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RANDOM MEDIA

M. D. Fisk
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Earth Resources Laboratory
VDepartment of Earth, Atmospheric,and Planetary Sciences
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G. D. McCartor
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Abstract

Phase screen calculations of elastic wave propagation in 2-D random media are com-
pared with finite difference results to assess the accuracy and efficiency of the former
method. The phase screen method is a forward propagation algorithm which depends
only on the local S and P wave velocities. It differs from similar methods for scalar
waves by treating P/S conversion. Both methods are used to generate synthetic seis-
mograms at 640 evenly spaced gridpoints for identical realizations of 512 x 2750 grids.
Comparisons are made for a suite of 2-D random media characterized by exponen-
tial and zeroth order von Karman (self-similar) autocorrelation functions of varying
strength and correlation length. Constant and varying Poisson ratio are considered.
Early arrivals compare more favorably since the phase screen method does not include
backscatter. The waveforms are compared by computing relative differences and cross
correlations as a function of time offset. Temporal energy centroids of bandpass fil-

4tered synthetic seismograms are also computed. Execution times are compared for
simulations on a SUN 4/330, aAl ELXSI 6400, a CRAY-2, and an nCUBE parallel
computer. The phase screen algorithm is roughly two orders of magnitude faster than
the finite difference algorithm for 2-D grids. A naive estimate, based on the number
of operations in each algorithm, suggests that the phase screen method may be three
orders of magnitude faster for 3-D problems.
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1. INTRODUCTION

The purpose of this study was to assess the accuracy and relative speed of
a multiple phase screen method for propagating elastic waves in highly heterogeneous
media. The complexity of such media makes analytic solutions infeasible. Thus we
have no choice but to compare the phase screen calculations to some other form of
modeled data. For this comparison, we chose to use synthetic data calculated via the
finite difference method.

The finite difference technique is attractive because it produces a full solu-
tion to the elastic wave equation. Thus all direct, converted, diffracted and guided
waves are accurately modeled. Unlike various high frequency approximations, there is
no limitation in principle on the ratio of scatterer size to wavelength. Also, synthetic
seismograms may be generated at any point on a discretized grid. The method is
limited however by the speed of the computer, the memory available and the cost of
CPU time. With very few exceptions, the published studies based on this method
have been performed for 2-D media (Frankel, 1989).

The phase screen method, developed by Fisk and McCartor (1989,1991), is
an algorithm to rapidly forward propagate vector elastic waves. Phase screen methods
for scalar waves have been used in previous propagation studies of starlight through
the atmosphere (Ratcliffe, 1956; Mercier, 1962; Filice, 1984), radio signals through
the ionosphere (Buckley, 1975; Bramley, 1977; Knepp, 1983), acoustic waves in the
ocean (Flatt6; 1979), and P waves in the earth (Haddon and Husebye, 1978). Sim-
ulations for scAlar waves in three dimensions have been performed by Filice (1984)
and Martin and Flatt6 (1988). The method used here treats both S and P waves,
including their conversion, and allows for simulation of seismic wave propagation in
3-D heterogeneous media. Like the finite difference method, this method may be used
to generate synthetic seismograms at any gridpoint.

The phase screen method may be applied to media described by a mixture
of deterministic and stochastic structure. In a previous study, Fisk and McCartor
(1991) compared the results of the phase screen method with an "exact solution" of
an elastic wave in a 2-D laterally-layered structure. (By "exact" we mean that there
were no fundamental approximations made to solve the equation of motion and satisfy
the boundary conditions. The solution cannot be written in closed form, however, but
may be numerically determined to any desired precision.) Even for wavelengths on the
order of the length scale of the layers and velocity variations of 5%, the comparison
was excellent.
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Common to ray theory methods (e.g., Karal and Keller, 1959; Aki and
Richards, p. 90, 1980; Ansell, 1981), the phase screen method makes use of the fol-
lowing facts: (1) To first order at high frequency the P and S wave displacements,
expressed as the curl-free and divergence-free portions of the total displacement re-
spectively, decouple; and (2) to first order the propagation of the waves depend only
on the local P and S wave velocities, which act to distort the wavefronts. For applica-
ble problems, the heterogeneous medium depicted in figure 1(a) may be replaced with
a homogeneous medium and a set of phase screens, as shown in figure 1(b). Based
on the first fact, the initial P and S waves at z = 0 are independently propagated
to z = Az according to the uniform elastodynamic equation, using the average wave
velocities. The affect of variations in the local velocities is tre.-ted by multiplying the
S and P waves by position dependent phase factors at screen 2. In general, the dis-
torted wavefronts no longer satisfy the curl-free and divergence-free conditions. Hence,
if these waves are decomposed onto a complete set of forward propagating P and S
plane waves that do satisfy these conditions, P/S conversion is obtained. The proce-
dure may now be repeated, inserting phase screens for larger values of z, to propagate
the displacement further.

The spacing of the screens is determined such that geometric optics applies
for propagation between them. Martin and Flatte (1988) have pointed out that diffrac-
tion effects are accumulated from propagation through many screens. By including
diffraction effects, as Hudson (1980) has noted, the results are valid to a much greater
range than those of simple ray theory. The phase screen method is limited, however,
to particular scattering strengths and length scales of the structure for a given wave-
length. Thus this method does not have the versatility of the finite difference method.
We believe, however, that it may be used to treat a significant range of problems in
seismology that finite difference currently cannot due lo CPU time considerations.

Conversion, as Levin and Rytov (1957) have noted, is a second order effect
at high frequency, and is treated as such in the phase screen method. Karal and Keller
(1959), Richards (1974) and Ansell (1981) have also pointed out that there are second
order contributions to the P and S wave displacements that are not purely longitudinal
ane transverse motion. These terms depend on spatial derivatives of the density and
the Lame constants. Thus treating P/S conversion while ignoring these contributions

4t is not entirely consistent to second order. We have found, by comparison with exact
solutions for the laterally-layered problem with constant Poisson ratio, that the results
are considerably more accurate by treating conversion in this manner than ignoring
it altogether. Efforts to improve the P and S wave decomposition are currently being
made.
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Aside from treating both P and S wavi. in our analysis, our method differs
from previous phase screen methods used in seisn ,DIgy by treating wide-angle scatter.
Although wide-angle scatter has been treated before in the context of phase screen
methods for acoustic waves (Thomson and Chapman, 1983), and for light waves (Feit
and Fleck, 1978), the typical starting point in the formulation of the method is to
assume the parabolic approximation which treats only small-angle scatter. This ap-
proximation is valid for either scalar or vector waves rrvrided the wavelength is much
smaller than the structure size. In a previous study, Fisk and McCartor (1991) found
that the treatment of wide-angle scatter allows for propagation in smaller structures
to be computed more accurately. Certainly larger structures will lead to better results
since waves propagating at large oblique angles are apt to induce backscattering. For
large enough structures, our expressions may be expanded to recover the standard
parabolic approximation.

A study by McLaughlin and Anderson (1987) has shown that methods that
do not include wide-angle scattering and conversion, such as simple ray theory, Ry-
tov theory of a forward propagating scalar wave, and Gaussian beam synthesis, are
incapable of modelling systematic delays of high frequencies (4-5 Hz) relative to lower
frequencies (1-2 Hz) as has been observed at NORSAR in P-waves from Eastern
Kazakh explosions. They referred to this effect as "stochastic dispersion" of the P-
wave, and quantified the time delay by computing the temporal energy centroids of
bandpass filtered seismograms. They found that of the methods they studied, only
finite difference calculations for media with multiple length scales were able to repro-
duce this effect. We computed the temporal energy centroids of bandpass filtered finite
difference and phase screen synthetics to determine the affects of including multiple
wide-angle scattering, but neglecting backscatter, in the phase screen method.

The remainder of the paper is organized as follows. Section 2 provides de-
scriptions of the two algorithms used. Execution times are compared for simulations
on a SUN 4/330, an ELXSI 6400, a CRAY-2, and an nCUBE parallel computer. Due
to CPU time considerations, the finite difference simulationis were only performed on
the last two computers. Section 3 contains the details of modeling the random fluc-
tuations. To directly compare the results of the two methods, identical realizations
of the random fluctuations were used by both routines. Section 4 contains compar-
isons of the results. Synthetics were computed at 640 evenly distributed points. We
investigate how the accuracy of the phase screen method depends on the autocorre-
lation function, the magnitude of the velocity fluctuations, the correlation length of
the medium, and whether the medium was described by constant or varying Poisson
ratio. We compute the cross correlations of the time series and relative differences of
the waveforms for each component, and average over the receivers in the x-direction.
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We also compare the temporal energy centroids of the vertical component waveforms.
In section 5 we draw some conclusions about the applicability and usefulness of the
phase screen method. Appendix A contains detailed formulas of the phase screen
method for vector elastic waves, and Appendix B addresses the accuracy of the finite
difference method.

2. NUMERICAL ALGORITHMS

Finite Difference Method

The equation of motion for the displacement vector u in a heterogeneous
C linear source-free medium is

[a',, a [,(x)(v.u) 6i+it(x)(au, (1) ]

where A(x) and A(x) are the Lam6 constants, and p(x) is the density. For propagation
in a two dimensions, the equations of motion for the horizontal (u) and vertical (v)
particle displacements are

P8a 2U _ a + 2) + oz] + a [,(a + a) (2)

Pb--=2 ( +i)-+ +2[)-+ \a]. (3)at a T ax 1 Fl9 (3)

Throughout this work, we have assumed a two dimensional cartesian geometry, and
that density is constant throughout the medium. In addition, we have assumed the
medium is horizontally periodic and bounded by absorbing boundaries in the vertical
direction. (The latter boundary condition is irrelevant to the phase screen method,
since backscatter is ignored.) The finite difference method solves these coupled differ-
ential equations numerically by replacing the partial derivatives in space and time by

4 finite-difference approximations. The parameters A,/i,p, and the components of the
wavefield become functions of discrete 2-D cartesian coordinates.

Various finite difference approximations have been used to solve the wave
equation (e.g., Boore, 1972; Alford, 1974; Kelly et al., 1976; Virieux, 1986; Fornberg,
1987; Witte, 1989). For this work, we have made use of the simple explicit second-
order scheme proposed by Kelly et al. (1976). Second-order schemes are preferred in
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highly heterogeneous media since they more accurately resolve rapid variations in the
wavefield and the medium (e.g., Fornberg, 1987; Daudt, 1989; Charrette, 1991). Also,
we favored a non-staggered formulation because it is easier to implement the second-
order absorbing boundary conditions proposed by Clayton and Engquist (1977).

Phase Screen Method

The linearity of eq. (1) allows the solution to be written in terms of P and
S wave displarments as u = Up + us, which are chosen to satisfy the constraints
V x Up = 0 and V • us = 0. To first order at high frequency this decompositicn
results in the decoupling of the equation of motion into two simple wave equations of
the form )

V2 + )Up=O, (V2 + 2)US = 0, (4)

where a time dependence of eiwt is assumed for now. The local propagation velocities
for the respective waves are given in terms of the density and Lame constants by
a(x) = (A(x) + 2 (x)) /p(x) and 6(x) = p/ (x)Ip(x).

The phase screen algorithm for vector waves may be summarized as follows.
(A more detailed discussion is p ovided in Appendix A.) Given a realization of the 2-D
grid, it is divided into equal intervals of length Az by planes of constant z. Starting
with the initial displacement, Up and Us are uniformly and independently propagated
to a distance Az. The affect of the velocity perturbations is treated by multiplying
the S and P waves by position dependent phase factors, exp(iA(P)) and exp(iA(s)).
The P-wave phase factor for the perturbations between z = 0 and z = Az is given by
the geometrical optics expression

A(p)(x, Az) = kp jAz dz .5a(x, z) (5)
fo a

where kp = w/a, a is the average P wave velocity, and 6a is the velocity perturbation.
There is an analogous expression for the S-wave phase factor. Similar expressions are
computed for the fluctuations between the other screens.

The wavefronts, distorted by the phases, no longer satisfy the curl-free and
divergence-free conditions. Using standard Fourier and vector analysis, these waves
are decomposed onto a complete set of forward propagating P and S plane waves
that do satisfy these conditions. The procedure is repeated, inserting phase screens
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for larger values of z, to propagate the displacement further. Synthetic seismograms
are produced by computing the single-frequency results at a discrete set of positive
frequencies. Using an FFT, the product of single-frequency results and the Fourier
spectrum of the time source function is transformed to the time domain. The real
part of the transformed expression is then taken.

