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1 Introduction

Under this contract, MTI has developed a software svstem for the automatic

recognition of military targets occurring in laser radar range data. The al-

gorithm is dc,;gcd tv opeiL e uvt- a variety of scenarios: the targets may

occur in multiple numbers and aspects, and may be partially occluded due

to other vehicles, irregularities in the terrain, or background clutter. The

particular algorithm delivered to CNVEO under this contract is configured

to detect and classify three particular targets (M35, M60, M113), but the

system is based on very general principles concerning invariant rigid body

object recognition and easily extended to additional targets, clutter types,

sensor effects, and degrees of freedom in the viewing angles.

In fact, this work represents an enhancement and special purpose imple-

mentation of a generic object recognition system developed at MTI. Initially,

this system was developed for the classification of two-dimensional shapes in

highly degraded, visible light intensity data; in particular, optical character

recognition served as a convenient and challenging prototype problem, and

MTI has now developed a commercially viable software product capable of

.ccurate identification of printed characters in noisy and cluttered images,

such as high magnification photographs of alphanumeric identifications on

silicon wafers. -.

Work was divided into two phases. The initial phase, a five month effort,

called for the delivery of an algorithm for the recognition of at least two

"geometric shapes" in simulated laser radar range imagery, with a particu-

lar emphasis on realistic clutter models. Work in Phase I was devoted to
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the construction of a surrogate database and corresponding recognition al-

gorithm designed to accommodate the particular difficulties, especially clut-

ter, occlusion, and invariance, inherent in rigid body recognition from range

data. This database consisted of simulated range data for "scenes" composed

of three-dimensional polygonal objects with features of military-like targets

(e.g., planar facets). Each object was randomly composed from a number of

randomly generated, rectangular parallelepipeds. A full description of these

efforts, together with details of the search algorithm, were provided in the

Phase I Technical Report [2].

It was also anticipated that during Phase I the Government Labs would

provide MTI with "primitive models" for several military targets, although

work on actual military targets did not commence until Phase II. The re-

mainder of this document will focus on the work performed under Phase II.

Due to the lack of actual LADAR imagery, it was decided to design and test

the algorithm on imagery generated with the CNVEO LADAR Simulator,

which uses CAD-based target models, and was developed in conjunction with

Honeywell Systems and Research Center.

However, during Phase II of the contract, certain problems were revealed

concerning the manner in which this Simulator incorporates sensor effects;

see §3.3. Consequently, MTI has separately implemented a LADAR simulator

and the experiments described in this contract were performed on imagery

generated by the MTI LADAR Simulator. In order to simulate LADAR range

imagery, we have constructed "scenes" and corresponding range images by

randomly positioning targets and "semi-targets" over a simulated landscape

and computing the appropriate depth values from a reference point; see Fig-
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ure 1A for a blow-up of one such simulator example with range-to-target of

approximately 3km and Figure 1B, for comparison, depicting real data of

an M60 at range-to-target of 1.04km. The ray-traced simulated range im-

ages are designed to accommodate multiple targets at multiple ranges and

aspects, systematic changes in background complexity and figure-to-ground

separation, and the effects of cbscuration, sensor blur, and sensor noise.

2 The MTI Recognition System

2.1 Problem Statement and Heuristics

Consider the general rigid body object recognition problem. We are given a

list of 2D or 3D "objects"; for example, the letters of the alphabet, a collection

of military vehicles, or an assortment of machine parts or manual tools. The

objects are regarded as rigid and represent particular instances of the given

shape class; thus, for example, the letters are represented by a particular font,

the vehicles are specific tanks and trucks, and so forth. The objects are then

arbitrarily positioned in 3-space (or in 2-space if they are two-dimensional),

with respect to rotations and translations, and this "scene" is then imaged

by an ordinary camera or perhaps by a range-finding device. The scene

may contain multiple objects, each in multiple aspects; some objects may

be partially occluded by others or by "clutter." In addition, there may be

noise or other degrading effects caused by the way in which the scene was

illuminated and sensed. The goal is then to construct a list of those objects

present in the scene, together with the locations at which objects occur,
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based on the image data and (exact) shape information about the objects,

e.g., CAD-based specifications. This is the problem of rigid body invariant

object recognition.

We should emphasize the distinction between rigid and non-rigid (or de-

formable) objects, for which, in addition to the multitude of representations

induced by spatial positioning, there are the additional ambiguities associ-

ated with the varying intrinsic shapes of individual objects. In our problem

the individual patterns exhibit no variability in shape and hence there is no

need for a model for variation within shape clasces. Still, the rigid body

problem is quite challenging because we wish to solve it in highly degraded

environments, including substantial degrees of sensor degradation, target-like

clutter, and target obscuration.

As mentioned above, there are two particular cases MTI has examined

in detail. They are representative of the problems encountered and of our

practical experience in this area. The first is optical character recognition, in

which the objects are the thirty-six alphanumeric characters and the images

are ordinary visible light pictures obtained with a video camera. The second

case is the one at hand: automatic target recognition in LADAR range data.

However different these applications may be, the general problems are more

or less the same-those indigenous to invariant rigid body recognition.

The most conceptually simple and straightforward approach would be to

store a library of exact representations of all targets in all potential aspects

and then search individually for these object-aspect combinations by some

form of template matching or other global measure of fit. For example,

given a reliable detection algorithm, the positions of potential targets could
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be located and, in principle, template matching could be done with optical

correlators. Whereas even for optical correlators, the enormous number of

potential signatures might impose unacceptable limitations on speed, there

is still another, more crucial, limitation: correlation severely degrades in

the presence of noise and clutter. This is particularly true when distinct

objects in varying aspects may have nearly identical signatures. The principal

reason for this is that, by its nature, pure correlation uniformly emphasizes

all regions of the objects (and similarly for other global measures of fit); in

particular, there is no mechanism for focusing on ambiguous areas-those

where confusions are likely to occur-and such ambiguities are in fact the

essence of the problem. In the case of optical character recognition, we

refer to this as the "E/F" dilemma: two presentations of an "E" may be

farther apart in the metric induced by the measure of fit than an "E" and

an "F". Consequently, the very representation of an "E" must be influenced

by the existence of an "F" among the list of hypotheses; see §2.2.2 and §4.3.

