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Chapter 1

Introduction

1.1 Objective

The Persistent Data/Knowledge Base (PDKB) project is a research effort
currently conducted at the Computer Science Laboratory of SRI Interna-
tional, Menlo Park California. The objective of this research is to

* Perform an investigation and evaluation of a persistent object-oriented
data/knowledge bazse system.

* Develop and verify its high-level system design specification.

* Explore new concepts and ideas for tight coupling of both data and
knowledge in a unified framework.

* Explore innovative concepts and techniques to provide reliable and ef-
ficienL access to a data-and-knowledge base.

* Provide integrated building blocks for hypermedia information, such as
satellite images, bitmaps, and multidimensional spatial data.

1.2 Overview

This report summarizes the results of this research project. In essence, the
PDKB project adopts a tight-coupling strategy to couple both data and
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knowledge in a unified framework. The PDKB system uses knowledge rep-
resentation based on a semantic network to encode knowledge. Knowledge
is defined as abstractions at a higher level than the real-world data that are
stored persistently in an object-oriented database (OODB) system.

To capture the semantic-rich knowledge representation in semantic net-
works, we propose a set of formalized axioms using Prolog-like expressions to
extend the modeling capabilities of OODBs that will capture the real-world
data semantics and their relationships. These formalized abstractions include
generalization/specialization, aggregation, composition, association, grouping,
and their interactions. These formalized axioms serve as fundamental build-
ing blocks for the underlying inferencing engine. Other logical rules and
constraints can be further defined by knowledge engineers, database schema
designers, and end users using Prolog-like expressions; once defined they are
used to encode domain and application-specific knowledge other than the
system's inferencing axioms already defined. The inference and database en-
gine are tightly coupled since both knowledge and the real-world data are
stored in the same domain, unlike conventional approaches, in which data
and knowledge are stored in separate domains.

Part of this research is motivated from work by others on Datalog [2]
Semantic Data Models (SDM) [3] [41 [5], and Extended Entity-Relationship
Data Models [6]. The fundamental difference distinguishing PDKB from
these models is that PDKB provides both semantic organization principles
and formalized deductive axioms in the same framework. Datalog lacks the
ability to express real-world semantic abstractions, and the SDM lacks formal
representation of the model. Many existing concepts and techniques from
Datalog and SDM can be directly applied to the PDKB implementation.
New concepts such as the use of high-order predicates are also proposed in
this report as future research topics.

We developed a prototype system based on the PDKB concept to demon-
strate its feasibility. For fast prototyping, we designed a customized database
to store real-world domain data in the PDKB Prototype to provide persis-
tence and continuity for both knowledge and data. In the PDKB Prototype,
knowledge and real-world data are tightly coupled because of their unified
representation and framework, namely, the consistent mapping between the
semantic network and object-oriented data models. In unifying these two rep-
resentations, we also uncovered and resolved certain discrepancies between
them, such as the discrepancy in representing physical entities in semantic
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networks versus object instantiations in object-oriented models.
We have chosen to implement a customized database for the PDKB Proto-

type because of limited resources and commercially available object-oriented
databases running on Symbolics machines. The current PDKB Prototype
customized database provides primitive yet adequate functions for storing
complex persistent data objects such as satellite images, geographical maps,
and other multimedia spatial information. To facilitate the smooth migration
of this customized database to other commercial object-orientee database
systems in the future, we have designed a generic calling interface that iso-
lates target-platform system-dependent calls. This will minimize the migra-
tion effort and cost.

For the implementation, we have decided to develop the PDKB Proto-
type on Lisp machines for prototyping efficiency and performance consid-
erations. In the future, we may port the PDKB Prototype from Symbolic
Lisp machines to the Lisp environment on SUN workstations. We also plan
to reimplement the PDKB Prototype with other high-level object-oriented
programming languages such as C++, if further funding should become avail-
able.

At the top level of the PDKB Prototype is a multimedia application
which stores and displays bitmap images for a three-dimensional map, taking
advantage of the underlying data and knowledge base. The user may browse
the bitmap image display with the multimedia interface, or may use the
PDKB Prototype query language to reason with the underlying knowledge.

1.3 Future Work

We foresee three alternatives ways in which this project could become a full-
fledged system:

" Collaborate with third parties and other research institutions to inte-
grate existing OODB systems, and participate with the current OODB
community to standardize the OODB architecture and interfaces.

" Develop a generic interface to couple with off-the-shelf OODBs.

" Implement an in-house persistent-object manager that will provide nec-
essary storage and access mechanism for the PDKB model.
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The last approach appears to be least attrawive as it requires significant
resources and effort. The second approach, which uses off-the-shelf OODBs,
has the advantage that the PDKB will includ: a generic interface which is
portable across various OODBs products. Unfortunately, however, the ap-
proach loses the tight-coupling feature because P LiKB is treated as a regular
application. This disadvantage could be avoided only if the PDKB were
coupled within the kernel of a commercial OODB product.

The first approach, collaboration, appears to be most attractive; however,
it is constrained by the availability and schedule of other parties. We have
started pursuing the first two approaches. We ha.e evaluated various com-
mercial OODB products such as Gemstone from Servio Logic, Ontos from
Ontologic, Itasca (a commercial version of Orion OODBs from MCC), and
a persistent object-storage manager from Xidak. We are also collaborating
with other research institutions that are building Open OODB architectures
based on community consensus.

1.4 Report Organization

Chapter 2 reviews various ways in AI to encode and represent knowledge.
The representations included are those based on semantic networks, object-
attribute-value triplets, rules, frames, and logic. Chapter 3 reviews existing
database technologies such as relational, object-oriented, entity-relationship,
and semantic data models. Chapter 4 surveys relevant technologies and ap-
proaches in coupling knowledge-based systems with database systems. Chap-
ter 5 explains why PDKB chooses to tightly couple semantic-network-based
knowledge representation with OODBs. Chapter 6 presents the ;ormal frame-
work for the PDKB model. The framework includes meta-level inference
axioms and user-defined inference rules using Prolog-like expressions. Chap-
ter 7 describes how queries are processed and rules are inferenced in PDKB.
Chapter 8 discusses future research topics and directions for PDKB. They
include reasoning from high-order logic object-oriented languages, natural-
language processing, machine learning, discretionary and multilevel system
security, memory-resident OODB, and characterizations of other semantic
abstractions. Chapter 9 concludes this report with the contribution of this
research.



Chapter 2

Knowledge Representation in
Al

A knowledge-based system is an intelligent computer program that uses
knowledge and inference procedures to solve problems that are difficult
enough to require significant human expertise for their solution. Knowledge
necessary to perform at such a level, plus the inference procedures used, can
be thought of as a model of the expertise of the best practitioners of the field.

The knowledge of a knowledge-based system consists of facts and heuris-
tics. The facts may constitute a body of information that is widely shared,
publicly available, and generally agreed upon by experts in a field, or they
may consist of externally collected data or observations. The heuristics
are mostly rules of good judgment (rules of plausible reasoning, rules of
good guessing) that characterize expert-level decision making in the field. A
knowledge-based system often considers a number of competing hypotheses
simultaneously, and frequently makes tentative recommendations or assigns
weights to alternatives. The performance level of a knowledge-based system
is primarily a function of the size and the quality of the knowledge base it
possesses.

In early knowledge-based systems, most of the effort was devoted to the
representation of knowledge and the reasoning engine. Typically, knowledge
and data stored in these systems are in separate domains. For example, a
knowledge system session usually starts with initializing the knowledge base
from its file system, entering assertions (base facts), loading input files or
data from a network for reasoning, analyzing the result, and refining the

5



6 Knowledge Representation in AI

knowledge base before the next session. With a large knowledge base and a
complex problem, this approach becomes cumbersome and time consuming.
Further more, the knowledge becomes very difficult for multiple users to
maintain and track.

Historically, five different approaches have been used to encode the facts
and relationships that constitute knowledge. Each method has advantages
and disadvantages. These are discussed below.

2.1 Knowledge Representation Based on Se-
mantic Networks

The semantic network is the most representational scheme, and also one of
the oldest. A semantic network is a collection of objects called nodes. The
nodes are connected by arcs or links. Ordinarily, both the links and the
nodes are labeled. There are no absolute constraints as to how nodes and
links are named, although some conventions can be applied [7]. Flexibility is
a major advantage of this representation scheme. New nodes and links can
be defined as needed. Inheritance is another feature of semantic networks.
It refers to the ability of one node to inherit characteristics and properties of
other nodes related to it.

Systems based on this approach use nodes and arcs (or links) to represent
knowledge. Although no absolute constraints exist as to how nodes and links
are named in semantic networks, there are some conventions, suggested as
follows:

* Nodes are used to represent objects and descriptors. Objects are essen-
tially the same as in object-oriented models except that they also rep-
resent instances of object, which is a separate notion in object-oriented
models. Objects may be physical such as vehicles or buildings, or may
be conceptual entities such as acts, events, or abstract entities. Descrip-
tors provide additional information about objects. In object-oriented
models, a description of an object is typically defined as attributes of
the object class.

" Link; relate objects and descriptors. A link may represent an arbitrary
relationship. Common links include the following:
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- ISA links are often used to represent the class/instance relation-
ship. In object-oriented models, ISA links denote specialization
or inheritance between class and subclass.

- A second common relationship is the I4ASA link. HASA links
identify nodes that are properties of other nodes. Typically
HASA links show part-subpart relationships. HASA links are
essentially the same as the ISPARTOF links in object-oriented
models to represent the composition abstraction.

- Some links are definitional, or heuristic. Heuristic relationships
enrich the network by providing additional paths and semantics.
In object-oriented models, arbitrary links of this type are called
association links. We will discuss the implication on the map-
ping of such links from knowledge-base systems to object-oriented
systems further.