3. CONSTRUCTING RANDOM VELOCITY PERTURBATIONS

The autocorrelation function is commonly used to characterize random fields
and is a measure for quantifying the similarity between neighboring points in a random
medium. It has the property that it is the Fourier transform of the power spectrum
(Tatarski, 1961). This relationship allows us to build realizations from a desired
correlation function in the wavenumber domain. Throughout this study, realizations
were constructed by convolving the square root of the power spectrum with a phase
term of the form eie, where 0 is a random number drawn from a uniform distribution
over the range 0 < 0 < 21r. Since the norm of the phase term is one, the shape of the
power spectrum and the total power within that spectrum are unchanged.

Three correlation functions have received a great deal of attention in the
scattering literature; the Gaussian, the exponential and the von Karman functions
(e.g. Chernov, 1960; Tatarski, 1961; Dainty, 1984; Frankel and Clayton, 1986; Wu and
Aki, 1990). The commonly used form of these functions and their power spectra are
given in' Table 1, and shown graphically in Figure 2.

In the exponential function, the correlation length a marks the lag where the
correlation function has the value e- 1 (Figure 2). In the wavenumber domain, both
spectra are flat out to a corner wavenumber which is approximately equal to 1/a. At
higher wavenumbers, the exponential falls off as k-(N+1), where N is the number of
space dimensions. The fall off rate of the spectra controls the amount of roughness in
the realization. Spectra with more energy at high wavenumbers are expected to show
more roughness (Figure 3) than those which are localized near zero wavenumber.

The von Karman function was first introduced Lo characterize the random
velocity field of a turbulent medium (von Karman, 1948). In the spatial domain, the
von Karman function is peaked about the origin. The peak is especially severe when
v = 0, since then the modified Bessel functiG .. K, goes to infinity as r/a goes to zero.
Although the parameter v, can take on any value in the range 0 to 1, it has some special
properties at 0, 0.3, 0.5 and 1. When v = 0 the spectrum defines a multi-dimensional
Markov field (Goff, 1988), v = 0.3 defines Kolmogorov's turbulence (Wu and Aki,
1990), while for v = 0.5 the von Karman function simplifies to an exponential and
when v = 1.0 to an autoregressive field.
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Table 1. Correlation Functions and Power Spectra.

Gaussian Exponential von Karman

Correlation Function -21a 2  e-r/a 1K(r/a)

1-D Power Spectrum-ka2/4 2a r(v + 1/2) 2r1 1/2a+ k2 2
\ ' l 2

i+k.2a 2  r(v) (1 + kra2)V~'

a 2 _k2a2/4 a2 r(v + 1) 47ra 2
2-D Power Spectrum a-2- (+k22)3/2 r ___1 _ _

+

,1ka2)r/ (1 +4ira2 )

3-D Power Spectrum (aV4f) 3e k a2 / ,+82ra -  r(.± 3/2 87r3/2a3r(v) (i 2 2)V+ 3 /2

The peakedness of the von Karman correlation function leads to a wide
spectral representation, indicating that these media contain a significant amount of
roughness (Figure 4). As in the exponential function, the power spectrum of the von
Karman function is flat up to a corner wavenumber roughly equal to 1/a. The differ-
ence is that at higher wavenumbers the spectrum falls off as k - (N+2 ), considerably
slower than the exponential function. Thus for both functions, 1/a defines a corner
wavenumber and the parameter v controls the rate of decay of the power spectrum
(Figure 2).

The von Karman function has an additional property that its slope is dis-
continuous at zero lag. This property qualifies the von Karman function as a fractal
(Mandelbrot, 1977). Fractals are unique and of interest because they contain varia-
tions on all wavelengths. Since many physical characteristics in the crust also display
variation on a wide variety of length scales, this autocorrelation function may be well
suited to crustal applications. The self-similar nature of fractals can be easily seen
by examining the variance as a function of wavenumber. Figure 5 shows a series of
1-D realizations taken from the three ACF described above. All three realizations
have the same correlation length (a = 20 m) and were generated by the same random
seed. At low wavenumbers there is little variation in shape and variance between the
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traces. This is consistent with the power spectra (Figure 2), which are flat at low
wavenumber for all three functions. At high wavenumbers, there is no variance in the
Gaussian trace, and the variance in the exponential trace is smaller than it was at
low wavenumber. Thus, for these media, the variance over equal logarithmic intervals
of wavelength decreases as the wavelength decreases (Frankel, 1989). This is not so
for the 0th order von Karman function. The variance for that function is roughly
constant over length scales smaller than 27ra (Figure 5).

3. COMPARISONS

Details of the Models

Since the most important differences between the finite difference and phase
screen solutions were expected late in the wavetrain, it was necessary to simulate
wave propagation over a large enough region that the scattered field could include
a considerable amount of forward and backscattered energy. This requirement led
to the use of a relatively large grid (512 nodes by 2750 nodes). A schematic of the
grid is shown in Figure 6. The spacing between the gridpoints was dx = dz = 0.05
km. The lowest 250 gridpoints in the z-direction were homogeneous to allow for the
pulse to be "initialized" in the finite difference code. The spatial form of the source
was a plane P-wave located initially at a depth of 127.5 km within the homogeneous
segment. Arrays of 64 receivers were located every 250 gridpoints in the z-direction.
The phase screens were uniformly spaced every 50 gridpoints in the z-direction for
the heterogeneous portion of the grid.

The initial time source function used in our study was a Ricker wavelet
defined by

F(t) = (1 - (27rfo(t - to)) 2 /2) exp (-(27rfo(t - to))2/4) (6)

where fo is the peak frequency and to defines the origin of time. The value fo = 2
Hz was used for all of the simulations. The finite difference simulations used 10000
timesteps, however, only 1500 of these points were included in the output. The same
timestep At = 0.025s was used for the phase screen method, however, only 256 fre-
quencies were sampled; the remaining frequency data were zero padded to minimize
wrap-around effects.

Table 2 lists the details of the models, which were chosen to explore how the
accuracy depends on the correlation function, the wavelength to correlation length
ratio, and the magnitude of the velocity perturbations. A constant Poisson ratio
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was assumed for the first four models. The last four models assumed X constant;
thus the Poisson ratio was allowed to vary over the grid. The average velocities used
throughout this study were a = 5.5 km/s and / = c/V/3. Correlation lengths of 5
km and 2 km were used. The combination ka, relevant to the scattering regime (Wu,
1990), is given in Table 2, where k is used here to denote the P-wave wavenumber at
peak frequency. Although the phase screen method is expected to provide the most
favorable results for media with only density fluctuations, we chose to consider only
variations in the Lame constants to avoid making significant alterations in the finite
difference program.

Table 2. List of Models.

Model ACF (5a/a)rms (3fI/)rMo ka

1 Exponential 2.0% 2.0% 11.4

2 Self-Similar 2.0% 2.0% 11.4
3 Exponential 5.0% 5.0% 11.4
4 Self-Similar 5.0% 5.0% 11.4
5 Self-Similar 1.3% 2.0% 11.4
6 Self-Similar 1.3% 2.0% 4.6
7 Self-Similar 3.3% 5.0% 11.4
8 Self-Similar j 3.3% 5.0% 4.6

Comparison of Execution Time

Although the finite difference program had to be modified to use the nCUBE
parallel computer, the reduced execution time more than compensated for the conver-
sion of the code. To take advantage of the independent processors on the nCUBE, the
large finite difference grid was split into a series of separate subgrids, each residing on
a separate nCUBE processor. At each timestep, the independent subgrids were solved
simultaneously, the data along the edges are exchanged and the process is repeated.
For reference, a finite difference simulation like those presented here would take more
than 12 days to complete on a fully dedicated workstation (SUN 4/330). The same
problem could be run on a traditional supercomputer (CRAY-2) in 3.2 hrs. On a
128-node nCUBE parallel computer the simulation took only 1.8 hrs. to run, and on
a 1024-node nCUBE parallel computer the run time was less than 1/2 hour.
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Originally the phase screen code was developed on an ELXSI 6400. This
version was run on the ELXSI 6400, SUN 4/330, and CRAY-2. To exploit the inde-
pendent processors on the nCUBE, minor modifications were made to distribute the
single-frequency calculations among the processors. Table 3 lists the run times for the
phase screen simulations. The relative execution speeds of the phase screen and finite
difference simulations are roughly factors of 125 for the SUN 4/330, 52 for the CRAY-
2, and 63 for the 128-node nCUBE parallel computer. (The phase screen code was
not run on the 1024-node nCUBE machine.) A naive estimate of the relative speed,
based on the number of operations in each algorithm, suggests that the phase screen
method may be roughly three orders of magnitude faster for 3-D problems. Further
efforts to optimize the phase screen code on a particular machine would likely lead to
even more significant reductions in run times. Martin and Flatt4 (1988) have shown
that vectorizing a phase screen algorithm for scalar waves to run on a CRAY led to a
speedup factor of nearly 800 as compared with the run time on a VAX-11/750.

Table 3. Execution Times For The Phase Screen Method.

Machine Number of Processors
1 2 4 8 16 32 64 128

SUN 4/330 8254 s
ELXSI 6400 1771 s
CRAY-2 223 s
nCUBE 7964 s 3954 s 1997 s 1002 s 510 s 288 s 166 s 103 s

Comparison of Synthetics

Synthetic seismograms for the eight models are recorded for receivers located
at the midpoint in the x-direction, and for various depths (Figures 7-14). Figures 15-22
show comparisons of the synthetics at every sixteenth receiver at a depth of z = 12.5
km (NZ = 251). (This array of receivers was chosen since the absorbing boundary
condition at z = 0 only partially absorbs obliquely incident waves (cf. Appendix B).
Spurious reflected signals are expected to propagate backward into the grid in the finite
difference solution, however, they should have smaller amplitudes than the spurious
signals directly at the bourflary.) In all of these figures the solid and dotted curves
represent the finite difference and phase screen results, respectively. It is immediately
apparent that there is excellent agreement between the waveforms at early times,
which is degraded at later times.
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To quantify the comparison, relative differences in the wavefields were com-
puted. The relative difference in the peak-to-peak amplitudes of the first vertical
arrivals were between 3% - 6% for the set of models. Figures 23,24 show the relative
differences in each component of the time series for the eight models. We have defined
the relative difference to be the absolute difference of the phase screen and finite dif-
ference traces at each point in the x-direction and time for z = 12.5 kin, divided by
the envelope of the finite difference amplitudes for each component. The results are
averaged over the 64 receivers in the x-direction and smoothed over a running time
window of T = 2/fo = Is. The difference is particularly small for the early arrivals.
At later times the waves become out of phase with each other and the pointwise com-
parison worsens. Because the waveforms oscillate fairly rapidly, even slight offsets in
phase can lead to substantial differences. The power in the coda agrees well even
though there are differences in the relative phase.

The cross correlation of the wavefields provides a measure of the similarity
of the solutions as a function of time offset. The cross correlation is defined by
(s(t)s(t + r)) for a time series s(t), where r is the time lag. The angled brackets
denote a statistical average, in this case over the receivers in the x-direction and also
over t. The cross correlations are normalized by the autocorrelation at zero time
lag of the finite difference results. The cross correlation for the models are shown in
Figures 25,26. The numbers in the figures adjacent to the model numbers correspond
to the maximum values. The wavefields are highly correlated at zero time lag, which
indicates tCt the arrival times computed by the two methods are consistent.

Figures 23-26 provide a measure of which types of media the phase screen
method treats most accurately. Weaker media (2%) are treated better than the mod-
erately strong media (5%). Also, the results compare more favorably for exponential
rather than self-similar media. Backscatter clearly plays a more significant in the
latter cases. Figure 24 shows that the media with a = 2 km result in only a slight
increase in relative error as compared with the media with a = 5 km. (The similarity
in the curves is a result of using the same random seed to generate the media.) Also,
the horizontal components are more accurate for media with constant rather than
varying Poisson ratio. This is apparently a result of the particular P and S wave
decomposition employed in the phase screen method.

