
NUSC Technical Document 6998 AD-A237 5011 April 1991 (! 111 111 ! 111 111 IEll I IIl

Operational Concept Document for the
Next-Generation Computer Resources (NGCR)
Operating Systems Interface Standard Baseline

Operating Systems Standards Working Group (OSSWG)
Compiled by D. P. Juttelstad (NUSC)

DTIC
EI2 TE

1JUN 2 4 1991,
" B

Naval Underwater Systems Center
Newport, Rhode Island • New London, Connecticut

Approved for public release; distribution is unlimited. 9 1-02522
, : ., . , ,. ; tli t llli ' 1 I ql

9 o'""''"'" " '

PREFACE

This report was funded under NIrSC Project No. A45146, "Next-
Generation Computer Resources (NGR)." The sponsoring activity is
the Space and Naval ,Warfare Systems (ommand. through the work of
the Operating Systems Standards Working Group (OSSWG). The OSSWG
management structure is as follows:

NGCR Program Manager. H. Mendenhall (SPAWAR-324)

NG(R OSSWG Cochairman I E(h R,' ' ' ,SPAWAR324)

NGCR OSSWG Cochairman, R. Bergman (NOS()

Approach Subgroup (ha i rman, S. Howell (NSWC)

Exploration & lechnology Subgroup (hai rman, D. Juttelstad (NUSC)

Standards Evolution Subgroup Chairman, J. Oblinger (NUSC)

This document was developed over a 2-year period by a team from
the Navy, other sections of the Government. private industry, and
academia, who are e,,perts in the field of computer operating
systems. Only a few of the Navy participants were actually funded
to directly participate in this process. The superb accomplish-
ments of the joint working group and its ability to complete this
effort in a relatively brief time span were a direct result of the
total dedication of all participants to the project. The outstand-
ing contributions of all the volunteers in this process are
particularly noted and appreciated.

Special thanks are expressed to U.S. industry and academia for
their staunch support and participation in this working group.
Their ,ontinued supnort and involvement are strongly solicited.

REVIEWIE AND APPROVED: I APRIL 199!

lHead. (m)lla I (on Ii o I D es I pm., llcpa r lment

REPOR DOC MENT TIONPAGEForm Approved
REPORT~~ ~ ~ DOUETTONPGOMB No. 0704-0189

Pvtoc reporting buarden for this collection of informaton is estima~ted to average , ,our oef 'e~onne. Incluing the time for revneg instructions, searching exiting data Iciufces.
gatt'errn and mraintainn the data needed&, adcompleting and reviewing the coiler!ion of ,nlormatiorn send comments regarding this buarden estinmate or any other aspect of thist
coilirtin of infortmation. including sk 99etion fo redu ig this burden. to Washinington Headquarters Sorinces. oirectorate for inftormation Operations and Aeports. 12 il Jeftenion

aa~ 084#1Hghway, Wute 1204. Arliington VA 22202-4302. and to the Offince of lidarregennet and Budget. Paperwork Reductinon Prolfed (0704-4 1"), Wasington. DC 2050)

1AGENCY USE ONLY (Leave blank) 2REOTDATE 3. REPORT TYPE AND DATES COVERED

I I pril1991 1
If ~4. TITLE AND SUBTITLE S UDN UBR

Operational Concept Document for the Next-Generation
Computer Resources (NGCR) Operating Systems Interface
Standard Baseline

6. AUTHOR(S)

Operating Systems Standards Working Group (OSSWG)

7. PERFORMING ORGANIZATION NAME(S) AND ADORESSRES) B. PERFORMING ORGANIZATION
Naval Underwater Systems Center REPORT NUMBER

Newport Laboratory TD 6998
Newport. RI 02841

3. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ifMONITORING
Space and Naval Warfare Systems Command AGENCY REPORT NUMBER
(SPAWAR-3 24)
Washington, DC 20363

11. SUPPLEMENTARY NOTES

12s. DISTRIBUTION / AVAILABILITV STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

I13. ABSTRACT (Maximum 200 word;)

The Next-Generation Computer Resources (NGCR) Operating Systems Standards
Working Group (OSSWG) conducted a survey of existing operating systems and operating
systems interface standards to establish a baseline for the NGCR operating system
interface. This document will identify the requirements for services, interfaces,
and protocols to be supported by the operating systems interface.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Next -- apq~itet Resources 155
Operating Systems Interface 16. PRICE CODE
Operational Concept Document

17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I Of THIS PAGE I OF ABSTRACT

UNCLASSIFIET) I UNCLASSIFfED I UNCLASSIFIED SAR

NSN 1540-01-280-5500 Stan~dard Forrm 298 (Rev 2-89)
P'PU'rb" byf ANSI %t4 1)914
196 inOJ

'FABLE OF CONTENTS

Sect ion Page

1 SCOPE .. 1
1 .1 Iden t if ica t ion 1
1 .2 P u rp o s e . 1
1.3 ln t roduc t ion 1

2 APPLICABLE DOCUMENTS 3

3 M ISS ION 5
3.1 Mission Need Requirements .. 5
3 .1.1 Po rtab ili ty .. 5
3 .1.2 R eusab ility 5
3 .1.3 T ra in ing 6
3.1.4 Nondevelopmental Items and Software 6
3 .1.5 Mu ltileve l Security .. 6
3.1.6 Reliability, Maintainability, Adaptability, and Availability 6
3.1.7 Real-T ime Performance
3.1.8 Language Support ... 7
3.1.9 Distributed System Support 7
3 .1.10 Heterogen iety .. 7
3 .2 P rimary M ission .. 8
3 .3 Secondary M ission .. 8
3.4 Operat iori 2 i Environment .. 8
3.5 Support Environment 9

4 INTERFACE STANDARD FUNCTIONS AND CHARACTERISTICS 11
4.1 Operating System Services .. 11
4.1.1 Gencral Requirements ... 11
4.1.2 Architecture-Dependent Services 12
4.1.3 Capability and Security Services 12
4.1.4 Data Interchange Services .. 13
4,1.5 Event and Error Management Services 13
4 .1.6 F ile Serv ices .. 13
4.1.7 Generalized Input/Output Services 14
4.1.8 Networks and Communications 14
4.1.9 Process Management Services 14
4.1.10 Project Support Environment Services 15
4.1.11 Reliability, Adaptability, and Maintainability Services 15
4. i.12 Resource Management Services 16
4.1.13 SvnchroniLatilji and Scheduling Services 17
4.1.14 System Ini t ial izat ion and Reini t iil lzat i,.j S,.rv ic c. 17
4 .1. 15 T im e S e rv ices 1 /
4.1. 16 Ada Language Support Services 18
4.2 Application fI,-mq ins for OSIF Standard 01.zt ns
4.2.1 Interactive Processing Domain - Ruhy.............................. 18
4.2.2 Special-Purpose Processing Domain - Opal 19
4.2.3 Reliable Message Processing Domain - Amethyst 19
4.2.4 Embedded Processing Domain - Garnet 19

I II II I I

TABLE OF C0NTENTS (Cont'd)

Section Page

4.2.5 High Computation Domain - Topaz 19
4.2.6 Mission Critical Systems Domain - Emerald 20
4.2.7 Networked Processor Domain - Diamond 20
4.2.8 Integrated Subsystems Domain - Sapphire 20

5 RESPONSIBLE GOVERNMENT AGENCIES 21

6 NOTES .. 23
6.1 Glossary of Terms .. 23
6.2 Acronyms and Abbreviations 34

10 APPENDIX -- REFERENCE MODEL FOR EMBEDDED OPERATING SYSTEMS 10-i

20 APPENDIX -- OSIF GENERAL REQUIREMENTS AND INTERFACES 20-i

Accession For

NTijS (CtAV4

IUra~m'rci

r" C ("I

i:Dist i :

u nI ni lilll ll•U ll

OPERATIONAL CONCEPT DOCUMENT FOR THE
NEXT-GENERATION COMPUTER RESOURCES (NGCI)

OPERATING SYSTEMS INTERFACE STANDARD BASELINE

1. SCOPE

1.1 IDENTIFICATION

This is the Operational Concept Document (OCD) for the Next-Generation
Computer Resources (NGCR) Operating Systems Interface (OSIF) Standard. The
format of this document is based on MIL-STD 2167A, "Defense System Software
Development," Data Item Description DI-MCCR-80023.

This OCD incorporates material taken from references 1 through 9 (see
section 2).

1.2 PURPOSE

The purpose of this OCD is to present the operational concept of the
OSIF, which was derived through a consensus among Navy agencies, industry, and
academia. This OCD will identify the requirements for services, interfaces,
and protocols to be supported by the OSIF.

The purpose nf the OSIF is to establish a set of interfaces that controls
the operations of all computing system hardware and software elements of a
platform. These elements are coordinated in a uniform manner that is
consistent with the mission of the platform. The OSIF is an interface
specification; it does not specify an operating system implementation. The
objective of the baseline specification is to select a commercially available
OSIF or family of interface basciine requirements and modify them as little as
possible.

1.3 INTRODUCTION

The NGCR program is designed to fulfill the Navy's need for standard
computing resources while allowing it to take advantage of commercial products
and investments, and to field new technology advances more quickly and
effectively. The program revolves around the definition and selection of
standards, one of which is the establishment of the OSIF. The effort to
establish such an interface standard, initiated at the start of 1989, draws on
industry, academic, and military expertise. An initial OSIF standard is
expected in 1993; the final standard is expected to be usable in the
procurement of Navy systems in 1996.

It is required that the NGCR OSIF standard be Ada-oriented, real-time,
distributed/networked, scalable, multilevel secure, reliable, and realizable
on heterogeneous processors.

1/2
W Reverse Blank

2. APPLICABLE DOCUMENTS

1. "NGCR Development Opticns Paper," SPAWAR ltr to NCGR OSSWG, Ser. 324.253,
30 October 1987.

. "NG'1 Prgram Master Plan," SPAWAR-324 Informal Document, 12 June 1989.

3. "NGCR Operating Systems Standards Working Group (OSSWG) Technology
Report," SPAWAR-324 Informal Document, Version 0.1, 1 August 1989.

4. "NGCR Operating Systems Standards Working Group (OSSWG) Reference Model,"
SPAWAR-324 Informal Document, Version 1.02, 6 August 1989.

5. "Department of Defense Trusted Computer Systems Evaluation Criteria," DoD
5200.28-STD, Department of Defense, Washington, DC, December 1985.

6. "The Challenge of Ada Runtime Environments White Paper," Ada Runtime
Environment Working Group, NIRTSI Taskforce, Association for Computing
Machinery Special Interest Group for Ada, October 1988.

7. "OSSWG Architecture Model for Embedded Operating Systems," SPAWAR-324
Informal Document, 15 June 1989.

8. IEEE POSIX Standard 1003 and future Standards, Institute of Electrical and
Electronic Et,.ineers.

9. "Tactical Digital Standard (TADSTAND) A, Basic Policies, Procedures, and
Definitions for Mission-Critical Computer Resources (MCCR)," SPAWAR-324
Informal Document, Draft Revision 1, November 1989.

3/4
Reverse Blank

3. MISSION

3.1 MISSION NEED REQUIREMENTS

Historically, the Navy acquisition and budgeting processes have extended
over such long time periods that, on deployment, the technology in new Navy
standard computers is often obsolete relative to that of current commercial
technology. Even when preplanned product improvements are programmed, budget
uncertainties and a lengthy acquisition process delay introduction of these
improvements.

This situation has led to an ever-increasing number of waivers to allow
the ts ' of nonstandard computers in Navy weapon systems. It has also led to
the introduction of commercial products directly into military computers,
which has generated a drive to introduce commercia!, nonstandard computer
products into mission-critical applications. Typical mission-critical
applications include aircraft, surface, weapons, subsurface, shore-based
facilities, etc.

Because of these constraints in the current acquisition and implementation
procedure, the NGCR program has chosen a joint industry/Navy standards
definition and Jevelopment approach. This method is based on an open-system
architecture (OSA) approach that is commercially based and supplemented where
necessary to achieve specific Navy requirements. The incentives for rapid
acceptance of the standard include wide access to the underlying commercial
technology; wide access to an open Navy market; reduced cost and risk of
research, development, test, and evaluation (RDT&E); and increased competition
among vendors.

The NGCR OSIF Standard is not a design of the operating system, but is a
specification of interfaces to the operating system.

The following subsections highlight the requirements of the NGCR OSIF
Standard program.

3.1.1 Portability

There is a need for application software portability that provides
sufficient functionality to accommodate a broad range of application
requirements. Architecture-independent services will allow an NGCR system to
interface with non-NGCR resources.

3.1.2 Reusability

The OSIF shall support reusability. Reusability for new developments
will take place (at least) at the source code level, enabling developers to
reuse portions of applications source code (and/or other pertinent aspects
such as design and tests) in the generation of other applications.

5

3.1.3 Training

The OSIF shall allow for a standard operatiui s and maintenance curriculum
to be developed. This framework will be directly applicable to all OSIF
baseline standard users, thus reducing system-specific training costs.

3.1.4 Nondevelopmental Items and Software

A nondevelopmental item (NDI) is defined as a deliverable item that meets
acquisition requirements but is not developed under contract, and can be pro-
vided by the contractor, by the Government, or by a third party. These items
include commercial products, products developed and used by another service or
Government agency, and products developed and used by other countries.

Nondevelopmental software (NDS) is defined as deliverable computer soft-
ware not developed under contract but provided by the contractor, by the
Government, or by a third party. NDS may be referred to as reusable software,
as Government-furnished software, or as commercially available software.

The OSIF shall provide the ability to maximize the use of NDIs and NDSs
and minimize pi prietary development items. An incremental process of
introducing NDIs and NDSs conforming to the NGCR OSIF Standard is projected.

3. 1 . 5 Multilevel Security

The NGCR program shall provide standards that support the security needs
of the Navy. The NGCR OSIF Standard should not preclude meeting the
operational requirements for any security mode of operation (i.e., dedicated,
system high, compartmented, multilevel) for either a local or distributed
operating system. Meeting the security needs of a project is a particularly
difficult issue to resolve when coupled with the other requirements of
tactical systems. Operating systems developed to the NGCR OSIF Standard shall
maximize the protection of system integrity from inadvertent or malicious
misuse according to a system's needs. Some systems may require multiple
concurrent levels of security within a node, as well as across the distributed
system. The security mechanism should also conform to available and evolving
Department of Defense (DoD) security standards as appropriate.

The implementation and suppor services of the operating system in
accordance with the NGCR OSIF Stardard must meet the security requirements as
specified in the "Department of Defense Trusted Computer System Evaluation
Criteria," DoD 5200.28-STD, of December 1985 (reference 5). A risk analysis
and security concept of operations should be defined for each mission to
determine the appropriate class of requirements for the mission.

3. 1.6 Reliahility, Maintainability, Adaptahility, and A vailability

The NGCR OSIF Standard sha! provide for the development of operating
system services that support fault-tolerant system requirements. This

6

includes fault tolerance and prediction interface capabilities. System
developers shall be able to specify system monitoring capabilities and system
reconfiguration of resources in response to specified error data.

3.1.7 Real-Time Performance

The acceptable performance of a real-time system depends not only on the
logical result of the computation, but also on the time at which the results
are produced. The Navy real-time system design often distinguishes betw:en
hard and soft real-time systems.

Hard real-time systems are those systems in which it is absolutely
imperative that responses occur within the specified deadline. Soft real-time
systems are those where response times are important, but the system will
perform acceptably if deadlines are missed within statistical bounds.

In a hard or soft real-time system, the computer is usually interfaced
directly to some physical equipment and is dedicated to monitoring or
controlling the operation of that equipment. A key feature of all these
applicat ions is the role of the computer as an information-processing
component within a larger system. These types of Navy systems are referred to
as "embedded computer systems."

It is crucial that the NGCR OSIF Standard pro,'ide the necessary
interfaces t, support the development and testing of embedded computer
systems. The iit rfaces must provide system developers access to operating
system services that are needed to meet application-defined time constraints.
If there is a possibility that the user-defined timing constraints may not be
met, the OSIF shall provide for notification of this fact to the application
software in the form of a failure prediction as well as a failure occurrence.

3.1.8 Language Support

Although the NGCR OSIF Standard compliant operating system may be
implement.,d in various languages, it shall support, at a minimum, the
execution of programs written in Ada and C.

3. i .9 Distributed System Support

The OSIF shall support resource allocation/scheduling for systems
(')ns i s t ing of mul t iple comput ing resources including other NGCR components.
lhe OSII sh Il also provide services to support the scheduling of two or more
processes on a single processor within a multiprocessor svstem.

3.1. I lictcrogeniet ;

Thc OSlH1 shat I provide for operat ing system implementation on heter-
ogeneous processors and the integrat ion of heterogeneous processors in a
,ingle-system environment.

7

3.2 PRIMARY MISSION

The prim'.ry mission of the NGCR OSIF Standard is to provide a standard
operating system interface that both meets the needs of Navy applications and
enjoys commercial acceptance. This will allow the Navy to promote open
competition and to us. commercially available system components.

2.3 SECONDARY MISZION

The secondary mission of the OSIF is to support all Navy computer
systems. As an additional secondar, mission objective, the OSIF will promote
the following benefits:

" Reduced operating system ueelopment costs.

" Reduced operation and maintenance costs for items such as training and
documentation.

" Avoidance of replication of Navy RDT&E cost for separate projects to

develop similar capabilitie2.

" More effective system integration.

" Increased software reusability.

3.4 OPERATIONAL ENVIRONMENT

The operational environment support includes services that assist in the
dissemination of the NGCR OSIF Standard, evolution of the standard, and
consultation in the use of the standaid. Operational environment support
shall be provided to program managers, acquisition managers, system designers
and developers, integrators and users, and others in the selection of an OSIF
implementation that meets the needs of a specific program. The benefits of
this operational environment support include reduced program cost, quality
assurance, and independept validation and verification.

The NGCR Program Maiagement Office shall identify the apprcach to
validating and using the OSIF. This approach shall ensure a standard across
all Navy systems to promote ease of acquisition, maintenai.,e, systems design,
and software develv,,nent. The NGCR Program Management Office shall identify
agents responsible for establishing and executing relevant policy. Through
validation procedures, a list of NGCR-accredited products will bc maintained.
Th NGCR Program Management Office shall establish a plan for ma nt,:ining a
lirt of accreditzi products. Included in this plan shall be oth,.i practical
aspects relatei to selection and/or implemeitation of the standard(s).

The NGCR Program Management Office shall publish a companion handbook for
scalability of the NGCR OSIF Standard The degree to which the standard may
bp scaled sha!l be specified in this companion handbook.

3 5 SUP| 1ORT ENVIRONME;NT

Ilhe Navy will cqtahl isah and maintan a military standard that describes
tile OSIF. Ine milita ry stanldari might le -, document that references and
invokes one or scveral fiationa' commercial, or international standard(s)
(e.g., the Institute of [lectrical and Electronic Engineers (IEEE), the
American National Standards Institute (ANSI), the International Standards
Organization (ISO)). These will comprise the NGCR OSIF Standa-d. This allows
puldished standards to meet a range of Navy pplication needs while supporting
them with widely used commercial technology.

The NCCR Program Management Office will be responsible for establishing
and carr ying out procedures during definition and after implementation of the
standard o maintain and upgrade the OSIF as a "living document." After
puh ica' Jon, th, NGCR Program Maiagement Oft ice will regularly monitor the
standard bv using the working group process. They will particinate in all
change meetings that might he held to ensure the Navy's computer technology
needs are cont inual ly a-'d adequately addressed. Application of commonly
accepted standards to Navy systems will leverage commercial R&D investments
and take aidvantage of a commercial R&D investment and a competitive commercial
market. Once published, these standards v:Ill provide significant market
incent ives for muiii - private-product developments. A list of these
products maY be used for acquisition purposes.

When it becomes necessary to redefine the standard because technology
advances beyond the scope of the OSIF, the NGCR P.ograr, Management Office will
reform the Operat i _ Systems Standards Working Group (OSSWG) fror.i industry and
Navy repres.-ntatlves. Existing procedures will be maintained to reach a
consensus irom the participants on a new or updated NGCR OSIF Standard.

9/10
Reverse Blan'.

4. INTERFACE STANDARD FUNCTIONS AND CHARACTERISTICS

4.1 OPERATING SYSTEM SERVICFS

This section describes the general requirements and the major groups of
operating system services that are required of the NGCR OSIF. Not all of
these services require an explicit programming interface, nor will all service
definition sets for an operating system or implementations of those definition
sets group services in the same way. Many of the application domains
described in section 4.2 will need only a subset of the services listed here.
Because there are dependencies and interactions among the service groups, a
means to identify compliant subsets for specific application domains is
required. The implementations of the subsets appropriate for different
application domains will also usually have to make different kinds of
tradeoffs with respect to differing aspects of performance. Thus, even in
some cases where the subsets of services required for different domains are
very similar, different implementations may be required to support the
performance needed.

This section provides an overview of the general requirements and service
groups. More details are found in the appendixes.

4.1.1 General Requirements

This section outlines the general goals of the NGCR OSIF Standard and the
characteristics that the interface standards must possess. They apply to all
services defined by the set of NGCR OSIF Standards that fulfill the system
needs expressed in this OCD.

The goals are to provide the following capabilities for application
programs:

1. Interoperability - the ability of two applications to share data.

2. Portability - the ability to move an application from one
implementation of the OSIF to another with minimal changes to the source code.

3. Reusability - the ability to reuse portions of one applicaticn's
source code or other pertinent aspects (e.g., design, tests) in the generation
of another application.

4. Compatibility - the general ability of two applications to coordinate
with one another in their operation, even if they were not original ly designed
to do so.

S. Ma ila inabilitv - the qua I ties that improve the ah Ii ty to mainta in
the app I i ca t ion.

6. Time criticality - the ability to support systems in which time is a
crf 1 cal and control led parameter.

11

The following are the generil characteristics that the NGCR OSIF Standard
must possess:

1. Uniformity - The standards must be based on one or a few well-defined
consistent conceptual models. They must be expressed in a uniform, precise,
and ,nambiguous fashion.

2. Independence - The standards must be expressed in such a fashion that
they are independent of specific languages and hardware entities.

3. Scope - The set of standards must cover the total application range of
interest.

4. Custcmizat ion - The standards must support the selection of subsets or
the addition of new capabilities to meet specific system requirements.

4.1.2 Architecture-Dependent Services

These services allow an NCR resource to interface with non-NGCR
resources such as computers, networks, and operating systems. This will
facilitate portability and technology insertion and provide the ability for a
system using NGCR-compliant components to interface with non-NGCR-compliant
systems and components.

4.1.3 Capability and Security Services

The services specified in the NGCR OSIF Standard represent the OSIF
functionality and service capability from a security perspective. Security is
only represented from an interface perspective, and not from the perspective
of the operating system. In addition, it is generally understood that
information security should be considered from a system perspective. This
involves a trusted computing base, which consists of the interface
specification, the underlying security kernel, trusted application processes,
and necessary system-level assurances. The level of security required for a
particular mission will be based on the risk assessment and the mission's
security mode of operation. System security requires a definition of the mode
of operation, a statement of the policy required to achieve the desired level
of security, and a reference monitor to enforce the security policy. The
reference monitor includes services to be offered by the operating system to
control the usage of the resources and the protection of classified data. The
system, which includes the reference monitor and other trusted software, will
he required to process and protect classified data from inadvertent or
malicious misuse in accordance with the defined policy.

The services must support the followinig:

* Prevention of unauthorized access

" Prevention of data compromise

12

* Prevention of service denial

* Security administration

* Data integrity.

Capability services attach operation lists that limit the ability of the
processes to act on resource objects. This is to ensure that the resources
are not misused. Access to resources can be protected by services using
capability lists as well as access lists, lock/key mechanisms, global tables,
or through dynamic protection structure services.

4.1.4)ata Interchange Services

This set of services provides data conversion among different data
representations used by separate components of the system.

4. 1.5 Event and Error Management Services

These services provide a common facility for the generation, communica-
tion, logging, and control of asynchronous events for the system hardware com-
ponents and application processes. Major uses of event services include re-
porting error conditions and providing an indication of some asynchronous event
to the applicatio--. processes by the device drivers or the operating system.

4.1.6 File Services

These services allow the applications to create and manipulate permanent
storage for data. Such permanent storage is typically on disk or tape. The
data are stored as files, and the files are organized in directories. Files
are manpged and accessed through logical names by the many system components
that use the files, such as the application, target system operator, and
project support environment (PSE). The major types of services are as follows:

1. Naming and directory services - These services allow the access of
files and directories through logical names rather than through physical
addressing conventions. These services will allow and control the sharing of
files in a variety of ways. The directory services present a view or views of
the directory structure to the application or target system operator.

2. File modification services - Services for files and directories include
such things as the ability to read a file, to create a new file, and so on.
These services may be very complex. For example, the access to read or to
write may be direct (by record number), sequential (one record at a time), or
indexed (by a tag). Real-time systems need special file services and imple-
mentations to ensure fast, predictable, and consistent performance in time-
critical situations. The need for a known response time for a given input/-
output (1/0) function drives the design and implementation of these files and
services.

13

3. File support services -- Additional services are required to support
Ihe plysical devices on which tie fios and (irectories reside. These services
include tie dismounting/mounting, lormatting, and partitioning of media.

4. 1 .7 Generalized Input/Output Sen'iceS

These services provide a set of abst ract and standard OSIFs for doing I/O
to devices outside of the file 1/0 paradigm. All types of devices are to be
covered (e.g., printers, disk drives, and analog-wo-digital converters). The
services, which max, be used either synchronously or asynchronously (non-
blocking), are as follows:

" Directorv and naming services (discussed previously)

" Data transmission services

" Device control services.

4.1.8 jNetworks and ('iommunications

These services involve the information exchange between the local
processor nodes of an NGCR system. The following services are largely the
application of general operating system service requirements to the network
component s:

1. Network control and status - These services provide authorized users
with the capabilities to determine and control the status of network
components and to control network working parameters.

2. Directory and naming services - These services allow the usage of
system resources through logical names rather than through the actual hardware
device naming conventions. Furthermore, they allow the resources of other
processor nodes to be accessed by means of a logical name so that no knowledge
of tha resource's location is needed (the resource's location may change over
time). The logical name to physical name relationship can be one to many,
many to one, or many to many.

3. Interprocess communication - This service allows a local processor
node's local operating system to request a procedure, a function, or a
transaction to be performed on another processor node or logical resource and
to communicate information among processes on different local nodes.

4. 1.9 Process Management Serices

Typical Iv, the process management services are required to do thefol]owing:

1. Support multiple programs (i.e., where a program is an integrated set
of processes) within a system.

14

2. Create a process and make it ready for execution.

3. Destroy a process and recover its resources.

4. Control the execution of processes.

5. Control the connection among processes, where a connection is a
logical communication path among a set (two or more) of processes.

6. Provide the capability to query the state and capabilities of a
process and to dynamically alter these.

4.1.10 Project Support Environment Services

The OSIF shall support the PSE in the development phase. During this
process, there is a need for the PSE to communicate with the system under
development. The operating system in the target will need to support that
communication. These services may not be available at the application program
interface (API), but may be accessed by means of a different interface. These
services may also be removed from the system when it is deployed. The types
of services include down-loading of compiled programs and data into the target
system, uploading of program results and trace information to the PSE, and the
interactive debugging by a developer on the PSE of an application running on
the target system.

The OSIF sh Il provide PSE support for maintaining processed execution
history information. Interfaces must allow for a user to define the execution
history data requirements that the operating system must collect and return
during software development and test.

4.1.11 Reliability, Adaptability, and Maintainability Services

The services supporting reliability, adaptability, and maintainability
are often implied services in that there is not a direct interface to these
services. Reliability and adaptability services deal with the need for the
system to perform functions that the application requests in a timely manner.
Reliability is the ability to correctly perform a job to completion;
adaptability is the ability to change the system's logical makeup (or jobs to
do) over time; and maintainability is the ability to keep the system in
operating condition. A highly adaptable system can facilitate the reliability
of an application's functions.

The following is a more detailed outline of these types of services:

1. Fault tolerance services - allow the system to react to the loss or
incorrect operation of system components at various levels (hardware, logical,
services, etc.). These services include

a. Fault tolerance services and event and error management services
(these are closely related).

15

b. Fault detection services - concerned with determining when a fault
has occurred in the system.

c. Fault isolation services - attempt to determine the component at
fault and segregate the faulty component from the rest of the system.

d. Fault recovery services - attempt to bring the system into a
consistent state.

e. Fault diagnosis services - analyze the attributes of a system fault
and determine its cause.

f. Fault prediction services - involve the avoidance of faults before
a failure in the system component occurs. Fault prediction frequently
involves the logging of stressful conditions so that faults can be predicted
and avoided.

g. Reconfiguration services - allow the system to substitute different
resources to perform system functions such as substituting a new physical I/0
channel to support a logical channel. Their use may be restricted to
specially authorized processes concerned with system management.