Semantic networks provide flexibility to encode new knowledge into an
existing knowledge base by adding new arcs and links to current networks.
They also allow one node to inherit characteristics of other nodes that are
related to it. This is essentially the same as in object-oriented models. Some
systems, such as those of Chow [34] and Moad [35], use a frame-based rep-
resentation to store knowledge. These systems can be categorized as subsets
of semantic networks. Also, representations based on object-attribute-value
triplets can be considered as a special case of both semantic networks and
frames.

When reasoning with semantic network systems, the inference engine re-
lies on traversing a network based on types (or descriptions) of arcs (or links)
and nodes connected. It is important that such systems use efficient graph-
traversing schemes to provide efficient inferencing performance .vhen dealing
with a large body of knowledge. The semantic networks offers a natural
mapping to object-oriented database models since both systems use simi-
lar abstractions in capturing real-world semantics However specific model-
ing discrepancies have to be resolved in order to couple these two systems
tightly together. Figure 2.1 illustrates the point with a simplified detective's
semantic-network knowledge base.

In the example of Figure 2.1, three fundamental discrepancies separate
semantic networks in a knowledge-based system from object-oriented models:
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* Semantic networks treat object instances as regular objects while
object-oriented models treat object instances as separate notions. In
our detective example, the node Wilson who is a male is an instance of
Male object.

* Some definitional or heuristic links in semantic networks can be rep-
resented as attributes of objects rather than links required in object-
oriented models. For example if we were to represent the information
that Wilson's Tattoo was made in China in an object-oriented model,
we would define an attribute "Place-Made" within the Tattoo object
class rather than drawing an explicit link between them. Note that
the attribute of an object is similar to the slot defined in the frame
representation.

* Semantic networks typically employ large number and different types
of links that are not directly and formally supported in object-oriented
models'. Some database researchers [32] [41] [33] have proposed using
the notion of association to represent arbitrary uscr-defined relation-
ships among objects. However, association provides relatively weak
semantic constraints compared to the well-understood generalization
abstractions.

To tightly couple knowledge-base systems using semantic networks with
object-oriented databases at the data modeling level, we envision a scaled-
down representation of the semantic networks and enhancement of the seman-
tic data-modeling capabilities in the object-oriented models. We also need
to formalize the semantics of various links in object-oriented data model to
match with the richer data-modeling capability of semantic networks.

The interaction between those two tightly coupled systems can be de-
scribed as follows:

* Both inference engine and database engine will share same kernel ser-
vices, i.e., knowledge base and real-world data are stored using the
same framework with the same representation.

'Generalization (or inheritance) link is the only well defined and accepted semantic
abstraction in object-oriented models.
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* The knowledge acquisition and management process of the inference
controller will use the schema management servic6 provided by the
database controller, i.e., the knowledge base becomes the database
schema and run-time instances of the schemata. Database controllers
that offer schema versioning capability, such as Orion from MCC [19],
should also allow reasoning from different knowledge viewpoints with
different temporal factors.

* The interaction enables concurrent reasoning sessions on the same
knowledge base with the ability to recover and roll back or roll for-
ward from incomplete transactions.

* The indexing, clustering, and replication features provided by the
database controller enable the inference controller to handle a large
volume of knowledge and a large data base without having to cache
all of the entries into main memory at the beginning of a reasoning
session.

* Database queries are supplemented with the inferencing capability, to
allow intelligent query processing through embedded knowledge of the
data representations and their relationships.

As will be shown, there are different techniques and alternatives for hous-
ing the knowledge-based and database systems under the same framework. It
is important for a tightly coupled knowledge-base and database system to be
able to interface with external or foreign database systems, as large volumes
of data reside on heterogeneous database platforms. We foresee our system
as providing options either to retrieve data from foreign databases with cer-
tain standard data exchange formats, or to acquire and import foreign data
into the native system platform for a more efficient inferencing capability.

2.2 Knowledge Representation Based on
Object-Attribute-Value Triplets

Another common way to represent factual information is as object-attribute-
value (O-A-V) triplets. In this scheme, objects may be physical entities
such as a door or a transistor, or they may be conceptual entities such as
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a bank loan or a sales episode. Attributes are general characteristics or
properties associated with objects. Size, shape, and color are typical at-
tributes for physical objects; interest rate is an attribute for a bank loan.
The value of the triplet specifies the nature of an attribute in a particular
situation. Representing knowledge with O-A-V triplets is a specialized case
of the semantic-network approach. Exotic links are banished in favor of just
two simple relationships: the object-attribute link and the attribute-value
link. This O-A-V scheme has three features. The first is its distinction be-
tween a static, unchanging object and a dynamic instance of that object that
changes from case to case. This feature allows a knowledge-based system to
store static knowledge "between consultations" with bindings to specific val-
ues. As values are determined, the system stores this dynamic information
in the working memory. This process of determining specific values for the
attributes in a static knowledge base is called instantiation. The second fea-
ture of O-A-V representation is that objects are ordered and related to one
another. This allows the O-A-V scheme to be fitted conveniently within the
semantic network. The third feature of the O-A-V scheme is its ability to
handle uncertainty. We can associate a confidence factor (or certainty factor)
with the attribute-value pair to represent the confidence that we have in a
piece of evidence.

2.3 Rule-Based Knowledge Representation

Rules are widely used to represent relationships. They can be used with
either O-A-V or semantic-network representations. A rule is composed of a
set of expressions ("if" clauses) that form the premise, plus the conclusion
(the "then" clause). Rules link the values for attributes of objects. Rules can
be inferenced with forward chaining, with backward chaining, or with other
inference strategies. In backward-chaining inference, the system is provided
with a specific clause called a goal that is to be proved. To prove a goal,
backward-chaining inference begins with and focuses on the conditions of
rules. Forward-chaining is the obverse of backward chaining, it focuses on
the premises of rules rather than on their conclusions. If the clauses in the
premise of a rule are proved, the conclusion of the rule ic added to the fact
base. Uncertainty factors can also be attached to rules to show the confidence
factor of a certain rule deduction.
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To contrast rule-based representation with other approaches discussed
above, consider the following rule representing a specific fact about our de-
tective knowledge-base example:

if the right cuff of a person's coat sleeve is worn and shiny
then there is a 60% suggestive evidence that the profession of

that coat owner is a writer

To assert this fact into a knowledge-base system, we could analyze this
rule with the following representation:

Attribute Object Value Confidence Factor

if right cuff coat sleeve worn and shiny -

then profession coat owner writer 60%

To encode this fact into a knowledge-base database system, we need to
convert the rule description into a well-defined persistent representation. We
could encode the information using semantic networks as shown in Figure 2.1
based on their object, attribute, and value representations. We may need to
further divide coat sleeve and coat owner into separate objects such as coat,
sleeve, and owner if there is a need to make them distinct.

In most current expert systems, rules are encoded into arbitrary internal
representations that cannot be accessed by other inference and database en-
gines. Nor do the representations provide object persistence and concurrent
access by multiple users; each user operates within his/her knowledge do-
main. This limitation typically inhibits the ability of those systems to deal
with a large knowledge domain in a multiuser environment.
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2.4 Frame-Based Knowledge Representa-
tion

Frames provide another method for representing facts and relationships. A
frame is a description of an object that contains slots for all of the information
associated with the object. Slots, like attributes, may store values, pointers
to other flames, sets of rules, or procedures by which values may be obtained.
The inclusion of these additional features makes frames different from O-A-V
triplets. Frames provide richer representations of knowledge. They are also
more difficult to develop.

2.5 Logic-Based Knowledge Representation

Propositional logic is a common logical system. Predicate calculus is an ex-
tension to propositional logic that takes an object as elementary unit. State-
ments about objects are called predicates. Logical formulations represent
knowledge in a manner different from the preceding approaches. In logic,
users can only ask questions, and those questions can only return either true
or false answers.

The idea of using first-order logic to describe real-world semantics is not
new. For deductive databases [311 [30], logic has been used as the data
definition language based on the relational data model. It is generally agreed
that logic schemes can provide the following advantages [33]:

" The ability of inference rules in terms of which one can define proof
nrocedures.

* A clean, well understood, and accepted formal semantics.

" A natural way to assert queries.

An important drawback of logic schemes however, is the lack of organiza-
tional principles for the facts tha; constitute a database [33]. A second draw-
back is the difficulty of representing procedural knowledge using its logical
representation. To tightly couple a knowledge-base system of this type with
database systems requires a seamless integration between logic and semantic
databases: i.e., logical representation must provide a formal representation
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for semantic data models, and the semantic data models to provide the orga-
nization principles for logic representation. The result should further couple
with the procedural semantics provided by the logic programming language,
such as Prolog [29]. With this approach, procedures can be included as inte-
gral parts of our conceptual schemes, and logic can provide a query language
to query the semantic database.

Figure 2.2 shows the overall relationships between semantic networks,
O-A-V, and frame representations of knowledge.

SEMANTIC NET

0 FRAME

Object
Slot-value

OBJECT-ATTRIBUTE-VALUE Slot-value
TRIPLET Slot-rule

Rules can be used to Slot-pointer
deduce new values.,

Rules and pointers can be
incorporated directly into
the frame

Figure 2.2: Semantic Nets, O-A-V Triplets, and Frames



Chapter 3

Survey of Current Database
Technologies

We begin this examination of current catabase technologies by surveying var-
ious database models, such as relational, object-oriented, entity-relationship,
and semantic data models. We compare their data modeling powers from the
perspective of knowledge representation. In the comparison, we discuss some
of the most frec intly used real-world abstractions, such as generalization,
aggregation. cowyosition, association, and grouping. Some of these abstrac-
tions have been added to the original ER model by later researchers. We
will show the modeling differences between the relational, ER and object-
oriented models in this respect, and will then propose a new extension to the
existing object-oriented data model that will capture richer semantics and
the relationships between these abstractions.

