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FOREWORD

A vast amount of literature exists that concerns itself with spectrum analysis.

In particular, the last two decades have seen a great increase of published theoretical

work as well as applications of so-called modern spectral estimation techniques based

on nontraditional parametric approaches. Many papers dealing with this subject

make it difficult even for the initiated to make the connection to his well known and

routinely applied methods based on the Fourier Transform when he reads about

"modeling a random process to obtain a parametric spectrum" of the observed data.

The report attempts to show the transition from the classical approach of

spectral estimation to the basic parametric methods. It also shows the results of

these new techniques when applied to short data records and demonstrates their

capabilities and limitations.

Approved by:

Deuty Department Head
Underwater Systems Department
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CHAPTER I

INTRODUCTION

Estimation of the power spectral density of a signal is a popular tool in signal

analysis for detection purposes (by enhancing the signal-to-noise ratio of an expected

signal) and classification (by showing the distribution of signal energy across the

frequency band). Although efforts to break a spectrum into its constituting parts go

back at least as far as Isaac Newton when he split white light through a prism,

Jean Baptiste Fourier (1822) established that any periodic process can be interpreted

as an infinite sum of sine and cosine terms whose frequencies are integral multiples

of the fundamental frequency of the process (harmonic spectral analysis).

It was Arthur Schuster (1897) who coined the term "periodogram" for the plot of

the squared magnitude of the Fourier coefficients to designate the spectrum. For

noisy data, however, these spectra tended to be quite random and inconsistent, and

many researchers lost interest in the periodogram. In 1930, Norbert Wiener estab-

lished the fundamental relationship between the autocorrelation function and the

spectrum as a Fourier Transform pair which then Robert Blackman and John Tukey

used as their approach to the spectrum (1958). They also introduced averaging and

windowing to eliminate the randomness and to improve the sidelobe structure of the

original spectra. This method became the most popular spectral estimation tech-

nique until Jim Cooley and John 'fukey developed in 1965 the Fast Fourier Trans-

form (FFT) algorithm which calculates Schuster's periodogram digitally in a very

efficient way. This so-called FFT is now the most widely used spectral estimation

M I -1
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technique. It may be of interest here that Karl Gauss apparently found out about the

principle of the FFT in 1805 before Fourier even had published his fundamental

paper.

Parallel to these developments, an entirely different approach was followed by

statisticians, geologists, and economists who tried to use existing test data to

generate modeled data with similar spectral characteristics. They used appropriate

filters whose parameters (parametric analysis) were determined by the method of

least-square errors. The filter is driven by a white noise source. Arthur Schuster

tried this approach as far back as 1927 in order to determine the periodicity in the

cycle of maximum sunspot numbers. This parametric approach to spectrum analysis

has become quite popular since the 1960s because of its promise of greater resolution

in transient analysis (John Burg, 1967). A multitude of different algorithms was

developed since then, based on various physical interpretations for determining the

filter parameters as well as on different mathematical techniques to compute these

parameters efficiently (fast programs).

This report attempts to show the transition from the classical approach of

spectral estimation to some basic parametric methods and their results when applied

to short data records (transients).

Besides numerous papers, two books by Steven Kay) and Lawrence Marple 2

have served the author to familiarize himself with the material and to acquire some

working knowledge for applying it. Also, the programs developed by those authors

have been used to calculate the various signal spectra. These programs have been

combined with input (signal generation) and output software (display and file

transfers) so that they can be used as a flexible interactive package (see Reference 3).

2
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CHAPTER 2

REVIEW OF CLASSICAL SPECTRUM ANALYSIS

SPECTRA OF ANALOG CONTINUOUS-TIME FUNCTIONS

The Fourier series of a deterministic periodic function x(t) of period T1  1/fl is:

tDjn2nrf I tF(n).e

n

where the Fourier coefficients F(n) are:

d(n)L= I xMt)'e .d , n=0,±1,± 2 ,....T, t=- -T 1 2

Because of the pe-iodic nature of the signal x(t), the spectrum is a line spectrum

which exists only at the discrete frequencies nfl, n = 0, ± 1, ± 2 .... In general, the

spectrum is a complex amplitude spectrum. As a special case, the spectrum becomes

real if the signal is an even function in time.

The Fourier Transform F(&) of a deterministic but aperiodic function x(t) is:

Fi(W) = ±fw x(t). e-Jt-dt , w = 2nIf.211 = -QD

The inverse transform reestablishes the original time function:

3
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xlt) M F(w) - e+ uL. dw.

Here the complex spectrum F(M) is an amplitude density spectrum; it is continuous in

IF(c.1312

is the energy density spectrum and

IF(W)12d'

the total signal energy.

If x(t) is not known exactly at all times, it is a nondeterministic (random)

function, and its Fourier Transform (FT) cannot be determined in the time domain (in

theory). Therefore, the key to the spectrum is the autocorrelation function ACF. The

Wiener-Khinchin theorem states: "The autocorrelation function of a random func-

tion and the power density spectrum of the random function form an FT pair" (see

Reference 4). The autocorrelation function can be determined from the statistical

properties of the random function, especially its first and second probability densities

p(xl), p(xl, x2; th, t2), where xj and X2 are the values ofx(t) at two positions t1 and t2.

If the process x(t) is "wide-sense stationary" in the flu-st and second moment (i.e., has

constant mean and variance), the probability density function (PDF) is a function of

the time difference T = t2-tJ. Then the ACF is r-1 V(2( or abbrcviated r(t):

4
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rit) I ID xIx2-p(X Vx2; 0dxdXV
2

The parameter x is also called the "lag" value of the ACF. The ACF defined by the

above equation is an ensemble ACF because it uses statistics obtained by observing

all possible sample functions of x(t) at time separation t. This correlation function is

a deterministic (generally aperiodic) function which therefore has a Fourier

Transform:

P(W) = rt).- e- t d t.
211 _t

P(M) is defined as the FT of the aperiodic function r(t), and is therefore the "amplitude

density spectrum" of r(T). From the definition of P(w) follows the inverse transform:

ri 0 = Plw) -es'J'. dw.

If a random process is "ergodic," the ensemble averages and the corresponding time

averages are equal. For this class of signals, the time autocorrelation function and

the ensemble autocorrelation finction are equal.

The definition of the time ACF of x(t) is given by:

it)0 lam I x(t). x(t+ Ldt
T-.• 2T -T

5
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when - = 0, the two above equations give:

10),= Iir M- LIX 2(t) dt-- P(woki w
T-,. 2T -T

If x(t) represents a voltage across or current into a 102 load, this mean square value is

the power taken by the load. Therefore, P(w) (the FT ofthe ACF of x(t)) represents

the power per hertz of frequency, or the power density spectrum of x(t). Since r(t) is

aperiodic, its Fourier Transform, i.e., the power density spectrum of x(t), is

continuous over frequency.

An equivalent definition of the power spectral density (PSD) is:

P(w) = E lim I IT x(L).e-t.dt
T-.T -T

where E means the "ensemble average" or "expectation" or plain, the average over

the terms inside the curly brackets. This definition says to take the FT of a given

"realization" xI(t) of the random function x(t) over an interval 2T as if it were an

aperiodic function, square it, and divide it by the record length. The result is a

continuous function in w and random. For any similar realization, xi(t) of x(t), one

will get a different FT and its time average squared. Doing this for a infinite number

of realizations of x(t) leads to an ensemble of random spectral functions:

i x.( tl.e-jwt.dt 
2

2T I -T..

6
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Picking a particular value for w, the corresponding values of the spectral functions

are totally random and will not converge to a stable spectral value for increasing time

intervals 2T. Therefore, the ensemble average is taken over this infinite ensemble

which will then represent a statistically stable power density spectrum as if it had

been derived via the Wiener-Khinchin procedure. The proof for the equivalence

between both definitions is not trivial and can be found in References I and 2. The

spectra derived by both methods can be considered "true spectra" compared to

"estimated spectra" which generally result from a practical application, i.e., from one

realization xn(t). In such a case, one disregards or only approximates the averaging

over an infinite ensemble and obtains the power spectral estimate

' fT2
(W) = x (t)X M. '-dt

which is a "sample spectrum" (also original Schuster periodogram). The hat ()

means "estimate." Although the mean of the sample spectrum will tend to converge

to that of the true PSD in the limit (T--), the variance will stay constant and

proportional to the mean of the sample spectrum. Figures 1 and 2 depict the

superposition of the sample spectra of five 1-Vrms white noise records of 32 and 128

data samples. They show that the size of the statistical fluctuations of the

periodogram remains constant independent of the sample size. Only in the 1950s,

when statistical smoothing (ensemble averaging) was applied, the variance was

reduced resulting in a more stable spectrum leading to the acceptance of the

periodogram approach. The periodogram is also called the direct approach to the

spectrum (i.e., directly from the data), whereas the Wiener-Khinchin, Blackman-

Tukey method via the ACF is called indirect.

7
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SPECTRA OF DISCRETE-TIME FUNCTIONS

Both the indirect and direct methods exist also if the signal x(t) is sampled at

intervals At to produce a time series of samples x(n) for the integer --W < n < .

P(w) = >) r(k.At).ejwk't) (indirecL)

where k.At corresponds to the lag parameter t for the case of a continuous-time

function x(t), and r(k - At) is the value of the ACF of x(n • At) at that lag.