2. Maintainability services - provide support for the maintenance of the
embedded system. A major component of that support is the collection and
logging of information about the operation of the system. Typical information
to be logged includes

" Software ana hardware errors during operation

• Processes that failed or almost failed to meet scheduled deadlines

• Performance metrics for system tuning

• Errors reported during startup self-testing.

4.1.12 Resource Management Services

These services are involved in the management of the system's resources,
particularly memory. Resources include CPU, memory, I/0, and other physical
devices.

Memory management services support the usage of the system's random
access memory(s). These services supply a view of the memory or memories on
the computer as seen by applications. They perform the proper mapping of
virtual to physical memory by performing any swapping of memory pages needed
in the process. Memory management services provide storage for processes,
data migration, and initialization of the system.

The memory manager receives requests for services from the processes that
allocate and de-allocate memory for process usage. The major services of

16

memory management fall into five categories: allocating physical memory,
mapping of logical address to physical storage, sharing memory, extending
memory (virtual storage), and protecting user information.

Resource management interfaces include services that control the access
to system resources. System resources are any peripherals, communications
links, coamon processes, etc., that may be asynchronously accessed by
processes. Resource management also allows for queries about the status of
these sytem resources.

4.1.13 Synchronization and Scheduling Services

Synchronization services coordinate in time the operations of other
services, functions, processes, and/or resources. Services such as
distributed voting and remote resource allocation will need to use these
services to accomplish their required functionality. Synchronization services
are needed for both the operation of the local processor operating system
(LPOS) and the control of the distributed system. Synchronization services
may need to use system monitoring services to adjust to system changes.

Scheduling services schedule or arbitrate the usage of various resources
in the specific NGCR system, particularly the CPU. The scheduling services
must be able to queue up requests to use a specific resource. This situation
is made more complicated by the common need to schedule processes to run
cyclically at a fixed period.

4.1.14 System Initialization and Reinitialization Services

System initialization includes starting the software completely, starting
the attached hardware subsystem devices, doing subsystem and system self-
tests, and initializing the data base completely.

System reinitialization includes restarting the software while using the
existing data base information. The software may have to be reloaded and the
data base may have been re-established by a system recovery. Attached
hardware subsystems may also need to be reinitialized. Reinitialization
should include a function to restart applications redistributed to other
processors after a processor module failure. Within a processor, there should
be a function to initialize applications in a system with the existing
software but with the data base reinitialized. Also within a processor, there
should be a function to restart the applications in a system with the existing
software and data base retained.

4.1.15 Time Services

A number of time management services are to be supported by the operating
system. The precision required by a given service will depend on system needs
but will frequently be in the range of milliseconds to nanoseconds. These
services are as follows:

17

1. Local time that provides date and time of day to a system-specified
precision in a single or mnlt iprocessor svtem. A variety of formats may be
required.

2. Synchronization of local time among the components of a distributed
system.

3. Synchronization of the local time of a system to an external time

reference (e.g., Greenwich Mean 'ime).

4. Measurement of elapsed time.

5. Requests that a process be delayed for a specified elapsed time.

6. Requests that a process be delayed until a specific time.

7. Requests for process notification at a specific time or after a
specified delay.

4.1. 16 Ada Language Support Services

Although an operating system compliant with the NGCR OSIF Standard may be
implemented in various languages, it must support the execution of programs
written in Ada. This is required because the Ada language incorporates
features that are accnmplished by direct user calls to the operating system in
other languages.

At a minimum, the operating system must provide primitive services that
the Ada compiler's runtime library can use to implement the full semantics of
the Ada language. For greater efficiency, some parts of the Ada runtime
environment (ARTE) may be an integral part of the operating system
implementation, even though the interface definition should not depend on that
integration (reference 6).

4.2 APPLICATION DOMAINS FOR OSIF STANDARD FUNCTIONS

4. 2. 1 Interactive Processing Domain - Ruby

This application domain frequently will feature online transaction
processing; off-the-shelf software products; networking to PCs, workstations,
and other host environments; and background processing. The domain is
characterized by strong requirements for data management, data reformatting,
file services, generalized I/0, and resource management. By contrast,
specific requirements for operating system support for languages and an
interface to project support environments are low. This domain includes
shore-based logistics systems, for example. In extant technology,
implementations of these svstems typically involve wide area networks of
muiltiple, heterogeneous processors linked through gateways, etc.

18

4. 2. 2 Special-Purpose Processing Domain - Opal

This application domain consists of special-purpose dedicated processors,
high data rates, and computationally intensive cyclic processing. The domain
is characterized by strong requirements for event and error management,
generalized I/O, and times services. By contrast, specific requirements for
operating system support for data management, file system, and man-machine
interface (MMI) are minimal. In extant technology, implementations of these
syseems typical ly involve ore or more special ized processors such as might be
found in signal-processing applications.

4.2.3 Reliahle Message Processing Domain - Amethyst

This application domain consists of massive switching, store and forward,
message-processing encryption, and error detection and recovery. The domain
is characterized by strong requirements for security, fault tolerance, nuclear
survivability, event and error management, networking and communications,
scheduling and synchronization, and time management. By contrast, specific
requirements for operating system support for PSEs are low. In eytant
technology, implementations of these systems involvp processors on a given
platform that must interface with networks that are widely distributed or with
intraplatform networks. For example, this would include processors
interfacing with giobal command, control, and/or intelligence systems.

4.2.4 Emnbedded rocessingDomain-Garnet

This application domain consists of autonomous embedded processors with a
wide spectrum of data rates and duty cycles. Overall, the domain does not put
high demands on the operating system, and is characterized by strong
requirements for language support, reliability, and availability. By
contrast, specific requirements for operating system support for security,
data management, file services, MMIs, and network and file communications are
low. This application domain is exemplified by single processors embedded in
missile warheads, torpedoes, and shipboard guns, for example.

4.2.5 High ComputationDomain- Topaz

This application domain is characterized by high computational needs,
interface to multiple sensors or controls or both, and support of interactive
displays. Overall, the domain puts high demands on the operating system. It
has strong requirements for operating system support for languages, data
management, date, reformatting, MMIs, and reliability and availability. These
applications include major subsystems of shipboard systems such as navigation,
ship control, or command systems. In extant technology, such applications
typical ly include heterogeneous processors di rectlY communicating on a
near-continuous basis. One processor is typically a high-speed graphics
processor.

19

4.2.6 Mission-CriticalSystems Domain- Emerald

This application domain consists of mission-critical systems that are
characterized by nuclear safety, command significance, and large ramifications
of system failure. The domain has strong requirements for operating system
support for security, reliability, and availability. By contrast, specific
requirements for operating system support for files services are low. In
extant technology, these applications are frequently embodied in single
processors exercising centralized control over other processors or devices or
both. The application includes (for example) processors that control the
enabling, targeting, and firing of strategic weapons. These systems typically
include requirements for access control and MMI management.

4.2.7 Networked Processor Domain - Diamond

This application domain consists of networked dedicated processors
connected to multiple sensors, controls, and displays. The domain is
characterized by strong requirements for operating system support for
languages, hardware architecture dependencies, event and error management,
reliability and availability, scheduling and synchronization, and time
services. By contrast, specific requirements for operating system support for
data management and file services are low. The domain typically includes
multiple heterogeneous processors with particularized, dedicated functions.
These processors are linked for cooperative interaction as might be found, for
example, in avionics Iplications.

4.2.8 Integrated Subsystems Domain- Sapphire

This application domain consists of many cooperating subsystems that
carry out mission-critical functionality. Overall, the domain puts high
demands on the operating system, and is characterized by strong requirements
for operating system support for languages, security, networking and
communication, process management, PSE, reliability and maintainability, and
time services. By contrast, specific requirements for operating system
support for file services are low. This domain typically includes multiple
platform-local networks of large numbers of heterogeneous processors.
Examples include large tactical combat systems such as might be found aboard
major surface ships and submarines.

20

5. RESPONSIBLE GOVERNMENT AGENCIES

The responsible Government agencies are as follows:

" Chief of Naval Operations (OPNAV)

• Space and Naval Warfare Systems Command (SPAWAR).

21/22

Reverse Blank

6. NOTES

6.1 GLOSSARY OF TERMS

The definitions of many of the terms provided in this section were taken
from documents listed in section 2.

ADA RUNTIME ENVIRONMENT INTERFACE (ARTEI)

This is the interface between the application Ada programs and tile runtime
environment required by the Ada programming language. The ARTE may be imple-
mented in three parts: (1) a part loaded with each application program from the
Ada runtime library provided by the compiler vendor, (2) a part that is gener-
ated by the Ada compiler during the translation of the Ada program. and (3) a
part that is a subset of the OSIFs. It is an issue as to how much of the
necessary ARTE is part of the operating system, and how much should be provided
by the compilation system of a compiler vendor. Most likely, some parts of
this interface will be provided to allow applications to modify or "tune" the
runt ime system and other parts of the interface will be used only by compiler-
generated code. Standardization of the interface to the Ada operating system
(OS) services will allow the efficient integration of the ARTE and the LPOS.
This interface is one aspect of the more general high-order language bin.

APPLICATION-LEVFI INTERFACE

This can be defined as

I. A shared boundary between an application program and system software.

2. A set of facilities that are provided for use by application programs.

3. A point at which independent systems or diverse groups interact, the
device or system by which interaction at an interface is effected.

APPLICATION-LEVEL SERVICE

This can be defined as

1. That part of an operating system implementation that achieves the
service requested when an interface is called.

2. That part of an operating system that is achieved by using a facility.

APPLICATION-LEVEL PROTOCOL

This can be defined as

1. A set of conventions or rules that govern the interactions of
processes or applications within a computer system or nctwork.

23

2. A set of rules that govern the operation of functional units to
achieve communication.

APPLICATION SOFTWARE

This is software specifically produced for the functional use of a
computer system, e.g., software for navigation, gun fire control, payroll,
general ledger.

BINaRY APPLICATION PROGRAM INTERFACE (BAPI)

This interface is the machine code-level calling sequences to the LPOS
ar, the binary-level version of tbe soutce application program interface
(SAPI). This is logically the same interface as the SAPI desc.ibed later, but
may require a separate standard if the compiler vendors are to be decoupled
from the LPOS vendors. As an example of a BAPI, some machines use a set of
soft,are interrupt instructions to call operating system routines; the
specific interrupt numbers and the specific conventions for pa-ameter passing
are part of the BAPI. Withoat a common interface at tie binary level, a
separate version of each comp'ler (or at least its code generator) may be
required for -ich different implementation of the Lr)S software, and code
compiled by different compilers may not operate together. Note that even with
standardization oi the BAPI, there is (at best) a set of standards, one for
each processor or processor family.

CENTRALIZED COMPUTER SYSTEM

A completely ceihtralized design would be one in which all system
functions were carried out in a single computer by a single process.
Communication within the parts ot (he process is by the use of variables
associated with it.

COMPUTER

This can he defined as

I. A functional unit that can perform substantial computation, including
numerous arithmetic operations or logic operations, without intervention by a
human operator during the run.

2. A tunct ional progtammable init that consists of one or more associated
processing units and peripheral equipment, is controlled by interi.lly stored
programs, and can perform substantial computation, including numeroi-
arithm,,tic operations or logic operations, without human intervention.

(ON FORMANCE

This is an adherence -,) a standard by an implementation.

24

DATA BASE KERNEL INTERFACE (DBKI)

rhose system.s that will requir' a multilevel, secure OS will require that
some low-level parzs of system-lcve! components (LPOS, data base management
system (DBMS), etc.) be fully integrated (i.e., be part of the truster'
computer base (TCB)); ,herefore, the DBMS must have efficient access to the
FC. If the TCB is integrated with the OS kernel, then that kernel must
provide the needed interfaces for the DBMS. The DBKI is the interface that
the DBMS use: to access the TB or US kernel. Without a DBKI built into the
I.POS, a DBMS may have to be built "on top of" the OS, which could lead to poor
DBMS performance. If the DBKI is ef general usefulness to application
programs, then this ntcrface may simply be a subset of the application
program in'erface (SAPI and BAPI) to the operating system and, therefore, not
a separate interface. It could also be a separate, special-purpose interface,
which is provided opl,' for those systems that use a DBMS.

D I STR I BUTED

The terms ",entralized," "federated," and "distributed" represent
iIl-defined points along a continuum of computer system design pos3ibilities.
The terms are an attempt to express the manner in which and degree to which
the components of the system are connected ane work together. They,
nonetheless, represent useful concepts in describing the overall architecture
of a computer system. A real system of any complexity will frequently be
usefully considered as being made up of sub.systems that exhibit a certain
degree of this prov-itv, while the real system itself has a different degree
of the property. A completely centralized design would be one in which all
system functions were carried cut in a single computer by a single process.
Communication within the parts of the process is by the use of variables
associated with it.

A distributed design has been further defined as follnws:

1. Multiplicity of general-purpose resource components, both physical and
logical, that can be assignea to specific tasks on a dynamic basis.

2. Physical distribution of resources (components) with their interaction
throughi a commun icat ion network.

3. Cooperative autunomy characterizing the operation and interaction of
both logical and physical resources.

!}1 SI RI BuILD OPERAI lN1G SYSTEM

This is a single homogeneous operl ing system impiemcnted for an ent ire
rielwor .

25

i " I I I I

i\MILY MEMBERS

These are defined as a set of OSIF standards, with each member
appropriate to a specific application domain.

FAULT

This is a condition that prevents the continued predictable use of a
hardware resource.

FEDERATED COMPUTER SYSTEM

A federated computer system design is one in which the total system
function is divided into subfunctions, each of which is identified with a
subsystem and uses one or more computers to carry out its work.

FUNC-TIONAL UNIT

Thiq is an entity of hardware, software, or both, capable of
accomplishing a specified purpose.

GRAPHICS KERNEL INTERFACE (GRKI)

This interface is listed because the NGCR graphics language interface
(GLI) may require kernel-level access for performance reasons. If special
services are needed, then this interface will be required. It is not clear at
this point whether the API will be sufficient for the needs of the GLI
implementation.

INTERCHANGEABILITY

This is the characteristic of hardware and software items by which a given
item can be exchanged with another without changes in the external interfaces
or in any other attributes of the system in which the items are employed.

INTEROPERABILITY

This is the characteristic of systems or of hardware and software items
by which each can furnish information to and accept information from the
others and can use such information effectively in mutual and cooperative
functions.

INTERPROCESS COMMUNICATION (IPC)

This is a means of passing arbitrary amounts of data between cooperating
processes comprising an overall application on one or more processors.

26

KERNEL

This is defined as

1. A nucleus or core, as in the kernel of an operating system.

2. Primarily responsible for process execution and interprocess
communication.

3. A nucleus or core set of primitive functions that process execution by
managing a pool of resources (e.g., processor(s), memory, I/O device(s), bus
interface(s)). Typically, an operating system kernel provides services for
process management, memory management, time management, interrupt management,
etc.

4. An operating system kernel that typically provides services for
process management, memory management, time management, interrupt management,
etc.

LOCAL AREA NETWORK (LAN)

This is a communication network designed for a moderate sized geographic
area and characterized by moderate to high data transmission rates, low delay,
and low bit error rates.

LOCAL AREA NETWORK INTERFACE (LANI)

This interface separates the LPOS software from the LAN software/hardware
subsystem. The NGCR SAFENET effort may provide the interface or a set of
interfaces that the LPOS software can use. If the SAFENET standards do not
provide usable interfaces, then the OSSWG OSS will need to define these
important interfaces.

LOCAL DEVICE INTERFACE (LDI)

The [POS software can he written with device drivers included for the
specific system devices, but a more modular system would be possible if there
were standard device-driver interfaces. Device-driver interfaces make it
easier to add new devices to the system or to rearrange the configuration of
devices. The LDI can be at two levels: at the LPOS-to-device level if the
device drivers are custom built into the LPOS, or at the LPOS-to-device-driver
level if a device-driver interface is defined for the LPOS. Defining a device-
driver interface allows a new device to be added to an existing OS by adding a
new device driver rather than requiring a new version or modification of the
OS.

27

LOCAL HARDWARE INTERFACE (11W!)

Tnis interface is usually hidden (i.e., proprietary to the LPOS vendor).
It is hardware dependent and should probably not be standardized by the NGCR
effort. This interface includes the interface to the backplane as a subset.
While the backplane hardware itself will be built to NGCR standards, there may
not be a standard, board-level, hardware interface to the backplane. This
interface to the backplane and other local hardware will then depend on the
design of a particular board.

LOCAL PROCESSOR OPERATING SYSTEM (LPOS)

The LPOS allocates the shared local devices among the applications
competing for their resources and also supports communication and cooperation
with other LPOSs at other processor nodes of the system.

LPOS-TO-LPOS INTERFACE (OSOSI)

This interface allows one LPOS to communicate with other LPOS instances
in the system and allows instances to share resources and to cooperate with
each other. This interface is needed if the goals of reliability and dynamic
reconfiguration in a heterogeneous system are to be provided by the operating
system rather than being available only if supplied by the application
software. The scope of the services provided by this interface depends on the
level of coordination 1 eeded among the separate processor nodes. An example
of the type of communication needed can be shown when two LPOS nodes share a
memory board across the backplane. The two nodes must coordinate with each
other to allocate and use the memory. Without an OSOSI, the application
developer will have to perform all the memory management coordination in the
application. Another example of the kinds of messages needed are those to
coordinate the live insertion or removal of processor boards in a running
system as supported by the NGCR backplane.

MAN-MACHINE INTERFACE (MMI)

This interface is the interface between the operator or application user
and the application programs. The hardware used for this interface is often
some combination of special-purpose display devices and user input devices.
This interface can be considered a special form of device interface for which
a standard set of device-driver commands would be useful to promote software
transportability and easy movement of development engineers among projects and
users among embedded systems. Any standardization at this level may come out
of the NGCR GLI Working Group (GLIWG). Many existing operating systems have
very little support for the MMI except for (perhaps) a command-line parser.

28

MESSAGE

This is defined as

1. Any communication, written or oral, sent between persons; a formal,
official communication, written or oral.

2. When used in the context of operating systems, LANs, and backplanes,
message is a generic term that refers to either the class cr any instance of a
broad class of formal communications among proces.cs, between processes and
people, and among processes and controlled cntities. This class is character-
ized by an instance of the communication having a formal protocol, specified
contents, and an identified set of endpoints.

MODULE

A module can perform processing, memory functions, or server functions
(i e., I/O, security, bus interface, real-time clock). A module can itself be
a processing node.

MULTIPROCESSING

This is the simultaneous and/or interleaved execution of two or more
programs or seq'linces of instructions by a computer component, a computer, or
a computer network.

MULTIPROCESSOR

This is a computer system having multiple arithmetic or logic units that
can be used simultaneously.

MULTIPROGRAMING

This is defined as

1. A mode of operation that provides for the interleaved execution of two
or more computer programs by a single processor.

2. Pertaining to the concurrent execution of two or more computer
programs by a computer.

MULTITASKING

This is a technique in which a program consists of two or more
independent tasks that can execute concurrently.

29

NETWORK

This is defined as

1. An interconnected or interrelated group of nodes.

2. Two or more computers, including workstations and machines of
different capabilities, possibly at remote locations, linked together by data
communication channels to permit data exchange.

NETWORK OPERATING SYSTEM

This is a collection of software and associated protocols that allows a
set of autonomous computers, which are interconnected by a computer network,
to share resources (e.g., files).

NODE

This is a point at which one or more functional units interconnect
transmission lines.

OPERATING SYSTEM

This is defined as

1. Software that controls the execution of programs. An operating system
may provide services such as executive services, configuration management,
fault isolation and diagnostics, memory management and allocation,
communication with and management of I/O devices, common routines, debug aids,
scheduling, and data management and storage. Although operating systems are
predominantly software, partial or complete hardware implementations are
possible.

2. A system that provides support in a single spot rather than forcing
each program to be concerned with controlling hardware. It is not directly
involved with the functional objectives of the real system itself.

3. A collection of system software used to control the execution of
programs by managing access to critical system resources such as the CPU,
memory, devices, secondary storage, etc.

4. Set of capabilities, usually in software, to extend and share the bare
general purpose computing resources among one or more software applications.

PERFORMANCE LEVELS

These levels are to be deteimined.

30

PLATFORM

This is defined as one or more networks working under a common control
and all with a common mission.

PROCFSC-

This is defined as

1. The execution of any program.

2. A collection of single threads that share resources.

3. Heavyweight process - Execution of a program or a portion of a program
that includes one or more lightweight processes. Each process owns its
resources and the resources are shared within the heavyweight process.

4. Lightweight process - Execution of a single thread of control in the
context of a heavyweight process.

PROCESSING NODE

This is defined as one or more modules that share a common bus. A module
can itself be a processing node.

PROCESSOR

This is a collection of hardware (e.g., CPU(s), coprocessor(s),
accelerator(s)) that is capable of autonomously executing one or more threads
of control.

PROGRAM

This is defined as

1. A schedule or plan that specifies actions to be taken.

2. The initial execution of one or more processes.

PROJECT SUPPORT ENVIRONMENT INTERFACE (PSEI)

This interface provides a means for the PSE to interact with the LPOS for
loading software, testing, debugging, etc. In many systems, this interface
would be removed before the system became operational. The standardization of
this interface will make it easier to have a common PSE for different LPOS
instances. Some systems will have a different, hardware-based, noriatrusive
testing interface to the LPOS. The nonintrusive testing interface is, by its

31

design, invisible to the LPOS hardware and software. Therefore, it is not
important to the NGCR OSIF Standard effort even if it is of extreme importance
to a particular project.

REAL TIME

A real-time event or data transfer is one that must De accomplished
within a time constraint, neither too early nor too late. The time constraint
can be either hard (i.e., absolute with no tolerance) or soft (i.e., having a
tolerance or residual value for earliness or lateness). The value of the data
or accomplishment of the event is constant within the time limit.

RECORD

This is an aggregation of data items for storage/retrieval purposes.

RUNTIME ENVIRONMENT

This is the set of all capabilities provided by three basic elements:
predefined subroutines, abstract data conventions, and control structure code
conventions.

RUNTIME LIBRARY

This is the set of all the predefined routines in a machine executable
representation that support all the functionality of an application
programming language that is not supported in code generated from application
programs.

RUNTIME SYSTEM

This is a set of predefined routines in a machine executable
representation that is selected by the Ada compilation system from a runtime
library to support functionality of the application program not supported in
the generated program.

SCALABILI'FY

This has not been defined by OSSWG.

SOURCE APPLICATION PROGRAM INTERFACE (SAPI)

This interface is the one that is normally thought of when OS interfaces
'ire being discussed. This is the interface (or set of interfaces) that the
applications programmer uses to develop embedded systems. This is the high-

32

order language bindings (Ada, etc.) to the OS system calls. The BAPI is the
compiled, binary version of this interface.

STRING

This is a group of related threads (of control) or "processes" that exist
in multiVie processors.

SUBSYSTEM

This is a group of assemblies or components or both combined to perform a
single function.

SYSTEM

This is defined as

1. A set of one or more computers and the associated software,
peripherals, terminals, human operators, physical processes, information
transfer means, etc., that form an autonomous whole capable of performing
information processing or information transfer or both.

2. An integrated whole that is composed of diverse, interacting,
specialized stru,'ires and subfunctions.

3. A group or subsystem united by some interaction or interdependence,
performing many duties but functioning as a single unit.

SYSTEM SOFTWARE

This is application software designed for a specific computer system or
family of computer systems to facilitate the operation or maintenance of the
computer system and associated programs, e.g., operating systems, compilers,
utilities.

TACTICAL SOFTWARE

This is application software that provides functions necessary to carry
out the mission of the system.

TASK

This is defined as

1. A single thread of control in a single processor.

33

2. An Ada task - At execution time, a task object can be mapped onto a
lightweight process or a heavyweight process.

THREAD 9F CONTROL

This is a sequence of instructions intended to be executed at a single
processor. A thread could span a distributed system (multiple processors) in
some more sophisticated applications.

6.2 ACRONYMS AND ABBREVIATIONS

ANSI American National Standards Institute
API Application program interface
ARTE Ada runtime environment
ARTEI Ada runtime environment interface
BAPI Binary application program interface
BITE Built-in test equipment
CPU Central processing unit
DAC Discretionary access control
DBKI Data base kernel interface
DBMS Data base management system
DOD Department of Defense
FIFO First in, first out
FTAM File management and access system
GLI Gra;Aics language interface
GLIWG Graphics Language Interface Working Group
GRKI Graphics kernel interface
IEEE Institute of Electrical and Electronic Engineers
I/O Input/output
IPC Interprocess communications
IRAX Intermediate resources allocation executive
ISA Instruction set architecture
ISO International Standards Organization
ISR Interrupt service routine
LAN Local area network
LANI Local area network interface
LDI Local device interface
LHWI Local hardware interface
LPOS Local processor operating system
LSCI LPSO-SRAX coordination interface
MAC Mandatory access control
MMI Man-machine interface
NDI Nondevelopmental item
NDS Nondevelopmental software
NGCR Next-generation computer resources
NOSC Naval Ocean System Center
NSWC Naval Surface Warfare Center
NUSC Naval Underwater System Center
OCD Operational concept document
OPNAV Chief of Naval Operations

34

OS Operating system
OSA Open-system architecture
OSI Open systems interconnect
OSIF Operating system interface
OSOSI LPOS to LPOS interface
OSS Operating systems standards
OSSWG Operating Systems Standards Working Group
PSE Project support environment
PSE1 Project support environment interface
RAX Resource allocation executive
RDT&E Research, development, test, and evaluation
ROM Read-only memory
RPC Remote procedure call
RT Real time
RTNI. Real-time non-intrusive testing
SAPI Source application program interface
SPAWAR Space and Naval Warfare Systems Command
SRAX System resource allocation executive
SRAX-C SRAX-centralized part
SRAX-L SRAX-local part
TCB Trusted computing base
TCP/IP Transmission control protocol/internet protocol
TCSEC Trusted Computer Systems Evaluation Criteria
USAP User service access point

35/36
Reverse Blank

APPENDIX

REFERENCE MODEL FOR EMBEDDED OPERATING SYSTEMS

10-i

TABLE OF CONTENTS

Sect ion Page

LIST OF ILLUSTRATIONS 10-iii

10.1 INTRODUCTION ... - 10-1
10.1.1 Multiple System Views 10-2
10.1.2 Abstraction and Levels of Aggregation 10-3

10.2 SYSTEM OVERVIEW MODEL 10-6
10.2.1 Single Node/Application Model 10-7
10.2.2 Network/Application Model 10-10
10.2.3 Network Communication Model 10-11
10.2.4 Program Distribution 10-12
10.2.5 System Resource Allocation Executive 10-13

10.3 CRITICAL INTERFACES VIEW 10-17
10.3 .1 ART E I .. 10- 18
10 .3 .2 BA P I ... 10- 19
10 .3 .3 DBK I ... 10-20
10 .3 .4 GRKI ... 10-20
10 .3 .5 LANI ... 10- 20
10 .3 .6 LD I .. 10- 2 1
10 .3 .7 L IW I 10- 2 1
10 .3 .8 LSC I ... 10-2 1
10 .3 .9 OSOS I .. 10-22
10 .3 .10 PSE I ... 10-22
10 .3 .11 SAP I ... 10-23
10 .3 .12 MM I 10-23

10.4 OPERATING SYSTEM SERVICES 10-23
10.4.1 Architecture-Dependent Services 10-23
10.4.2 Capability and Security Services 10-24
10.4.3 Data Interchange Services 10-25
10.4.4 Event and Error Management Services 10-25
10 .4 .5 F ile Serv ices .. 10-26
10.4.6 Generalized I/0 Services 10-26
10.4.7 Networks and Communications 10-27
10.4.8 Process Management Services 10-28
10.4.9 PSE Services ... 10 -28
10.4.10 Reliability, Adaptability, and Maintainability Services 10-29
10.4.11 Resource Management Services 10-31
10.4.12 Synchronization and Scheduling Services 10-32
10.4.13 System Initialization and Reinitializat ion Services 10-33
10 .4 .14 Iime Serv ice s .. 10-33
10.4.15 Ada Language Support Services 10-34
10.4.10 Dala Base Servic'es.............. 10-34
10.4. 17 Graphics Kernel Services 10-35
10.4.18 LPOS-to-LPOS Communication Services 10-35

I10- i

TABLE OF CONTENTS (Cont'd)

Section Page

10.4.19 MMI Services .. 10-35
10.4.20 Target System Operator Services 1O-i6

10.5 iAR6ET DOMAINS .. 10-36
10.5.1 T',rget Processor Interconnection 10-36
10 .5 .2 Secu rity ... 10-38
10.5.3 Robustness .. 10-38
0.5.4 Richness of the Set of OS Services 10-39
10.5.5 Real-Time Requirements 10-39

LIST OF ILLUSTRATIONS

Figure Page

10-1 System Context Diagram .. 10-3
10-2 Syntem De6'gner's View of the System 10-5
10-3 Application Programmer's View of System 10-5
10-4 LPOS Node Model ... 10-6
10-5 LPOS from Operating System Perspective 10-7
10-6 Network Model from Applications Perspective 10-10
10-7 Integrated System Node .. 10-12
10-8 Distributed System Nodes .. 10-15
10-9 LPOS and SRAX "arts of the Operating System 10-16
10-10 Example of System Organization with SRAX and IRAX 10-17
10-11 Entities that Interface vith the Operating System 10-18
10-12 Parts of the ARTE 10-19

10-iii/1O-iv
Reverse Blank

10.1 INTRODUCTION

The OSSWG reference model is a c'nceptual model that provides a context
for a, .1c- p .ogrim developer's requirements, for comparing existing
oper-,ii systems, and for standards specification (reference 4). It provides

sw,,all, common set of c.nreptual, embedded-system building blocks with
_..sociated interfaces ani iwt-ctionality (reference 7). Many of these systm
.)uilding blocks will be the results of other parts of the NGCR project.