Comparison of Temporal Energy Centroids P

To measure the differences in the treatment of conversion and wide-angle
scattering, including backscattering, the 64 synthetics generated at z = 0 in each
model were bandpass filtered using a zero-phase shift Gaussian bandpass filter as in
the study by McLaughlin and Anderson (1987). The filters were centered at integer
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frequency between 1 - 7 Hz with full-width at half-maximum of 1 Hz. The temporal
energy centroids of the unfiltered and filtered synthetics were then computed. The
centroid for a time series s(t) is defined as

TC f S (t ) I t dt(7

f S(t) 2 dt

The centroids were then averaged over the 64 receivers and plotted in Figures 27-34
for the eight models. The solid and dashed lines in the figures correspond to the
averaged centroids of the unfiltered synthetics. The error bars represent ± one stan-
dard deviation about the mean. For models 1,2,5,6 with 2% velocity variations, the
comparison is quite good. There is virtually no difference between the centroids of
the unfiltered finite difference and phase screen synthetics. The time delay of the 4-5
Hz frequencies relative to the 1-2 Hz frequencies is exhibited by both methods. As
expected, the phase screen results do not show quite as much delay particularly for
models 3,4,7,8 where backscatter is more significant. Note that for model 3, where
the centroids do not monotonically increase with frequency, the phase screen cen-
troids follow the same curve as the finite difference centroids, with a slight offset due
to backscatter. McLaughlin and Anderson (1987) attributed similar patterns in their
results to scattering re sonances. In general, the amount of dispersion increases with
the magnitude of the velocity fluctuations and with the presence of more small-scale
structure; the self-similar medium leads to greater dispersion than does the exponen-
tial. There is also an overall delay of nearly 1 second of the waveforms in the media
with 5% fluctuations relative to the media with 2%.

4. CONCLUSIONS

The random media we have considered in this study were not intended to
model any particular portion of the crust, however, they are quite reasonable. Studies
of the crust under the Montana LASA (Aki, 1973; Capon, 1974; Bertreussen et al.,
1975) have used a single layer isotropic Gaussian medium model. The estimated
thickness of the layer 60 kin, correlation length a = 10 km and rms P wave velocity
perturbation between 1.9% - 4% are well within the limits of our study. A realistic
model of the crust and upper mantle under NORSAR has been proposed by Wu and
Flatte (1990). The model consists of overlapping exponential and self-similar layers.
(Actually, truncated power spectra corresponding to these correlation functions were
used.) The estimated total thickness - 250 km, correlation length a > 20 km and
rms P wave velocity perturbation between 0.5% - 2.2% are also characteristic of our
study.
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It is evident that the phase screen method is most accurate over the first
portion of the seismograms where the arrivals have undergone only small-angle scat-
tering; at later times backscatter becomes more significant. Figures 7-22 demonstrate
the range of accuracy of the phase screen method, depending on the model. Although
the grid has been sufficiently sampled such that propagation errors in the finite differ-
ence solution are negligible, large-amplitude spurious boundary reflections are present
in the finite difference synthetics. Thus, differences in the solutions at intermediate
to late times can only partially be attributed to errors in the phase screen method
(cf. Appendix B).

We believe that there are a significant number of problems in seismology that
may necessitate the use of the phase screen method. It provides the flexibility to per-
form simulations on a variety of machines, from work stations to supercomputers. The
substantial reduction in execution time, relative to the finite difference method, allows
for substantially longer propagation distances, more extensive parametric studies, en-
semble averaging over realizations, and 3-D simulations to be considered. Simulations
in 3-D media are of particular interest if data from three-component stations, located
above highly heterogeneous media, are to be analyzed.

Appendix A. The Phase Screen Formulation

Starting with the decoupled wave equations in expression (4), the solution
in three dimensions, between any consecutive pair of phase screens, may be expressed
as

'{p(k±) A(k 1 ) eikrx + (k±) Bj(k 1 ) e , (A.)

where A and B, are Fourier coefficients of the P and S waves, respectively. Adopting
a standard convention of surnming over repeated indices, there is an implicit sum over
I which labels the two polarizations of the S wave. Our notation for the wave vectors
is as follows:

k.L = (kz, ky), (A.2)

kp = (k±,k ), ks = (k±,k,,), (A.3)
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ka= t k - k., k, = V/k, k,, (A.4)

where kp = Ikpt = w/a, ks = IksI = w/0, and a and P are the average propagation
speeds. The unit vectors ip and CIs are defined such that the curl and divergence
constraints are satisfied, i.e. kp x Cp = 0 and ks - - 0, I = 1, 2. Unit vectors
satisfying these conditions are

AlA

ep =kp = kp/kp (A.5)

,1 x :s 2k 2) -1/2 0 -k,)(.)

=k 1 I.5  x l

es I-s X l1 I k ) ks((-kzkylks (A.7)

Given an initial value of the displacement u() at z = 0, the Fourier coeffi-
cients AM0 ) and B(0) way be determined by standard Fourier and vector projections.
Once these coe -ients are known, eq. (A.1) may be used to propagate the displace-
ment to z = A-. Accounting for the local variations, the P and S wave terms are
multiplied by phase factors of the form in eq. (5) to obtain

u(o)X)I.=A... f d2kL A(°)(k 2,,ky) eik,.A eiA(P)(z,,A)
J(27r) 2

+ B 0)(kz, ky) ei A iA(S)(,Y"A') } eiz+iky. (A.8)

In a previous application where the medium was invariant under translations in the
z-direction, the accumulated phase depended on the wavenumber as well. Here we
find that it is adequate and more expedient to use phase factors of the form computed
in eq. (5).

Now setting the initial value of u(I) at z = Az equal to the expression on
the RHS of eq. (A.8), the new Fourier coefficients A(1) and B(1) may be determined
in terms of A() and B(°) and the phase factors. The general form of these relations is
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A(N)(kf,,kt) - i1s kP dx dyf d2k' ei(k.-k.)z J-i(hy - k y)v

S • ep(k', k{s) A(N- l) (k', k,) eik' As eiAP )
+l I Z,_ eV) se s~~vs,

B1N)(kzV / dx dyf d2k' eik-kz)z+i(k -kg)t (k5 x

( x i ) eik(,AA eiA(()(),tllNAz)

+ X i(k,,kv)) BiN1)(kxk,) eik '.A s eiA(S)(X N Ax) (A.1O)

The P/S coupling is evident in these equations. If the phase factors are constant, it
is straightforward to show that the waves decouple. Thus conversion is caused by the
local velocities distorting the wavefronts.

For the purposes of this paper, we shall now consider only two dimensions,
which is recovered as a special case by setting k. = 0. If ky = 0, the coefficients
B I) decouple from A(N) and BIN) in the recursion relations, and hence will be set
to zero. For computational purposes, the continuous Fourier expansions used to ex-
press the displacement are replaced with discrete versions. Let k. -+ k. = 27rm/L,
A(N)(k,,ky) -+ AN), and B(N)(kx,ky) -- B$(,N), where m is an integer and L is the
length of the screen. The displacement after N phase screens becomes

u(N)(x) = FA(N)ipm eik-",-+ik'. + EB(N)is e ikp's+iz, (A.11)
m pa

Now define the vector of Fourier coefficients in block form as

(AN  A ...,-MP,.. 0 " MP, -Ms, '", ) S (A.12)

(( ( ) (
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Mp and Ms are the greatest integers less than wL/27rd and wL/21rp respectively,
and T denotes the transpose of the row vector. Only the modes with harmonic z-
dependence are included since we are interested in propagation distances for which
the evanescent modes would be exponentially damped away. The recursion relations
for the Fourier coefficients may now be expressed as

B(N) U5 1 ' U5  B( ) . (A.13)

The integers m, n range from -Mp to +Mp, and the integers /i, zY range from -Ms
to +Ms, and there are implicit sums over n, ii in this expression. In addition, the
A-phases may be Fourier expanded as

ei '(P)() - D) e' n/L, (A.14)
n

and a similar expression with P --+ S. Combining this information with eqs. (A.9,A.10)
yields

P k,,, kn+k -u (.6
MSS npr.k,. + kmkn D(.) (A.15)
" kpmkalm + km

UPS Ikmkp, - kvkp,m D(S)(A16

m' kpmkcrgm + km nv(.6

-mn e, knk,,;& - kuIkarn D(P)(A17
kp,, ,. , + k2 14(.1n

-S kaIIpkp,&, + kk~ " (S (A.18)
kpa' .,, + k2

The phase screen algorithm for vector waves may now be summarized as
follows. Starting with the initial displacement at z = 0, the initial vector of coeffi-
cients are obtained. Given a reilization of the 2-D grid, it may be divided into equal
intervals of length Az by planes of constant z. The phase factors for each interval
are compited via a discrete version of eq. (5); an inverse FFT is used to obtain the
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Fourier coefficients D(P) and D(S), which are inserted into the matrix above. These
relations are successively applied to the initial vector of coefficients until the final
vector is obtained. The displacement in eq. (A.11) is evaluated using an FFT.

Appendix B. Accuracy of the Finite Difference Technique

The accuracy of the finite difference formulation used here was investigated
by Charrette (1991). In that study it was shown that the finite difference solution
converges to the exact solution as the discretization of the medium increases. In par-
ticular, for the spatial and temporal sampling rates used in this note, it was shown that
the error in phase and group velocities are less than a few percent. The accuracy tests
described in Charrette (1991) assume the medium is largely homogeneous. When the
medium is highly heterogeneous, errors in calculating the velocity gradients will also
effect the solution. The behavior of the finite difference technique is these situations is
not well understood and is likely to depend greatly on the nature of the medium. Due
to the complexity of the problem, the only tractable way to estimate these errors is
to exploit the fact that in the cotinuum limit the finite difference solution converges
to the true solution.

To illustrate this, we rati one simulation at twice the spatial and temporal
sampling rate used throughout this study. This resulted in a sampling rate of 55 points
per wavelength for the shortest wavelength P-wave (110 points per wavelength for the
center frequency) and a sampling rate of 30 points per wavelength for the shortest
wavelength S-wave (60 points per wavelength for the center frequency). Figures 31
and 32 show that the difference between the two solutions is negligible.

Additional errors are induced into the finite difference solution from the
boundary conditions at the ends of the grid. Randall (1988) has noted that parax-
ial boundary conditions, such as the one proposed by Clayton and Engquist (1977),
perfectly absorb elastic waves normally incident, but only partially absorb obliquely
incident waves. He further stated that portions of the wave incident at angles between
about 300 and 450 may lead to unacceptable boundary reflections. The horizontal dis-
placement is apt to contain more large-amplitude spurious reflections (e.g., Fig. 10,
Frankel and Clayton, 1986; Fig. 6, Randall, 1988). Also, stronger scattering media are
more likely to produce spurious signals since there will typically be more wide-angle
scatter incident on the boundary.
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Figure 1. The multiple phase-screen method replaces (a) each segment
Gof the heterogeneous medium with (b) a uniform segment and
a phase screen. The accumulated position-dependent phase is
projected onto screen 2.
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Figure 2. The model autocovarlance functions (top) and their 1-D
power spectra (bottom). The spectra and normalized so
that they have the same power.
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Figure 3. A 2-D realization of a random medium with an exponen-
tial autocorrelation function. The correlation length in this
realization is 20m, and there is 5% RMS deviation in the
velocity.
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Figure 4. Same as Figure 2, t with a 0th order von Karman auto-
correlation function (213harrette, 1991).
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Figure 6. Schematic of the 2-D grid. Arrays of 64 receivers were

located every 250 gridpoints in the z-direction.
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Figure 7. Model 1 synthetics of the vert.cal (V) and horizontal (U)
components of the displacement. Receiver locations were
at the z-direction midpoint for three depths.
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Figure 8. Model 2 synthetics of the vertical (V) and horizontal (U)
components of the displacement. Receiver locations were
at the z-direction midpoint for three depths.
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Figure 9. Model 3 synthetics of the vertical (V) and horizontal (U)
components of the dieplacement. Receiver locations were
at the z-dlrection midpoint for three depths.
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Figure 10. Model 4 synthetics of the vertical (V) and horizontal (U)
components of the displacement. Receiver locations were
at the z-direction midpoint for three depths.
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Figure 11. Model 5 synthetics of the vertical (V) and horizontal (U)
components of the displacement. Receiver locations were
at the z-direction midpoint for three depths.
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Figure 12. Model 6 synthetics of the vertical (V) and horizontal (U)
components of the displacement. Receiver locations were

at the z-direction midpoint for three depths.
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Figure 13. Model 7 synthetics of the vertical (V) and horizontal (U)
components of the displacement. Receiver locations were
at the z-direction midpoint for three depths.
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Figure 14. Model 8 synthetics of the vertical (V) and horizontal (U)
components of the displacement. Receiver locations were
at the z-direction midpoint for three depths.
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Abstract