3.1 Database Models

A data model of a database system is a mathematical formalism vith two
parts: a notation fo: describing data and a set of operations used to manip-
ulate the data. Most data models used today are strictly typed [14]; i.e., each
datum must belong to some category. Data that do not fall into a category
have either to be subverted to fall into one, or they cannot be handled and
represented in the data model. In addition, some data models assume that
the allowable categories are predefined and cannot evolve; the relational data

15
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model is a typical example. One advantage of this rigidity is that propertieb
of data can be abstracted and investigated in terms of its category. In other
words, a theory can be formulated based on the properties of the category.
In the relational data model, the relational algebra and relational calculus
form the theoretical basis of the relational database system. However, this
type of data model poses rigid restrictions on the membership of data in a
category. This restriction limits some real-world applications that can be
used effectively on top of the strictly typed data model. For example, the
relational model is known to be a poor fit for applications such as CASE,
CAD/CAM, and multimedia information.

On the other hand, a loosely typed data model does not make any assump-
tions about categories. Categories are allowed only to the extent that they
are useful. Individual data can exist by themselves or in relation to some
other data. Information about categories, if they exist, is treated in the same
way as information about an individual datum. A data-and-knowledge-based
system would fall into this category.

It is difficult to claim that one data model is better than another. For
example, the relational model is well suited for traditional MIS data pro-
cessing, but falls short in supporting other application areas, as mentioned
above. Generally speaking, new data models tend to improve on or encom-
pass old data models in terms of modeling capabilities and expressiveness.
For example, a relational model provides a more powerful ad hoc querying
capability than a network data model, and an object-oriented data model
provides generalization (or inheritance) and abstract data type capabilities
that the relational data model lacks.

For designing database applications, the entity-relationship (ER) data
model, based on tables and graphs, has gained wide acceptance in designing
the logical database representation. The ER data model was conceived to
facilitate conceptual and logical database design by allowing the specifica-
tion of an enterprise schema, which represents the entire enterprise's view
of data and is independent of physical database implementation details such
as storage or efficiency considerations. The enterprise schema can be further
mapped into various physical database models, such as the network, rela-
tional and object-oriented models. For example, researchers have proposed
algorithms to translate ER diagrams into normalized relational normal forms
[15]. Figure 3.1 illustrates the translation from a ternary ER model to. rela-
tional tables that are in third normal form (3NF).
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3.2 Real-World Semantic Abstractions

The original ER model proposed by Chen [16] uses the concepts of entity type
and relationship type as its basic structures. An entity type is called an entity
set and represents the generic structures of an entity in an enterprise's realm
of interest. A relationship type is called a 7-clationship set. It represents the
generic structure of the relationship among entity sets. For example, in the
real world there exists a citizen-of relationship between Person and country
entities. In general, any two entities can exist in one or many relationships.
For example, there may exist another relationship traveLin between entities
person and country.

Generalization and specialization are special kinds of relationships. For
example, the person entity may be specialized into different entities such as
engineer, architect, accountant, and doctor based on its professional classifi-
cation. But an engineer er'ity is still a person entity. This is also referred
to as an ISA relationship in the extended ER model. We say that a person
entity is a generalization of its specialized entities, e.g, engineer.

Aggregation is introduced as an abstraction that transforms a relationship
between entities into higher-level entities. For example, a certain relationship
between a person, a hotel, a room, and a date may be abstracted as the
aggregate entity reservation. This reservation entity may be used without
explicitly specifying all underlying details and relationships.

Composition is an abstraction similar to aggregation. It also transforms a
relationship between entities into higher-level entities. However it emphasizes
the physical structure rather than the abstract structure. The parts hierarchy
of an automobile engine design is a typical example of the composition ab-
straction. Some database models use aggregation for both representations,
but the difference between them are significant enough to justify different
terms. In its newly revised composite object definition [42], Orion also dis-
tinguishes two types of references from one object to another: weak and
composite. The weak reference is similar to our aggregatiqn abstraction; the
composite reference has a similar concept except that Orion proposed a set
of formalized semantics through its internal implementation. Composition
abstraction is sometimes called PART-OF in some models.

Specific semantics and constraints govern the interactions between various
abstractions. Smith and Smith [17] wrote a pioneering work formalizing the
generalization and aggregation abstractions from the context of the relational
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data model. However, both abstractions were treated orthogonally because
of the inherent semantic limitation of the relational model. In the object-
oriented data model, generalization and specialization are also referred to as
inheritance. The inheritance in the object-oriented paradigm carries more
semantic meaning than in the ER model. It also allows specialized objects
to inherit both attributes and methods from its generalization objects.

In general, an object-oriented database (OODB) schema is expressed
through its inheritance hierarchy. This is compatible with the inheritance
feature in most object-oriented programming languages such as C++. Most
OODB systems support composition as an abstraction explicitly or implicitly.
If an OODB supports an explicit composition abstraction, it typically pro-
vides a set of semantic constraints and high-level operators that allow users
to manipulate the composite objects directly. If an OODB supports implicit
composition abstraction, users need to define and implement the cons'raints
and operations. Doing so may require a major effort and could poter.tially
affect the behavior of the overall database schema. However, many existing
commercial and research OODBs belong to thiz category.

3.3 Deficiencies in Current Object-Oriented
Data Models

To model real-world semantics using current object-oriented data models,
database designers are limited to using only the generalization and a lim-
ited form of aggregation and composition abstractions, if they are provided
by the system. For example, consider the sample automobile-manufacturing
database schema used in a recently published Orion paper by Kim [19J in Fig-
ure 3.2. This schema shows two types of object relationships that were cap-
tured in the object-oriented data model used in ORION: the class/subclass
link, which is a generalization abstraction, and the attribute/domain link,
which is an aggregation abstraction (note that in the most recent version of
Orion, attribute/domain links have been expanded into weak and composite
links for composite objects, as explained earlier).

This example shows that the relationship between a Vehicle and a Com-
pany is expressed through an aggregation attribute, manufacturer, defined in
the Vehicle class. Basically, this attribute is a pointer to class Company. An
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equivalent representation in the ER model would create an explicit relation-
ship called ManufacturerOf between the Vehicle and Company entity with
many-to-one cardinality from Vehicle to Company, i.e., a given company may
manufacture multiple types of vehicles, but a given vehicle can be manufac-
tured by only one manufacturer. This shows that a straightforward binary
relationship in the ER model is actually being treated and interpreted as an
aggregation in the object-oriented data model.

Cardinalities associated with a relationship may further complicate the
modeling requirements in the object-oriented data model. For example, sup-
pose we add another object class Factory-Plant into the above schema to
represent the vehicle manufacturing-plant relationships with both Vehicle
and Company object classes: a given vehicle could be manufactured in mul-
tiple plants by one company. This poses a difficulty, however, because the
object-oriented data model is unable to express the new relationship using the
reference from Vehicle to Company. A possible solution is to decompose the
three-way relationship into three binary pairs of aggregations: Vehicle Com-
pany, Company Factory-Plant, and Vehicle Factory-Plant. If the underlying
OODB does not provide mechanisms to enforce the cardinality constraints,
then the user applications must enforce them. This schema decomposition
also appears to be rather awkward, since representing the three-way relation-
ship as three pairs of disjointed aggregations does not convey their ternary
interrelations in the object-oriented database schema.

The ER model of Teory [15] proposes a translation algorithm that will
generate normalized relational tables from n-ary relationships. The cardinal-
ity constraint can be expressed using both referential integrity and foreign
keys in the relational databasc schema definition. However, it is not as in-
tuitive and natural to express the same semantics using references in the
object-oriented data model. The difficulty arises mainly because of the ex-
plicit casting of real-world relationships into the aggregation abstraction by
the object-oriented data model.

Another modeling issue relates to the interaction of different abstractions
in the object-oriented data model. For example, it is desirable for the Domes-
ticAutomobile, a subclass of Vehicle, to inherit those composition properties
associated with vehicle, e.g., each domestically made vehicle must be com-
posed of a VchiclcDrivetrain and VehicleEngine, just as it would inherit those
attributes and methods defined in its superclass.

Some subtleties occur when mixing aggregation, composition, and gener-
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alization links from a root class to a leaf class. For example, AutoCompany,
a specialized class of Company, exists in the same path from the aggrega-
tion link rooted in Vehicle. Should this property also be inherited by the
DomesticAutomobile?

3.4 Findings and Recommendations

The current object-oriented data model, although providing a significant im-
provement over conventional database models with its ability to inherit su-
perclasses properties, also presents certain modeling deficiencies. Two alter-
natives would improve the object-oriented data modeling capabilities. The
first alternative is to investigate specific deficiencies and shortcomings in the
existing model, and to enhance them with specific provisions. For exam-
ple, we could f!urther explore the interaction semantics between aggregation,
composition, and generalization to define suitable policies that could be used
and enforced. A variation would be to follow the example of Orion and
define object and schema version management semantic constraints as an
extension to the object-oriented model. The disadvantage of this approach is
that individual enhancements and extensions are still bound to the original
modeling limitations; also, introducing extraneous constraints may affect the
consistency and integrity of the original model.

