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Foreword

The Flight Control Division of the Air Force Flight Dynamics Directorate, Wright Laboratory

has been utilizing unmanned aerial vehicles (UAV's) as flight testbed vehicles since the early 1980's.

The focus of the UAV utilization has been to provide a low cost and low risk means to test flight

control concepts. One such example of a test performed using the capability was a demonstration

of control surface fault detection, isolation and recovery utilizing reconfiguration of control author-

ity gains. The test demonstrated real time performance under actual flight condition. Given the

success of the early tests, but also realizing the limitations of the XBQM-106 drones and associ-

ated equipment, the Flight Control Division in 1988 began to develop a true testbed capability.

This capability, the Unmanned Research Vehicle (URV) Testbed Facility started with the Lambda

vehicle, and has begun the evolution into a robust flight testbed.

One of the key design criteria for Lambda was the ability to carry a sufficient embedded elec-

tronics system to support not only vehicle control, but also applications under test. With this

accomplished, the concepts for the URV Multiprocessor Control System (MCS) were developed.

Drawing upon years of experience in multiprocessor systems and software design, engineers at the

Flight Control Division envisioned an architecture that would use commercially available compo-

nents as much as possible, would be transparently expandable, and could be able to collect and

telemeter sufficient quantities of data during tests. A goal was to minimize the impacts of hardware

change between tests, a process which proved time consuming in previous URV work. To accomplish

the above, a key software component, the Real Time Multiprocessor Operating System (RTMOS),

was transitioned from another Flight Control Division in-house program, the Advanced Multipro-

cessor Control Architecture Development (AMCAD) program, where it had been developed and

demonstrated. Once the RTMOS had been ported to the MCS architecture, the controller software

tasks were designed and developed to control the flow and processing of data through the MCS.

iae 2T.TMOS and controller software were also adapted for use on the URV Groind Station Core

(GSC), an architecture almost identical tu thc MCR. This report describes the controller software

tasks utilized in Lambda aerodynamic data collection flights for both the MCS and GSC.

On 20-21 November 1990, successful flights tests of Lambda, utilizing its new MCS and GSC

systems, were conducted. This milestone was achieved after months of dedicated efforts by several

engineers. The RTMOS and controller software effort was coordinated by AMCAD project man-
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ager, Capt Mike Rottman, and utilized the engineering efforts of Lt Amy Hartfield, Tom Dermis,

Jeff Mangen, and Vince Crum. Lt Hartfield, the URV in-house developments manager, also oversaw

the integration and test of the MCS and GSC components in preparation for flight test.
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1 Introduction

This report documents the Aesign and implementation of the core controller software for the

Lambda and Gamma Unmanned Research Vehicle (URV) Multiprocessor Control System (MCS)

and Ground Station Core (GSC). The MCS and GSC architectures will be used f.r the new Lambda

and Gamma aircraft.

The URV electronics architecture, shown in Figure 1, is based on the VMEbus. The MCS will

be the on-board control system and data collection unit, and is -omprised of processors, signal con-

ditioners, anaog-to-digital (A/D) sensor interfaces, pulse width modulated (PWM) servo drivers,

and datalink (telemetry) interfaces. Pilot stick command data is transmitted from the GSC to the

MCS, where it is routed to the servomotors via the pulse width modulation board. Sensor data

from the aircraft surfaces and sensors is converted from analog voltages to 12-bit digital values and

downlinked to the GSC.

The GSC architecture is derived from the MCS architecture and uses the same real-time oper-

ating system software and many of the same hardware and application software components. The

GSC also includes an interface to an Apple Macintosh II workstation, which controls the ground

station real-time displays and the storage of flight data on optical disk. The pilot command data

is acquired from the pilot's console and sent via telemetry uplink to the MCS. Aircraft sensor data

is received from the MCS and stored in a special memory area, called CORE memory, where it is

accessed by the Macintosh.

The long-range objective for the MCS and GSC systems is to incorporate control law computa-

tion, autopilot functions, and advanced control algorithms into the MCS to provide the envisioned

testbed capability. Multiple processors will be used in each system to provide the computational

capability needed for advanced, real-time applications. This report documents the initial develop-

ment and implementation of these systems. For this first phase, the emphasis is on data collection:

command data for the aircraft surfaces is uplinked from a human pilot on the ground, and airframe

air data and status is downlinked from the MCS to the GSC for later analysis. The controller

functions performed on the MCS and GSC systems are responsible for interfacing with each of the

hardware devices in the systems to acquire data, perform P-y necessary conversion and routing of

the data, and output the converted data to the appropriate devices. The current MCS and GSC

configuration only uses one processor for the core controller functions.
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This report describes the full development of this phase of the MCS and GSC controller software.

Included are the high-level design issues and goals, a description of the real-time multiprocessor

operating system (RTMOS) being used, and a complete discussion of the software objects needed

for both the MCS and GSC. Though this report focuses on the work performed and decisions

made for the current implementation, additional detail is provided to serve as a guide for future

development and expansion. A detailed description of the telemetry board software and protocols

is contained in the Appendix.

2 High-Level Design

2.1 Design Issues

Specific goals of the design are:

1. To the extent possible, use the same software on the MCS and GSC.

2. Each task should perform only one logical function.

3. Tasks should produce their data to specific data variables, without knowledge of which
other task or tasks will use this data.

4. Each hardware device should have a dedicated device handler to isolate hardware details
from the rest of the software and to reduce the impact of changing devices.

5. Provide a software foundation for the envisioned long term functionality of the MCS and
GSC architectures.

6. Make the design flexible and expandable to reduce the overhead of adding processors or
changing the application functions to be performed.

For this implementation, the controller software will be limited to the management of the various

hardware devices in the systems and the routing of data between them. For example, uplink data

received by the MCS must be routed from the telemetry receiver to the pulse width modulation

board and to the CORE memory variables. Sensor data from the A/D board must be routed to

the CORE memory variables and to the telemetry board to be transmitted to the ground station.

No computation, other than data format conversion, will be performed on the data for this phase

of development.

Based on the above design goals, unique tasks are defined for each of the hardware interface

functions the controller must perform. On the MCS, these interface functions are: PWM, A/D,

CORE memory, telemetry input (uplink), and telemetry output (downlink). The GSC functions
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are A/D, CORE memory, telemetry input (downlink), and telemetry output (uplink). On each

system, two additional tasks are defined to perform the actual routing of data between the hardware

interface tasks. The Data Collection Input task accepts data from the telemetry receiver and passes

it to any tasks which require the information: the CORE and PWM tasks on the MCS and the

CORE task on the GSC. The Data Collection Output task performs a similar function for output

data; A/D data is routed to the CORE and Telemetry Output tasks on both the MCS and GSC.

This design meets the objectives stated above. Each hardware interface is assigned a unique

device handler task which hides the details of the hardware interaction from the rest of the system.

This allows changes to the way the device is handled or even a new device without impacting

the rest of the software system. Additionally, the rest of the software can be changed without

impacting the device handler tasks. All device handler tasks can be used for both the MCS and

GSC, as needed. The only task not applicable to the GSC is the PWM task, since there will be no

PWM board in the GSC. The overall software task diagrams for the MCS and GSC are shown in

Figure 2.

A real-time operating system will be used as the foundation for the controller software. This

approach will provide both the real-time performance and the flexibility essential to the MCS and

GSC systems. Because the envisioned roles of the MCS and GSC controllers are much greater than

needed for this first implementation, the software design must be such that additional functionality

can be easily added. Likewise, the design should minimize the impact of adding processors or

altering the hardware. A real-time operating system meets these requirements.

2.2 Frame Rate

Real-time software is usually periodic. Various actions must be performed during each period,

known as a major frame. The major frame rate for the URV Lambda system is 50 Hz. Within

this major frame time, it is desirable to have a number of minor frames to provide sufficient clock

resolution for task scheduling and future expansion. Tasks are scheduled on minor frame intervals.

Task A, which requires the results of task B, is scheduled for a minor frame following that of task B.

The URV controller processor will have 10 minor frames per major frame, for a minor frame rate

of 500 Hz. The clock value used by the RTMOS to schedule tasks will therefore be based on the

minor frames: each clock tick is equivalent to one minor frame, or 2 milliseconds.

