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FOREWORD

A vast amount of literature exists that concerns itself with spectrum analysis.
In particular, the last two decades have seen a great increase of published theoretical
work as well as applications of so-called modern spectral estimation techniques based
on nontraditional parametric approaches. Many papers dealing with this subject
make it difficult even for the initiated to make the connection to his well known and
routinely applied methods based on the Fourier Transform when he reads about

“modeling a random process to obtain a parametric spectrum” of the observed data.

The report attempts to show the transition from the classical approach of
spectral estimation to the basic parametric methods. It also shows the results of
these new techniques when applied to short data records and demonstrates their

capabilitie« and limitations.

Approved by:

D
Deputy Department Head
Underwater Systems Department
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CHAPTER1
INTRODUCTION

Estimation of the power spectral density of a signal is a popular tool in signal
analysis for detection purposes (by enthancing the signal-to-noise ratio of an expected
signal) and classification (by showing the distribution of signal energy across the
frequency band). Although efforts to break a spectrum into its constituting parts go
back at least as far as Isaac Newton when he split white light through a prism,

Jean Baptiste Fourier (1822) established that any periodic process can be interpreted
as an infinite sum of sine and cosine terms whose frequencies are integral multiples

of the fundamental frequency of the process (harmonic spectral analysis).

It was Arthur Schuster (1897) who coined the term “periodogram” for the plot of
the squared magnitude of the Fourier coefficients to designate the spectrum. For
noisy data, however, these spectra tended to be quite random and inconsistent, and
many researchers lost interest in the periodogram. In 1930, Norbert Wiener estab-
lished the fundamental relationship between the autocorrelation function and the
spectrum as a Fourier Transform pair which then Robert Blackman and John Tukey
used as their approach to the spectrum (1958). They also introduced averaging and
windowing to eliminate the randomness and to improve the sidelobe structure of the
original spectra. This method became the most popular spectral estimation tech-
nigue until Jim Cooley and John Tukey developed in 1965 the Fast Fourier Trans-

form (FFT) algorithm which calculates Schuster’s periodogram digitally in a very

efficient way. This go-called FFT is now the most widely used spectral estimation
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technique. It may be of interest here that Karl Gauss apparently found out about the
principle of the FFT in 1805 before Fourier even had published his fundamental
paper.

Parallel to these developments, an entirely different approach was followed by )
statisticians, geologists, and economists who tried to use existing test data to
generate modeled data with similar spectral characteristics. They used appropriate
filters whose parameters (parametric analysis) were determined by the method of
least-square errors. The filter is driven by a white noise source. Arthur Schuster
tried this approach as far back as 1927 in order to determine the periodicity in the
cycle of maximum sunspot numbers. This parametric approach to spectrum analysis
has become quite popular since the 1960s because of its promise of greater resolution
in transient analysis (John Burg, 1967). A multitude of different algorithms was
developed since then, based on various physical interpretations for determining the
filter parameters as well as on different mathematical techniques to compute these

parameters efficiently (fast programs).

This report attempts to show the transition from the classical approach of
spectral estimation to some basic parametric methods and their results when applied

to short data records (transients).

Besides numerous papers, two books by Steven Kay! and Lawrence Marple?
have served the author to familiarize himself with the material and to acquire some
working knowledge for applying it. Also, the programs developed by those authors
have been used to calculate the various signal spectra. These programs have been

combined with input (signal generation) and output software (display and file

transfers) so that they can be used as a flexible interactive package (see Reference 3).
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CHAPTER 2
REVIEW OF CLASSICAL SPECTRUM ANALYSIS

SPECTRA OF ANALOG CONTINUOUS-TIME FUNCTIONS

The Fourier series of a deterministic periodic function x(t) of period Ty = 1/fj is:

. n2af
x(t) = }_ F(n)-e !
n=-w
where the Fourier coefficients F(n) are:
i + T1’2 —jnﬁnflt
l“(n)=—-' x(t)-e dt , n=0,%1,x2,. ...
Tl lz—Tle

Because of the peiodic nature of the signal x(t), the spectrum is a line spectrum
which exists only at the discrete frequenciesnfy;,n = 0, £1, £2,.... In general, the
spectrum is a complex amplitude spectrum. As a special case, the spectrum becomes

real if the signal is an even function in time.

The Fourier Transform F(w) of a deterministic but aperiodic function x(t) is:

@©

1
Flw) = 2—, x(t)-e N dt ,  w=2uf.
I

t= -

The inverse transform reestablishes the original time function:
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x(t) = I Flw)-e*t“'. dw.

Here the complex spectrum F(w) is an amplitude density spectruin; it is continuous in

W.
[Fw)?

is the energy density spectrum and
J Il"(w)lzdw
(W= .

the total signal energy.

If x(t) is not known exactly at all times, it is a nondeterministic (random)
function, and its Fourier Transform (FT) cannot be determined in the time domain (in
theory). Therefore, the key to the spectrum is the autocorrelation function ACF. The
Wiener-Khinchin theorem states: “The autocorrelation function of a random func-
tion and the power density spectrum of the random function form an FT pair” (see
Reference 4). The autocorrelation function can be determined from the statistical
properties of the random function, especially its first and second probability densities
p(x1), p(xy, x2; t1, t2), where x) and x2 are the values of x/t) at iwo positions t) and to.
If the process x(t) is “wide-sense stationary” in the first and second moment (i.e., has
constant mean and variance), the probability density function (PDF) is a function of

the time diffcrence v = tp-t). Then the ACF is ry 4 (1) or abbreviated r(v):
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@®

() = I ] xlxz-p(xl,xz;t)dxldx2.
S-® Iy =@

2 -

The parameter 1 is also called the "lag” value of the ACF. The ACF defined by the
above equation is an ensemble ACF because it uses statistics obtained by observing
all possible sample functions of x(t) at time separation 1. This correlation function is

a deterministic (generally aperiodic) function which therefore has a Fourier

Transform:

1 (® :
P(w) = -‘] r)-e 1 du.
2n t==-®

P(w) is defined as the FT of the aperiodic function r(t), and is therefore the "amplitude

density spectrum” of r(t). From the definition of P(w) follows the inverse transform:
ry = I Plw)- @' dw.
WS ~@

If a random process is “ergodic,” the ensemble averages and the corresponding time
averages are equal. For this class of signals, the time autocorrelation function and

the ensemble autocorrelation finction are equal.

The definition of the time ACF of x(t) is given by:

1 +T
) = lim -—I x(t) x{t+udt
T-+x -T
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when t = 0, the two above equations give:

T ®
1
r0) = lim —-J xAtdt = I Plwdo
-T -

Tox

If x(t) represents a voltage across or current into a 1 load, this mean square value is .
the power taken by the load. Therefore, P(w) (the FT of the ACF of x(t)) represents

the power per hertz of frequency, or the power density spectrum of x(t). Since r(t)is

aperiodic, its Fourier Transform, i.e., the power density spectrum of x(t), is

continuous over frequency.

An equivalent definition of the power spectrai density (PSD) is:

P(w)-—-E[lim — ’ xm~e"“"-dml }
-T

T

where E means the "ensemble average” or “expectation” or plain, the average over
the terms inside the curly brackets. This definition says to take the FT of a given
“realization” x)(t) of the random function x(t) over an interval 2T as if it were an
aperiodic function, square it, and divide it by the record length. The resultisa
continuous function in w and random. For any similar realization, x;(t) of x(t), one
will get a different FT and its time average squared. Doing this for a infinite number

of realizations of x(t) leads to an ensemble of random spectral functions:

2

1 I T ot
— I x.(U)-e . dt , 1=12, >,
2T1 )¢ !
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Picking a particular value for w, the corresponding values of the spectral functions
are totally random and will not converge to a stable spectral value for increasing time
intervals 2T. Therefore, the ensemble average is taken over this infinite ensemble
which will then represent a statistically stable power density spectrum as if it had
been derived via the Wiener-Khinchin procedure. The proof for the equivalence
between both definitions is not trivial and can be found in References 1 and 2. The
spectra derived by both methods can be considered “true spectra” compared to
“estimated spectra” which generally result from a practical application, i.e., from one
realization x,(t). In such a case, one disregards or only approximates the averaging

over an infinite ensemble and obtains the power spectral estimate

2

R 1 T
P (w= ‘ x (1)-e ™ dt
n -T n

2T
which is a “sample spectrum” (also original Schuster periodogram). The hat (")
means “estimate.” Although the mean of the sample spectrum will tend to converge
to that of the true PSD in the limit (T—=), the variance will stay constant and
proportional to the mean of the sample spectrum. Figures 1 and 2 depict the
siperposition of the sample spectra of five 1-Vrms white noise records of 32 and 128
data samples. They show that the size of the statistical fluctuations of the
periodogram remains constant independent of the sample size. Only in the 1950s,
when statistical smoothing (ensemble averaging) was applied, the variance was
reduced resulting in a more stable spectrum leading to the acceptance of the
periodogram approach. The periodogram is also called the direct appioach to the

spectrum (i.e., directly from the data), whereas the Wiener-Khinchin, Blackman-

Tukey method via the ACF is called indirect.
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SPECTRA OF DISCRETE-TIME FUNCTIONS

Both the indira-t and direct methods exist also if the signal x(t) is sampled at

intervals At to produce a time series of samples x(n) for the integer —» < n < =,

P = D rkay-e @3 (indirec)

k=-w

where k-At corresponds to the lag parameter t for the case of a continuous-time

function x(t), and r(k - At) is the value of the ACF of x(n - At) at that lag.