Consider the internatio,al standards organization (ISO) open-systems
interconnect (OSI) reference m~del as an example of a reference model. That
,model defines seven protocol iiyers and associates each network communicat*in
fL1,uction with one and cnly v:.c layer. Th e model does not, however, specify a
Pien proytocol or protocol mplementation for a given layer.

This OSSWG reference irodel is a model with the full embedded system as
its s. N7-, including soe ;.spects of the nroject support environment (PSE).
The modl pr -ides the rasis for defining a set of concepts and conventions
used by the system developer in designing and implementing the control system
for the computer resources employed in an embedded system. Objectives of this
model include describing the requirements for the portability and reusability
of software components of the system and for the intcroperability of software
and hardware comronents.

Many operating systems are built on a set of abstractions that make
certain aspects of an application's execution "invisible" to the application
itself. While th(i-igher level view of the system can be valuable to the
application programmer, this reference model will need to make some of those
aspects visblc so that the functional~ty of the operating system can be
discussed and evaluated. Therefore, the discussion of an operating system
feature or aspect in the model does not necessarily imply that the feature
should be easily or directly accessible (i.e., "visible") to an application
program.

The operating environment of operating systems built to the NGCR OSIF
Standard will differ greatly depending on the size and requirements of the
system and its intended mission. it is expected that systems using an OS
compliant with the NGCR OSIF Sta.dard wil not use all the features discussed
here or specified by OSSWG OSIF requirements documents, but will use tailored
subsets for each particular application system.

A reference model must satisfv conflicting requirements similar to tho~e
encountered in rore traditional modeling disciplines. The model must be
s'ructured enough to encourage the generation and use of standards and
standard components. Yet it must he flexible enough to accommodate tailored
and speciai-purpose components necessary to meet real-world needs. The
reference model should satisfy the following requirements:

* Be simple.

Accommodate existing and imminent embedded systems standards, both
hardware and software.

!0-1

" Allow incorporation of both standards-based and proprietary subsystems.

" Reflect the full scope of the application program developer's

functional requirements.

" Allow system scaling.

* Accommodate new embedded system technology.

* Provide a means for comparing existing operating systems.

• Provide direction for future standardization and integration efforts.

It should be noted that the definition of this model is an engineering
task and not a scientific one. There are many possible models, and while it
might be interesting to contemplate an optimal one, an adequate solution is
all that is required. In addition, it should be noted that this model is
intended to be conventional within computer science. The intention is not to
break new ground, but to establish simple terminology and concepts for
identification and resolution of architectural issues. It should also be
noted that some of the text for this appendix was taken from the IEEE POSIX
System Architecture, Standard 1003 (reference 8).

10.1. 1 Multiple System Views

The OSSWG reterence model is expressed by using multiple views of
embedded systems and their operating systems' interfaces. No one viewpoint
seems sufficient to concisely describe the needs and goals of the NGCR OSSWG
program.

In section 10.2, a model is developed that provides an introduction and
overview of the system considered. The overview model defines system
elements, to expose interfaces across which service requirements should be
satisfied. The elements are chosen to expose those interfaces that are
significant to the embedded system's developer.

Section 10.3 describes the important or critical interfaces between the
embedded operating system and entities external to the operating system.

Section 10.4 describes the basic services available across the interfaces
of the operating system. The services are defined in a generic way, based on
the model and current industry practice.

Section 10.5 discusses various application domains. This is a brief
description of how the target systems differ with respect to several important
requirements. The intent is to illustrate and bound the large variations that
are expected among systems that may use the operating systems standards.

10-2

10. 1. 2 Abstraction and Levels of Aggregation

For purposes of understanding system concepts, the software engineering
principal of information hiding is exemplified by representing the end system
as a single machine. (See figure 10-1 for a context diagram of the virtual
machine and its environment. Once the total system concept is understood, the
context diagram is subdivided to reveal some of the lower detail.

ENVIRONMENT

SYSTEM

Figure 10-1. System Context Diagram

10.1.2.1 User Roles. The model must be expressed in multiple viewpoints,
because a number of different users with various roles must use the OSIF
standards. Some of these roles are application developer, application user,
target system operator, PSE user, and PSE system operator. This list of roles
is not an exhaustive list but, for purposes of the model description, this
list will suffice.

The application user is the end user of the system who may have no
knowledge of the operating system interfaces used to provide the functionality
seen when the system is used.

The system operator, if there is one for a particular system, has special
privileges and utilities to modify the system's data base and configuration to
meet changing needs of a structure of the particular application.

10.1.2.2 Model Description. The model, as described from the point of view of
the application developer role, is used to describe the reference model so
that:

1. Application developers will have the proper services to meet their

requirements.

10-3

2. Vendor implementation will not be constrained unnecessarily.

rho rpfprpprp model is rcp-2sented by several levels of abstraction, with
different objects being more significant at each level. The five levels of
abstraction are as follows:

1. System design-level focus - the integration of multiple application
programs into a cohesive system.

2. Program design-level focus - the integration of application modules
and system services.

3. Operating system-level focus - the organization of and interfaces to
the system services provided by the operating system. This is the SAPI level.

4. Logical device-level focus - the logical devices from which the system
is composed.

5. Physical device-level focus - the physical devices from which the
system is composed.

Figure 10-2 shows the end user virtual machine internal structure from
the system designer's point of view. The major objects are applications and
the systems devices. This view does not indicate the system hardware. The
system might be implemented by one hardware processor or by a large number of
processors. The hard'iare is assumed to be a single virtual processor. At
this level of abstraction, the system is composed of one or more application
programs that interact with each other, with the devices in the system, and
with the users by use of the MlI, if appropriate.

Figure 10-3 shows a diagram of an application from the view of the
program design role. The internal boxes, each labeled "service group,"
represent modules providing system services. Those modules may be loaded with
the application code or may be part of the shared operating system code. At
this level, the application designer sees the application as composed of
application modules and OS modules that interact to perform the activities of
the application.

The SAPI describes the interface between the aplication and the operating
system from the source code level. The SAPI defines the program designer's
means to access the functions and objects of the operating system. The
system's devices and other software entities are seen as being available to an
application program through the services of the OS.

The logical device defines the interfaces to objects of generic types
attached or accessible to the system. The particular characteristics of
specific hardware devices are hidden by the device driver and the operating
system.

The physical device interface is used by the writer of the device driver
and by the application developer if the device needs to be accessed at a low,
physical level for some special application.

10-4

SYSTEM

APPLICATIONk

~IO K I INERATION

PHYSICAL DEVICES

Figure 10-2. System Designer's View of the System

APPLICATION

SAPI7

SERVICESEVC

N SERVICE

SERVICE K INTEGRATION SERVICE

GROUP GROU

N LOGICAL DEVICES

PHYSICAL DEVICES

Figure 10-3. Application Programmer's View of the System

10-5

10.2 SYSTEM OVERVIEW MODEL

Figure 10-4 represents the embedded system as viewed by a system
developer. This view corresponds to the program design level of abstraction.
External features visible to the application developer include a variety of
devices used to display and enter data. These devices include those used to
display and enter data. Also included are sensors and effectors that provide
a means for the system to interact with the real world.

I APPLICATION I SERVERI ... ETC
PROCESS I PROCESS [

OSSWG APPUCATION PROGRAM INTERFACE

NGCR PSE PROJECT
SYSTEM ITRAESUPPORTI INTERFACE
EN iRONMENT ENVIRONMENT

LOCAL
NETWJORK ET

DEVICE

Figure 10-4. LPOS Node Model

All runtime features can be conceptualized as being contained within the
NGCR system block. All of the operating system features may be available
locally or remotely. Some of the OS functions may be performed remotely if
the system is a distributed system with multiple nodes. The term "node" is
used to describe a single hardware subsystem that executes at any particular
time, a single thread of operating system control. A node may actually be
constructed with multiple hardware processors, linked for self-checking or
redundancy or both, or may be a processor with auxiliary processors (such as
floating point or I/O processors) attached. The aspect of the processor node
view of hardware resources that is singular is that it contains one and only
one local operating system.

Two constraints are defined for the basis for the system node overview
model as follows:

1. The application software system is represented as the execution of a
collection of processes, where a process executes on a single processor node
and contains a single, schedulable thread of control as seen by the local
operating system.

10-6

2. Some mechanism for communications among these processes exists,
whether communicating processes are located on the same or different nodes.

The following parts of this section describe the basic elements of the
distributed NGCR system and the relationships among them. This discussion
defines the paradigm for the descriptions of services, interfaces, and target
domains that follow in sections 10.3 through 10.5.

10.2.1 Single Node/Application Model

Figure 10-5 identifies the major elements of a local processor node that
are important to the embedded system developer and the relationships among
them. While the LPOS is shown as a single block, its implementation is
undefined by this model and it could be structured in many ways. For example,
it may very well consist of a proprietary base OS, not compliant with the NGCR
OSIF standards, with specific NGCR OS services and interfaces implemented "on
top of" that proprietary OS.

APPUCATION SERVER
...ETC

PROCESS PROCESS

....... ;;"';; " : ;........ ...' ':... ...:::::::::::::

- OSSWG APPUCATION PROGRAM INTERFACE

LOCAL SPRJC

Os IPC SERVICES PSE ISUPPOR
SERLVICES INTERF E ENRONMEN

LOCAL PROCESSOR OPERATING SYSTEM

- LOCAL DEVICE INTER FACE

LOCAL ETC
NETWORK

DEVICE I

Figure 10-5. LPOS from Operating System Perspective

The elements of the node include the following:

" Application programs
" LPOS
" API
" Local devices
" PSE.

10-7

One or more application processes may run on the processor simultaneously,
as represented by the process rectangles at the top of the figure. The
applications run as independent software entities and communicate among
themselves by means of a variety of communications mechanisms provided or
managed by the LPOS.

The applications make use of devices attached to the local processor to
perform a wide variety of actions. These local devices are represented along
the bottom edge of the figure, and they include sensors, effectors, and direct
or network connections to other computing systems.

The LPOS allocates the shared local devices among the applications
competing for these resources. Processor time, memory, and other finite
processor resources are also shared among the applications and mediated by the
operating system. In addition, the LPOS supports communication and
cooperation with other LPOSs at other processor nodes of the system.

The block labeled LPOS in the figure actually contains only the runtime
elements of the operating system that usually run in supervisor mode or
protected mode. These elements of the LPOS are the parts that handle system
service requests from the application programs. Other parts of the LPOS may
run as server processes or as library routines linked with application
programs. These server processes may have special authorizations or
capabilities but are scheduled and serviced by the runtime elements of the
LPOS in the same manner as user processes.

The LPOS may also slimoort an ARTE. The SAPI, the compiler vendor
supplied compilation lijrar,, and the interface code generated by the compiler
together form the comple~c ARTE. The ARTE functions may be implemented using
services of the OS, in code modules from the Ada library, or code generated in
place by the Ada compiler. While it is expected that the OS will support the
needs of programs written in Ada, other languages and their runtime support
will also be needed for particular projects.

For the OS to protect system integrity and ensure system data base
consistency, applications competing for system resources must access all
system resources using system service requests. The formal definition of
these requests (or system calls) defines an API. The API will specify a
sufficient interface between the application program and the underlying
operating system and inclv.es the operating system services that are described
in section 10.4.

The API has several different representations. One set of
representations is illustrated by the SAPI, which is a programming language
binding to the API for some particular source language. For each language
allowing service requests to the operating system, there is a SAPI, a set of
subprogram calls to be invoked to access operating system services. This is
the representation used by the programmer and is a primary interface used in
the PSE. Another representation is the BAPI, which is the calling mechanism
used by the compiled code to access the operating system routines that are not
part of the application code. The name "binary application program
interfaces" is meant to imply that this interface is at the machine code

10-8

level. The BAPI will, in most cases, be LPOS implementation and processor
dependent, but might be standardized for a single processor type or a family
of processors to allow some degree of portability of compiled code across
different implementations of the LPOS.

The project support environment interface (PSEI) is the block on the
diagram between the LPOS and the PSE. This interface allows communication
between the PSE and the LPOS in a development environment. This interface may
not be subject to standardization at this time, depending on an analysis of
the risks and benefits of such a standard PSEI. rhe PSEI provides the
following services:

1. Down-loading of compiled programs.

2. Up-loading of execution-time debugging information.

3. Remote control of the embedded system by the user of the PSE,
including the execution of debuggers running partially on the PSE and
partially on the target system.

Note that these kinds of operations are similar to those required for
coordination of multiple-user programs running on multiple, distributed
processors except that very detailed knowledge of the execution environment on
the target will need to be communicated back to the PSE. Most of the
functionality of this interface may be available from the SAPI/BAPI.

The LDI block n the figure is the set of device drivers used by the LPOS
to access the different devices. The interface between the device drivers and
the LPOS is the LDI.

The primary interface for OSIF standardization is the SAPI. With a
standard 'SAPI, an application routine can be transported to a new target
system by recompiling and relinking the source code with the new library. A
standard SAPI will also support interoperability and software reuse at both
the subprogram, subsystem, and system level.

A development version of the embedded system may have an RTNI testing
device attached to it for monitoring the system's performance and debug the
application (and perhaps the system) software. An RTNI device is not shown in
the model because a truly non-intrusive device will not be "visible" to the
software or to the operating system of the tested system. An RTNI device may,
under some conditions or modes (e.g., during test setup), be visible to the
system as a special-purpose device and an NGCR OSIF Standard compliant
operating system should be capable of communication with such a "visible"
device. The RTNI system itself may contain a computer system that uses an
NGCR OSIF Standard compliant operating system to run applications that collect
data about the tested system.

10-9

10.2.2 Network/Application Model

The system will now be expanded to expose network-related interfaces.
Setting aside the local node model for the moment, figure 10-6 relates the
application processes to a conceptual model based on the OSI reference model
for network services. The figure shows an implementation where the networking
support and operating system are integrated; other implementations are
possible depending upon the communication services provided by the OSIF
standard.

LEVEL

APPUCATION SERVER NETWORK
SRGMT.S ...ETC

APPUCATION 7 U --III-I-I-----I-U- IIIuuIIIHIiUUii uil!lllU

C OSSWG APPUCATION PREGRAM INTERFACE

LOCAL PROCESSOR OPERATING SYSTEM

PRESENTATION 6 APPLICATION OPTIONS

SESSION 5

TRANSPORT 4 TRANSPORT

OPTIONS

NETV -. RK 3

MGMT.
DATA UNK 2 PROCESS

PHYSICAL 1

LOCAL AREA NETWORK PHYSICAL MEDIUM

Figure 10-6. Network Model from Applications Perspective

Applications gain direct access to the network services at levels 4
through 6 by use of service requests specified in the API. This API may be
part of the operating system's API or may be a separate API provided by the
networking system. In the case where the network services are made available
to users by OS interfaces, the OS treats the network as just another system
resource to he allocated among the competing processes. Connection-oriented,
connectionless, and multicast data transport services may be available.

API data transport services are usually process to process. This means
that a message is delivered when it is presented to the destination process,
not just when it enters the destination piocessor node. In addition to
process-to-process services, there may he a need for other transport services
such as some form of broadcast or mailbox services. There may also be a need
for transport services that are location or processor dependent.

10- 10

Note that communications methods other than network services may be
available to processes located on the same node or closely coupled nodes
(e.g., shared memory, event flags). These options may not be available,
however, for processes located on nodes that do not share a very high
bandwidth communication medium.

In cases where reconfigurability is important, it may be useful to use a
network communication interface between processes on the same local
processor. For example, it is possible that one of the communicating
processes could potentially be moved to a different processor node. If the
processes will always be located on the same node, other methods may improve
performance. This is an application-level architectural decision that has
substantial impact on design and implementation of distributed system
applications. The actual source level interface for local and remote
communication between processes may be the same with the responsibility
falling to the OSs and/or compilation systems to determine the location of a
process and facilitate the proper communications.

10.2.3 Network Communication Model

Figure 10-7 integrates the node/application and network/application
models into an element of a local area network coupled distributed system. No
new elements are introduced in this integrated model. A major feature of the
model is the integration of the network protocols with the operating system on
the local node. Note that the upper network protocol layers are closely
associated with th. aperating system. This is driven by the fact that the
session layers provide communications services among processes. The process
is an operating system construct and is managed by the operating system, while
the session and datagram services are network constructs and are managed by
the protocol software. This may require close coordination and integration
between these software elements, and can be a major source of difficulty
during development, integration, and operations. It can be a serious risk
element, especially if the operating system and network protocol software are
procured separately.

Note that the application process may pass service requests to the
operating system by the API to gain access to network services. As discussed
above, the API provides data communications transparency to the applications.
This means that the complexity of the network is hidden from the applications
hehind tile API.

Network management functions may be associated with any network layer.
Figure 10-7 shows network management processes associated with the upper
protowol layers, as well as with the lower layers. This is because the upper
layers are closely associated with the operal ing system and mav use operating
system services to perform network management functions. The lower layers,
however, are more closely associated with the physical media and may not have
direct access to the processor. In any particular system, the network
management may only be implemented in one of the two places or may even be
implemented in a separate processor with its own OS.

10-11

APPUCATION SERVER NETWORK

PROCESS PROCESS MGMT. ...ETC.
PROCESS

OSSWG APPLICATION PROGRAM INTERFACE

LOCAL PROCESSOR OPERATING SYSTEM

IPC LOCAL PROJECT
OS INTER- ISUPPORT

NETWORK SERVICES SERVICES FACE IENVIRONMENT

SNETWORK

IMGMT. LOCAL DEVICE
PROCESS INTERFACES

LOL AREA NETWORK PHYSICAL I -JM

Figure 10-7. Integrated System Node

Often the operating system allows the application programmer to refer to
entities attached to the local network by logical names rather than by network
address. That capability can be very useful for separating the specification
of the location of an entity from the code that uses it; however, some
applications will need to refer to network entities by their physical address
or at least be able to determine the location of an entity.

10.2.4 Program Distribution

Many Navy computer languages do not have any support for concurrency but
rather depend on the facilities provided by the operating system by use of
calls to OS services. The Ada language is an exception because it has
language-level support for concurrency; other exceptions are languages
designed for signal processing. With respect to programs written in
languages that support concurrency, there are two levels of concurrency.
Either level (or both) may be mapped to OS processes. The first is Ada task
level concurrency where each unit corresponds to either an Ada main subprogram
or to an Ada task. Concurrency at this level considers the relative
priorities and scheduling of Ada tasks within a single program and their
communication by means of language constructs. The second level of
concurrency is program level concurrenc. A unit at this level is a single
(Ada, etc.) program together with all of its dependent tasks. Concurrency at
this level considers the relative importance of the individual programs in the

10-12

system competing for system resources. Also, program-to-program communication
is by the operating system or shared data because the Ada language provides no
communication facilities at this level outside of file I/0.

When an application is to be distributed across multiple processor nodes
that may not share common memory, there are several ways to partition Ada
programs. Two of the partitioning methods correspond to the levels of
concurrency above. A program can be distributed at the Ada task level with
the OS, the compilation system, or the developer deciding where each task is
to execute. Distribution at this level would require communication across
processor nodes with full Ada tasking semantics. Distribution at the program
level means that a program and all of its tasks execute on a single processor
node. If distributed processing is needed, then the application developer
must divide the application into separate programs that communicate by calls
to the communication facilities of the OS. This is current practice in most
real-time systems including Ada-based systems.

Distribution can also be at the "virtual node" level. A virtual node
consists of a collection ,f related Ada library units. A program may be one
virtual node, which corresponds to the program level distribution, or a
program may be composed of several virtual nodes, which together contain all
the library units of the program. A virtual node is assigned by the developer
or the OS to a particular processor node. More than one virtual node of a
program can be executing on the same processor node, but a virtual node may
execute on only one processor node at one time.

10.2.5 System Resource Allocation Executive

Conceptually, the system resourceallocation executive (SRAX) is the single
operating system for the whole system if one exists; it manages system
resources across processors so that to the applications developer, the system,
or some aspects of it, appear to be controlled by a single centralized
operating system. The SRAX is primarily responsible for scheduling and
allocating resources that affect more than one local processor node. But,
because most resources are local to some local processor node, the SRAX must
cooperate with or control the local scheduling mechanisms. Note that the
coordination across local processor nodes includes nodes that have different
types of processors. The communication between the different LPOSs require a
set of functions and protocols that may not be part of the API.

Below the level of system-wide coordination and management, there may be
several intermediate resource allocation executives (IRAXes). An IRAX manages
a particular resource or set of resources for a set of processor nodes. The
organization of the IRAXes and the SRAX may be strictly hierarchical with the
SRAX at the root node of the tree structure, the IRAXes at intermediate nodes,
and the LPOSs at the leaves of the tree.

Another system organization could have IRAXes assigned part icular
resources for management within a small number of LPOSs. With this organ-
ization, a single LPOS would interface with multiple IRAXes for different

10-13

resources. These lowcr level IRAXes could then communicate with a higher
level IRAX for more global management of that resource type.

A platform may have several SRAX-level clusters of local processor nodes
that share a communication network but do not cooperate with each other for
resource sharing at the operating system level. This would effectively
provide multiple SRAX systems that can communicate across a network. Also on
the network may be simple, independent systems that may not need any
interprocessor coordination and only have the LPOS part of an operating system
with no SRAX-;evel OS.

Figure 10-8 shows two nodes of a multino1e system. Many embedded
applications require that the nodes of the bystem be aole to coordinate
services and resources. This can be done all at the application level with
the appiication programs communicating with each other and then with their
individual LPOS, which will be fully suppoted by the API; such an application
system would have no need for SRAX or IRAX level services. The LPOSes could
also communicate and coordinate resource usage directly by use of the SRAX,
which may provide such services as dynamic load leveling an(. aut-matic
reconfiguration.

There are many ways that the RAY (i.e., the SRAX and the IRAXes) could be
imolemented. They could be implemented as a singie, centralized program
running on individual processors. They could be implemented in a fully
distributed manner such that ceery local processor node has its own V, rtion of
a RAX program Parts of a R4 X could even be implemented in hardware for high
peformance. Realistic 'mplemeptations would probably have some services
centralized and others distributed on some or all of the local processor
nodes. Even with a centralized implementation, there may be one or more
"backup" processors that could take over execution of the centralized part of
a RAX if the ;nitial one fails.

Figure 10-9 is a diagram of the different parts of the operating system
and their location for one very simple implementation scheme. The SRAX in the
figure has two components: the centralized part (SRAX-C) and the local part
(SRAX-L). The centralized part executes on one processor and coordinates the
other processors, while the local part of the SRAX and the individual LPOS
parts execute individually on ea-h processor. A system with three processors
has !ittle need for multiple levels of resource management so there is no IRAX
shown in the figure.

The different parts of the SRAX communicate with each other to schedule
the resources of the system. It is this communication that makes system-level
control possible but also can potentiali; cause a severe communication load on
the s' stem.

Figure 10-10 is an examplr of oaie possible way a system could he
organized. This figure shows the logical connections between the different
levels of resource management; the actual communicat ions may be by means cf a
single lVnear or ring network or by means of gatew'ys on various network
segments. rhe example has two levels of IRAX resource management and, in this
s stem, a single LPOS may have two Qi three IRAXes that manage different
resources that the LPOS uses.

10-14

a APPLICATION jSERVER NGTORK EC

OSSWGAPCiN PROGRAM INTERFACE

PC LOCAL INTE~~i- SUPPORT
OsENIOMN

SERVICES (I) r

NETWORK
MG MT.
PROCESS LOCAL DEVICE

INTERFACES

LOCAL AREA NETWORK PHYSICAL MEDIUM

APPLICATION SERVER 1 MG MT. I.ET

PROCESS PROCIESS I PR.. FSS

OSSWG APPLICATION PROIGRAM INTERFACE:

LOCAL PROCESSOR OPERATING SYSTEM (2) ______

PS E PROJECT
PC LOCAL INTER- SUPR

OS FACE ENOMENT
SERVICES ()

a NETWORK
a MGMT.

PROCESS LOCAL DEVICE
a - INTERFACES

..........................

* LOCAL AREA NETWORK PHYSICAL MEDIUM

Figure 10-8. 1)ist rihu ted Sist cm Nodes

SRAX -C SRAX -L LO

................... DEVICE

P;ROCES S PROCESS

SRAX-L LPOSZ

DEVICE DEVICE z
* M

- - - - -- - - - - - - - IR C S - -

SRX- I 0

- -- -- -- - -- -- -
DEVIC DEIC

Fiur 109 LPO anIXPrso heOeaigSse

10-16

/

/ IRAX1
/

./

1RAX
2 IRAX 2

LPOS LPOS

=LLPoJ

Figure 10-10. Example of System Organization with SRAX and IRAX

10.3 CRITICAL INTERFACES VIEW

This section discusses operating system interfaces that are necessary to
meet the goals of the NGCR project. These interfaces are defined by the
entities that the OS and application programs must interact with (see figure
10-11). These interfaces arise from the need for the different components to
be integrated into a cooperating system. Not all of the interfaces are
visible to the applications developer and not all need to be standardized, but
all of the interfaces will be present in one or more implementations. The
interfaces may be provided by compiler or operating system vendors or by the
application programmer rather than being part of the NGCR OSIF Standard or any
other NGCR standards.

The viewpoint taken is that of the LPOS, i.e., the component of the total
operating system that executes on a local processor node. An LPOS may
communicate with other LPOS instances by use of the backplane, an LAN, and
shared memory. The following interfaces are discussed:

• ARTEI
* BAPI
" DBKI
" GRKI
" LANT
" LDI

10-17

ONSOARD

CPU,

LAN BACKPLANE, DBMS

MEMORY,

TIMERS,

ETC,

ANOTHER

NGCR

OS

NODE

DEVICES GRAPHICS APPUCATION

SOFTWARE

Figure 10-11. Entities that Interface with the Operating System

" L11WI
" LSCI
* OSOSI
* PSEI
" SAPI
" MMI.

10.3.1 ARTE!

The interface between the application Ada programs and the runtime
environment required by the Ada programming language is

Ada runtime environment <-> application software.

10-18

Figure 10-12 shows that the ARTE may be implemented in three parts: (1) a part
loaded with each application program from the Ada runtime library provided by
the compiler vendor, (2) a part that is generated by the Ada compiler during
the translation of the Ada program, and (3) a part that is a subset of the OS
interfaces. It is an issue as to how much of the necessary ARTE is part of
the operating system and how much should be provided by the compilation system
of a compiler vendor. Most likely, some parts of this interface will be
provided to allow applications to modify or "tune" the runtime system and
other parts of the interface will only be used by compiler generated code.
Standardization cl the interface to the 0 part of the Ada services will allow
the efficient integration of the Ada runtime environment and the LPOS. This
interface is one aspect of the more general high-order language binding
interfaces, which may include language bindings and runtime support for such
Navy languages as CMS-2 and Lisp.

............. ei~~li- ''

::..........-.

ARTE PART GENERATED BY COMPILER

10-1

Ada LIBRARY PART OF ARTE

OS PART OF ARTE

~OPERATING

SYSTEM

Figure 0-12. Parts of the A RTE

10. 3. 2 BA P1

The interface f the machine code level calling sequences to the LPOS) is

Binary application software <-> LPOS.

t is the binary level version of the SAPI and is sometimes referred to as the

BAPI. This is logically the same interface as the SAP[that will be described

10-19

but may require a separate standard if the compiler vendors are to be
decoupled from the LPOS vendors. As an illustration of a BAPI, some machines
use a set of software interrupt instructions to call operating system
routines; the specific interrupt numbers and the specific conventions for
parameter passing and stack management are part of the BAPI. Without a common
interface at the binary level, a separate version of each compiler (or at
least its code generator) may be required for each different implementation of
the LPOS software, and code compiled by different compilers may not operate
together. Note that even with standardization of the BAPI, there is, at best,
a set of standards, one for each processor or processor family.