Phase screen simulations of vector wave propagation in elastic random media are
applied to two independent studies of seismic wave scattering. In the first study,
we analyze transmission fluctuations of incident P waves propagated through a two-
dimensional version of Flatt6 and Wu's two-layer model of the crust and upper mantle
under NORSAR. Transverse coherence functions (TCF's) of the log amplitude, phase
and cross correlation, computed from vector wave simulations using 100 realizations,
are compared to analytic and simulated TCF's based on the parabolic approximation
to the scalar wave equation; the analytic results also assume the Rytov approximation.
Our results show that the TCF's all agree reasonably well for velocity perturbations
_< 0.5%, but the simulated TCF's (vector and scalar) are significantly different for

perturbations > 2%. The simulated vector wave also decorrelates over somewhat
shorter spatial offsets than the simulated scalar wave for perturbations above 2%.
In the second study, we examine the effect of random structure on the variances of
the direct peak-to-peak P wave amplitude, and the rms amplitude of the transverse
component in the velocity window between the P and S wave speeds. A large synthetic
database of seismograms were generated at 25 km intervals out to 200 km for each
of the eight random medium models considered. Our study shows that the relative
variance of the scattered phase is far less dependent on the structure than the direct
phase. The variance of the forward scattered P wave depends greatly on the strength
of the large-scale heterogeneities.

1. INTRODUCTION

The complexity of the heterogeneities in the lithosphere and asthenosphere
has led to a statistical characterization of the small-scale structure as random me-
dia. Wave propagation in random media is a relatively mature subject (e.g., Chernov,
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1960; Tatarskii, 1961; Ishimaru, 1977; Flatt6 et al., 1979). Predominantly the theory
has been applied to scalar wave propagation. Typically, weak scattering approxi-
mations are assumed to make the calculations tractable. For propagation in highly
heterogeneous media, however, analytic solutions are often infeasible. Numerical sim-
ulations, such as finite difference calculations, are attractive in this case because they
produce complete solutions to the elastic wave equation, and synthetic data may be
generated at any gridpoint in the model (Frankel, 1989). Unfortunately, CPU time
considerations often prohibit the use of finite difference techniques for many interesting
problems in seismology. For the case of moderately strong scattering, a practical way
to obtain the solution is to make a compromise between the analytical and numerical
methods, e.g., by neglecting backscatter, numerical simulations may be performed in
a fraction of the time required by full finite difference calculations.

In this paper, we consider two independent problems of seismic wave scat-
tering in random media, whose analytic and finite difference solutions are currently
infeasible. This is riot to say that methods of these types could not be used if certain
assumptions were made about the strength of the scattering, or the extent of the
medium. However, the interesting features of these problems cannot be adequately
probed with these solutions. In the first study, we analyze transmission fluctuations
of incident plane P waves, propagated through a two-dimensional version of the model
proposed by Flatt6'and Wu (1988) for the crust and upper mantle beneath NORSAR.
Analytic solutions exist for this problem, however, the approximations involved lead to
results that are valid only for weak fluctuations. We compare simulated and analytic
solutions to assess the validity of the approximations assumed, and the usefulness of
phase screen simulations for analyzing array data. In the second study, we examine
the effect of random structure on the variances of direct and scattered phases. A
large statistical ensemble of realizations (320 total samples of synthetic seismograms
at 25 km intervals out to 200 km for each of eight models) was generated to compute
statistically reliable variances. It is the first study of this type of which we are aware.
The details of these studies are contained in sections 2 and 3. First, we briefly describe
the computational technique used for this work.

1.1. The Phase Screen Method

The phase screen method is a rapid forward propagation algorithm, which
exploits the benefits of analytic approximations and numerical simulation. Phase
screen methods for scalar waves have been used in previous propagation studies of
starlight through the atmosphere (Ratcliffe, 1956; Mercier, 1962; Filice, 1984), radio
signals through the ionosphere (Buckley, 1975; Bramley, 1977; Knepp, 1983), acoustic
waves in the ocean (Flatte et al., 1979), and P waves in the crust (Haddon and Huse-
bye, 1978). Simulations for scalar waves in three dimensions have been performed by
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Filice (1984) and Martin and Flatt6 (1988). Recently, Fisk and McCartor (1989,1991)
have developed a phase screen method which treats vector elastic waves, including
P/S conversion. The algorithm allows for simulation of seismic wave propagation in
3-D heterogeneous media. Like the finite difference method, this method may be used
to generate synthetic data at any gridpoint.

Common to ray theory methods (e.g., Aki and Richards, 1980), the phase
screen method makes use of the following facts: (1) To first order at high frequency the
P and S wave displacements, expressed as the curl-free and divergence-free portions
of the total displacement respectively, decouple; and (2) to first order the propagation
of the waves depend only on the local P and S wave velocities, which act to retard
or advance the phases of the wavefronts. For problems which meet these criteria, the
heterogeneous medium depicted in Figure 1(a) may be replaced with a homogeneous
medium and a set of phase screens, as shown in Figure 1(b). Based on the first
fact, and working with single-frequency plane waves for now, the initial P and S
waves at z = 0 are independently propagated to z = Az according to the uniform
elastodynamic equation, using the average wave velocities. The affect of variations in
the local velocities is treated by multiplying the S and P waves by position dependent
phase factors at screen 2. The spacing of the screens is determined such that the phase
factors may be computed from geometrical optics. Below, we describe how random
realizations of the phase factors are computed.

The wavefronts of the P and S waves become distorted by the phase factors,
and thus no longer satisfy the curl-free and divergence-free conditions. Hence, if these
waves are decomposed onto a complete set of forward propagating P and S plane
waves that do satisfy these conditions, P/S conversion occurs. The procedure may
now be repeated, inserting phase screens for larger values of z, to propagate the new
expressions for the P and S wave displacements further. If synthetic data in the time
domain are desired, the single-frequency results may be computed at a discrete set
of frequencies, and then convolved with the frequency spectrum of the time source
function. (Detailed formulas of the method outlined here have been given by Fisk and
McCartor (1989,1991) and Fisk et al. (1991).)

The method has been compared, with considerable success, to other calcu-
lations. Fisk and McCartor (1991) compared the results of the phase screen method
to an "exact solution" of an elastic wave in a 2-D laterally-layered structure. (By
"exact" we mean that there were no fundamental approximations made to solve the
equation of motion and satisfy the boundary conditions. The solution could not be
written in closed form, however, but may be numerically determined to any desired
precision.) Even for wavelengths on the order of the length scale of the layers and
velocity variations of 5%, the comparison was excellent. In a separate study, Fisk et
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al. (1991) compared phase screen and finite difference calculations for elastic waves in
2-D random media. Again, the comparison was quite favorable. In addition, it was
shown that the phase screen algorithm is roughly two orders of magnitude faster than
a second-order finite difference scheme for two-dimensional problems.

2. TRANSMISSION FLUCTUATIONS

Transmission fluctuations of direct P arrivals have been analyzed at LASA
and NORSAR by Aki (1973), Capon (1974), Bertreussen et al. (1975) and others to
deduce the statistical properties of the crust and upper mantle beneath the arrays.
Assuming a single-layer Gaussian medium, comparisons of theoretical TCF's of the
log amplitude and phase with data, provided estimates of the depth, correlation length
and rms velocity perturbations of the crust. The TCF's measure how the waveform
decorrelates as a function of the spatial offset across an array, due to propagation
through the random structure.

The analytic techniques to compute TCF's were originally developed by
Chernov (1960), Tatarskii (1971), Munk and Zachariasen (1976), Ishimaru (1978),
and Flatt6 et al. (1979). Flatt6 and Wu (1988) extended the theory to compute an-
gular coherence functions (ACF's), which describe the coherence of the wavefield as a
function of the angle of incidence. Using the additional information in the ACF's, they
found that the single-layer Gaussian medium model does not accurately fit the data
at NORSAR. They proposed a two-layer power-law medium model which sufficiently
predicts the observations.

While the analytic calculations provide elegant closed form expressions for
the coherence, they often assume the scalar wave, Rytov and parabolic approxima-
tions. Wu and Flatt6 (1990) have noted that their analytic results are valid for only
sufficiently weak fluctuations. In fact, by assuming the Rytov approximation, the nor-
malized TCF's are independent of the magnitude of the rms velocity perturbations.
Intuitively, the coherence of the wave cannot be entirely independent of the scattering
strength of the medium. Wu and Flatt6 (1990) suggested that numerical simulation
is needed to determine when the weak fluctuation (Rytov) approximation no longer
applies.

The Rytov approximation assumes that gradients in the wave fluctuations
are small. Thus, as the frequency of the wave increases, the validity of the approxima-
tion decreases. Using a phase screen method based on the parabolic approximation
to the scalar wave equation, Flatt6 et al. (1988) looked at the behavior of the TCF's
with increasing frequency. They found that at 2 Hz, their simulated and analytic re-
sults were in agreement. For frequencies greater than 4 Hz, the log amplitude TCF's
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differed dramatically. Alternatively, as the strength of the perturbations increase, for
fixed frequency, the analytic results are also expected to break down. The scalar wave
and parabolic approximations are also apt to break down in this case L'nce moder-
ately strong heterogeneities are likely to generate obliquely scattered waves and P/S
conversion.

At the time, Wu and Flatt6 (1990) noted that the phase screen method they
used provided the only practical means to numerically simulate the 3-D problem. Since
then, Fisk and McCartor (1991) have developed a phase screen method for vector wave
propagation. We compare simulated TCF's based on the method for vector waves to
analytic and simulated results based on the parabolic approximation to the scalar wave
equation. We perform this comparison for a 2-D version of the model proposed by
Flatt6 and Wu (1988). Although this study could be performed for the 3-D model, for
the purpose of assessing the assumptions involved and understanding the scattering
effects, the 2-D model is adequate. To begin, we present the analytic calculation. The
details of the simulation and the model of the crust and upper mantle follow.

2.1. The Analytic Calculation

Following the derivation of the TCF's by Wu and Flatt (1990), it is assumed
that the propagation of the initial P arrival is governed by the scalar wave equation

(2+ u= 0, (1)

where w is the frequency, a(x) is the local P wave speed, and U is the single-frequency
P wave. For weak velocity perturbations, eq. (1) may be written as

(V + k2) U =-2k6n(x)U, (2)

where k = w/a, a is the average wave speed, and 6n = &/a- 1 = -6a/d. Expressing
the wavefield as U = Uo eO, where U0 is taken to be the solution of the homogeneous
wave equation, one obtains

(V2 + k2) (Uo0) = -Uo(Vp • Vip + 2k 26n). (3)

The solution may be written as an integral equation, and assuming IVOI is small, it
takes the form
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ON = 2k Uo(x) - ' fV dN x' GC(x,x') Uo(x) 6n(x'), (4)

where G is the Green's function of the homogeneous wave equation, and N is the
number of spatial dimensions. The assumption which neglects the nonlinear term
V0 . V0 is known as the Rytov approximation.