"(w) = E lim I " x(n.tAL)-ejW(-aln' (direct)1M-, 2M+i M

These are discrete-time, continuous-frequency spectra that can be shown to be

periodic in 6 with period 2n/At. They are "true spectra" with infinite resolution and

an absence of side lobes and require, of course, an infinite data sequence.

If the data sequence x(n) is available only during a limited time window from

n = 0 to n = N- 1, the result will be an estimated spectrum:

N - I1

; --- t •t)" t-J•(k'Atu (indirect)
k= -(N - 1)

wher

N- I-k

F(k.Nt) = - " x(n)- x(n-+k)
N I-

n=S
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is called the biased ACF and

N-I-k

•k.At)= -- :0 x(n).x(n+k)
n=0

is called the unbiased ACF (k = 0,1,2,...,N-1).

The direct sample spectrum (estimate) is:

N-I 2

N x ln } " e -

For the indirect method, a practical maximum number of lags k is always chosen

smaller than N (suggested by various authors as 10 to 20 percent of N). The reason

for this is to avoid the greater variance of the estimated autocorrelation associated

with higher lags k. To see this, consider the maximum lag N-1 possible for N data

points for which the ACF estimate is

R{N-I) !•x(0).x(N-1)
N

which is highly variable due to the lack of averaging (the sum degenerates to one

term only), regardless of how large N becomes. On the other hand, the maximum lag

should be chosen large enough so that the ACF has decayed close to zero and the ACF

outside this lag does not contribute to the PSD.

9
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A practical way to achieve better stability for larger k is to weigh those ACF

estimates less by multiplying the correlation function, obtained from the N data

points, with a tapered window function w(k*1t), where

0 s w(k-At) s w(0) = 1 for k : kmax = M

and

w(k*At)=0 for k>M , M<N-1.

With this condition,

M
P BT(w) > Y w(k.At)-r(k.At),c e-(k't)

k= -M

T)ies is the Blackman-Tukey (BT) spectral estimate (1958). Many window functions

exist, but all are characteristic of having their maximum at k = 0 and then

symmetrically tapering off to a minimum (often zero) at the maximum chosen lag M.

The direct method became popular after the Discrete Fourier Transform (DFT)

was calculated by Cooley and Tukey via the FFT (1965). It is based on the discrete-

time. discrete-frequency, Fourier-series type approach for a periodic signal. The

signal x(n) for n = 0 to n = N-1 is stored in memory and implicitly assumed to be

repetitive with the fundamental frequency

fl

' N.At.

and the harmonics fk - k.fj so that

10
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k
W-• •k = 2n-

k nk
wn.At)- 2n-R-- •(n.At) = 2ni -

P(k) = x(n) e N
Nn=0

This approach leads to a harmonic analysis of a random signal sequence x(n), and the

spectrum is called a periodogram since it is periodic with kmax = N. This can be seen

by calculating the Fourier Transform F(k + N):

nlk+N)

F(k + N)= N x(n) -e
Nn=O

N - I _j2,nk
N1 N -j2rk

= '7- x(n).e N".:C-
N -n=0

i.e., F(k + N, = F(k), and F(N) = F(0) since eij2"m = 1. This is also equivalent to

saying that the spectrum is repetitive with the period I/At.

Smoothing the individual random sample periodograms is done by "pseudo-

ensemble averaging." The given data sequence x(O), x(1) ...... x(N. 1) is divided in P

nonoverlapping segments of D samples each so that P . D - N. An independent

sample periodogram of the Pth segment is then

I D- I-j2n--- 12

D(f k) D- ý xpl(M), -

m=x0

11
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The P independent sample spectra are then coherently added to produce a smoothed

Bartlett periodogram. Bartlett also applied a triangular window to each data

segment. Weich (1967) then went one step further and permitted data segment, to

overlap, thereby increasing the number of averaged segments. This decreases the

PSD estimate variance further, although the segments and sample spectra are not

independent any longer. He also applied a variety of better windows to his segments

before computing th? FFT. This Welch periodogram is the most widely calculated

FFT in use today.

Inherent in the concept of the discrete-time F' over a finite data sequence is the

multiplication of an infinite data sequence by a uniform (rectangular) window. 5

Figure 3 shows the development of the DFT step by step, the time domain on the left,

the frequency domain on the right side. Multiplying the data x(t) by a window w(t) in

the time domain is equivalent to a convolution of their Fourikr Transforms in the

frequency domain. Since the FT zfa rectangular window is a (sinnfT)/(nf'T) function

(Figure 3b), the two lines (positve and negative frequencies) of a narrowband signal

(Figure 3a) are convolved into two such (sinnfT)/(nfT) functions resulting in the

transform X(f)*W(f) where the symbol * 3ignifies the convolution operation (see

Figure 3c). The function (sinnfT)/(nfT) is characterized by a series of side lobes, i.e.,

energy from a single frequency "leaks" into neighboring frequencies of the spectrum.

The width of the main lobe where it crosses the frequency axis is 21T and, at the 3 dB

points down from the peak, the width is about I/T. This is the resolution of a DFT for

a uniform window, i.e., the capability to resolve two frequencies with a separation Af

= 1/T. The side lobes of a strong signal will interfere with the main lobe of a small

12
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signal if the frequency separation is Af = V/T or less. In order to suppress the side

lobes, one can use tapered windows. This, however, causes the main lobe to widen,

resulting in less resolution.

The effect of sampling in the time domain is shown in Figures 3d and 3e, where

s(t) is the sampling function with the sample pulses At apart and its line spectrum

S(f has a frequency separation of 1/At. Figure 3e shows the sampling of Figure 3c

and its transform: X(fW(f)*S(f, a spectrum function still continuous in frequency.

The step to the discrete line spectrum is done in Figure 3f, where the windowed time

function in Figure 3c is considered as one period of a repetitive signal. This forces

both the time function Xp(n) and its DFT X(fk) to be discrete. The time sample

spacing is At, the frequency line spacing is Af = 1/(N-At), the signal is periodic in the

time domain with T = N.At, and the spectrum is periodic with F V/At. Both time

signal and spectrum contain N terms per basic cycle, i.e., the DFT is simply a one-to-

one mapping of N terms of xp(n) into N terms of X(fk).

Figures 3d and 3e also demonstrate the effect of the sampling rate. The smaller

the sampling rate 1/At, the closer the signal lobes move toward each other until

neighboring lobes start to overlap. The minimum sampling rate is the Nyquist rate

of two samples of the highest frequency component in the signal band (low pass

band). Below that, aliasing will occur, i.e., the appearance of out-of-band high

frequencies as in-band low frequencies which then do not represent the true signal

anymore: the signal recovered by low pass filtering becomes a mo - and more

distorted replica of the original time function.

The main lobe structure of the spectrum calculated for the DFT with a uniform

window is shown in Figure 4. The main lobes can be considered to be a bank of

13
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bandpass filters of width 1fr at their 3 dB points. For a sine wave signal with a

frequency f, in Figure 4a, which coincides with one of the computed frequencies fk,

the DFT output would result in a response at the appropriate harmonic and zero at all

the other calculated harmonics. A so-called picket fence effect becomes evident when

the signal being analyzed lies between two calculated DFT frequencies, e.g., fb, where

signal energy appears to be generated at the two neighboring calculated frequencies

with harmonic numbers 6 and 7. If the signal is swept across the band, then the

spectral power response will follow the curve of Figure 4b showing a 3 dB ripple. The

depth of this ripple can be alleviated through zero-padding which generates an

artificial record length N' > N by adding zeroes to the actual data record. The

frequency spacing between calculated harmonics becomes Af = 1/(N'-At) with the

result that the calculated bandpass filters move closer, resulting in a spectral

response with less ripple (see Figures 5a and 5b). The width of the main lobe remains

the same since the actual data window is that of the original data record. Zero-

padding allows one to calculate the power response for any intermediate frequency by

adding the proper number of zeroes. It results in an interpolation of the original

spectrum, but does not improve the actual resolution. The spectral resolution is

equal to the reciprocal of the signal observation time or signal record length which

determines the width of the main lobe of the data window transform (width of the

bandpass filters). The longer the observation time or actual record length, the

narrower this filter becomes with an equivalent improvement in resolution.

14
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CHAPTER 3

APPLICATIONS OF CLASSICAL SPECTRUM METHODS

Some examples of classical spectrum analysis follow. They are based on a

Fourier Transf'orm of 256 points in the time and frequency domain. The number of

data points N can be chosen up to N = 256. For N < 256, a series of (256-N) zeroes is

attached to the data record, so that always 256 FT points cover the total frequency

band independent of the number of actual data points. This way a reasonably smooth

appearance of the spectrum display is assured. The sampling of the frequency axis is

done relative to the sampling frequency fr = f/fs, so that -0.5 s fr !s 0.5 where fr = 0.5

represents the maximum signal frequency possible for a chosen f, without aliasing

(Nyquist frequency). The vertical axis represents P(f), with the PSD plotted in dB

relative to 1V2/Hz (PSD = 10 logP(f)/1V 2/Hz). This is the display format of MISA

(see Reference 3).