10.3.3 DBKI

This interface is

Data base kernel <-) DGMS.

Those systems that will require a multilevel, secure OS will require that some
low-level parts of system-level components be fully integrated (i.e., be part
of the TCB); therefore, the DBMS must have efficient access to the TCB. If
the TCB is integrated with low-level parts of the OS, then those OS components
must provide the needed interfaces for the DBMS The DBKI is the interface
that the DBMS system uses to access the TCB or specialized OS components.
Without a DBKI built into the LPOS, a DBMS may have to be built "on top of"
the OS, which could lr. d to poor DBMS performance. If the data base kernel
interface is of general usefulness to application programs, then this
interface may simply be a subset of the application program interface (SAPI
and BAPI) to the operating system and therefore not a separate interface. It
could also be a separate, special-purpose interface, which is provided only
for those systems that use a DBMS.

10.3.4 GRKI

This interface

Graphics language <-> LPOS

is listed because the NGCR GLI may require specialized, low-level OS functions
for performance reasons. If special services are needed, then this interface
will be required. It is not clear at this point whether the API will be
sufficient for the needs of the GLI implementation.

10.3.5 LAN!

This interface

LAN <-) LPOS

10-20

separates the LPOS software from the LAN software/hardware subsystem. The
NGCR SAFENET effort may provide the interface or a set of interfaces that the
LPOS software can use. If the SAFENET standards do not provide usable
interfaces or if an integrated set of communication interfaces is desired,
then the OSSWG OSIF Standard will need to define these important interfaces.

10.3.6 LD!

This interface is

Local devices <-> LPOS.

The LPOS software can be written with device drivers included for the specific
system devices, but a more modular system would be possible if there were
standard device-driver interfaces. Device-driver interfaces make it easier to
add new devices to the system or to rearrange the configuration of devices.
The LDI can Le at two levels: at the LPOS to device level if the device
drivers are custom built into the LPOS or at the LPOS to device driver level
if a device driver interface is defined for the LPOS. Defining a device
driver interface allows a new device to be added to an existing OS by adding a
new device driver rather than requiring a new version or modification of the
OS.

10.3.7 LHWI

This interface

Local hardware <-) LPOS

is usually hidden (i.e., proprietary to the hardware vendor). This interface
is hardware dependent and should probably not be standardized by the NGCR
effort because it is only useful when processor boards are standardized. This
interface includes as a subset the interface to the backplane. While the
backplane hardware itself will be built to NGCR standards, there may not be a
standard, board-level, hardware interface to the backplane. This interface to
the backplane and other local hardware will then depend on the design of a
particular board. The CSR standardization effort, which is affiliated with
the backplane effort, is standardizing some of the board-level register
assignments and the NGCR program may standardize others, but there will most
likely be many differences between different implementations of a processor
board.

10.3.8 LSCI

This "interface"

LPOS <-> SRAX

10-21

is primarily a set of protocols, data formats, and conventions that provide
communication between an LPOS and the SRAX and IRAXes. The functionality
provided by this interface, to a large degree, determines the amount of
coordination of LPOSes available to the SRAX and IRAX components. This
interface may be hidden (i.e., proprietary to the operating system vendor) in
a system where the LPOS, IRAX, and SRAX are developed as a single system. The
description of this interface may also include the protocols for communication
among the IRAXes and the SRAX.

10.3.9 OSOSI

This interface

LPOS <-> LPOS

allows one LPOS to communicate with other LPOS instances in the system and
allows instances to share resources and to cooperate with each other. This
interface is needed if the goals of reliability and dynamic reconfiguration in
a heterogeneous system are to be provided by the operating system rather than
being available only if supplied by the application software. The scope of
the services provided by this interface depends on the level of coordination
needed among the separate processor nodes. Note that these interfaces are not
application program interfaces although the OSOSI may be necessary to support
the functionality provided by some parts of the application program interfaces.

An example of the type of communication needed is when two LPOS nodes
share a memory board across the backplane. The two nodes must coordinate with
each other to allocate and use the memory. Without an OSOSI, the application
developer will have to perform all the memory management coordination in the
application. Another example of the kinds of messages needed are those to
coordinate the live insertion or removal of processor boards in a running
system as supported by the NGCR backplane. This interface is conceptually at
a lower level than the LSCI. An LSCI would probably be built, however, using
the OSOSI.

10.3.10 PSE!

This interface

PSE <-> LPOS

provides a means for the PSE to interact with the LPOS for loading software,
testing, debugging, etc. In many systems, this interface would be removed
before the system became operational. The standardization of this interface
will make it easier to have a common PSE for different LPOS instances. Some
systems will have a different, hardware-based, non-intrusive testing interface
to the LPOS. The non-intrusive testing interface is, by its design, invisible
to the LPOS hardware and software when in operation. The NGCR OSIF Standard
may, however, need to address the capabilities required to set up and control
non-intrusive testing interface hardware.

10-22

10.3.11 SAP!

This interface

Source application software <-> LPOS

is the one that is normally thought of when an OSIF is being discussed. This
is the interface (or set of interfaces) that the applications programmer uses
to develop embedded systems. This is the high-order language bindings (Ada,
etc.) to the OS system calls. A BAPI is a compiled, binary version of this
interface.

10.3.12 MM!

This interface

User <-) application

is between the application user and the application programs. The hardware
used for this interface is often some combination of special-purpose display
devices and user-input devices. This interface can be considered a special
form of device interface for which a standard set of device-driver commands
would be useful to promote software transportability and easy movement of
development engineers among projects and users among embedded systems. Any
standardization at this level may come out of the NGCR GLIWG. Many existing
operating systems ?,ave very little support for the MMI, except for (perhaps) a
command-line parser.

10.4 OPERATING SYSTEM SERVICES

This section describes the major groups of operating system services that
may be required of the NGCR OS. Not all of these services require a
program-! •- thrr,for: , t services can be described as either
explicit or implicit services. Explicit services are those that can be
accessed from an application program (by means of the API) and, generally, are
only provided when requested. Implicit services, on the other hand, are
services that the OS provides without a direct request. An example of an
implicit service is the prevention of one program from writing over the memory
of another. An example of an explicit service is a call to an OS routine to
output a block or memory to some device.

The OS services often are available at or support more than one of the
interfaces described in section 10.3. Each of the services in this section
lists the associated interfaces.

10.4.1 A rchitecture-Dependent Serices

The service's interfaces are 1,01, LHWI, LANI, GRKI, and OSOSI.

10-23

These services allow the system to interface with non-NGCR resources such
as computers, networks, and operating systems. This will facilitate
portability, technology insertion, and the reality that the NGCR system will
need to interface with many existing systems that will be in use for many
decades to come. These services may allow the system to interface with
today's Navy standard computers such as the AN/UYK-44 or AN/UYK-43 as well as
special-purpose computers such as the AN/UYS-1.

This sei of services also includes a means to access the special hardware
features of a system and is, in effect, a standard way to access nonstandard
functions

10.4.2 Capability and Security Services

The service's interfaces include all interfaces.

These services support the ability of the system to control usage so that
system integrity is protected from inadvertent or malicious misuse. These
protection services provide a mechanism for the enforcement of the policies
governing resource usage. Note that many of the security services are
implicit services, i.e., they are provided without an explicit request to the
operating system. There are two distinct classes of system access with which
operating system services must be concerned: physical access and logical
access.

Security servic,7 at the physical level are used to protect against
security compromise, given that unauthorized personnel may have physical
access to system hardware. Typically, the physical access is to a terminal or
terminal/display cables or both; however, physical access may also include
network cables, central processing units, disk drives, or tape drives.
Different types of physical access by unauthorized personnel may require
different operating system services and/or hardware to support secure
operation. For example, if unauthorized personnel have physical access to the
network cable, then services may be needed to support the encryption of any
secure data passing through the network. This is because a person may hook a
data reading device to the cable without needing to get access by use of the
operating system.

Logical access is the ability to interact with the operating system by
use of a terminal/display. Security services at the logical level can be
implemented through passwords and watchdog timers.

Capability services attach operation lists that limit the ability of the
processes to act on resource objects. This is to ensure that the resources
are not misused. Access to resources can be protected by services using
capability lists as well as access lists, lock/key mechanisms, global tables,
or through dynamic protection structure services.

10.4.2.1 Preventionof UnauthOrizedAccess. Access to the system may need to

be guarded from attempted access by unauthorized personnel. The points of

10-24

access to the operating system of concerned are through the SAPI or PSEI.
Given the mode of operation (system high, multilevel, open) at which the
system is operating, these services differ and have differing implications on
other system services (such as reliability, naming, etc.) and system
performance.

10.4.2.2 Prevention of Data Compromise. These services prevent access of data
by users not authorized to the data. These services may be implemented using
access lists on files (and directories) and/or encryption of data or in other
ways.

10.4.2.3 Prevention of Service Denial. These services ensure that a service
request will be met by the operating system in a reasonable time if the
requestor is authorized to use the service. These services ensure that a
bandit user or process cannot cause system malfunction by monopolizing system
services or resources.

10.4.2.4 Security Administration. This category involves services to allow the
managing of the security system including the administration of permissions to
personnel, data, and services as well as capability lists. In addition, it
permits the administration access mechanisms (passwords or whatever) and
services that allow the system to switch modes of operation. The services
will likely be accessed by the target system operator with security
responsibilities irough the target system operator services.

10.4.3 Data Interchange Services

The service's interfaces are OSOSI and SAPI.

This set of services provides data conversion among different data
representations. One scheme for providing these services is to have a single
canonical representation for the important data types (integer, real-time,
etc.) and then each implementation of the OS or compiler would provide
conversion functions between the canonical represeniations and its own
internal representations.

10.4.4 Event and Error Management Services

The service's interfaces are ARTEI, DBKI, GRKI, LANI, LDI, LHWI, MMI,
OSOSI, PSEI, and SAPI.

These services provide a common facility for the generation and
communication of asynchronous events among the system and application
programs. A major use of the event services is to report error conditions,
but they may be used by device drivers and the OS to provide an indication of
some condition to the application programs.

10-25

10.4.5 File Services

The service's interfaces are BAPI, DBKI, LDI, LANI, OSOSI, and SAPI.

These services allow the system and applications to create permanent
storage locations for data, which are stored on files; the files are organized
in directories. Files are managed and accessed through logical names by the
many system components that use the files, such as the application, target
system operator, and program support environment.

10.4.5.1 Naming andDirectoryServices. These services allow the access of
files and directories through logical names rather than the actual hardware
device naming conventions. The services may allow sharing of files at various
levels. For example, the services may not allow any shared naming of files
and directories between systems; they may allow shared files by explicit
naming; or they may allow shared files by implicit naming. The directory
services present a view or views of the directory structure to the application
or target system operator.

10.4.5.2 Real-Time Files. Real-time systems often need special files to
ensure fast, predictable, and consistent performance in time-critical
situations and robustness in the event of system or power failure. The need
for a known response time for a given I/O function drives the design of these
files and services. One service may preallocate the complete disk space
needed for a file at creation time, while another guarantees that records
within files are aligned in an optimal way (such as along word boundaries).
Services may support the access of records within the file in ways that make
response time constant or bounded, such as direct access.

10.4.5.3 File Modification Primitives. Primitive services for files and
directories include the ability to read a portion of the file, write to a
portion of the file, open access to a file, create a new file, close access to
a file, and delete a file. These services may be very complex. For example,
the access to read or write may be direct (by record number), sequential (one
record at a time), or indexed (by a key). In addition, services may be needed
to support the merging, appending, splitting, and copying of files. The
services may need to support a variety of file structures.

10.4.5.4 File Support Services. Additional services support the physical
devices on which the files and directory reside. These services include the
dismounting/mounting, formatting, and partitioning of media.

10.4.6 Generalized I/O Services

The service's interfaces are DBKI, LANI, LDI, LHWIl, MMI, OSOSI, and SAPI.

10-26

Generalized I/O services provide higher level constructs and functions
for doing I/0 to devices that do not fit well into the common file I/O
paradigm. Nonblocking I/0 to devices and files is required in real-time
systems. These services include nonblocking I/0 and I/O to special devices.
In nonblocking I/O, output or input is initiated under program control, but
the program continues execution while the transfer takes place. Many special
hardware devices may need 1/0 supervised by the operating system.

10.4.7 Networks and Communications

The service's interfaces are BAPI, LANI, LUWI, OSOSI, and SAPI.

These services involve the information exchange between processes within
an NGCR system. The processes may be located on different local processor
nodes or on the same node.

10.4.7.1 Network Control and Status. These services provide authorized users
with the capabilities to determine the status of communications facilities
(including networks) and to control communication subsystem working
parameters. Many of these services logically reside in the LPOS. Other
control and status services, however, logically reside in the SRAX. These
services include system startup configuration, network restart, network
initialization, network security, network scheduling, network monitor, network
configuration management, and time management. They provide services that
allow the communication subsystems to efficiently use their resources. These
services may make use of the OS scheduling services described in the
scheduling services section, section 10.4.12.2.

10.4.7.2 IPC. This service allows a local processor node's local operating
system to request a procedure, a function, or a transaction to be performed on
some processor node or logical resource. There are various forms of IPC, some
of which specify the receiver, some specify the sender, some are synchronous
(i.e., delay the sender until the communication is completed), some are
asynchronous, etc. The particular forms that need to be specified by the NGCR
OSIF Standard are to be determined.

10.4.7.3 Distributed Voting. This service allows the application to request
and collect "votes" or answers from applications distributed across some
communication medium. The request may require processing and/or information
from the voters, and the answers returned by the voters may be simple (yes/no)
or complex. The resulting votes will be analyzed by either distributed voting
services, other services (such as reliability services), or application
program(s). Distributed voting services will handle situations where a vote
is not received in the appropriale time. This service will likely make use of
the synchroni zation and time services.

10-27

10.4.7.4 Remote Resource Allocation. This service allcvs a local node to
allocate for usage a resource tat is physically located at another node
within the set of cooperating LPOSs or within th,. set of processors controlled
by an SRAX-level perating system.

10.4.7.5 Naming. These services allow the usage of system resources through
logical names rather than through the actua hardware device-naming
ccnventions. Furthermore, they allow the resources of other processor nodes
to be accessed by use of a a logical name so that no knowledge of the
resource's location is needed (the resource's location may cbange over time).
Logical names are also used by secur~ty services to hide resources from
unauthorized processes by only letting authorized processes know the logical
name that is needed to use the physical resource. The logical name to
physical name relationship can be one to many, many to one, or many to many.
Many times, one physic'l resource mpv have multiple logical names as well -q
one logical name representing a "bank" of available physical resources. These
services must provide the proper resolution of names, logical and physical, in
all of these cases.

10.4.8 Process Management Sei._,;s

The service's interfaces are ARTEI, DBKI, OSOSI, PSEI, and SAPI.

Typically, the fcl'owing process management services are required by
application programs:

- Create a process and make it ready for execution

• Destroy a process and recover its resources

* Evaluate a reference to a process

- Evaluate a connection to a process, where a connection is a logical
communication path betweea any two processes.

10.4.9 SE Services

The service's interface is PSEI.

During the system developent process, there is a need for the PSE to
communicate with the system under development. The operating system in the
target will need to support that communication. These services may not be
available at the API but may be accessed by means of a different interface.
These services may also be removed from the system when it is deployed. The
types of services included here are down-loading of compiled programs and data
into the target system, uplcading to the PSE of program results and trace
information, and the interactive debugging by a developer on the PSE of an
application running on the tareet systen

10-28

10.4. 10 Reliability, Adaptability, and Maintainability Services

the s-rvice' s interfaces are B1I, DBKI, LDI , LANI, LIWI, OSOSI, and SAPI.

Many times, robustness, or fault tolerance, of a system or application is
a desirable feature. The services supporting robustness (reliability,
adaptability, and maintainability) are often implied services in that there is
not a direct interface to these services through tle SAPI layer of the
operating system. Reliability and aoaptability services deal with the need
for the system to perform functions that the application requests in a timely
manner, whenever possible. Reliability is the ability to correctly perform a
job to completion; adaptability is the ability to change the system's logical
makeup (or jobs to do) o'er time; and maintainability is the ability to keep
the system in operating condition. A highly adaptable system can facilitate
the r-liabilitv of application's functions.

10.4.10.1 Fault Tolerance Services. These services allow the syste" to react
to the 'oss or incorrect operation of system components at various levels
(hardware, logical, services, etc.). The classical model of fault tolerance
has a three-step approach. The threc steps are fault detection, fault
isolation, and fault recovery. Typically, implementations div;de these steps
into substeps or integrate them into one or two steps. Additionally, fault
diagnosis services support the other steps in the treatment of a fault.

Var-ous fault tolerance strategies, such as checkpointing ano voting, are
implemented as a cullection of services comprising one or more of the steps in
the classical fault tolerance model. For example, services involved in
imp' menting a three-node voting scheme will include a vote comparator service
(f ut detection), vote analyzer service (fault isolation/fault diagnosis), a
service to pass the majority "answer" through (fault recovery), as well as a
service to disable the faulty resource and reconfigure the voters (fault
recoverv/reconfiguration).

Service categories "fault tolerance" and "event and error management" may
share services with each other.

10.4.10.1.1 Fault Detection. Fault detection services are concerned with
determining when a fault has occurred in the system. Fault detection services
are both passive and active. Active services are those that attempt to
determine the status of various system components by testing those components.
Pa.,sive seivices, on the other hand, try to ascertain system components by
passively gathering information and watching the behavior of the syFem.

10.4.10.1.2 Fault lsolation. Fault isolatioi, services attempt to determine the
component at fault and segregate the faul tv component from tne rest of the
system. Service may he shared between the fault detection and isolation
service I ibraiv in that they perform both funct ions.

10-29

10.4.10.1.3 Fault Recovery. These services attempt to bring the system into a
consistent state. These services may be very interrelated to the scheduling
services, network services, and data base services depending on the recovery
scheme used. Redundancy of resources is needed many times to support fault
recovery. Resources may include data, process, processor, disk drive, etc.
As parts of the system fail, it may no longer be possible to satisfy all the
requirements of the application. Services to support graceful degradation may
be used to ensure that critical activities do not fail.

10.4.10.1.4 Fault Diagnosis. These services deal with the system's ability to
analyze the attributes of a system fault and determine its cause. These
services tend to be very interrelated with fault detection and fault isolation
services.

10.4.10.2 ,ultAvoidance. These services involve the avoidance of faults
before a failure in the system componen t occurs. If a system can detect that
the operation of a component is approaching the edge of its operational range,
then a standby or backup component could be phased in to replace it. Another
form of fault avoidance is logging of shocks, temperature extremes, etc., so
that it can be predicted that a component will not meet its original, expected
service life.

10.4.10.3 SoftwareSafety. These services involve the system's ability to
keep application software from causing harm to the system's software,
hardware, or user. For instance, a process may attempt to write into another
process's memory space without permission. A good example of a reliability
method that may provide software safety is a bounds checker. The checker
compares an answer supplied against the bounds. If it is not within the
bounds, the bounds checker will not allow the answer to propagate, possibly
causing damage to the system's integrity. Additionally, it may send a fault
message (or security violation information, depending on the type of answers
expected) to the proper service. To enhance software safety, other se:vices
and processes should be only given the resources necessary to complete their
job.

10.4.10.4 Statusof System Components. These services involve the obtrusive
and non-obtrusive diagnosis of the state of system components. (For further
explanation of these services, see section 10.4.10.) Additionally, these
services may need to record and/or display information concerning performance,
configuration, and general system information.

10.4.10.5 Reconfiguration. These services allow the system to reconfigure its
view of the world. These services allow the system to substitute different
resources to perform system functions such as substituting a new physical I/0
channel to support a logical channel. These services are part of the API, but
their use may be restricted to specially authorized programs such as those
used by the target system operator.

10-30

10.4.10.6 Maintainability. These services provide support for the maintenance
of the embedded system. A major component of that support is the collection
and logging of information about the operation of the system. Typical
information to be logged is as follows:

• Software and hardware errors during operation

" Processes that failed or almost failed to meet scheduled deadlines

* Performance metrics for system tuning

" Times when the system operated in extreme environmental conditions

* Errors reported during startup self-testing

" Attempts to violate rules of the systems security policy.

10.4.11 Resource Management Services

The service's interfaces are ARTEI, DBKI, LANI, LDI, LHWI, OSOSI, PSEI,
and SAPI.

These services are involved in the management of the systems resources,
which include CPU, memory, 1/0, and other physical devices. Services that
manage the usage of the CPU are described in section 10.4.8. Services that
manage the usage 2.;d access to files are described in sections 10.4.5 and
10.4.6. The scheduling of the system's resources is described in section
10.4.12.

10.4.11.1 Memory Management Services. These services support the usage of
the LPOS main memory(s). These services supply a virtual view of the memory
or memories on the computer as seen by applications and perform the proper
mapping of virtual to physical memory (performing any swapping of memory
paging needed in the process). Memory management services provide storage to
allow process and data migration as well as initialization. The memory
manager many times receives requests for service from the process management
services to allocate and deallocate memory for process usage. The major
services of memory management fall into five categories: allocating physical
memory, mapping of logical address to physical storage, memory sharing,
extending memory (virtual storage), and protecting user information.

10.4.11.2 Device ManagementServices. These services attempt to remove the
dependencies on physical resources. The service user sends information to and
from the devices by way of logical data structures or device service requests
or both. These services mainly serve to supply four functions: device
allocation, device control, device status, and device access.

10-31

10.4.12 Synchronization and Scheduling Sen,ices

The service's interfaces are ARTEI, LANI, LDI, LHWI, OSOSI, PSEI, SAPI,
and DBKI.

10.4.1".1 Synchronization Services. These services are involved in the ability
to synchronize the operations of other services, functions, processes, and/or
resources. Services such as distributed voting and remote resource allocation
will need to use these services to accomplish their required functionality.
Synchronization services are needed for both the LPOS's operation and the
control of the distributed system. Synchronization services may need to use
system monitoring services to adjust to system changes.

10.4.12.2 Scheduling Services. These services schedule or arbitrate the usage
of various resources of the NGCR OS, particularly the CPU. The scheduling
services must be able to queue up requests to use a particular resource. This
situation is made more complicated by the common need to schedule processes to
run cyclically at a fixed period. When a resource become idle, the scheduler
must select one of the "requestors" of the resource to grant use of the
resource. These services are listed separately rather than under the services
that use scheduling to emphasize that there should be uniformity and
consistency of scheduling across the range of resources.

Typically there are at least two types of scheduling occurring in an
operating system: shori term and long term. Long-term schedulers dctermine
which possible requestors at a given time may actually request a resource.
The short-term scheduler selects from among the active requestors who
currently have need of the resource and allocates the resource to the selected
requestor. For example, if the requestors are processes and the resource is
the CPU, then the long-term scheduler manages the movement of processes from
inactive (waiting in batch queues or in hibernation) to active (in wait or
execute). The short-term scheduler, on the other hand, would determine which
process should execute next on the CPU. Hybrid services between the two may
also be available in the operating system.

When a request for a resource is submitted to the operating system (at
some local operating system node), it is not always serviced at that local
node. The most advantageous way to service the request may result in part or
in all of the work being performed at a different processor node. Several
reasons may cause this to occur including load balancing, resource
availability, computation speedup, hardware preference, and software
preference. These services may hide from the application the fact that the
functionality was being performed at a different node. This has the advantage
that the code needs to know little about the system on which it is running.
Alternately, the services may allow the user to specify directly on which
logical resource the function should be executed.

The priority scheduling of resources allows the requestor to have
associated with it its importance to use the service. More complex schemes

10-32

also have a criticalness of the request that is used for graceful degradation
purposes. The scheduler(s) will use the priority information to arbitrate
resource requests and to queue requests in the specific order. A priority
scheduler may need to support multilevel queues to support proper execution.

Preemptive schedulers will deallocate a resource from a requestor when
certain events occur. Usually this is when a requestor of a higher priority
or importance requests the resource or when a specified time limit for the
resource has expired.

10.4.13 System !nitialization and Reinitialization Services

The service's interfaces are DBKI, GRKI, LANI, LDI, LHWI, OSOSI, PSEI,
and SAPI.

System initialization includes a complete restarting of the software,
starting up the attached hardware subsystems devices, doing subsystem and
system self-tests, and completely initializing the data base.

System reinitialization includes restarting the software while using the
existing data base information. The software may have to be reloaded and the
database may have been reestablished by a system recovery. Attached hardware
subsystems may also need to be reinitialized.

Reinitialization should include a function to restart applications
redistributed to oLhr processors after a processor module failure. Within a
processor, there should be a function to initialize applications in a system
with the existing software but with the data base reinitialized. Also within
a processor, there should be a function to restart the applications in a
system with the existing software and data base retained.

10.4.14 Time Services

The service's interfaces are ARTEI, LHWI, OSOSI, and SAPI.

The fllowing time management services are likely to be needed:

1. Local time of day, which includes the tim, based on a 24-hour or 12-
hour clock.

2. Measurement of elapsed time.

3. Distributed time that would be a capability to coordinate local time
of day maintained by any LPOS.

4. Requests that a process be delayed for a specified elapsed time.

5. Requests that a process be delayed until a specific time.

6. Requests for process notification at a specific time or after a
specified delay.

10-33

10.4.15 Ada Language Support Services

The service's interface is ARTEI.

These services support the use of the Ada programming language. This
section describes some special needs of the language that may be addressed by
services within the system.

10.4.15.1 Full Ada Language Support. While an NGCR OSIF Standard compliant
operating system may be implemented in various languages, it should support
the execution of programs written in Ada. At the least, this means that the
operating system together with the compiler's runtime library should include
all necessary parts of an ARTE.

For highest efficiency, some parts of the ARTE should be an integral part
of the operating system although the interface definition itself need not
depend on that integration. An example of an integration problem is that of
task scheduling. Many current implementations of an ARTE "on top of" an
existing operating system schedule Ada programs as single entities. If an Ada
task is running and becomes blocked, the OS does not consider other tasks in
that program for execution, but only considers other programs.

10.4.15.2 Exception Propagation to OS. When an exception from an application
or hardware event is propagated to an operating system, this service handles
the communication of ite event to the proper application routine.

10.4.15.3 Interrupt to ProcessMapping. When an interrupt occurs, this service
will ensure the correct mapping from interrupt to Ada task is made (even when
the interrupt and tasks are located on separate processor nodes of an SRAX
level distributed operating system).

10.4.15.4 PriGity. These services support the full priority semantics of the
Ada tasks.

10.4.15.5 Rendezvous. These services support the rendezvous of tasks (from
tasks being implemented as within one single process to tasks being
implemented as distributed processes).

10.4.16 Data Base Services

The data base management system in an embedded system has several
functions, including access control, consistency checks, maintaining
consistent copies for fault tolerance, and security. The need for data base
services as part of the OS arises because of the interaction of the DBMS need
for performance and multilevel security needs. If parts of the OS are part of
a T(O for a multilevel secure system, then the lower level parts of the DBMS

10-34

(the data base kernel) will have to be part of that TCB or be built "on top
of" the OS. The data base services may be specialized services for use to
support a DBMS or they may be of general use for application programs. The
NGCR Data Base Working Group has the responsibility for defining interfaces
for a full DBMS. Those applications that do not need a full DBMS may have
need for simple data base services in connection with the file system
services. These services may not be part of the NGCR OSIF Standard but may be
provided on a case-by-case basis by the implementors of integrated DBMS/OS
systems.

10.4.17 Graphics Kernel Services

The service's interface is GRKI.

This interface provides low-level access to graphics services. The NGCR
GLI may require low-level access for performance reasons. It is not clear at
this point whether the API will be sufficient for the needs of the GLI
implementation.

10.4.18 LPOS-to-LPOS Communication Services

The service's interfaces are OSOSI and SAPI.

These services support a standardized way of passing informiation between
LPOSes of NGCR opeating system(s). It is to be determined whether LPOSes
within an NGCR operating system implementation can be supplied by different
vendors and plugged into the NGCR operating system. If this is the case,
services must support a common set of protocols so that the LPOSes of the
system are able to coordinate services and resources with each other. This
coordination may be done all at the application level with various application
programs communicating with each other through their individual LPOS. This
would be fully supported by the SAPI. Alternately, the LPOSes could also
communicate and coordinate resource usage directly with each other by means of
the IRAX-SRAX hierarchy. This would provide the primitives for such services
as automatic dynamic load leveling and automatic reconfiguration. In either
case, the support of LPOS-to-LPOS communication will require a common set of
OS-level messages and protocols whether it is provided by the application, by
agreement of the vendors, or as part of the NGCR OSIF Standard.

10. 4.19 MMI Services

The service's interfaces are MMI, SAPI, and PS.