The other alternative is to develop an extension of current object-oriented
data models with formalized axioms and properties that will provide a sound
and complete foundation for various real-world semantic abstractions. If we
look at the current object-oriented data models from a different perspective,
what we see is basically a directed graph of three link types, generalization,
composition, and aggregation, that have specific semantic properties attached
to them, e.g., inheritance for generalization, and less-well understood links
for aggregation and composition. The basic idea is to develop a generalized
annotated directed graph model such that the existing object-oriented data
model becomes a subset. This new extensions will allow database schema
designers to define arbitrary types of link relationships with associated se-
mantics and their cross link constraints. ?or example, we may wish to define
a new link relationship called "configuration," which would define the thread-
ing of a set of logically related composite objects. This notion is useful in
engineering design applications such as CAD/CAM. We should also b able
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to define its semantic constraints, such as the constraint that all levels of ver-
sioned objects from the root to the leaf must be included in the composition
hierarchy.

3.5 Extending Existing Object-Oriented
Data Models

In this section, we describe our extension to the current OODB model. In-
formally, an OODB is a collection of entity objects and association objects
communicating via messages. Both entity and association objects consist of
a unique identifier (OID), a set of attributes (some OODB systems refer to
them as instance variables) and a set of methods. Entity objects are real-
world entities similar to those defined in the ER model. Association objects
store constraint definition and references to its participating entity objects.
They are proposed in our extended model to define explicit relationships in-
volving multiple entity objects, especially for ternary and higher number of
participating entity objects. Our extended model requires all participating
objects of an association object to be entity objects.

A primitive attribute is an attribute that takes on system-defined data
types such as integers, real numbers, and strings. Some OODB systems pro-
vide more powerful abstract data types such as lists, arrays, and bags. A
complex attribute is defined over an existing user-defined object class. In the
current OODB, complex entities are the only means by which the user can
define real-world abstractions beyond generalization and specialization. A
complex attribute can always be modeled as an external association object.
In our extended model, we also allow derived attributes whose values are
computed from attached inferencing rules expressed in Prolog-like expres-
sions. We also require that association objects include only primitive and
derived attributes.

A primitive object is an entity object whose attributes are primitive only.
We define a complex object as an entity object that contains complex at-
tributes, and a composite object as a complex object that contains explicit
PART-OF references to other component objects in the definition. A com-
posite object is always a complex object, but not vice versa.

Much confusion and trouble arise when database schema designers and
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application developers define new abstractions using the reference link of
complex entities in the current OODB model. The process typically requires
repetitive and potentially conflicting interpretations that have to be imple-
mented by end-user applications. Some OODBs define their own interpreta-
tions for selected abstractions. Such OODBs, however, lack generalized treat-
ment in their interaction and interrelationship. It becomes difficult to add
and integrate new abstractions into existing data models without retrofitting
existing ones.

The reason for extending existing OODB models is to remedy such defi-
ciency. We recognize that it is impossible for any database models to include
formal interpretation on the infinite real-world semantic abstractions. In our
extended model, we have taken a different approach to this issue. We studied
and investigated various database semantic schemes and carefully selected a
set of most frequently used abstractions so that we can formally define their
semantics and their interrelationships. We also foresee a methodology to
be developed for database designers to integrate new semantic abstractions
into existing ones without revamping existing models. The formal extended
model for PDKB is presented in Chapter 6.



Chapter 4

Survey of Related Work in
Coupling Knowledge-Based
Systems with Database
Systems

The research prototype system we studied is coupling Proteus [36] with Orion
[19] from Microelectronics and Computer Technology Corporation (MCC)
[37]. Proteus is a frame-based nonmonotonic inference system, and Orion
is an object-oriented database systems. Both systems are developed at the
Advanced Computer Architecture Program in MCC. The commercial prod-
uct we investigated is KEEconnection from IntelliCorp, a software product to
bridge between knowledge-based applications built with IntelliCorp's Knowl-
edge Engineering Environment system (KEE) and commercial SQL-based
relational database systems.

4.1 Comparison with the Coupling of Pro-
teus and Orion

We begin with a brief overview of both Proteus and Orion systems, and then
describe their specific disadvantages when compared with our approach.

25
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Proteus Overview. Proteus is a frame-based, nonmonotonic, truth main-
tenance system (TMS) that records logical inferences and dependencies
among data. It allows efficient revision of a set of beliefs to accommodate new
information, the retraction of a premise, or the discovery of a contradiction.
It also facilitates the generation of coherent explanations. Each element of
Proteus represents a potential belief with its status reflected in the support-
status of the datum. This status is assigned by the TMS in accordance with
a list of justifications attached to the datum. The Proteus TMS is complete
because, with any set of justifications, it will achieve a stable well-founded
state if such a state exists; otherwise it will recognize and report failure.

The data on which the TMS operates represent statements about objects,
also called frames. The initial state of the system has several frames (one
of these, CLASS, plays a special role as discussed below). Other frames are
system defined or are built-in frames used as primitive objects. The user may
enlarge this set by creating new frames, one at a time. Proteus supports the
standard notion of inheritance as defined in the object-oriented programming
paradigm. Proteus also supports the notion of metaclass, which serves as the
basis for instantiating other classes of objects. Additional metaclasses may
be created by linking any user-defined classes to the system CLASS.

Orion Overview. In Orion, all conceptual entities are modeled as objects.
A primitive integer or string is as much an object as is a complex assembly of
objects, such as an automobile. An object consists of some private memory
that holds its state. The private memory consists of the values for a collection
of attributes. The value of an attribute is itself an object, and therefore has
its own private memory for its state (i.e., its attributes). A primitive object,
such as an integer has no attributes. It has only a value, which is the object
itself. More complex objects contain attributes through which they reference
other objects, which in turn contain their own attributes.

The behavior of an object is encapsulated not only in attributes but also
in methods. Methods consist of arbitrary codes that manipulate or return
the state of an object. Objects can communicate with one another through
messages, which constituife the public interface of the object. For each mes-
sage understood by an object, there will be a corresponding method and a
returned object. The messages inclide user-defined messages, access mes-
sages, and system-defined functioi A user-defined message is a message
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to a corresponding user-defined method already stored in Orion. An access
message retrieves or updates the value of an attribute of a class. System-
defined functions include all Orion functions for schema definition, creation
and deletion of instances, transaction management, and so on.

Mapping the Proteus Model to the Orion Model. Difficulties arise
when mapping two different systems that have been designed and imple-
mented independently. In the case of mapping Proteus with Orion, the single
most significant obstacle is Orion's lack of a metaclass concept that Proteus
requires. Other than that, the two models share a high degree of basic simi-
larity and are compatible in most respects. For example, the frame notion in
Proteus can easily be mapped to the object definition in Orion. In general,
the two models have the following elements in common:

" Instance relation: A class consists of a set of instances, and an instance
may be a member of exactly one class.

" Attributes: A class consists of a set of attributes.

" Domains: An attribute may be typeless or typed. If a type is specified,
the type is a class, possibly with its own set.of attributes.

" Subclass relation on a class hierarchy.

" Message passing: Orion implements message passing as LISP function
calling. This means that all Proteus interactions with Orion are imple-
mented as LISP function calls to Orion, making it easier for Proteus
developers to interface with Orion.

In the coupling approach taken by Proteus and Orion, Proteus is no
different from other applications built on top of an Orion database system.
That is, Proteus interactions to Orion are through functions calls, and Orion
never calls Proteus. Orion simply provides a persistent storehouse for storing
instances of Proteus frames which would otherwise be volatile. The database
engine remains separate from the inference engine, and the knowledge system
maintains the knowledge body within its own domain; i.e., the knowledge
is separate from the data. Thus, Orion serves simply as a passive object
storage awaiting Proteus for access. It is conceivable that other types of
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knowledge systems, such as rule-based systems, could also be coupled to and
run concurrently with Proteus on the same Orion databases.

The ramification of this coupling approach is twofold. First, since the
knowledge system maintains its own knowledge body in its own application
domain, the knowledge cannot be shared with other domains. For example,
a manufacturing corporation would need to maintain one distinct knowledge
system for corporate data, and another for manufacturing process control and
management. Although both knowledge systems could be built on top of the
same database system, there 'is no way for both bodies of knowledge to inter-
act with each other (unless an interface application is implemented by knowl-
edge engineers). Second, all inferencing tasks are performed by the knowledge
system rather than by the databases. This means that the database cannot
answer intelligent queries except by going through the knowledge system,
and every knowledge system needs to provide its own querying mechanism
to end users rather than having them use the querying mechanism provided
by the databases. In essence, the coupling between Proteus and Orion rep-
resents one type of loose coupling strategy between knowledge systems and
database systems with similar data models.

4.2 Comparison with KEEconnection

The following begins with an overview of how to map from KEEconnection
to relational database systems, and then describes KEEconnection's specific
disadvantages when compared with our approach.

Mapping from KEEconnection to a Relational DBMS. The ar-
chitecture of KEEconnection divides the process of building and operat-
ing a database-to-knowledge-base connection into two distinct tasks: First,
KEEconnertion, guided by input from the application developer, builds a
mapping knowledge base, a description of how the data structures in a par-
ticular relational database should be related to data structures in a particular
KEE knowledge base. KEEconnection then interprets the mapping knowl-
edge base for the purpose of translating queries and transforming data. This
mapping enables developers to connect a knowledge base to more than one
database, and even to databases running on heterogeneous systems.

The three principal software modules of KEEconnection are mapping,
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translation, and data communication. The greatest effort in this process is
required in the mapping phase Once a mapping is completed, KEEconnec-
tion's translation and data communications modules take over, dynamically
translating the applications's requests for data into SQL queries, managing
network communications, and transforming downloaded data into the format
specified by the mapping.