The situation is identical for military vehicles in range data: for instance,

a "noisy" tank may correlate better with a truck than with an ideal tank,

and similarly an obscured tank may correlate better with a truck than with

an unobscured tank. For these reasons, we believe that no single measure

of fit is adequate, and, in particular, we have avoided correlation and other

such measures from all steps of the algorithm-detection, classification, and

verification.

Any search procedure should then proceed on a coarse-to-fine basis, in

which many possibilities or "hypotheses" are considered at the early stages,

giving way in a controlled progression to increasingly narrow and more spe-
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cific investigations. Moreover, during this progression, the type of tests em-

ployed must have the "focusing property" lacking in global measures of fit,

which is why we have employed local, nonparametric measures of fit; see §4.3.

The separation of targets with nearly identical presentations should be de-

layed until the last stages of the search procedure. One natural protocol is

then a coarse-to-fine decision tree. See Figure 2 for an example; the symbols

"A,...,Z" may represent our three military vehicles in varying aspects.

Two other features which separate our algorithm from others actually in

use are: (1) Floating thresholds, a particular form of "top-down" or "hypo-

thesis-driven" processing; and (2) An off-line training procedure in which, at

each node of the decision tree, the hypothesis representations themselves are

"learned" by optimizing the selection of "tests" or "probes".

Whereas it has long been recognized in the computer vision community

that cgnwtio± ,-not be ui.t-ljy d.at--drivcn, i.e., that decisions

should somehow be interpretation guided, this has rarely been implemented

in a practical or coherent fashion. In particular, we believe that any proce-

dure based on blind segmentation, meaning fixed and universal thresholds,

will fail in the presence of correlated noise, vagaries in illumination, and

other factors common to real imagery. Still, local property values must be

extracted from the data and represented in a form sufficiently simple for

comparison to stored representations, and it is precisely at this stage of data

reduction that we have found it effective to allow pending interpretations to

determine the search parameters. In particular, we use "floating thresholds";

see §2.2.3 and §4.3.2.

Turning to the object representations, consider first conventional statis-
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tical classifiers: a collection of "features," which are simply functions of the

image data, are pre-specified and one attempts to estimate the conditional

distribution of these features given the various hypotheses, the so-called

class-conditional densities. The latter step is referred to as "training." In-

stead, in our method, the appropriate features are learned and our "training"

consists of an intensive, but off-line, optimization procedure in which the ob-

ject representations are constructed in terms of elementary features we call

"probes." The cost criteria for these representations are economy, robust-

ness, and discriminating power. The manner in which these representations

or virtual templates are chosen is discussed in §4.3.

2.2 Overview of the Algorithm

2.2.1 Search Protocol

We will use the word hypothesis to indicate a particular object-aspect com-

bination; thus, for example, there is one hypothesis for each target type for

each triple of angles corresponding to an appropriate sampling of azimuth,

tilt, and rotations in the ground plane. We may assume the scale ;- C-l

since the camera-object distance is known. The number of degrees of free-

dom allowed is, of course, situation dependent. Formally, at least, the only

difference is in the actual number of hypotheses. For the LADAR recogni-

tion problem, the most important degrees of freedom appear to be rotations

in the ground plane, and we have focused to date on that case, assuming

the tilt and azimuth are effectively zero; the methodology extends simply to

situations in which irregularities in terrain or viewing angles are prominent.
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The recognition strategy is based on sequentially visiting each (or most)

image locations and implementing a decision tree for a hfwid of view associated

with that pixel. The output at each branch of the decision tree is a list

indicating which hypotheses are "active" at the pixel, that is, have not been

eliminated at any earlier junction of the decision tree. An hypothesis is

"true" within a field of view if the object is positioned there in such a way

that a distinguished point in a subimage containing the ideal object-aspect

signature is aligned with the origin of the field of view.

Let us now imagine that a field of view is fixed; the precise registration

mechanism will be explained in §4.1. The algorithm is based on a series

of probes which are grouped into "Rounds" corresponding to the nodes on

the decision tree. These probes refer to particular functions of the image

data which are evaluated at predetermined locations, one type of function

and one collection of locations for each node in the decision tree. These

locations or "offsets" are determined by the aforementioned optimization

procedure; see §4.3. Roughly speaking, the probes and offsets are optimized

to minimize the error rates corresponding to false negatives (unidentified

targets), false positives (non-targets mistaken for targets), and erroneous

classifications (actual but mislabled targets). These may be regarded as tests

upon which detection and recognition are based: the observed data values

determine the action taken at each branch of the decision tree. Hypotheses

which are active at a given node and which "pass" a sufficient number of the

tests for that node will remain active at the given location. The final output

indicates which, if any, of the basic target types has been confirmed at the

pending location; obviously most locations result in no confirmations.
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The basic strategy is then a variant of "divide and conquer": many al-

ternatives are pursed in parallel in the early stages, based on very general

and mutually relevant criteria, whereas the intermediate stages focus on sub-

classes of hypotheses and finally, in the latter stages, the tests are designed

to confirm or deny specific hypotheses against all the relevant alternatives,

for example a particular orientation of a tank against all pending aspects of

other target types.

2.2.2 Decision Tree

As mentioned earlier, the probes are grouped into five rounds correspo- .

to nodes on the decision tree. The purpose of Round 0 and Round 1 is the

rapid detection of a possible target at the given location. Consequently, these

rounds serve as filters to separate targets from background and to quickly

eliminate most locations from further examination. Moreover, since in prin-

ciple we allow no false negatives (unconfirmed targets), these filters must

reliably identify all locations associated with actual targets. The probes in

these rounds are elementary and generic, and no attempt is imiade to discrim-

inate among targets. The result is that most locations which survive these

rounds are in fact false positives and do not correspond to a distinguished

location on an actual target but result instead from target-like clutter or

other targets at nearby locations. See §4...l for a detailed description of

these early round probes.