These services allow I/0 to be interchanged between the system and the
user of the embedded system through the SAI or PSEI in an efficient and
standardized way. Services that may be included are menu services, windowing
services, command-line services, parsing services, and pointer device
services. These services will interface with low-level device services as

10-35

needed, while presenting a higher level view to the human user. Higher level
interfaces for much of this set of services may be provided by the GLIWG of
NGCR rather than by the OSSWG.

10.4. 20 Target System Operator Services

The service's interfaces are SAPI and PSE.

The system operator needs to access and control the operating system to
allow the system to perform properly. If a system has an operator, the major
functions that need to be supported are system control, reconfiguration, and
status reporting. These services today are usually made available to an
operator through a command language interpreter, which is an application
program that calls these OS services.

Note that the MMI services provide the building blocks (menu utilities,
command parsers, etc.) for building the user interface while the target system
operator services make available system status and control functions to
appropriate application programs with the proper security level.

10.5 TARGET DOMAINS

The domains in which the NGCR OSIF Standard are expected to be used vary
greatly and in several different ways. This section discusses important ways
that the target systems differ and the major implications that these
differences may have on an operating system and on the NGCR OSIF Standard. It
is expected that there will be a need to tailor or subset the OSIF Standard
for particular target systems. One concept is that the OSIF Standard may not
be one standard but a family of standards, each member engineered for a
particular class of target systems but having much in common with other
members of the family of standards. Another concept for tailoring is that
there will be only one complete set of interfaces implemented with a small OS
core or kernel and a compilation system that links in with each application
only the functions or services needed by that application. A third tailoring
method could be to expect the OS vendors to provide an OS tailoring tool so
that a general OS can be tailored by the system engineer to fit the needs of a
particular target system.

Note that there are multiple dimensions along which OS needs vary. This
implies that there is no simple way to create a family of OS standards that
meets the needs of the different target domains and is also small in the
number of member standards.

10.5. 1 Target Processor Interconnection

The processor interconnection, i.e., the means of communication between
processors, can vary from a single processor system with no connection to
other processors to an LPOS system connected by means of a full network to
many other processors of various types.

10-36

10.5.1.1 Single-Processor Systems. In a single-processor system, the OS has
little if any need to support network communication services except as an
alternate API for IPC. If there is more than one program on the processor,
then some form of interprocess communication will often be needed to allow the
application programs to coordinate with each other.

10.5.1.2 MultiprocessorSystems. A multiprocessor system is one where multiple
processors share common memory. The sharing of common memory allows the
implementation of fast synchronization as well as fast communication between
processors. Many multiprocessor systems have local (or private) memory in
addition to the shared memory. This can increase the efficiency of execution
of programs, but having to support two varieties of memory can add to the
complexity of the OS.

10.5.1.3 Distributed Systems. A distributed system is one that has multiple
processors without any shared memory. There are three kinds of distribution,
but real systems are often complex combinations of the three kinds of
distributed and multiprocessor systems. The kinds of distribution are
classified according to the interconnection mechanism as follows:

• Backplane interconnection
* Local area network interconnection
* Full network interconnection.

10.5.1.3.1 Backplane Interconnection. Processors that are interconnected by a
high-speed backplane have a fast communication mechanism, but depend on the
capabilities of the backplane hardware for synchronization and communication.
The operating systems in a backplane interconnected system need to use more
complex synchronization techniques that tend to be somewhat slower than in
multiprocessor systems; however, the SAPI for those services may not differ.

10.5.1.3.2 LAN Interconnection. In an LAN interconnected system, the
processor-to-processor communication is by means of the LAN. This kind of
distribution is limited to processors that are on the same local network
without any storage of messages between nodes of the network. In this type of
system, the reliable communication needed for IPC can be achieved by use of
simple send and acknowledge schemes, although the communication speed adds
significant overhead time compared to backplane interconnection.

10.5.1.3.3 Full Network Interconnection. In a full network interconnected
system, there are multiple LANs or at least r,,ltiple LAN segments with bridges
and/or gateways that use store and forward communication schemes. The lack of
a direct network connection between processors significaiitlv increases the
complexity and overhead required to produce a reliable IPC. D'pending on the
organization of the SAPI, the difference in complexity may not be visible to
the application designer except in longer communication delays of a particular
implementation.

10-37

10.5.2 Security

A major goal of the NGCR program is to provide systems that can be used
to meet the security needs of the Navy. The security needs of a project vary
with the project and can be met in a variety of ways. For this model, the
security needs will be grouped according to the type of access control
required.

10.5.2.1 Targets with No Security Requirements. Man), Navy systems have no
special security requirements either because they do not process classified or
sensitive material or because they operate in facilities that meet the
security requirements with physical security alone. For these systems, the OS
would probably not implement the security services. For compatibility with
secure systems, however, there may be limits on the functionality provided by
the OS through the API.

10.5.2.2 Targets with DAC Requirements. Many non-embedded computer systems
provide some form of DAC, usually by means of passwords and file permissions.
DoD 5200-28.STD defines the classes of computer security or trustedness
provided by computer systems. Class C systems provide discretionary access
control, which is a means of restricting access to objects based on their
identity or on the identity of the groups to which they belong. Supporting
discretionary access controls requires that there be interfaces to the OS by
which the permissions, passwords, etc. can be changed. Also required is a
means of reporting or -ocessing access violations.

10.5.2.3 Targets with MAC Requirements. MAC is a means of restricting access
to objects based on the sensitivity of the information contained in the
objects and in the formal authorization of subjects to access information of
such sensitivity. MAC adds only minor interface requirements but can
significantly increase the amount of implicit services required of the OS.

10.5.3 Robustness

Robustness refers to how well the system can be expected to continue
operation and how quickly it can be repaired when some part malfunctions. It
also refers to features of a system that prevent unsafe actions from taking
place.

10.5.3.1 Reliability and Availability. Reliability and availability can be
achieved by fault avoidance or fault tolerance or both. Fault avoidance is
achieved by increasing the reliability of the hardware components and applying
conservative design practices. Fault avoidance is primarily achieved by means
of hardware design and formal methods for software design. Fault tolerance is
achieved by the use of redundancy and requires software support.

10-38

Fault tolerance is concerned with both data integrity and processing
integrity. Data integrity deals with providing survival of data when
components fail and is closely linked with data base system technology (data
replication, atomic transactions, etc.). Processing integrity tries to ensure
correct and continuous processing across instances of component failure.
Processing integrity is especially important in safety-critical real-time
systems.

10.5.3.2 Software Safety. Software safety has the goal of preventing any
unsafe action even in the face of incorrect software processing. Software
safety often involves independent monitors (either software or hardware) that
check the "reasonableness" of results or actions of the system.

10.5.3.3 Maintainability. Maintainability of a system describes how quickly
and correctly system errors or failures can be determined and corrected. The
OS can provide services that aid in maintainability including the logging of
system errors (hardware and software), reporting of built-in test results and
usage logs for scheduling preventative maintenance.

10. 5.4 Richness of the Set of OS Setvices

The target domains of the NGCR OSIF Standard vary in the number of OS
functions needed. A small, single-purpose system or one with an extreme
emphasis on perfoii.ance may need a very small, finely tuned OS; a general-
purpose system may need many services to be provided by the OS. This is
somewhat a matter of philosophy. One view is that the NGCR OSIF Standard
should be a minimal set of interfaces, leaving to the particular project the
job of implementing higher level functionality in a project-specific manner.
Another view holds that the NGCR OSIF Standard should be a full set of
interfaces so that there can be a large amount of software portability among
projects.

10.5.5 Real-Time Requirements

Real-time computing has time constraints, i.e., computing that involves
intricately intertwined computation deadlines (often imposed by external
stimuli) on short time scales. While the NGCR OSIF Standard are for embedded
systems, not all embedded systems have real-time requirements, and those
target systems with real-time requirements have various needs.

10.5.5.1 Non-Real-Time Target Systems. Some embedded systems are used for
appl icat ions that have no stringent I ime demands. Examples of these systems
include those used for planning and for maintenance support. These systems
still need an efficient, high-performance operating system but the correctness
of computat Ional results do not depend on their being available at a
partirular time.

10-39

10.5.5.2 Real-Time Target Systems. Rtal-time systems are probably the most
common targets for the NGCR OSIF Standard compliant operating systems.
Therefcre, the OSIF Standard must surely support the needs of embedded
real-time systems. Common OS real-time requirements include the ability to
specify a deadline for completion of a process, the ability to specify that a
process is to be run cyclically with a specific period, the ability to specify
that one process or program is more important to the system than another, and
the ability to rearrange the importance of processes or programs as the
operating mode of the system changes.

10.5.5.3 Critical-Time Target Systems. Critical-time targets are those that
have real-time response requirements that, if not met, result in system
failure. These systems may even require that results not arrive too early,
but precisely when they are needed. Examples of these target systems include
many safety critical systems such as flight control systems. To support these
target systems, the OSIF Standard will need to allow flexible and predictable
scheduling.

10-40

APPENDIX

OSIF GENERAL REQUIREMENTS AND INTERFACES

20-i

TABLE OF CONTENTS

Sect ion Page

20.1 GENERAL REQUIREMENTS .. 20-1
20.I.i Scope20-1
20.1.2 Design Obiectives ... 20-1
20.1.3 Basic Services .. 20-1
20.1.4 Architecture Independence 20-2
20.1.5 kiodulari~y20-2
20.1.6 Extensibility ... 20-3
20.1.7 Uniformity 20-3
20 1.8 Completeness .. 20-3
20.1.9 Language Independence20-4
20.1.10 Aca Languagt~ Binding Syntax20-4
20.1.11 Other Language Binding Syntax
20.1.12 Language Binding Syntax Uniformity 20-5
20.i.13 Language Binding Syntax Name Selection20-6
20.1.14 Syntactic Pragmatics ... LO ')
20.1.15 General Semantics ... 20-6
10-1.16 Semantic Consistency .. 20-7
20.1.17 Error Conditions .. 20-7
20.1.18 Semantic Cohesiveness .. 20-8
20.1.19 Semantic Pragmatics20-8
20.1.20 Reaction to Blocking Scrvices.................................i,
20.1.21 Bounded Operating Systems Services Times

and Context Switc'hing .. 20-9
20.1.22 Configurability**........................20-9
20.1.23 Transaction Sclieduling Information 2U-10
20.1.24 Access Control 20-10
20.1.25 Transparency ... 20-10
20.1.26 Resilience ... 20-11
20.1.27 Network Partition 20-11
20.1.28 Reeec..........................20-11
20.1.29 Reallocation 20-12

20.2 ARCITITECIURE-DEPENDENT INIERFACES '9-12
20.2.1 Non-NGCR System Interfaces 20-12

20.3 CAPABILITY AND SECURITY INTERFACES 20-13
20.3.1 Audit Data Storage ..20-13
20.3.2 Audit Generation ..20-13
20.3.3 Audit Record Contents ..2G- 14
20.3.4 Audit Data Manipulation 20-14
20.3.5 Device Labels .. 20-14
20.3.6 Basic DA(C..........................20-14
20-.3.7 l)AC Inclusion/Exclusion 20-15
20.3.8 DAC Propagation .. 01
20.3.9 Laheling of Export Channels 20-15
20.3.10 Setting Communication Labels20-16
20-3.11 Identification and Authentication 20-16

20-if

TABLE OF CONTENTS (Cont'd)

Sect iot, Page

20.3.12 Labeling of Human Readable Output 20-16
20.3.13 Subject and Object Labeling 20-17
20.3.14 Label Contents... 20-17
20 .3 15 MAC Fo licy 20-17
20.3 16 MAC Manipulations ... 20-18
20.3. 17 Object Reuse .. 20-18
20.3.18 User Notification of SenAtivitv Label 20-18
20.3.19 Sensitivity Label Query 20-18
20.3-20 System Integrity ... 20-19
20.3.21 Identification c. Users Based on Roles 20-19
20.3.22 Least Privilege ... 20-19
20.3.23 Trusted Path .. 20-20
20.3.24 Trusted Recovery .. 20-20

20.4 DATA INTECiHANGE INTERFACFS 20-20
20.4.1 Data Interchange Services (Data Format Conversion) 20-20

20.5 EVENT AND ERROR INTE!FACES 20-21
20.5.1 Event and Error Receipt 20-21
20.5.2 Event and Error Distribution 20-21
20.5.3 Event anl Error Management 20-21
20.5.4 Event Logging ... 20-22
20.5.5 Enable/Disable Interrupts 20-22
2(.5.6 Mask/Unmask Interrupts 20-22

20.6 FILE INTERFACES ... 20-23
20.6.: Contiguous Read of a File 20-23
20.6.2 Protect an Area Within a File 20-23
20.6.3 File Management Scheduling 20-23
20.7 4 File Management Suspend/Resume for Process 20-24
20.6.5 File Maragenent Block Pequests 20-24
20.6.6 Round-Robin File Managemat 20-24
20.6 .7 Open a F ile 20-25
20.6.8 Point W ithin a File ... 20-25
20 .6 .9 Re ' a File ... 20-25
20 .6 .10 C lose a File .. 20-26
20 .6 .11 De le te a F ile ... 20-26
20.6.12 Create a Director,... 20-26
20.6.13 Specifying Default Directory 20-26
20-6.14 Delete a Directory ... 20-27
20.6.15 Shadow Files ... 20-27
20.6.16 Create a File ... 20-27
20 .6 .17 Query File Attributes 20-28
,9.6.18 Modify File Attributes 20-28

20.6.19 Write a Vile 20-'18
20.6.20 Write Contiguous -t File 20-29

20-iii

TABLE OF CONTENTS (Cont'd)

Section Page

20.7 GENERALIZED I/0 INTERFACES 20-29
20.7.1 Device-Driver Availability 20-29
20.7.2 Open Device ... 20-29
20 .7 3 C lose Dev ice .. 20-30
20.7.4 Transmit Data ... 20-30
20.7.5 Receive Data ... 20-30
20.7.6 Device Event Notification 20-31
20.7.7 Control Device .. 20-31
20.7.8 1/0 Directory Services .. 20-31
20.7.9 Device Management Suspend/Resume for Processes 20-32
20.7.10 Mount/Dismount Device ... 20-32
20.7.11 Initialize/Purge Device 20-32

20.8 NETWORK AND COMMUNICATIONS INTERFACES 20-33
20.8.1 Interface to and Control of Navy Standard Interprocessing

Un it Buses .. 20-33
20.8.2 Interfaces to and Control of Other Network and

Communication Entities 20-34
20.8.3 Reliable Virtual Circuit Communications 20-34
20.8.4 Unreliable Virtual Circuit Communications 20-35
20.8.5 Reliable Datagram Transfer 20-35
20.8.6 Unreliable Datagram Transfer 20-35
20.8.7 Request-Reply Service ... 20-35
20.8.8 Unreliable Broadcast/Multicast Service 20-36
20.8.9 Reliable Broadcast/Multicast Services 20-36
20.8.10 Atomic Broadcast/Multicast Services 20-36

20.9 PROCESS MANAGEMENT INTERFACES 20-37
20.9.1 Create Process .. 20-37
20.9.2 Terminate Process ... 20-37
20 .9 .3 Start Process ... 20-37
20 .9 .4 Stop Process .. 20-38
20.9.5 Suspend Process ... 20-38
20.9.6 Resume Process .. 20-38
20.9.7 Delay Process .. 20-39
20.9.8 Interprocess Communication 20-39
20.9.9 Examine Process Attributes 20-39
20.9.10 Modify Process Attributes 20-40
20.9.11 Examine Process Status....................................... 20-40
20.9.12 Process Identification .. 20-40
20.9.13 Save/Restart Process ... 20-40
20.9.14 Program Management Funct ion 20-41

20 .10 PSE INTERFACES .. 20-41
20 .10.1 Debug Support 20-41
20 .10 .2 Execution H istorY ... 20-43

20-iv

TABLE OF CONTENTS (Cont'd)

Sect ion Page

20.11 RELIABILITY, ADAPTABILITY, AND MAINTAINABILITY INTERFACES 20-43
20.11.1 Fault Information Collection 20-43
20.il.2 Fault Information Request 20-44
20.11.3 Diagnostic Tests Request 20-44
20.11.4 Diagnostic Tests Results 20-44
20.11.5 Operational Status .. 20-45
20.11.6 Fault Detection Thresholds 20-45
20.11.7 Fault Isolation ... 20-45
20.11.8 Fault Response .. 20-46
20.11.9 Reconfiguration ... 20-46
20.11.10 Enable/Disable System Component 20-47
20.11.11 Performance Monitoring .. 20-47
20.11.12 Set Resource Utilization Limits 20-47
20.11.13 Resource Utilization Limits Violation 20-47
20.11.14 Checkpoint Data Structures 20-48

20.12 RESOURCE MANAGEMENT INTERFACES 20-48
20.12.1 Virtual Memory Support .. 20-4
20.12.2 Virtual Space Locking ... 20-48
20.12.3 Dynamic Memory Allocation and Deallocation 20-49
20.12.4 Dynami Memory Protection 20-49
20.12.5 Shared Memory ... 20-50
20.12.6 Allocate, Deallocate, Mount, and Dismount Services 20-50
20.12.7 Designate Control ... 20-50
20.12.8 Release Control ... 20-51
20.12.9 A llocate Resource ... 20-51
20.12.10 Deallocate Resource .. 20-51
20.12.11 System Resource Requirements Specification 20-52
20.12.12 System Resource Capacity 20-52

20.13 SYNCHRONIZATION AND SCHEDULING INTERFACES 20-52
20.13.1 Process Synchronization 20-52
20 .13 .2 Mutua l Exc lusion .. 20-53
20.13.3 Cumulative Execution Time of a Process 20-53
20.13.4 Attach a Process to an Event 20-53
20. 13.5 Transaction Scheduling Information 20-54
20. 13.6 Schedul ing Delay. 20-54
20. 13.7 Periodic Scheduling ... 20-54
20 13.8 MU! I tiple Scheduling Pol icies 20-55
20. 13.9 Selection of a Schedu'ling Policy.............................. 20-55
20. 13. 10 Modi fica Iion of Scheduling Parameters 20-55
20. 13. 11 Pr2c i se Scheduling (JiIter Management)........................ 20-56

20 14 S'YS]M INIIIAL IZATION ANI) R INIII IAL I ZAnION INIERFA(ES 20-50
20 14 . Image Load 20-56
20. 14.2 System Initializalion and Reinitialization 20-56
20. 14.3 Shu t down 20-57

20-v

TABLE OF CONTENTS (Cont'd)

Sect ion Page

20.15 TIME SERVICES INTERFACES 20-57
20.15.1 Read Selected Clock............ 20-57
20,15.2 Set Selected Clock ... 20-57
20.15.3 Synchronization of Selected Clocks..................... 20-58
20.15.4 Select a Primary Reference Clock............................ 20-58
20.15.5 Locate the Primary Reference Clock 20-59
20.15.6 Timer Services... 20-59
20.15.7 Precision Clock.. 20-59

20.16 ADA LANGUAGE SUPPORT INTERFACES............................. 20-60
20.16.1 Create Task.. 20-60
20.16.2 Abort Task... 20-60
20.16.3 Suspend Task... 20-60
20.16.4 Resume Task.. 20-61
20.16.5 Terminate Task... 20-61
20.16.6 Restart Task... 20-61
20.16.7 Task Entry Calls ... 20-62
20.16.8 Task Call Accepting/Selecting............................... 20-62
20.16.9 Access Task Characteristics................................. 20-62
20.16.10 Monitor Task's Execution Status............................. 20-63
20.16.11 Access to a Precise Real-Time Clock 20-63
20.16.12 Access to a 0)D Clock............... 20-63
20.16.13 Dynamic Task Priorities 20-64
20.16.14 Scheduling Policy Selection................................. 20-64
20.16.15 Memory Allocation and Deallocation 20-64
20.16.16 Interrupt Binding .. 20-65
20.16.17 Enable/Disable Interrupts................................... 20-65
20.16.18 Mask/Unmask Interrupts 20-65
20.16.19 Raise Exception.. 20-66
20.16.20 I/0 Support.. 20-66

20.1 GENERAL REQUIREMENTS

20.1.1 Scope

20.11.1 Definition. The OSIF shall provide interfaces sufficient to support
a wide range of Navy target applications.

20.1.1.2 Metric. To be determined.

20.1.1.3 Rationale. It is intended that the OSIF will be used by applications
from missile guidance systems to large command and control systems to
completely integrated platforms. This range of target applications is very
demanding, and it is known that there is no one operating system that can
satisfy all possible application systems. The goal of the NGCR OSIF is to
satisfy the needs of this range of application domains. Therefore, the
concerns of this range will take highest priority in determining the
appropriate features of the OSIF.

20.1. 2 Design Objectives

20.1.2.1 Definition. I'he OSIF should provide interfaces sufficient to promote
compatibility, interoperability, transportability, and reusability between
applications and maintainability of applications.

20.1.2.2 Metric. To be determined.

20.1.2.3 Rationale. This requirement addresses the reasoning behind the
development of the OSIF. These are the qualities that are desired in
applications and that can be promoted by the OSIF. Interoperability is the
ability of two applications to share data. Transportability is the ability to
move an application from one implementation of the OSIF to another with
minimal changes to the source code. Reusability is the ability to reuse
portions of one application's source code or other pertinent aspects (e.g.,
design, tests) in the generation of another application. Compatibility is the
general ability of two applications to coordinate with one another in their
operation, even if they were not originally designed to do so. Maintainability
addresses the qualities that improve the ability to maintain the application.

20.1.3 Basic Servic(,s

20.1.3.1 Definition. The OSIF should provide simple-to-use mechanisms for
achieving common, simple actions. Facilities that support less frequently
used feat ires should he given secondary consideration.

20-1

20.1.3.2 Metric. To be determined.

20.1.3.3 Rationale. The OSIF should be understandable and usable. Thus, this
requirement encourages the selection of a set of interfaces where the
frequently used ones (at compilation time) are simple to use, possibly at the
expense of less frequently used facilities being more difficult to invoke.
This requirement also suggests concentration on supporting those application
actions that are likely to have the broadest use.

20.1.4 Architecture Independence

20.1.4.1 Definition. The OSIF shall be machine-independent and implementa-
tion-independent. The OSIF shall be implementable on a wide variety of
processors, configurations, and architectures.

20.1.4.2 Metric. To be determined.

20.1.4.3 Rationale. The OSIF must depend on no properties of specific
computers and on no properties of specific implementations. The features
should also be chosen to have a simple and efficient implementation in many
machines and hardware architectures and configurations (including distributed
configurations). Tran ;portability can only be achieved where the OSIF itself
can be implemented on a wide range of machines without revealing or relying on
machine or implementation dependencies.

20.1.5 Modularity

20.1.5.1 Definition. The OSIF should be partitioned so that the partitions
can be understood independently.

20.1.5.2 Metric. To be determined.

20.1.5.3 Rationale. This criterion promotes understandability and permits
application writers to employ a subset of the OSIF, which will be important
for many applications. It should be noted that there can be multiple versions
of some partitions within the standard. Independent understanding implies
that there should be no undocumented dependencies between partitions.

20-2

20.1.6 Extensibility

20.1.6.1 Definition. The OSIF should facilitate development and use of
extensions of the OSIF; e.g., OSIF interfaces should be composable so that
they can be combined to create new interfaces and facilities, or it should be
possible to add new interfaces for new functions.

20.1.6.2 Metric. To be determined.

20.1.6.3 Rationale. The state-of-the-art and the state-of-the-practice in
computer technology are rapidly changing. It is impossible to fully list all
interfaces that will be required in all future application domains.
Therefore, the list of specialized interfaces must be extensible.

20.1.7 Uniformity

20.1.7.1 Definition. The OSIF should be based on a consistent set of unifying
well-defined conceptual models. All OSIF features should uniformly address
aspects such as status return, exceptional conditions, parameter types, and
options.

20.1.7.2 Metric. To be determined.

20.1.7.3 Rationale. The design of the OSIF should minimize the number of
underlying concepts and unifying principles. A unifying princip!e is a model
that unifies (a subset of) the interfaces. It should have few special cases
and should consist of features that are individually simple. These models
should also be consistent with one another. However, these objectives are not
to be pursued to the extreme of providing inconvenient mechanisms for the
expression of common, reasonable actions.

20.1.8 Completeness

20.1.8.1 Definition. The OSIF should provide a complete set of facilities for
all elements of its underlying conceptual models.

20.1.8.2 Metric. To be determined.

20.1.8.3 Rationale. Because one of the major goals of the OSIF is
transportability, it must provide a sufficient set of facilities to support
applications so they do not have to use facilities outside of the OSIF.

20-3

Although it is desirable that the OSIF be complete and provide all facilities
for applications, a requirement that mandates all facilities for all
applications is recognized to be unachievable in practice. The goal for OSIF
should be to optimize the degree of completeness, compromising between all
possible facilities and those that can be implemented widely. The things
within the conceptual models of the OSIF can, in all probability, be
manipulated only by the OSIF interfaces. Hence, all desired manipulations
must be catered for by the OSIF. Simple manipulation examples are:

1. If there is a facility to create something, then there should also be
a facility to delete it.

2. If there is a facility to set a value, then there should also be a
facility to examine it.

20.1.9 Language Independence

20.1.9.1 Definition. The OSIF should include a clear description of its
interfaces that is independent of any particular programming language binding.

20.1.9.2 Metric. To be determined.

20.1.9.3 Rationale. Although Ada is the language of primary interest to the
Navy, other languages will also be important . For example, the NGCR
objective of being able to purchase commercial off-the-shelf components often
involves such popular languages as "C" and Navy systems in the 21st century
might well incorporate intelligent subsystems that are written in popular
artificial intelligence languages. The best way to evolve a standard that can
withstand such demands is to develop the services in a language-independent
way, thus allowing the development of any number of compatible language
bindings. To achieve this, the basic description must be complete, consistent,
unambiguous, and abstracted away from the details of any particular
programming languages, but capable of accommodating a variety of languages.

20. 1. 10 Ada Language Binding Syntax

20.1.10.1 Definition. The OSIF shall have an Ada language binding consistent
with the language independent model. The OSIF Ada binding syntax shall be
expressed as Ada package specifications, as defined by the "Ada Language
Reference Manual" (ANSI/MIL-STD-1815A-1983). (This will be referred to as the
Ada LRM for the remainder of this appendix.) It shall provide a fuliy
documented interface from Ada to all operating system facilities for which
there is no appropriate Ada language construct.

29.1.10.2 Metric. To be determined.

20-4

20.1.10.3 Rationale. The interface should be fully specified in Ada (possibly
in addition to other languages) to prevent ambiguities from arising concerning
ho% the specification language maps to Ada. All ambiguities in specification
will result in reduced portability. There will be many interfaces that
provide facilities that are not directly supported by the Ada language, and it
will be necessary for an application to have access to these. It must be easy
for the Ada programmer to gain access to these facilities.

20. 1. 11 Other Language Binding Syntax

20.1.11.1 Definition. The OSIF should have a variety of language bindings,
consistent with the language independent model. The syntax of each shall be
presented in a manner consistent with good practice for that language.

20.1.11.2 Metric. To be determined.

20.1.11.3 Rationale. A number of language bindings other than Ada will also
be desirable. Each should exhibit good style for that language and be
presented according to the accepted standard for the language, if such a
standard exists.

20.1.12 Ianguage tinding Syntax Lniformity

20.1.12.1 Definition. Each OSIF language binding should employ uniform
syntactic conventions and should not provide several notations for the same
concept.

20.1.12.2 Metric. To be determined.

20.1.12.3 Rationale. OSIF language binding syntax issues (including, at
least, limits on name lengths, abbreviation styles, other naming conventions,
and the relative ordering of input and output parameters) should be resolved
in a uniform and integrated manner for the whole OSIF language binding. Under-
standability and usability of the OSIF are the intents of this criterion.
Users should not have to unnecessarily learn different syntactic approaches
for using different OSIF features. The use of several notations for the same
concept leads to confusion, and non-uniformity is a recipe for errors in use
and difficulty in production of applications.

20-5

20.1.13 Language Binding Syntax Name Selection

20.1.13.1 Definition. The OSIF language bindings should avoid coining new
words (literals or identifiers) and should avoid using words in an
unconventional sense. Identifiers (variable names) defined by the OSIF
language bindings should be natural-language words or industry-accepted terms
whenever possible. The language bindings should define identifiers that are
visually distinct and not easily confused. The language bindings should use
the same name everywhere in the interface set, and not its possible synonyms,
when the same meaning is intended.

20.1.13 2 Metric. To be determined.

20.1.13.3 Rationale. Understandability of the OSIF specification is the
intent of this criterion.

20.1.14 Syntactic Pragmatics

20.1.14.1 Definition. The OSIF language bindings should impose only those
restrictive rules or constraints required to support the design objectives
(refer to section ?01.2).