It is no surprise that the mapping phase is the single most important
and time consuming process. In essence, the knowledge application devel-
opers (or knowledge engineers) need to define the corresponding relational
database schema definition for those knowledge structures (or class units)
used in knowledge systems.

These units correspond one to one with the database tables selected by
developers. For each column in a table, KEEconnection creates a slot of
the name in the table's corresponding KEE unit. These units will serve as
templates for units that KEEconnection will later create to store downloaded
data.

In addition to creating template units in the application knowledge base,
KEEconnection also builds a separate mapping knowledge base. Units in the
mapping knowledge base store information about how columns in database
tables are mapped to slots in knowledge base units. Each template unit
has its own mapping unit to maintain its database connections. Currently,
KEEconnection supports access to relational database vendor products such
as Oracle, Sybase, and Ingres.

Mapping Mismatch between KEE and Relational DBMS. Rela-
tional database tables consist of rows (tuples or records), which in turn are
collections of columns (fields). The KEE knowledge base, on the other hand,
is composed of collections data structures called units, which in turn use col-
lections of slots to group together all relevant information about the entity,
an object or concepts, represented by the unit. In this unit and slot, they
support far more complex structures than their relational database counter-
parts. While a slot, like a database column, may be used to store primitive
data such as numbers and strings, it may also store complex data types or
complex objects such as arrays, bitmaps, hash tables, lists, and even refer-
ences to other units.

Slots may also contain procedural information (programs or subroutines)
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that will enable a unit to represent an object's behavior as well as its declar-
ative characteristics such as size and shape. Such embedded procedures,
called methods, are activated by a process called message passing. Special
types of units called active values may be attached to a slot for the purpose
of monitoring the slot's values and automatically performing a procedure
when a new value is entered or the slot value is accessed. Active values are
particularly useful for simulating alarm behavior or for a feedback system.

Knowledge system developers may also use logic-based rule language to
represent knowledge about an object or a system's behavior, in which rules
are also KEE units. The ability to store procedural information is only one of
the ways in which knowledge base structures prove to be more expressive than
database systems. In relational databases, each column in a table typically
contains only one value, which often results in the break-up of logically-
associated data into separate tables, or normalized tables. In KEE, a single
slot often has multiple values. Moreover, the frame units provided by the
structuie not only allow logically associated data to be stored together but
also allow explicit links between related data.

Thus the expressive data representation facilities provided by the KEE
environment enable. developers to capture in knowledge bases much of the
semantic meaning lost in the relatively fragmented descriptions provided by
the tables, columns, and rows of databases. Knowledge bases, with their in-
teracting units composed of multivalued slots and facets, which are organized
into hierarchies, support the richer and more detailed modeling of complex
systems needed to automate knowledge-intensive tasks.

It is understandable that commercial knowledge systems like KEE will
choose to couple with existing relational databases for marketing purposes.
There are trends and sound justifications for those knowledge systems to
loosely couple with some emerging OODB products in the future. But, by
and large, there will always be some mismatches in terms of semantic mod-
eling representation between them.



Chapter 5

Justification for the PDKB
Coupling Strategy

Semantic networks in knowledge-based systems are very similar to the object-
oriented database model. The inheritance property in OODB was originally
borrowed from the frame concept in knowledge-based systems. The major
difference is that semantic networks treat instances of object classes in OODB
as objects rather than as instances. Semantic networks also allow arbitrary
link types to be defined to coniiect various objects, as compared to the three
fundamental links, generalization, composition, and aggregation, defined in
the OODB model.

In the past, the AI and DBMS communities have aimed for different
emphases in their research. The AI community has focused on inference
and logical deduction to provide a more powerful reasoning engine based on
semantic networks and frames. The OODB community has concentrated
both on refining the OODB model to provide a more rigorous formalism and
on other implementation considerations.

Recently the integration of knowledge-based systenis with OODBs has
gained tremendous interest and is particularly appealing to users who wish
to manipulate the semantics of databases in a straightforward fashion, in
contrast to approaches where semantics are "hard-wired" into database mod-
els. This removes the need to predefine complex semantic constructs within
database host languages. The following capabilities represent a partial list
of potential benefits:
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* Sophisticated queries can be expressed more intelligently, such as
transitive-closure queries and recursive queries.

* Intelligent front-ends such as natural language or voice recognition can
be provided to increase user friendliness.

* Expert rules can be programmed with the database data in the same
framework and environment.

* Database integrity constraints of databases can be expressed and en-
forced in a natural fashion.

* Large knowledge-based systems can use the concurrency and trans-
action control and other OODB features to make knowledge objects
persist.

Most early connection schemes built between knowledge-based systems
and relational DBMSs used loose-coupling techniques. Typically, they in-
volved spawning SQL queries on the fly (dynamic queries), and passing data
through the import/export mechanism of the two systems. This tends to
result in poor performance. Besides degrading performance, the coupling of
knowledge-based systems with relational DBMSs also presents difficulty in in-
tegrating two different data models under the same framework. In knowledge-
based systems, graph and pointer traversals are fundamental operations. In
relational DBMSs, associative access is known for its poor performance due to
its value-based retrieval rather than pointer traversal when joining multiple
tables to materialize end-user views.

Knowledge-based systems appears to couple better with OODBs than
with relational DBMSs, at least from the perspective of data modeling. For
example, with different retrieval schemes between relational DBMSs and
knowledge-based systems (set-at-a-time versus tuple-at-a-time schemes), the
inference engine requires higher access overhead without bypassing the mul-
tiuser concurrency control and recovery primitives. The transferring of an
entire set of tuples of a retrieval request into the knowledge-based system
workspace for reasoning is computationally expensive. The reason is that
the inference engine typically needs to have only the first valid answer until
it needs to backtrack, after which other answers may be sought.
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Knowledge-based systems that are tightly coupled and closely integrated
with database systems require new designs and implementations. Both sys-
tems must extend their interactions for rule tracing, value binding, and error
checking. In a multiuser environment, concurrent access to one knowledge
base must also be controlled. Most knowledge-based systems fail to address
this issue. Access conflicts arise when trying to assert or retreat a fact or
a rule used by another concurrent transaction. Recovery mechanisms for
knowledge-based systems should also provide conventi6nal database systems
services such as undo logs and group commit operations.

The following are some of the potential issues, at different levels of inter-
action, to be addressed in tight coupling of these systems:

" At the language level, a logical syntax for the overall system and the
underlying architecture that will allow coupling the database host lan-
guage, the query languages, and the reasoning languages.

" At the program-development level, applications must be developed us-
ing both knowledge-base and database techniques.

" At the user environment level, the user needs to be able to interact
with only one system instead of two.

" At the data and rules or knowledge representation level, a tight coupling
of both data and knowledge semantics-using the same data model-is
required.

" At the data and kn6wledge processing level, a tight coupling on
both inference and database engines is required. For example, for-
ward/backward inferencing or attribute value-binding in knowledge-
based systems must be coupled with the query evaluation in database
systems.

Based on current technologies in knowledge-base systems and database
systems, we feel that the best result will be achieved by tight coupling of
semantic-network- based knowledge systems with OODBs. The reasons are
these:

* A fundamental requirement in coupling is to integrate a logic-based
knowledge system with semantic databascs both procedurally and se-
mantically. However, the current research in semantic data models has
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made little progress in formalizing the semantic representations, and is
far from offering a practical implementation.

* Rule-based systems can also be represented using semantic networks,
and frames and O-A-V representations can be categorized as subsets
of semantic networks.

* Chapter 4 explained the drawbacks in coupling relational databases
with knowledge-based systems from performance and data modeling
perspective; these drawbacks are eliminated by using OODBs.

We feel that coupling semantic networks based knowledge systems with
object-oriented databases offers the most natuial integration from the per-
spective of both data modeling and knowledge representation. It also pro-
vides better performance with the currently known implementation tech-
niques such as high-speed caching, indexing, clustering, which nave been
implemented by numerous OODB vendors.



Chapter 6

Formal Framework for PDKB

This chapter presents our formal model and representation of various seman-
tic abstractions defined by PDKB. As defined previously, a semantic network
is a graph whose nodes represent concepts, classes, or set of entities and arc
models relationships obtained between these concepts. Besides the named
relationships obtained from the modeling of an application with a seman-
tic network, some special, structural relationships between concepts, called
abstraction hierarchy, can occur and have a rich expressive power. Some
of the most frequently used abstractions are Generalization/Specialization
(also known as ISA relationship), Aggregation, Composition (also known as
PART-OF relationship), Association, and Grouping (also known as ELE-
MENTOF).

In a semantic network, knowledge engineers may define arbitrary named
links that relate multiple entities (or object classes) with the specific seman-
tics associated with them. Most, if not all, of these semantic-network-based
knowledge systems however, interpret the semantics and the interrelation-
ships of these abstractions in an ad hoc fashion; i.e., the systems extract and
decode tl irh' semantics by traversing the net at individual basis.

For example, let us consider a simplified semantic-network knowledge
base about manufacturing enterprises as shown in'Figure 6.1, which encodes
the following knowledge:

* A Company may manufacture multiple Products, and each product may
be manufactured in different Plants owned by the company. This rela-
tionship is captured by the associate object ProduclM'ade in Figure 6.1.
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Note that cardinalities between Product-Made and its participating en-
tity objects are labeled with "1" for exact one, and "1,m" or ",n" for
one or many on their links.

* A Plant (entity object) can either be a Computer Plant or a Vehicle
Plant, and a Company can either be a Computer Company or a Vehicle
Company.

* A Product can either be a Computer or a Vehicle.

* A Computer is composed of CPUs and Memories, which are VLSI
Circuits.