In contrast, Rounds 2 and 3 (see §4.3.2) represent the ire of the algo-

rithm and are designed to separate targets from clutter and from each other.
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Thus these rounds are more computationally intensive (although executed at

only sparse locations, i.e., those which survive earlier rounds), involve more

complex probes, and are geared towards resolving ambiguities. Differences

among all presentations of distinct targets must be precisely identified and

exploited in a manner which is robust to noise, clutter, and parameter se-

lection. It is here that we utilize "top-down processing" by employing only

hypothesis-driven thresholds. This is the true recognition aspect of the prob-

lem and is the area to which we have devoted most of our efforts and which

we regard as the essence of the problem itself. The result of Round 3, as all

earlier ones, is a list of hypotheses which remain active at the given location.

The purpose of Round 4 is to utilize the internal structure of the tar-

gets, i.e., the relative depth values of the pixels on target, to screen active

hypotheses, i.e., pending object-aspect pairings. This is done by checking

that the observed values are "consistent" with the stored ones. This stage

involves a simple, one-parameter regression model; see §4.3.3. Finally, in

Round 5, we disambiguate among confirmations which lie in close proximity.

Final decisions are based on a "survival-of-the-fittest" protocol in which

pending confirmations are tested against each other to determine which, if

any, are declared as labeled target locations. These decisions are based on

analyzing the residuals which arise in the statistical data fitting from Round

4; again, the exact mechanism is described below in §4.3.3. The procedure

is only performed at very sparse locations and for candidate targets which

have already "passed" all previous tests; consequently, the overall cost (say

in computation time) is no greater than that of the previous rounds.
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2.2.3 Virtual Templates

The stored probe values for each round are in effect "virtual templates"

(or "sampled templates"). As the number of probes increases, these virtual

templates converge to the literal templates (the perfect range information)

with respect to the particular type of information upon which the probes are

based. For example, suppose the literal templates are binary images indicat-

ing whether pixels are on or off the target, a variant of the "figure-ground"

dichotomy in which the figure is determined by being closer to the viewer.

The virtual template is a binary sequence corresponding to the template val-

ues at a distinguished subset of locations; it becomes the literal template as

the number of locations approaches the number of pixels in the subimage

defining the literal template. The idea is to use as few points as possible

and still reliably accomplish the task associated with the given branch of the

decision tree, for example to separate objects from background or to separate

a particular target from all occurrences of other target types.

Still more powerful representations may be obtained with relational prim-

itives. For example, we might associate with each pair of locations, usually

in close proximity, a binary label corresponding to whether or not the pair

of points straddles the object boundary, i.e., is a (figure, ground) pair. The

figure/ground dichotomy is replaced by that of transition/no transition. In

a real image containing that object, the transition pairs should typically

correspond to significant differences in depth values whereas others should

correspord to relatively small differences (depending on the nature of the

background). Each hypothesis is again represented by a binary string and
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the object silhouette is recovered in the limit as the number of pairs increases.

It is important to notice that relational template matching necessitates

that the actual intensity values that are extracted at the predetermined lo-

cations associated with a probe must be converted to a label, usually just 0

or 1, for comparison with the stored models. This is the case in Rounds 2

and 3. We may think of a probe as the set of points together with a label

that depends on the particular template in the field of view.

A critical factor in the success of this approach is that threshold values

used in the conversion of intensity values to labels be driven by pending in-

terpretations. The alternative, using global thresholds, renders the algorithm

unduly sensitive to parameter selection, illumination changes, and other fac-

tors, and results in unacceptable error rates. One method of incorporating

this top-down component uses a "floating threshhold" in the formal statisti-

cal test of the particular hypothesis being entertained. Detailed descriptions

of the proprietary approach are given in the technical description of the al-

gorithm, delivered with the software. The rationale for our approach is to

minimize the probability of detection error when, in fact, the entertained

hypothesis is true. Such a form of hypothesis-driven segmentation is used in

the generic MTI recognition algorithm and in the current ATR algorithm.

2.2.4 Occlusions

The obscuration problem is important because portions of actual targets

may be hidden by various entities such as other targets and background

objects. We have accounted for one particular type of obscuration in which
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the lower portion of the target is hidden due to terrain anomaies. However

the methodology easily extends to other forms of obscuration, such as lateral

occlusion. Basically, this is accomplished by extending the methodology to

new sets of hypotheses corresponding to "semi-targets"-full targets at the

same aspects, but with some portion removed. In other words, we train the

algorithm with semi-targets and search for them in the same way as for fully

visible targets. The classification problem is of course more difficult because

the partial targets are not as well separated; in addition, the "clutter model"

must be appropriately modified.

3 Simulated LADAR Scenes

3.1 Target Templates

There are three targets, the M35 Truck, M60 Tank, and M113 APC, and there

are 108 training images, corresponding to each of the three targets occurring

in thirty-six aspects. These are ray-traced images, the largest approximately

60 x 130 pixels, corresponding to a range of about 3 km, an angular sampling

interval of about 0.05 milliradians and sensor depth resolution of 4 cm, and

are obtained from a CAD-CAM database. If we assume that the viewer is

situated along the x-axis in a standard coordinate system, and that the x-

y plane represents the ground plane, then the 36 aspects mentioned above

correspond to each ten degree rotation of an object around the z axis. In

effect, then, the aspect angle is zero and the tilt may be regarded as fixed

by the initial positioning. Obviously additional degrees of freedom could be
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introduced by considering additional rotations about appropriate axes.

One problem with this approach is that some rotations induce less vari-

ation than others; this is readily seen in Figures 3, 4, and 5 which show,

respectively, the truck, tank, and APC in each of 18 aspects correspond;,nw

to rotations through 180 degrees. A better procedure would be to divide

the range of angles according to some measure of similarity so that, roughly,

each subinterval of angles would generate comparable variation between tem-

plates.

3.2 Scene Generation.

The first step was to simulate a high-resolution ray-traced image of a land-

scape, including a horizon line, by computing range data for a flat surface at

a (small) aspect angle and locally and randomly perturbing this surface to

account for terrain irregularities.

Next, several of the 108 high resolution, appropriately scaled target tem-

plates are randomly positioned in this landscape, some on the horizon and

others in the background. Similarly, a model for clutter was generated by

randomly selecting and randomly positioning target "remnants", i.e., pieces

of targets, in the landscape. At this stage, we have an "ideal" simulated

LADAR scene because we have not yet incorporated the effects of the sen-

sor.
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3.3 Sensor Model.