20.1.14.2 Metric. To be determined.

20.1.14.3 Rationale. Although it would be ideal if no such restrictions were
required, practical considerations dictate that some limits will exist in all
implementations. Where necessary to support the design objectives, such
restrictions should be clearly articulated by the OSIF specification. If they
are not necessary to support the design objectives (e.g., if they are present
for the convenience of the OSIF or its implementers), then they are not
desirable in the OSIF.

20.1.15 General Semantics

20.1.15.1 Definition. The OSIF should be completely and unambiguously
defined. The specification of semantics should be both precise and
understandable. The semantic specification of each OSIF interface shall
include a precise statement of assumptions (including execution-time
preconditions for calls), effects or global data and services, and
interactions with other interfaces.

20.1.15.2 Metric. To be determiied.

20-6

20.1.15.3 Rationale. This is a call for adequate, usable documentation. It
is critical for the ability of independent vendors to develop implementations
that can be used readily, both alone and together. Note that the requirement
does not prescribe the degree of formality of the language to be used for
specifying the OSIF semantics, admitting options from free-form English (as
long as it is complete and precise) to a formal semantics specification
approach.

20.1.16 Semantic Consistency

20.1.16.1 Definition. The description of OSIF semantics should use the same
word or phrase everywhere, and not its possible synonyms, when the same
meaning is intended.

20.1.16.2 Metric. To be determined.

20.1.16.3 Rationale. The use of synonyms, while desirable in novels, has no
place in technical documents and only leads to confusion.

20.1.17 Error Conditions

20.1.17.1 Definition. The OSIF language bindings shall employ appropriate
mechanisms to report exceptional situations that arise in the execution of
OSIF facilities. The OSIF specifications shall include error conditions for
all situations that violate the preconditions specified for the OSIF
interface. The OSIF specification shall define error conditions that cover
all violations of implementation-defined restrictions.

20.1.17.2 Metric. To be determined.

26.1.17.3 Rationale. This requirement demands that the OSIF provide the means
for the implementation to inform the user (i.e., an application) whenever an
operation does not complete normally; this allows the application to take
appropriate action. The use of the Ada exception mechanism is expected for
the Ada language binding. However, use of the exception mechanism does not
preclude the use of status return values by an Ada binding to provide
supporting diagnostic information. Thus, it would be possible to have a
single exception representing a number of different (but related) error
conditions, with the identification of the specific error condition by use of
some status parameter.

20-7

20.1.18 Semantic Cohesiveness

20.1.18.1 Definition. Each OSIF interface should provide only one function.

20.1.18.2 Metric. To be determined.

20.1.18.3 Rationale. This criterion is a statement of the basic principle of
software cohesion. It should be interpreted as making undesirable an
interface design with a small number of entry points, with each entry point
delivering a range of dissimilar services, and with particular services being
selected dynamically by the value of one or more of the parameters. Such a
design would almost certainly not provide simple-to-use interfaces for
performing simple, common actions. While there can always be instances argued
where one person views as several (sub)functions what someone else views as an
atomic function, this should be the exception rather than the rule. The
overloading of subprogram names allowing the selection of different subprograms
depending on the types of the parameters is acceptable. Such an approach has
the advantage of reducing the number of unique subprogram names within the
OSIF. When used to extreme, overloading can lead to a reduction in the
clarity of the OSIF and should be used with care.

20.1.19 Semantic Pragmatics

20.1.19.1 Definition. The OSIF specification shall enumerate all aspects of
the meanings of OSIF interfaces and facilities that must be defined by OSIF
implementers. OSIF implementers will be required to provide the complete
specifications for these implementation-defined semantics.

20.1.19.2 Metric. To be determined.

20.1.19.3 Rationale. This calls for the equivalent of appendix F of the Ada
LRM, containing a list of specific sections or aspects of the OSIF
specification where implementation dependencies (presumably caused by machine
dependencies) are allowed to affect OSIF semantics. This list needs to be
accompanied by a statement that no other implementation dependencies are
allowed other than those listed, and that each OSIF implementation must
include documentation stating the implementation characteristics for each item
on the list.

20.1.20 Reaction to Blocking Serices

20.1.20.1 Definition. The OSIF shall define what happens if a process calls
on a service and that service cannot be completed in a timely manner.

20-8

20.1.20.2 Metric. To be determined.

20.1.20.3 Rationale. An application process may request an OS service that
can be initiated immediately, but will not be completed until some later time.
Examples would be delay services, I/O services on a device, file I/O services
when system buffers are empty or full, and synchronization services. In these
circumstances, the OSIF must define the effect on the requesting process and
the overall effect on the scheduling of the requesting CPU. Many applications
will require blocking of the requesting process, to allow other processes to
use this CPU as defined by the scheduling algorithm; other applications may
require that the requesting process continue to execute in parallel with the
requested service (possibly being notified when the service is complete) or be
notified that the service cannot be provided immediately (the application
would repeat the request later).

20.1.21 Bounded Operating Systems Services Times and Context Switching

20.1.21.1 Definition. The OSIF shall support the prediction of operating
system service completion times. The OSIF shall be implementable such that
these service times are bounded. The OSIF implementer will be required to
document the service times.

20.1.21.2 Metric. lo be determined.

20.1.21.3 Rationale. To determine performance with any degree of precision,
it is necessary to have a bound on the time necessary for a requested
operating system service to complete and to have access to the necessary
information for the prediction of completion times. It is also important that
the OSIF allow bounded service times that are implementable and predictable
for a given OSIF implementation.

20.1.22 Configurahility

20.1.22.1 Definition. The OSIF shall be implementable so that application
projects have the ability to configure the implementation to be optimal for
the specific application.

20.1.22.2 Metric. To he deetermined.

20.1.22.3 Rationale. In certain situations, the user of an operating system
will want to emphasize certain aspects of the operating system that, in other
situations, the user (or another user) may wish to de-emphasize. Toward that
end, the user must be able to configure the OSIF implementation and, for

20-9

example, to select from a variety of scheduling options and synchronization
mechanisms. There must be minimal penalty in space or time for services not
used, and optimization for certain patterns of usage must be available.

20.1.23 Transaction Scheduling Information

20.1.23.1 Definition. The OSIF shall provide the ability for a process to
specify its response requirements for services.

20.1.23.2 Metric. To be determined.

20.1.23.3 Rationale. Many forms of application processing for hard real-time
systems need to be scheduled in a manner necessary to meet the response
requirements of all transactions, as well as the response requirement of all
the application tasks co-resident with it. This service is not necessarily
provided simply by the ability to dynamically set priorities.

20.1.24 Access Control

20.1.24.1 Definition. The OSIF shall provide a mechanism to allow only certain
subjects (i.e., processe) to make use of particular objects (e.g., files,
devices). That is, access to certain objects may be limited to only certain
application software entities.

20.1.24.2 Metric. To be determined.

20.1.24.3 Rationale. A means must be provided to limit the access to certain
system objects (e.g., files, devices or ports) to only those software entities
with sufficient privileges. A mechanism that achieves this on a limited,
predefined basis for only some objects would not completely fulfill this
requirement.

20.1. 25 Transparency

20.1.25.1 Definition. The OSIF shall provide for the identification of and
the access to processes and data, irrespective of their physical location.

20.1.25.2 Metric. To be determined.

20-10

20.1.25.3 Rationale. For many applications, it will be necessary (or at least
desirable) to be ablk to access processes and data by use of logical names
rather than by use ol pl;,sical location. Note that this requirement does not
preclude other access methods that do relate to physical location.

20. 1.26 Resilience

20.t.26.1 Definition. The OSIF -hal! be implementable so that, when physical
resources arc lost, OSIF facilities that do not depend on these resources may
continue to be used.

20.1.26.2 Metric. To be determined.

26.1.26.3 Rationale. This requirement is intended to preclcde the design of
an OS1F such that the operation of an implementation must be dependent on the
availability of the complete set of resources.

20. 1.27 Network Partition

20.1.27.1 Definition. The OSIF shall be implementable so that partitions of
the set (e.g., ne,-.ork) of physical resources can usefully work in isolation
and the partitions may be rejoined after recovery.

20.1.27.2 Metric. To be determined.

20.1.27.3 Rationale. This requirement is primarily concerned with the support
for an OSIF implementation that is based on a distributed architecture. An
OSIF implementation that could only operate when ail processors and inter-
connections were available would be at a severe disadvantage. If a network
fragments, then each segment that has sufficient resources to continue
operation should do so. The OSIF must also facilitate subsequent reinte-
gration of the network allowing the partial fragments to oe recombined. The
OSIF should not be defined such that the only possible distributed implement-
ation would be one that depended on a single system-wide resource for its
operation.

20.1.28 Reference

20.1.28.1 Definition. The OSIF shall provide a means to refer to distinct
physical resources (e.g., computational, storage) that are used to implement
specific OSIF facilities.

20-11

20.1.28.2 Metric. To be determined.

20.1.28.3 Rationale. Although physical distribution may be transparent to
most applications, there are circumstances under which specific parts of
applications (most notably those concerned with system status and fault
tolerance) may require or have knowledge about the allocation of application
components to equipment in the underlying computer configuration. This
requirement states that there must be a means for applications to be built to
take advantage of such knowledge. Note that these capabilities will always be
optional OSIF features in the sense that applications may choose never to
reference physical resources and always to leave their mappings (and even the
possibility of distributed implementations) up to OSIF implementers.
Application writers should also be aware of possible sacrifices in
transportability when using such features.

20. 1 .29 Reallocation

20.1.29.1 Definition. The OSIF shall provide a means to control (or
influence) the manner in which the physical resources are associated with
specific OSIF facilities.

20..2.2 Metric. To 4- determined.

20.1.29.3 Rationale. Certain applications may require particular operations
to dvnamically control the allocation of application components to underlying
equipment in distributed configurations. This requirement states that there
must be a means for applications to be built with such capability. Note that
these capabilities will always be optional OSIF features in the sense that
applications may choose never to reference physical resources and always to
leave their mappings (and even the possibility of distributed implementations)
up to OSIF implementers. Application writers should also be aware of possible
sacrifices in transportability when using such features.

20.2 ARCH I TECTIIRE-DEPENDENT INTERFACES

20.2 I N'on -NW(iR .vstem Interfaces

20.2.1. I)efinition. The OSIF shall support non-NC(R-hased systems by
prov iding si ohse i of i t s serv i 'e(I o t ho ne sv tems. As a minimum, this
s et Vall iWH ,ide:

* fh¢;wu u~; i i al i 7e, s I art , and stop services

*hi IX i . share resources, part icularly -r;heral devices

2n- 12

" Process-to-process message communication

" Ability to pass operational status information.

20.2.1.2 Metric. To be determined.

20.2.1.3 Rationale. The Navy has a large investment in existing non-NGRl.-
based systems. These systems will continue to be in use for years to come and
will need to interface, to some degree, with NGCR-based systems. Additionally,
non-NCCR-based systems may need a method to gracefully transition to NGCR-based
systems. The NGCR-systems will be required to accommodate interfacing to and
evolution of the non-NGCR-based systems.

20.3 CAPABILITY AND SECURITY INTERFACES

20.3.1 A udit Data Storage

20.3.1.1 Definition. The OSIF shall support the storage and maintainability
of audit data.

20.3.1.2 Metric. io be determined.

20.3.1.3 Rationale. The Trusted Computer Systems Evaluation (TCSEC) (DoD
5200.28-STD) requires storage and maintenance of audit data for all systems at
level C2 and above. This requirement does not specify what events are
recorded in the log, which is implementation specific.

20.3.2 Audit Generation

20.3.2.1 Definition. The OSIF shall support generation of audit records.

20.3.2.2 Metric. To be determined.

2). 3.2.3 Rationale. [Ie ICSLC requi res the capability to generate audit
records for all systems at level (2 and above. This requirement does not
spec fy Whether an privi ieges are requi red to use this feature.

20-13

20.3.3 Audit Record Contents

20.3.3.1 Definition. The OSIF shall support generation of audit records that
uniquely identify the subject, event, and object being operated on.

20.3.3.2 Metric. To be determined.

20.3.3.3 Rationale. The TCSEC requires ihat data in the audit trail contain
specific information that is used to identify the subject (e.g., process and
user ID), object (e.g., data file), and the event that caused the audit record
to be generated.

20.3.4 Audit Data Manipulation

20.3.4.1 Definition. The (SIF shall support the manipulation of audit data.

20.3.4.2 Metric. To be determined.

20.3.4.3 Rationale. -he TCSEC requires facilities to manipulate audit data
for all systems at level C2 and above. Such facilities may include audit data
analyzers and report generators.

20.3.5 Device Labels

20.3.5.1 Definition. The OSIF shall support the assignment of minimum and
maximum security levels to all devices.

20.3.5.2 Metric. To be determined.

20.3.5.3 Rationale. The TCSEC requires that all devices have minimum and
maximum security levels for all systems at level B2 or above. This
requirement includes both physical devices (e.g., disks, terminals) and
logical devices (e.g., interprocess communication).

?0.3.6 Baci. DAC

20.3.6.1 Definition. The OSIF shall support a mechanism for the enforcement
of discretionary access control (DAC; based on users and groups.

20-14

20.3.6.2 Metric. To be determined.

20.3.6.3 Rationale. The TCSEC requires that minimal DAC facilities for level
C2 include enforcement based on a user and group mechanism. or for levels B3
and above, the requirement is for access control lists (ACLs).

20.3. 7 DA C Inclusion/Exclusion

23-.3.7.A Definition. The OSIF shall support the manipulation of access rights
to specifically include or exclude access based on users or groups.

20.3.7.2 Metric. To be determined.

20.3.7.3 Rationale. The TCSEC requires that the DAC mechanism specifically
allow for inclusion based on individual users or groups for levels C2 and
above. For levels B3 and above, the TCSEC also requires that the DAC
mechanism allow for exclusion based on individual users or groups.

20. 3.S DAC Propagation

20.3.8.1 Definition. The OSIF shall provide controls to limit propagation of
access rights.

20.3.8.2 Metric. To be determined.

20.3.8.3 Rationale. The TCSEC requires that DAC rights granted to a user or
group not be propagated to another user or group. In general, this is
interpreted to wean that only the owner of an object (or a privileged user)
may change the DAC on that object. This facility is required for security
levels C2 and above.

20.3.9 Labeling of Export Channels

20.3.9.1 Definition. The OSIF shall support the restriction of the set of
labels to be exported over each export channel.

20.3.9.2 Metric. To be determined.

20-15

20.3.9.3 Rationale. The TCSEC requires labeling of all imported and exported
data. Further, it requires restrictions on labels exported over each export
channe:. It also requires that labels be retained with the data exported.
This facility is required at systems rated BI or above.

20.3.10 Setting Communication Labels

20.3.10.1 Definition. The OSIF shall support features to set or change each
communication channel and 1/0 device to either single level or multilevel.

20.3.10.2 Metric. To be determined.

20.3.10.3 Rationale. The TCSEC requires that communications channels and I/0
devices (e.g., tape and disk drives) be marked as single level or multilevel,
and provide mechanisms to set or change that marking. This facility is
required for systems rated B1 or above.

20.3.11 Identification and Authentication

20.3.11.1 Definition. The OSIF shall provide a protected mechanism to
uniquely authenticate 'he identity of the user.

20.3.11.2 Metric. To be determined.

20.3.11.3 Rationale. The TCSEC requires that a sign-on procedure be used to
uniquely identify users. The technology required is not specified, although
it is typically a user ID and password. Storage of authentication data must
be protected (e.g., protection of passwords). This facility is required for
all secure systems.

20.3.12 Labeling of Human Readable Output

20.3.12.1 Definition. The OSIF shall support the marking of human readable
sensitivity labels on all human readable output.

20.3.12.2 Metric. To be determined.

20.3.12.3 Rationale. The TCSEC requires labeling of all human readable
output. Tnis typically means labeling the top and bottom

20-16

of each page o haid cupy output. This facility is required for all systems

at levels BI and above.

20.3.13 Subject and Object Labeling

20.3.13.1 Definition. Th2 OSIF shall support labeling (i.e., setting and
changing) of each subject and object.

20.3.13.2 Metric. To be determined.

20.3.13.3 Rationale. The TCSEC requires that each subject and object in the
system be labeled. This facility is required of all systems at levels BI and
above.

20. 3. 14 Label Contents

20.3.14.1 Definition. The OSIF shall support the definition of a label for
the system (i.e., classification, categories, markings, and special handling
designators).

20.3.14.2 Metric. To be determined.

20.3.14.3 Rationale. The TCSEC requires labels contain classifications and
categories at the BI level and above. Markings and special handling
requirements are not explicitly required by TCSEC.

20.3.15 MAC Policy

20.3.15.1 Definition. The OSIF shall support a security policy based on
subject and object labels.

20.3.15.2 Metric. To h determined.

20.3.15.3 Rationale. The TCSEC requires that a policy exist and be enforced
regarding access to subjects and objects based on a security policy. This
requirement does not specify what the policy should be However, the TCSEC
specifies characteristics of the policy (e.g., no write-down, no read-up, use
of classifications and categories).

20-17

20.3.16 MAC Manipuilations

20.3.16.1 Definition. The OSIF shall support the manipulation of labels based
on the security policy.

20.3.16.2 Metric. To be determined.

20.3.16.3 Rationale. The TCSEC requires that all manipulation of MAC labels
be in accordance with the security policy for systems at level BI or above.

20.3.17 Object Reuse

20.3.17.1 Definition. The OSIF shall provide that all objects are sanitized

prior to allocation to a user.

20.3.17.2 Metric. To be determined.

20.3.17.3 Rationale. The TCSEC requires such sanitization of all objects in
the system to prevent inauthorized disclosure of information. Note that
"objects" in this case refer to hardware elements (e.g., registers and memory)
in addition to traditional objects such as files and disk space. This
facility is required for sy.tems at levels C2 or above.

20.3.18 User Notification of Sensitivity Label

20.3.18.1 Definition. The OSIF shall support the prompt notification to a
terminal user of each change in security level associated with that user
during an interactive session.

20.3.18.2 Metric. To be determined.

20.3.18.3 Rationale. The TCSEC requires that the user be notified of such
changes for levels B2 and above.

20.3.19 Sensitivity Label Query

20.3.19.1 Definition. The OSIF shall support the user's query of the subject's
complete sensitivity label.

20-18

20.3.19.2 Metric. To be determined.

20.3.19.3 Rationale. The TCSEC requires that the user have access to the
complete sensitivity label (including special handling requirements) for
systems at level B2 and above.

20.3.20 System Integrity

20.3.20.1 Definition. The OSIF shall support features that can be used to
periodically validate the correct operation of the hardware and firmware.

20.3.20.2 Metric. To be determined.

20.3.20.3 Rationale. The TCSEC requires that diagnostic and confidence tests
be available to verify the correct functioning of the hardware at levels CI
and above.

20.3.21 Identification of Users Based on Roles

20.3.21.1 Definitiua. The OSIF shall support the identification of users
based on roles.

20.3.21.2 Metric. To be determined.

20.3.21.3 Rationale. The TCSEC requires that various roles be provided with
varying privileges. At a minimum, this separates the roles of operator,
system administrator, and security administrator. This facility is required
at levels B2 and above.

20.3.22 Least Privilege

20.3.22.1 Definition. The OSIF shall support the principle of least privilege.

20.3.22.2 Metric. To be determined.

20.3.22.3 Rationale. The TCSEC requires that least privilege be used at
levels B2 and above. The exact privileges required are not defined here.

20-19

20.3.23 Trusted Path

20.3.23.1 Delinition. The OSIF shall support a trusted communication path
between the user and the system, activated exclusively by the user.

20.3.23.2 Metric. To be determined.

20.3.23.3 Rationale. The TCSEC requires that a trusted path be provided that
provides for communication between the system and the user without the
possibility of interception by any software other than the operating system.
This facility is required at level B2 and above.

20.3.24 Trusted Recovery

20.3.24.1 Definition. The OSIF shall provide procedures or mechanisms or both
to assure that after a discontinuity, recovery without a protection compromise
is obtained.

20.3.24.2 Metric. To be determined.

20.3 1A _ RIt.Yralo Th- TCSF.C reo,;,-, that ,toams at level B3 and above
provide a trusted recovery mechanism. Such a mechanism is used for recovery
to a sure state after a tailure (e.g., a system crash) that left the system in
an unknown security state.

20.4 DATA INTERQIANGE INTERUACES

20. 4. 1 Data Interchange Services (Data Format Conversion)

20.4.1.1 Definition. The OSIF shall support an access to services that
perform data conversion (e.g., files, CPUs, or compilers).

20.4.1.2 Metric. To he determined.

20.4.1.3 Rationale. Operating systems must handle data from various sources.
To properly transmit data from one source to the other, and to perform
operations on data, the operating system needs a canonical data format that is
unaffected by the external environment. The operating system shall provide
service routines that support converorn of one dn. format to another "r-. a
"to be determined" set of processor internal data.

20-20

20.5 EVENT AND ERROR INTERFACES

20.5.1 Event and Error Receipt

20.5.1.1 Definition. The OSIF shall provide for the receipt and coordination
of event and error information.

20.5.1.2 Metric. To be determined.

20.5.1.3 Rationale. Event and error information includes information
avai laI through such interfaces as to the hardware/firmware, the network,
and the PSE as well as to the applications software. The fault information
collection requirement (see section 20.11.1) also applies to the error
information collection part of this requirement.

2().5.2 Event and Error Distribution

20.5.2.1 Definition. The OSIF shall provide for the distribution of event and
error information.

20.5.2.2 Metric. To be determined.

20.5.2.3 Rutiottue. This requirement is a necessary corollary to the event
and error receipt requirement (see section 20.5.1). The fault information
request requirement (see section 20.11.2) also applies to the error
information distribution part of this requirement.

20.5. 3 Event and Error Management

20.5.3.1 Definition. The OSIF shall support the timely delivery of interrupt
andI other asynchronous events to system components and shall support the
implementation of user-selectable error processing alternatives. Alternatives
shall include, as a minimum, filtering, retry, ignore, and accumulate
occurrences.

20.5.3.2 Metric. To be determined.

20.5.3.3 Rationale. For many appiicat ions, the OSIF must provide for the
imely (delivery of interrupt and other signal information to system components

suoch as the operator and application software. This includes, particularly in

20-21

a tact icat application, supporting the capability to display alerts to an
oper-.tor at the system console. The fault detection thresholds requirement
(se, section 20.11.6) also applies to this requirement.

20.5.4 Event Logging

20.5.4.1 Definition. The OSIF shall support logging events to application-
defined storage. The types of events and event sources shall be dynamically
selectable/deselectable.

20 5.4.2 Metric. To be determined.

20.5.4.3 Rationale. Examples of event sources are specific processors or
memory modules. By providing event and source selectability, this requirement
provides for saving information that is more relevant to the application while
conserving storage resources.

20. 5. 5 Enable/Disable Interrupts

20.5.5.1 Definition. 'Te OSIF shall provide the ability to enable and disable
interrupts.

20.5.5.2 Metric. To be determined.

20.5.5.3 Rationale. This requirement provides for interrupts as a whole to be
turned on and off. The mask/unmask interrupts requirement, on the other hand,
provides for individual interrupts to be made known/unknown.

20. 5. 6 Mask/Unmask Interrupts

20.5.6.1 Definition. The OSIF shall provide the ability to mask and unmask
events.

20.5.6.2 Metric. lo be determined.

20.5.6.3 Rationale. A system requires this capability during activities such
as interrupt processing to lock out interrupts of a lower class from occurring
or to mask out the interrupts from particular sources.

20-22

20.6 FIILE INTLRFACES

20.0. 1 ('onr iguotos Read of a il,,

20 .h. 1 cfinirion. The OS IF shall provi de a capability to accessin t'rai on from an opened file in a cort iguous stream.

2)t,. 1 .2 tric. To tie determined.

2). I . I Rationale. DBMS svs em, oft'n read large blocks of data from the
storage device to use as indices into other files. Such reads must be
periormed as quickly as possible. Limiting the number of seeks that a storage
device must use (because of file fragmentation) can result in performance
optimization. This function permits the access to a file that is contiguous
on the storage medium.

20.6. 2 Protect an Area Within a File

20.6 .2.i)cfinition. The OSIF shall provide a mechanism that restricts a file
from acce-s by re ,'.-ters other han the requestor imposing the restrict ion.

20.6.2.2 Metric. To be determined.

20. .2.3 Rationale. To protect simultaneous access and updates to a port ion
of files, the requestor of the access should be able to protect a section of
the file until the user is finished updating. This is often called a file,
hYte, or record-locking capability.

20 .6 File Aana gemnt Scheduling

20.6.3.1)efinition. The OSIF shall support a capability to specify a
response requirement for the service being requested for file management.

20. 6.3.2 Metric. To he determined.

20.6.3.3 Rationale. For hard-deadl ine, te:tl-I ime svstems, file managers must
s-hdule theil service processing hased on tle response requirements of the
reque~ts .iihmitled hv the users. First in, first out (FIFO) scheduling is
iinaceptahle for real-time applications. The file managers must also support
Ihe not ion of preemption.

20-23

20.6.4 File Management Suspend/Resume for Process

20.6.4.1 Definition. The OSIF shall permit a requesting process to indicate
whether it wishes to wait for completion of the requested service before
continuing processing or to continue without waiting. In support of the
latter instance, a means shall be provided to enable the requesting task to
know the status of its service request or be notified of completion.

20.6.4.2 Metric. To be determined.

20.6.4.3 Rationale. In real-time applications, it is often necessary to
request data and then to suspend processing until the data are available. It
is also often the case that the task has no need to wait on the completion of
the service before it continues processing. For example. if the request is
posting data to a file, it is usually u.nnecessary, even undesirable, for the
task to wait, especially in a distributed environment.

20. b. 5 File Management Block Requests

20.6.5.1 Definition. The OSIF shall support the capability to update or
retrieve a set of contiguous records in a file.

20.6.5.2 Metric. To be determined.

20.6.5.3 Rationale. Often in real-time systems, the position of a record in a
file correlates to a time at which the information was derived. It is often
necessary to read records that cover a particular span of time and to do so as
expeditiously as possible. File managers should plan their accesses to
minimize seek and latency when acting on these block requests.

20.6.6 Round-Robin File Management

26.6.6.1 Definition. The OSIF shall support a form of file access wherein,
after a user-specified number of records have been written, new records will
begin to overlay old records. Also, the OSIF shall support access requests for
records that are based on relat ive posit ion from newest/oldest record in file.

20.6.6.2 Metric. To be determined.

20.6.6.3 Rationale. Real-tine systems keep historical files based on system
requirements for coverage of some period of time. For example, 2 hours of

20-24

track history may be required online for rapid access. If a record is written
to the file every 10 seconds, then the file will be 720 records long. The
u'er wants to update the file such that the 721st record overlays the 1st
record. The user should not have to manage the file pointers.

20.6.7 Open a File

20.6.7.1 Definition. The OSIF shall provide a capability to open a file for
use.

20.6.7.2 Metric. To be determined.

20.6.7.3 Rationale. The user of a file must be able to indicate that the file
is in use so that the operating system can maintain the necessary status and
buffers. This function can also become a form of protection for file usage.
A possible implementation (or requirement) would be that the file would be
available to read, write, execution, or deletion to one, a group, or many
users.

20. 6. 8 Point Within a File

20.6.8.1 Definition. The OSIF shall provide a capability to position the next
access point within a file.

20.6.8.2 Metric. To be determined.

20.6.8.3 Rationale. Some method must be provided to allow random access to a
file on storage medium.

20.6.9 Read a File

20.6.9.1 Definition. The OSIF shall provide a capability to access
information from an opened file.

20.6.9.2 Metric. To be determined.

20.6.9.3 Rationale. So-ie method must he provided to access data from a file
on a WTorage medlitim.

20-25

20.6.10 CloseaFile

20.6.10.1 Definition. The OSIF shall provide a capability to close a file
that has been opened.

20.6.10.2 Metric. To be determined.

20.6.10.3 Rationale. Operating systems often restrict the number of files
that can be open at one time. To release files that are no longer needed,
the operating system user should be able to close a file that is opened.

20.6.11 Delete a File

20.6.11.1 Definition. The OSIF shall provide a capability to have a file
physically removed from a storage medium.

20.6.11.2 Metric. To be determined.

20.6.11.3 Rationale. Il addition to maintaining an organized storage medium
and minimizing informat on redundancy, the operating systems need to provide a
capability to delete files.

20.6.12 C:2ate a Directory

20.6.12.1 Definition. The OSIF shall provide a capability to add a directory
to the storage structure on the storage medium.

20.6.12.2 Metric. To be determined.

20.6.12.3 Rationale. To have a useful file system, there must be some
mechanism to maintain separate user areas on the file storage medium. A
possible implementation might be a hierarchical file system. Creating a
directory enables an operating system user to add a user area.