4
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Based on the tasks needed and the flow of data through the system, different tasks are scheduled

at different minor frames within each major frame. The frame task scheduling for the MCS is shown

in Figure 3. The tasks to accept uplink data and A/D sensor data are scheduled for the first minor

frame. The input and output "data collectors," MDCIN.task and MDCOUT.task, begin in the

second minor frame, when the uplink and sensor data should be available. The results of the data

collector tasks are sent to the PWM and TELOUT tasks, which are scheduled in the third minor

frame. The CORE Update task executes two minor frames later, when all other activity should be

completed. The GSC frame scheduling is the same as for the MCS, except there is no PWM task

and the data collector tasks are different.

Major Frame

Minor Frame

TELIN MDCIN PWM
CORE

AD MDCOUT TELOUT

Figure 3: MCS Major Frame Task Scheduling

2.3 Initialization

The controller software must initialize the system resources, both on and off the controller CPU

board. The RTMOS is responsible for initializing the controller CPU board (clearing RAM, pro-

gramming the timer) and presetting all operating system data structures. Initialization specific to

the application is performed by the controller software. Special code is provided by the applica-

tion at the beginning of the controller software area for this purpose. This section describes the

initializations the applications code will perform.
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2.3.1 PWM Board

The pulse width board operates independently of the controller board, reading command data

from an on-board data area to send to the control surfaces. Since there is nothing to prevent

the PWM board from sampling this data area before the controller task begins producing actual

control data from the GSC, the data area must be initialized to some neutral value. In this case, the

neutral value (0800h) commands the surfaces to zero degrees. Upon power up, controller software

will initialize the data area to that neutral value.

2.3.2 Telemetry

The controller and the telemetry board interact through a set of transmit and receive buffers

(two each), with associated flags and semaphores to manage the interaction. Each board is respon-

sible for initializing the flags, semaphores, and buffers that it produces. The controller initialization

code will therefore initialize the transmit section. It must set the flags to empty, the semaphores

to available, and clear the buffers.

2.3.3 A/D Board

The A/D board interrupts the controller when a sensor channel has completed the conversion

of a sampled analog input to digital data. The controller, therefore, must initialize the interrupt

controller on the A/D board with the proper interrupt vector and enable the interrupt.

2.3.4 CORE Variables

On cold (power-up) start, the CORE variables are cleared, though this action does not take

place on warm processor restart. After a warm processor restart, status information is written to

the CORE area which needs to be left intact for later data analysis. The CORE task is respon-

sible for initializing the CORE uplink and downlink type codes the first time it executes (for this

implementation).

2.3.5 Global Variables

The global data variables used for intertask communication need to be initialized as well. The

producer and consumer flags, the semaphore, and data count variables must all be placed in known
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states. The data area of each global variable should be initialized to valid starting values for the

task. For example, if a task doesn't receive its first data item, it will pass on whatever is already in

the global variable, which the task assumes is the previous value of the data. The initialized values

must be acceptable "previous data."

2.4 Self-Test

Self-test is performed to determine the health status of the MCS and Ground Station processing

elements. For the initial implementation, self-test will occur only on system power up (cold restart),

and will be a subset of the test suite envisioned for later implementations. Future versions of the

self-test function will include more exhaustive system component testing and a short periodic self-

test task to continually reevaluate the system health status in-flight. The full envisioned test suite

includes:

1. ROM checksum test.

2. A series of RAM tests.

3. Data movement test.

4. Arithmetic test.

5. Floating point test (if FP is implemented).

6. Logical functions test.

7. Shift and rotate data test.

8. Bit manipulation test.

9. Program control test.

10. Addressing modes test.

11. Test and Set instruction test.

12. Processor registers test.

Initially, only item 1 and item 2 from the above list will be implemented. These two tests

do provide some coverage of the other tests just by the nature of their required calculations. A

periodic self-test task, as anticipated for the later implementations, must be nondestructive to data,

not affect the flying qualities of the aircraft, and complete within a few minor frame times. It is

currently envisioned to be the ROM checksum test, as this verifies the integrity of the program

code as well as exercising many of the processor logical operations.
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2.5 Type Codes

The long-term plans for the URV MCS and GSC include extensive use of data type codes,

unique identifications referencing each data type. These type codes greatly increase the flexibility

of communications between the two systems, as well as providing a powerful data naming scheme for

data collection at tie Ground Station Core. In later versions, the RTMOS and controller software

will be able to use the data type codes to control data flow, as well as application of specific data

items to control law computations, and so on.

The short-term controller design will not support data type codes, however, due to limitations

in the bandwidth of the GSC-MCS communications link. The current transmission rate, 125 Kbits

per second due to hardware limitations, is just sufficient for uplinking the necessary pilot control

data and downlinking the necessary surface and sensor data within the 50 Hz major frame rate.

See the Appendix for Telemetry specifics.

To work around the lack of data type codes, the uplink and downlink buffers are of fixed

structure, with analog-to-digital data values for specific sensor or pilot command channels in fixed

locations in the buffers. For example, the first A/D channel data is stored in the first buffer location,

and so on. The data received is loaded into the CORE VARIABLES based on the assumed location

in the uplink and downlink buffers. The format for the two buffer types is shown in Figure 4.

3 URV Real-Time Multitasking Operating System

The URV Real-Time Multiprocessor Operating System (RTMOS) is a derivative of the RTMOS

developed in FIGL's Advanced Multiprocessor Control Architecture Development (AMCAD) pro-

gram [5]. In essence, the URV RTMOS is a slimmed down version of the AMCAD RTMOS, with

appropriate modifications for the VME-based architecture being used for the URV MCS and GSC.

For clarity, the AMCAD RTMOS is simply referred to as the RTMOS, while the URV RTMOS is

called URVOS.

Transitioning the RTMOS to the URV was based on two factors. First, the RTMOS has been

tested and verified during the past year on the AMCAD testbed. By using proven code, the amount

of time needed to debug the URVOS is significantly reduced. Second, the use of an existing in-house

RTMOS allows the easy porting of test and application software between the two architectures.
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Figure 4: (a) Uplink and (b) Downlink Buffer Formats
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Emphasis was placed on maintaining the application programming model in porting the RTMOS to

the URV for this very reason. It is also historically appropriate that the RTMOS be transitioned to

the URV project, since many of the RTMOS concepts were first developed for the URV [6]. These

concepts were transitioned to AMCAD, where they were refined and implemented.

In many ways, URVOS is a more straightforward implementation than the RTMOS. The URV's

VME-based architecture and global shared memory is much simpler to design for than the AMCAD

distributed Virtual Common Memory and assorted protection mechanisms. As a result, the URVOS

communications primitives are much shorter and efficient than those used in the RTMOS. Also, the

decentralized control algorithms and reconfiguration functions needed by AMCAD are not needed

for the URV MCS and GSC, further simplifying the URVOS code.

3.1 Initialization

URVOS initialization is somewhat complicated becaiiee of separate system cold start, system

warm reset, and warm processor restart conditions. System cold start is the power-up condition.

System warm reset occurs when the reset switch on the VME chassis or the reset switch on the

VME bus master (the board in slot 0 of the VME chassis) is pressed. When this occurs, all boards

in the chassis are reset. The final condition, warm processor restart, occurs when an unexpected

interrupt or exception (such as bus error) is encountered.

Each of these conditions may require unique operating system and application initialization

sequences, depending on the hardware configuration and specific application. Because of these three

conditions, as well as operating system and application initialization, a three phase initialization

protocol was developed.

Phase One: Upon power-up (cold system reset), warm system reset, or warm processor restart,

the operating system performs self-test. The self-test consists of RAM checks of all RAM used by

the URVOS and controller software and a ROM checksum. If self-test is passed, control is passed

to the controller cold reset, warm reset, or warm restart software for controller initialization.

Phase Two: Controller reset initializes all off-board hardware devices, such as the PWM and

A/D boards, then initializes application data structures. The initialization procedures are described

in Section 2.3. Separate initialization routines are used for each of the three reset conditions for

maximum flexibility and because the PWM board and CORE variables should only be initialized at
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cold reset. When the application completes controller initialization, the START system call returns

control to the URVOS for phase three initialization.