M
‘ N x(nay- ey
n=-M

2
Pl = El lim l (direct)

Mow ZM+1

These are discrete-time, continuous-frequency spectra that can be shown to be
periodic in w with period 2n/At. They are “true spectra” with infinite resolution and

an absence of side lobes and require, of course, an infinite data sequence.

If the data sequence x(n) is available only during a limited time window from

n = 0ton = N-1, the result will be an estimated spectrum:

(N=-D

foo= D Mkan-e Y indirect)
k=—(N-1 )
wher i
N-1-k
o LN
ReAl= = 3 x(a)-xintk)

n=0




e
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is called the biased ACF and

N-L—k
Ak-aU) = —— > xn)-x(n+k)

n=0

is called the unbiased ACF (k = 0,1,2,...,N-1),

The direct sample spectrum (estimate) is:

) N:! ) 2
Pw) = = N x(n). e Mmav

n=o

For the indirect method, a practical maximum number of lags k is always chosen

smaller than N (suggested by various authors as 10 to 20 percent of N). The reason
for this is to avoid the greater variance of the estimated autocorrelation associated
with higher lags k. To see this, consider the maximum lag N-1 possible for N data

H ' X X

which is highly variable due to the lack of averaging (the sum degenerates to one
term only), regardless of how large N becomes. On tne other hand, the maximum lag

should be chosen large enough so that the ACF has decayed close to zero and the ACF

outside this lag does not contribute to the PSD.
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A practical way to achieve better stability for larger k is to weigh those ACF
estimates less by multipiying the correlation function, obtained from the N data

points, with a tapered window function w(k-At), where

0swk-At) sw(@0) =1 for kskpay =M
and

w(k-At) =0 for k>M , M <N-1.

With this condition,

M
Poo= D wik-a) rk-ay. e A
k=-M

Tu's is the Blackman-Tukey (BT) spectral estimate (1958). Many window functions
exist, but all are characteristic of having their maximum at k = 0 and then

symmetrically tapering off to a minimum (often zero) at the maximum chosen lag M.

The direct method became popular after the Discrete Fourier Transform (DFT)
was calculated by Cooley and Tukey via the FFT (1965). It is based on the discrete-
time. discrete-frequency, Fourier-series type approach for a periodic signal. The
signal x(n) forn = 0 ton = N-1is stored in memory and implicitly assumed to be

repetitive with the fundamental frequency

l -
f = ——
' NAL

and the harmonics fi, = k-f] so that
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Ww—w =2n——

k N-At

(n-At)— 2 k (n-At) = 2n —
(n- «(n- =
wn n N ' n

k
—;2un— 2

1 N-1
Bk) = -I Z x(n)-e
N n=0

This approach leads to a harmonic analysis of a random signal sequence x(n), and the
spectrum is called a periodogram since it is periodic with kpnax = N. This can be seen

by calculating the Fourier Transform F(k + N):

1N-l -ﬂ,.M
FlotN)= = > xn)-e
n=0
N-1 -j2 ﬁ
1 «— iz .
= ﬁ Y xn)-e N .e-;2nn

0

i.e., F(k + N; = F(k), and F(N) = F(0) since eJ2"" = 1, Thisis also equivalent to

saying that the spectrum is repetitive with the period 1/At.

Smoothing the individual random sample periodograms is done by “pseudo-
ensemble averaging.” The given data sequence x(0), x(1),....,x(N-1) is divided in P
nonoverlapping segments of D samples each so that P- D = N. An independent

sample periodogram of the Pth segment is then

k
_jznm._ 2

zx(m)c

me=(

(f)—

11
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The P independent sample specira are then coherently added to produce a smoothed

Bartlett periodogram. Bartlett also applied a triangular window to each data

segment. Weich (1967) then went one step further and permitted data segments to

overlap, thereby increasing the number of averaged segments. This decreases the i
PSD estimate variance further, although the segments and sample spectra are not

independent any longer. He also applied a variety of better windows to his segments

before computing the FFT. This Welch periodogram is the most widely calculated

FFT in use today.

Inherent in the concept of the discrete-time F'I' over a finite data sequence is the
multiplicatior of an infinite data sequence by a uniform (rectangular) window.5
Figure 3 shows the development of the DFT step by step, the time domain on the left,
the frequency domain on the right side. Multiplying the data x(t) by a window w(t) in
the time domain is equivalent to a convolution of their Fouricr Transforms in the
frequency domain. Since the FT of a rectangular window is a (sinnfT)/(nfT) function
(Figure 3b), the two lines (positive and negative frequencies) of a narrowband signal
(Figure 3a) are convolved into two such (sinnfT)/(afT) functions resulting in the
transform X(f)xW(f) where the symbol * signifies the convolution operation (see
Figure 3¢). The function (sinnfT)/(nfT) is characterized by a series of side lobes, i.e.,
energy from a single frequency "leaks” into neighboring frequencies of the spectrum.
The width of the main lobe where it crosses the frequency axis is 2/T and, at the 3dB
points down from the peak, the width is about 1/T. This is the resolution of a DFT for

a uniform window, i.e., the capebility to resolve two frequencies with a separation Af

= 1/T. The side lobes of a strong signal will interfere with the main lobe of a small
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signal if the frequency separation is Af = 1/T or less. In order to suppress the side
lobes, one can use tapered windows. This, however, causes the main lobe to widen,

resulting in less resolution.

The effect of sampling in the time domain is shown in Figures 3d and 3e, where
s(t) is the sampling function with the sample pulses At apart and its line spectrum
S(f) has a frequency separation of 1/At. Figure 3e shows the sampling of Figure 3¢
and its transform: X(f«W(f)+S(f), a spectrum function still cortinuous in frequency.
The step to the discrete line spectrum is done in Figure 3f, where the windowed time
function in Figure 3c is considered as one period of a repetitive signal. This forces
both the time function xp(n) and its DFT X(fi) to be discrete. The time sample
spacing is At, the frequency line spacing is Af = 1/(N-At), the signal is periodic in the
time domain with T = N-At, and the spectrum is periodic with F = 1/At. Both time
signal and spectrum contain N terms per basic cycle, i.e., the DFT is simply a one-to-

one mapping of N terms of xp(n) into N terms of X(fy).

Figures 3d and 3e also demonstrate the effect of the sampling rate. The smaller
the sampling rate 1/At, the closer the signal lobes move toward each other until
neighboring lobes start to overlap. The minimum sampling rate is the Nyquist rate
of two samples of the highest frequency component in the signal band (low pass
band). Below that, aliasing will occur, i.e., the appearance of out-of-band high
frequencies as in-band low frequencies which then do not represent the true signal
anymore: the signal recovered by low pass filtering becomes a mo = and more

distorted replica of the original time function.

The main lobe structure of the spectrum calculated for the DFT with a uniform

window is shown in Figure 4. The main lobes can be considered to be a bank of

13
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bandpass filters of width 1T at their 3 dB points. For a sine wave signal with a
frequency f, in Figure 4a, which coincides with one of the computed frequencies fj,
the DFT output would result in a response at the appropriate harmonic and zero at all
the other calculated harmonics. A so-called picket fence effect becomes evident when
the signal being analyzed lies between two calculated DFT frequencies, e.g., fb, where
signal energy appears to be generated at the two neighboring calculated frequencies
with harmonic numbers 6 and 7. If the signal is swept across the band, then the
spectral power response will follow the curve of Figure 4b showing a 3 dB i'ipple. The
depth of this ripple can be alleviated through zero-padding which generates an
artificial record length N' > N by adding zeroes to the actual data record. The
frequency spacing between calculated harmonics becomes Af = 1/(N'-At) with the
result that the calculated bandpass filters move closer, resulting in a spectral
response with less ripple (see Figures 5a and 5b). The width of the main lobe remains
the same since the actual data window is that of the original data record. Zero-
padding allows one to calculate the power response for any intermediate frequency by
adding the proper number of zeroes. It resultsin an interpolation of the original
spectrum, but does not improve the actual resolution. The spectral resolution is
equal to the reciprocal of the signal observation time or signal record length which
determines the width of the main lobe of the data window transform (width of the

bandpass filters). The longer the observation time or actual record length, the

narrower this filter becomes with an equivalent improvement in resolution.
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CHAPTER3
APPLICATIONS OF CLASSICAL SPECTRUM METHODS

Some examples of classical spectrum analysis follow. They are based on a
Fourier Transform of 256 points in the time and frequency domain. The number of
data points N can be chosen up to N = 256. For N < 256, a series of (256-N) zeroes is
attached to the data record, so that always 256 FT points cover the total frequency
band independent of the number of actual data points. This way a reasonably smooth
appearance of the spectrum display is assured. The sampling of the frequency axisis
done relative to the sampling frequency f; = f/f;, so that-0.5 < f; < 0.5 where f; = 0.5
represents the maximum signal frequency possible for a chosen fs without aliasing
(Nyquist frequency). The vertical axis represents P(f), with the PSD plotted in dB
relative to 1V2/Hz (PSD = 10 logP(f)/1V%/Hz). Thisis the display format of MISA

(see Reference 3).

