2.15.2.2 Metric

2.15.23 Rationale 5
The clocks used in a system may change over time. They may :ieed to be set when a system component is
initialized. The clock is a resource whose detailed management belongs to the OS. However the setting of it
and coordination with external time sources are issues which must be left to the designer of a specific system.
The OSIF as the controller of common resources must have a facility for applications to set a selected clock, or
set of clocks, in a system.

2.15.3 Synchronization of Selected Clocks

2.15.3.1 Definition 3
The OSIF shall support the ability to selectively svnchrc,,ize clock(s) in the systcm.

2.153.2 Metric I
2.15.3.3 Rationai 5

.he CS, iust have a facility for applications to sc!cctively synchronize clocks in a system. The facility must

533

3-G-60 3



I
VERSION 2.0
21 December 1989

allow synchronization of one clock or set of clocks to other clock sets in the system. These clock sets may be
part of different subsystems, for example SAFENET, FUTUREBUS+, and a navigation system clock
synchronized to Greenwich Mean Time. A means must exist to synchronize these to support those cases in3 which a common platform time base is required.

2.15.4 Select a Primary Reference Clock

3 2.15.4.1 Definition

The OSIF shall support the ability to select a primary reference clock for the system.

I 2.15.4.2 Metric

3 2.15.43 Rationale

The OSIF must have a facility for applications to select one primary reference clock or a set of primary clocks
out of all clocks in a system and the set of systems integrated on a platform. This primary set must be able to
be used to support clock synchronization throughout the system and also support the selection of a backup
reference clock in the event of failure of the primary. This is required to support those cases in which clocks
of different quality are used in different subsystems or within a subsystem. A method must exist for indicating3 that a high quality clock or set of clocks shall be used as the reference set to which others are synchronized.

2.15.5 Locate the Primary Reference Clock

5 I2.15.5.1 Definition

The OSIF shall support the ability to locate the primary reference clock for a system.

1 2.155.2 Metric

3 2.15.5.3 Rationale

The OSIF must have a facility for applications to locate the primary reference clock in a system. This is required
to support system management functions. For example, a failure in a system component could cause a system
manager application to lose track of the identity of the current primary clock.

2.15.6 Timer Services

2.15.6.1 Definition

The OSIF shall support the setting and clearing of alarms and shall allow for notification at alarm time. The
alarm time would be inclusive of either relative time difference or absolute time difference.

3 2.15.6.2 Metric

2.15.6.3 Rationale

5 The OSIF must have a facdlirv for applicarilmr' to 1&t i&ml,rs for such thin, as ,atchdog timers, delays, etc.
Once the time has expired the notification , the ihiirm muwt be propaatcd to the appropriate recipient of the

I"-



I
VERSION 2.0 1
21 December 1989

alarm. 3
An Ada application and the Ada runtime system must be able to specify delays in terms of either an absolute
or relative time basis. examples: 3

delay 2.0; -- delay for 2 seconds from now.
delayuntil(NextTime); -- delay until the absolute time

-- specified by the variable
-- Next Time

2.15.7 Precision Clock 3
2.15.7.1 Definition

The OSIF shall provide a time granularity of one nanosecond to processes that is independent of the granularity I
of the underlying hardware.

2.15.7.2 Metric 3
2.15.73 Rationale

Applications must have a consistent, portable interface to the underlying clock(s) that allow them to use the full I
capability of the clock(s).

2.16 ADA LANGUAGE SUPPORT INTERFACES 3
2.16.1 Create Task (Ada)

2.16.1.1 Definition I
The OSIF shall support the capability to create an Ada task that supports the full set of Ada tasking operations
as defined in the Ada Language Reference Manual (ANSI/MIL-STD-1815A).