This expression may be further simplified if the scattering is predominantly
in the forward direction, i.e. by assuming the parabolic approximation. Let z be the
direction of forward propagation and rT be the vector of transverse coordinates. Let
the Green's function be expressed in the form

G(x,x') = Jd-'KT G(KT;z - z') eiX rr, (5)

where (KT; z - z') is the Fourier transform w.r.t. the transverse coordinates rT of
G. For small-angle propagation in N dimensions

G(KT; Z - Zt) 2 i(k2-K.)'/2(x_.,) S/ ei(k-g (/2k)(.-,}  (6)
2(k2 

- K2)1 /2 e 2"-D "

Also, assuming a normally incident plane wave,

Uo(x)-Uo(X') = e-(x-z'). (7)

To complete the analysis, the fluctuations bn are characterized by their
power spectrum Pn(K; z) and rms perturbation a as

(bn(x)6n(x')) = a 2 f dNK P,(K; z) eiK '(x- x'). (8)

The z dependence represents the possibility that the power spectrum may vary with
depth. Now let 0 = u + i4, where u is the log amplitude and 4 is the phase of the
fluctuating wavefield. Using the expressions above, the TCF's for a 2-D medium are
given by

(U(rT)U(0)} = 27rk 2 r fo dz f dKT P,,(KT, 0; z) sin2(KTz/2k) cos(KTTT) (9)
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(O(rT)4(0)) = 2?rk'o 2 fo dz f dKT Pn(KT, 0; z) cos(KT.z/2k) cos(KTrT) (10)

(u(rT)0(0)) = 7rk2a2 fo dz f dKT P,(KT,O;z) sin(K1z/k) cos(KTrT). (11)

In these expressions, K = (KT, K,) and h is the depth of the structure. The angled
brackets denote an ensemble average over all possible realizations of the medium.
As Wu and Flatt6 (1990) have noted, the wavefield fluctuations depend only on the
D.C. component of the heterogeneities in the direction of propagation, i.e. on the
power spectrum with K, = 0. Thus the results are insensitive to the small-scale
structure in the vertical direction. Typically, the TCF's are normalized such that

(u(rT)u(0))N - (u(rr)u(O)) (12)
(t1()2)

(0(0)2)

(u(rT) (0)) = (u(rT)0(0)) (14)

These functions are clearly independent of the rms wave speed perturbation a, which
may be traced back to the Rytov approximation. We will return to these results
momentarily. First, we describe how the simulated results were obtained.

2.2. Phase Screen Simulations

The phase screen method based on the parabolic approximation to the scalar
wave equation has a great deal of similarity to the calculation just described. Propa-
gation between any consecutive pair of screens is accomplished by using the parabolic
free-field Green's function in wavevector space. Thus the wavefield at z' = z + Az in
terms of the wavefield at z is given by

- (KT, z') = U(KT, z) exp [i(k - KT/2k)Az] (15)
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This expression is now Fourier transformed w.r.t. the transverse component of the
wavevector, to obtain U(rT, z'). The affect of the wave speed perturbations are treated
by multiplying this expression by the phase factor exp[i4(rT)], where

OrT)= kf dz' 6n(rT, z'). (16)

Now inverse Fourier transform U(rT, z') exp[i0(rT)J to obtain &(KT, z.) on the other
side of the screen. The process may be repeated to propagate further. Once the wave
has been propagated to the surface, TCF's may be computed numerically.

The fundamental difference between this approach and the analytic calcu-
lation is the treatment of diffraction effects. The phase screen solution divides the
medium into segments such that the geometrical optics regime applies between con-
secutive screens. Thus instead of multiplying the free-field solution by an amplitude
and a phase, exp(u + i4), it is multiplied by only a phase, exp(iO). Diffraction effects
(variations in the amplitude) are accumulated as the wave propagates through many
screens. The diffracted wavefield in this case may depend nontrivially on the strength
of the perturbations. The Rytov solution, on the other hand, computes the diffraction
effects over the full propagation distance in a single step. Unfortunately, to do so, the
Rytov approximation leads to a dependence on the rms perturbations that is simply
a multiplicative constant.

The phase screen method for vector waves has two additional features. First,
P/S conversion is treated as described in the first section of the paper. Second, the
S and P waves are propagated between the screens using free-field Green's functions
of the form exp [i(k2 - K2)1/2Az, where k = w/a for the P wave and k = w/P for

the S wave. The parabolic Green s function may be recovered from this expression by
expanding the argument of the exponential to first order for KT < k.

To generate random realizations of the phase screens, we relate the power
spectrum of the phase, denoted PO(KT), to the power spectrum of the perturbations
P.(KT, K,) (Knepp, 1983; Martin and Flatte, 1988) via

P0 (KT) oc P, (KT,O0). (17)

If the spectra are normalized such that

1=f dKT P,(KT) = f dKTdK P.(KT, K.), (18)
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then the variance of the phase is given by

a; = a2k2Az f dKT P.(KT,O). (19)

Each phase screen is created by filtering computer-generated Gaussian random num-
bers by the square root of the phase spectrum. The rms phase of each screen is
normalized by cr.

2.3. The Two-Layer Power-Law Model

The model proposed by Flatt6 and Wu (1988) for the crust and upper mantle
beneath NORSAR is described by two overlapping layers whose heterogeneities are
characterized by power-law spectra. A schematic of the model is shown in Figure 2.
The spectra of the heterogeneities are band limited. The lower cutoff is determined
by the fact that wavenumbers below 27r/D cannot be sampled by the finite array
with aperture D. For NORSAR the array aperture is D = 110 km. The subarray
beamforming process determines the upper cutoff; for NORSAR it is 27r/5.5 km.
The upper layer is described by a flat spectrum down to a depth of 200 km. This
represents the fact that the corner wavenumber of this spectrum is greater than the
upper cutoff. Since the corner wavenumber is inversely related to the correlation
length of the medium, this suggests that there is considerable structure at distance
scales < 1 km. The lower layer ranges from a depth of 15 km down to 250 km. It
is thought to consist of predominantly smooth large-scale structure, which may be
modeled by an exponential autocorrelation function. The corresponding spectrum in
N dimensions is given by aN/(1 + K2a 2)(N+1)/ 2, where a is the correlation length.
Evidence suggests that the correlation length is larger than the lower cutoff. Thus the
band limited spectrum may be approximated by a pure K - (N+I) power-law spectrum.
The relative strengths of the spectra are assumed to be equal at K = 0.31 km - 1,
i.e. at a length scale of 20 km.

3.4. Results

The two dimensional version of the model is obtained by setting N = 2.
The phase screen results were simulated using a total of 24 phase screens; 4 were

used for the lowest segment, 18 for the overlapping segment, and 2 in the uppermost
segment. For the overlapping segment the phase screens were generated as the sum
of realizations of the two spectra. This assumes the two layers are statistically inde-
pendent. The incident wave in all of these calculations was a 1 Hz normally incident
plane P wave. To obtain statistical results from the simulations, 100 realizations were
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averaged. The TCF's for the vertical component of the simulated vector wave are
compared with the simulated and analytic scalar wave results.

Figures 3-5 show the TCF's for this model with or = 0.1%,0.5%, 1.0%. The
solid, dashed, and dotted curves represent the simulated vector wave, simulated scalar
wave, and analytic results, respectively. For wave speed perturbations < 0.5% the
comparison of the three calculations is excellent. For o = 1.0%, however, the simulated
results begin to differ noticeably from the analytic results. For o = 2.0%, 5.0% (Figure
6 and 7), there is a slight difference between the rate at which the simulated vector
and scalar TCF's decorrelate. The difference is on the order of a couple of kilometers.
(Note that only the simulated results are shown in Figures 6 and 7, and the axes are
scaled differently than in Figures 3-5.)

Figures 6 and 7 also show TCF's of the horizontal component of the scattered
vector wave. It is not clear whether the transverse component TCF's for a direct P
arrival can be put to significant use; in practice the signal-to-noise ratio may be too
small. We have included these results to illustrate that the phase screen method for
vector waves may be used to analyze three-component data, perhaps for arrivals other
than the incident P, PKP or PKIKP phases. The additional information contained in
the transverse components could possibly lead to tighter constraints on the models of
the crust and mantle beneath seismic arrays or single three-component stations.

There are clearly measurable differences in the results depending on the
scattering strength of the medium. The simulations verified the analytic results for
sufficiently weak structures, but showed that the wavefield decorrelated more rapidly
than the analytic results indicated for stronger media. This is intuitively as one
would expect; the wavefield in a homogeneous medium, would be totally coherent.
The fact that the simulated vector wave decorrelated on slightly shorter distances
than the simulated scalar wave may be attributed to the additional scattering modes
in the vector case. Only as the strength of the perturbations increased above 2% were
P/S conversion effects noticeable in the TCF's. Qualitatively, these results would
also be observed for the three-dimensional problem. Quantitatively, however, the
generalization is not readily apparent. Further array analysis using phase screen
simulations of elastic waves in 3-D media should be performed.

3. ACCURACY OF DIRECT VERSUS SCATTERED PHASES

Accurate yield estimates based on seismic techniques depend on the uncer-
tainties in seismic magnitudes. Among other aspects, the observed seismic magnitudes
are subject to the variability of the intermediate receiver-source geology, and the num-
ber and quality of observing stations. Richards (1988) has noted that teleseismic body
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waves do not relate reliably to the yield unless the data is processed from many sta-
tions. Other phases such as Lg or P-coda often provide excellent estimates of yield
for data obtained at only one or two stations, but depend on the crustal structure,
propagation distance, etc. In a study by Nuttli (1986a), 22 Nevada Test Site (NTS)
nuclear explosions in hard rock were analyzed. The magnitude-yield relation for
mb(Lg), using data from only 2 or 3 stations, versus the announced yield, exhibited a
remarkably small variance. Nuttli (1986b) also analyzed Lg data taken at NORSAR
for 23 Semipalatinsk explosions. Richards (1988) has noted the Nuttli's Lg data do
not exhibit the same degree of consistency as that of published P-coda data (Gupta
et al., 1985), observed at a single teleseismic station, for the same events. The con-
sistency of the data were determined by comparing with an mb(P), estimated from
ISC data (Marshall et al., 1984) using hundreds of stations. Richards has suggested
that the considerably longer propagation distances (> 2000 km) may be responsible
for the inferior results based on mb(Lg) for the Semipalatinsk events.

These examples illustrate how the number of observing stations, geology and
propagation distances influence which portion, or phase, of the seismogram provides
the best estimate of yield. Ideally, large sets of physical data could be used to calibrate
the seismic stations and determine which magnitudes or weighted combination of
magnitudes provide the most reliable yield estimates. Unfortunately, relevant seismic
data are not always abundant, particularly at new stations. A practical approach
to supplement the information gained from physical data is to numerically simulate
seismic data.

As a first step towards understanding the scattering affects responsible, we
have simulated elastic wave propagation in uniform isotropic random media. We
generated a large statistical ensemble of data (20 realizations of each model by 16
synthetics, at each 25 km interval out to 200 kin), and computed the variances of
the direct P wave peak-to-peak amplitude and the rms scattered amplitude of the
transverse component in the velocity window between the P and S wave speeds. It
is the first such study of this type of which we are aware. It is made possible by the
tremendous efficiency of the numerical propagation algorithm we use. The CPU time
required to run each model was under 3 hrs. on an ELXSI 6400. To run this problem
on a CRAY-2 would take under 20 minutes.

The random media are conveniently characterized by their autocorrelation
functions, which measure the similarity of nearby points in the medium. In this
study, we focused on isotropic exponential (N(r) = e-r/) and 0th order Von Kar-
man (self-similar) (N(r) = Ko(r/a)) functions, where r is the spatial offset and a is
the correlation length (e.g., Chernov, 1960; Tatarskii, 1961). For all of the media
considered here, we assumed mean P and S wave velocities of a = 6.0 km/s and/3
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= 3.5 km/s, respectively. We also assumed that the ratio of P to S wave speeds
was fixed throughout the medium. Let the rms velocity perturbation be denoted by
a (6a/a),. - (6=/3),ma. The random medium models considered in this study
are listed in Table 1.

Table 1. List of Models.

Model Corr. Function a a (km)

1 Exponential 2% 5.0
2 Self-Similar 2% 5.0
3 Exponential 2% 2.5
4 Self-Similar 2% 2.5
5 Exponential 5% 5.0
6 Self-Similar 5% 5.0
7 Exponential 5% 2.5
8 Self-Similar 5% 2.5

Statistically representative realizations of the velocities may be generated by
the well established technique of filtering computer-generated Gaussian random num-
bers, corresponding to each point on a discrete lattice of the medium, with the square
root of the desired power spectrum. The power spectrum is the Fourier transform
of the autocorrelation function. In two dimensions, the power spectra corresponding
to the exponential and self-similar functions are a'(1 + k~a2)- /2 and a2 (1 + k'a 2) - 1,
respectively. The media were normalized by their standard deviation a. For this
study, the number of gridpoints used to sample the medium was 512 by 2048, and the
sampling interval was 0.1 km in each direction.