The periodogram (regular FT) for a rectangular data window of width 2M over

N = 32 data points of a noiseless complex sine wave of amplitude e = 1V is displayed

in Figure 6. The relative frequency is chosen as fr = 0.25. The results can be

extrapolated to any desired frequency within ±0.5 fj. The data record of N = 32

points represents N-fr = 8 sine wave cycles; the number of data points per cycle is

the reciprocal value of f,. The shape of the spectrum is the result of convolving the FT

of the rectangular window WR(t), WR(f), with the FT of the nonwindowed signal s(t),

i.e., S(f), so that Sj(f) =- WR(f)*S(f), and PR(f) = ISR(012. For a sine wave signal, S(f) is

a Delta function 8(f), which effectively samples the window function W11(f) to

generate PR(f). For the continuous Fourier Transform (CFT), WR(f) is
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sinnfr
Wf(f) = CFT{w W)} = T--

where T is the window duration, and for the discrete FT it is

sinnf (2M + 1)
W R(n) = DFT{wR(n)) = At rminnf

r

where At is the sample interval At = 1/fs and (2M + 1) data points lie within the

window. The transition from the DFT to the CFT can be made by letting At -* 0,

fs -, f 4 fs so that sinnfr --* nfr, and At/nfr = 1/nf.,fr = 1/nf. Considering that

T = (2M + 1)At, sinnfr(2M + 1) -, sinnfT. CFT becomes zero the first time for fT = 1,

from which one determines the width of the main lobe as 2ff. The 3 dB bandwidth is

found as 0.89ff and the spectrum peak is 10logTIeI2 = 15 dB. The width of the side

lobes is 1f/. For the DFT the corresponding values are obtained by letting

T -# N = 2M + 1. The total number SL of side lobes reveals the length of the data

record: SL + 2 = N. The first side lobe, important for the detection of a weaker source

at a slightly different frequency, is down by 13.3 dB from the main lobe.

The effect ofthe triangular Bartlett window wB(t) = 1 -In/MI with n S M < N/2

can he seen in Figure 7. The spectral shape is given by:

CPT~w( T)_ = 
)( sin(nfT/2) 2

or

At (sinnf M 2
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so that the main lobe width 4/T is twice that of the rectangular window and the 3 dB

bandwidth is 1.28/T. The first side lobe is down by 26.5 dB. The main lobe peaks at

10 log aNjej2 with a = 0.235.

Spectra for the same sine wave record multiplied by a Hanning and Hamming

data window are plotted in Figures 8 and 9, respectively. Both windows are raised

cosine functions of the form (0.5 + a) + (0.5--a) -coslnn/Ml where a = 0 for the

Hanning window and a = 0.04 for the Hamming window. The 3 dB bandwidth is

1.44/T for the Hanning window and 1.3/T for the Hamming window. The first side

lobes are down by 31.5 dB and 43 dB, respectively. The side lobe ripple across the

band i .st constant for Hamming with a floor of 32 to 36 dB, whereas Hanning

provides a steep roll-offof 18 dB/Octave. The main lobe peaks at 10 log aNe 2 with

a = 0.235 for Hanning and a = 0.275 for Hamming.

Blackman-Tukey (BT) indirect spectra can be seen in Figure 10, based on the

unbiased correlation function (CF), and Figure 11, derived from the biased CF, for a

window size M = 32 points for N = 128 data samples. These two types of BT spectra

will be called from now on as the unbiased and biased BT spectra (uBT, bBT). A

triangular Bartlett window was chosen over the CF. As seen for the periodogram, the

window size M determines the bandwidth also for the BT spectrum. However,

whereas the window size for the periodogram is generally chosen as 2M = N as to

include the entire data record, the window size over the CF for calculating the BT

spectrum can vary within M s (N-i) since the CF has twice as many samples as

the original data record. The largest window chosen then will include all points of

the CF.

17
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A comparison of Figare 10 with Figure 6 shows that the uBT spectrum from 64

correlation values (M = 32) is identical with the periodogram having a rectangular

window over 32 data points (N = 32, M = 16). This is true for the uBT with any

N > M = 32. Therefore, the uBT spectrum has the bandwidth of 0.89/TM for a

continuous-time signal or 0.89/M for a discrete-time signal. Choosing the biased CF

results in smoothing the BT spectrum as seen in Figure 11. The side lobe fluctuations

of the bBT spectrum are calculated as 10 log N/M as can be verified also in Figure 12

for N = 32, M = 6. Three curves are overlaid in Figure 12. One is the uBT spectrum

for N = 32, M = 6; the second is the corresponding bBT spe•;rum showing the

reduced negative excursions of the PSD; and the third, in which the minimum

possible number of data points N was chosen for M = 6 which drives 10 log N/M to

zero and the bBT spectrum acts as an envelope follower for the uBT or the

periodogram. The number of side lobes SL across the frequency band is directly

related to M, SL = M-2.

In all following plots concerning the periodogram and the BT spectrum, white

Gaussian noise of variance on2 -- 1V2 was added to the sine wave signal of power

oS2 = 1V 2 , with a signal-to-noise ratio (SNR) of 10 log 022/on2 =- 0 dB. Figure 13 gives

a comparison between a periodogram with a rectangular window and one with a

Bartlett window. Due to the broader lobe structure, the Bartlett window smoothens

the periodogram resulting in lower and wider lobes. This is true also for the signal's

main lobe.

The same characteristics can be seen also for the Hanning and Hamming

window in Figures 14 and 15 when both are compared to the Bartlett window. In

particular, the Hamming and Hanning windows generate almost identical sample
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spectra for noisy signals. This is not surprising because of the similar structure of

these two cosine windows.

Figure 16 shows overlays of five periodograms for a rectangular window, where

each spectrum is based on a different data record of 64 samples to indicate the

statistical variation inherent in sample spectra and to gain some insight into the

aspects of improving the output SNR and signal detectability with spectral analysis.

The mean of the signal-plus-noise at fr = 0.25 is again determined by 10 log a Ne 2

(a = 1 for wR(t)). The mean of the spectrum noise mPSD at fr i 0.25 for the

rectangular window is the mean of the input noise power on 2 = 1V 2 , i.e., 0 dB. The

positive noise fluctuations above this mean are best described by the standard

deviation upsD. The variance is

2 0 sin2nNf 2

0PSD 
n r

The envelope of the second term within the parentheses approaches 0 for Ifrl > 0

rapidly with increasing N so that practically OPSD "-4 on2. If a threshold is set at a

level equal to mpsl) + oPsl) = 2On 2 to define the equivalent spectrum noise, then this

level would be a constant 3 dB above the mean of the spectral power, i.e., above the

mean of the white noise input power. Defining the signal-to-noise (S/N) as the ratio of

the mean signal to equivalent noise of the spectrum determines the SNR as

Ne
2

SNR = 10 log(S/N) = 10 log T02

n
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Since the SNR of the input is 10 log (elon)2 , the SNR improvement or gain through

spectral analysis using the periodogram derived for a rectangular data window would

be 10 log(N/2), which is approximately 15 dB for N = 64 in Figure 16.

Comparing similar plots of five different data records for the Bartlett, Hanning

and Hamming window with N = 64 in Figures 17, 18, and 19, it can be seen that the

noise statistics are practically identical which should be expected considering the

spectra in Figures 14 and 15. In a series of trials, it was established that fo: these

three windows the mean of the spectrum noise mPSD drops by 6 dB compared to the

rectangular window with a standard deviation of 3 dB above this mean. However,

since the mean of the signal-plus-noise peak is also about 6 dB down (a - 0.235,

0.275), the SNR and the gain remain practically the same for all four windows. This

result is not surprising either since any window acts identically on the noise as on the

signal. The major benefit of windowing with tapered functions then appears to be the

side lobe depression for signals of high SNR.

The following plots are related to Blackman-Tukey spectra for noisy sinusoidal

signals with both the signal power and the noise power equal to 1V2 . Figures 20 and

21 indicate that no significant difference exists between the uBT and the bBT

spectrum as long as the window size 2M < N. In Figure 20 the data record is

N = 128, and in Figure 21 it is N = 64; in both cases M = 32. The plots of Figure 22

compare a uBT and bBT sample spectrum for the limiting data record size N = 33 for

M = 32 from which one can conclude that generally the bBT is a smoothed

representation of the uBT spectrum for values of M/N such that 0.5 < MN < 1 with

increased smoothing as M/N -# 1. Figure 23 shows that the uBT spectrum for

N = M + 1 is identical to the periodogram for N = M. This compares directly to the

signal-only case of Figures 10 and 6.
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A high N/M ratio makes the Blackman-Tukey spectrum (biased or unbiased)

useful as a substitute for ensemble averaging of sample periodogram spectra. In

Figure 24 for N = 128, M = 32, and N/M = 4, this smoothing effect is equivalent to

avcraging four periodograms of 32 data samples; and in Figure 25 with N/M = 8, the

equivalent ensemble average of eight 32-point periodograms is obtained. From an

SNR standpoint, of course, it is better to use the data record available and perform

the FT operation over the entire data set rather than dividing it in several parts and

averaging the sample spectra. The signal gain in the first case achieves more than

the noise reduction in the second case. However, in practice, spectrum analyzers

(hardware or software) are designed for a maximum number of data samples. If the

data record available exceeds this maximum size, then averaging is done profitably.

The results in Figures 26 and 27 give an indication of the variability of uBT

sample spectra where five different data records were used. Figure 27 (N = 64),

Figure 26 (N = 128), and Figure 25 (N = 256) represent BT spectra (it does not

matter if biased or unbiased) for the same window size M = 32 with monotonically

decreasing noise empirically established as

whereas the mean of the signal remains constant as 10 log Me 2 so that

e 2 M
SNR I- 0 luog- 2 +2 N

n
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and the gain over the input SNR is

M
G = 10 log 1+2M/N

for a gain of 14 dB in Figure 25, 13.3 dB in Figure 26, and 12 dB in Figure 27.