2.16.1.2 Metric 3
2.16.13 Rationale

An Ada runtime system must have the ability to create Ada tasks as logically concurrent threads of execution
that are managed by the Operating System. At the point of task creation, it must be possible to specify the Ada
task's attributes (e.g., task name, priority, the task's master, stack space size, the number of entries) and the
system resources (e.g., memory) needed to support the execution of the created Ada task (Refer to Section

2.9.1).

2.16.2 Abort Task (Ada)

2.16.2.1 Definition

The OSIF shall support the capability to abort the execution of an Ada task as defined in the Ada Language
Reference Manual

3-(,-62



VERSION 2.0
21 December 1989

(ANSI/MIL-STD-1815A).

2.1622 Metric

2.16.23 Rationale

An Ada runtime system must have the ability to abort Ada tasks and recover the resources previously held by
those tasks (Refer to Sections 2.9.2 and 2.9.4).

2.16.3 Suspend Task (Ada)

2.16.3.1 Definition

The OSIF shall support the capability to suspend the execution of an Ada task.

2.16.3.2 Metric

2.16.3.3 Rationale

An Ada runtime system must have the ability to suspend the execution of Ada tasks in order to support various
task scheduling mechanisms (Refer to Section 2.9.5).

2.16.4 Resume Task (Ada)

2.16.4.1 Definition

The OSIF shall support the capability to resume the execution of an Ada task.

2.16.4.2 Metric

2.16.4.3 Rationale

An Ada runtime system must have the ability to resume the execution of Ada tasks in order to support various
task scheduling mechanisms (Refer to Section 2.9.6).

2.16.5 Terminate Task (Ada)

2.16.5.1 Definition

The OSIF shall support the capability to terminate thu execution of an Ada task as defined in the Ada Language
Reference Manual (ANSI/MIL-STD.1815A).

2.16.5.2 Metric

'.16.5.3 Rationale

An Ada runtime system must have the ability to terminate the execution of Ada tasks in order to support the
full semantics of the Ada tasking Model.

II 3-G-f)3



U

VERSION 2.0 3
21 December 1989

2.16.6 Restart Task (Ada)

2.16.6.1 Definition

The OSIF shall support the capability to restart the execution of an Ada task at a point immediately following 3
its elaboration code.

2.16.6.2 Metric 3
2.16.63 Rationale

An Ada runtime system must have the ability to restart the execution of Ada tasks in order to support mode I
change operations (Refer to Section 2.9.13).

2.16.7 Ada Task Entry Calls I
2.16.7.1 Definition

The OSIF shall support simple, timed, and conditional Ada task entry calls as defined in the Ada Language
Reference Manual (ANSI/MIL-STD-1815A).

2.16.7.2 Metric I
2.16.73 Rationale 3
An Ada runtime system must have the ability to implement all forms of Ada task entry calls, namely simple,
timed, and conditional calls.

2.16.8 Ada Task Call Accepting/Selecting

2.16.8.1 Definition 3
The OSIF shall support the various forms of accepting Ada task entry calls as defined in the Ada Language
Reference Manual (ANSI/MIL-STD-1815A). In particular, the OSIF shall support simple accepts, simple
selective waits, selective waits with delay alternatives, selective waits with an else clause, and selective waits with I
a terminate alternative.

2.16.8.2 Metric

2.16.8.3 Rationale

An Ada runtime system must have the ability to implement all forms of accepting and selecting Ad- task entry I
calls as defined in the Ada Language Reference Manual (ANSI/MIL-STD-1815A).

2.16.9 Access Task Characteristics (Ada) 3
2.16.9.1 Definition

The OSIF shall support the capability to access an Ada task's ::.ributes and characteristics.

3 "' 3
3- G- ~ 4



3 VERSION 2.0
21 December 1989

2.16.9.2 Metric

2.16.93 Rationale

An Ada runtime system must have the ability to read a task's attributes (e.g., task ID, execution state, available
CPU time compared with specified time budget), and also, to read and write a task's characteristics (e.g., priority,
period, phase) inorder to implement various scheduling mechanisms (Refer to Section 2.9.10).