" A Vehicle can either be a Passenger Car or a Truck, and a Truck can
be further specialized to be either a four-wheel drive (4 WD) or a two-
wheel drive (2WD). For any Vehicles, there must be an Engine and a
Body as the first level-parts in their part hierarchy.

* An Engine can be a V8 or V6, and the body style of a vehicle can be
either Sedan or Coupe.

• A Company can have multiple Employees working for it, and any Em-
ployee can work for only one company at a given time.

" An Employee who is a Person can be a Secretary or an Engineer.

" Employees are grouped into two categories, either Democrats or Repub-
licans.

" An Engineer may participate in many engine designs, and an Engine
may be designed by multiple engineers.

Normally, a semantic-network based knowledge system will answer a ques-
tion like "What are the parts that compose a 4 RD Truck?" by traversing
the net starting from the 4 WD Truck. An intuitive algorithm to traverse the
net is called the "shortest-path heuristic." This algorithm basically looks
up all links simultaneously, and takes the value encountered on the shortest
path from the node at which it starts. In this query example, it will visit
the Truck entity (or class) and proceed to vehicle anid further until it finds
that the vehicle entity has encoded the knowledge about the general parts
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hierarchy for a Vehicle. It then combines the hierarchy with the specific parts
that are unique about the 4WD design. As seen from the description, this
algorithm shows two shortcomings: first, it has to traverse every node and
interpret the node's semantics and interrelationships based on the types of
links (or abstractions) it visits. Second, Brachman and Levesque [43] along
with Reiter and Criscuolo [44] pointed out, how such a strictly syntactic sym-
bolic approach can go wrong when they are devised without worrying about
what the representation is about.

To remedy these shortcomings, we propose a set of formalized axioms [1]
that will provide automatic inferencing for system-defined abstractions. For
example, a specialized entity such as 4 WD should inherit the generic parts-
hierarchy information associated with its superclasses without having to tra-
verse the net explicitly. It is also obvious that, for any two abstractions
that have been defined in the semantic network, there should also exist well-
defined formal semantics on how they should interact with each other, rather
than leaving them to be interpreted in an arbitrary and ad hoc fashion. This
leads us to define the following set of axioms to describe the formal semantics
of those abstractions.

6.1 Formalized PDKB System-Defined In-
ferencing Axioms

1. ISA(X,Y)&ISA(Y,X) = X = Y

2. IS..A(X, Y)&IS..A(Y, Z) IS._A(X, Z)

3. IS..A(X, Y)&ISA(X, Z) 3W(ISA(Y, W)&IS..A(Z, W))

4. PARTOF(X, Y) " -'PARTOF(Y, X)

5. PARTOF(X, Y)&PARTOF(1', Z) = PART.OF(X, Z)
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6. IS-A(X, Y)&PART-OF(Y, Z) = PART-OF(X, Z)
and

PART-OF(X, Y)&IS.A(Y, Z) = PART-OF(X, Z)
are not necessarily true.

7. IS-A(X, Z)&PART-OF(X, Y) =~PART-DF(Z, Y)

8. IS-A(Y, Z)&PART..QF(X, Z) PART..OF(X, Y)

9. IS-A(X, Y)&zELEMENL-OF(Y, Z) =~ELEMENT-OF(X, Z)

10. IS-A(Y, Z)&zELEMENT.DF(X, Z) = ELEMENT-OF(X, Y)

11.- INSTANCE-OF(r, X)&IS-A(X, Y) => INSTANCE-OF(x, Y)

12. JSYPART-OF(x, y)&INSTANCE..OF(x, X)&INSTANCE-DF(y, Y)

=PART..OF(X, Y)

13. PART-OF(X, Y)&INSTANCE.DF(y, Y)

=* ]x(INSTANCK.OF(x, X)&ISYPART-OF(x, y))

14. IS-ELEMENT-OF(r, y)&INSTANCE-JF(x, X)&INSTANCE-DF(y, Y)

=> ELEMENT-OF(X, Y)

15. INSTANCE.DF(x.X)&ELEMENT-OF(YX)

==* (Vz(ISELEMENT-OF(z, x) =* INSTANCE.OF(z, Y))

16. ASSO(X, Y) ==> ASSO(Y, X)

17. ASSO(X, Y),qASSO(Y, Z) ==> ASSO(X, Z)

IS. ASSO(X, Y)&B3Z(IS-A(Z, Y)) == 3W(JS.A(W, Y)&ASSO(X, 117))

19. F'or each P where P is a structural and behavioral property of Z, we have
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Axiom I states that if object class X is a Y and Y is an X, then X must be
the same as Y. Axiom 2 defines the transitive property for ISA abstraction.
Axiom 3 states that if there exist multiple inheritances Y and Z for object
class X, then there must also exist a common superclass, W, for both Y and
Z. This property guarantees that all object classes must be ultimately rooted
from a system defined class. Axiom 4 disallows cycles in the composition
hierarchy. Axiom 5 states the transitive property in the composition hierar-
chy. Axiom 6 states that transitive closure is not always true in mixing both
composition and generalization abstractions. For example, in Figure 6.1, a
V6-engine is not necessarily part of a vehicle (the vehicle could have a V8-
engine), and an engine is not necessarily part of a product (the product could
be a computer).

Axiom 7 states that if object class X is a part of Z, then all superclasses
of X are also part of Z. This derived abstraction is illustrated in Figure 6.1,
with the link labeled "#7" between computer and VLSI circuit, i.e., if a
CPU is a part of a computer, then VLSI circuits are also a part of the
computer. Axiom 8 states that an object class Y inherits the part-hierarchy
property of its superclass, Z. The link labeled "#8" in Figure 6.1 illustrated
this property; i.e., if an engine is a part of a vehicle, it is also a part of
a truck. Axioms 9 and 10 illustrate the relationship between the IS.A and
ELEMENT-OF abstractions. For example, the link labeled "#10" illustrates
that if a Democrat employee is an element of object-class employee, it is
also an element of engineer. Axioms 12 to 15 capture various properties
between PART-OF, ISPARTOF, INSTANCE-OF, and ISINSTANCEOF
abstractions.

From Axiom 16 to 20, an ASSO abstraction [39] [40] [41] captures arbi-
trary relationships among object classes. The ASSO abstraction takes two
parameters of generic object class as their domains. Axiom 18 states that if
object class X is associated with Y and there exists a subclass Z of Y, then
X is also associated with one of Y's subclasses, W, where W could be Z. For
example, the link labeled "#18" in Figure 6.1 illustrates that an employee
must work for either a vehicle company or computer company, which are
both subclasses of the class company. Axiom 19 is an axiom scheme which
states that a subclass X of Y inherits all structural and behavioral' properties

1A structurally object-oriented model supports complexly structured objects, i.e., ob-
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[38] from Y's part hierarchy. For example, a 4WD truck should possess all
properties of an engine which is a part of vehicle, such as horse power rating
(a behavioral property) and cylinder and valve part components (structural
property). Note that we define P (property) using second order logic as a
function of object classes X and Z.

6.2 User Defined Inferencing Rules

The formally defined PDKB system-defined abstractions, using Prolog-like
expressions, are only part of the picture. In this section, we describe how to
define user and application-specific inferencing rules for both associate and
entity objects. There are two types of user-defined rules: deductive rules
and constraints. A user-defined deductive rule can be used for two different
purposes: to compute the value for a derived attribute, or to supply other
deductive information. In the first case, the value of a derived attribute is
computed from the (derived) attributes of other entity objects or of itself.
In the second case, a rule simultaneously instantiates several attributes (an
extension of rules for derived attributes).

A user-defined deductive rule consists of a head h and a body pi& ...& P,
of the form pi&...&p,, == h, where each p; is called a subgoal. The predicate
name, which is the head of a rule, is the same as the derived attribute the
rule describes. The body of a rule describes how to compute the value for a
derived attribute. It consists of predicates, comparison operations, and sim-
ple arithmetic operations. Constraints are user-defined rules without heads,
i.e., they do not compute the value of a variable, but rather state a base
fact. A rule can reference attributes and derive attributes within the same
object and (derived) attributes defined along the inheritance hierarchy. Be-
sides attributes and rules, predicates can also match with other (derived)
attributes anywhere from the system schema. However, the PDKB requires
that objects that own these (derived) attributes be in some way connected
to the object along the search path within the network.

In addition to system-defined axioms and user-defined rules, PDKB au-

jects that may be constructed from subobjects (which are objects in their own right) and
thus go beyond incorporating simple primitive attributes A behavioral object-oriented
model provides facilities that allow the definition of new object types, including the ap-
propriate type-specific operators.
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tomatically generates Prolog-like rules for certain schema definitions, such as
unique attributes and cardinalities among participating entity objects for as-
sociation objects. This allows complete semantic information to be encoded
in logic rather than arbitrary code implementation in PDKB. We shall illus-
trate this concept with a running example concerning the knowledge about
entity object classes Employee, Company, and Person as shown in Figure 6.1.
Throughout this example, we use C++-like class declarations to define them.
We recommend readers to focus on the concepts and techniques illustrated in
the example, rather than the specific language syntax and constructs, which
may change as we continue to develop new notations to improve their clarity
and expressiveness.

ENTITY Person
ATTRIBUTES

Name: STRING;
UNIQUE SocialSecNum: INTEGER;
Home-Address: Address;
Birth-Day: Date;
Gender: (male, female);

END Person

The UNIQUE qualifier on SocialSec..Num attribute within the Person
object, which ensures that no two-person instances have the same social se-
curity number, automatically generates the following rule when it is declared
in the PDKB:

SocialSec.Num(P, S)&SocialSec_Num(P2, S) => PD1 = P2

ENTITY Employee ISA Person
ATTRIBUTES

Salary: REAL;
OfficePhoneNum: INTEGER;

RULES

Work-for(Emp, Comp, Time)&Owner(Comp, P) * Boss-Of(Emp, P);

END Employee
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The above user-defined rule for entity object Employee, defines a derived
attribute Boss-Of to state the fact that the owner of a company is also the
boss of its employees. Work-For is an association object defined below, and
Owner is an attribute defined in the entity object Company. PDKB generates
a logic rule ISA(Employee, Person) on the IS.A abstraction.