This concludes the application of the classical approach to spectral analysis.
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CHAPTER4

THE PARAMETRIC APPROACH TO SPECTRAL ESTIMATION

Conventional FT spectral analysis is based on a Fourier series model of the

data, that is, the signal is assumed to consist of a set of harmonically related

sinusoids. The direct approach (FT of the data) leads to higher resolution than the

indirect approach (autocorrelation) bacause the correlation values of only M < N lags

are used for estimating the PSD. Data windowing, either purposely in order to

decrease the variance of . sample spectrum or unintentionally because the record

length is limited, is the fundamental factor that limits the spectral resolution.

Windowing of the data or of the estimated correlation function makes the implicit

assumption that the unobserved data or ACF values outside the window are either

repetitive or zero. A smeared spectral estimate is the consequence.

If it were possible to "predict" or model the signal outside the observation

window accurately, then the resolution could be improved. This is what the various

parametric methods attempt to do. They try to model future data samples based on

past and present data under the constraint that the predicted ACF is the most likely

estimate which can be derived from the observed data. Because of the Wiener

relationship between the ACF and the spectrum, this is equivalent to modeling the

predicted spectrum as closely as possible to the observed spectral estimate.

23



NAVSWC TR 90-236

Any spectrum can be obtained from a white noise source by filtering it with an

appropriate filter. The task is then to design this filter so that the output is a good

prediction in a least-square error sense of the data to be expected on the basis of past

data.
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CHAPTER 5

FILTERS WITH RATIONAL TRANSFER FUNCTIONS

Any linear filter with a transfer function H(z) relating the z-transform Y(z) of

the output y(n) to the z-transform X(z) of the input x(n) can be constructed from the

knowledge of its poles and zeroes 6 ,7 in the form of a rational function in polynomials

of z (see Appendix A)

'4 U

v" b. -- V. b -z'
A.- IY(z) i=o0 =o

H(z) = - =
X(z) P P

) a - z- a + a.z
0.A I

=0

Dividing numerator and denominator by a0 and renaming bi/a0 - bi and ai/a. -- ai one

gets

p q4

Y(z)+ _a . -|'.y-z) I5 b) z- .X(z)
i=O

Each ierm z . X(z) is the z-transform of the input time series x(n) deloyed by i sample

time intervals, i.e., x(n-i). Equally, z-. Y(z) and y(n-i) are the z-.ransform pair of the

output. Taking the inverse z-transform on both sides:

p q
y(n)+ •h/'a,'y(n-i)= 1hb--x(n-i)

i=1 i=O
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q p

y(n)= I bi'x(n-i- a, ay(n-i)

This is the gerral input-output relationship of a digital filter where the present

output is a linear combination of the past p outputs and the present and past q inputs.

The filter coefficients ai and bi are the parameters to be determined. The direct

realization of the above expression can be seen in Figure 28 in which the block

marked z-I signifies one sample delay.

Two special cases lead to important filter classes. In the first case, all ai - 0

(except ao = 1) in which case

q

H(z)= b-z-

i=0

q
y(n)= _bi -x(n - i

i=0

Its realization is shown in Figure 29. This is the digital equivalent of the classical

"Convolution Filter":

Y(W)• ! • h(L) - x(L - 0) d L.

with the impulse response h(W replaced by the coefficients bi.

Other names are "Finite Impulse Response" (FIR) filters, "Non-Recursive"

filters, "Tapped-Delay Line" filters, "Transversal" filters, and "Moving Average"

(MA) filters. If all bi are equal, a normal average over a (q + 1) sample sliding window
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results, otherwise a generalized weighted average. Finally, since this class of filters

has no poles, itis also known as an "All-Zero" filter. Since no feedback is invoL. d,

these filters are always stable.

II

In the second case, all bi = 0 (except bo =1).I

11(z) =
P

ao +
i=]

P

y(n) = - __ a ,y(n-i) + x(n)
i=!

Its realization is shown in Figure 30. This is called an "All-Pole" filter or an

"Autoregressive" (AR) filter. It is this type of filter which has found widespread

applications in the context of spectral estimation for short data records. It models an

output y(n) based on the present input x(n) and the past p outputs. Having defined an

AR filter and an MA filter, it follows that, in the general case of Figure 28, the filter

is an "Autoregressive-Moving Average" (ARMA) filter. Since for the AR-filters the

coefficient ao is just a gain factor, it can be set to 1, and

H1(z) =
P

if!

If one observes a random signal s(n) which one wants to substitute or model (in

a spectral sense) by an equivalent output y(n) with a modeling filter, then the input

should practically be a random process, preferably r white noise process. From such a

white noise source, any desired output spectrum P/(f) can be obtained with a proper
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filter that approaches Ohe spectrum Ps(f) of the actually observed signal s(n). From

the input-output relationship of a linear filter:

Y(z) = IM(z) X(z)

one gets the spectral relationship:

P(Oj~l~)L*P((P () = litmf[•- P (f) =I

and for a white noise input x = u and power ou2

02
11 M Uj) (I) =U

i + > a eJ 2Ifi ti

where At is the sampling interval in seconds. If the filter parameters ai and the input

noise power o2 are known, then the output power density can be determined for any

desired frequency as a continuous-frequency spectrum. The filter itself becomes an

equivalent representation of the spectrum of the observed signal. The input noise

power acts just as a scale factor.
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CHAPTER 6

YULE-WALKER EQUATIONS

References 1, 2, 8, 9, and 10 provide the mathematical background for the

following material.

In power spectral estimation the autocorrelation function plays a fundamental

role (Wiener-Khinchin), regardless ifone approaches the problem with one of the

classical or parametric methods. It follows that establishing a relation between the

filter-parameters (representing the spectrum) and the ACF will provide the solution

to determine the AR coefficients ai. The development of this relation leads to the so-

called Yule-Walker normal equations (G. Yule, 1927; G. Walker, 1931) after the two

statisticians who used them in their AR filter models to predict trends in economic

time series. They were also derived as the Wiener-Hopf equations to solve for the

optimum prediction filter.

These equations derived in Appendix B are:

P

Pr (k=O) - ka r (-i)+ o2

yy yy
i=2

292

ri(Oi i _ r (-)+
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where ryy(k) is the value of the ACF for a lag kAt of the data modeled from a white

noise source and an AR filter with coefficients al through ap. The constraint is to

devise the filter such that the ACF ryy(k) of the modeled data y(n) be equivalent to

the ACF rs8(k) of the actually observed data s(n). Therefore, one can raplace ryy(k) in

the expressions above by rss(k) subject to the availability of observed data.

The first expression sets up a system of p equations rfs(k = 1) to r~s(k =p) with p

unknowns al to ap. The second expression provides one equation with r~s(k =0) for

the only unknown ou2. In order to solve for the unknown filter coefficients and the

driving noise source, the ACF must be estimated from the available data. Once this

has been done, the (p + 1)equations can be solved, in principle, by the Gaussian

Elimination method; this requires a number of operations proportional to p3 , a rather

time consuming operation. Any analysis algorithm to be applied in real-time

requires fast numerical algorithms, and so the Durbin-Levinson Recursion method

was developed which requires only p2 operations to solve the Yule-Walker system of

equations (J. Durbin, 1960; N. Levinson, 1947).
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CHAPTER 7

LEVINSON-DURBIN RECURSION

The proof of this recursive algorithm is lengthy and can be found in Reference 1

(pp. 161-171). Therefore, only the final equations are given here which determine the

desired AR coefficients. The number p of the coefficients al through ap is called the

model order. It signifies the number of feedback terms each with its own coefficient.

The significance of the recursion of the Levinson method lies in the fact that it

evaluates the AR coefficients starting out from the lowest model order p = 2 (after

initialization of the procedure for p = 1), then working itself to the next higher model

order (p = 3) and continues doing so up to 'Se desired order. At this point, the

algorithm has not only designed the filter of the desired order, but also all filters of

lower order. This allows one to chose an AR filter whose model order appears to be

most effective for the data process on hand.

Because of this recursive feature of the algorithm the coefficients ai are given

two subscripts: p for the model order, and i as the running index from 1 through p.

For instance, api = 810,3 would be the coefficient a3 of an AR filter of model order 10.

The Levinson algorithm starts out calculating the highest coefficient (i = p)

with one formula and then proceeds to calculate the coefficients for i = 1,2 ...... ,p-1

with a second formula. A third expression determines the power of the driving noise

source, also recursively from lower to higher model orders.
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The equations are:

p-I
rss(p) + a P - rs(P-

app 2 where eisa dummy parameter
0

p-I

api = ap1 ij + *a .-lp-i i= 1,2,3,.,p-I

a* = Conjugate complex of a (in case ofwmplex data)

02 = o( -ia 12 o2

p Pp p-1

These recursions are initialized with

r (1)as 2 2)
a I --I = 0 and a1 =(I-Ia1 1I r (0).

The highest-index coefficient app plays a significant role in Burg's algorithm,

described later. This coefficient is known as "ref.',,ction coefficient" kp.