Phase Three: When all other initialization is complete, the URVOS initializes all hardware

devices on the controller processor board and operating system data structures. The warm reset

and restart vectors are initialized, scratchpad memory is cleared, the Dual Asynchronous Receiver

Transmitter (DUART) is programmed, a free task control block queue is created, and system and

application tasks are loaded. Upon completion, the first task is started.

3.2 Taskset Selection

Taskset selection is simple in this implementation because the MCS and GSC systems are

currently assumed to have only one processor each performing the control functions. The application

software provides a task tree which lists the tasks to be loaded into the task management queues.

Each application and system task has a header defining the task's starting address, start time,

initial priority, and task identification number. The task tree consists of a list of header addresses,

terminated with a null (zero) header address. Upon system initialization, the URVOS creates a

task control block (TCB) for each task header in the task tree, initializes the TCB with the header

information and other initial values, and loads the TCBs into the ready task and timer queues.

Expansion to multiple processors should be very straightforward. The application will provide

a task tree for each processor in the system. These task trees will allocate the total task load of

the application onto the different processors. Each processor will select a different taskset based

on its processor identification number, which will be assigned by the master processor.

3.3 Task Management

A task is a unit of code that executes in parallel with or sequential with respect to other units

of code. The task begins executing at the start of its initialization region and ceases execution if it

reaches the end of its statement sequence. This means that a task that is intended to run forever

must be coded with an explicit loop statement.

In general, the code of a task follows a standard pattern:

1. Initialization,

2. Transaction loop.
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The initialization section performs all actions that occur the first time the task executes, to

prepare the system for the task's normal execution. For example, it declares and initializes local

variables used by the task, performs any handshaking with any other tasks, sends or awaits startup

messages, and so on.

The transaction loop then executes repeatedly, as long as the process exists, performing one

transaction per iteration. The transaction processing code often resembles the following:

1. Awaits preconditions,

2. Receives input data,

3. Performs computations,

4. Generates output data, and

5. Cleans up and prepares for the next iteration.

The preconditions must be true before the process may proceed with that iteration. Some

typical preconditions are: data must be available, a fixed time must have elapsed since the last

iteration, a device must change state.

The URVOS provides several system calls which tasks may use to control their execution. The

task management system calls are:

1. EXIT

2. SLEEP wakeup-time

3. TERMINATE

The EXIT system call releases the processor, placing the calling task back in the ready queue

and causing the highest priority task waiting in the ready queue to be scheduled to execute. If no

ready task has a higher priority than the calling task, it will be scheduled again. This system call

allows a task which is waiting for some resource or event to release the processor to other waiting

tasks. When the task regains the processor, it starts executing after the EXIT call. This is an

essential capability, since the URVOS does not support preemptive scheduling. All blocking system

calls, such as RECv and P (described below), perform EXITS while they are waiting for the event or

timeout.

The SLEEP system call provides the capability for periodic tasking. When a task completes

an iteration, it can go to SLEEP until a specified time. Again, the task begins executing after it

completes the SLEEP call. In this way, tasks can perform their functions at specific intervals. The
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URVOS maintains a global variable, nezt-frame, which tasks can use to sleep until the next major

frame or some number of clock ticks into the major frame.

The TERMINATE system call "kills" the calling task and places its TCB back into the free TCB

queue.

3.4 Communications

Many real-time operating systems use message passing to implement intertask communications.

Producer tasks create and send data messages directly to other tasks, which consume the data.

The flow of data through the application is therefore task-oriented. Task A produces data and

sends that data to Task B and Task C, which in turn consume the data and produce new data.

This new data is sent to other tasks, and so on. As a result, each task is explicitly linked to the

other tasks in the system by means of the data flow. If the application changes, each task may

require modification to reflect the new tasks in the system.

The URVOS uses a hybrid message passing/shared memory communications model. Rather

than sending messages directly to other tasks, a producer task writes its data to a data structure in

shared memory. Tasks needing a piece of data go to the appropriate shared data structure for that

data item. This communications model simplifies task design and increases the maintainability of

the software. Tasks can be designed without explicit knowledge of or direct interaction with any

other task in the system. Tasks are therefore defined by three criteria:

i. what function it performs;

2. what data it produces; and

3. what data it consumes.

A producer/consumer algorithm protects the integrity of the data exchange. When a task

produces new data, a producer flag is set. Counting flags can be used to provide frame/data

synchronization. Consumer tasks wait until the data is present (has been produced), take the data,

then set the consumed flag. This frees the variable to be produced again. This method of intertask

communication is a variation of a unilateral rendezvous. Only consumer tasks wait on data, with

a timeout set so that wait time is bounded to prevent deadlock. If a producer task attempts to

produce new data before previous data has been consumed, the old data will be overwritten but

the producer/consumer flags are not updated. If a consumer task times out because the awaited
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data was never produced, the consumer uses the old data and receives a flag from RECV system

call showing that the receive failed.

This involves setting up data structures in shared memory through which tasks p-ss data or

parameters. Every data item passed between tasks is assigned ono of these data structures. These

data "mailboxes" consist of a semaphore, the data size, a producer flag, a consumer flag, and a

count of the number of failed attempts to consume the data. The producer and consumer flags are

used to synchronize task interaction to protect data dependencies. The semaphore field, combined

with the indivisible "test and set" instruction, provides mutual exclusion on the data structure to

prevent tasks from altering the structure concurrently.

Since the URV VMEbus-based architecture has a physical shared memory, true mutual exclusion

is possible using semaphore fields. It is possible to allow each data item to have multiple producers

and consumers. To remain consistent with RTMOS, however, access to each data structure is

limited to one producer task and one consumer task.

Task communication is implemented with two system calls, SEND and RECV, which are used by

application tasks to supply data to or acquire data from shared memory. The system calls manage

all interaction between the producer and consumer flags in the global data structures, so these

interactions are transparent to the application. SEND causes a local data variable to be "sent" to

the shared memory, while RECV gets a global variable from the shared memory and puts it in a

local variable. The syntax of the commands is:

SEND <SOURCE>,< DESTINATION >,<SIZE>

where

SOURCE is the address of the local variable to send

DESTINATION is the address of the global variable to send to

SIZE is the number of bytes being sent

RECV <SOURCE>,< DESTINATION >,<WAIT>

where

SOURCE is the address of the global variable to receive

DESTINATION is the address of the local variable to receive to

WAIT is the number of clock ticks to wait for the data
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The source and destination addresses passdd to SEND and RECV must be either an address

register or an immediate value pointing to the variable. Both SEND and RECV return a flag in

the MC68000 data register d7 indicating whether the operation succeeded or failed, based on the

producer/consu mer algorithm.

In the current, single processor implementation of the MCS and GSC controllers, the shared

memory is mapped to the RAM of the controller processor board rather than incorporating a

separate shared memory board. When additional processors are added to the controller, the ;hared

memory could be mapped to a separate global memory board simply by changing the address map

to correspond to the VME address of the memory board. The shared memory should be a separate

card rather than simply mapping it to the local memory of one of the processor cards since the

implementation processor cards cannot access their local memory using the VME address. As a

result, additional code would be needed to allow that processor to reference the global memory

locally, while the other processors would have to do VME references.

3.5 Semaphores

URVOS provides support for semaphores to protect access to resources shared by tasks. Each

producer/consumer variable, for example, has a semaphore to prevent the producer and consumer

tOsks from accessing the data variable concurrently. Semaphore operations can be performed on

any defined semaphore in the accessible address space.

Two primitives are provided for semaphore support:

1. P semaphore-address

2. v semaphore-address

The P primitive claims the semaphore; the v primitive releases it.

The semaphore primitives provided by the URVOS are nonblocking. Rather than putting

requesting tasks to sleep on a semaphore queue until the resource is available or released (which iq

difficult to implement in a multiprocessor system), the algorithm uses a form of polling to request

the semapho.e. The task attempts to claim the semaphore. If it is not available, thae task performs

an EXIT call to release the processor. In this manner, the waiting task does not prevent other tasks
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(one of which has already claimed the semaphore) from executing. The P primitive performs these

actions, keeping the implementation transparent to the application tasks.