2.16.10 Monitor Task's Execution Status (Ada)

2.16.10.1 Definition

The OSIF shall support the ability to monitor a task's execution status, in particular, the amount of accumulated
CPU time that has been used by the task.

2.16.10.2 Metric

2.16.103 Rationale

An Ada runtime system must have the ability to monitor a task's execution behavior in terms of the amount of
accumulated CPU time that it has used. Such information is needed on a task-by-task basis in order to
implement certain real-time scheduling algorithms (e.g., deferrable server, sporadic server, degraded mode for
imprecise results) (Refer to Section 2.9.11).

2.16.11 Access to a Precise Real-Time Clock (Ada)

2.16.11.1 Definition

The OSIF shall support access (e.g., read/write, setting alarms) to a precise, continuous real-time clock.

2.16.11.2 Metric

2.16.113 Rationale

An Ada runtime system must have the ability to read from and write to a precise real-time clock. Also, the Ada
runtime must be able to set or remove timer alarms to be triggered at a specified time in the future, in order
to implement Ada's delay statement and timed entry calls. Setting these timer alarms is also useful for
implementing (1) precis,, periodic scheduling of Ada tasks, (2) watchdog timers, and (3) timeouts on
communication primitives (Refer to Sections 2.15.6 and 2.15.7).

2.16.12 Access to a Time-of-Day Clock (Ada)

2.16.12.1 Definition

The OSIF shall support read and write access to a time-of-day (TOD) clock.

2.16.12.2 Metric

2.16.12.3 Rationale

58

3-G-65



I

VERSION 2.0 3
21 December 1989

An Ada runtime system must have the ability to read from and write to a time-of-day clock in order to support
the operations defined in package calendar. Furthermore, an Ada application program must be able to read the

TOD (through a calendar.Clock function call) clock in order to affect a delay until a specified time in the future
(e.g., delay (NextStartTime - calendar.Clock)). 3
2.16.13 Dynamic Task Priorities (Ada)

2.16.13.1 Definition 5
The OSIF shall support the capability to get and set the execution priority of an Ada task.

2.16.13.2 Metric I
2.16.133 Rationale 3
An Ada runtime system must have the ability to dynamically control the execution priority of an Ada task in
order to implement various scheduling mechanisms (Refer to Section 2.13.10).

2.16.14 Scheduling Policy Selection (Ada)

2.16.14.1 Definition 3
The OSIF shall support the capability to get and set the policy that is to be used to schedule Ada tasks.

2.16.14.2 Metric I
2.16.143 Rationale

An application must be able to select the scheduling policy (e.g., priority preemptive, time slicing within equal
priority levels) that will be used by the Operating System to schedule executing tasks. Open issue- " (1) one
versus multiple policies in effect at a given time; (2) how various policies interact, and (3) the scope of a
scheduling policy (e.g., entry queues, run queue).

2.16.15 Memory Allocation and Deallocation (Ada) 3
2.16.15.1 Definition

The OSIF shall support the capability to create and/or delete a pool of memory that can be used as a heap for 3
allocation and deallocation of smaller access collections. Furthermore, the OSIF shall support the capability to
allocate data objects from both an independently allocated heap (e.g., Ada access collection) and a global pool
of unallocated memory. It must be possible for the application to notify the Operating System when use of the
heap space is no longer required.

2.16.15.2 Metric 3
2.16.15.3 Rationale

An Ada runtime system must have the ability to allocate memory space for access variables (i.e., access 3
collections) and task stacks. Heap management is neccssarv in order to prevent memory fragmentation and

3-(G-66



VERSION 2.0
21 December 1989

other garbage collection related problems, and to allocate and deallocate large chunks of memory based on
dynamic scope (Refer to Section 2.12.3).

2.16.16 Interrupt Binding (Ada)

2.16.16.1 Definition

The OSIF shall support the capability to bind and unbind an interrupt to Ada application code, in particular, to
at least an Ada interrupt task entry.