ASSOCIATION Work-For
BETWEEN Employee, UNIQUE Company
ATTRIBUTE
UNIQUE Starting-Time: Date;

RULES
Starting-Time >= Founding-Time;

END Work-For

The rule in the above association object Work-For defines the constraint
that no employee can start working for a company unless the company has
been founded. Five extra rules are generated automatically from the above
declaration. The first two rules enforce a unique date for an employee to start
working for a company. The remaining rules define generic binary association
relationships among participating entities:

WorkFor(Emp, C ompi, Tim e)&WorkFor(Emp, C omp2, Time)
==* CompI = Comp2

WorkFor(Emp, Comp, Time,)& WorkFor(Emp, Comp, Time2 )
==* Time1 = Time 2

WorkFor(Emp, Comp, Time) ASSO(Emp, Comp)

WorkFor(Emp, Comp, Time) = ASSO(Emp, Time)

WorkFor(Emp, Comp, Time) = ASSO(Comp, Time)

The following is the definition for object classeCompany:

ENTITY Company
ATTRIBUTES
CName: STRING,
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Location: Address;
Revenue: REAL;
Owner: Person;
Founding-Time: Date;

END Company

Following is the definition for association object Product-Made. The con-
straint in the rule section defines that the manufacturer must own the plant
if its products are to be manufactured from that plant. We also assume that
the Owns association object has been defined elsewhere.

ASSOCIATION ProductMade
BETWEEN Plant, UNIQUE Company, Product
ATTRIBUTE UNIQUE DateMade: Date;
RULES

Owns(Comp, Plant)

END Product-Made

Five rules are generated from the above association object ProductJMade
declaration. The first two enforce their cardinalities, and the last three define
tht ;i: generic binary association relationships:

Product -Made(Plant, Comp, Prod, Date, )&ProductMade(Plant, Comp, Prod, Date2)
==* Date1 = Date2

Product_-Made(Plant, Compi, Prod, Date) &ProductMade(Plant, Comp2, Prod, Date)
==* CompI = Comp2

ProductMade(Plant, Comp, Prod, Date) == ASSO(Plant, Comp)

ProductMade(Plant, Comp, Prod, Date) = ASSO(Comp, Prod)

ProductMade(Plant, Comp, Prod, Date) == ASSO(Comp, Date)

The following are definitions for entity objects Product, Vehicle, and En-
gine:
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ENTITY Product
ATTRIBUTES
UNIQUE ProductID: INTEGER;
Product-Name: STRING;

END Product

ENTITY Vehicle ISA Product
ATTRIBUTE
UNIQUE VehicleID: STRING;
Model: STRING;

PARTS
Engine: 1;
Body : 1;

END Vehicle

Six rules are generated from the PARTS declaration in the Vehicle entity
object definition. The first two rules define the composition (or PARTOF)
hierarchy for vehicles. The third and fourth rules define that there is exactly
one engine and one set of body components for each vehicle. The fifth rule
defines the uniqueness of a vehicle identifier. The last rule defines the logic
for the ISA abstraction:

PARTOF(Engine, Vehicle)

PARTOF(Body, Vehicle)

PARTOF(Enginel, Vehicle)&PARTOF(Engine2, Vehicle)
==> Engine1 = Engine2

PARTOF(Bodyi, Vehicle)&PARTOF(body2, Vehicle)
==* Body, = Body2

VehicleID(Vehiclel, ID)& VehicleI D(Vehcle.2, ID)
Vehicle1 = Vehicle2

I SA(Vchiclc, Product)

ENTITY Truck ISA Vehicle
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ATTRIBUTES
Payload: REAL;

RULES
Payload > 4000 /*lbs */

END Product

ENTITY 4WD-Truck ISA Truck
ATTRIBUTES
4WDDifferentialRatio: REAL;

PARTS
4WD-Differential;

END 4WD-Truck

The following rules are generated for the parts hierarchy that is specific
to a 4WD truck, and the ISA abstraction:

PART.OF(4WDDifferential, 4WD-Truck)

IS...A(Truck, Vehicle)

IS..A(4WD.Truck, Truck)

From the above definition, PDKB automatically infers from system-
defined Axiom 8 that all trucks have an engine and body as their first-level
components in their parts hierarchy. The rule in 4 WD_ Truck also defines an
extra part 4 WDDifferential other than the engine and body parts it inferred
from 4 WD_ Truck.



Chapter 7

Query and Inference
Processing in PDKB

Search is the fundamental process in both knowledge-base systems and
databases. In knowledge-base systems, searching supports inferencing; in
databases, searching supports query evaluation. However, the two systems
search in different ways. In this chapter, we compare the differences to draw
conclusions about how the different search modes can be combined in the
PDKB system so that we can develop a strategy for query and inferencing
processing.

In deductive inferencing, knowledge is represented in logic as a set of
formulae (axioms or rules). A query is another formula with free variables
to be bound to the logic at run time. Hence, the result of a query is the set
of free-variable instantiations that are provable from the underlying logic.

Search in query evaluation is much simpler than search in deductive in-
ferencing. Only the interpretation needs to be searched as opposed to an
arbitrarily large number of rules. The knowledge representation for deduc-
tive inference is more powerful than the knowledge representation for query
evaluation. Specifically, there are sets of axioms that cannot be captured
by the combination of an interpretation and a set of definitions. Also, the
deductive inferencing approach is more flexible than the query evaluation ap-
proach. Specifically, deductive inferencing allows any knowledge to be added
to the representation without affecting knowledge already represented.

In most al)llicat ions, some knowledge will never change. It is best to build
this knowledge into the search process as an inherent mechanism, so that the

47
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query evaluation and inferencing performance can benefit from the built-in
optimization strategies. In deductive inferencing, integrity constraints are
not distinguished from other knowledge and the search process cannot take
advantage of them. In many applications, integrity constraints are used for
detecting and correcting errors in input data. In th;s situation, constraint
knowledge must be distinguished from other knowledge. The effect of mov-
ing from a knowledge representation for deductive inference to one for query
evaluation is to transform the axioms to a simpler form. A more efficient de-
ductive search is possible if the axioms and rules are restricted to conjunctive
forms of simple predicate clauses, i.e., no negations, disjunctions, or existing
quantifiers. Queries, however, are transformed into a more complex form,
so that the overall effect is to transfer complexity from the axioms to the
queries.

The fundamental difference between knowledge-base systems and
database systems in processing queries is that most knowledge-base systems
employ a very powerful, yet computationally expensive search mechanism,
while databases employ a far less powerful, yet computationally economi-
cal search mechanism. The main reason for the difference is that database
queries normally assume defined syntax with restricted semantics, such as
SQL. This syntax allows the database query processor to build-in various
optimization plans. Because it is bound dynamically by the run-time envi-
ronment and the organization of logic rules, "infere-nce processing cannot be
made less computation intensive.

To reach a balance between the efficiency of database query processing
and the power of knowledge inferencing, we plan to provide PDKB with the
following types of query and inference processing capabilities:

* The user will be able to ask the actual value of (derived) attributes of
entities. This means that rules and constraints will be used to compute
values, so that traditional database query processor can be employed
to search for values.

* The user will be able to ask how an answer to a query is obtained. This
means that relevant rules and constraints will be played back to the
users.

* The user will be able to ask if a given hypothesis can be proved from
the current knowledge base, and backward chaining will be triggered to
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process the user's queries.

* The user will be able to ask the system to deduce new facts from
existing knowledge, and forward chaining will be triggered.,

A detailed query and inferencing processing design is beyond the scope
of this research and remains for future work.
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Chapter 8

Future Research Topics

We have presented and described a flexible model that will tightly cou-
ple semantic-network-based knowledge systems .with OODB models. Some
follow-up work remains to be done and there are several research topics that
should be pursued in the future.

* Higher-Order Object-Oriented Logic Languages: Many higher-order
logic languages, such as LDL [48], have been proposed to increase mod-
eling and programming capabilities. Some higher-order languages such
as HiLog [45] [46] were designed specifically for database inferencing.
The development of LDL shows the difference between a set value and
an abstract object whose state is a set. In our formal PDKB framework,
we introduce a system-defined axiom, Axiom 19, which defines the be-
havioral and structural properties as second-order logic to the object.
In our future research, we plan to extend the first-order logic in I DKB
so that other objects with "higher orderness" such as metaschemata,
objects properties, and functions can be modeled and treated as val-
ues. We expect to adopt and integrate relevant existing research into
the PDKB model.

* External Interface Requirements: The current PDKB is designed as
a standalone system and has no direct interfaces with other systems.
\Ve plan to provide PDKB with a generic interface to other external
relational and OODB systems in a loosely coupled fashion. The detailed
(.(finition is beyond the scope of this project and remains for future
work.

.'3



52 Fut ure Research Topics

Natural Language Processor: In current natural-language processing
technology, there are two extreme categories. One extreme uses key
word matching, which affords great flexibility but does not provide a
precise understanding of the text. The other extreme uses syntactic
parsing, which reflects the exact structure of the input sentences, but
allows no flexibility. In the future PDKB natural-language-processing
extension, we suggest adopting the notion of semantic grammar, pro-
posed by Burton [11] [12]. This model offers a desirable middle path for
parsing natural-language input. To achieve greater conciseness of defi-
nition and ease of development in cases involving more complex input
sentences, the grammar implemented with proceduralized rules can be
replaced by the formalism of augmented transition networks (semantic
ATNs), compiled for better efficiency [13].