To prevent tasks from busy waiting indefinitely if the semaphore never becomes available, the P

primitive has a two clock tick (approximately 4 millisecond) timeout built in. If the task waits for

two clock ticks and the semaphore is still not available, the task can proceed without the semaphore.

This situation is not ideal, because it could allow improper or incorrect access to shared resources;

however, if a task waits forever for a semaphore, deadlock has occurred. When the task claiming the

semaphore finishes with the variable or resource, it will reset the semaphore using the v operation.

No operating system handling of this error state is currently provided.

4 Multiprocessor Control System Controller Decomposition

4.1 Analog-to-Digital Board Interface Task (AD.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

AD.task.

4.1.1 Overview

This task interfaces with the Analog-to-Digital (A/D) Conversion board. Every major frame

the A/D task sends the sensor data collected from the 32 A/D channels by the A/D interrupt

handler. The interrupt handler collects the data in the AD-data-area on the MCS controller board.

The A/D task sends this data to the global AD-variable, then triggers the A/D board to begin

converting the data from the Ensor channels again. When this occurs, the channel number (0)

must be written to a memory variable (Channel) used by the A/D Interrupt Handler to track which

channel its processing.

To abstract the MCS and GCS specific data requirements, the A/D Interrupt Handler and A/D

task both assume that all 32 sensor channels are needed. The A/D Interrupt Handler samples all

32 channels, then sends the sensor data "image" to the A/D task, which assumes sensor data is

provided for all 32 channels. The determination of how many or which channels are needed is made

by the recipient of the data buffer, which consists of 32 data words. An additional error/status

word is added after the sensor data, bringing the total buffer length to 33 words.
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The algorithm is given in Figure 5.

AD.task tell A/D board to sample channel 0
write channel number 0 to Channel
SLEEP until next-frame
clear error word in AD-buffer
set RECV timeout to 0
RECV A D-buffer from A DINT-variable
if failed

set error word in AD-buffer
endif
SEND A D-buffer to AD-variable
branch to AD.task

Figure 5: MCS A/D Task Algorithm

4.1.2 Task Interfaces

This subsection describes the interfaces between the A/D task and the other tasks in the system.

The A/D task receives the A/D channel data from the global variable A DINT-variable, loading it

into a local buffer AD-buffer. After checking for error conditions, the buffer data is sent on to the

global variable AD-variable. The interface is summarized in Table 1.

4.1.3 Error Handling

The A/D task must be able to handle two error conditions. The first and simpler of the two

cases is where the sensor data sent by the A/D task is not consumed before new data becomes

available. When this occurs, the A/D task overwrites the previous data with the new data message.

Table 1: MCS A/D Task Interfaces

Variable Type Variables

Global variables consumed ADINT-variable

Global variables produced AD-variable
Local variables Channel

A D-buffer
Off-board variables produced none

Off-board variables consumed none

18



The SEND system call handles this condition automatically. The data never being consumed could

indicate that the telemetry link is down - an error case handled by the telemetry board software

and the Data Collection Input Task.

The second error condition is potentially more serious. The A/D Interrupt Handler described

above should be able to collect a complete sensor buffer in a fraction of the frame rate. The

A/D board takes 16 microseconds to convert one channel of sensor data, requiring a total of 512

microseconds to convert all 32 sensor channels (not accounting for interrupt latency). If for some

reason the A/D Interrupt Handler has not completed all 32 channels by the end of the frame, the

A/D task will pass on the previous frames sensor data, after setting the last item in the buffer (the

33rd) the error flag, to indicate that an A/D error has occurred. Once the data has been sent on,

the A/D board is restarted on channel 0.

4.2 Analog-to-Digital Board Interrupt Handler (ADINT.hdlr)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

ADINT.hdlr.

4.2.1 Overview

The overall purpose of the Analog-to-Digital Interrupt Handler is to acquire sensor data from

the A/D board and build a buffer containing the data for each channel. The A/D board accepts a

channel number, reads the sensor data, converts it from an analog voltage to a 12-bit digital data

word, then interrupts the controller CPU to indicate that data is available. Conversion of the first

channel is triggered each frame by the A/D task, which initializes a memory variable, Channel,

used by the interrupt handler to "remember" which channel it is processing.

When the controller CPU is interrupted by the A/D board, the interrupt handler reads the

channel variable to see which channel the data is from, then writes the data in the A D-buffer-area,

a fixed block of memory for sensor data collection. The first item in the data area is from A/D

channel 0, the second from channel 1, and so on. If all 32 channels have been converted, the

interrupt handler performs a SEND system call to send the A/D data to the A/D task. No further

conversion is performed until the A/D task triggers conversion of A/D channel 0 at the next frame.

Otherwise, the handler triggers the A/D board to begin converting the next channel.
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The algorithm is given in Figure 6.

ADINT.hdlr read channel number from Channel to register
if register < 32

read channel data from AD board
point to AD-data-area
offset pointer to entry for this channel
write channel data to AD-dataarea

endif
increment register /* point to next chapr.c */
if register = 32

SEND AD.dataarea to ADINTvariable
else

tell AD board to sample next channel
endif
save iegister to Channel
return from interrupt

Figure 6: MCS A/D Interrupt Handler Algorithm

4.2.2 Interfaces

This subsection describes the interfaces between the A/D Interrupt Handler and the A/D task.

The A/D Interrupt Handler loads the channel data into a memory area on the controller board

(ADldataarea), sending the data to the global variable ADINTvariable after all channels have

been read. The A/D task will obtain the data from ADNT-variable. The A/D Interrupt Handler

uses a local variable, Channel, to keep track of which A/D channel is currently being convert. The

interface is summarized in Table 2.

Table 2: MCS A/D Interrupt Handler Interfaces

Variable Type Variables

Global variables consumed none
Global variables produced A DINT-variable
Local variables Channel

A D-data-area
Off-board variables produced none
Off-board variables consumed none
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4.2.3 Error Handling

The interrupt handler has no error cases to handle, assuming that the A/D board will always

correctly read the sensor channels and properly perform the analog-to-digital conversion. An error

coidition handled by the A/D task, described in Section 4.1.3, involves the case where all 32

channels have not been sampled before the next frame. If this occurs, the A/D task resets Channel

to zero and signals the A/D board to begin conversion of channel zero.

4.3 CORE Variable Update Task (CORE.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

CORE.task.

4.3.1 Overview

The purpose of the CORE Variable Update task is, as the title implies, to update the CORE

variables in the shared memory every frame with the latest uplink and downlink data. CORE.task

accepts copies of the uplink and downlink data buffers and stores them to the appropriate areas in

the CORE variables. For the MCS, the uplink data is a buffer received from the ground station

containing pilot stick data. The downlink data is sensor channel data acquired by the MCS A/D

board. This task is identical for both the MCS and the GSC.

Though type codes are not being transmitted between the MCS and the Ground Station with

the data, the CORE variables still require that type codes be associated with the data items. The

controller initialization software can take advantage of the static data buffer formats (Figure 4) and

write the appropriate type codes when the task initializes. If a warm processor restart occurs, the

task initialization writes the type codes again. In the long term, the CORE Update task will have

to be smart enough to handle the type codes with each set of update data.

The algorithm is given in Figure 7.

4.3.2 Task Interfaces

The CORE Variable Update task uses data from two global variables, uplink-variable and down-

link-variable. As expected, the data from uplink-variable is used to update the uplink variables in
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CORE.init initialize uplink area data type codes
initialize downlink area data type codes

CORE.task set RECV timeout to 0
RECV CORE-buffer from uplink-variable
if succeeded

point to beginning of CORE-buffer
point to beginning of uplink-dataarea
load count of number of items
call copy-buffer

endif
set RECV timeout to 0
RECV CORE-buffer from downlink-variable
if succeeded

point to beginning of CORE-buffer
point to beginning of downlink-data-area
load count of number of items
call copy-buffer

endif
SLEEP until next-frame + 4
branch to CORE.task

Figure 7: MCS CORE Task Algorithm

the CORE variables. Likewise, downlink-variable provides the update information for the downlink

CORE variables. The interface is summarized in Table 3.