2.16.16.2 Metric

2.16.16.3 Rationale

An Ada runtime system must have the ability to attach and detach code to a device interrupt. The Ada Language
Reference Manual (LRM) suggests that interrupts can be bound to task entries using an address dause.
Moreover, a conventional Interrupt Service Routine (ISR) approach requires that the ISR code be directly tied
to a device interrupt (Refer to Section 2.13.4).

2.16.17 Enable/Disable Interrupts (Ada)

2.16.17.1 Definition

The OSIF shall support the capability to enable and disable interrupts.

2.16.17.2 Metric

2.16.173 Rationale

Ada applications and the Ada runtime system must have the ability to control interrupts by enabling and
disabling them. Often times, controlling interrupts is used as a programming technique for implementing critical
sections of code. Disabling and enabling interrupts is also necessary for controlling a device's operations.

2.16.18 Mask/Unmask Interrupts (Ada)

2.16.18.1 Definition

The OSIF shall support the capability to mask and unmask device interrupts.

2.16.18.2 Metric

2.16.183 Rationale

Ada applications and the Ada runtime system must have the ability to control device interrupts by masking and
unmasking them. Masking and unmasking interrupts is also necessary for controlling a device's operations.

2.16.19 Raise Exception (Ada)

2.16.19.1 Definition

60

3-G-67



I
VERSION 2.0

21 December 1989

The OSIF shall support the capability to raise an exception in an Ada task.

2.16.19.2 Metric

2.16.193 Rationale 3
An Ada runtime system must have the ability to raise an exception in any given Ada task. In particular, an Ada
runtime system must be able to raise an exception in a task when hardware-detected exceptions (e.g., overflow,
access violation) occur.

2.16.20 Ada Input/Output Support

2.16.20.1 Definition

The OSIF shall support for Ada input/output as described in Chapter 14 of the Ada Language Reference 3
Manual.

2.16.20.2 Metric 3
2.16.203 Rationale

Conformance to the Ada Language Standard. The correspondence between the input/output supported for Ada 3
and all other input/output supported by the interface must be clearly defined. The interface must provide access
from Ada to files written by other languages (if any). 3

0

U
I
U
I
I
I
I

61-8

3-C-68 3



U
3 NAVSWC TR 90-248

I

UI EVALUATION PROCESS REPORT FOR
NEXT GENERATION COMPUTER RESOURCES
OPERATING SYSTEMS INTERFACE BASELINE
SELECTION

I
BY NEXT GENERATION COMPUTER RESOURCES (NGCR)3 OPERATING SYSTEMS STANDARDS WORKING GROUP (OSSWG)

STEVEN L. HOWELL, EDITOR
UNDERWATER SYSTEMS DEPARTMENT

3 7 MAY 1990

I

3 Approved for public release; distribution is unlimited

U

I

U Dahigren, Virginia 22448-5000 0 Silver Spring, Maryland 20903-5000

I
3 3-H-I



REPORT DOCUMENTATION PAGE FomApoe
0MS No. 0704-0188

Pul; :epurting burlden for Iiro collection orf information ii etmjtd tu -e~ayc I hour per response including the timer for 'reeng instructions,. serching eri-strfl data
so., e, gathering arnd maintaining the data needed, and (ompleror.g .nd fejewndtl- O tt 10 offor~.,on Send coments regarding this bu.rdenestimate or any other

adpc't of this (Olledlon of information. in l dng sugestionl for reducing tis~ burden. to Wasington fleadqu.arters Services. 0rectorate for Information operationsr and

1. AGENCY USE ONLY (Leave blank) 2 .1a REO990TE3 REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
EvalIua tion Process Kqport for Next Gvnerat ion CoM pu~ter Resources, Operat Ing

SsesInterf'ace Baseline Selectio

6. AUTHOR(S)

Steven L. Howell, Editor

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Surface Warfare Center (1033)
10901 New 1Hampshire Avenue N VW T 9-4
Silver Spring, MD 20903-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

Space and Naval Warfare Systems Command (SPAWAR 3243)
Washington, DC 20365-5109

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTIONd CODEI Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The Operating Systems Standards Working Group (OSSWG) has been tasked to evolve an interfaceI standard for operating systems. This document defines the process by which the OSSWG will make a
recommendation of a baseline interface specification to the Next Generation Computer Resources (NGCR)
program office. This baseline specification will be derived from one or more existing operating systemI implementations, specifications, or standards.