A sample calculation is given in Appendix C.
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CHAPTER 8

LINEAR PREDICTIVE FILTERING

The AR filter approach as described above models the actual signal s(n) by

filtering white noise appropriately. It is possible to give this modeling approrch a

different physical interpretation. This leads to the concept of "Linear Prediction" or

"Linear Predictive Coding" (J. Makhoul, 1975, see Reference 11). In linear

prediction, one assumes that the input (white noise source u(n) in autoregression) is

unknown and that, therefore, information about the actual signal s(n) can be gained

only from the past p outputs. A linear combination of these outputs will result in a

signal estimate s(n) which only approximates the true signal s(n):

p

;n)=- s' n -0i).
_== I

Comparing this prediction filter with Figure 30, one can see that it is equivalent to

the AR filter with the input removed. The error between the actual value s(n) and

the prediction s(n) is

P
e(n) = 9(n) -- i(n) = s~n) + ) a •sn - 0

The coefficients ai are determined by minimizing the total squared error e with

respect to each of these parameters, i.e., by setting the partial derivative
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"a ( .• e 2(n)) 0.

I nl

The derivation is given in Appendix D. The result is:

e (Xe~n) s(n).- 9n -k) + a "ýs(n -i0) s(n -k) 0

I n n n=! n

which leads by ensemble averaging to

p
r (k) =- 'a .r (k-i) 1 s k s p

i=1

and the actual minimum error power is

p

e 2 . = a1. r 6i) + r (0)
1=1

or

P y 2r("j a *r(i) +e2

These expressions are formally identical with the Yule-Walker equations developed

for the autoregressive filter with the only difference that the input noise power ou2 of

the AR filter appears as the output error power emin 2 of the predictor. The close

relationship between the AR model and the prediction filter is also apparent from the

sample error expression
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pe(n) = s(n) + ý7 a- 9(n -)

i=I

which can be written as

P

9(n) = -- a" s(n--i) + e(n).
i=1

This is the same equation used in the AR process, with e(n) - u, so that solving for

the AR coefficients ai will determine the identical parameter set of the predictor.

The interpretation of the All-Pole AR filter as an optimum predictive filter is

not just a reformulation of the same problem but leads actually to new algorithms

and results as seen later on for Burg's method and others.
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CHAPTER 9

RESOLUTION ASPECTS FOR SHORT DATA RECORDS

The motivation behind autoregressive spectral estimation or linear prediction

filtering is to eliminate the window effect associated with a limited data record that

limits the resolution of the analysis and creates distortions through side lobes. AR

spectral estimation attempts to extrect "enough" information from the limited data

record so that the autocorrelation function can be estimated beyond the lags

practically possible for the given data record. The extension of the ACF is recursive

through the first Yule-Walker equation

p

r..(k)= - a.r * (k-i)

a =I

which allows one to calculate the coefficients aj, given the values rss(k) for 0 !5 k S p.

Assuming bhort-term stationarity of the signal beyond the available data record

these coefficients can be considered constant, and extended values of r8s(k) can be

extrapolated for k > p. From an information standpoint, this modeling approach

permits a more realistic continuation of the ACF for higher lags rather than setting it

to zero or making it repetitive. In fact, Burg (1961) derived the same algorithm

through a third interpretation, based on the information concept of "maximum

entropy" (see References 10 and 12). He extends the ACF beyond lag p by adding the

least aniount of new information, therefore "maximizing the entropy" of the process.

This extension is the basis for the higher resolution of the AR-PSD estimation

compared to the classical FT-based analysis. AR modeling then is a process of
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spectrally matching the observed data to modeled data, whereby it should be

understood that the modeled time series data are generally random and are therefore

in no way matched to the observed data. An infinite number of random noise time

series data can produce the same ACF and power spectrum.
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CHAPTER 10

ESTIMATION OF THE AR COEFFICIENTS

THE AUTOCORRELATION AND COVARIANCE METHODS

The Yule-Walker equations establish the relationship between the AR fiter

coefficients and the autocorrelation function of the data. Solving them depends on

knowing the exact autocorrelation values rss(k) for a number of lags k equal to the

model order p of the AR filter. Generally, this ACF is not given, and it would require

data over an infinite time interval. Usually only a limited amount of data is

available from which one can calculate estimated correlation values and then proceed

to obtain the coefficients ai using the Levinson recursion. This is called the Yule-

Walker method. Other methods have been developed to derive the filter parameters

from the data using the least square error criteria of the prediction filter. As will be

shown, the Yule-Walker method can be thought of as a short-time correlation which

depends nut only on the lag but also on the summation range n.

If N data samples s(0),s(1) ..... ,s(N-1) of a time series are known, then (p + 1) data

samples are used to calculate one error sample according to

p

e(n) = ai * 9(n--i) witha =
if0

i=0

Appendix E shows the system of linear equations involving all errors e(n) possible for

the observed set of data. It can be seen that the available data can be used to form
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a maximum of(N + p) error samples: e(O) to e(N + p-i). However, for e(0), only one

valid data sample s(W) is available, all others are set to zero, since they are unknown.

For e(1) only the first two data samples s(1) and s(O) are non-zero, and so on. The

same is true at the end of the error sample series where the last error sample (N + p- 1)

has been calculated with oniy the last valid signal sample s(N- 1), the one before that,

e(N + p-2) with only two: s(N-1), s(N-2), etc. Therefore, the number of valid signal

samples in the calculated error sample series can be pictured as in Figure 31.

Now going back to the expression which minimizes the total squared error

' je(n)12

of a prediction filter over a given range n of data samples s(n), one has:

a. , s(n-i).s(n- k) - s(n).s(n-k) I sksp

or in matrix iotation as found throughout the literature:

r(II) r(1,2) ...... r(1,p) a, r(1,0)
r(2, ) r(2,2) ....... r(2,p) a2  r(2,O)

r(p,l) r(p,2) ....... r(p,p) ap r(p,O)

where

rKik)= >(n-i'4 n-k)
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so that

a r(i,k) = - r(k)

If n goes to infinity, the sum of the lagged products represents the ACF and the result

is the set of Yule-Walker equations. For a finite n, however, with 0 < n s (N-1), there

are four distinct summation ranges over which the total squared error can be

minimized, as can be seen from Figure 31. These four ranges are:

N-I+p N-I N-Ii-p N-I

or or or
n-0 n=O n=p n=p

Each of these four cases will lead to a different set of p equations and result in a

different set of the ai parameters, i.e., a different AR filter and its associated

spectrum. These differences will become less and less significant the larger the data

record length becomes compared to p, and all four cases approach the Yule-Walker

method of the true ACF.

The first case

(N-I+p)

is called the "windowed" method, since all s(n) outside the window 0 S n • N-1 have

been set to zero. For the same reason, the second case

41



NAVSWC TR 90-236

(N )

n=O

is called the "prewindowed," the third case

(N-i+pY )
n=p

the "postwindowed," and the fourth

(N-j)

n--p

the "nonwindowed" method. In this case, none of the data for calculating the error

samples has been zeroed out. In much of the literature the first method is a.:') called

the "autocorrelation" and the last one the "covariance" method. (This terminology

has old roots, and semantics is the reason that makes reading the literature harder

than necessary). Of the four methods, these two are found most frequently, where the

covariance method leads to better resolution spectra than the autocorrelation

method. It is intuitive that the calculation of the AR coefficients based on the largest

error series e(0) to e(N + p- 1) is not optimum because of the sloped areas of Figure 31

between 0 to p and (N-i) to (N-1 + p) that are based on nonexisting data.

THE FORWARD-BACKWARD PREDICTION METHOD

The prediction filter looked at so far is also known as a forward predictor. It

estimates future data from past data, going forward in time. A backward predictor is
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then a filter which calculates past data samples s(n-p) from the "future" p data

samples s(n-p + 1) to s(n), going back in time. Both predictors use the same data

samples, see Figure 32. The forward prediction is

p

-~n 8' -.s(n -i0
i=1

with the error

p
ef n W a f- s(n - 0

,ý_ i

Similarly for the backward prediction:

p

s(n-p -_ ab-s(n-p+i0
1=l

with the error

P
Jb(n) -_•'ab.s(n-p +i).

i=O

For a stationary process the forward and backward AR coefficients aif and aib are the

same (or the conjugate complex of each other, ai b = (air)*, if complex data are

handled), because it involves the same statistical information going forward or

backward in time. Therefore, one can combine the forward and backward errors in

order to get twice the number of error samples compared to the forward-only

nonwindowed (covariance) method of range p s n -, N-1. This leads to the so-called
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"Modified Covariance" method which is based on the minimization of the average

combined forward/backward squared error:

N-1 N-I

P= i e 0 + -I le b(n )12
n=p n=p

Minimizing this expression by differentiating it with respect to the ai and setting it to

zero yields:

p N-I N-I
`5 a, s(n -i).-s*(n -k) + s(n).-s-(n -k)I

rý- F=P n=p

p N-I N-I

a_> s*(k-~p+i)-s~n-p+k) + **ý s*(n-p)-s(n-p+k)I 0
n-p n=p

The expression in the first bracket is the contribution from the forward error which is

identical to that of the covariance method, and the expression in the second bracket

comes from the backward error. This can be written similarly as for the covariance

method:

P

a' - r.i,k) -r(k) I sk E p
-Il

where

N-I

rji,k) = s(n-i).s'(n-k) + s*(n-pD-s-)s(n-p+k))
n=p

and
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Nv-I
r(k)= (s(n).-s*(n -k) +s*(n -p) -s(n- p +k))

I' = p

THE BURG METHOD-MINIMIZING THE REFLECTION COEFFICIENTS

This method was derived by John Burg (1967) and has become a widely used

technique to determine the AR coefficients. It should not be mistaken for Burg's

maximum-entropy interpretation of AR spectral estimation, mentioned earlier. It is

strongly related to the forward-backward prediction by minimizing the combined

forward/backward squared errors. However, while those errors epf(n) and epb(n) were

calculated straight forward for a given model order p, in Burg's method they are

recursively derived from the errors ep. ,f(n) and ep. lb(n) of model order (p-i) by

requiring that the coefficients api follow the Levinson recursion

p p- ,i +kp p- I,p-i

where k,: = app is the "reflection coefficient" as mentioned earlier. In Appendix E,

the expressions for the recursive errors are derived:

ef(n) e r (n)+ k .eb (n-1)p p-I p p-I

eb (n) - b (n- 1) + k f (n)
p P- I pp-

The average combined squared error for the nonwindowed case is then
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Ep N e - (n)+k p'eb 1(n- i) + eb b (n-1)+k - P )

Sp- p- p- p-
n=p

which is only a function of kp, since the lower order prediction error powers ep If(n)

and ep.lb(n) are'known (having been calculated starting from the first order model).