4.3.3 Error Handling

The general approach in this version of the controller software to handling error cases where an

expected data message is never produced is to go ahead with the previous frame's data. With this

approach, the tasks further down the line still receive and process data messages, so that only one

task sees the error condition. In future implementations, the task detecting the error will flag that

condition to some error handling or logging task, but for now the tasks simply proceed with the

previous data.

The exception to this approach is tasks that interface directly to other boards, such as the

CORE task. Since the CORE variables retain the previous values until overwritten, and can't

recognize any difference between data from different frames anyway, there is no point to rewriting

the previous values to the CORE values if new ones are not produced.
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Table 3: MCS CORE Update Task Interfaces

Variable Type Variables

Global variables consumed uplink-variable
downlink-variable

Global variables produced none
Local variables CORE-buffer
Off-board variables produced CORE uplink and downlink areas

Off-board variables consumed none

4.4 Telemetry Input Handler Task (TELIN.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

TELIN.task.

4.4.1 Overview

The TELIN task reads data from the telemetry receive buffers at the beginning of every ma-

jor frame. For the MCS, the receive buffers contain uplinked pilot control data from the GSC.

TELIN.task uses a subroutine, get-rzbuffer, to perform the interaction with the telemetry flags

and semaphores. When the data is read, it is sent via TELINvariable to the MCS Data Collection

Input task for routing.

The special subroutine (get-rxbuffer) is used for two reasons. First, the existing protocol has

been coded and verified on the telemetry board. Software was written to test the protocol from

the controller perspective, and the subroutine used here will be a conversion of the test routine to

a format that can be called from the Telemetry Input task. Second, confining the protocol to a

subroutine allows that the protocol to be easily modified without having to change TELIN.task.

The algorithm is given in Figure 8.

4.4.2 Task Interfaces

The interface between the Telemetry Input task and the rest of the system is fairly straightfor-

ward. The telemetry board loads uplink data from the GSC into the receiver buffers. TELIN.task

attempts to receive uplink data from the telemetry board once every major frame, placing the data

in a local workspace, TELIN-buffer. After reading the uplink data, TELIN.task sends the data to
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TELIN.task point to TELIN-buffer
call get-rx-buffer
if previous data available

SEND TELIN-buffer to TELINvariable
endif
SLEEP until next-frame
branch to TELIN.task

Figure 8: MCS Telemetry Input Task Algorithm

global variable TELIN-variable so the routing task (MDCIN.task) can access it. Table 4 shows the

interfaces.

4.4.3 Error Handling

When the Telemetry Input task attempts to receive uplink data from the telemetry board, it

is possible that when the task checks the buffers, the data has not been produced yet. In this

case, since the buffers are empty, nothing is copied from the telemetry board to the task's local

workspace. The task therefore still has a copy of data from the previous frame. The telemetry

interface subroutine returns a flag signalling the success or failure of the operation. For now, the

local buffer is sent whether or not new data was received. Eventually this error condition should

be flagged, but for this implementation TELIN.task will simply send on the old data.

Though TELIN.task sends its local buffer whether it contains new or old data, one other case is

considered. Before the first uplinked message is received, no previous data is available. To prevent

sending "null" buffers, TELIN.task will not begin sending until after the first message has been

received. The MCS Telemetry board maintains a counter of the number of messages received that

can be checked for this purpose.

Table 4: MCS Telemetry Input Task Interfaces

Variable Type Variables

Global variables consumed none
Global variables produced TELINvariable
Local variables TELIN-buffer
Off-board variables produced none
Off-board variables consumed receive buffers
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4.5 Telemetry Output Handler Task (TELOUT.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

TELOUT.task.

4.5.1 Overview

The TELOUT task accepts a message from the MCS Data Collection Output task every major

frame, which it loads into the transmit buffers on the telemetry board for downlink to the GSC.

TELOUT.task uses a subroutine, puLtx-buffer, to perform the interaction with the telemetry flags

and semaphores. For the MCS, the transmit data consists of sensor data from the A/D board.

The special subroutine (puLtx.buffer) is used for two reasons. For the current implementation,

the existing protocol has been coded and verified on the telemetry boards. Software was written to

test the protocol from the controller perspective, and the subroutine used here will be a conversion

of the test routine to a format that can be called from the Telemetry Input task. Confining

the protocol to a subroutine allows the protocol to be easily modified without having to change

TELOUT.task.

The algorithm is given in Figure 9.

TELOUT.task set receive timeout to 0
RECV TELOUT-buffer from TELOUT-variable
if succeeded

point to TELOUT-buffer
call put.tx-buffer

endif
SLEEP until next.frame + 2
branch to TELOUT.task

Figure 9: MCS Telemetry Output Task Algorithm

4.5.2 Task Interfaces

The interface between the Telemetry Output task and the rest of the system is straightforward.

TELOUT.task receives downlink data from the MCS Data Collection Output task (MDCOUT.task)

through the global variable TELOUT-variable, which TELOUT.task places in its local workspace,
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TELOUT-buffer. The task then writes the data to the transmit buffers on the telemetry board.

The telemetry board in turn transmits the data to the GSC. Table 5 shows the interfaces.

4.5.3 Error Handling

When the Telemetry Output task attempts to write downlink data to the telemetry board, there

is a possibility that when the task checks the buffers, the buffers are not available. In this case,

the subroutine will overwrite the buffer with the most recent data. Eventually this error condition

should be flagged, but for this implementation the TELOUT task will simply overwrite the old

data. The TELOUT task will not write downlink data to the telemetry transmit buffer unless it

has received new data.

4.6 MCS Data Collection Input Task (MDCIN.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

MDCIN.task.

4.6.1 Overview

The MDCIN.task acts as an intermediary between the telemetry inputs received from the GSC

and any tasks that require the inputs. For now, this task simply serves as a "data exchange," routing

data to any task that needs it. No computations are performed, nor are decisions made based on

the data received. The uplink data is sent to the PWM task for output to the aircraft servomotors

and to the CORE Update task to record the data in the CORE memory uplink variables.

One purpose of this task is to insulate the device handler tasks from the tasks that use the

device data. This way, device handlers perform only device-dependent activities: interfacing with

Table 5: MCS Telemetry Output Task Interfaces

Variable Type Variables

Global variables consumed TELOUT-variable
Global variables produced none
Local variables TELOUT-buffer
Off-board variables produced transmit buffers
Off-board variables consumed none
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some board or device, performing any conversions between device format and a format understood

by the rest of the system, and interacting with the system via global mailboxes. This simplifies

design of the handlers, and increases their reusability. For example, the PWM.task accepts system

data, transforms it to a format expected by the PWM board, and transfers the transformed data

to the PWM board. The task does not need to know who produces the data it consumes.

In later versions of the controller, control law computations will need to be performed and

additional management functions will be required. The MDCIN.task will have to base its data

routing decisions on the data type codes and perhaps perform computations.

The algorithm is given in Figure 10.

4.6.2 Task Interfaces

The MCS Data Collection Input task interfaces with three other tasks in this implementa-

tion. All interaction is through the global message variables used for intertask communications.

MDCIN.task accepts uplink data from global variable TELIN-variable, which was produced by the

Telemetry Input (TELIN) task. The data is placed in a local workspace, MDCINbuffer. The

uplink data is then sent to PWMvariable and uplink-variable for use by the PWM task and CORE

task, respectively. The interfaces are summarized in Table 6.

4.6.3 Error Handling

The possible error case for MDCIN.task occurs when the expected telemetry data is not pro-

duced by TELIN.task. It was decided to simply send on the data from the previous frame, which

will still be in the global variable. A later version will record the error case in some manner.

MDCIN.task set receive timeout to 0
REcv MDCINbuffer from TELINvariable
SEND MDCINbuffer to uplink-variable
SEND MDCINbuffer to PWALvariable
SLEEP until next.frame + 1
branch to MDCIN.task

Figure 10: MCS Data Collection Input Task Algorithm
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Table 6: MCS Data Collection Input Task Interfaces

Variable Type Variables
Global variables consumed TELIN-variable
Global variables produced uplink-tvariable

"P WMvariable
Local variables MDCINbuffer
Off-board variables produced none
Off-board variables consumed none

4.7 MCS Data Collection Output Task (MDCOUT.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

MDCOUT.task.