20.6.13 Specifying Default Directory

20.6.13.1 Definition. The OSIF shall provide the capability to specify a
processes' default directory.

20-26

20.6.13.2 Metric. To be determined.

20.6.13.3 Rationale. To have a useful file system, there must be some
mechanism to maintain separate user areas on the file storage medium. A
possible implementation might be a hierarchical system. Changing the current
directory enables an operating system user to conveniently access a user area
without providing path information.

20.6.14 Delete a Directory

20.6.14.1 Definition. The OSIF shall provide a capability to remove a
directory from the storage structure on the storage medium.

20.6.14.2 Metric. To be determined.

20.6.14.3 Rationale. To have a useful file system, there must be some
mechanism to maintain separate user areas on the file storage medium. A
possible implementation might be a hierarchical system. Deleting a directory
enables an operating system user to remove an unwanted user area.

20.6.15 SladowFi, ;

20.6.15.1 Definition. The OSIF shall support the creation, reading, writing,
maintenance, and deletion of multiple, identical instantiations of a file.
The multiple instantiations shall be viewed at the OSIF boundary as a single
object.

20.6.15.2 Metric. To be determined.

20.6.15.3 Rationale. Applications will need a mechanism to maintain files at
multiple locations or redundantly to satisfy performance or reliability
requirements.

20.6.16 Create a File

20.6.16.1 Definition. The OSIF shall provide a capability to create a file.

20.6.16.2 Metric. To be determined.

20-27

20.6.16.3 Rationale. The user must be able to create a file, declaring
attributes to be associated with the file, to be used for subsequent
application specific storage/retrieval.

20.6.17 Query File Attributes

20.6.17.1 Definition. The OSIF shall provide a capability to query the
attributes of a file.

20.6.17.2 Metric. To be determined.

20.6.17.3 Rationale. Each file has attributes associated with it (e.g., file
size, creation date, modification date, owner, permissions, storage type,
accss privileges). The user must be able to query the attributes to become
aware of the current state of the file. This is especially true for
attributes that are dynamic and for attributes that are not under direct
control of the user.

20.6.18 Modify File Attributes

20.6.18.1 Definition. The OSIF shall provide a capability to modify the
attributes of a file.

20.6.18.2 Metric. To be determined.

20.6.18.3 Rationale. Each file has attributes associated with it (e.g., file
size, creation date, modification date, owner, permissions, storage type,
access privileges). The user must be able to modify the attributes to respond
to changing mission capabilities.

20.6.19 Write a File

20.6.19.1 Definition. The OSIF shall provide a capability to write
information to an opened file.

20.6. 19.2 Metric. To be deetermined.

20.6.19.3 Rationale. Some met hod mus t he provided to write data to a file on
a storage medium.

20-28

20.6.20 Write Contiguous a File

20.6.20.1 Definition. The OSIF shall provide a capability to write
information to an open contiguous file.

20.6.20.2 Metric. To be determined.

20.6.20.3 Rationale. Some method must be provided to write data to a
contiguous file on a storage medium.

20.7 GENERALIZED 1/0 INTERFACES

In the following requirements, the term "device" is used to indicate
physical (i.e., a printer) or logical (i.e., pool of buffers) resources.

20.7. I Device-Driver Availability

20.7.1.1 Definition. The OSIF shall provide the interfaces necessary to
support the addition of device drivers.

20.7.1.2 Metric. To be determined.

20.7.1.3 Rationale. For an operating system to be expandable, a new device
driver will have to be added. An explicit interface is needed to do this
without having to go back to the vendor to incorporate this new driver.

20.7.2 Open Device

20.7.2.1 Definition. The OSIF shall provide the ability for a process to
request the services of a particular device.

20.7.2.2 Metric. To be determined.

20.7.2.3 Rationale. An interface is needed to allow processes to request
devices in the system and use the services of that particular device. In Ada
terrris, this interface would be used by packages such as TEXT_ 10 when doing an
OPEN on a file. In SAFENET terms, this interface may be used by applications
wishing to use the primitive SA REGISTER req as outlined by the SAFENET
standard. This primitive allows the user of SAFENET to receive a user service
access point (IUSAP) ident if icat ion, which is a logical device that only that

20-29

process or application can use. This gives it rights to the network.

20. 7. 3 Close Device

20.7.3.1 Definition. The OSIF shall provide the ability for a process to
indicate that the services of a particular device, which had been previously
allocated, are no longer needed.

20.7.3.2 Metric. To be determined.

20.7.3.3 Rationale. Once the device has been allocated and is no longer
needed by a process, there needs to be a way to indicate to the operating
system that this process is ready to release its control of the device. An
example, in termN of Ada, of a process that would use this interface would be
the TEXT 10 procedure CLOSE file. In SAFENET terms, this interface may be
used by applications or processes wishing to use the primitive SACANCEL-req.
This allows the application to give up its USAP identification, which is
essentially saying it is giving up its control of the logical device (access
to the network).

20.7.4 Transmit Data

20.7.4.1 Definition. The OSIF shall provide the ability to transfer specified
block(s) of data to a device that has been previously opened by a process.

20.7.4.2 Metric. To be determined.

20.7.4.3 Rationale. An interface to allow a process to communicate with a
device that it has already acquired is needed so that useful work can be done
with this device. The TEXT_10 procedure PUT would be an example of a process
that would use this interface. In SAFENET, this interface would allow
applications wishing to use the service indicated by the primitive SASEND-req
access to that service.

20.7.5 Receive Data

20.7.5.1 Definition. The OSIF shall provide the ability to receive data from
a device that has been previously opened by a process.

20.7.5.2 Metric. To be determined.

20-30

20.7.5.3 Rationale. Processes will need an int-rface to use that will allow
them to receive data frnm a device that has been previously assigned to it.
In terms of Ada, the packagc TEXT O 10 would need this interface for its
procedure named GET. The SAFENET stivice, which is accessed by the primitive
SA REQUEST-req, could be accessed by applications t' 'oiigh this interface to
receive data from othcr ncdes in thc system.

20.7.6 Device Event Notification

Refer to requirements within section 20.5, "Event and Error Interfaces."

20. 7.7 Control Device

20.7.7.1 Definition. The OSIF shall provide the mechanism to request a device
to perform an action pertinent to the device.

20.7.7.2 Metric. To be deterained.

20.7.7.3 Rationale. Processes need the capability to indicate some action to
take place at a particular device through the OSIF. An example, using Ada,
may be the procedure found in the package TEXT_10 called RESET file. This
procedure may neeu some interface to the operating system to carry out the
action requested. The SAFENET service, which is accessed by using the
primitive SA DISCONNECT req, could possibly be accessed by applications
through this interface. Example would be to sound an audible alarm, to abort
an ongoing activity on a device and to initialize a device. Other examples
may be sounding an alarm, aborting an ongoing activity on a device, etc.

20.7 .8 1/0 Directory Services

20.7.8.1 Definition. The interface shall support the use of directory
services to map between logical names and physical devices or address and
attributes of the devices.

20.7.8.2 Metric. To be determined.

20.7.8.3 Rationale. A service must be provided to keep track of all the
peripheral devices and their attributes. This service may be centra.ized or
distributed. Its existence implies a name registration function and authority
to ensure the uniqueness of global names. The directory services function may
be part of the basic operating system functions or it may be a part of the
capabilities of a supporting subsystem such as SAFENET or a file management
subsystem.

20-31

20.7.9 Device Management Suspend/Resume for Processes

20 7.9.1 Definition. The OSIF shall permit the requesting process to indicate
whether it wishes to wait for completion of the requested service before
continuing processing or to continue without waiting. In support of the
latter instance, a means shall be provided to enable the requesting process to
know the ctatuis of its service request.

20..0.. Metric. To be determined.

20.7.9.3 Rationale. In real-time applications, it is often necessary to
request data and then to suspend processing until the data are available. It
is also often the case that the process has no need to wait for the completion
of the service before it continues processing. For example, if the request is
posting data to a device, it is usually unnecessary, even undesirable, for the
process to wait, especially in a distributed environment.

20.7. 10 Mount/Dismount Device

20.7.10.1 Definition. The OSIF shall support the capability to mount and
dismount a logical or physical device.

20.7.10.2 Metric. To be determined.

20.7.10.3 Rationale. Of particular concern is the handling of traditional
devices such as removab!e disk and tape storage entities. This mechanism may
also be used to cause logical devices to become visible or invisible. Mount
is defined as the action of mounting a logical or physical device that causes
the entity to become a visible resource. This may be referenced by a device
identifier and commonly by some logical name associated with a particular
instantiation of media associated with the device. Associated with the mount
capability is the implied ability to specify access rules to be applied to the
mounted entity.

20.7.11 Initialize/Purge Device

20.7.11.1 Definition. The OSIF shall support device-dependent initialization
and deinitialization (purge) functions for logical and physical devices.

20.7. 11.2 Metric. To be determined.

20-32

20.7.11.3 Rationale. Disk and tape devices (and media) need to be formatted,
erased, labeled, unlabeled, etc. Logical devices can apply these same
functions to provide functions such as network connection initialization, etc.

20.8 NETWORK AND COMMUNICATIONS INTERFACES

In a system using components based on NGCR standards, there will
frequent v be a hierarchy of networked communication, data storage, and
processing functions. At the base of this hierarchy may be a number of
processing or storage units on a single board connected by an onboard bus. At
the next level will be FUTUREBUS+ or non-NGCR backplane buses (e.g., VME). At
the next level, there may be SAFENET, MIL-STD-1553B data buses, or non-NGCR
defined LANs. At the highest level, but outside the scope of this set of
re(mi rprmnt , there m-, .'"c c:mmunicat ions amoog systems on different Navy
plat orms.

In some application domains and for some application functions, the OSIF
must provide explicit access to networked communication, data storage, and
processing functions for both NGCR-defined communication components and
similar non-NGCR-defined components. This is in addition to the implicit use
of these capabilities implied in many other requirements.

Two processes make up a communications transaction regardless of their
location. This includes either across a communications link or the two
processes may possibly be residing on the same processor.

20.8.1 Interface to anid Control of Navy Standard Interprocessing Unit Buses

20.8.1.1 Definition. The operating system shall provide explicit interfaces
to andi control of FUTUREBUS+, SAFENET, and MIL-STD-1553B in accordance with
the standards or specifications defining each.

20.8.1.2 Metric. To be determined.

20.8.1.3 Rationale. These three sets of standards cover a broad range of
capabilities. The OSIF, in addition to other functions, must provide the
architecture, control, and management structure to integrate these components
into a usable and functioning whole. The sets are defined as follows:

. FTuiDRfTRUS f is an emerging IEEE set of standards for backplanes used to
interconnect processing units and other boards within a card cage. Among
other capabiiities, it provides a precise, common time-of-day (TOD) clock and
interprocess message passing for the FJTTREBI US+ interconnected devices.

2. SAFLNT is the Navy's subset of ISO OSI standards. These are
supple I,, ed 1v addi t jonal speci fIcat ions and implementat ion agreements drawn
from the Manufacturing Automat ion Protocol (MAP 3.0) specification, Government

20-33

Open Systems Interconnect ion Profile (GOSIP, FIPSPUB 146), and SAFENET Working
Group agreements. It provides services ranging from a variety of message
communication services, to a file. management and access system (FTAM), to
support for the management of all components of the communication system. It
also permits users to incorporate components based on ISO application layer
standards not explicitly included in SAFENET.

3. MIL-STD-1553B is an older LAN with much lower performance
characteristics than SAFENET. It only provides defined capabilities at the
lower layers of the ISO/OSI model. However, because of cost considerations
and familiarity with its capabilities in the air community, it may well
continue to be used. The OS then must provide the architecture, control, and
management structure to integrate this component into the total _ystem

20. 8.2 Interfaces to and Control of Other Network and Communication Entities

20.8.2.1 Definition. The OSIF shall support explicit interfaces to the
capabilities of multiple standard and proprietary backplane buses and LANs.

20.8.2.2 Metric. To be determined.

20.8.2.3 Rationale. The OSIF must be capable of interfacing to a variety of
proprietary and stand.r~l LANs and backplanes to support program transport-
ability. This is needed to enable it to be used with specialized systems that
cannot economically be modified to use Navy standards. In the area of
backplanes, VME and MULTIBUS are commonly used standards. Equipment such as
DEC computers frequently use proprietary backplanes. In the area of LANs, the
INTERNET standards (particularly TCP/IP) are frequently used.

20.8.3 Reliable Virtual Circuit Communications

20.8.3.1 Definition. The OSIF shall provide for the selection of reliable
virtual circuit communications.

20.8.3.2 Metric. To be determined.

20.8.3.3 Rationale. Certain applications require the ability to transfer data
between processes by means of a connection-oriented communications link. This
link is established between processes and maintained for the transfer with
error detection and correction support.

20-34

20.8.4 Unreliable Virtual Circuit Communications

20.8.4.1 Definition. The OSIF shall provide for the selection of unreliable
virtual circuit communications.

20.8.4.2 Metric. To be determined.

20.8.4.3 Rationale. Certain applications call for the transfer of data over a
connection-oriented link between processes but can withstand a certain amount
of error better than the overhead associated with a reliable link. An example
of such data is voice information and sensor data.

20.8.5 Reliable Datagram Transfer

20.8.5.1 Definition. The OSIF shall provide for the selection of reliable
datagram transfer communications.

20.8.5.2 Metric. To be determined.

20.8.5.3 Rationale Certain applications require the ability to transfer
aperiodic information and do not require the establishment and maintenance
associated with a connection-oriented transfer. Yet they require an acknow-
ledgment that the information was successfully received at the destination.

20.8.6 Unreliable Datagram Transfer

20.8.6.1 Definition. The OSIF shall provide for the selection of unreliable
datagram transfer.

20.8.6.2 Metric. To be determined.

20.8.6.3 Rationale. Certain applications require the ability to transfer
information without the overhead associated with connection-oriented transfers
and acknowledgments. These situations allow for the information to be sent
with no assurance that it properly arrives.

20.8.7 Request-Reply Service

20.8.7.1 Definition. The OSIF shall support the ability to select request-
reply communication services.

20-35

20.8.7.2 Metric. To be determined.

20.8.7.3 Rationale. Certain applications require communication services in
the form of a request and a reply. In these situations, a requesting process
sends the request and associated data to a service process. On receipt of the
request, the service process performs requested service and returns the
results to the requesting process.

20.8.8 Unrelable Broadcast/Multicast Senice

20.8.8.1 Definition. The OSIF shall provide for the selection of an
unreliable broadcast/multic- communication services.

20.8.8.2 Metric. To be determined.

20.8.8.3 Rationle. Certain appiications require the ability to send a single
message to all (broadcast) or several (multicast) destinations. In these
situations, it is sometimes desirable not to have the overhead associated with
connection-oriented transfers and reliable services. Those received will be
checked for correctness and be discarded if not correct.

20.8.) Reliable Broadcast/Multicast Services

20.8.9.1 Definition. The OSIF shall provide for the selection of rcliable
broadcast/multicast communication services.

20.8.().2 Metric. To he determined.

20.8.9.3 Rationale. Certain applications require the ability to send a single
message to all (broadcast) or several (multicast) destinations. In these
situations, it is sometimes desirable to ensure the proper reception of the
information at all or at some of the destinations.

20.8 .10 A tomic Broadcast/Multicast S'ervices

20.8. 10. 1 Definition. he OSI F shall provide for the selection of a reliable.
atomic broaIcast/multicast for (-onmmunic ti oIVs services.

2(i . 10.2 Mevtri. lo he leternmined.

20-36

2.8.10.3 Rationale'.Certain applications require the ability to send a
singl Ie mes- sage t o a! I I(broadcast) or several (miiit icast) destinations. In
t hvs e sIt ita t Ions , synchroni1zed behav ior of t he (les t m at i ons i s i mpor tan t so
thfe communi1ca t Iins s ubsvs tern mus t be ablIe t o guarantee that all des tinat ions
will receive the message within a stated time after the message is sent. By
nleccss, t v atIomi c mes sages mus t use a " reli 1ablIe" b roadcas t/mulIt icas t se rv ice .

2. P10([SS MIANAGLLN1 INTERFACELS

1. 1) 1 'rt'ar Procc's,;

2Ii. , I Ief1inrion. file OSIF shallI provide the abilIi ty to create processes
'A hI pec I f I ed atI t r I i t e S.

I U)1.? Metric. Jo be dleterminedl.

2(,1.1.3 Rationale. Processes and their environments need to be created prior
1() !he r execuit on. Attibuhtes may include such things as process name.
pimt-ss priori tY, stack size, scheduling attributes, memory allocation, etc.

2t j. .It rn m i 7 OCCSS

20.Q. 2.1 IDefinition. The OSI F shall provide the abili11ty to delIete a process
andl recover allI associated resources of that process.

20-). 2.-2 Metric. Fo be dletermine(].

201). 2.3 Rational'. The OSIF must provide the service of delet ing a process
hi nl (exeelifed . In add it ion,. t he operating sys ten shall provide the ab iiit V
lo rcerall the dleletedl processes' resources if so directed. In some
cases, the responsibiIi tv for the return of the resource is that of the

appI (.i n.Irlr.

201). 3 I I)(1finiuion. 1 he OSH: shallI proxid ;)(C mechanism to designate a
l'1('5 a he i g re;idv to execuite.

201 9.3. .2 Af'I-ic. Io e (let eriied

20-37

20.9.3.3 Rationale. The OSIF must provide the service of submitting a

designated process to the processor's scheduling queue.

20.9.4 Stop Process

20.9.4.1 Definition. The OSIF shall provide the ability to make a process
unaailable foi scheduling.

20.9.4.2 Metric. To be determined.

20.9.4.3 Rationale. There are situations where processes are stopped from
execution yet remain in a "wait state" where they may be restarted. Under
these situations, the OSIF must maintain the process and its environment, yet
not consider it for scheduling until specifically notified.

20.9.5 Suspend Process

20.9.5.1 Definiticn. The OSIF shall provide the ability for a process to
suspend itself or another process from execution so that the suspended process
retains resources, data, rights, and privileges, and execution may later be
continued.

20.9.5.2 Metric. To be determined.

20.9.5.3 Rationale. The OSIF must provide the service of stopping a process
from execution, yet maintain the process, the processes environment, and the
processes data so that the process may be continued from the point of
execution at which it was suspended.

20.9.6 Resume Process

20.9.6.1 Definition. The OSIF shall provide the ability to continue the
execution of a process that has been previously suspended.

20.9.6.2 Metric. To be determined.

20.9.6.3 Rationale. The OSIF shall provide a service to allow a previously
suspended process to continue execution from the point at which it was
suspended.

20-38

20.9.7 Delay Process

20.9.7.1 Definition. The OSIF shall provide the ability to delay the
scheduling of a process for a specified time period.

20.9.7.2 Metric. To be determined.

20.9.7.3 Rationale. This service allows for a process to be identified for
scheduling prior to the actual time it is desired for the process to be
scheduled.

20.9.8 Interprocess Communication

20.9.8.1 Definition. The OSIF shall provide the ability for processes to
exchange information.

20.9.8.2 Metric. To be determined.

20.9.8.3 Rationale The OSIF must provide service(s) that allow processes to
exchange data. These processes may or may not exist on the same processor.
Examples of interprocess communication interfaces are shared files, lock
files, shared memory, message passing, streams, pipes, FIFOs, signals,
sockets, and access to higher level network services such as name servers and
TCP/IP protocols.

20.9.9 Examine Process Attributes

20.9.9.1 Definition. The OSIF shall provide the ability for processes to
examine the attributes of an existing process.

20.9.9.2 Metric. To be determined.

20.9.9.3 Rationale. Processes need the ability to read, analyze, and/or
display the attributes of an existing process. Attributes may include such
things as process name, process priority, stack size, scheduling attributes,
memory allocation, etc.

20-39

20.9.10 Modify Process Attributes

20.9.10.1 Definition. The OSIF shall provide the ability for processes to
modify the attributes of a particular process.

20.9.10.2 Metric. To be determined.

20.9.10.3 Rationale. Processes need the ability to modify the attributes
assigned to a process when it was created when the significance of that
process in the overall operation of the system changes. Examples of
attributes that may require modification are process priority, stack size,
scheduling attributes, memory allocation, etc.

20.9. 11 Examine Process Status

20.9.11.1 Definition. The OSIF shall provide the ability for processes to
examine the current status of a particular process.

20.9.11.2 Metric. To be determined.

20.9.11.3 Rationale. Processes need the ability to determine if another
process has been created, started, deleted, stopped, suspended, etc.

20.9.12 Process Identification

20.9.12.1 Definition. The OSIF shall support the unambiguous identification
of processes.

20.9.12.2 Metric. To be determined.

20.9.12.3 Rationale. Processes need the ability to identify other processes
in the system in an unambiguous manner for such things as interprocess
communication and examination of the status of other processes. This includes
different processes within the system and multiple copies of a single process
within the system.

20.9. 13 Save!Restart Process

20.9.13.1 Definition. ihe OSIF shall support the ability for processes to be
restarted from a saved state.

20-40

20.9.13.2 Metric. To be determined.

20.9.13.3 Rationale. The state of a process (as reflected in its execution
status and local environment) is often the cumulative result of hours of
running within a mission-critical system. It is commonly required in such
systems to checkpoint the state of critical processes so that they may be
restarted from a known good state if hardware or software faults are later
detected. The checkpointed data would contain information relating to the
processes status, environment, and state of its data.

20. 9.14 Program -Management Function

20.9.14.1 Definition. The OSIF shall provide multiprogramming support.

20.9.14.2 Metric. To be determined.

20.9.14.3 Rationale. This permits multiple Ada programs to be active
simultaneously within a common processor. This requires the assignment of
memory and processing resources to the programs.

20.10 PSE INTERFA%7VS

20.10.1 Debug Support

20.10.1.1 Definition. The OSIF shall support the debugging of applications,
specifically supporting the following capabilities:

1. Examine registers - a mechanism to examine registers of a selected
resource in the system environment.

2. Alter registers - a mechanism to alter registers of a selected
resource in the system environment.

3. Set/clear breakpoint - a mechanism to set/clear multiple breakpoints.

4. Set/clear watchpoints - a mechanism to set/clear multiple watchpoints.

5. Single-step execution - a meclianism to single step the execution of a
software program.

6. Continue execution - a mechanism resume execution of a program after
a breakpoint or wa'chpoint is encountered. The program shall resume execution
at tie no gt ' al instr ct ion.

20-41

7. Examine memory - a mechanism to read the contents of a process's
address space.

8. Alter memory - a mechanism to modify the contents of a process'
address space.

9. Query process environment - a mechanism to examine the state of a
process.

10. Query Call Stack - The OSIF shall support the ability to determine
the calling sequence of a process.

20.10.1.2 Metric. To be determined.

20.10.1.3 Rationale. The rationale for each of the ten required debug
capabilities is as follows:

1. Examine registers - To fully access the state of the system, the
programmer must be able to access CPU registers.

2. Alter registers - To control the state of the machine at a given
point in execution, the user must be able to modify register values.

3. Set/clear breakpoint - Debugging tools require the ability to halt
execution of the code 1 predetermined points to examine the state and status
of the programming environment.

4. Set/clear watchpoints - Debugging tools require the ability to halt
execution of the code when certain conditions or states occur to examine the
state and status of the programming environment.

5. Single-step execution - Debugging tools require the ability to
examine the state and status changes that occur when each line of code
(instruction) is executed.

6. Continue execution - Debugging tools require the ability to resume
normal execution of the program after it has been halted/stopped for
examination of the programming environment.

7. Examine memory - Debugging tools requires the ability to examine the
memory within the address space of a program.

8. Alter memory - Debugging tools requires the ability to modify the
memory within the address space of a process.

9. Query process environment - Debugging tools require the ability to
examine the state and status of the programming environment resulting from the
execution of a process and does not exclude the states of associated queues
and stacks (run, delay, and entry queues, etc.).

20-42

10. Query call stack - Debugging tools require the ability to examine the
trail of calling sequences (e.g., providing the ability to determine "How did
we get here?").

20.10.2 Execution History

20.10.2.1 Definition. The OSIF shall support the ability to monitor the
execution history of a process, including information such as the following:

" Frequency of calls

" Length of calls

" Missed deadli'es

• Length of queues

• Tasking of runtime systems (e.g., number of context switches, CPU time
used)

" Dynamic paging activity

" Memory allocation (e.g., number of requests, block sizes,
fragmentation, length of use)

" What OS services are being used (e.g., passing labels).

20.10.2.2 Metric. To be determined.

20.10.2.3 Rationale. For a performance monitor to create a history of events,
the OS must provide the above information.

20.11 RELIABILITY, ADAPTABILITY, AND MAINTAINABILITY INTERFACES

20.11.1 Fault Information Collection

20.11.1.1 Definition. The OSIF shall provide for specifying the collection of
available fault information.

20.11.1.2 Metric. To be determined.

20.11.1.3 Rationale. An application must be able to determine that a
nonrecoverable fault has occurred, either by detecting the fault through

20-43

information available to it or by receiving some signal from other systems/
devices that a fault has been detected. This information is needed to
increase the reliability of the system. This requirement provides a subset of
the services needed (see section 20.5).

20.11.2 Fault Information Request

20.11.2.1 Definition. The OSIF shall provide for the receipt of fault
information on request.

20.11.2.2 Metric. To be determined.

20.11.2.3 Rationale. The system must be able to determine that a
nonrecoverable fault has occurred, either by detecting the fault through
information available to it or by receiving some signal from other
systems/devices that a fault has been detected. This information is needed to
increase the reliability of the system. Receipt of fault information can be
through active query or by use of a table that the application can access.
This requirement provides a subset of the services required under event and
error management (see section 20.5.3).

20. 11 . 3 Diagnostic T -6 s Request

20.11.3.1 Definition. The OSIF shall provide for the initiation of diagnostic
tests on specific request. The OSIF shall support initiation of diagnostic
tests at specified intervals.

20.11.3.2 Metric. To be determined.

20.11.3.3 Rationale. Examples of these tests are built-in test equipment
(BITE) tests, when software can initiate them, and firmware diagnostic tests
of hardware components.

20. 11.4 Diagnostic Tests Results

20.11.4.1 Definition. The OSIF shall provide the ability to determine the
results of diagnostic tests.

20.11.4.2 Metric. To be determined.

20-44

20.11.4.3 Rationale. Receipt of the results of diagnostic tests can be
through active query or by use of a table that the application can access.
'Ihese diagnostic tests can be those initiated under the diagnostic tests
request requirement (see section 20.11.3) or self-tests independently
initiated by the effected system component.

20. 11.5 Operational Status

20.11.5.1 Definition. The OSIF shall provide access to the operational status
of all system components.

20.11.5.2 Metric. To be determined.

20.11.5.3 Rationale. System components include both software and hardware
components such as buses, memory modules, processors, and I/0 channels.
Status indications include on, off, faulty, suspect, and the relief of a
previously reported fault or overload condition.

20.11.6 Fauit Detection Thresholds

20.11.6.1 Definition. The OSIF shall provide for specifying fault detection
thresholds, which shall include, but not be limited to, the following:

1. Number of retry attempts, if applicable, that shall be made before an
error is determined to be a nonrecoverable fault.

2. Maximum number of correctable errors that, if detected within a
specified time, will classify the component as suspect or treat the collective
errors as a nonrecoverable fault.

20.11.6.2 Metric. To be determined.

20.11.6.3 Rationale. The thresholds cited in the definition are required to
detect intermittent faults. This requirement also applies to the event and
error management requirement (see section 20.5.3).

20.11.7 Fault "solation

20.11.7.1 Definition. he OSIF shiil I suoport the isolation of faults to a
part iCuiatC coo ient.

20.11.7.2 Metric. To be determined.

20-45

20.11.7.3 Rationale. Not only must an OSIF provide detailed error information
but it must also support localizing the fault so that applications software
can be reconfigured and equipment repaired or replaced. Component, as used in
the definition, refers to both hardware and software components.

20.11.8 Fault Response

20.11.8.1 Definition. The OSIF shall provide for the specification of actions
to be taken on the occurrence of a fault. The OSIF shall support (pt least)
the following actions:

" Restart at a specified point for a specified fault

* Use of specified components as backup for faulty components

" Stop when a specified minimum set of components is no longer available

" Schedule of a specified process

" Report to another node.

20.11.8.2 Metric. To be determined.

20.11.8.3 Rationale. Navy applications, particularly those that are platform
deployed, have traditionally required ever-increasing fault tolerant
coverage. Part of that coverage has included providing a variety of fault
responses to cover not only various kinds of faults but also various mission
and processing requirements.

20.11.9 Reconfiguration

20.11.9.1 Definition. The OSIF shall support the dynamic reconfiguration of
hardware and software.

20.11.9.2 Metric. To be determined.

20.11.9.3 Rationale. The set of available configurations for a particular
implementation can be predetermined at system build time. These configurations
will specify various configurations of the software to accommodate such
variables as changes in mission requirements and operating in degraded modes.
They will also specify the configurations that make sense for an implementation
such as minimum memory requirements. The purpose of this requiremen: is to
allow an implementation to make the best use of available hardware and
software resources.