Therefore,

aE dEp p
+j•=O

d(Re(k )) (J m(k ))
P P

allows one to solve for kp as the only unknown. This results in:

N-I

k= nN (Proor, References 1,2)p N - I N- I b2

Sf(n, 2+ e(n-1

n=p n=p

The initialization of the Burg method is done by

1N-1

o r 0) = Yx1n)l(
n=9

e(n) =s(n) n= 1,2,3.... (N- I)

eb(n) s(n) n 0,1,2 ...... (N-2)

Based on these initialization errors the value of kl can be calculated. In order to

determine k 2, all errors e1f(n) and eIb(n-1) for n = p,p + 1 ..... N- I must be calculated

from the recursive error expressions
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ef(n)= er (n) + k eb_ (n-1) n =p+1,p+2 ...... N-.

and

eb(n)=eb_ (n--l)+ k ef (n) n = p,p+I,....,N-2
p p-I I p I

With k2 determined, the errors can be u1 dated again to give the error series for e2f(n)

and e2b(n- 1) which are used to compute k3, and so on, until kp of the desired model

order p has been reached. After each of these cycles, the Levinson recursion is used to

find the coefficients api from the k's:

a.=a +k .a

pi p- I,'i p p- I.p-i

and the minimized error power output is

2 =(1k)2).02p -

Finally, the spectral estimate is

2
0P (0= p

p 12

1 + BIC j2nfat
i=! -

2
0

pSf) P2I- -(0~ p•• ]2

+ a~einfat + 8 2e $It + .... + a e-j2npfAt
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This completes the Burg algorithm. It should be mentioned briefly here that

the two error recursion formulae lead to a ditffrent interpretation of the prediction

error filter, the so-called lattice filter, depic-ed in Figure 33. The input signal s(nW is

the observed signal; the error signals epf(n) and epb(n) are generated as output. The

lattice filter is optimally matched to the input signal in the sense that the output

error tends to go to zero if the filter is perfectly matched to the input spectrum, i.e.,

the spectral estimate as calculated above, is equal to the input spectrum. For a signal

with slowly changing statistics, the coefficients ai can be made to change, in effect

tracking the input spectrum, such that the output is always minimized. The lattice

filter has found its use in adaptive filtering.
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CHAPTER 11

APPLICATIONS OF PARAMETRIC SPECTRUM METHODS

RESOLUTION CAPABILITY IN THE (NEARLY) NOISELESS CASE

The following is rela -ed to narrowband signals (ideally sinusoidal) in white

noise. As stated earlier, the record length T of an observed signal inherently puts a

limit on the spectral resolution, i.e., on the capability to resolve two closely spaced

frequencies. This limit of resolution is generally taken as

WIres T

For a given signal frequency f and a record length T the number C of cycles in

Tis

C = Tf

A higher frequency (f+ Af) will allow a larger number of cycles (C + AC' in the

same record T

C + AC = T(f+ 661) i.e.,ArM= AC17

This incremental frequency Af is equivalent to the limit of resolution for

AC = I cycle. This means two frequencies can be resolved if the higher frequency

signal contains at least one more cycle than the lower frequency signal in the

record T.
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Figure 34 and 35 depict the real part and the magnitude of a complex transient

sinusoid containing two components of relative frequency 0.25 and 0.3125 of equal

amplitude and with a relative phase shift of 160 degrees for a record length of

N = 16 data points. This results in four cycles at the lower and five cycles at the

higher frequency and the one-cycle difference necessary for spectrally resolving the

two components.

The periodogram is shown in Figure 36, and it indicates the importance of the

relative phase between cumponents for short duration signals. For a phase shift of

335 degrees, the two frequencies are clearly resolved, but biased compared to the true

frequencies indicated by the two dashed vertical lines. At 270 degrees, both

components start to separate, still biased, and at 160 degreesjust one spectral peak is

located at the average frequency. The periodograrn method clearly requires more

than a one-cycle difference to reliably resolve two frequencies of difference Af, or

stated differently, the record length must be larger than I/Af.

The Burg method has been chosen for calculating the parametric spectrum of

Figure 37 for the most difficult phase shift of 160 degrees, showing the superiority of

the autoregressive modelling approach.

In the following three illustrations, Figures 38, 39, and 40, the resolution

capability of three spectral techniques, the FT based, the Burg, and the Modified

Covariance method, is determined more accurately. In each case, the lower relative

frequency is 0.25. The upper one is varied in order to accommodate a desired cycle

difference AC. The two amplitudes are equal, and some noise is added to prevent

singularities (SNR = 26 dB).
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Figure 38 is a plot of the periodogram for three cases, where AC is 1.3, 1.4, and

1.5 cycles, corresponding to a frequency of 0.33125, 0.3375, and 0.34375. The most

unfavorable relative phase with respect to resolution was chosen. The PSD is plotted

on a linear rather than on the ordinary dB-scale which allows better recognition of

the two PSD peaks to develop. It can be seen that a minimum difference of 1.4 to

1.5 cycles is necessary for an FT to resolve two frequencies.

Figure 39 shows the Burg spectrum of order p - 4 for AC = 0.5 and

AC = 0.7 cycles, corresponding to f = 0.28125 and f 0.29375. An excess of

0.7 cycles will separate the two frequencies, however, with a bias depending on the

relative phase A4. It can be shown that this bias varies as a function of sin A0•.

Figure 40 is a plot of the Modified Covariance spectrum for AC = 0.3 and

AC = 0.4 cycles, corresponding to f = 0.26875 and f = 0.275. This method then

requires an excess of only 0.4 cycles to resolve two frequencies. Also, a significantly

smaller frequency bias than for the Burg method exists relative to phase over the

entire 2n-range.

RESOLUTION OF SMALL NOISY SIGNALS IN THE PRESENCE OF LARGE
SIGNALS

Under noisy conditions, the ideal resolution capability demonstrated above will

be degraded. Given are N = 16 data points of a sinusoid of relative frequency

fj = 0.25 (NI = 4 cycles) and 1-volt amplitude. A second sinusoid of the same sample

size is chosen such that its frequency f2 coincides with the frequency of the first
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sidelobe maximum of the periodogram at f = 0.34 (N 2 = 5.44 cycles). Its amplitude is

0.1 volt. White noise is added with a standard deviation of 0.1 Vrms, so that SNR(fj)

= 20 dB and SNR(f2) = 0 dB.

Figure 41 is a representation of the FT based power spectrum for five

independent data records indicating the effect of the additive noise. No clue is found

in these spectra about the presence of the second sinusoid.

Figure 42 shows the same five simulations using a Hamming window. Again it

will be quite difficult to identify and locate the second small signal component. In

Figure 43 the Burg algorithm with a model order p = 8 was applied to the same five

data records with the result that in four trials the small signal can be identified using

simple thresholding and judging the consistency of peaking in the spectrum.

A similar experiment was done selecting the frequency f2 = 0.405

(N 2 = 6.5 cycles) to coincide with the second sidelobe maximum of the large signal at

f= = 0.25. The periodogram with a rectangular window was calculated and plotted in

Figure 44; the Hamming window was applied in Figure 45. Not much information

can be gained from both sets of spectra about the presence of a second signal. The

Burg algorithm of model order p = 8, however, provides a spectrum in Figure 46 in

which both frequencies can be identified and located.

In a third experiment, the second signal was hidden in the minimum between

the main lobe and the first side lobe of the FFT-based spectrum of Figure 47 at

f2 = 0.3125 (N2 = 5 cycles). Figure 48 shows the spectrum using again the Hamming

window. The Burg spectrum (p = 8) is displayed in Figure 49 with a similar result as

for the two previous trials.
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These experiments allow the conclusion that small noisy signals are difficult to

detect across an extended part of the spectrum and particularly so close to the

mainlobe of a large signal using the conventional Fourier method. This gap is filled

by the parametric method of AR spectral analysis.