The CNVEO LADAR Simulator developed by Honeywell Systems and Re-

search Center was designed to generate LADAR scenes including so-called

resolved targets. As it is currently implemented, it cannot model the effects

of the sensor for unresolved targets. The assumption that a target is resolved

does not hold at all for objects of interest at ranges of three kilometers and

it breaks down partially even for targets at much closer ranges.

When it came to our attention late into the contract period that che

simulator had this limitation, we began a careful evaluation of the Hon-

eywell Simulator Program, together with an analysis of the scientific and

engineering literature concerned with range measurement by a heterodyne

CW laser radar. The work on the simulator included discussions with scien-

tific/engineering staff at Honeywell, and it was greatly facilitated by Richard

Peters and Teresa Kipp at CNVEO. Many of the references on which this

work was based were suggested or provided by Teresa Kipp.

The next step in the scene generation is to use the high-resolution ray-

traced image described in §3.1 as input to a sensor model, which embodies

the effects of the finite spot size of the LADAR, reflectance properties and

range of different points of the scene, and attenuation of the signal energy by

the atmosphere. The output of this step is a lower-resolution, blurred and

sampled version of the input image. Finally, the output of the sensor model

is given as input to a noise model, which incorporates the range dependence

of the uncertainty of the range measurements. The noisy image can then be

quantized to obtain both absolute and relative range data.
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3.3.1 Unresolved Targets and Blur

First we shall address the question of an appropriate sensor model for unre-

solved targets.

In AM heterodyne range detection, the phase difference between an am-

plitude modulated transmitted signal and a reflected received signal is used

to determine the distance between the transmitter/receiver and the point(s)

in the field-of-view (FOV) on which the transmitted beam is incident. The

beam actually has positive finite extent, so the reflected signal is a superpo-

sition of reflected coherent optical fields integrated over the area in the FOV

on which the spot is incident.

We shall adopt certain simplifying and justifiable assumptions about sur-

face reflectivity, spot size, transmitivity, quantum efficiency of photorecep-

tors, and so on, consistent with the assumptions made in the implementation

of the Honeywell simulator. Specifically, we shall assume (i) that surfaces are

"rough," i.e., that local surface irregularities are of comparable scale to the

optical wavelength c/(27rvo) of the laser, (ii) that consequently reflectance is

Lambertian, rather than specular, (iii) that the diameter of the transmitted

beam is on the order of two milliradians (mrad), and (iv) that the angular res-

olution of the generated images will be 0.05mrad horizontally and vertically,

or possibly coarser.

The physics of the description of the received energy from the reflected

beam is quite well understood. In the physical modeling, it is important to

distinguish between the so-called resolved and unresolved cases. The simpler

case is when the target (object or background) is resolved. This means that
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the entire spot is reflected. The simplest instance of a resolved target occurs

when all points covered by the spot are at the same range, rather than being

distributed over a wide set of range values. In contrast, a target is said to be

unresolved if only part of the spot is incident on the target. This case occurs

if the spot is larger than the target or, more frequently, if a beam intersects

the edge of a target, with part of the spot on target and part of the spot off

target (and on sky or infinite space). The unresolved target case is the right

model to consider for points in the FOV that are on the horizon, including

especially parts of objects that are above the horizon.

If the target is resolved and the spot is entirely incident on an area at

distance R from the transmitter/receiver, then the received power P, will be

given by an expression of the form

P, = Pt(p/(4irR2))AT T2 (1)

where Pt is the transmitted power, p is the target reflectivity, R is the range to

target, A is the effective area of the receiver, Ta is the one-way atmospheric

attenuation, and To is the one-way optical system loss [1]. It is useful to

highlight dependence of this expression on R. If atmospheric attenuation

is uniform, described by the constant atmospheric attenuation coefficient a,

then Ta will have the form T, = exp(-aR). The expression in eqn. (1) then

has the general form

P, = c1(exp(-2R)/R2 )Pt (2)

The factor cl lumps together the other factors in (1).

The article by Goodman (51 contains a careful description of the basic

physical principles on which one can build an understanding of unresolved
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targets and of cases where the points covered by the spot are at widely

varying ranges. Each polarization component of the received optical field

at any point (u, v) in a plane just in front of the receiver aperture may be

regarded of a sum of random-amplitude, random-phase, complex phasors

contributed by the elementary scatterers. (As noted above, the reflected

signal is a superposition of reflected coherent optical fields integrated over the

area in the FOV on which the spot is incident.) From this fact, and using the

Central Limit Theorem, one can theoretically justify the conclusion that the

polarization components of the received optical field are complex Gaussian

processes over space, and hence that the associated energy densities have

the Rayleigh (viz. negative exponential) distribution. Several studies have

supported the empirical validity of this conclusion as well [7,9].

Ideally, to develop a simulator that accurately models the physics, one

would (i) compute how the amplitude of the received modulated signal de-

pends on the transmitted waveform, beam shape, range, target reflectivity,

and atmospheric and optical losses, and then (ii) model and compute how

the range detector would determine a measured range from the combination

of the received and transmitted AM optical fields. While the first step is

reasonably straightforward, the second part is complex. It is agreed that

this is a desirable, but not a feasible approach [4]. A reasonable alternative

to the ideal simulator is to model the principal qualitative properties of the

sensor-blur and other optical effects, and range dependence of detection

sensitivity.

One important sensor property is a consequence of finite spot size: sensors

blur. As noted above, the rcccivcd optical field will be a superposition, a
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convolution average, of fields reflected from individual points in the spot.

The principal of superposition applies to optical field strength.

The principal of superposition does not apply to measured range values

per se.