Once the velocities for a particular medium have been generated, the phase
factors needed in the phase screen algorithm were obtained as follows. The medium
is divided into intervals, by planes of constant z (referred to as screens in much of the
literature), such that the accumulated phase between the screens may be computed
from geometrical optics principles. The phase for the P wave, computed by integrating
(or for the discrete case, summing) the P wave speed perturbations along the direction
of propagation, is given by eq. (16). There is an analogous expression for the S wave
phase factor. In practice, 40 phase screens were used in each run.
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A Ricker wavelet was used as the initial pulse in our study. The time source
function of a Ricker wavelet and its Fourier transform are given by

F(t) = (I - (21rfo(t - to))'/2) exp (-(27rfo(t - to))'/4), (20)

P(f) = 2 ' (L) 2 exp (-(f/fo)2 + 27ritof), (21)

where fo is the peak frequency and to defines the origin of time. The value fo = 1
Hz was used for all of the simulations. The maximum frequency sampled was 5
Hz, where the norm of the spectrum has dropped off to - 10-0. The number of
positive frequencies sampled was 256; the remaining frequency data were zero padded
to minimize wrap-around effects when numerically Fourier transforming to the time
domain.

Sixteen synthetic seismograms were generated at 25 km intervals out to 200
km for twenty realizations of each random medium model considered. The synthet-
ics were evenly spaced in the horizontal direction. Figures 8-15 show characteristic
synthetics at 50 km intervals for the eight models. Using a total sample of 320 seis-
mograms at each interval, we computed the first and second statistical moments of
the vertical peak-to-peak P wave amplitude (mb(P)), and the rms amplitude of the
transverse component, in the time window between z/& + 1/fo to z/l. The time
window corresponds more closely to that of P-coda, however, we have denoted this
rms amplitude by mb(Lg) since it is part of the transverse component. (We hope that
the serious seismologist will not hold this notation against us. A layered structure,
necessary to actually produce Lg, is not present in our models. We have also misused
the definition of mb, which is customarily used to denote the logarithm of an ampli-
tude. These expressions should be thought of only as amplitudes of direct (vertical)
and scattered (horizontal) phases.)

In Figures 16-23 we have plotted the standard deviations, given as percent-
ages relative to the means. These plots show that near the source the direct P wave
amplitude has far less variation than the scattered phase, which is only beginning to
form. However, at some distance away, between 50 km to 150 km from the source
for these models, the scattered phase has less variation. In all cases, the cross-over
distance was greater for the self-similar media than the exponential media with the
same parameters. This result may be attributed primarily to the rate at which the
P wave standard deviation changes with distance, and from one model to next. In
fact, perhaps the most interesting result of this study is that the standard deviation
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of the scattered phase is so insensitive to the model. At 200 km the relative standard
deviation of the scattered phase is between 0.11 and 0.12 for six of the eight models.
The other two values are 0.13 and 0.14 for models I and 5, respectively. In contrast,
at 200 km the relative standard deviations of the P wave range from 0.14 for model 4
to 0.41 for model 1.

To interpret these results, scattering theory provides some insight. Wu
(1990) has pointed out that large-scale heterogeneities have the greatest affect on the
distribution of forward scattered waves. Thus it is not surprising that the media with
the greatest power at low wavenumber (or equivalently, on large distance scales) should
produce the largest variations in the direct P wave. Models with 5% perturbations
lead to greater variations in the P wave than those with 2%. Also, since the self-
similar media have more small-scale structure than the exponential, but both are
normalized to have the same total power a, the power at low wavenumber is greater
for the exponential medium. Our results indicate that exponential media lead to
larger variations in the P wave amplitude than do the corresponding self-similar media,
keeping everything else fixed.

Media with larger correlation lengths, for all other parameters fixed, lead
to larger variations in the P wave as well. One might argue that this result could be

cau..d in part by the fact that we have averaged over twice as many synthetics per
correlation length when a = 2.5 km as when a = 5.0 km. To explore this possibility, we
have compared the results when only half as many samples per correlation length were
used for the a = 2.5 km cases. These results are represented by the open symbols in
Figures 18,19,22,23. The difference in the relative standard deviations are negligible.

Wu (1990) has also noted that the small-scale heterogeneities are responsible
for scattering at large angles, and hence the generation of coda. Although the relative
standard deviations of the scattered phase do not vary much from one model to the
next, they are in general the smallest for the self-similar media. The presence of

considerable small-scale heterogeneities produces a more uniform distribution in the
scattered waves.

Simulations for' more realistic layered earth models are needed before further
conclusions may be drawn concerning the variability of body waves, surface waves,
regional phases and P-coda. Our study shows that useful information may be gained

from such simulations. It will be necessary to use an efficient propagation algorithm,
such as the phase screen method used here, in order to generate a sufficiently large
synthetic database needed for this type of study.
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Figure 1. The multiple phase-screen method replaces (a) each segment
of the heterogeneous medium with (b) a uniform segment and
a phase screen. The accumulated position-dependent phase is
projected onto screen 2.
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The rms velocity perturbation was 2.0%.

81



VERTICAL HORIZONTAL
1.0 .,1.0 . . .I A -' L , .

0.0 .. .. ..... 0.0 5-

0.5 
t 0.5

-0.0 -- 0.0 '

1.0 S 1.0
Phase Phase.

S0.5 . b 0.5

0.0 
0.0

-0.50

1.0 -1.0 
,.

Cross 10Cross

o0.5 - 0.5

0.0 - - 0.0

-0. .... . ...... I . I -0.50 10 20 30 40 0 10 20 30 40r', (kM) T,(M)

Figure 7. Same as Figure 6, but for an rms velocity perturbation of
5.0%.

82



1h -- .. .. -A

--- " A

I , I I 1I I I I I I

o 1o 20 30 40 50 60 70 80 90
t (sec)

Figure 8. Synthetic seismograms for model 1 at 50 km intervals out
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trace) components are plotted in pairs.

83



I I I Ii I I I I I

0 10 20 30 40 50 60 70 80 90

t (sec)

Figure 9. Synthetic seismograms for model 2 at 50 km intervals out
to 200 km. The vertical (upper trace) and horizontal (lower
trace) components are plotted in pairs.
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Figure 10. Synthetic seismograms for model 3 at 50 km intervals out
to 200 km. The vertical (upper trace) and horizontal (lower
trace) components are plotted In pairs.
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Figure 11. Synthetic seismograms for model 4 at 50 km intervals out
to 200 km. The vertical (upper trace) and horizontal (lower
trace) components are plotted in pairs.

86



I I I I I I I I
0 10 20 30 40 50 60 70 80 90

t (Sec)

Figure 12. Synthetic seismograms for model 5 at 50 km intervals out
to 200 km. The vertical (upper trace) and horizontal (lower
trace) components are plotted in pairs.
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Figure 13. Synthetic seismograms for model 6 at 50 km intervals out
to 200 km. The vertical (upper trace) and horizontal (lower
trace) components are plotted in pairs.
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Figure 14. Synthetic seismograms for model 7 at 50 km intervals out
to 200 km. The vertical (upper trace) and horizontal (lower
trace) components are plotted in pairs.
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Figure 15. Synthetic seismograms for model 8 at 50 km intervals out
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trace) components are plotted in pairs.
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REVIEW OF ATTENUATION IN SALT AT MODERATE STRAINS

W. R. Wortman and G. D. McCartor 1

Abstract. Experiments which reflect the attenuation of propagating pulses in salt in the
moderate strain regime of 10-3 to 10-6, which corresponds roughly to ranges of 100 to 10,000
meters from an explosion with a yield of 1-kt, are reviewed. A transition from nonlinear to linear
behavior occurs in this interval. This regime is important for monitoring of nuclear test treaties
since models for linear source functions are normally defined inside it. Salt is of interest since it
can be readily mined to produce decoupling cavities. Data from explosive sources, niclear and
chemical field and small scale laboratory tests, resonant bars and ultrasonic pulse me-.hods are
summarized. The experiments are diverse in their character and frequency and no single
experiment covers the nonlinear-linear transition. However, the totality suggests that attenuation
in salt does decrease dramatically over the moderate strain regime. A full physical description
does not exist although shear failure or yielding can account for some effects.

Introduction

Seismic monitoring of underground nuclear tests requires that properties of distant seismic
signals be related to the yield of the explosive source. In general, providing this relation requires
finding the material response to explosive loading under an extreme range of conditions. The
rock next to the explosive device is vaporized out to about 10 meters for a 1-kt explosion.
Somewhat beyond this the rock is melted and crushed. Out to a range of many tens of meters the
rock is visibly cracked. All these effects are highly nonlinear. Fortunately, it is not necessary to
provide first principles calculations of this behavior in order to monitor nuclear tests. Subsurface
ground data have been taken which can be used to define the pulse from explosions in a variety
of media outside the highly nonlinear regime. These data, along with some supporting
theoretical calculations for interpolation, can be used to define an equivalent seismic source at the
range where the data were taken. This bypasses many uncertainties from complex material
behavior under extremes of temperature and pressure. It is common to assume that the resulting
source, which is typically defined at a few hundred meters, can be propagated further to seismic
receivers assuming that the medium is strictly linear, although not elastic with attenuation
described by a linear Q operator, while taking into account the intervening geologic structure.
With this, the computed waveform properties can be compared with those observed to estimate
yield and depth. This technique is the fundamental approach to monitoring nuclear test treaties.

1 Now at Department of Physics, Southern Methodist University, Dallas, TX 75275
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As we shall see in this article, -.ere is strong evidence of nonlinear attenuation in the range of
moderate strains (sometimes called high-strains), which we define here as strains from 10' to
10-6 which occurs at roughly 100 to 10,000 m from a 1-kt explosion, which extends well
outside the usual region, or "elastic radius," where equivalent seismi , sources are defined. The
effect of this nonlinear attenuation, for which the attenuation depen(s nn the amplitude of the
dicturbance and not just the material properties, between ranges showing highly nonlinear
structural changes and ranges with linear strains levels (roughly 10-6) is not well understood.
Theice is a substantial body of data on attenuation in salt which can be brought to bear on this
question. Salt is also particularly interesting because it is relatively easily mined to produce
cavities which could serve to decouple clandestine tests [Evernden et al.. 1986]. For both of
these reasons, salt is a medium for which the seismic response is important. In this article we
shall indicate the nature and results of experiments which have been done in salt. There are three
types of experiments which have provided useful attenuation data in salt. These are: explosive
source generated pulse propagation, either in the field or the laborator,; ultrasonic pulse
propagation; and resonant bar excitation.

The explosive source technique is obviously most directly related to the question at hand. It
consists of placing a set of motion sensors at various ranges and orientations relative to a source
to cover the amplitudes of interest. As a practical matter, there are limits on the number of
sensors which can be used due to the available volume of uniform medium. The result is a set of
time domain pulses measured at a discrete set of sensors which can be ordered according to range
from the source to the sensor. When the effects of orientation, instrument response and spherical
divergence are removed, the change of the pulse with range reflects the results of any attenuation.
For linear attenuation described by a Q operator, the multiplicative change in amplitude in the
frequency domain with a range change, 8r, goes like

exp(-Wr/2cQ) (1)

where c is the phase speed. For linear mechanisms, Q-1 can be interpreted as the fractional
energy loss per cycle over 471 or the tangent of the phase angle between the stress and strain.
Through the above relation, generally referred to as using the spectral ratio method, Q is a
common measure of attenuation even if the mechanism is not known to be linear. Using this
measure, a Q as a function of frequency can be estimated for every pair of records.