COMPARISON OF PARAMETRIC METHODS

The previous series of tests was expanded to include the other parametric

algorithms discussed in this report, the autocorrelation, the covariance, and the

Modified Covariance method, together with the Burg algorithm. The first relative

frequency is again at 0.25, 16 data points form a record of four cycles; for the second

signal 5.5 cycles were selected leading to f2 = 0.344, well within the resolution limits

of parametric spectra for any phase shift between the two components. The SNR of

the first signal is + 20 dB, that of the second is 0 dB.

Figure 50 shows what the autocorrelaticn algorithm can achieve at best. Even

at these relatively high model numbers p = 8 and 10, this method proves

unsatisfactory to represent a realistic spectrum.

The results of the covariance method are plotted in Figure 51 for p = 4, 5, 6. At

p = 4 the resolution is too small, and the spectrum peaks only at the main signal

frequency. For the next higher order model, the second component starts to show up,

and it is well established for p = 6. In either case, the second peak occurs somewhat

off the actual frequency. Also note that for p = 6 the weak component is calculated to
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have a higher spectral value than the main component, indicating that the model

order is too large. Going to still higher orders will cause the spectrum to break up

into more and more peaks unrelated to the actual signals.

The Modified Covariance method was used for Figure 52. Also for this

algorithm, model order 4 generates only the main peak; p = 5 indicates the second

sinusoid, and p = 6 produces a satisfactory spectrum. The Burg algorithm used in

Figure 53 produces similar spectra for the same model orders. These two algorithms

have been found to be equally effective for various signal and noise conditions; both

are relatively robust in the sense that they often (not always) tolerate a higher model

order without breaking up. The Modified Covariance method has an edge over Burg

with a somewhat better resolution capability, and it is also less affected by phase

variations. However, the Burg algorithm is faster. For a data record N = 64 it took

5 seconds on a PC to calculate the spectrum for p = 24, but 20 seconds for the

equivalent Modified Covariance model.

SPECTRAL PERFORMANCE AT LOW SIGNAL-TO-NOISE RATIOS

Generally the benefit of high resolution -;s derived from AR spectral analysis at

high SNR conditions. The following five sets of spectra in Figures 54 through 58 are

the result of five simulations of a 16-sample signal at f - 0.25 and of white noise

with an SNR = 0 dB. In each set, the model order is p - 6. The autocorrelation

(Figure 55), the Modified Covariance (Figure 57), and the Burg method (Figure 58)

show a detection performance comparable to the periodogram (Figurc: 54), however,
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with better resolution. The covariance method of Figure 56 yields highly unstable

spectra that are very sensitive to the individual noise record.

Going to still smaller signals with an SNR = -6 dB for the same N = 16 data

record, no useful information is obtained any longer from any spectral method,

parametric or Fourier based. Figures 59 through 63 show the results. Coherent

averaging of the five spectra of each set will improve the performance; however, this

would imply longer data records which may or may not exist. This concludes the

testing of the AR spectral estimation methods discussed in the report and their

comparative performance.
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CHAPTER 12

CONCLUSIONS

Whenever new methods are tried and added to the pool of existing signal

processing tools, it is desirable to be aware of their capabilities and limitations. What

do they allow us to do that could not be accomplished before with the tools available?

This is true also when considering the so-called "modern spectral analysis" compared

to "conventional Fourier analysis."

FFT-based spectral analysis is the most robust method for widely ranging

signal and noise conditions. Particularly for low to moderate SNR;, the periodogram

with its numerous window options can be well adapted to the given signal and noise

characteristics and will give satisfactory results. Also, it does not make any demands

on the bandwidth of the signal and performs well for broadband or narrowband

signals. The analysis of a broadband process is done best through the conventional

FFT approach. The identification of narrowband components is possible even for

transients as long as the cycle excess between corn-p'.cnts is at least a few cycles,

theoretically down to one cycle. All of this can be done in real time because of the fast

FFT algorithm.

When all is said, a few well-defined problems remain which cannot be solved

conventionally because of properties inherent to the FT when applied to time limited

data. The Fourier Transform is strictly defined for unlimited data and is therefore a

mathematical rather than an engineering concept. WhPn dealt with -. ar mathe-

matical context, there are no resolution limits or side lobe effects. However, all
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engineering applications involve data that exist only during a given observation

time, or that are intentionally truncated, i.e., the data are windowed. A time-limited

window function is transformed by the FT into an unlimited frequency space through

more or less pronounced side lobes. If somewhere in these side lobes another signal is

present smaller than the side lobe level, it cannot be detected.

The modeling approach of the autoregressive analysis is capable of solving such

a problem. By substituting the observed data by a model of the process that

generated those data, one has access to an unlimited source of equivalent data. This

model is derived from the information of the actual signal, essentially its associated

correlation function. Since no limits are imposed on the output of the model, the

spectral estimation can be done without generating side lobes. A peak in the

spectrum related to a sinusoid in the signal will decay asymptotically to zero, so that

another smaller sinusoid, even in the vicinity of the main peak, can still be detected.

The model is actually a filter which is designed such that, for each sinusoid

contained in the signal, a pole at the corresponding frequency is generated. This

gives rise to a resonance effect that is very sensitive to frequency and that generates

a strongly pointed peak in the transfer function resulting in better resolution. This

high resolution makes it possible to separate two components in frequency even if

their cycle difference is less than one cycle, the theoretical limit for conventional

analysis.

These are the two essential characteristics of parametric AR spectral analysis

that provide a new tool in signal processing and fill a true gap ex.sting in classical

analysis. They also indicate the problems associated with this approach. First, it is

strictly line oriented due to poles in the transfer function. Second, one has to make
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assumptions about the number of lines in the s.3ertrum corresponding to the rný-Ael

order, i.e., one has to have apriori information uhat is not normally available.

Several criteria exist for choosing the proper model order. No attempt has been

made in this report to deal with model order selection since this is a subject by itself.

It may suffice here to state that the existing criteria are not hard and fast; they

rather provide some guidelines. Generally, parametric spectra do not appear to be

very sensitive to model order in large SNR cases (the main working domain for AR

analysis) if one is interested primarily in frequency identiflication; resolution,

however, improves with increasing order. Needless to say that computation time

balloons for higher model order interfering with many real time applications.

Finally, it should be pointed out that a peak in the AR spectrum resulting from

a sine wave component is not proportional to the power of the sinusoid as it is for the

periodogram, rather it is proportional to the square of the power. The integrated area

under Oie peak, however, still represents correctly the power as it should be for a

power spectra I densi ty curve.
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(d) -(t)(f

(e) x(t)-w(t) (t) X (1) *W(f) * S(f)
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FIGURE 28. GENERALIZED LINEAR FILTER WITH RATIONAL TRANSFER
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FIGURE 30. AUTOREGRESSIVE FILTER
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APPENDIX A

POLE-ZERO FORMAT OF FILTER TRANSFER FUNCTION

This is to show the equivalence of the transfer function H(z) as a ratio of

polynomials in z as used in the report:

4>" b z-'
bi~

H(z) = (A - I)
p

I • a 2 .- 1

i=0

and as a ratio of products in which factors of the form (z - zi) and (z - pi) represent

zeroes and poles of the transfer function. From Equation (A-1) one gets

b + biz- - b2 z2 + b + ....... + b -q
IIlz) = 0 123q-1 a-2 -3P

ao + az + a + a 3z-3 + ... + ap

If0 <q < p, p-q = N> 0, then

b zp + bI zp-I + b2 zp- 2 +. ..... .+ b zp-q
It(z) = '

a Zp + aI zp- 1 + a zp-2 + + a

b zq + bz"q- 1 + b zq-2 + + b
- (zp -4 ) . 4

a zP 4 aZ P-i + a 2 zp- 2 + + ap

A-1
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b, b b
z q + -- zq-1 + 2 zq-2 +4 . . + q3

b b 0 bN 0 0 o 0

a P a 1  a2 aSZ + 2 p - + z p - + + -- p
a a a0 0 0

zq + B Zq- + B 2zq-2 + .. + B 4 z + BzN - 2q- q

2p-I p

where the numerator and denominator are ordinary polynomials in z. This can be

written as

Wt(k) =G N (z-z 1 ) (z-z 2 ) (z-z 3 ) ((z-Zq)

(z-pI) (z-p 2 ) (z-p 3 ) ..... (Z-pp)

q

f- (z-z)
N I =_ _=I

G P

F1 (Z - P)
j=1

where G is a gain factor and zN implies N zeroes at the origin of the z- plane.

Ifp< q, q-p =M>0, then
qI-I
[ i=I

it(z) = G - P
M P

H- (Z-P)
J=I

with M poles at the origin of the z- plane.

A-2
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APPENDIX B

DERIVATION OF THE YULE-WALKER EQUATIONS

The autoregressive (AR) filter models the present output y(n) through a linear

combination of the past p outputs y(n-i) for i = 1, 2, 3, ..... p, and the present input

x(n) where x(n) is a white noise source.