The periodogram (regular FT) for a rectangular data window of width 2M over
N = 32 data points of a noiseless complex sine wave of amplitude e = 1V isdisplayed
in Figure 6. The relative frequency is chosen as iy = 0.25. The results can be
extrapolated to any desired frequency within 0.5 f;. The data record of N = 32
points represents N-f; = 8 sine wave cycles; the number of data points per cycle is
the reciprocal value of f;. The shape of the spectrum is the result of convolving the FT
of the rectangular window wg(t), Wr(f), with the FT of the nonwindowed signal s(t),
i.e., S(N, so that SN = Wr(N*S(N, and Pr(H = |Sr(N|?. For a sine wave signal, S(f) is
a Delta function §(f), which effectively samples the window function Wg(f) to

generate Pr(f). For the continuous Fourier Transform (CFT), Wg(f) is

15
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_ _ sinnfT
WR(D = CFT(wR(l)} = T-nﬂ"

where T is the window duration, and for the discrete FT it is

sinrlfr(ZM +1) N
WR(n) = DFT{WR(n)} = A"-Tnf_ ,

where At is the sample interval At = 1/fg and (2M + 1) data points lie within the
window. The transition from the DFT to the CFT can be made by letting At - 0,

fs — =, f < {5 so that sinnf; — nf;, and At/nfy = 1/nfyf; = 1/nf, Considering that

T = (2M +1)At, sinnf(2M + 1) — sinnfT. CFT becomes zero the first time for fT = 1,
from which one determines the width of the main lobe as 2/T. The 3 dB bandwidth is
found as 0.89/T and the spectrum peak is 10logTle|? = 15 dB. The width of the side
lobes is 1/T. For the DFT the corresponding values are obtained by letting

T -+ N = 2M +1. The total number SL of side lobes reveals the length of the data
record: SL+2 = N. The first side lobe, important for the detection of a weaker source

at a slightly different frequency, is down by 13.3 dB from the main lobe.

The effect of the triangular Bartlett window wg(t) = 1 - |n/M|withn s M = N/2

can be seen in Figure 7. The spectral shape is given by:

T [ sin(nfT/2) \2
Frtegon = T.(202)
CETtwaWh = 2\ Tar
or
sinnf'M 2
DET(wy(m) = = ( —_— )

sinnf
T




NAVSWC TR 90-236

so that the main lobe width 4/T is twice that of the rectangular window and the 3 dB
bandwidth is 1.28/T. The first side lobe is down by 26.5 dB. The main lobe peaks at
10 log aN[e|2 with a = 0.235.

Spectra for the same sine wave record multiplied by a Hanning and Hamming
data window are plotted in Figures 8 and 9, respectively. Both windows are raised
cosine functions of the form (0.5 +a) + (0.5-a) - cos|nn/M| where a = 0 for the
Hanning window and a = 0.04 for the Hamming window. The 3 dB bandwidth is
1.44/T for the Hanning window and 1.3/T for the Hamming window. The first side
lobes are Aown by 31.5 dB and 43 dB, respectively. The side lobe ripple across the
band i -st constant for Hamming with a floor of 32 to 36 dB, whereas Hanning
provides a steep roll-off of 18 dB/Octave. The main lobe peaks at 10 log aNe2 with
a = 0.235 for Hanning and a = 0,275 for Hamming.

Blackman-Tukey (BT) indirect spectra can be seen in Figure 10, based on the
unbiased correlation function (CF), and Figure 11, derived from the biased CF, for a
window size M = 32 points for N = 128 data samples. These two types of BT spectra
will be calied from now on as the unbiased and biased BT spectra (uBT, bBT). A
triangular Bartlett window was chosen over the CF. Asseen for the periodogram, the
window size M determines the bandwidth also for the BT spectrum. However,
whereas the window size for the periodogram is generally chosen as 2M = N as to
include the entire data record, the window size over the CF for calculating the BT
spectrum can vary within M s (N-1) since the CF has twice as many samples as
the original data record. The largest window chosen then will include all points of

the CF.

17
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A comparison of Figure 10 with Figure 6 shows that the uBT spectrum from 64
correlation values (M = 32) is identical with the periodogram having a rectangular
window over 32 data points (N = 32, M = 16). This is true for the uBT with any
N > M = 32. Therefore, the uBT spectrum has the bandwidth of 0.89/T for a
continuous-time signal or 0.89/M for a discrete-time signal. Choosing the biased CF
results in smoothing the BT spectrum as seen in Figure 11. The side lobe fluctuations
of the bET spectrum are calculated as 10 log N/M as can be verified elsoin Figure 12
for N = 32, M = 6. Three curves are overlaid in Figure 12. One is the uBT spectrum
for N = 32, M = 6; the second is the corresponding bBT specirum showing the
reduced negative excursions of the PSD; and the third, in which the minimum
possible number of data points N was chosen for M = 6 which drives 10 log N/'M to
zero and the bBT spectrum acts as an envelnpe follower for the uBT or the
periodogram. The number of side lobes SL across the frequency band isdirectly

related to M, SL = M-2.

In all following plots concerning the periodogram and the BT spectrum, white
Gaussian noise of variance on2 = 1V2 was added to the sine wave signal of power
0s2 = 1V2 with a signal-to-noise ratio (SNR) of 10 log 0%/0,2 = 0 dB. Figure 13 gives
a comparison between a pericdogram with a rectangular window and one with a
Bartlett window. Due to the broader lobe structure, the Bartlett window smoothens
the periodogram resulting in lower and wider lobes. This is true also for the signal’s

main lobe,

The same characteristics can be seen also for the Hanning and Hamming

window in Figures 14 and 15 when both are compared to the Bartlett window. In

particular, the Hamming and Hanning windows generate almost identical sample
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spectra for noisy signals. This is not surprising because of the similar structure of

these two cosine windows.

Figure 16 shows overlays of five periodograms for a rectangular window, where
each spectrum is based on a different data record of 64 samples to indicate the
statistical variation inherent in sample spectra and to gain some insight into the
aspects of improving the output SNR and signal detectability with spectral analysis.
The mean of the signal-plus-noise at f, = 0.25 is again determined by 10 log a Ne?

(a = 1 for wr(t)). The mean of the spectrum noise mpsp at fy # 0.25 for the
rectangular window is the mean of the input noise power 02 = 1V2,i.e.,0dB. The
positive noise fluctuations above this mean are best described by the standard

deviation opsp. The variance is

, ‘< sin2nNf 2
o =0 |1+ ) )
PSD n N 'stnfr

The envelope of the second term within the parentheses approaches 0 for |f| > 0
rapidly with increasing N so that practically opsp — on®. If a threshold isset at a

level equal to mpsy) + opsp = 204 to define the equivalent spectrum noise, then this
level would be a constant 3 dB above the mean of the spectral power, i.e., above the
mean of the white noise input power. Defining the signal-to-noise (S/N) as the ratio of

the mean signal to equivalent noise of the spectrum determines the SNR as

2

Ne
SNR = 10 log(S/N) = lOlog—z- .
20
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Since the SNR of the input is 10 log (e/on)2, the SNR improvement or gain through
spectral analysis using the periodogram derived for a rectangular data window would

be 10 log(N/2), which is approximately 15 dB for N = 64 in Figure 16.

Comparing similar plots of five different data records for the Bartlett, Hanning -
and Hamming window with N = 64 in Figures 17, 18, and 19, it can be seen that the
noise statistics are practically identical which should be expected considering the
spectra in Figures 14 and 15. In a series of trials, it was established that fo: these
three windows the mean of the spectrum noise mpsp drops by 6 dB compared to the
rectangular window with a standard deviation of 3 dB above this mean. However, |
since the mean of the signal-plus-noise peak is also about 6 dB down (a = 0.235,
0.275), the SNR and the gain remain practically the same for all four windows. This .
result is not surprising either since any window acts identically on the noise as on the :
signal. The major benefit of windowing with tapered functions then appears to be the
side lobe depression for signals of high SNR.

The following plots are related to Blackman-Tukey spectra for noisy sinusoidal
signals with both the signal power and the noise power equal to 1V2, Figures 20 and
21 indicate that no significant difference exists between the uBT and the bBT
spectrum as long as the window size 2M < N. In Figure 20 the data record is
N = 128,and in Figure 21 itis N = 64; in both cases M = 32. The plots of Figure 22
compare a uBT and bBT sample spectrum for the limiting data record size N = 33 for
M = 32 from which one can conclude that generally the bBT is a smoothed
representation of the uBT spectrum for values of M/N such that 0.5 < M/N < 1 with
increased smoothing as M/N — 1. Figure 23 shows that the uBT spectrum for
N =M + lisidentical to the periodogram for N = M. This compares directly to the
signal-only case of Figures 10 and 6.

20
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A high N/M ratio makes the Blackman-Tukey spectrum (biased or unbiased)
useful as a substitute for ensemble averaging of sample periodogram spectra. In
Figure 24 for N = 128, M = 32, and N/M = 4, this smoothing effect is equivalent to
avceraging four periodograms of 32 data samples; and in Figure 25 with N/M = 8, the
equivalent ensemble average of eight 32-point periodograms is cbtained. From an
SNR standpoint , of course, it is better to use the data record available and perform
the FT operation over the entire data set rather than dividing it in several parts and
averaging the sample spectra. The signal gain in the first case achieves more than
the noise reduction in the second case. However, in practice, spectrum analyzers
(hardware or software) are designed for a maximum number of data samples. If the

data record available exceeds this maximum size, then averaging is done profitably.

The results in Figures 26 and 27 give an indication of the variability of uBT
sample spectra where five different data records were used. Figure 27 (N = 64),
Figure 26 (N = 128), and Figure 25 (N = 256) represent BT spectra (it does not
matter if biased or unbiased) for the same window size M = 32 with monotonically

decreasing noise empirically established as

2M
10 log(02(1 + — ))
n N

whereas the mean of the signal remains constant as 10 log Me? so that

2
e
SNR = 10 log —

o? 1+2MN
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and the gain over the input SNR is

G =10log

1+2M/N

for a gain of 14 dB in Figure 25, 13.3 dB in Figure 26, and 12 dB in Figure 27.