The basic flaw of the Honeywell simulator is that it builds a sensor model

completely around a linear convolution of ray-traced range values. That is,

the sensor-model output at pixel (r, c) is given by an expression of the form

a AR,(r,c) = 1:E Kuv~ - u,c- v) (3)
u=-A v=-A

where R, denotes the sensor-output range measurement, RP denotes the

ray-traced range data and K( , ) is a convolution kernel. K is taken to be

a Gaussian bump with its support restricted to a square region of angular

extent ±0.lrmrad. K is also normalized so that

A A

E E K(u,v) =1. (4)
U=-A V=-A

This model cannot be justified by the physics of the system and mea-

surement process. Indeed, the physical principles embodied in eqn. (2) are

incompatible with eqn. (3). Manifestly, the reflected energy from a point in

the scene decreases in strength as range increases, approximately according

to the law exp(-2aR)/R2 . However, eqn. (3) gives greater influence to points

at greater distance from the transmitter/receiver. The dependence on range

in (3) is the reverse of the dependence on range in (2). Still, one can argue

:a favor of the model (3) on the basis of the tenuous heuristic connecion

that convolutions blur, and we need a simple, flexible, and suitably general

shortcut to modeling sensor blur.
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The use of a linear convolution filter may be suitable for fully resolved

targets, but it breaks down completely for unresolved targets. (Notably, the

Honeywell sensor does not purport to model sensor effects for unresolved

targets.) If a point of the spot is not incident on target, and therefore does

not reflect any energy, it is not possible to identify any consistent. "range"

value to use for this point in the convolution (3). Indeed, some striking

physical inconsistencies can occur if one still applies the convolution filter

literally. If one were to associate the value co with the point not on target,

then the value of R, according to (3) at that point would be co, regardless

of how much of the spot is on target.

Note: The Honeywell program does thiq, in effect. The value 10' is

assigned to "sky" in the sensor model. Then if the filtered value (3) exceeds

1020, it is reset to "sky"-103°. This has the effect of obliterating every unre-

solved point in the ray-traced scene. Figure 6 shows the effect of subjecting

the M35 templates to the incorrect resolved-target sensor model.

To mitigate this inconsistency with the physics, we have adopted the

following strategy for treating unresolved points in the scene. The strategy

borrows on the heuristic identified above of using a convolution filter for

the resolved portion of the spot. However, we explicitly assign no weight

to points with no reflectance. As a surrogate for "reflected energy" at pixel

(r, c), we define the weight W(r, c) by

W(r,c) = E E K(u,v) . I{R C(r-U,c-V)<o}. (5)
U=-A V=-A

The factor defined by the indicator function I{ } will assume the value one

at (u, v) if and only if the point (r - u, c - v) in the ray-traced image is a
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point of finite range, i.e., not sky and not infinite space; otherwise this factor

is zero. Then set
A AX

R5 (r, c) = E E K(u, v)Rt(r - u, c - v). I{Rr(r-U,C-V)<00} (6)
u=-A v=-A

and compute the (average) sensed range at (r, c) as

R.(r,c) = !,(r,c)/W(r,c). (7)

Now for our heuristics: We can interpret eqn. (5) as describing the

"strength" of the reflected waveform while eqn. (6) represents the uncor-

rected average range of the points in the spot that are on target. Eqn. (7)

corrects for the fact that only a fraction of the spot is on target.

We recommend one additional feature for the unresolved target sensor

model. The probability of detecting a target is directly dependent on the

energy of the reflected optical field [1,5,8]. In particular, when the return

has very weak amplitude, then the probability on no detection is greater. To

incorporate this effect, our sensor model will deterministically or randomly,

as the user chooses, allow a so-called "drop-out" if the amplitude of the

reflected signal is weak. In the deterministic model, a drop-out occurs, and

the corresponding pixel is identified as "not on target," if W(r, c) < '/, where

the threshold -' is a simulation algorithm parameter. In the randomized

model, the probability of a drop-out is 1 - W(r, c)/y", provided W(r, c) < -y.

Implementation Notes. 1. It is not important that the input to

the sensor model be a high-resolution ray-traced image. One can expect

to achieve reliable simulations if the ray-traced input image is at the same

resolution as the output i-aage. Technically, the comparison can be thought
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of as sampling after averaging vs. sampling before averaging, and how the

choice affects the accuracy of the quadrature formulas (5) and (6). If the

output of the sensor model will subsequently be the input to a realistic noise

model, then the quadrature error incurred by using a low-resolution ray-

traced input image will be overwhelmed by the random measurement errors

incorporated in the noise model.

2. The nonlinear sensor model of equations (5)-(7) will not be nearly as

amenable to efficient algorithmic design and implementation as the simple

linear sensor model of equation (3). Presumably, execution speed is not an

issue for the simulation algorithm. Speed is certainly less important than
fidelity with the physics.

3.3.2 Noise Model.

We have employed a noise model that is dictated by empirical results from

analysis of actual laser radar measurements. Relevant data are available from

experiments done at Fort A.P. Hill in 1989 with the Raytheon Tri-Service

Laser Radar. Range measurements were made of a flat wall at ranges of

1500m, 2040m and 3200m. From the actual range measurements, robust

estimates of the standard deviation of the range values were formed. The

results have been made available by CNVEO.

The Honeywell simulator also uses these data for calibration of a more

intricate range-error model. However, we believe that it is probably a mistake

to use the more intricate model (see [10)) in the simulator. The analysis in
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[10] assumes - specific modulation waveform

FAM
o(t) sin[(4/2) sinmt + (7r/4)] (8)

appropriate for a specific laser radar design. It does not claim to be generic.

Further, the noise model in [10] is greatly oversimplified in the assumptions

that it makes about the temporal variation of the noise. The model assumes

that the noise is random, with an arguable marginal distribution related to

the well-founded Rayleigh statistics, but it assumes that the spectrum of the

noise process is degenerate. The extreme nature of this assumption renders

the application of this model to be questionable at best. Finally, in the

approach used in the Honeywell simulator, values for the range-measurement

standard deviation are extrapolated beyond the maximum range for which

empirical evidence is available. This is always a hazardous statistical practice;

it cannot be justified or validated with available experiments.