14 SUBJECT TERMS S. NUMBER OF PAGES
53

NGCR OSSWG 6. PRICE CODE

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UJNC[ASSIFIED:l UNCLASSIFIED) UNCLASSIFIED) SAR
SN 7540-01 280 5500 Standard F orm 298 (Rev 259)t

rerrrb-d bV ANSI Std Z"It

3-H-3



I
1

NAVSWC TR 90-246

3I EVALUATION RESULTS REPORT FOR
NEXT GENERATION COMPUTER RESOURCES

* OPERATING SYSTEMS INTERFACE BASELINE
SELECTION

I

I BY NEXT GENERATION COMPUTER RESOURCES (NGCR)
OPERATING SYSTEMS STANDARDS WORKING GROUP (OSSWG)

STEVEN L. HOWELL, EDITOR
UNDERWATER SYSTEMS DEPARTMENT

7 MAY 1990

Approved for publc elease; distribut1on is unlimited

*~NANA ALURFACE WARFARE CENTER
Dahlgren, Virginia 22448-5000 0 Silver Spring, Maryland 20903.5000

3-1-1



REPORT DOCUMENTATION PAGE Fo Approd

t0W. 1:ct~q O' I 1$owu of rifo'rrh n t.0ir i sgc~ oest e tC . .. g e I hi~rd er oWih g " Ou0cn th 1-- to, WiI r-g ei*s dt
bi'C.4f gahrng ae c maninng the dt4 neidd ad co0peV ig afto tC.-r-rg the oIC mo of 'Analo, C ~end cov,,,"t bue estimat o any othr
ifepofl 12th je" er o a~ Hgn.a) $iuic 1204. Arlington VA 2202-4302 ind 10 the Oile (01 M~m gethelen a" budget. PIacCWOrk Reduction Protin- (0704.0 1B)

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 May 1990 1 _____________

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Evaluation Resultsa Report for Next Generation Computer Resourceb Operating

Systems Interface Baseline Selection
6. AUTHOR(S)

Steven L. Howell, Editor

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Surface Warfare Center (U 33)
10901 New Hampshire Avenue NAVSWC TR 90-246
Silver Spring, MD 20903-5000

9. SPONSOIRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Space and Naval Warfare Systems Command (SPAWAR 3243)
Washington, DC 20365-5 109

*11. SUPPLEMENTARY NOTES

12a. DISTRIBUITIO:A VA ILA BILITY STATEMENT 12b. DISTRIBUTION CODE

Approved f-?r public release;- dis ribui n is unlimited

13. ABSTRACT (Maximium 200 words)

This report summarizes the results of the Next Generation Computer Resources (NGCR) Operating
Systems Standards Working Group (OSSWG) evaluation of candidates for the Operating System Interface
(OSIF) B~aseline.

14. SUBJECT TERMS S. NUMB ER OF PAGES

NGCit OSSWG 170
6. PRICE CODE

1.SuiyCLSIIAIN 18. SECURITY CLASSIFICATION ly. SECURITY CLASSIFICATION 20. LIMITATION OF

O0 REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UCi.ASSIFiED U NC LASSII 'I I) N CI1.ASS I IIE1) SARl~ 2 ii. 28
I'b . ,ANS Still ;15,

3-1-3



I
NUSC Technical Document 6902
1 June 1990

I
Recommendation Report for the
Next-Generation Computer Resources (NGCR)
Operating Systems Interface Standard Baseline

Operating Systems Standards Working Group (OSSWG)
Compiled by D. P. Juttelstad (NUSC)

I
I
I
I
I
I

| Naval Underwater Systems Center
Newport, Rhode Island New London, ConnecticutI

I Approved for public release; distribution Is unlimited.