Ultrasonic pulse propagation using a planar geometry can also be used to estimate a Q from
(1). A sample, usually with a linear dimension of a few centimeters but large compared with the
pulse wavelength, is placed between a pair of plates. One plate is pulsed with a finite source
waveform while a transducer at the receiver plate detects the transmitted pulse. The timing of the
received pulse allows determination of propagation speed while the spectral ratio of the
transmitted and received pulses fixes Q. Both compressional and shear pulses can be measured
by this method. The requirement of a reasonable apparatus and sample size limits this technique
to ultrasonic frequencies.
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The resonant or oscillating bar method does not involve pulse propagation. It measures the
response of a damped resonant system to a harmonic driver, for which the damping element is
the material under study. Typically a cylindrical rod approximately 10 cm in length is loaded
with appropriate weights to give a resonant frequency as low as practical, often a few hundred
Hertz. The system is then driven in torsion or flexure modes and its resonant response
determined as the driver frequency is scanned across the spectrum. The resulting response given
as an amplitude as a function of frequency determines the damping of the system. The half
power bandwidth of the resonance curve divided by the resonant frequency is Q-1.

It must be pointed out that the concept of Q is confined to linear attenuation. If there are
nonlinear effects, Q may well not be a robust description which allows a meaningful comparison
of different experimental results or a useful means of applying the results of experiments. The
danger of blind use of experimental Q vill be illustrated in this article.

Experimental Attenuation Data Available For Salt

Explosive Sources- Nuclear

Salmon. The nuclear explosion Salmon (5.3-kt) event took place in a natural salt dome in
Mississippi in 1964 at a depth of 828 meters. A comprehensive set of approximately 83 near-
field measurements at 16 instrument stations was planned, both at surface and subsurface
locations at ground ranges from 166 to 744 meters [Perret, 19671. A parallel set of
measurements was carried out by SRI [Eisler and Hoffman, 1966]. A rather consistent set of
near-field subsurface measurements including scaled ranges from 95 to 425 m/kt1 /3 resulted.
The single component acceleration and velocity instruments provided measurements of a range of
peak strains from about 4x10 -3 to 2x10-4 with dominant frequencies from 1 to over 10 Hz. A
representative set of particle velocity records [McCartor and Wortman, 1985] is shown in
Figure 1.

The Salmon data have been discussed by several authors. The original experimenter, Perret
[1967], gives an extensive description of the experimental details. He indicates that the peak
acceleration, velocity and displacement data all tend to fall off in a fairly uniform manner with
range. The peak radial velocity falls off like range to the -1.876±0.049 power as shown in
Figure 2. This decay rate, which is well in excess of the -1 power for geometrical far-field
elastic fall off, is an indication that there is some attenuation mechanism in operation but it is not
necessarily an indication of nonlinearity.

Rogers [1966] described the Salmon free-field data and compared the results with finite
difference calculations. These comparisons generally show agreement with the magnitude of the
pulses but the waveforms are noticeably different. This indicates that the models of highly
nonlinear material behavior based on prior experiments in salt were within reason, but these
mechanisms generally cease to be important at the ranges of the Salmon data. This article was a
part of a Journal of Geophysical Research issue [Volume 71, No. 14, 1966] with a sequence of
articles on the Salmon event.
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McCartor and Wortman [1985] analyzed a selected sequence of the Salmon free-field records
for the purpose of finding clear evidence of nonlinearity with this data set alone. It was found
that these data require an effectiv: Q which increases significantly with increasing frequency and
which has a value of about 5 in the dominant frequency range from 5 to 10 Hz. This is
consistent with Trulio [quoted by Larson, 1982] indicating that the Salmon data for decay of
peak velocity with range are consistent with an effective Q of about 3 in the 0.5 to 5 Hz range for
strains near 10-4 . Figure 3 shows a typical effective Q found using the spectral ratio of free-field
records from 166 and 660 meters from the shot point. Examination of a series of Q estimates
from 5 record pairs over this same range, shown in Figure 4, does not show clear evidence of
decreasing attenuation with range. The extreme range record pairs attenuation estimates appear to
differ by about 20%, decreasing with range, but this is the same level as the uncertainties. The
Salmon elastic precursor which leads the Salmon pulses has been accounted for by McCartor and
Wortman [1990] by a partial shear failure which permanently reduces the shear modulus when
the strain exceeds a threshold of about 10-4 . Rimer and Cherry [1982] have shown that it is
possible to reproduce much of the Salmon data, including the precursor, using a shear strength
limit which is variable.

Gupta and McLaughlin [1989] analyzed Salmon and Sterling data and con~cluded that the
effective Q at Salmon strains appears to be mildly strain dependent and strongly frequency
dependent. The mean apparent Q in the 1-25 Hz range is about 7 and it appears to increase
mildlywith increasing range. The result for attenuation is reflected in a modified Q function
called Q. This is defined as Q= Q+f dQ/df which is a measure of the spectral slope change. The
behavior found is shown in Figure 5. Gupta and McLaughlin argue that the decrease in
attenuation with range is significant and this indicates that the behavior is nonlinear. The
attenuation decreases sharply with increasing frequency. Denny [1990] reports that the source
spectra characteristics of Salmon and Sterling indi,ate that the Salmon pulses are nonlinear to
beyond 700 m.

Sterling. The nuclear explosion Sterling (0.38-kt) event took place in 1966 in the Salmon
cavity, which was approximately spherical with a radius of 17 meters. This was the second half
of the decoupling test and the same instrumentation was used. The waveforms observed are
generally noisy and less cohesive than for Salmon. Sterling data [Sisemore et al., 1969] are at
lower strains than Salmon due both to lower yield and decoupling. Sterling peak velocities
indicate a strain range of 3x10"5 to 7x10"6 . Some analysis of these data by Springer et al.
[1968] suggested that there was significant near-field attenuation. A more recent analysis by
Glenn et al. [1987] corrects some errors in the previous work and indicates that the observed
Sterling near-field pulses are in good agreement with elastic theory. Gupta and McLaughlin
[1989] used a spectral ratio method to determine the attenuation over sensor pairs. They find that
the average Q is approximately 200 to 400 and shows no evident dependence on frequency or
range. These last two papers suggest that the Sterling strains have reached a transition to a linear
low attenuation at small strains, near 10- 5 . Langston [1983] has noted that SV waves generated
by Sterling, apparently due to induced normal faulting rather than cavity asymmetry, showed
attenuation with range which was significantly different from 1/r. He finds that Q3 of 35 i,
indicated at strains of about 10-5 and there is a mild tendency for Qp to increase with range, and
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so with decreasing strain. If it is assumed that there is no contribution to attenuation from
compression, the corresponding P-wave Q will be approximately 70, although there is no direct
evidence to tie the two modes together for this particular case.

Gnome. The Gnome explosion (3 kt) took place in the Salado salt layer at a depth of 360
meters [Weart, 1962]. Above the salt there were strata to a depth of about 200 meters consisting
of diverse lithology. Analysis of the data from eight sensors sites located horizontally from the
shot point at ranges of 62 to 477 meters indicates that there are three distinct arrival times. The
high speed initial signal appears to be from refraction in a polyhalite layer below the shot, the
normal moderate speed signal then appears followed by a plastic wave with a speed which
diminishes with decreasing strain. Some of the acceleration records are clipped so it is difficult
to use the details of the waveform to characterize the attenuation. Weart indicates that the peak
velocity falls off like range to the -3.56 power out to 100 meters and then like the power -1.36
out to the last sensor at 477 meters. It is suggested that the elastic zone has been reached at this
extreme range but no evidence beyond the amplitude variation with range is given.

Explosive Sources-Chemical

Cowboy. The Cowboy series of chemical explosions took place in a salt dome in Louisiana
in 1959-60 [Murphey, 1961]. The explosions had a range of yields from 10 to 2000 pounds of
TNT, some of which were carried out in cavities for decoupling tests. Each shot was sampled
by from two to seven particle velocity sensors. The scaled ranges for the coupled or tamped
experiments were from about 200 to 3000 m/ktl/ 3 and the corresponding peak strains were from
a few times 10-4 to about 10-5 . The dominant frequencies were 10 to 100 Hertz. Murphey
observed that the peak velocity with scaled range (range/yieldl/3 ) data all lie near a smooth curve
and they fall off like r-1 .6 5 , as shown in Figure 6. This indicates first that the data scale and
second that the material behavior is not elastic.

Minster and Day [1986] examined the Cowboy tamped data and investigated the attenuation
required to reproduce the observed variation of peak velocity and displacement with scaled range.
They conclude that an effective Q which is strain dependent with the frequency independent form

1/Q = 1/. o + 7'e (2)

can satisfactorily reproduce the both peak velocity and displacement. Here Qo = 100 is the
small strain Q, e is the peak strain and y = 3x10 3 is an empirical constant. ". his form was
chosen to be consistent with some theoretical nonlinear mechanisms at high strains while
reducing to modest anelastic attenuation at small strains. The resulting attenuation is consistent
with scaling since it depends only on strain which scales. Note thai he effective Q at the largest
strains from Cowboy is then less than 10.

Trulio [private communication] has examined some scaled Cowboy data and concluded that
the attenuation is frequency dependent, decreasing with increasing frequency. Q values of 12.5
and 32 are found at Salmon equivalent frequencies of 101/2 and 10 Hz, found by scaling the
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Cowboy data. The frequency dependence is roughly Q -c 1/f. He observes that this dependence
is inconsistent with linearity and scaling indicating that Cowboy attenuation is nonlinear.

Wortman and McCartor [1989] have used tamped Cowboy records to attempt to determine the
character of the attenuation. They chose record pairs from the same shot and applied the spectral
ratio method to determine the effective Q between the stations. By selecting pairs with internal
consistency and by correcting the records for obvious anomalies, they found a set of Q estimates
as a function of peak strain or range. The result is shown in Figure 7 as compared with the result
of Minster and Day [1986]. Not surprisingly, the results are similar and they show that across
the strains available in the Cowboy data there is a substantial decrease in attenuation with
decreasing strain.

Cowboy Trails. Cowboy Trails [Workman and Trulio, 1985] was a series of field tests in a
salt dome using chemical explosives of approximately 200 pounds. The single and dual
explosions were monitored with free-field ground velocity sensors. The ranges of the sensors,
which were varied over the ten events, covered from 0.388 to over 11.3 km/kt1 / 3 . They were
set to attempt to define the transition to clearly linear behavior. Due to problems with sensors
and noise, the Cowboy Trails experiments did not fully accomplish their goals. However, the
results indicate that the propagation of explosively driven pulses in dome salt remain inelastic
(though not necessarily nonlinear) out to scaled ranges of 11.3 km/kt1 / 3 . The exponent of peak
velocity power law decay with range is -1.46±.05 which is somewhat slower than that seen in
the Cowboy data (which were for higher strains). An analysis by Trulio [private
communication] suggests that the scaled Cowboy Trails data show a decreased attenuation with
range and frequency which is not inconsistent with scaled Salmon and Cowboy results. The
scatter of the data is fairly large so it is difficult to draw stronger conclusions.

Livermore 1982 Small Scale Experiments. The experiments of Larson [1982] for small
chemical explosions, yields of 0.63 to 291 J, in pressed salt have provided pulses over scaled
ranges from approximately 10 to 250 m/kt1/ 3. The dominant range of frequencies covered was
from about 104 to 105 Hz and the ratio of peak particle velocities to compressional sound speed
(which is comparable with the strain) went from about 10-1 to less than 10-3 . Data from three
sensors at increasing ranges for a single shot, taken in pairs, indicate increasing values of Q
from 12 to 25 with increasing range for ranges from 30 to 70 m/kt1/3 . This would suggest that
the response was nonlinear. Another experiment consisting of a simultaneous pairs of shots,
was used as a direct superposition experiment. It was found that the resulting response was
consistent with that determined by linear addition of the two pulses at a range of 168 m/ktl/ 3 as
would be expected from a linear medium. Still it is not clear just how nonlinear effects would be
manifest in this experiment of rather narrow pulses without knowing the character of any
nonlinear behavior. That is, the apparent agreement with superposition for pulses with large
strains may very well not directly negate the possibility of any sort of nonlinear behavior. Still,
on the basis of this experiment, Larson concludes that the propagation is linear beyond 168
m/ktl/ 3 . He also indicates that the attenuation is strongly inelastic inside this range and that the
magnitude of this inelasticity decreases with both range and frequency. By variation of the
confining pressure, he finds that the propagation is independent of confinement at least up to
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32 MPa. Larson combined his data with that from other salt experiments to further extend
Trulio's [1978] assertion that peak velocity data for explosively driven pulses in salt scales
remarkably well. This is shown in Figure 8 which contains data from experiments with over 10
orders of magnitude in yield. Larson also provides a direct comparison of scaled waveforms for
his experiment and a Salmon pulse which shows a significant similarity.