Instead, we have adopted a more generic approach which uses the exper-

imental results directly. It has been observed in discussions with personnel

at CNVEO that the shape of the distribution of the flat-wall range measure-

ments is approximately Gaussian. We then model the noise as an additive

Gaussian process with the standard deviation of the measurements being

range dependent. The dependence .,f the standard deviaticn on the range

will be described by a curve, piecewise-linear in form, that interpolates the

actual experimental results. For any range that exceeds the maximum range

for which the standard deviation has been determined empirically, the asso-

ciated standard deviation will be set to the maximum observed value.
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3.3.3 Dropouts

The final step in the LADAR scene simulation is an effort to incorporate

the effect of "dropouts", as explained above. It was decided to declare every

pixel in the "sky" a dropout (since the amplitude of the reflected optical

field is effectively zero) and a certain percentage (determined by an algorithm

parameter) of the remaining (non-sky) pixels as dropouts. The pixels where

dropouts will occur are randomly selected. The values assigned to these

pixels were uniformly chosen over the dynamic range.

3.3.4 Illustrations

In Figure 7 we show a "scene" with several targets, some clutter, (dropout)

noise in the sky, but no obscurations or other noise. The dynamic range of

depth values necessitates 16 bits of brightness resolution but only the upper 8

bits are shown; consequently, it is impossible to discern any detail within the

targets and other structures at any given range. Figure 8 is the same scene as

Figure 7, except that only the lower 8 bits of brightness resolution are shown,

accounting for the periodic appearance. The lack of detail in the upper 8

bits is particularly evident in Figure 9, a blow-up of a portion of Figure 7.

Figure 10 shows the lower 8 bits of the same insert, revealing the internal

structure of the objects, and Figures 11, 12, and 13 show, incrementally, the

various effects of the sensor model, first adding blur, then range-dependent

Gaussian noise, and finally the full model including the (non-sky) dropout

noise. Finally, Figures 14 and 15 show, respectively, the upper and lower 8

bits of the full (original) scene with all aspects of the simulation program.
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The pictures are as diabolical as they appear. There is virtually no res-

olution in the image of the upper 8 bits (due to the large range spanned by

the full scene) and there is very high-frequency, nearly periodic variation in

the image of the lower 8 bits (due to the low elevation of the sensor and the

large ranges).

4 Training: Probe Optimization

4.1 Alignment

Recall that each location in the image is associated with a subimage field

in which information is extracted at predetermined offsets relative to that

location. In order to disambiguate hypotheses, this field must be larger than

the minimum rectangle required to surround all hypotheses, i.e., target tem-

plates. Recall also that there is an individual template image corresponding

to each of the three target types for each ten degree rotation in the ground

plane. These training images are shown in Figures 3, 4 and 5 for the truck,

tank and APC, each in 18 of the 36 aspects. (Actually, the inside template

values must be modified to account for blurring, but this is done "on-line"

based on the sensor model (more specifically, the blur weights) and the cal-

culated range values.) Previously, in Phase I, we had registered the entire set

of geometric shapes by aligning the centers of rectangles circumscribing their

silhouettes; see [2]. Alignment is an important issue in that all tests through

Round 3 are relative to this registration. Due to the highly non-isotropic

nature of the shapes of the actual military targets, we decided to explore
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several other methods, and found that the most effective procedure was to

align the centers of mass rather than the centers of the circumscribing rect-

angles. The high resolution, ray-traced, targets templates are then mutually

registered by aligning their centers of mass computed from the pixels on tar-

get. This provides an origin for a reference coordinate system, and this origin

may then be regarded as the image location at which we are attempting to

detect and classify a target. In the ensuing discussion, image coordinates in

the field of view are then all relative to this reference point.

4.2 Occlusion and Semi-Targets

A crucial issue is target occlusion; clearly the algorithm must have the capa-

bility to detect and classify targets which are partially obscured by terrain

anomalies, and perhaps also by other targets, although we have focused on

the former.

First, it is evident and visually apparent that the range values are partic-

ularly ambiguous for pixels corresponding to the image areas near the bottom

of the vehicles. Consequently, we decided to restrict the locations of "out-

side" points for probes (see §4.3 below) to an arc-like zone (or "halo") lying

over the templates, whereas the "inside" points may still lie near the ground.

Moreover, after studying the imagery supplied by CNVEO, it was de-

cided to concentrate on obscurations from below, which occur, for example,

when targets are partially occluded by small hills, brush, and other obstacles

in the field of view. Ideally, as described in [2] and other previous reports,

obscurations would be accommodated by appending the list of hypotheses
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to include the "semi-targets" composed of partial silhouettes. For obscura-

tions from below, one would remove some portion of the target lying below

a horizontal line (say one passing through the center of mass, although the

algorithm would easily be adjusted for the degree of occlusion) and re-train

with the expanded list of hypotheses. (In particular, the definition of "in-

side" and "outside" points must modified accordingly.) However, due to time

constraints, we decided to do something less ambitious, namely to train sep-

arately for the "half-targets" simply by restricting the locations of probes to

an area above the center of mass. Figures 16, 17 and 18 show the collection

of half-targets for the three vehicles. The actual search would then consist

of two distinct steps: searching for the full targets with the original tests

(with "outside points" restricted from certain zones as indicated above), and

then searching for the "half-targets" with the customized tests. In actuality

(and quite remarkably), the examples reported in the Figures included in

this report were computed using only the training data for half-targets.

We emphasize again that this two-stage procedure would be less effi-

cient than had we grouped the targets and half-targets into one collection

of 216 hypotheses, for in that way the tests would be constructed to disam-

biguate between targets and half-targets, rather than simply among targets

and among half-targets. Still, we have found that our tests are sufficiently

powerful that nearly no erroneous classifications resulted from confusing a

half-target of one type with any target of another type; see §5.

In what follows we shall describe the training mechanism for the full

targets; the procedure for the half-targets is identical. Moreover, whereas

not restated, it should be remembered that the outside tests are in fact
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constrained to lie away from the area under the vehicles, as described above.

4.3 Decision Tree

4.3.1 Detection: Rounds 0 and 1

When Round 0 is implemented we are at the top of the decision tree and, ba-

sically, we are attempting to distinguish objects from background. Moreover,

this filter must be applied at every image location. Consequently, we seek

speed and generality, the former by restricting the number and complexity

of the probes, and the latter by requiring that every probe should provide

information about every hypothesis, i.e., about the presence or absence of

each object in each orientation. Moreover, the only information about the

actual objects (i.e., the target templates) that is utilized in all the probes

until Rounds 4 and 5 is the silhouette; the internal structure of the objects

(i.e., the actual range data) is only exploited further down the decision tree

for final disambiguation and hypothesis verification.