I 3-J-I



I Form ApprOv'ed
REPORT DOCUMENTATION PAGE Mo pro e

Pubic fecotifnq ourden tot this coJilctiOA of information is pitmated to average ou bee16 iOff w~ . -ncfua~.Q trt time #ofr ev.ewing !MT 6c i tcls . - it-. dots ,o,,,ce.
qad nflnq and m*aitamMng th," data needed. and comOlrtnq and r ev, "ew "te C04 onion of information S*Md COMIeMOtS relardin ill Wiuden estimate Of &AV the &e Ct Of thi
r COdhct:onf nf oyt t,. -Advil w A SiuOni for r a aci this ourcen. to V sni(nton 4eadquartm $rvIcej. orecorae tot ioformation Ovraticon amd A eoort&. 12 I !#f'eio
0Oit.0 0I6Ihway. luirt 1204. Arlingt V "2,0024302. and to the Otf., of kiane-I and Sudqet. Paoeriiocix Reduction Pi'zj-. (070&4 Uwango OC 201603
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 June 1990 Final

4. TITLE AND SUTITLE S. FUNDING NUMBERS
Recommendation Report for Next-Generation Computer
Resources (NGCR) Operating Systems Interface Standard PN A45146
Baseline

I. AUTHOR(S)

Operating Systems Standards Working Group (OSSWG)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATIONAEPORtI NUMSER

Naval Underwater Systems Center

Newport Laboratory TD 6902
Newport, RI 02841

2. SPONSORINGi MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Space and Naval Warfare Svstems Command AGENCY REPORT NUMBER

(SPAWAR-324)
Washington, DC 20363

11. SUPPLEMENTARY NOTES

12a. DISTRIUUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The Next-Generation Computer Resources (NGCR) Operating Systems Standards
Working Group (OSSWG) conducted a survey of existing operating systems and operating
systems interface standards to establish a baseline for the NGCR operating system
interface. This report presents the results of that survey and the OSSWG
recommendation for the standard baseline.

14, SUBJECT TERMS IS. NUMBER OF PAGES
Next-Generation Computer Resources 18
Operating Systems Tnterface I4.PRICECODE

17. SECURITY CLASSIFICATION 1. SECURITY CLAS11FICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTOf REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7S40-01-280-SSOO Standard Form 298 (R*v 2 89)
11,e"bad by iI' %fdIM III



EXECUrIVE SUIUARY

The Next-Generation Computer Resources (NGCR) Operating Systems Standards
Working Group (OSSWG) conducted a survey of existing operating systems and
operating systems interface standards to establish a baseline for the NGCR
operating system interface (OSIF). As a result of this survey, the total
number of operating systems considered was reduced from 110 to 7, which then
were formally evaluated. These seven were Alpha, ARTX, CRONUS, iRMX, Mach,
ORKID, and POSIX.

The formal evaluation consisted of assessing the seven candidates against
the requirements contained in the "NGCR OSSWG Requirements Document"
(reference 1) and a set of eight programmatic issues. The numeric results of
this eva!uation identified three candidates as superior: Alpha, iRMX, and
POSIX. To obtain a clear consensus of the OSSWG, an anonymous ballot was held
that resulted in POSIX obtaining a 51-percent majority vote. Based on the
results of the balloting, the NGCR OSSWG recommends POSIX be selected as the
NGCR OSIF baseline. The working group also recommends that the Navy and OSSWG
capitalize on the strengths of the other candidates, particularly Alpha and
iRMX, in the continuing standards development.