This concludes the application of the classical approach to spectral analysis.

22
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CHAPTER 4
THE PARAMETRIC APPROACH TO SPECTRAL ESTIMATION

Conventional FT spectral analysis is based on a Fourier series model of the
data, that is, the signal is assumed to consist of a set of harmonically related
sinusoids. The direct approach (FT of the data) leads to higher resolution than the
indirect approach (autocorrelation) bacause the correlation values of only M < N lags
are used for estimating the PSD. Data windowing, either purposely in order to
decrease the variance of & sample spectrum or unintentionally because the record
length is limited, is the fundamental factor that limits the spectral resolution.
Windowing of the data or of the estimated correlation function makes the implicit
assumption that the unobserved data or ACF values outside the window are either

repetitive or zero. A smeared spectral estimate is the consequence.

If it were possible to “predict” or model the signal outsice the observation
window accurately, then the resolution could be improved. This is what the various
parametric methods attempt to do. They try to model future data samples based on
past and present data under the constraint that the predicted ACF is the most likely
estimate which can be derived from the observed data. Because of the Wiener
relationship between the ACF and the spectrum, this is equivalent to modeling the

predicted spectrum as closely as possible to the observed spectral estimate.

23
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Any spectrum can be obtained from a white noise source by filtering it with ar
appropriate filter. The task is then to design this filter so that the output is a good
prediction in a least-square error sense of the data to be expected on the basis of past

data.

24
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CHAPTERS
FILTERS WITH RATIONAL TRANSFER FUNCTIONS

Any linear filter with a transfer function H(z) relating the z-transform Y(z) of
the output y(n) to the z-transform X(z) of the input x(n) can be constructed from the

knowledge of its poles and zeroes6.7 in the form of a rational function in polynomials

of z (see Appendix A)
4 o,
}_'bi-zv.'l -b. 2!
He = Y@ _ =0 = —=2
X(2) p P
;S_ai-z—' a_ + zal 2!

n
<

Dividing numerator and denominator by a, and renaming bi/a, - b; and aj/a, —+ a; one

getis

L q. .
Yie) + }_u‘-z_'-Y(z)z Zb)-z-'-X(z)
i=0

Each term z ' - X(z) is the z-transform of the input time series x(n) deloyed by i sample

time intervals, i.e., x(n-i). Equally, z'- Y(z) and y(n-i) are the z-:iransform pair of the

output. Taking the inverse z-transform on both sides:

g J
yo) + Y a yn-i= D b -x(n-i)
1=0

)
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9 P
y(n) = Z bi-x(n-i) - Z ai-y(n—i)
i=0 i=1

This is the gen:ral input-output relationship of a digital filter where the present
output is a linear combination of the past p outputs and the present and past q inputs.
The filter coefficients aj and b; are the parameters to be determined. The direct
realization of the above expression can be seen in Figure 28 in which the block

marked z ! signifies one sample delay.

Two special cases lead to important filter classes. In the first case, alla; = 0

(except a, = 1)in which case

3 .
H@ = D b -z
1=0
9.
y(m)= > b -xin—ij

i=0

Its realization is shown in Figure 29. Thisis the digital equivalent of the classical

“Convolution Filter™

yl) = [

1=

h()x(t=)de
0

with the impulse response h(t) replaced by the coefficients b;.

Other names are “Finite Impulse Response” (FIR) filters, “Non-Recursive”
filters, “Tapped-Delay Line” filters, “Transversal” filters, and “Moving Average”

(MA) filters. If all b; are equal, a normal average over a (g + 1) sample sliding window
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results, otherwise a generalized weighted average. Finally, since this class of filters
has no poles, it is also known as an “"All-Zero” filter. Since no feedback is involvad,

these filters are always stable.
In the second case, all b; = 0 (except b, = 1).

H@) =

p
. -i
a,+ ‘S_ai z
1=1

[
y(n) = - }_ a.-y(n-i) + x(n)
i=1

Its realization is shown in Figure 30. This is called an “All-Pole” filter or an
“Autoregressive” (AR) filter. It is this type of filter which has found widespread
applications in the context of spectral estimation for short data records. It models an
output y(n) based on the present input x(n) and the past p outputs. Having defined an
AR filter and an MA filter, it follows that, in the general case of Figure 28, the filter
is an "Autoregressive-Moving Average” (ARMA) filter. Since for the AR-filters the

coefficient ag is just a gain factor, it can be set to 1, and

If one observes a random signal s(n) which one wants to substitute or model (in
a spectral sense) by an equivalent output y(n) with a modeling filter, then the inpat
should practically be a random process, preferably & white noise process. From such a

white noise source, any desired output spectrum Py(f) can be obtained with a proper
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filter that approaches the spectrum Pg(f) of the actually observed signal s(n), From

the input-output relationship of a linear filter:

Y(z) = H(2): X(2)

one gets the spectral relationship:

P

2
4 = " =
P, = [HO P (D -

[}
3 _
1+ 2. a2 Jaiae
i=1 =

and for a white noise input x = u and power o,°

02
v

) —
P =

I S‘ -)2nfiat
I 1+ 2 8¢

where At is the sampling interval in seconds. If the filter parameters a; and the input

noise power 0,2

are known, then the output power density can be determined for any

desired frequency as a continuous-frequency spectrum. The filter itself becomes an

equivalent representation of the spectrum of the observed signal. The input noise

power acts just as a scale factor.
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CHAPTERGS
YULE-WALKER EQUATIONS

References 1, 2, 8,9, and 10 provide the mathematical background for the

following material.

In power spectral estimation the autocorrelation function plays a fundamental
role (Wiener-Khinchin), regardless if one approaches the problem with one of the
classical or parametric methods. It follows that establishing a relation between the
filter-parameters (representing the spectrum) and the ACF will provide the solution
to determine the AR coeflicients aj. The development of this relation leads to the so-
called Yule-Walker normal equations (G. Yule, 1927; G. Walker, 1931) after the two
statisticians who used them in their AR filter models to predict trends in economic
time series, They were also derived as the Wiener-Hopf equations to solve for the

optimum prediction filter.

These equations derived in Appendix B are:

p
r,k>00= - > a-r k=i

1=1

p
N

r (k=0)=— > a-r (-i)+o°
yy l| Yy u
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where ryy(k) is the value of the ACF for a lag kAt of the data modeled from a white
noise source and an AR filter with coefficients aj through a,,. The constraint is to
devise the {ilter such that the ACF ryy(k) of the modeled data y(n) be equivalent tc
the ACF rg4(k) of the actually observed data s(n). Therefore, one can replace ryy(k)in

the expressions above by rgg(k) subject to the availability of observed data.

The first expression sets up a system of p equations rys(k =1) to rgg(k =p) with p
unknowns a| to ap. The second expression provides one equation with rgs(k =0) for
the only unknown o,2. In order to solve for the unknown filter coefficients and the
driving noise source, the ACF must be estimated from the available data. Once this
has been done, the (p + 1) equations can be solved, in principle, by the Gaussian
Elimination method; this requires a number of operations proportional to p3, a rather
time consuming operstion. Any analysis algorithm to be applied in real-time
requires fast numerical algorithms, and so the Durbin-Levinson Recursion method
was developed which requires only p? operations to solve the Yule-Walker system of

equations (J. Durbin, 1960; N. Levinson, 1947).
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CHAPTER 7
LEVINSON-DURBIN RECURSION

The proof of this recursive algorithm is lengthy and can be found in Reference 1
(pp. 161-171). Therefore, only the final equations are given here which determine the
desired AR coefficients. The number p of the coefficients a) through ap is called the
model order. It signifies the number of feedback terms each with its own coefficient.
The significance of the recursion of the Levinson method lies in the fact that it
evaluates the AR coefficients starting out from the lowest model order p = 2 (after
initialization of the procedure for p = 1), then working itself to the next higher model
order (p = 3) and continues doing so up to *1e desired order. At this point, the
algorithm has not only designed the filter of the desired order, but also all filters of
lower order. This allows one to chose an AR filter whose model order appears to be

most effective for the data process cn hand.

Because of this recursive feature of the algorithm the coefficients a; are given
two subscripts: p for the model order, and i as the running index from 1 through p.

For instance, ap; = a19,3 would be the coefficient a3 of an AR filter of model order 10.

The Levinson algorithm starts out calculating the highest coefficient (i = p)
with one formula and then proceeds to calculate the coefficients fori = 1,2,....,p-1
with a second formula. A third expression determines the power of the driving noise

source, also recursively from lower to higher model orders.
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The equations are:

p-1

rss(p) + ; ap_‘.e-r“(p-()
=] .
pp= T 3 where €isa dummy parameter
%)
= + * i=1,23 1
ay=a e e o i=1,23,.. .p-

a* = conjugate complex of a (in case of complex data)

0’=(0-la [H-0?
P PP p-1

These recursions are initialized with

r‘i(l) 2 2.
a8, = IO and 0 =(1—|a“|)~r“(0).
88

The highest-index coefficient app plays a significant role in Burg’s algorithm,

described later. This coefficient is known as “ref:action coefficient” kp.