Livermore 1987 Small Scale Experiment. In 1987 Larson [1989] carried out an additional
laboratory experiment using a 0.622 UJ chemical explosion in mined dome salt. The cylindrical
sample was sliced into layers perpendicular to the axis. Sixteen sensors were then inserted at
eight ranges and the layers were cemented together. A explosive source tamped in a hole on one
side then produced peak particle velocities from 1 m/s to 4 x10"3 m/s. The experiment was not
very successful. A variety of problems with the samples caused irregularities in the waveforms
which made analysis difficult. Wortman and McCartor [ 1989, Appendix C] have reproduced the
waveforms and attempted to find the attenuation. Aside from an apparent increase of Q with
frequency, little can be concluded.

Nonexplosive Sources

Ultrasonic Pulse Attenuation. New England Research (NER) laboratory ultrasonic pulse
propagation experiments [Coyner, 1987] used strains from less than 10-6 to more than 10-5 .
Compressional and shear ultrasonic pulses consisting of about two cycles at 100-200 kHz were
propagated through samples. Attenuations were calculated using a spectral ratio technique with
an aluminum sample used for calibration. Variation of the attenuation with peak strain amplitude
and confining pressure were determined. For dome salt it was found that over a strain range of
5x10"7 to 3x10-5 and for confining loads of either 0.1 or 1 MPa, the P-wave attenuation is
nearly constant and can be described by a Q of about 20. For S waves, the QB is also nearly
constant and it has a value of about 60. The results are shown in Figure 9. With the possible
exception of the largest strains for S waves, there is no particular evidence of nonlinearity in
these data alone although the attenuation is large. The P-wave attenuation is about a factor of
three larger that that of S waves suggesting that the conventional assumption of dominant losses
from shear mechanisms is not the case. It should be noted that these confining pressures are
small compared with those for underground sources.

Multicycle Laboratory Experiments

Resonant Bars. Tittmann [1983] has taken laboratory data on the absorption of the energy in
multiple cycle oscillations of halite rods. Both dome salt and pressed salt samples were used.
These resonant bar experiments measure the width of the resonance peak for cyclic motion at
frequencies from about 90 to 500 Hz induced in mechanically loaded salt samples. They were
carried out for both torsion and flexure modes with peak strains from 10-5 to 10-8. Pressure
variation studies were carried out using jacketed samples in pressurized chambers allowing
pressures up to 124 MPa. The effects of humidity variation were also determined.
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The results for pressed salt indicate that attenuation is dependent on all parameters which were
varied. Attenuation decreases with increasing frequency and increases with increasing humidity.
At ambient pressure, for strains below 2x10-6 the attenuation is only weakly nonlinear while
above this it is strongly amplitude dependent. In the low strain region Q's for extension and
torsion are about 500 and 1000, respectively.

For dome salt the results are somewhat different. Nonlinear behavior persists to very low
strains (10-8). For any significant confining pressures the threshold strain for nonlinear
behavior increases to about 2x10"6 but the attenuation is then essentially independent of pressure
up to at least 68 MPa. The attenuation increases slightly with increasing frequency; 1/Q increases
by a factor of about two from 80 to 480 Hz. The high pressure behavior appears to stabilize at
the quoted levels only after a period of adjustment of hours suggesting that crack healing
strengthens the samples under pressure. An illustration of the strain dependence is shown in
Figure 10.

Tittmann points out that the attenuation in these multicycle experiments after the hundreds of
cycles required, especially for high strains, may reflect changes or damage in the material
resulting firom previous cycles. Measurements made then may then not correspond to behavior
for a single pulse. Tittmann gives no data on this subject but it has been investigated
experimentally by Bonner et al. [1989] although not with salt. The difference in attenuation
between uncycled granite and samples with 107 cycles, attributed to fatigue damage, is shown in
Figure 11. This suggests the possibility that Tittmann's experimental strain dependence may
actually be the result of damage from cycling. In any case, Tittmann's attenuation for salt is
significantly less than that suggested by the other experiments described in this article.

Summary Of Salt Attenuation

While there is a substantial body of data for attenuation of signals in salt, the results are rather
diverse. It appears that attenuation is a function of many factors including strain, frequency,
humidity, number of cycles, source of salt samples and character of experiment. It is difficult, if
not impossible, to combine the various experimental results into a cohesive pattern, let alone a
constitutive relation. However, there is some degree of consistency which we shall now attempt
to define.

It is most striking that the data from explosive sources roughly satisfy simple cube root scaling
for peak velocities, if not for all details of the waveforms. This means that if the lengths and
times are all scaled by the cube root of the yield then, to a remarkable degree, all tamped
explosive source experiments give approximately the same pulses at any scaled range.

It is perhaps not so remarkable that this scaling should hold near the explosions since the
initial pulse character is not determined by attenuation. Rather the scale of the explosively
generated cavity is fixed by the cube root of ratio of the density to the yield. Given the
propagation velocity, this spatial scale will determine a temporal scale, both varying as the cube
root of the yield.
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The more interesting result is that the pulses continue to scale as they propagate out into the
medium at strain levels, less than 10-3 , for which there are no gross changes in the medium. If
the attenuation suffered is intrinsic to the medium, or linear, the associated Q must be
independent of frequency in order for the results to obey cube root scaling. This is clear from the
form shown in (1) for the attenuation operator. If scaling holds, the expression wOr/cQ must
scale. The combination cor has units of velocity which scales while c is constant. Therefore Q
must scale but it can only a function of frequency since the medium is assumed uniform and
linear and the only function of frequency which scales is a constant. In general, for either linear
or nonlinear effects, the fact that the experimental results cube root scale indicates that the
medium must have no inherent scales of length or time (in the range of scales of the experiments)
so any constitutive relation must be rate independent.

Salmon, Cowboy and small scale laboratory velocity pulses all scale well but they also all
indicate that the effective Q extracted is strongly frequency dependent. To illustrate this clearly,
consider Figure 12 which shows unscaled estimates of Q as a function of frequency for pairs of
records from Salmon and Cowboy at approximately the same peak strain. Note that the two
functions of frequency are quite distinct but they are quite similar when scaled relative to their
respective comer frequencies. The comer frequency, of course, scales with the cube root of the
yield which says that the scaled effective Q's are nearly the same. "This has been observed both
by Trulio [private communication] and by Wortman and McCartor [1989]. This clearly says that
the attenuation is not just a function of the medium but it must depend on amplitude or shape of
the pulse. In other words, the attenuation must be nonlinear, at strains above 10-4 . Since the
behavior is nonlinear, there is no benefit in using a Q description. In fact, the use of Q often
serves to confuse the fundamental problem of finding a physically meaningful constitutive
relation at moderate strains.

In spite of the fact that moderate strain attenuation is almost certainly nonlinear, it is possible
to use effective Q estimates to combine data by taking the effective Q at the dominant frequency.
This effective Q gives a measure of the magnitude of attenuation. It is much more difficult to
combine attenuation information from explosive pulses and multicycle experiments since the
effective Q will generally be a function of the details of the experiment. If a proper constitutive
relation were known, a comparison could be made. However, no such relation is known.
Ignoring this substantial problem, the data from all the experiments discussed in the text of this
paper can be expressed as effective Q and compared as a function of peak strain. Figure 13 gives
all these data on a single plot. The strain range available is from about 10-3 to 10-8.

With a single exception, the trend of this collection of data is for a decrease in attenuation with
decreasing peak strains. The Salmon, higher strain Cowboy and small scale explosion data give
Q's of the order ten. The Cowboy and Sterling data suggest that Q's are well over one hundred
by strains of 10-5 . The resonant bar results (which seem to consistently show lower attenuation
than other experiments) have Q's of several hundred but show an increase as strains approach
10- 5 . The New England Research ultrasonic pulse experiments are the exception as they give a
Q independent of strain. However, these experiments were carried out with no confinement.
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Furthermore, recent work on other media [K. Coyner, private communication] suggests that this
experimental technique may be strongly influenced by scattering from normally existing
inhomogeneities in the samples. This scattering from structure comparable with the ultrasonic
wavelength may depend strongly on frequency so the attenuation results would not be relevant to
the lower frequency pulse propagation problem.

Taken as a whole, the salt data indicate that attenuation is strong and nonlinear for strains
greater that 10-5 . For smaller strains the attenuation appears to become small and linear. The
peak strain of 10-5 occurs at a scaled range of approximately 3 km/kt 113 . Murphy [1978]
indicates that an elastic radius for salt is less than 500 m/kt 1/ 3 based on analysis of stabilization
of RDP's of nuclear explosions. This contrasts with the fact that other measurements quoted in
the current article indicate that the effective Q is less than 10 and apparently nonlinear. When a
source function is defined at this small radius the subsequent propagation out to sufficiently large
ranges, where the totality of the data indicates the behavior is linear, will have an effect which is
not currently understood.

There are no completely satisfactory descriptions of the nonlinear behavior of salt in the
moderate strain regime. Without a physical constitutive relation, it is difficult to remove the
uncertainty in the effective seismic source function. There are two conjectures which have been
put forth to account for Salmon data.

Rimer and Cherry [1983] have noted that a reasonable fit to the Salmon data, including
attenuation and precursor, can be obtained by use of a constitutive relation combining a limiting
yield strength with quadratic work hardening and softening. Cherry and Rimer [1980] find that
the same parameters also provide a reasonable description of other salt data. The work hardening
model provides a variable yield strength Y which is given by

Y=Yo(l+e 1 E-e 2 E2 ) <YLim (3)

There are only three free parameters since the lir.iting yield strength, YLim, is constrained by
other experiments. In this model the initial yield strength, Yo, is rather low. The harding and
softening parameters el and e2 as well as Yo are used to fit the data. The yield strength initially
increases as inelastic energy, E, is absorbed by the shear failure in a manner quadratic in this
inelastic energy. The yield strength is a measure of the maximum potential energy which can be
held in shear in the medium. When addition shear stress is applied to a medium at its yield limit,
the work goes into inelastic energy which then is taken to alter the yield limit in this model. As
indicted by Figure 14, there are some experimental data to suggest that work hardening and
yielding in salt does occur [Boresi and Deere,1963]. However, Glenn [1989] has noted that
while the Salmon data can be largely accounted for by a constitutive model for which the salt first
hardens and then softens greatly, the required parameters are inconsistent with independently
measured material properties.
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McCartor and Wortman [1988,1990] have proposed another nonlinear model for partial shear
failure which is designed to account for the Salmon attenuation and precursor. In this model the
Lam6 shear modulus, pg, is permanently and instantly reduced by 80% in any material element
once the compressional strain level exceeds 10-4 . The other Lamd modulus, %, is held fixed.
This has the effect of reducing the compressional speed (which is proportional to (% +2g.)1/2 ) of
the main part of the pulse by about 20% relative to the elastic speed seen in the precursor. in
addition to producing a precursor which propagates at the observed speed, this also produces
attenuation due to the loss of shear energy which is proportional to m, giving an effective Q of
about 13 for peak strains well in excess of 10-4 . Note that for small strains below this threshold
there will be no loss. This value of Q is much less than that expected for very small strains but it
is still more than the 5 to 10 seen for Salmon attenuation. It will produce a sharply changing
effective Q at a threshold strain in the manner suggested by the Cowboy data. Furthermore,
since the partial shear failure threshold is a function of the strain level only, the resulting
constitutive model will preserve cube root scaling. McCartor and Wortman [1990] find that this
mechanism is not adequate to account for all aspects of the waveform unless some addition linear
attenuation is added. Still their calculations, and the model of Rimer and Cherry [1983] (which
also is consistent with cube root scaling), strongly suggest that shear failure plays a strong role in
the nonlinear behavior of salt at moderate strains. While these models hint at the character which
is required for a robust constitutive relation for salt at moderate strains, the issue is clearly not
resolved.
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magnitude in frequency about the dominant frequency. Horizontal bars indicate the
separation of the sensors used.,
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Fig. 11. Variation of attenuation with strain for cycling in Sierra white granite [Bonner
et al., 1989].
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Fig. 14. Yield strength as a function of lateral stress for dome salt at three strain levels
(Boresi and Deere, 1963].
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