20-46

20.11.10 Enable/Disable System Component

20.11.10.1 Definition. The OSIF shall provide the ability to enable or
disable a specified system component on request.

20.11.10.2 Metric. To be determined.

20.11.10.3 Rationale. This requirement supports reconfiguration. Examples of
hardware components are processors, memory modules, and buses. Groups of
software components could be subsystems or Ada programs.

20.11.11 Performance Monitoring

20.11.11.1 Definition. The OSIF shall support queries for snapshots of
resource utilization and enabling or disabling monitoring of each resource.

20.11.11.2 Metric. To be determined.

20.11.11.3 Rational,. Snapshots are defined to be of a specified time

exposure (as oppose6 to instantaneous).

20.11.12 Set Resource Utilization Limits

20.11.12.1 Definition. The OSIF shall support predefining and dynamically
adjusting a process's utilization limits on a specified resource.

20.11.12.2 Metric. To be determined.

20.11.12.3 Rationale. Limits can be set at system build and then modified
during runtime for each process and resource combination.

20.11.13 Resource Utilization Limits Violation

20.11.13.1 Definition. The OSIF shall support the detection and reporting of
a process that violates its utilization limits for a resource.

20.11.13.2 Metric. To be determined.

20-47

20.11.13.3 Rationale. Once a limit is violated, the application may examine
overall system performance and the situation to determine if a fault exists or
if this load is consistent with operating demands. This requirement correlates
directly to the set resource utilization limits requirement (see section
20.11.12).

20. 1i. 14 Checkpoint Data Structures

20.11.14.1 Definition. The OSIF shall support the ability to replace
specified existing data structures with those same structures as they appeared
at a certain point in the past.

20.11.14.2 Metric. To be determined.

20.11.14.3 Rationale. Reconfiguration and diagnostics require the ability to
move data structures in and out of memory. For example, in the event of the
failure of a global memory module and consequent reconfiguration, applications
could be warm-started in place, passing a pointer to the last checkpointed
copies of mission-critical data structures.

20.12 RESOURCE MANAGEMFNT INTERFACES

20.12.1 Virtual Memory Support

20.12.1.1 Definition. The OSIF shall support the selection of the virtual
memory utilization parameters.

20.12.1.2 Metric. To be determined.

20.12.1.3 Rationale. On processor architectures supporting a larger virtual
address space than the size of physical memory, the operating system
implementation will generally support the virtual memory mapping hardware.
The paging algorithm used and other virtual memory support parameters will
need to be tailored to the application.

20.12.2 Virtual Space Locking

20.12.2.1 Definition. The OSIF shall provide the capability to lock certain
application-specified regions of virtual code and data space into physical
memory and for the subsequent release of such locks.

20-48

20.12.2.2 Metric. To be determined.

20.12.2.3 Rationale. For time-critical portions of applications, paging data
and/or code to a secondary (mass) storage device would not allow for high-
performance access. For fault tolerant applications, the fault-handling logic
cannot be placed on a device that is likely to fail.

20.12.3 Dynamic Memory Allocation and Deallocation

20.12.3.1 Definition. The OSIF shall provide for allocation of a block of
virtual or physical memory of the size specified and for deallocation of a
previously allocated block.

20.12.3.2 Metric. To be determined.

20.12.3.3 Rationale. An application entity may require a global heap for its
own dynamic memory management (e.g., the Ada runtime library), for dynamic
load or relocation of code, for temporary buffers, etc. Such blocks, when no
longer required by the application, should be re-entered into the pool of
available physical memory.

20.12.4 Dynamic Memory Protection

20.12.4.1 Definition. The OSIF shall provide "!:. abU:; tz, . ,.nd set
memory-protection attributes.

20.12.4.2 Metric. To be determined.

20.12.4.3 Rationale. Mission-critical systems must guard against erroneous
memory references (whether the result of software bugs, a security breach, or
a hardware fault). While there is no foolproof approach to this, hardware
memory protection provides a substantial level of confidence, but only if the
OSIF provides for tailoring the memory protection to the application's needs.
Any arbitrary block of memory may contain code, read/write data, read-only
data, or (perhaps in multilevel secure systems) write-only data. Memory-
protection requirements on a block may change over its lifetime.

Specification is required for all static code and data areas; any block
of memory obtained through dynamic memory allocation may have its attributes
specified during allocation. Memory-protection attributes for any (static or
dynamic) block should be alterable at runtime. Protection violations should
result in error events (see section 20.5.3).

20-49

20. 12.5 Shared Memory

20.12.5.1 Definition. The OSIF shall support concurrent access, by several
processes, to specified areas of physical memory, whether or not the involved
processes exist on single or multiple processors.

20.12.5.2 Metric. To be determined.

20.12.5.3 Rationale. The concept of Ada library units requires shared memory
for both code and data. Time-critical applications often cannot tolerate the
overhead uf message passing, rendezvous, or other forms of interprocess (or
intertask) communication. Applications are responsible for sensible use of
the shared memory resource (see section 20.13.2).

For virtual storage architectures, this will require a many-to-one
mapping from virtual memory spaces to the shared physical page(s). Where the
several processes are distributed across several processors separated by
backplane or network interfaces, this will implicitly require interprocessor
communication and synchronization.

20.12.6 Allocate, Deallocate, Mount, and Dismount Services

20.12.6.1 Definition. The OSIF shall support the allocation of devices to
processes and subsequent deallocation of these devices. For devices with
remoahle media, the OSIF shall also support mountiii and dismounting of media.

20.12.6.2 Metric. To be determined.

20.12.6.3 Rationale. It is in the nature of some devices that they may be
opened by several processes (i.e., shared), but many devices must be accessed
exclusively by one process at a time. Some devices support opening of
mountable volumes, and the OS should also provide explicit interfaces to
specify the mounting and dismounting of such volumes. Control over such
details is often left to ad-hoc interface-to-device drivers, but these common
requirements are better handled by means of explicit application/OS/device-
driver interfaces.

20.12.7 Designate Control

20.12.7.1 Definition. The OSIF shall provide the means to designate
responsibility for maintaining the status and determining the configuration of
a system resource.

20-50

20.12.7.2 Metric. To be determined.

20.12.7.3 Rationale. A basic purpose of an operating system is to regulate
the control of system resources. This interface may be pre-runtime (static
designation of control) or runtime (dynamic designation of control). The unit
of software assuming the responsibility may be the operating system itself.

20.12.8 Release Control

20.12.8.1 Definition. The OSIF shall provide the means to release a
previously assumed system resource status and configuration responsibility.

20.12.8.2 Metric. To be determined.

20.12.8.3 Rationale. Software must be able not only to assume respon-
sibilities at runtime, but also to revoke and reassign them. This shall allow
the operating system to designate responsibility for the system resource to
another unit of software by use of the "designate control" interface.

20.12.9 Allocate Resource

20.12.9.1 Definition. The OSIF shall provide a means to designate particular
process resources for use by a particular process.

20.12.9.2 Metric. To be determined.

20.12.9.3 Rationalp. A basic purpose of an operating system is to regulate
the control of system resources. The allocation request shall actually be
honored by the entity currently designated as controlling the resource.
Examples of units of system resources are an I/0 channel, a block of physical
memory, response to a specific class of hardware interrupt, a breakpoint
register, a co-processor user identifier, and a connection over a LAN. The
software making the allocation may be the operating system itself or may be
application software assuming status and configuration responsibilities.

20. 12.10 Deallocate Resource

20.12.10.1 Definition. The OSIF shall provide a means to relinquish
particular system resources from a particular process.

20-51

20.12.10.2 Metric. To be determined.

20.12.10.3 Rationale. Software must be able not only to assume resources at
runtime but also to revoke and reassign them.

20.12. 11 System Resource Requirements Specification

20.12.11.1 Definition. The OSIF shall provide the ability to specify system
resource requirements.

20.12.11.2 Metric. To be determined.

20.12.11.3 Rationale. The ability to modify the allocation of system
resources based on operational needs is supported by this requirement.
Specification of resource requirements before requesting resource allocation
is required for effective management of resources, especially to prevent a
deadlock among contenders for the resources.

A% .12.12 System Resource Capacity

20.12.12.1 Definition. The OSIF shall provide a query of the storage or
workload capacities of the system resources.

20.12.12.2 Metric. To be determined.

20.12.12.3 Rationale. The application (or entity controlling a resource)
needs to know the availability and capacity of a resource to effectively
allocate it during system operation.

20.13 SYNCIRONIZATION AND SCHEDULING INTERFACES

20.13 1 Process Synchronization

20.13.1.1 Definition. The OSIF shall provide an explicit mechanism by which
two processes may synchronize their execution.

20.13.1.2 Metric. To be determined.

20-52

20.13.1.3 Rationale. Processes require the ability to synchronize their
execution in real-time applications. To ensure predictable performance, this
nay include access to low-level synchronization mechanisms to ensure proper
communication protocols. Synchronization should prohibit priority inversion
situations.

20. 13.2 Mutual Exclusion

20.13.2.1 Definition. The OSIF shall provide mutual exclusion and shall
support mutual exclusion %ith timeouts.

20.13.2.2 Metric. To be determined.

20.13.2.3 Rationale. The system must have a low-level, mutual-exclusion
mechanism available to all users and forbid priority inversions. If mutual
exclusion is implemented with semaphores, then the semaphores must have
operations available to create/destroy them, to claim/release them, and for
priority queuing of processes waiting for a semaphore. Time-out mechanisms
for processes waiting on semaphores must also be available. Additionally,
developers must be able to query the status of a semaphore. All resources
must have the ability to control critical sections for mutual exclusion. This
is necessary for both safety and security. Processes that request a shared
rcsource must have -he ability/option to withdraw their request by means of a
time-out, which may be zero, i.e., immediate withdrawal if the resource is not
immediately available.

20.13.3 Cumulative Execution Time of a Process

20.13.3.1 Definition. The OSIF shall provide the ability to access the
cumulative execution time of a process.

20.13.3.2 Metric. To he determined.

20.13.3.3 Rationale. When the scheduler is responsible for aperiodic process,
it needs a means to determine the cumulative execution time so that priorities
of the processes may be adjusted. The OSIF must provide a means by which
applications software can monitor and establish the rules for scheduling and
execution of aperiodic processes (see section 20.13.10).

2(). 13. 4 A, 'ach a Process to an Event

20.13.4.1 Definition. The OSIF shall support the ability to attach a process
o ant event.

20-53

20.13.4.2 Metric. To be determined.

20.13.4.3 Rationale. The application must be able to provide the scheduler
with the information necessary to attach a process to an interrupt. This
allows a process to respond to an external stimulus and helps to obtain more
flexible scheduling. An example of an attached process is an event handler.

20. 13. 5 Transaction Scheduling Information

20.13.5.1 Definition. The OSIF shall provide the ability for a process to
specify its response requirements for services.

20.13.5.2 Metric. To be determined.

20.13.5.3 Rationale. Scheduling in hard real-time systems must be done in a
fashion to meet deadlines. For transactions that require a sequence of
operations across a distributed system, the scheduling mechanisms involved
require the ability of scheduling processes with respect to deadline
requirements.

20.13.6 Scheduling Delay

20.13.6.1 Definition. The OSIF shall support the ability to delay the
scheduling of a process.

20.13.6.2 Metric. To be determined.

20.13.6.3 Rationale. Refer to section 20.9.7, "Delay Process."

20.13.7 Periodic Scheduling

20.13.7.1 Definition. The OSIF shall provide for the periodic scheduling of a
process.

20.13.7.2 Metric. To be determined.

20.13.7.3 Rationale. In real-time systems, certain process require the
ability to be scheduled at a specific periodic rate. The rate may be
specified with respect to a mean delta with a plus and minus limit of variance.

20-54

20.13.8 Multiple Scheduling Policies

20.13.8.1 Definition. The OSIF shall support multiple scheduling policies.

20.13.8.2 Metric. To be determined.

20.13.8.3 Rationale. Different applications require different scheduling
algorithms.

20.13.9 Selection of a Scheduling Policy

20.13.9.1 Definition. The OSIF shall support the ability to select the
scheduling policy to suit the need.

20.13.9.2 Metric. To be determined.

20.13.9.3 Rationale. It is perceived that once a scheduling algorithm is
selected for an application, it remains static under normal conditions.
However, mode ch.tiges or workload extremes may require dynamic alterations in
scheduling policies. To meet this requirement, scheduling policies must be
able to be altered without system reinitialization.

20.13. 10 Modification of Scheduling Parameters

20.13.10.1 Definition. The OSIF shall support the ability to modify the
values of the controllable scheduling parameters.

20.13.10.2 Metric. To be determined.

20.13.10.3 Rationale. Certain applications require the ability to dynamically
modify the scheduling algorithms parameters used for selection of the process
to be submitted for execution. The scheduler will need the freedom to change
the priority of a process dynamically. As the system operates, different
processes will assume prominent positions and, therefore, will require higher
priorities. This adjustment of priorities must be dynamic to maximize system
performance. The policies by which the priority adjustments are made must be
controlled by the application software.

20-55

20.13. 11 Precise Scheduling (Jitter Management)

20.13.11.1 Definition. The OSIF shall provide the ability for an application
to indicate to the scheduler an exact specified time for starting a process.

20.13.11.2 Metric. To be determined.

20.13.11.3 Rationale. The scheduler must be able to guarantee that the
process is executed at the exact time specified and is not unduly delayed. In
real-time systems, completion of a scheduling event too early can be as bad as
completion of a scheduling event too late, i.e., to miss a deadline. This
phenomena is kn-own as "jitter" and can cause performance problems in real-time
systems. For real-time systems to perform as predicted and to ensure
stability, a schedule must be met as closely as possible. It is not
appropriate to complete an event early if it can be avoided. This is one of
the things that separates real-time systems from time-sharing systems.

20.14 SYSTEM INITIALIZATION AND REINITIALIZATION INTERFACES

20.14.1 Image Load

20.14.1.1 Definition. The OSIF shall provide the capability to perform
initial and reinitial executable image load (including data) both locally and
remotely to and for each and all processor(s) throughout a system.

20.14.1.2 Metric. To be determined.

20.14.1.3 Rationale. The OSIF must support and provide the capability to load
and reload initialize and reinitialize an executable image into each and all
processor(s) throughout a system, both locally and remotely. This includes
initial (cold start) and reinitial (cold, reconfigured (re)start and/or warm,
reconfigured (re)start) of the operating system's designated processor and all
others.

20.14.2 System Initialization and Reinitialization

20.14.2.1 Definition. The OSIF shall support the capability to initialize and
reinitialize all system resources.

20.14.2.2 Metric. To be determined.

20-56

20.14.2.3 Rationale. A distributed, multiple-processor, real-time system must
be initialized from a cold start and reinitialized after a cold start or warm
tre)start so that the system configuration information necessary to execute
the functions of the system is properly loaded in the different system
components. This includes all communications, I/0 ports, data storage and
access components, etc. This means that the OSIF must support all necessary
system initialization and reinitialization functions for a given application.
This is not limited to image load, initialization, or reinitialization.

20.14.3 Shutdown

20.14.3.1 Definition. The OSIF shall provide the capability to perform
planned, orderly shutdown at the local and remote levels for each and all
processor(s) throughout a system.

20.14.3.2 Metric. To be determined.

20.14.3.3 Rationale. The OSIF must provide the capability to perform planned,
orderly shutdown operations when required under crisis and noncrisis
situations. This is a good resource management policy to attempt an orderly
recovery in all situations up to the most catastrophic crash event.

20.15 TIME SERVICES INTERFACES

20.15.1 Read Selected Clock

20.15.1.1 Definition. The OSIF shall provide the ability to read selected
clocks.

20.15.1.2 Metric. To be determined.

20.15.1.3 Rationale. The OSIF must have a facility for applications to read a
selected clock, or set of clocks, in a system. Many applications have the
need to time-stamp data either to coordinate events taking place in different
parts of the system or to record when events take place so that data may be
later properly processed or time ordered.

20.15.2 Set Selected Clock

20.15.2.1 Definition. The OSIF shall provide the ability to set selected
clocks.

20-57

20.15.2.2 Metric. To be determined.

2? ir " 2 RaIu,;&'. Thc -11ck'- "d i- .-- - tc.,;. h over time. They

may need to be set when a system component is initialized. The clock is a
resource whose detailed management belongs to the OS. However, the setting of
the clock and its coordination with external time sources are issues that must
be left to the designer of a specific system. The OSIF, as the controller of
common resources, must have a facility for applications to set a selected
clock, or set of clocks, in a system.

20.15.3 Synchronization of Selected Clocks

20.15.3.1 Definition. The OSIF shall support the ability to selectively
synchronize clock(s) in the system.

20.15.3.2 Metric. To be determined.

20.15.3.3 Rationale. The OSIF must have a facility for applications to
selectively synchronize clocks in a system. The facility must allow
synchronization of one clock, or set of clocks, to other clock sets in the
system. These clock sets may be part of different subsystems, e.g., SAFENET,
FUTUREBUS, -id a navigition system clock synchronized to Greenwich Mean
Time. A --ar.s must exist to synchronize these to support those cases in which
a common platform time base is required.

20.15.4 Select a Primary Reference Clock

20.15.4.1 Definition. The OSIF shall support the ability to select a primary
reference clock for the system.

20.15.4.2 Metric. To be determined.

20.15.4.3 Rationale. The OSIF must have a facility for applications to select
one primary reference clock or a set of primary clocks out of all clocks in a
system and the set of systems integrated on a platform. This primary set must
be able to be used to support clock synchronization throughout the system and
also to support the selection of a backup reference clock in the event of
failure of the primary. This is required to support those cases in which
clocks of different quality are used in different subsystems or within a
subsystem. A method must exist for indicating that a high-quality clock, or
set of clocks, shall be used as the reference set to which others are
synchronized.

20-58

20.15.5 Locate the Primary Reference Clock

2u.5..I Deft*i,,. The OS.F shall 6uppurt t c abi'Ity Lo ate he
primary reference clock for a system.

20.15.5.2 Metric. To be determined.

20.15.5.3 Rationale. The OSIF must have a facility for applications to locate
the primary reference clock in a system. This is required to support system
management functions. For example, a failure in a system component could
cause a system manager application to lose track of the identity of the
current primary clock.

20.15.6 Timer Services

20.15.6.1 Definition. The OSIF shall support the setting and clearing of
alarms and shall allow for notification at alarm time. The alarm time would
be inclusive of either relative time difference or absolute time difference.

20.15.6.2 Metric. To be determined.

20.15.6.3 Rationale. The OSIF must have a facility for applications to set
alarms for such things as watchdog timers, delays, etc. Once the time has
expired, the notification of the alarm must be propagated to the appropriate
recipient of the alarm. An Ada application and the Ada runtime system must be
able to specify delays in terms of either an absolute or relative time basis.
Some examples of these are as follows:

delay 2.0; -- delay for 2 seconds from now
delay-until(NextTime); -- delay until the absolute time (specified

by the variable Next-Time)

20.15.7 Precision Clock

20.15.7.1 Definition. The OSIF shall provide a time resolution of one
nanosecond to processes that is independent of the granularity of the
underlying hardware.

20.15.7.2 Metric. To be determined.

20-59

20.15.7.3 Rationale. Applications must have a consistent, portable interface
to the underlying clock(s) that allow them to use the full capability of the
clock(s).

20.16 ADA LANGUAGE SUPPORT INTERFACES

20.16.1 Create Task

20.16.1.1 Definition. The OSIF shall support the capability to create an Ada
task that supports the full set of Ada tasking operations as defined in the
Ada LRM.

20.16.1.2 Metric. To be determined.

20.16.1.3 Rationale. An Ada runtime system must have the ability to create
Ada tasks as logically concurrent threads of execution that are managed by the
operating system. At the point of task creation, it must be possible to
specify the Ada task's attributes (e.g., task name, priority, the task's
master, stack space size, the number of entries) and the system resources
(e.g., memory) needed to support the execution of the created Ada task (see
sect ion 20.9.1).

20.16.2 Abort Task

20.16.2.1 Definition. The OSIF shall support the capability to abort the
execution of an Ada task as defined in the Ada LRM.

20.16.2.2 Metric. To be determined.

20.16.2.3 Rationale. An Ada runtime system must have the ability to abort Ada
tasks and recover the resources previously held by those tasks (see sections
20.9.2 and 20.9.4).

20.16.3 Suspend Task

20.16.3.1 Definition. The OSIF shall support the capability to suspend the
execution of an Ada task.

20.16.3.2 Metric. To be determined.

20-60

20.16.3.3 Rationale. An Ada runtime system must have the ability to suspend
the execution of Ada tasks to support various task scheduling mechanisms (see
section 20.9.5).

20.16.4 Resume Task

20.16.4.1 Definition. The OSIF shall bupport the capability to resume the
execution of an Ada task.

20.16.4.2 Metric. To be determined.

20.16.4.3 Rationale. An Ada runtime system must have the ability to resume
the execution 4of Ada tasks to support various task scheduling mechanisms (see
section 20.9.6).

20.16.5 Terminate Task

20.16.5.1 Definition. The OSIF shall support the capability to terminate the
execution of an Ada task as defined in the Ada LRM.

20.16.5.2 Metric. To be determined.

20.16.5.3 Rationale. An Ada runtime system must have the ability to terminate
the execution of Ada tasks to support the full semantics of the Ada tasking
model.

20.16.6 Restart Task

20.16.6.1 Definition. The OSIF shall support the capability to restart the
execution of an Ada task at a point immediately following its elaboration code.

20.16.6.2 Metric. To be determined.

20.16.6.3 Rationale. An Ada runtime system must have the ability to restart
the execution of Ada tasks to support mode change operations (see section
20.9.13).

20-61

20.16.7 Task Entry Calls

Lt.1 6 .7 .1 Definition. The OSIF shall support simple, timed, and conditional
Ada task entry calls as defined in the Ada LRM.

20.16.7.2 Metric. To be determined.

20.16.7.3 Rationale. An Ada runtime system must have the ability to implement
all forms of Ada task entry calls, namely simple, timed, and conditional calls.

20.16.8 Task Call Accepting/Selecting

20.16.S.1 Definition. The OSIF shall support the various forms of accepting
Ada task entry ca'lq as defined in the Ada LRM. In particular, the OSIF shall
s2rppnrt simple accepts, 6*aq)',, selective waits, selective waits with delay
alternatives, selectivt, waits with ati else clause, and selective waits with a
terminate alternative.

20.16.8.2 Metric. To be determined.

20.16.8.3 Rationale. An Ada runtime system must have the ability to implement
all forms of accepting and selecting Ada task entry calls as defined in the
Ada LRM.

20.16.9 Access Task Characteristics

20.16.9.1 Definition. The OSIF shall support the capability to access an Ada
task's attributes and characteristics.

20.16.9.2 Metric. To be determined.

20.16.9.3 Rationale. An Ada runtime system must have the ability to read a
task's attributes (e.g., task ID, execution state, available CPU time compared
with specified time budget) and, also, to read and write a task's charact-
eristics (e.g., priority, period, phase) to implement various scheduling
mechanisms (see section 20.9.10).

20-62

20.16.10 Monitor Task's Execution Status

20.16. i6j,.1 Definition. The OSIF shall support the ability to monitor a task's
execution status, in particular, the amount of accumulated CPU time that has
been used by the task.

20.16.10.2 Metric. To be determined.

20.16.10.3 Rationale. An Ada runtime system must have the ability to monitor
a task's execution behavior in terms of the amount of accumulated CPU time
that it has used. Such information is needed on a task-by-task basis to
implement certain real-time scheduling algorithms (e.g., deferrable server,
sporadic server, degraded mode for imprecise results) (see section 20.9.11).

20.16.11 Access to a Precise Real-Time Clock

20.16.11.1 Definition. The OSIF shall support access (e.g., read/write,
setting alarms) to a precise, continuous real-time clock.

20.1,.11.2 vlct~r:c. to be determined.

20.16.11.3 Rationale. An Ada runtime system must have the ability to read
from and write to a precise real-time clock. Also, the Ada runtime must be
able to set or remove timer alarms to be triggered at a specified time in the
future, to imtolement Ada's delay statement and timed entry calls. Setting
these timer alais is also useful for implementing precise, periodic
scheduling of Ada tasks; watchdog timers; and timeouts on communication
primitives (see sections 20.15.6 and 20.15.7).

20.16.12 Access to a TOD Clock

20.16.12.1 Definition. The OSIF shall support read and write access to a TOD
clock.

20.16.12.2 Metric. To be determined.

20.16.12.3 Rationale. An Ada runtime system must have the ability to read
from and write to a TOD clock to support the operations defined in package
calendar. Furthermore, an Ada application program must be able to read the
TOD (through a calendar.Clock function call) clock to effect a delay until a
specified time in the future (e.g., delay (NextStart_Time - calendar.Clock)).

20-63

20.16.13 Dynamic Task Priorities

20.16.13.1 Definition. The OSIF shall support the capability to get and set
the execution priority of an Ada task.

20.1.13.2 Metric. To be determined.

20.16.13.3 Rationale. An Ada runtime system must have the ability to
dynamically control the execution priority of an Ada task to implement various
scheduling mechanisms (see section 20.13.10).

20.16.14 Scheduling Policy Selection

20.16.14.1 Definition. The OSIF shall support the capability to get and set
the policy that is to be used to schedule Ada tasks.

20.16.14.2 Metric. To be determined.

20.16.14.3 Rationale. An application must be able to select the scheduling
policy (e.g., priority preemptive, time slicing within equal priority levels)
that will be used by the operating system to schedule executing tasks. The
open issues include: (1) one versus multiple policies in effect at a given
time; (2) how various policies interact, and (3) the scope of a scheduling
policy (e.g., entry queues, run queue).

20.16.15 Memory Allocation and Deallocation

20.16.15.1 Definition. The OSIF shall support the capability to create and/or
delete a pool of memory that can be used as a heap for allocation and
deallocation of smaller access collections. Furthermore, the OSIF shall
support the capability to allocate data objects from both an independently
allocated heap (e.g., Ada access collection) and a global pool of unallocated
memory. It must be possible for the application to notify the operating
system when use of the heap space is no longer required.

20.16.15.2 Metric. To be determined.

20.16.15.3 Rationale. An Ada runtime system must have the ability to allocate
memory space for access variables (i.e., access collections) and task stacks.
Heap management is necessary to prevent memory fragmentation and other garbage
collection-related problems, and to allocate and deallocate large chunks of
memory based on dynamic scope (see section 20.12.3).

20-64

20.16. 16 Interrupt Binding

20.16.16.1 Definition. The OSIF shall support the capability to bind and
unbind an *nterrupt to Ada application code, in particular, to at least an Ada
interrupt task entry.

20.16.16.2 Metric. To be determined.

20.16.16.3 Rationale. An Ada runtime system must have the ability to attach
and detach code to a device interrupt. The Ada LRM suggests that interrupts
can be bound to task cntr'-z using an address clause. Moreover, a
conventional interrupt service routine (ISR) approach requires that the ISR
code be directly tied to a device interrupt (see section 20.13.4).

20.16.17 Enable/Disable Interrupts

20.16.17.1 Definition. The OSIF shall support the capability to enable and
disable interrupts.

20.16.17.2 Metric. To be determined.

20.16.17.3 Rationale. Ada applications and the Ada runtime system must have

the ability to control interrupts by enabling and disabling them. Often
times, controlling interrupts is used as a programming technique for
implementing critical sections of code. Disabling and enabling interrupts is
also necessary for controlling a device's operations.

20.16. 18 Mask/Unmask Interrupts

20.16.18.1 Definition. The OSIF shall support the capability to mask and
unmask device interrupts.

20.16.18.2 Metric. To be determined.

20.16.18.3 Rationale. Ada applications and the Ada runtime system must have
the ability to control device interrupts hy masking and unmasking them.
Masking and unmasking interrupts is also necessary for controlling a device's
operations.

20-65

20.16.19 Raise Exception

20.16.19.1 Definition. The OSIF shall support the capability to raise an
exception in an Ada task.

20.16.19.2 Metric. To be determined.

20.16.19.3 Rationale. An Ada runtime system must have the ability to raise an
exception in any given Ada task. In particular, an Ada runtime system must be
able to raise an exception in a task when hardware-detected exceptions (e.g.,
overflow, access violation) occur.

20.16.20 1/0 Support

20.16.20.1 Definition. The OSIF shall support for Ada input/output as
described in chapter 14 of the Ada LRM.

20.16.20.2 Metric. To be determined.

20.16.20.3 Rationale. In conformance to the Ada LRM, the correspondence
between the input/output supported for Ada and all other input/output
supported by the interface must be clearly defined. The interface must
provide access from Ada to files written by other languages (if any).

20-66