The basic idea of a semantic grammar is to have rules decompose global
categories into lower-level constituents as in a regular syntactic gram-
mar. But whereas a regular grammar decomposes syntactic categories
- say, a sentence into noun and verb phrases - a semantic grammar
decomposes semantic categories, that is, domain concepts, into their
constituents. The semantic decomposition is recursively repeated down
to the different ways elementary concepts can be expressed in English.
For instance, a given quantity will eventually become a number with
the specification of a unit.

We believe that a natural-language processor could provide end users
with an intuitive interface to interact with the PDKB system.

Machine Learning: The term machine learning has been used in a
variety of Al applications. It generally refers to the ability of a program
to discover or learn information by itself. A variety of programs that
aim to learn have been developed and proposed. However, very few
have addressed issues involved in self-learning database systems. It is
desirable that an intelligent database system be able to extract and
formulate knowledge from the underlying database automatically. One
of the early ideas for programs that discover knowledge from data was
the CLS algorithm developed by Hunt et al. [8]. In this system, a
decision tree was generated by repeatedly separating a set of examples
into smaller subsets, characterized by the values of attributes for each
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example. However, this algorithm can easily go astray and, if not
properly guided, will generate monstrous decision trees that make little
sense.

More recently, the RX and Radix projects [9] [10] are pioneering works
in distilling information from large databases by using statistical tech-
niques. The technique used by those two projects determines the corre-
lation between time-oriented events recorded in the database and uses
that correlation to extract knowledge. However, because of the tremen-
dous difficulty of the problem, this technology is still at its most rudi-
mentary stages. The goal of machine learning is to write programs and
eventually to build entire computer systems that can learn by them-
selves, as humans do.

The main difference between machine learning and its human counter-
part ought to be one of speed. If a machine that learns at a speed
considerably faster than humans cannot be built, learning machines
will remain a curiosity. We feel that machine learning is the key to
success for future integration of knowledge-base systems and database
systems as the information and knowledge base grow exponentially.

For the PDKB, we would like to apply current existing techniques for
machine learning, and also explore new theories in machine learning in
the future.

Off-the-Shelf Object-Oriented Database Systems: The current PDKB
prototype implements a customized database for its own use. In the
future, we would like to port it to commercial OODB systems running
in UNIX-based heterogeneous networking environments. The reason
for moving to commercial OODB systems is that it has become cost
inefficient for an individual software system to develop its own database
and endow it with functions equivalent to those of full-fledged OODB
systems.

However, coupling knowledge-based systems with existing commercial
OODB systems requires the knowledge-base and database systems to
be compatible from both data modeling and physical implementation
perspectives. With this requireient in mind, we investigated various
research prototypes and commercial OODBs, and categorized them into
the following approaches:
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- Extended Relational Database Systems: These systems are based
on extensions of a relational query language by the addition of ca-
pabilities such as procedure attachment and abstract data type.
Relational database systems provide simple and well-defined query
language, for example, SQL, with sound, proven, mathematical
representations such as relational algebra and tuple relational cal-
culus. Researchers have proposed various extensions to remedy
some well-known relational data model deficiencies, such as the
lack of recursive query capability and support for complex data
objects. Among the extended systems, the most powerful and
representative one is probably POSTGRES [20], from the Univer-
sity of California at Berkeley. POSTGRES is so named because
it is a follow-on to its predecessor INGRES, a fully implemented
commercial relational database system from Relational Technol-
ogy Incorporated. The POSTGRES system provides objects, Ob-
ject IDentifiers (OIDs), compound objects, multiple inheritance,
versions, historical data, procedures, and a powerful extended re-
lational query language, POSTQUEL, which is named after IN-
GRES's QUEL.

- Extended Functional Database Systems: These systems are based
on the functional data model that uses a data access language
based on mathematical function notations with a declarative func-
tional query language to define function values. In this model, the
query language is also extended to allow procedural specification of
functions as well, thus becoming computationally complete. The
basis of the functional model is objects and functions. Like other
database models, primitive objects such as integers and strings
are generally distinguished from entity objects, and the latter are
represented by some notions of OID. Two research prototype sys-
tems belong to this approach: Iris from Hewlett-Packard [22] and
PROBES [21] from Computer Corporation of America.

- Semi Object-Oriented Database Systems: This type of system
defines an object-orientation abstraction on top of a relational
model; that is, objects are defined as relational views that are
further defined by a set of base tables. When a user accesses ob-
jects, views materialize from base tables. Basically, this approach
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allows object semantics to be defined and maintained at the user's
level. This is in contrast to the loss of semantics when the tables
of relational tables are normalized. One research prototype be-
longs to this approach: Penguin [23] from the Computer Science
Department of Stanford University. A similar approach was also
proposed by Kung [24].
Note that although the Iris object-oriented database system from
Hewlett-Packard belongs to the extended functional database sys-
tems approach, its implementation is based on an internal rela-
tional storage manager called' DBCORE, the kernel of HPSQL,
a HP relational database system. Objects in Iris are physically
stored as a set of base tables in first normal form. When objects
are retrieved, joins are used to materialize those objects.

- Full Object-Oriented Database Systems: A full OODB system can
be built from the ground up using a strict object-oriented data
model rather than imposing an object-oriented abstraction on top
of an existing relational model. Currently, a host of commercial
products and research prototypes use this full OODB approach.
For research prototypes, Orion [18] from MCC has been regarded
as the most representative work. Recently, Itasca Systems, Inc.,
began production of ORION. A number of commercial products
are already on the market: Gemstone from Servio Logic, Ontos
from Ontologic, Versant from Versant Object Technology, and Ob-
jectStore from Object Design.

- Database System Generators: A database generator allows the
user to build an OODB tailored to particular needs-for example,
a customized data model and database host language. Typically,
a user must have substantial internal database implementation
knowledge to perform the customization. For example, the user
may want to choose a specific concurrency control and transac-
tion model that will work with a particular query optimization
scheme for his own purpose. The database generator has basic
building blocks with different options that users may configure.
Two research prototypes belong to this approach: EXUDOS [25)
and GENESIS [26).



56 Future Research Topics

Object Managers: These systems generally provide fewer func-
tions and features than systems in the other categories. In some
cases, they are used as the storage management level of one of
the more complete systems. Typically, they provide a persistent
object store with some concurrency control, and they generally
do not provide a query and programming language. They may be
thought of as extensions of virtual memories for operating systems,
as opposed to extensions of programming languages or database
systems. Systems like MNEME [27] and POMS [28] belong to this
approach.

After studying and analyzing these different object-oriented database
systems, we find the database-system-generator approach most suitable
for tight coupling of knowledge-based systems, since its basic building
blocks are the most flexible for other systems to couple with. Its capa-
bility of allowing a customizable database model also provides tremen-
dous efficiency for us to build the semantic networks into the system.
However, none of those database system generators are commercially
available. An alternative is to use full OODB products such as Gem-
stone, Ontos, and Itasca. We need to explore these systems in further
detail, but such exploration is beyond the scope of this project.

Real-Time, Memory-Resident Object-Oriented Database: In the past,
some efforts have been made to implement memory-resident relational
database systems, such as the Real-Time Database from Hewlett-
Packard Industrial Application Center at Sunnyvale [47], to support
real-time applications such as robotics. Although most OODB prod-
ucts on the market provide adequate performance by caching frequently
used objects from disk, they are still not capable of the real-time per-
formance required by time-critical applications. For the PDKB system,
it would be advantageous to have its OODB be memory resident for
optimum performance.

" Discretionary and Multilevel System Security: The current PDKB does
not address multilevel security requirements. Although multilevel se-
curity is beyond the scope of this project, we believe that the future
usability of the PDKB system would benefit from the development of
an implementation specification for discretionary security control A



Future Research Topics 57

companion study could be performed on how to apply multilevel secu-
rity to the design of the prototype. Such an investigation would draw
on the results of a joint study recently completed by SRI's Computer
Science Laboratory and Artificial Intelligence Center to develop a se-
curity model for knowledge-based systems [49].

" Characterization and Integration of other Semantic Abstractions into
PDKB: In real-world applications, various semantic abstractions need
to be defined and characterized other than those that have been defined
in the PDKB. For example, object versioning and configuration are two
most commonly used abstractions for CAD/CAM and CASE applica-
tions. We could define formal logic and rules similar to the aggregate
and composition abstractions into the PDKB framework so that these
abstractions could interact with other abstractions in a seamless and
consistent fashicn. This would also require the development of method-
ologies and theories for adding new abstractions that could provide full
interaction semantics without generating conflict with existing axioms
and rules.

" Database queries and inference rules processing have been discussed in
chapter 7.
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Chapter 9

Conclusion

This report presents a flexible and powerful model for tight coupling of
semantic-based knowledge systems with OODB systems. In the PDKB
model, we propose a set of formalized axioms that define the semantics and
their relationships for generalization/specialization, aggregation, composition,
association and grouping abstractions. We also show how to define user spe-
cific inferencing rules and constraints in the semantic-network schema, and
how to interact with system-defined axioms to process user queries and in-
ferencing.

We believe that the PDKB model we have developed is the first to provide
a complete formalized framework for both system-defined axioms and user-
defined inferencing rules or constraints to model the knowledge representation
of the real-world abstractions. We also believe that PDKB is the first attempt
to tightly couple semantic-network-based knowledge systems with OODB
models in a unified framework.
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