A sample calculation is given in Appendix C.
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CHAPTER 8
LINEAR PREDICTIVE FILTERING

The AR filter approach as described above models the actual signal s(n) by
filtering white noise appropriately. It is possible to give this modeling approech a

different physical interpretation. This leads to the concept of "Linear Prediction” or

“Linear Predictive Coding” (J. Makhoul, 1975, see Reference 11). In linear
prediction, one assumes that the input (white noise source u(n) in autoregression) is
unknown and that, therefore, information about the actual signal s(n) can be gained
only from the past p outputs. A linear combination of these outputs will resultin a

signal estimate s(n) which only approximates the true signal s(n):

%>
=
=
Il
|
k-]

) al's(n—i).
1

1

-
L]

Comparing this prediction filter with Figure 30, one can see that it is equivalent to
the AR filter with the input removed. The error between the actual vatue s(n) and

the prediction s(n) is
P
eln) = o(n) - Hn) = on) + D & -sn=i).
=1

The coefficients a; are determined by minimizing the total squared error e with

respect to each of these parumeters, i.e., by setting the partial derivative
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3 .
_— < }_ e2(n)) =0
a3

n

The derivation is given in Appendix D. The result is:

~

o

(Y e2(n)) = D sn)-sn-k) +

a——
n

r

d \ N _
; » ulhs(n-—l)*s(n—k)—o
i n 1 n

which leads by ensemble averaging to

...,
z

]

|
Vo

> a or (k=i) Isksp
\ 1 88

68

i)

and the actual miniinum error power is

2 =
min

P
Z a-r (i)+r (0)
1 8b B8

€

or

[
= N o .or (i 2
I'“(O) - 2- al rss(” * ('nuu ’

These expressions are formally identical with the Yule-Walker equations developed
for the autoregressive filter with the only difference that the input noise power 0, of
the AR filter appears as the output error power eminZ of the predictor. The close
relationship between the AR model and the prediction filter is also apparent from the

sample error expression
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P
e(n) = s8(n) + 2 a - s{n — i)

i=1

which can be written as

P
an)= - a - sn~i)+en).

i=1

This is the same equation used in the AR process, with e(n) = u, so that solving for

the AR coefficients a; will determine the identical parameter set of the predictor.

The interpretation of the All-Pole AR filter as an optimum predictive filter is

not just a reformulation of the same problem but leads actually to new algorithms

and results as seen later on for Burg's method and others.
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CHAPTERY
RESOLUTION ASPECTS FOR SHORT DATA RECORDS

The motivation behind autoregressive spectral estimation or linear prediction
filtering is to eliminate the window effect associated with a limited data record that
limits the resolution of the analysis and creates distortions through side lobes. AR
spectral estimation attempts to extrect “enough” information from the limited data
record so that the autocorrelation function can be estimated beyond the lags
practically possible for the given data record. The extension of the ACF is recursive

through the first Yule-Walker equation

L
r“(k)= - Z al-r“(k—l)

a =1
i

which allows vae to calculate the coefficients a;j, given the values rgg(k) for 0 s k < p.
Assuming short-term stationarity of the signal beyond the available data record
these coefficients can be considered constant, and extended values of rgg(k) can be
extrapolated for k > p. From an information standpoint, this modeling approach
permits a more realistic continuation of the ACF for higher lags rather than setting it
to zero or making it repetitive. In fact, Burg (1961) derived the same algorithm
through a third interpretation, based on the information concept of “maximum
entropy” (see References 10 and 12). He extends the ACF beyond lag p by adding the
least amount of new information, therefore “maximizing the entropy” of the process.
This extension is the basis for the higher resolution of the AR-PSD estimation

compared to the classical FT-based analysis. AR modeling then is a process of
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spectrally matching the observed data to modeled data, whereby it should be
understood that the modeled time series data are generally random and are therefore
in no way matched to the observed data. An infinite number of random noise time

series data can produce the same ACF and power spectrum.
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CHAPTER 10
ESTIMATION OF THE AR COEFFICIENTS

THE AUTOCORRELATION AND COVARIANCE METHODS

The Yule-Walker equations establish the relationship between the AR filter
coefficients and the autocorrelation function of the data. Solving them depends on
knowing the exact autocorrelation values rgg(k) for a number of lags k equal to the
model order p of the AR filter. Generally, this ACF is not given, and it would require
data over an infinite time interval. Usually only a limited amount of data is
available from which one can calculate estimuted correlation values and then proceed
to obtain the coefficients a; using the Levinson recursion. This is called the Yule-
Walker method. Other methods have been developed to derive the filter parameters
from the data using the least square error criteria of the prediction filter. As will be
shown, the Yule-Walker method can be thought of as a short-time correlation which

depends nut only on the lag but also on the summation range n.

If N data samples s(0),s(1),....,8(N-1) of a time series are known, then (p+1) data

samples are used to calculate one error sample according to

p
em)= ) a-sn-i)  witha =1
i=0

Appendix E shows the system of linear equations involving all errors e(n) possible for

the observed set of data. It can be seen that the available data can be used to form
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a maximum of /N + p) errcr samples: e(0) to e(N +p-1). However, for e(0), only one

valid data sample s(0) is available, all others are set to zero, since they are unknown.

For e(1) only the first two data samples s(1) and s(0) are ron-zero, and so on. The

same is true at the end of the error sample series where the last error sample (N +p-1)

has been calculated with oniy the last valid signal sample s(N-1), the one before that, :
e(N + p-2) with only two: s(N-1), s(N-2), etc. Therefore, the number of valid signal

samples in the calculated error sample series can be pictured asin Figure 31.

Now going back to the expression which minimizes the total squared error

Z le(n)f*
n

of a prediction filter over a given range n of data samples s(n), one has:

P
D a D sn-ilsin~k)= - > sn)-sin-k)  1sksp

1= n n

or in matrix notation as found throughout the literature:

- - - -
r(1,1) r(1,2) ... . r(1,p; a) r(1,0)
r(2,1) r(2,2)....... r(2,p) ag r(2,0)
r(p',l) r(p2)....... r(p,p) a,', r(p',O)

— - o ol e -d

where

k)= D sn—i) sn—k)

n
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so that

p
D &, rik) = —rk)

i=l

If n goes to infinity, the sum of the lagged products represents the ACF and the result
is the set of Yule-Walker equations. For a finite n, however, with 0 < n < (N-1), there
are four distinct summation ranges over which the total squared error can be

minimized, as can be seen from Figure 31, These four ranges are:

N-1+p N-1 N-l+p N-1
2 or Z or 2 or Z
n= n=0 n=p n=p

Each of these four cases will lead to a different set of p equations and resultin a
different set of the a; parameters, i.e., a different AR filter and its asscciated
spectrum. These differences will become less and less significant the larger the data
record length becomes compared to p, and all four cases approach the Yule-Walker

method of the true ACF,

The first case

(s)

n=0

is called the "windowed” method, since all s(n) outside the window 0 s n s N-1 have

been set to zero. For the same reason, the second case
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N-1

(%)

n=0

is called the “prewindowed,” the third case

(%)

n=p

the “postwindowed,” and the fourth

the “nonwindowed” method. In this case, none of the data for calculating the error
samples has been zeroed out. In much of the literature the first method is a.z» called
the "autocorrelation” and the last one the “covariance” method. (This terminology
has old roots, and semantics is the reason that makes reading the literature harder
than necessary). Of the four methods, these two are found most frequently, where the
covariance method leads to better resolution spectra than the autocorrelation
method. It isintuitive that the calculation of the AR coefficients based on the largest
error series e(0) to e(N + p-1) is not optimum because of the sloped areas of Figure 31

between O to p and (N-1) to (N-1 + p) that are based on nonexisting data.

THE FORWARD-BACKWARD PREDICTION METHOD ’

The prediction filter looked at so far is also known as a forward predictor. It

estimates future data from past data, going forward in time. A backward predictor is
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then a filter which calculates past data samples s(n-p) from the “future” p data
samples s(n-p + 1) to s(n), going back in time. Both predictors use the same data

samples, see Figure 32. The forward prediction is

P,
an)= - > al-sn-i)

i=1

with the error

P,
e'm= al-stn-i).
=0

Similarly for the backward prediction:

P
Sin—p) = — 2_ a:’-s(n—p+i)

with the error

p
eln) = l a?~s(n—p+i).
=0

For a stationary process the forward and backward AR coefficients ajf and a;P are the
same (or the conjugate complex of each other, a;® = (a;N*, if complex data are

. handled), because it involves the same statistical information going forward or
backward in time. Therefore, one can combine the forward and backward errors in

order to get twice the numkber of error samples compared to the forward-only

nonwindowed (covariance) method of range p < n < N-1. This leads to the so-called
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“Modified Covariance” method which is based on the minimization of the average

combined forward/backward squared error:

l 2 le"(n)? + 2 le®n)?| .

Minimizing this expression by differentiating it with respect to the a; and setting it to

zero yields:

0 N—_I N-:l
l la. 2 s(n~i)-s*(n-k} + }_ s(n)-s‘(n—k)‘
1=1  n=p n=p
+ .}-u. l s*(n—-p+1)-sin-p+k) + Z s*(n-p)-sin-p+k)| =
i=1 n=p n=p

The expression in the first bracket is the contribution from the forward error which is
identical to that of the covariance method, and the expression in the second bracket

comes from the backward error. This can be written similarly as for the covariance

method:

P

Sacrik= -k  1sSksp

1=1
where

Hik) = (s(n-i)-s‘(n-k)+s‘(n—p+i)-s(n—p+k))
n=p

and
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N-1
rk) = Z (s(n)'s‘(n-k) + 8'(H-P)'5("‘P+k))
n=p

THE BURG METHOD—MINIMIZING THE REFLECTION COEFFICIENTS

This method was derived by John Burg (1967) and has become a widely used
technique to determine the AR coefficients. It should not be mistaken for Burg's
maximume-entropy interpretation of AR spectral estimation, mentioned earlier. Itis
strongly related to the forward-backward prediction by minimizing the combined
forward/mackward squared errors. However, while those errors epf(n) and epb(n) were
calculated straight forward for a given model order p, in Burg’s method they are
recursively derived from the errors ep.lf(n) and ep.lb(n) of model order (p-1) by

requiring that the coefficients ap; follow the Levinson recursion

L]

a.=a .tk -a )
pi p-1,i P p-lp-i

where k. = appis the “reflection coefficient” as mentioned earlier. In Appendix E,

the expressions for the recursive errors are derived:
e'n)=e m+k ¢ (n-1
) p-1 p p-!