Recall that we have registered the silhouettes to provide an origin for a

reference coordinate system, and this origin may be regarded as an image

location at which we are attempting to detect and classify a target within

a field of view centered there. Relative to this coordinate system, a probe

in Round 0 is a point with a label, in this case indicating whether the point

should be "inside" or "outside" the collection of (registered) shapes. For

simplicity, we chose the same number J of inside and outside points, yielding

2J points in all and denoted by (Ij, Oj), I = (I!, I), Q 0--- (0,0?), j

1,2,..., J. In the current implementation, for example, J = 20.
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Ideally, the points must be chosen such that each Ij lies inside each shape

and each 0j lies outside each shape. In addition, we found it useful to re-

strict the points from strongly clustering. The inside and outside points were

chosen by designing two cost or "energy" functionals over sets of points. One

cost functional governed selection of the inside points and tne other governed

selection of the outside points. Details of the proprietary procedure for op-

timization of tests are described in the technical documentation, delivered

with the software.

Round 1 is similar to Round 0 except that the original 108 shapes are

divided into 18 groups, each group consisting of six shapes; the first group

is the tank, call it Object A, at the six rotations 0, 10, 20, 30, 40, and 50

degrees, the second group is the tank at rotations 60, ... ,110 degrees, etc;

this accounts for the first 6 groups. The next 6 groups are defined in the same

manner relative to Object B, the truck, and the last 6 groups relative to Ob-

ject C, the APC. This grouping was done to facilitate discrimination among

hypotheses. The probes in Round 1 are thus group-dependent; they needn't

accommodate all 108 objects and can therefore be sufficiently discriminating

to eliminate most of the false positives resulting from Round 0.

The probes are constructed in a similar fashion to those in Round 0,

except that there are now separate energy functions for each group g =

1, ... , 18. These are defined in a manner similar to the cost functionals used

for optimization of the Round 0 tests. Details are provided in the separate

technical description of the algorithm.
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4.3.2 Classification: Rounds 2 and 3

At this stage of the decision tree we now wish to compare many hypotheses

simultaneously and retain those with some reasonable probability of occur-

rence at the current location. Given that we have reached this stage, there

is the strong likelihood that Object A, B, or C (or clutter) is within the

field of view, although not necessarily at offset zero relative to the center of

the field of view, i.e., the current image location. Remember that, ideally, a

hypothesis is confirmed at this location exactly when the offset is zero. Since

we are no longer primarily interested in separating objects from background,

and since there are as yet no specific hypotheses to entertain (only active

groups), we desire probes which effectively disambiguate among all relevant

pairs of hypotheses.

The probes in Rounds 2 and 3 involve relational template matching. Each

probe is a labeled pair (u, v) of locations. Again only the object silhouettes

are utilized during these rounds. The label depends on which template or

offset (translated) template is present at the reference point (i.e., within the

field of view) and indicates the positioning of probe coordinates relative to

the silhouette. Specifically, the label of (u, v) for hypothesis I is denoted

(I, 0), (0, I) or (I, I) according to whether u is inside and v is outside shape

1, vice-versa, or both u and v are inside; we do not consider pairs for which

both points lie outside any one of the templates.

Now given two shapes, say 1 and k, with I at offset 0 and k at offset b (a

vector) relative to the origin of the field of view and given a set x of N pairs

of points, x = (u,, v,,), n = 1,2, ..., N, we define the discrepancy D(x; 1, k, b)
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between 1 and k in terms of differences of label types between I and k for

the probes at locations x. Details of the definition of D are provided in the

technical description of the algorithm, delivered with the software.

As with Round 1, we define separate cost functionals Hg for each group,

g = 1,2, ..., 18, in order to find optimal probes (relative to D) to distinguish

the shapes in C. from those corresponding to the other objects. Let Cl, ..., C6

denote the groups for Object A, C7, ... , C12 denote the groups for Object B,

and C13, ..., C18 denote those for Object C. Fix g, say g _< 6 (the other cases

are similar) and x = (u,,,va),n = 1,...,N. The cost functional for group

g (Object A) is defined as a function of x which measures how difficult it

is for the probes associated with locations x to separate group g from all

competing presentations of Object B and Object C. Details of the definition

are provided in the technical description of the algorithm, delivered with the

software.

We used coordinate-wise descent to find a value of x* for which the cost

functional of group g is small, thereby providing a set of probes which sepa-

rates as well as possible the particular presentations of Object A represented

by group g from all competing presentations of Object B and Object C.

When a field of view is fixed and the search is performed, the image

intensity values are observed at the coordinates in x* and for each hypothesis

I E Cg the observed depth differences for the pairs (un,vn) are assigned one

of the labels (I, 0), (0, I) or (I, I) using "floating thresholds" designed to

minimize the probability of a detection error if, in fact, hypothesis I (at offset

0) 1 true. This is the hypothesis-driven segmentation we have mentioned

in previous descriptions of the algorithm. The result of this stage of the
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search is a collection of specific hypotheses for which the distance between

the observed and template values falls below a specified level.

Before Round 3 is implemented at a particular location, there is neces-

sarily a list of active hypotheses at this location; otherwise the search would

have terminated with the outcome "no confirmations." We then designed

hypothesis-specific tests in order to separately confirm or deny each of the

active hypotheses. Thus, for each hypothesis 1, we define a cost functional

depending on probe locations x which measures how difficult it is for the

probes associated with locations x to separate hypothesis I from all com-

peting presentations of the other object types. Minimization of the cost

functional for hypothesis I results in a set of probes for testing each shape

against all relevant alternatives, and a shape will remain active in the search

procedure only if the associated distance is suitably small. At this stage we

find that the probes characterize subtle differences among the shapes; this

is now possible for higher thresholds than in Round 2 since there are many

fewer patterns to disambiguate.