P

y(n) - Z a, y(n-i) - x(n)
i--I

Multiplying by y(n-k) gives

P

y(n) . y(n-k) - N a. y(n-i)- y (n-k) + x(n) y(n-k)

Ensemble averaging E{ .. } on both sides and interchanging the E-operator and

E-operater (ergodic process assumed) results in:

E y(n)y(n-k)1 = - * E I-y(n-i) . y(n-k)I + E Ix(n) - y(n-k)}

P

r (k) = - N -r (k-i) + r (k)
i=I

B-i
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where ryy (k) is the output autocorrelation function, and rxy (k) is the input-output

cross correlation. From the fundamental input-output relationship in the time

domain by which the input is convoluted with the impulse response

yn-k) -h(i) x(n-k-i)

one gets

r (k) = E x(n)- y(n-k) - E . x(n) h(i) x(n-k-i)

=h(i)r-EIxn xnki ) (k +i)

2r (k + i) = 0o . S(k + i)

since the autocorrelation function (ACF) of white noise x(n) is the delta function of

strength o. 2. Therefore,

r (k) = o2 h hi)-6k+iD

8 (k + i) as a function of i is equal to zero for all i except i - -k, for which

-k + L
N" 8(k + i) = I , withc- O

i = -k -c

B-2
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so that

-k + c
r (k) = o°2". h!-k). 8 8(k + 0) = (02 - hi-k)

yI I
i = -c

The value for h(-k) can be found from the basic definition of the z-transform H(z)

for h(n):

HW,)= h(n) . z-" - h(,).,-

n 0

since fora realizable, causal filter h(n<0) = 0, i.e., h(-k) = 0 for k > 0.

HW=z) = h(0). 1 + h(0).z- + h(2). z2 + ...

lim H(z) = h(O)

Also:

lrm I(z) l m = lim =
1+ " z" 1 + a, • z- 1 + a 2. z 2 +

i=l

so that

h(O) 1, r (k) = 02a for k = 0
lyI

and

h(-k) = 0, r (k) = 0 fork > 0

B-3
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and finally

p

i=1

P

ryy (k) -a r (k-i) D °2 for k 0
yy ~ yy I

This is the set of Yule-Walker equations, the first of which results in a group of p

eauations to solve for the p unknowns al, a2,....., ap given the values of the desired

ACF. The second expression for k = 0 is just one equation to solve for o.2.

Example of equation for k = 1:

r (1) = y ja 1 . ry(O)+ a 2 ry (-1 + a 3 -ryy(-2)+ .+ (l-p)j

which can also be written as

r i(I) I a . ryy(0) +t a 2 . ryy(-I) -l a 3 - ry (-2) + .. + a •r (l-p) •-0
yy 2 yy p yy

and similarly for k = 2, 3,...... p.
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The entire set of(p + 1) equations can be written in the shortform of matrices

and vectors as

ryy (0) ryy (-1) ryy (-2) ............. ryy (-p) 1 ox2

r ly(1)ryy (0) ryy(-1) ............. ryy (1-p) al 0

xa --- ,,

"ryy -I) a

ryy p) ryy(p-1) ryy(p-2) ........ ryy(1) ry(0) p

This is the form in which the Yule-Walker equations are frequently found in the

literature. One can see that the terms of the diagonals in the ryy-matrix are

identical. This indicates a so-called Toeplitz structure of the matrix which allows one

to solve such a system of equations with a method known as the Levinson-Durbin

recursive algorithm.
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APPENDIX C

EXAMPLE OF THE LEVINSON RECURSION FOR P = 4

In order to calculate the four coefficients a41, a42, a43, and a44 of the fourth order

AR filter, one starts out (after initialization which gives al I and 012) with order

p = 2:

r (2) + all* r (S )
a22 2

01

a = a2.2 • al 022 = 1 -- a 2
2 ) • 012

These are all parameters of model order 2. Now proceeding to model urder p = 3:

r ub(3) + ( a2 1 .*r (2) + a 2 ~r (

a 3 3 2--
02

a 3 1 a•2 1 + a33 a22

a 32 1-a22 + a 33 da21

- a2 2

Model order p-4 (with known parameters for p 3):
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rs.(4) + (a 31 'r (3) + a2- r, (2) + a 33 -r (1))

a44 
20}3

a 41  U 3 1 + a44 a33

a42 a a 32 + aa4 4 a32

a43 a 33 + a4 40 a 3 1

These last five parameters completely describe the desired AR filter to model the

data. The autocorrelation values rss (k) must be known.
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APPENDIX D

DERIVATION OF THE LEAST SQUARE ERROR
OF THE PREDICTION FILTER

The error e(n) between the actual signal sample s(n) and its prediction s(n) is

P

e(n) = s(n)-s(n) = s(n) + N a s(n-i)
i= ]

The totaled squared error over a given time interval of n samples is

P2

e2(n s + a.= s(ni)
n fl n I

in 22n)~ a. -s(n-i) + -a
tn) + i 2 ' (

In order to find the parameter set {ai} which minimizes this expression, one calculates

the partial derivatives with respect to all a's and sets them to zero. In order not to

confuse the derivative index and the delay index i, one chooses another index for

calculating the derivative, say k. The derivative of the first term is zero, since it is

independent of all a. The derivative of the second term can be written as

2 Y s(n)-- fa s(n-1) + a s(n-2) + + ak• s(n-k) + + a • s(n-p)
A. d 2 p

ni k

= 2 " s(n) • s(n-k) for k = l, 2, p
n
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The third term has the form z = y2(x) for which

az &z ay ay
ax dy Ox ax

The derivative of this term car then be written as

22 a•. s(n-i) a s(n-k)

n *~I k k=I

where

p .. ak s(n-k)j -- a s(n-1) + . + a-s(n-k) + - + -
kkI kk kP

s(n-k)

so that the third term is

2 > ai . s(n-i) - s(n-k) fork = 1,2,.• p
n I -1

The total derivative of the squared error is then set to zero:

p

2 - s(n). s(n-k)+ 2 'S' a s(n-i).s(n-k);- 0
n n I=1
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The ensemble average of this expression leads to the requirement for the minimum

mean square error:

E s(n) s(n-k) - - ,. El' s(n-i) -s(n-k)
n i=3 n

which is

p

r (k) = - > a .r (k-i) fork= 1 2,3,. p
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APPENDIX E

SET OF ERROR EQUATIONS FOR N DATA SAMPLES

Expanding the error equation for a prediction filter of order p

P P

e(n) = s(n) +- _ a,. s(n-i) I ais(n-i)
1=1 =i0

one gets the set of(N + p) error samples possible for an observed set of N data, s(O)

through s(N-1). All unknown data for (N-i) < n < 0 are set to zero.

e(0) = aos(O) + a 1 (-141 + a2s--) +. ....... + ap.1 -(-1p) + ap f)
e(1) = aos(l) + aIs(0) + a29-119 +. ....... + ap.1 s--9- 2p + ap -(-9Rp
e(2) = aos(2) + aIs(1) + a2s(0) +. ....... + ap-1 -8F + aps-a(*2-

I

e (p-1) = aos(p-l) + al s(p-2) + a2s(p-3 ) + ....... + ap.I s(0) + aps-(-4)

e(p) = os(p) + ais(p-1) + a2s(p-2) + ....... + ap-Is(1) + aps(0)
e(p+l) aos(p+1) + al s(p) + a2s(p-1) + ....... + ap-1 s(2) + apS(1)

Covariance Method
I I

e (N-2) = ao s(N-2) + al s(N-3) +a2 s(N-4) + ....... + ap-I s (N-1-p)+aps (N-2-p)
e (N-1) = aos(N-1)+ai s(N-2)+a2s(N-3) + ....... + ap-1 s(N-p) + aps(N-I-p)

e(N) = aosf-4 + aI s(N-1) + a 2 s(N-2) + ....... + apl s(N-p+1) + aps(N-p)
e(N+1) = ao ON-4-)++a ISfN-)+a 2 s(N-1)+ .... + ap.I s(N-p+2)+aps(N-p+1)
e(N+2) = ao ON- ,2)+al ON i 1)+a2s-Ni+ ... + ap.i s(N-p+3)+aps(N-p+2)

I I

- I
I I

e (N+p-3) = ao9N--aF&)+ ai IN--I-p-+4 ........... + ap-1 s(N-2)+ aps(N-3)
e(N+p-2) = ao9N +-p-2) +............ + ap. 2 9+N4)+ ap.Is(N-1) + aps(N-2)
e (N + p-1) = ao, y)...............+ ap 2sa*N+iH + aI &+N4 + aps(N-1)

Autocorrelation Method
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APPENDIX F

DERIVATION OF BURG'S ERROR RECURSION

The errors of the forward and backward predictors are (with app = kp)

p p-I

ef(rn) = s(n) + ap, - s(n--i) = n) + a,, sa(n--i) + kp. s(n-p)

PP
I!1

b a + ~ -eP(n) s (n-p) + Pi ~-p+i

Substitution of api by Levinson's recursion

= =a +k -
p, p-1. i p I-, p-i

gives

en) = s(n) + "ap + k P a •p s(n-i) + k • s(n-p)
i=

= s(n) + p pli. s(n-i) + kJ aplp.Pi s(n-i) + s(n-p)

where

P-1
s(n) + , ap-.i s(n-i) = ef- (n)
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Now substituting p-i = k, n-i = n-(p-k)

andwith i=l--*k=p-1, i=(p-1)-.k=1

Sap-. p-i , 0n-i) + s(n-p)-- I ap_,.k. s(n-p 4 k) + s(n-p)
iml k=p-I

Renaming k -+ i and noting that

I p-1

k=p-I k=1

this expression becomes

p-I

s(n-p) 4 ap i • s(n-p + i)
i=1

pp--

so that the forward error is recursively

e (n) = e f(n) + k •e b (n- 1)
p p- p p-I

The derivation of the recursion backward error is similar and results in

eb(n) = eb (n--) + k -e (n)
p p-I p p-I
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