(n)

b _ b _ * f
ep(n)—ep_l(n l)+kp €

The average combined squared error for the nonwindowed case is then
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2
f b
ep_ l(n)+ kp-ep_ l(n -1) '

b ¢ f
ep_ l(n- 1)+ kp-ep_ l(n)

)

which isonly a function of kp, since the lower order prediction error powers ep.lf(n)

N-1
=1 Z (
n=p
and ep.lb(n) are’known (having been calculated starting from the first order model).

Therefore,

JdE L
p + J p =
B(Re(ko)) J m(kp))

allows one to solve for kp as the only unknown. This resultsin:

N-1
o b
-2 >_ ep_](n) (ep_ (n 1))
_ n=p .
kp” N-1 N-1 (Froof, References 1,2)

Y |ef (n22+ Y ed (n-1)|2
e p-1 '| - p-1
n=p n=p

The initialization of the Burg method is done by

]
0 - » ' -
v ss N

lj lx(n)!2
efm=sn n=123. (MN-1)
e =sn) n=012..,N-2)
Based nn these initialization errors the value of k| can be calculated. In order to

determine ko, all errors e1f(n) and e} P(n-1) forn = p,p+1,...,N-1 must be calculated

from the recursive error expressions
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f _f b - — i
ep(n)—ep_l(n)+kpep_l(n 1) n=p+1,p+2,..N-1

and
eb(n) = eb
p p

=D+ k;e;_ (M n=pp+l,. . N-2

1
With ko determined, the errors can be uydated again to give the error series for eaf(n)
and e2P(n-1) which are used to compute k3, and so on, until kp of the desired model

order p has been reached. After each of these cycles, the Levinson recursion is used to

find the coefTicients ap; from the k'’s:

-a
p P-lp-i

8 =8,y + k

and the minimized error power output is
2 _ 2 2
a,= (a —IkJ )eo_ |

Finally, the spectral estimate is
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This completes the Burg algorithm. It should be mentioned briefly here that
the two error recursion formulae lead to a dif{>rent interpretation of the prediction
error filier, the so-called lattice filter, depicied in Figure 33. The input signal s(n}is
the cbserved signal; the error signals epf(n) and epb(n) are generated as output. The
lattice filter is optimally matched to the input signal in the sense that the output :
error tends to go to zero if the filter is perfectly matched to the input spectrum, i.e.,
the spectral estimate as calculated above, is equal to the input spectrum. For a signal
with slowly changing statistics, the coefficients a; can be made to change, in effect

tracking the input spectrum, such that the output is always minimized. The lattice

filter has found its use in adaptive filtering.
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CHAPTER 11
APPLICATIONS OF PARAMETRIC SPECTRUM METHODS

RESOLUTION CAPABILITY IN THE (NEARLY) NOISELESS CASE

The following is relaed to narrowband signals (ideally sinusoidal) in white
noise. As stated earlier, the record length T of an observed signal inherently puts a
limit on the spectral resolution, i.e., on the capability to resolve two closeiy spaced

frequencies. This limit of resolution is generally taken as

@an =

res

Sy

For a given signal frequency f and a record length T the number C of cycles in
Tis

A higher frequency (f+ Af) will allow a larger number of cycles (C + AC' in the

same record T

C+ AC = T(f+4AD ie., Al = ACT

Thig incremental frequency Af is equivalent to the limit of resolution for
AC = 1cycle. This means two frequencies can be resolved if the higher frequency

signal contains at least one more cycle than the lower frequency signal in the

record T.
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Figure 34 and 35 depict the real part and the magnitude of a complex transient
sinusoid containing two components of relative frequency 0.25 and 0.3125 of equal
amplitude and with a relative phase shift of 160 degrees for a record length of
N = 16 data points. This results in four cycles at the lower and five cycles at the
higher frequency and the one-cycle difference necessary for spectrally resolving the

two components.

The periodogram is shown in Figure 36, and it indicates the importance of the
relative phase between cumponents for short duration signals. For a phase shift of
335 degrees, the two frequencies are clearly resolved, but biased compared to the true
frequencies indicated by the two dashed vertical lines. At 270 degrees, both
components start to separate, still biased, and at 160 degrees just one spectral peak is
located at the average frequency. The periodogram method clearly requires more
than a one-cycle difference to reliably resolve two frequencies of difference Af, or

stated differently, the record length must be larger than 1/Af.

The Burg method has been chosen for calculating the parametric spectrum of
Figure 37 for the most difficult phase shift of 160 degrees, showing the superiority of

the autoregressive modelling approach.

In the following three illustrations, Figures 38, 39, and 40, the resolution
capability of three spectral techniques, the FT based, the Burg, and the Modified
Covariance method, is determined more accurately. In each case, the lower relative

frequency is 0.25. The upper one is varied in order to accornmodate a desired cycle

difference AC. The two amplitudes are equal, and some noise is added to prevent

singularities (SNR = 26 dB).




NAVSWC TR 90-236

Figure 38 is a plot of the periodogram for three cases, where ACis 1.3,1.4, and
1.5 cycles, corresponding to a frequency of 0.33125, 0.3375, and 0.34375. The most

unfavorable relative phase with respect to resolution was chosen. The PSD is plotted
on a linear rather than on the ordinary dB-scale which allows better recognition of
the two PSD peaks to develop. It can be seen that a minimum difference of 1.4 to

1.5 cyclesis necessary for an FT to resolve two frequencies.

Figure 39 shows the Burg spectrum of order p = 4 for AC = 0.5 and
AC = 0.7 cycles, corresponding to f = 0.28125 and = 0.29375. An excess of
0.7 cycles will separate the two frequencies, however, with a bias depending on the

relative phase A®. It can be shown that this bias varies as a function of sin Ad.

Figure 40 is a plot of the Modified Covariance spectrum for AC = 0.3 and
AC = 0.4 cycles, corresponding to f = 0.26875 and f = 0.275. This method then
requires an excess of only 0.4 cycles to resolve two frequencies. Also, a significantly
smaller frequency bias than for the Burg method exists relative to phase over the

entire 2n-range.

lS{IFbSNOAJIlJJS'I'ION OF SMALL NOISY SIGNALS IN THE PRESENCE OF LARGE

Under noisy conditions, the ideal resolution capability demonstrated above will
be degraded. Given are N = 16 data points of a sinusoid of relative frequency

fi = 0.25 (N = 4 cycles) and 1-volt amplitude. A second sinusoid of the same sample

size is chosen such that its frequency f2 coincides with the frequency of the first
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sidelobe maximum of the periodogram at f = 0.34 (N2 = 5.44 cycles). Its amplitude is
0.1 volt. White noise is added with a standard deviation of 0.1 Vrms, so that SNR(f})
= 20dB and SNR(f2) = 0 dB.

Figure 41 is a representation of the FT based power spectrum for five ‘
independent data records indicating the effect of the additive noise. No clue is found

in these spectra about the presence of the second sinusoid.

Figure 42 shows the same five simulations using a Hamming window. Again it
will be quite difficult to identify and locate the second small signal component. In
Figure 43 the Burg algorithm with a model order p = 8 was applied to the same five
data records with the result that in four trials the small signal can be identified using

simple thresholding and judging the consistency of peaking in the spectrum.

A similar experiment was done selecting the frequency f2 = 0.405
(N2 = 6.5 cycles) to coincide with the second sidelobe maximum of the large signal at
fi = 0.25. The periodogram with a rectangular window was calculated and plotted in
Figure 44; the Hamming window was applied in Figure 45. Not much information
can be gained from both sets of spectra about the presence of a second signal. The !
Burg algorithm of model order p = 8, however, provides a spectrum in Figure 46 in

which both frequencies can be identified and located.

In a third experiment, the second signal was hidden in the minimum between
the main lobe and the first side lobe of the FFT-based spectrum of Figure 47 at
f2 = 0.3125 (N2 = 5 cycles). Figure 48 shows the spectrum using again the Hamming
window. The Burg spectrum (p = 8) isdisplayed in Figure 49 with a similar result as

for the two previous trials.
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These experiments allow the conclusion that small noisy signals are difficult to
detect across an extended part of the spectrum and particularly so close to the
mainlobe of a large signal using the conventional Fourier method. This gap is filled

by the parametric method of AR spectral analysis.

COMPARISON OF PARAMETRIC METHODS

The previous series of tests was expanded to include the other parametric
algorithms discussed in this report, the autocorrelation, the covariance, and the
Moadified Covariance method, together with the Burg algorithm. The first relative
frequency is again at 0.25, 16 data points form a record of four cycles; for the second
signal 5.5 cycles were selected leading to fo = 0.344, well within the resolution limits
of parametric spectra for any phase shift between the two components. The SNR of

the first signal is +20 dB, that of the second is 0 dB.