i/ii
Reverse Blank 3-J-5



NUSC Technical Document 6904
1 June 1990

After-Action Report for the
Next-Generation Computer Resources (NGCR)
Operating Systems Interface Standard
Baseline Selection Process

Operating Systems Standards Working Group (OSSWG)
Compiled by J. T. Oblinger (NUSC)

Naval Underwater Systems Center
Newport, Rhode Island•New London, Connecticut

Approved for public release; distribution Is unlimited.
3-K-1



REPORT DOCUMENTATION PAGE 1o d

9Ig rewuaq m ale~ for me (n4 mU, Of U formaaeW r &-WOW a E U. . I fotw oW 'OW01,0. mdw*4 O 1,rw,-g 'AWb fo r or& , e"" dMt.oA L~W ino~e medat ioadd.~ K~~A eWfW~EwAg f.*c~c~ei9f wftnwgaloem. o owau riqOuang me b~dg. "om of amw ~w &amn of "ft
' oe mfwmo.oft t19IUOOIS for .aaiigUa.,buI4tO* "Oa waom d siaf,1wl0,1. . Ia wto'ubuoe &W ,mkR" . 12 IS )~,o

I. NCY SE ONLY Z3N44JU. . OltT oT S. aREPOWT A.utYnPO,.Me AN AWSOwqt.DCCM.

1. AGENCY USE ONLY (Leavo bS.M Is* REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 1 June 1990o Final
4. TITLE AND SUBTITLE S FUNDING NUMBERS
After-Action Report for the Next-Generation Computer
Resources (NGCR) Operating Systems Interface Standard PN A45146
Baseline Selection Process

L AUTHOR(S)

Operating Systems Standards Working Group

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSEES) I. PERFORMING ORGANIZATICN

Naval Underwater Systems Center REPORT NUMBER

Newport Laboratory TD 6904
Newport, RI 02841

L SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING/MONITORING

Space and Naval Warfare Systems Command AGENCY REPORT NUMBER

(SPAWAR-324)
Washington, DC 02841

11. SUPPUMENTARY NOTES

12s. OiSTRIBUTION / AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200woen)

The Next-Generation Computer Resources (NGCR) Operating Systems Standards
Working Group (OSSWG) conducted a survey of existing operating systems and operating
systems interface standards to establish a baseline for the NGCR operating system
interface. This report reviews the OSSWG evaluation process and discusses issues
that caused difficulty to OSSWG in meeting its objectives.

14. SUIJECT TERMS IS. NUMBER OF PAGES

Next-Generation Computer Resources 27
Operating Systems Interface 16. PRCCOO[

17. SECURITY CIASSIFICATION II. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE Of ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR 3-K-3



EXECTr lE SARY

The Next-Generation Computer Resources (NGCR) Operating Systems Standards
Working Group (OSSWG) conducted a survey of existing operating systems and
operating systems interface standards to establish a baseline for the NGCR
operating system interface (OSIF). As a result of this survey, the total
number of operating systems considered was reduced from 110 to 7, and those
final 7 were then formally evaluated. The formal evaluation consisted of
assessing the seven candidates against the requirements contained in the "NGCR
OSSWG Requirements Document" (reference 1) and a set of eight programmatic
issues.

The first section of this report describes the purpose and scope of this
study, which covered the timeframe from March 1989 (a briefing made to
industry) to April 1990 (when the OSIF baseline was selected).

The second section discusses issues regarding the OSSWG evaluation
process. Issues presented include the benefits OSSWG gained by active
industry participation, the effectiveness of the electronic mail system for
p-oviding communications between meetings, the concerns about the compressed
schedule, and a discussion about the difficulty in interpreting the evaluation
scores.

The third section addresses the technical issues that caused difficulties
for OSSWG in achieving its objectives. Some of these issues include (1) how
to define distributed technology within an operating system interface; (2) how
to specify security; (3) how security impacts the technology of real-time
capabilities, distribution, and fault-tolerance; and (4) to what extent OSIF
issues impact the performance of OS implementations. The technology topics in
this section are presented as technology shortfall areas where there is need
for additional research.