4.3.3 Verification: Rounds 4 and 5

The result of Round 3 is a list of hypotheses which are active at the given

image location; of course nearly all image locations have no pending confir-

mations by this point. The purpose of Round 4 is to exploit the internal

structure of the objects, that is the depth differences among locations within

the silhouette, to filter or screen the list of active hypotheses. Round 5 then

disambiguates among confirmations which lie in close proximity.
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Let k denote the label of an active hypothesis at a given image location

after Round 3, and let XIk,i = 1,...,nk, denote the (relative) depth values

for the pixels on the target template associated with k, i.e., Xk is the (rel-

ative) range to pixel i for the particular target-aspect pairing indicated by

k. (Actually, as mentioned above, these ideal depth values must be adjusted

for the blurring effects of the sensor; we do this by simply (i) applying the

known sensor blur model to the idealized ray-traced template and (ii) exclud-

ing pixels that are within the radius of the blur support from the boundary

of the template.) Let Y denote the actual measured intensity value at pixel

i. We wish to check whether or not the observed values are consistent with

the presence of hypothesis k at the reference point.

The consistency check is done by defining a statistic Tk, chosen by design

to be a suitably invariant dissimilarity measure between the observed data Yi

and the hypothetical values Xik currently being considered. Tk is designed so

that it has a distribution function of known form when the active hypothesis

k is true. T' is also designed so that the way in which its values differ from the

so-called null distribution when k is false is well understood. Consequently,

we were able to screen effectively simply by following the standard paradigm

of testing a statistical hypothesis. We are able to implement this test so that

no false negatives are introduced at this stage of the decision tree and it is

still a powerful discriminant between hypotheses. Details of the Round 4

consistency check are provided in the technical description of the algorithm,

delivered with the software.

Finally, in Round 5, we compare pending confirmations which lie in close

proximity to decide which target to confirm at the given location. This is
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easily and effectively accomplished by comparing values Tk, k = 1, ... ,K,

where K denotes the number of pending hypotheses in the comparison view

field. Details of the Round 5 selection among competing hypotheses are

provided in the technical description of the algorithm, delivered with the

software.

5 Experiments.

The first experiment shows the results of the algorithm on the data given by

Figures 14 and 15. In Figure 19, five vehicles have been correct identified;

we have omitted the sky, displayed only the lower 8 bits, and outlined the

targets for easier viewing. There are no substitution errors and no false

positives. This scene contains two M35s, two M60s, and one M113 at a range

of 3 kilometers. None of the objects are occluded. In addition, there are five

pieces of clutter and dropout noise which has pirobability 0.1 of replacing each

pixel in the scene with a random uniformly-distributed two byte integer.

Figures 20 and 21 show another simulated scene and Figure 22 another

example of the output of the ATR algorithm. In Figure 22, five vehicles

have been correct identified; again, we have omitted the sky, displayed only

the lower 8 bits, and outlined the targets for easier viewing. There are no

substitution errors and no false positives. This scene also contains two M35s,

two M60s, and one MI 13 at a range of 3 kilometers, however it is considerably

more challenging than the first example because all five targets have been

partially obscured by burying them. In addition, there are five pieces of

clutter and dropout noise which has probability 0.1 of replacing each pixel
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in the scene with a random uniformly-distributed two byte integer.

Finally, Figures 23 and 24 depict a still more challenging example, with

the results shown in Figure 25. In Figure 25, eight vehicles have been correct

identified; again, we have omitted the sky, displayed only the lower 8 bits,

and outlined the targets for easier viewing. There are no substitution errors

and no false positives. This scene also contains three M35s, two M60s, and

three M113s at a range of 3 kilometers. This scene is still more challenging

than the first and second examples because it contains some of the smallest

and most difficult to recognize targets (a front view of an APC) and four of

the objects are partially obscured. In addition, there are twenty pieces of

clutter and dropout noise which has probability 0.1 of replacing each pixel

in the scene with a random uniformly-distributed two byte integer.

We note again that the poor appearance of these pictures is, in fact, a

fair representation of the actual data being processed. There is virtually no

resolution in the image of the upper 8 bits (due to the large range spanned

by the full scene) and there is very high-frequency, nearly periodic variation

in the image of the lower 8 bits (due to the low elevation of the sensor and

the large ranges).
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Figures

Figure 1A. Blow-up of simulated scene at range 3km

Figure lB. Blow-up of real data at range lkm

Figure 2. Decision tree for object recognition

Figure 3. Templates for M35 truck at 18 aspects

Figure 4. Templates for M60 tank at 18 aspects

Figure 5. Templates for M113 APC at 18 aspects

Figure 6. Templates for M35 truck subjected to "resolved-target"
sensor model

Fiure 7. Most significant 8 bits of ray-traced image (no blur, no
noise)

Figur . 8. Least significant 8 bits of ray-traced image (no blur, no
noise)

Figure 9. Blow-up of most significant 8 bits of ray-traced image
(no blur, no noise)

Figure 10. Blow-up of least significant 8 bits of ray-traced image
(no blur, no noise)

Figure 11. Blow-up of least significant 8 bits of ray-traced image
after application of sensor model

Figure 12. Blow-up of least significant 8 bits of ray-traced image
after application of sensor model and noise model

Figure 13. Blow-up of least significant 8 bits of ray-traced image
after application of sensor model, noise model and injection of
dropouts

Figure 14. Most significant 8 bits of a simulated scene containing
5 objects and 5 pieces of clutter

Figure 15. Least significant 8 bits of a simulated scene containing
5 objects and 5 pieces of clutter
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Figure 16. Training templates of half-targets for M35 truck at 18
aspects

Figure 17. Training templates of half-targets for M60 tank at 18
aspects

Figure 18. Training templates of half-targ'ts for M113 APC at 18
aspects

Figure 19. Detected objects (boxed) in scene depicted in Figure
15

Figure 20. Most significant 8 bits of a simulated scene containing
5 objects and 5 pieces of clutter

Figure 21. Least significant 8 bits of a simulated scene containing
5 objects and 5 pieces of clutter

Figure 22. Detected objects (boxed) in scene depicted in Figure
21

Figure 23. Most significant 8 bits of a simulated scene containing
8 objects and 20 pieces of clutter

Figure 24. Least significant 8 bits of a simulated scene containing
8 objects and 20 pieces of clutter

Figure 25. Detected objects (boxed) in scene depicted in Figure
24
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Figure 2. Decision tree for object recognition
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