Figure 50 shows what the autocorrelaticn algorithm can achieve at best. Even
at these relatively high model numbers p = 8 and 10, this method proves

unsatisfactory to represent a realistic spectrum.

The results of the covariance method are plotted in Figure 51 forp = 4, 5,6. At
p = 4 the resolution is too small, and the spectrum peaks only at the main signal
frequency. For the next higher order model, the second component sterts to show up,
and it is well established for p = 8. In either case, the second peak occurs somewhat

off the actual frequency. Also note that for p = 6 the weak component is calculated to
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have a higher spectral value than the main component, indicating that the model
order is too large. Going to still higher orders will cause the spectrum to break up

into more and more peaks unrelated to the actual signals.

The Modified Covariance method was used for Figure 52. Also for this :
algorithm, model order 4 generates only the main peak; p = 5 indicates the second
sinusoid, and p = 6 produces a satisfactory spectrum. The Burg algorithm used in
Figure 53 produces similar spectra for the same model orders. These two algorithms
have been found to be equally effective for various signal and noise conditions; both
are relatively robust in the sense that they often (not always) tolerate a higher model
order without breaking up. The Modified Covariance method has an edge over Burg
with a somewhat better resolution capability, and it is also less affected by phase
variations. However, the Burg algorithm is faster. For a data record N = 64 it took
5 seconds on a PC to calculate the spectrum for p = 24, but 20 seconds for the

equivalent Modified Covariance model.

SPECTRAL PERFORMANCE AT LOW SIGNAL-TO-NOISE RATIOS

Generally the benefit of high resclution is derived from AR spectral analysis at
high SNR conditions. The following five sets of spectra in Figures 54 through 58 are
the result of five simulations of a 16-sample signal at f = 0.25 and of white noise
with an SNR = 0 dB. In each set, the model order is p = 6. The autocorrelation
(Figure 55), the Modified Covariance (Figure 57), and the Burg method (Figure 58)

show a detection performance comparable to the periodogram (Figure 54), however,
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with better resolution. The covariance method of Figure 56 yields highly unstable

spectra that are very sensitive to the individual noise record.

Going to still smaller signals with an SNR = -6 dB for the same N = 16 data
record, no useful information is obtained any longer from any spectral method,
parametric or Fourier based. Figures 59 through 63 show the results. Coherent
averaging of the five spectra of each set will improve the performance; however, this
would imply longer data records which may or may not exist. This concludes the

testing of the AR spectral estimation methods discussed in the report and their

comparative performance.
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CHAPTER 12
CONCLUSIONS

Whenever new methods are tried and added to the pool of existing signal
processing tools, it is desirable to be aware of their capabilities and limitations. What
do they allow us to do that could not be accomplished before with the tools available?
This is true also when considering the so-called “modern spectral analysis” compared

to “conventional Fourier analysis.”

FFT-based spectral analysis is the most robust method for widely ranging
signal and noise conditions. Particularly for low to moderate SNR , the periodogram
with its numerous window options can be well adapted to the given signal and noise
characteristics and will give satisfactory results. Also, it does not make any demands
on the bandwidth of the signal and performs well for broadband or narrowband
signals. The analysis of a broadband process is done best through the conventional
FFT approach. The identification of narrowband components is possible even for
transients as long as the cycle excess between comyp~ncnts is at least a few cycles,
theoretically down to one cycle. All of this can be done in real time because of the fast

FFT algorithm.

When all is said, a few well-defined problems remain which cannot be solved
conventionally because of properties inherent to the FT when applied to time limited
data. The Fourier Transform is strictly defined for unlimited data and is therefore a
mathematical rather than an engineering concept. When dealt with '1: 8 mathe-

matical context, there are no resolution limits or side lobe effects. However, all

<n
-]
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engineering applications involve data that exist only during a given observation

time, or that are intentionally truncated, i.e., the data are windowed. A time-limited
window function is transformed by the FT into an unlimited frequency space through
more or less pronounced side lobes. If somewhere in these side lobes another signal is

present smaller than the side lobe level, it cannot be detected. :

The modeling approach of the autoregressive analysis is capable of solving such
a problem. By substituting the observed data by a model of the process that
generated those data, one has access to an unlimited source of equivalent data. This
model is derived from the information of the actual signal, essentially its associated
correlation function. Since no limits are imposed on the output of the model, the
spectral estimation can be done without generating side lobes. A peak in the
spectrum related to a sinusoid in the signal will decay asymptotically to zero, so that

another smaller sinusoid, even in the vicinity of the main peak, can still be detected.

The model is actually a filter which is designed such that, for each sinusoid
contained in the signal, a pole at the corresponding frequency is generated. This
givesrise to a resonance effect that is very sensitive to frequency and that generates
a strongly pointed peak in the transfer function resulting in better resolution. This
high resolution makes it possible to separate two components in frequency even if
their cycle difference is less than one cycle, the theoretical limit for conventional

analysis.

These are the two essential characteristics of parametric AR spectral analysis
that provide a new tool in signal processing and fill a true gap existing in classical
analysis. They also indicate the problems associated with this approach. First,itis

strictly line oriented due to poles in the transfer functicn. Second, one has to make
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assumptions about the number of lines in the ssectrum corresponding to the mudel

order,i.e., one has to have apriori information tliat is not normally available.
P

Several criteria exist for choosing the proper model order. No attempt has beea
made in this report to deal with model order selection since this is a subject by itself.
It may suffice here to state that the existing criteria are not hard and fast; they
rather provide some guidelines. Generally, parametric spectra do not appear to be
very sensitive to model order in large SNR cases (the main working domain for AR
analysis) if one is interested primarily in frequency identification; resolution,
however, improves with increasing order. Needless to say that computation time

balloons for higher mode! order interfering with many real time applications.

Finally, it should be pointed out that a peak in the AR spectrum resulting from
a sine wave component is not proportional to the power of the sinusoid as it is for the
perindogram, rather it is proportional to the square of the power. The integrated area
under the peak, however, still represents correctly the power as it should be for a

power spectral density curve,
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P> y(n)

FIGURE 28. GENERALIZED LINEAR FILTER WITH RATIONAL TRANSFER
FUNCTION (p POLES, q ZEROES)
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~e= y (n)

FIGURE 29. MOVING AVERAGE FILTER

x(n) (T - o y(n)

FIGURE 30. AUTOREGRESSIVE FILTER
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P+1

VALID ERROR SAMPLES

NUMBER OF

4
L]
—

ERRCR SAMPLE INDEX N-1+p

FIGURE 31. VALID ERROR SAMPLESIN ERROR SERIES

S(n)

SAMPLE VALUE

n-p n-p+1 n-p+2 n-p+3 SIGNALSAMPLEINDEX N3 n-2 N1 n

BACKWARD PREDICTOR ESTIMATES S(n-p)
FORWARD PREDICTOR ESTIMATES $(n)

FIGURE 32. FORWARD/BACKWARD ESTIMATION
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APPENDIX A
POLE-ZERO FORMAT OF FILTER TRANSFER FUNCTION

This is to show the equivalence of the transfer function H(z) as a ratio of

polynomials in z as used in the report:

H@z) = —— (A-1)

and as a ratio of products in which factors of the form (z - z;) and (z - p;) represent

zeroes and poles of the transfer function. From Equation (A-1) one guts
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b, bz bq
29+ — 29y 2,072 + =
b b b
N o o o 0
= 2 —_
a a R \ a,
P+ — 2P =Py —
a a a
1] 0 o
29+ 8 2+ B4 2+ 4+ B z+ B
= N.g. 1 2 g-1 q
2P+ AP AP A 2t A
p-1 P

where the numerator and denominator are ordinary polynomials in z. This can be

written as
(z=2) (z—2) (z=2) -+ - - (z—2)
Hw = G - &N v TR 3 a
z-p) (z=p,) @=py -+ -+ (z-—pp)
q
ﬂ (z—zi)
= G- ZN =1

TP
” (2—- pj)
i=1
where G is a gain factor and zN implies N zeroes at the origin of the z- plane.

Ifp<q,q-p=M>0, then

£o

I (z-z)
i=1

1
H() = 0'7-

P
z -

[ (z—p)
1=1 J

with M poles at the origin of the z- plane.

A-2
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APPENDIX B
DERIVATION OF THE YULE-WALKER EQUATIONS

The autoregressive (AR) filter models the present output y(n) through a linear

combination of the past p outputs y(n-i)fori =1,2,3,- - . - . p, and the present input

x(n) where x(n) is a white noise source.

P
y(n) = — z a - y(n—i) + x(n)
i=1

Multiplying by y(n-k) gives

p
y(n) + y(n—=k) = — 2_ a - yn—i) -y (n=k) + x(n) - y(n-k)

=1

Ensemble averaging E{ - -} on both sides and interchanging the E-operator and

L-operater (ergodic process assumed) results in:

P
Ely(n) . y(n—k)] = — 2 a - Ejy(n=i)- )-(n-k)] + E {x(n) . y(n-k)}
1= 1

1o
i

r k) = — a -r (k=i) +r_ (k)
¥y I xy

u[

B-1
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where ryy (k) is the output autocorrelation function, and ryy (k) is the input-output
cross correlation, From the fundamental input-output relationship in the time

domain by which the input is convoluted with the impulse response

y-k)= 3 h() - x(n~k=i)

1= —-@

one gets

fy (k) = Elx(n) . y(n-k)’ = EI l x(n} - h(i) - x (n=k <1)

-0

n
e

h(i)~E{x(n)-x(n—k—i)} = D hir k+i)
1 =

- ©

"

= -

r h+i)=o02-6k+i),
X b 4

since the autocorrelation function (ACF) of white noise x{n) is the delta function of

strength 0,%. Therefore,

h)- 8k +1)

Mo

_ 2
r (k)—o‘

-

6 (k + i) as a function of i is equal to zero for all i excepti = -k, for which

-k-!-c
S 5k+i) =1, withem0 ,

|

-€

B-2
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so that
-k: €
r, & =0l (=l D Bk +i) =0l hi=k
iz -k -¢
. The value for h(-k) can be found from the basic definition of the z-transform H(z)
for h(n);
Hz) = D hm)-27" = D> hm)-27"
n=-@ n=20

since for a realizable, causal filter h(n<0) = 0, i.e.,, h(-k) =0 for k > 0.