4.7.1 Overview

The MDCO TTT.task is an intermediate task between the sensor data from the MCS A/D board

and any other tasks in the system that require that data. For now, this task simply serves as a

"data exchange," routing the data to any task that needs it. No computations are performed on

the data, nor are decisions made based on the type of data received. For this implementation, the

A/D sensor data is sent to the Telemetry Output (TELOUT) task for downlink to the GSC and

to the CORE Update task so the data can be recorded in the CORE downlink variable area.

One purpose of this task is to insulate the device handler tasks from the tasks that use their

data. This way, device handlers perform only device-dependent activities: interfacing with some

board or device, performing any conversions between device format and a format understood by

the rest of the system, and interacting with the system via global mailboxes. This simplifies design

of the handlers, and increases their reusability.

In later versions of the controller, control law computations will need to be performed and

additional management functions will be required. The MDCOUT task may also have to route the

sensor data to different tasks computing the control law based on the data type codes and other

criteria.

The 32 words of sensor data are not all needed by the GSC; only the first 27 channels are used

as shown in Figure 4. This task must move the error word (word 33) up to the 28th word, then

only send 28 words on to the TELOUT task.
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The algorithm is given in Figure 11.

MDCOUT.task set receive timeout to 0
RECV MDCOUTbuffer from AD-variable
move error/status word to the 25th word of transmit buffer
SEND MDCOUT-buffer to downlin;;_variable
SEND MDCOUT-buffer to TELOUT-variable
SLEEP until next-frame + 1
branch to MDCOUT.task

Figure 11: MCS Data Collection Output Task Algorithm

4.7.2 Task Interfaces

The MCS Data Collection Output task interfaces with three other tasks in this implementa-

tion. All interaction is through the global message variables used for intertask communications.

MDCOUT.task accepts sensor data from global variable AD-variable, which was produced by the

AD.task. The data is placed in a local workspace, MDCOUT.buffer. Thc sensor data is then sent

to TELOUT-variable and downlink-variable for use by the Telemetry Output (TELOUT) task and

CORE task, respectively. The interfaces are summarized in Table 7.

Table 7: MCS Data Collection Output Task Interfaces

Variable Type Variables

Global variables consumed AD-variable
Global variables produced doumlink-variable

TELO UT.variable
Local variables MDCOUT-buffer
Off-board variables produced none
Off-board variables consumed none

4.7.3 Error Handling

The error case of interest to MDCOUT.task occurs when the expected A/D sensor data is not

produced by AD.task. For this implementation, MDCOUT.task simply sends the previous frame's

data, which is still in thc global variable. A later version will record the error case.
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4.8 Pulse Width Modulation Board Interface Task (PWM.task)

This section pr*s-rn.s an overview, the algorithm, the task interfaces, and error handling for the

PWM.task.

4.8.1 Ov -rview

The p i pose of this task is to interface with the ?WM board. It receives a message containing

command data for each of the up to 16 servomotor channels. The data consists of one word per

channel, with the first word corresponding to the first channel, and so on. This message is placed in

the PWM.buffer va.'able. The PWM task performs any scaling transformations needed to convert

the command data (which i, in A/D board format) to a format acceptable to the PWM board.

When the buffer is ready, data is copied into the PWM board data area. This task executes once

every major frame.

For this implementation, the uplink data being sent to the PWM board will use the first 13

PWM channels, as shown in Figure 4. The eight switch values are multiplexed into a single byte

value which is sent to the aircraft discretes.

The algorithm is given in Figure 12.

4.8.2 Task Interfaces

This subsection describes the interfaces between the PWM task and the other tasks in the

system. The PWM task communicates with the "outside world" via the global data variable

PWMvariable. The producer of the PWM data (for this vers; in, MDCIN.task) writes the data

to PWM-variable using the URVOS SEND system call. PWM.task uses the RECV call to copy the

data from PWMAvariable to the local variablk PWMbuffer. When PWM.task has transformed the

data, the buffer is copied tu a memory area on the PWM board, PIVALdata-area. The interfaces

are sumitiarized in Table 8.

4.8.3 Error Handling

The only real error condition the PWM task is concerned with for this phase of the URV

Controller design involves what to do if the expected buffer is never received. If the expected new
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PWM.task set receive timeout to 0
RECV PWMbuffer from PWMvariable
if succeeded

point to beginning of PWM-buffer

point to beginning of PWMdata

load count of number of data items
call transform -buffer
point to beginning of PWMdata

point to beginning of PWMdata-area

call copy-buffer
endif
SLEEP until next-frame + 2
branch to PWM.task

copy-buffer while more data
get data item from PWMbuffer

increment buffer pointer
put data item in PWMdataarea
increment data area pointer

end while

return from subroutine

Figure 12: MCS PWM Task Algorithm

Table 8: MCS PWM Task Interfaces

[Variable Type Variables

Global variables consumed PWMvariable

Global variables produced none
Local variables PWM-buffer

Off-board variables produced PWM-data-area

Off-board variables consumed none
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command data is not available, the data from the previous frame will be used to command the

servomotors. This case does not require any actions of the PWM task, since the PWM board does

not alter the transformed data in its data area. If the data is not available, the task simply goes

to sleep until the next frame.

For now this task will only check the data for availability once. If the data is not ;imediately

available, the task will go to sleep until next frame. This is accomplished by passing a wait time

of 0 to the RECV system call (RECV will only wait for 0 clock ticks for the data to be produced).

In the future, the wait time can be changed if desired.

The URVOS provides a easy means of implementing this constraint. The RECV call can be

provided with an amount of time to wait for the data to be produced. The call will return a flag

indicating whether or not the RECV succeeded (data was available) or failed (none was available).

4.8.4 PWM Data Transformation

The data received by the PWM task (Figure 13 (a)) cannot be passed to the pulse width board

immediately. Certain manipulations and computations must be performed to place the data in the

appropriate format for use by the servomotors. Figure 13 (b) shows the final form needed for the

servomotor commands. The eight switch values are condensed into one byte value which is sent to

the PWM discretes. Switch 8 is used to determine whether the four flap values are set to 0800h

(neutral flap position, 00 deflection) or Offfh (half flap position, 150 deflection).

5 Ground Station Core Controller Decomposition

Most of the controller tasks defined for the Ground Station Core (GSC) are identical to those

used in the MCS. This replication is intentional. Similarities between the MCS and GSC require-

ments were exploited to the greatest extent possible. For tasks that are identical between the two

systems, only a brief description of the task is included. Tasks that are different are fully defined.

5.1 Analog-to-Digital Board Interface Task (AD.task)

The GSC Analog-to-Digital Board Interface Task is identical to the one on the MCS, though

for the GSC the A/D data processed by this task is pilot command data rather than aircraft sensor
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[Input Command [Surface [Command
S,'ll Left Aileron Roll

Pitch Right Aileron Roll

Yaw Left Elevator Pitch

Throttle Right Elevator Pitch

Brake Left Rudder Yaw

Switchi Right Rudder Yaw

Switch2 (a) Steering Yaw (b)

Switch3 Throttle Throttle

Switch4 Brake Pitch

Switch5 Left Flap 1 0800h/Offfh

Switch6 Right Flap 1 0800h/Offfh

Switch7 Left Flap 2 0800h/Offfh

Switch8 Right Flap 2 0800h/Offfh
Discrete Values 8 Switches

Figure 13: (a) PWM Task Input Data and (b) Transformed Data Output to PWM Board

data. This task assumes the A/D data is for all 32 channels, even though the pilot commands only

use the first 14 channels.

5.2 Analog-to-Digital Board Interrupt Handler (ADINT.hdlr)

The GSC Analog-to-Digital Board Interrupt Handler is identical to the one on the MCS, though

for the GSC the A/D data collected by this handler is pilot command data rather than aircraft

sensor data. The handler samples all 32 A/D channels.