3-K-5

i/ii
Reverse Blank



Form ApprovedIREPORT DOCUMENTATION PAGE 0 MB No. 070.4-0188I i _ onrlng twjden 'or thIs collectiun .t Information is estimated to , eage 1 hour per responise Including we wrie tor 9.ewing instruct Ions searching existing data sources gatihennig and]
Imaintaining the data neededt, anid completing and reviewng the collection of information Send comments regarding this ourden estimate or arny other aspect of this collection of information inicluding

suggestions tot reducing this ourden, to Washington Headquattets Setvces Directorate for Information Operations and Reports 121t5 Jeffe rson Da t's irgtway. Suite 1204. Ail Ing= ,l VA 22202-4302.
arid to tne Office of Management and Budoaet Paperworkr Reduction Project (0704-0188), Washiington. DC 20503

1 AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED

April 1991 Final: Jan 89 - Sept 90
4 TITLE AND SUBTITLE 5 FU14DING NUMBERSIOPERATING SYSTEMS STANDARDS WORKING GROUP (OSSWG) NEXT PR: CC30

GENERATION COMPUTER RESOURCES (NGCR) PROGRAM PE: 604574N
First Annual Report-October 1990 WVU: DN587574

S AUTHOR(S)

R. Bergmnan /Operasting Systems Standards Working Group (OSSWG)

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PER-ORMiNG 3RGANIZAiON
HFI'OHrT NUMBERI Naval Ocean Systems Center NOSC TD 2101

San Diego, CA 92 152-5000

g SPONSORING/MVONITORING AGENCY NAMEIS) AND ADDRESS(ES) t0 SPONSOR! NGA ONI7 OF]NG

Space and Naval Warfare Systems Command AEC EOTNME

I Washington, DC 20363-510

t1 SUPPLEMENTARY NOTES

I 12& DiSTRIBU-TiON/AVAiLABiUTY STATEMENT '.2b DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

1 3 ABSTRACT (Maximum 200 words)

This document records the achievements of the Operating Systems Standards Working Group (OSSWG) from
'January 1989 - September 1990. The Next Generation Computer Resources (NGCR) Program of the U.S. Navy is seeking to
establish standard interfaccs of several types to provide an Open Sysiem A-ehitecture for constr-ucting Navy applications
sstems from compatible components. These interfaces are to be based on industry/commercial nonpropri.etarv standards.

Among the standard interfaces being sought is an operating system inter-face. The OSSWG was formed in 1989 to identify

14 SUBJECT TERMS 15 NUVBER OF PAGES

operating systems real-time distributed systems computer-component interfaces 491
distributed systems mission-critical computer interfaces t6 PRICE CODE
real-time systems standardized inter-faces

1SECURITY CLASSIPiCATION 18 SECURITY CLASSIFICATION 19 SECURITY CL.ASSIFICATION 20 iMITATION OPASTRACT
PF REPORT OP THIS PAGE OF ABSTRACTI UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPOR.T

I NSN 7540-01-280-5500 Standard form 298



UNCLASSIFIED j
21a. NAME OF RESPONSIBLE INDIVIDUAL 21b TELEPHONE (ncudeAea Code) 21c OFFICE SYMBOL

R. Bergman (619) 553-4098 Code 412

NSN 754-01 -280-5500 Standard torm 2W9

UNCLASSIFIED

Il



INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 0144 R. November (1)
Code 412 R. Bergman (15)
Code 952B J. Puleo (1)
Code 961 Archive/Stock (6)
Code 964B Library (3)

Defense Technical Information Center
Alexandria, VA 22304-6145 (4)

NOSC Liaison Office
Washington, DC 20363-5100 (1)

Center for Naval Analyses
Alexandria, VA 22302-0268 (1)

Space & Naval Warfare Systems Command
Washington, DC 20363-5100 (10)