Hz) = h@ -1 + h() -z +h@ 2724 .....

lim H( = h(0)

T

Also:
. . 1 1
lim H@E@ = lim " = lim =1
rme bt : =i =2 4 +a .27 +a 272+
1+ E_ LI 1 2
i=1
so that
hQ) =1, r (k)=o2 fork =0
xy x
and

h(-k) =0, rxy(k)ZO fork > 0

B-3
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and finally

P
y = — 2 a - r k=) k=1,2---p

i=1 -

ryy(k) = -

ai~ryy(k-i) + 03 for k=0

1

1 Mo

This is the set of Yule-Walker equations, the first of which resultsin a group of p
eauations to solve for the p unknowns aj, ag, -- -+, ap given the values of the desired

ACF. The second expression for k = 0 is just one equation to solve for o 2.

Example of equation fork = 1:

ryy(l) = —)a -ryy(O) +a,r (=1} + a -ryy(-2) + -0 4+ ap-ryy(l—p)

1 2 'y 3

which can also be written as

ryy(l) 1a;- ryy(O) +a, ryy(-l) + 8- ryy(—2) oot ryy(lap) =0

and similarly fork = 2,3, ... , P.
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The entire set of (p + 1) equations can be written in the short form of matrices

and vectors as

e

ryy (\0) ryy (‘1) ryy (‘2)

ryy (1) “ryy (0)  ryy (D)

~
~ ~ ~

- mnm -
’

----------

..........

Ty (D)

——

aj)

0y2

e R L L L LD —)

Thisis the form in which the Yule-Walker equations are frequently found in the

literature. One can see that the terms of the diagonals in the ryy-matrix are

identical. Thisindicates a so-called Toeplitz structure of the matrix which allows cne

to solve such a system of equations with a method known as the Levinson-Durbin

recursive algorithm.

B-5/B-6
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APPENDIXC
EXAMPLE OF THE LEVINSON RECURSION FOR P = 4

In order to calculate the four coefficients a4, a42, a43, and a4 of the fourth order

AR filter, one starts out (after initialization which gives a;; and 0,?) with order
p=2:

rb_s(2) toa” rss(l)

These are all parameters of model order 2. Now proceeding to model urder p = 3:

r (3) + (am‘ r, () + ay,: r“(l))

Model order p=:4 (with known parameters for p=3):

C-1
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rss(4) + (am' r“(3) + g, rss(2) +ag: rss(l))

& 2
03
[
By = 5 1 8,8y
[ 3
By T8t a8,
3
8, = 8y, + 8, 8y

These last five parameters completely describe the desired AR filter to model the

data. The autocorrelation values rgg (k) must be known.
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APPENDIX D

DERIVATION OF THE LEAST SQUARE ERROR
OF THE PREDICTION FILTER

The error e(n) between the actual signal sample s(n) and its prediction s(n) is

P
e(n) = s(n) —s(n) = s(n) + E als(n—i)

The totaled squared error over a given time interval of n samples is

. ' P 2
2 e‘n) = Z (s(n) + 2’ a - s(n—i))
n 1= 1

n

. = P P 2
= _,\_52 ) + 2 ‘\_ s(n) Z a, -s{n—-1) + Z( Z a * s(n-i))
n i=1 =1

n i n i

In order to find the parameter set {a;} which minimizes this expression, one calculates
the partial derivatives with respect to all a’s and sets them to zero. In order not to
confuse the derivative index and the delay index i, one chooses another index for
calculating the derivative, say k. The derivative of the first term is zero, since it is

independent of all a. The derivative of the second term can be written as

- 3
25 sn) — {a,sth=1) + a,8(n=2) +--- +a_-8(n=k +---+a + 8(n—p)
_n- mk 1 2 k P

=225(n)-s(n-k) fork=1,2, ,p

n

D-1
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The third term has the form z = y%(x) for which

x & ay

— O e e = Zy —

&x day & .
The derivative of this term car then be written as .

h-]

1

. , 3 P,
a|-s(n-1))- ; { 2_ ak~s(n—k)}
=1 k k=1

2%(

i

where
2] b a
—l Z a -s(n—k)] = — {a stn—-1)4+--:.-4+4a -8(n=k)+.:+.+a - g(h=p)
3a k da 1 k p
k k=1 k
= s(n-k)
so that the third termis
R
22 2 a, + 8(n~1i) - s({n—k) fork=1,2,----p
n 1=1

The total derivative of the squared error is then set to zero:

P
2 stm)-stn-k)+2 > > a - s-i)-s-k =0
1=1

n n




K
k
Iy
[
?
|
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The ensemble average of this expression leads to the requirement for the minimum

mean square error:
- L -
[',[2_ s{n) - s(n-k)} = - 2 u, - E l 2_ s(n-i) - s(n-k)
n i=1 n
which is

P
r (k) = - > a +r (k—=i) fork=1,2,3,--+-p
£33 s 1 bS
1 =}

D-3/D-4
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APPENDIX E
SET OF ERROR EQUATIONS FOR N DATA SAMPLES

Expanding the error equation for a prediction filter of order p

p P
e(n) = s(n) + 2 a - sn-i) = Z ais(n—i)

=1 i=0

one gets the set of (N + p) error samples possible for an observed set of N data, s(0)

through s(N-1). All unknown data for (N-1) < n < 0 are set to zero.

e(0) = aps(0) + ajseH + asst&®H + ..., + ap. stp) + apstp)
e(l) = aps(l) + a;1s(0) + agstH + ... ... + ap. st + apstp)
e(2) = aps(2) + ays(l) + ags(0) + ....... + ap | st3-p) + aps-(-ﬂv'q-)
e(p-1) = ags(p-1) + a;s(p-2) + azs(p-3) + ....... +ap1s5(0) + apseH
e(p) = aos(p) + ajs(p-1) + azs(p-2) + ....... + aps(l) + aps(0)
e(p+1) = ags(p+1) + ars(p) + azs(p-1) + ....... + ap18(2) + aps(1)

! Covariance Method E
e(N-2) = ags(N-2)+a)s(N-3)+azs(N-4) + ....... + ap.j s(N-l-p)+ap§(N-2-p)
e(N-1) = ags(N-1)+a; s(N-2)+ags(N-3) +....... + ap.1 s(N-p) + aps(N-1-p)
e(N) =apsh) + a;s(N-1) + ags(N-2) + ....... + ap.1s(N-p+1) + aps(N-p)
e(N+1) = aostN+B+a)sPH+as(N-1)+.... + ap1s(N-p+2)+aps(N-p+1)
e(N+2) = apstN+2 +a) stN+D+azsthH+ ... + ap18(N-p+3)+aps(N-p+2)
e (N +p-3) = agstN+p-3)+a) sN-+p-b+ ..oovvnnn... +a,15(N-2)+ ay's (N-3)
e(N+p-2) =agstN+p-D+ .............. + ap2stMH+ ap.1s(N-1) + aps(N-2)
e(N+p-1l)=apstN—+p-B+ ............. + apostN+BH + a1 5D + aps(N-1)

Autocorrelation Method

E-1/E-2
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APPENDIXF
DERIVATION OF BURG’S ERROR RECURSION

The errors of the forward and backwerd predictors are (with app = kp)

P p-1
f = . -1) = N . —1 . -
ep(n) = s(n) + Zl a, s(n—-1i) = s(n) + Z, a, s(n—i) + kp s(n-p)
1= 1=

P
b _ — * . _ .
ep(n) = sin-p) + }_l e s(n-p +1)
1=

Substitution of ap; by Levinson’s recursion

gives

r —_ N - ‘ . -.' . -—
ep(n) = s(n) + \? (ap-l.i + kp ap-l.p—i) s{n-i) + kp s(n-p)

p-l Lt N
= 8{(n) + Z 8 i s(n~1i) + kp( z B 1p-i’ s(n-1) + s(n—p))
i=1

where

p-1
8(n) + z a,_,,; sn-i) = e:)_l(n)

i=1

F-1
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Now substituting p-i=k, n-i=n-(p-k)
and with i=1-k=p-1, i=(p-1)-»k=1

p-t 1 .
‘ ‘ap_l. ooi 8sn—i) + s(n-p)— kz lap—l.k' sih—-p+ k) + s(n-p)
1= =p_

Renaming k — i and noting that

this expression becomes

p-1
[ J
sin-p) + Zl ap_l.i - 8n—p + i)
1=

p-1
= s((n-l) - (p—-l)) + Z, ap_l,i . s((n-l)-—(p-l) + i> = e:_l(n—l)
1=

so that the forward error is recursively

foy — of O
ep(n) = ep_l(n) + kp ep_l(n 1)

The derivation of the recursion backward error is similar and resultsin

f
p-1

e(n) = &
p 4

-1 +k -¢ (@
_l p
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