5.3 CORE Variable Update Task (CORE.task)

The CORE Variable Update task is identical on the GSC and MCS. The task accepts the latest

uplink and downlink data every frame and stores them to the appropriate areas in the CORE

memory variables. For the GSC, the uplink data is the buffer of pilot stick data from the A/D

board. The downlink data is the sensor channel data sent down from the MCS. The GSC CORE

variables are accessed by the Macintosh Interface Board to store the data on the optical disk.

33



5.4 Telemetry Input and Output Tasks (TELIN.task and TELOUT.task)

The two telemetry tasks, TELIN.task and TELOUT.task, which interact with the Telemetry

board to pass data between the GSC and the MCS controller CPUs, are identical on both systems.

The TELIN task reads data from the telemetry receive buffers at the beginning of every major

frame. For the GSC, the receive buffers contain downlinked aircraft sensor data from the MCS.

The TELOUT task accepts a message from the GSC Data Collection Output task every major

frame, which it loads into the transmit buffers on the telemetry board for uplink to the MCS. For

the GSC, the transmit data consists of pilot stick command data from the A/D board.

5.5 GSC Data Collection Input Task (GDCIN.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

GDCIN.task.

5.5.1 Overview

The GDCIN.task is an intermediate task between the telemetry inputs to the Ground Station

Core (downlinked from the MCS) and any other tasks in the system that require those inputs.

For now, this task simply serves as a "data exchange," routing the data to any task that needs

it. No computations are performed on the data, nor are decisions made based on the type of data

received. For this implementation, the telemetry downlink data is sent to the CORE Update task

so the data can be recorded in the CORE downlink variable area for access by the Macintosh.

In later versions of the controller, many additional functions will be added. The GDCIN.task will

have to base its data routing decisions on the data type codes and perhavs perform computations

on the data.

The algorithm is given in Figure 14.

5.5.2 Task Interfaces

The GSC Data Collection Input task interfaces with two other tasks in this implementation. All

interaction is through the global message variables used for intertask communications. GDCIN.task

accepts downlink data from global variable TELIN-variable, which was produced by the Telemetry
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GDCIN.task set receive timeout to 0
RECV GDCINbuffer from TELIN-variable
SEND GDCINbuffer to downlink-variable
SLEEP until next-frame + 1
branch to GDCIN.task

Figure 14: GSC Data Collection Input Task Algorithm

Input (TELIN) task. The data is placed in a local workspace, GDCINbuffer. The downlink data

is then sent to downlink-variable for use by the CORE task. The interfaces are summarized in

Table 9.

Table 9: GSC Data Collection Input Task Interfaces

Variable Type Variables

Global variables consumed TELIN-variable
Global variables produced downlink-variable
Local variables GDCIN-buffer
Off-board variables produced none
Off-board variables consumed none

5.5.3 Error Handling

The possible error case of interest to GDCIN.task occurs when the expected telemetry data is

not produced by TELIN.task. It was decided, for this implementation, to simply send on the data

from the previous frame, which will still be in the global variable. In a later version, the error case

will be recorded in some manner.

5.6 GSC Data Collection Output Task (GDCOUT.task)

This section presents an overview, the algorithm, the task interfaces, and error handling for the

GDCOUT.task.

5.6.1 Overview

The GDCOUT.task is an intermediary between the pilot stick data from the A/D board and

any tasks in the system that require the stick data. For now, this task simply acts as a "data
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exchange," routing the data to tasks that need it. No computation is performed on the data, nor

are decisions made based on the type of data. For now, the A/D stick data is sent to the Telemetry

Output (TELOUT) task for uplink to the MCS and to the CORE Update task so the data can be

recorded in the uplink variable area.

In later versions of the controller, control law computations will need to be performed and

additional management functions will be required. The GDCOUT.task may have to route the

sensor data to additional control law tasks based on the data type codes and other criteria.

Not all 32 words of sensor data are needed by the MCS; only the first 13 channels are used as

shown in Figure 4. This task moves the error word (word 33) to the 14th word, then only sends 14

words to the TELOUT task.

The algorithm is given in Figure 15.

GDCOUT.task set receive timeout to 0
RECV GDCOUT-buffer from AD-variable
move error/status word to the 14th word of transmit buffer
SEND GDCOUTbuffer to uplink-variable
SEND GDCOUT.buffer to TELOUT-variable
SLEEP until next-frame + 1
branch to GDCOUT.task

Figure 15: GSC Data Collection Output Task Algorithm

5.6.2 Task Interfaces

The GSC Data Collection Output task interfaces with three other tasks in this implemen-

tation. All interaction is through the global message variables used for intertask communica-

tions. GDCOUT.task accepts stick data from global variable AD-variable, which was produced by

AD.task. The data is placed in a local workspace, GDCOUT-buffer. The sensor data is then bent

to TELOUT-variable and uplink-variable for use by the Telemetry Output (TELOUT) task and

CORE task, respectively. The interfaces are summarized in Table 10.
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Table 10: GSC Data Collection Output Task Interfaces

Variable Type Variables

Global variables consumed AD-variable
Global variables produced uplink-variable

TELOUT.variable
Local variables GDCOUT-buffer
Off-board variables produced none
Off-board variables consumed none

5.6.3 Error Handling

The possible error case for GDCOUT.task occurs when the expected A/D stick data is not

produced. It was decided, for this implementation, to simply send on the data from the previous

frame, which will still be in the global variable. In a later version, the error case will be recorded

in some manner.

6 Decomposition Summary

Table 11 summarizes the tasks that will be used on the GSC and the aircraft MCS. The A/D,

Telemetry, and CORE Upd te Tsks are identical between the two systems. The PWM task is not

needed on the GSC since it does not have a pulse width board. The data collection tasks perform

similar functions on their respective boards, but are slightly different internally since they send

copies of the A/D data to different CORE variables.

Table 11: MCS and GSC Task Summary

MCS Tasks GSC Tasks

AD.task AD.task
CORE.task CORE.task
TELIN.task TELIN.task
TELOUT.task TELOUT.task

MDCIN.task GDCIN.task
MDCOUT.task I GDCOUT.task
PWM.task I
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A Telemetry

A.1 Overview

The transfer of accurate data messages is extremely important when flying the Unmanned

Research Vehicle (URV). The messages sent to the Multiprocessor Control System (MCS) on the

aircraft contain the command words used to control the URV servomotors, and the messages sent to

the Ground Station (GSC) contain the A/D values collected from the onboard sensors. A telemetry

system has been designed to ensure these messages are transmitted and received correctly.

The telemetry system operates autonomously, executing its functions on dedicated processing

boards. Flying the URV requires two telemetry boards: one on the ground, controlling transmissions

to and from the GSC, and another in the URV, controlling transmissions to and from the MCS

(Figure A-2). Each board is a MC68000 CPU module, responsible for handling both incoming and

outgoing messages. Outgoing messages originate at the main processing unit and are transferred

to the telemetry board using the VME backplane. The telemetry board sends these messages

serially to the microwave transmitter using its onboard Dual Asynchronous Receiver Transmitter

(DUART). Similarly, an incoming message is transferred serially from the microwave receiver to

the telemetry board, and then read by the main processing unit via the VME backplane.

The format for telemetering data is a handshaking protocol in which the receiving board always

answers the transmitting board. When there are no errors, the overall transmitting sequence should

look like Figure A-3. First, the GSC sends a block of data, then the MCS responds by returning

status. Next, the GSC commands the MCS to downlink, then the MCS transmits a block of data.

Finally, the GSC returns status. This sequence should continually loop, with the GSC always

initiating the process. In this setup, the GSC acts as the bus master, because it directs the priority

of data transmissions. It controls its own transmissions and also determines when the MCS is

allowed to downlink.

The telemetry boards transmit and receive at 125 Kbaud. However, since the MCS and GSC

do not transmit and receive simultaneously, the total bandwidth is 208 bytes per major frame.

In the current configuration, the MCS needs to transmit 61 bytes per major frame and the GSC

needs to transmit 32 bytes. These needs only utilize about half of the total bandwidth, and make

it possible to initiate a single retry each major frame. The retry forces a second transmission of the
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Figure A-3: Telemetry Handshaking

current data block. If the returned status byte indicates that the previous data transmission was

erroneous, then the sender of the data will transmit it again. After two incorrect transmissions of

the same data block, the block is "scrapped," and overwritten with new data.

The software implementing the protocol contains two main sections: a receive section and a

transmit section. The receive section is implemented using an interrupt handler, and the transmit

section is actually the main program. Aside from the few additions to make the GSC the bus

master, the MCS and GSC implement the protocol almost identically.

A.2 Receiving

The interrupt handler controls all incoming messages. The messages are transferred from the

telemetry board's DUART one byte at a time. When the DUART receives a new byte, it generates

an interrupt. The interrupt handler then stores and interprets this byte. It will first determine if

the byte is the beginning of a new message, or a continuation of a previous message. There are

three different types of messages:

1. a command-to-downlink-data message,

2. a data message, or

3. a status message.

The first and third message types are always one byte each, but the second type can be of

variable length, depending on the number of data bytes. Figure A-4 shows the message types.
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Figure A-4: Message Types

The first type of message, the Command-to-Downlink-Data, can only be interpreted by the

MCS. Since the GSC is the bus master, it never needs permission to send data, and will disregard

that type of message. When the MCS receives the Command-to-Downlink-Data message, s inter-

rupt handler sets the "clear to send flag," so the transmit software will know it is allowed to send

a data block.

The second type of message, the data message, is the most complicated. It contains a byte

counter, data and a checksum. The objective is for the interrupt handler to store the data in one of

two receive buffers. First, the interrupt handler must determine which buffer to use. It makes this

decision based on the status of the buffer's flag and semaphore. The flag indicates if the buffer is

full, and the semaphore indicates if the buffer is busy. Figure A-5 gives a visual interpretation of the

buffers and flags. If both buffers are full, then the routine will overwrite whichever buffer is not busy.

A both-buffers-full situation should never arise, because a buffer is emptied by the main processing

unit once every major frame, and a new buffer is received by the telemetry board once every major
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Figure A-5: Telemetry Board

frame. As long as the main processing unit and the telemetry board remain synchronized, the

current buffer will be emptied before new data arrives. Similarly, both semaphores should never

be set at the same time, and this error case will also result in one of the buffers being overwritten.

When storing a data message, the interrupt handler maintains a count of how many bytes have

been received and how many more are expected. When the specified number of bytes have arrived,

the interrupt handler compares the transmitted checksum with its own calculated checksum. If

they match, then the interrupt handler sets the buffer's full flag, indicating the buffer hs good

data. Once this flag is set, it is the main processing unit's responsibility to read the data. If the

checksums do not match, then the buffer's full flag is not set, and the main processing does not

waste time reading bad data.

The third type of message, the status message, provides two important pieces of information; it

indicates whether the previous data transmission was successful and also whether the MCS needs

to downlink. When the target board receives this message its interrupt handler interprets the

information and reacts accordingly. If the previous data transmission was successful, then the
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interrupt handler will set that data buffer flag to empty, indicating to the main processing unit

that the buffer is ready for new data. However, if the transmission was not successful, then the

interrupt handler will not clear the buffer flag, indicating to the transmit software that the data

needs to be sent again. The GSC interrupt routine has the additional task of decoding the downlink

section of ti.e status message. If the MCS requests to downlink, then the interrupt handler will set

the downlink flag. This flag alerts the transmit software that the MCS needs to downlink data.

One additional duty for the interrupt handler is to transmit a status byte in response to a data

message. Every time a telemetry board receives a data block, it should immediately respond with a

status byte indicating whether or not the checksums matched. The MCS status byte also indicates

whether or not it needs to downlink.

A.3 Transmitting

The second section of the telemetry board software controls all the data message transmissions.

The messages are stored on the telemetry board in one of two transmit buffers. These buffers are

constantly filled by the controller processor unit, transparent to the telemetry software. Similar to

the receive setup, two flags and two semaphores control access to the buffers. The transmit routine

polls the flags, waiting for an indication that a buffer has just Leen filled. Although there should

never be two full transmit buffers, if this error case does arise, the telemetry board will recover

by transmitting one of the buffers, and clearing the other buffer. By clearing the other buffer, the

error case will not affect subsequent transmissions. While transmitting the data, the routine sets

the corresponding semaphore to "busy," so the main processing unit will know not to fill it with

new data. After the message has been transmitted, the routine clears the corresponding flag and

semaphore, so the main processing unit will know the buffer is available.

The MCS and GSC transmission routines use the same priority scheme to send messages.

However, the MCS requires one more step than the GSC: it must receive permission from the GSC

to transmit data. When the MCS needs to downlink, it encodes the request into its return status

byte. The GSC stores this request, but only commands the MCS to transmit if there is nothing

of higher priority to uplink. New data message, or a retry of a previous message both have higher

priority than the MCS downlink. The MCS software loops until permission is received, then begins

to execute its send routine.
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All interaction with the DUART for data transmissions is handled by a subroutine called trans-

mit. It feeds the messages byte by byte, and monitors the transmit ready flag. Before calling this

subroutine, the current message must be stored in one of the transmit buffers in the appropriate

message format. This format is shown in Figure A-4. The "transmit" subroutine also has the

responsibility of calculating and sending the checksum.

A.4 Resynchronization

The purpose of the resynchronization software is to ensure message's are synchronized between

the two telemetry boards. If synchronization is not maintained, then the boards could reach

a deadlock state, where neither is transmitting because they are both waiting for the other to

respond. To prevent deadlock, each board is only permitted to wait a fixed amount of time for

the other's response. If the waiting time, called deadspace time, exceeds a predefined value, then

the board assumes an error condition, and resets itself. The transmit software is responsible for

detecting and correcting all synchronization problems, aided by two subroutines, wait for status

and deadspace reset. The wait for status subroutine ensures that status has been returned from

the receiver of a data message. This routine will only wait a fixed amount of time for this byte. If

the status is not returned, then the sender of the message will assume an error state and execute

the other subroutine, deadspace reset. This subroutine resets the semaphores and counters so the

board will stop waiting for the status byte and begin execution of a new message. Similar to the

sender, the receiver of a message also counts the amount of deadspace time. If the sender has not

transmitted anything for a predefined amount of time, then the receiver knows there is a problem

and calls deadspace reset.

The GSC's deadspace reset routine requires extra code to ensure the MCS is reset first. Since

the GSC initiates the protocol sequence, the MCS must be ready to receive the data message, or it

may miss oae or more bytes. To ensure the MCS is ready, the GSC remains idle for a fixed amount

of time in its deadspace reset routine, giving the MCS ample time to reset itself. After this idle

period, the GSC performs its own reset and returns to sending messages.

As an example of how the resynchronization actually works, suppose that the MCS misses a

byte, or receives an incorrect number of bytes. It will then keep waiting for more data and will not

return any status. Consequently, the GSC will not receive a status byte and will also be" waiting.
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The two boards are deadlocked because each is waiting for the other to respond. While it is waiting,

the GSC will monitor the amount of deadspace time until it exceeds the predefined value. Then

it will enable its deadspace reset routine and clear the appropriate flags, and counters. While the

GSC is not sending, the MCS transmit routine counts the amount of deadspace time. If this time

continues beyond a fixed value, the MCS telemetry board will also interpret the deadspace as an

error condition and also reset itself. The MCS should complete its reset routine first and then wait

to receive new data. After the GSC completes its reset routine, it will again start sending data

messages, and the two systems should be resynchronized.
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Acronyms

o A/D : Analog-to-Digital

* AMCAD Advanced Multiprocessor Control Architecture Development Project

e DUART Dual Asynchronous Receiver Transmitter

* GDCIN GSC Data Collection Input

e GDCOUT : GSC Data Collection Output

* GSC Ground Station Core

* MCS Multiprocessor Control System

* MDCIN : MCS Data Collection Input

* MDCOUT : MCS Data Collection Output

e PWM : Pulse Width Modulation

* RTMOS : Real-Time Multiprocessor Operating System

o SC : Signal Conditioner

* TCB : Task Control Block

* TELIN : Telemetry Input

* TELOUT : Telemetry Output

e URV : Unmanned Research Vehicle
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