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Lazy Task Creation:
A Technique for Increasing the Granularity of Parallel Programs*

Eric Mohr David A. Kranz Robert H. Halstead, Jr.
Yale University M.I.T. DEC Cambridge Research Lab

mohr@cs.yale.edu kranz@ai.mit.edu halstead@crl.dec.com

Abstract designed to handle fine-grained tasks [3, 11], while oth-
ers have looked for ways to in:rease task granularity by

Many parallel algorithms are naturally expressed at a grouping a number of potentially parallel operations

fine level of granularity, often finer than a MIMD paral- together into a single sequential thread. These latter
lel system can exploit efficiently. Most builders of par- efforts can be classified by the degree of programmer
allel systems have looked to either the pror-rmmer or a involvement required to specify parallelism, from par-

parallelizing compiler to increase the granularity of such allelizing compilers at one end of the spectrum to Ian-
algorithms. In this paper we explore a third approach guage constructs giving the programmer a fine degree
to the granular'ty problem by analyzing two strategies of control at the other.
for combining rarallel tasks dynamically at run-time. In the most attractive world, the programmer leaves
We reject the simpler load-based inlining method, where the job of identifying parallel tasks to a parallelizing
tasks are combined based on dynamic load level, in compiler. To achieve good performance, the compiler
favor of the safei and more robust lazy task creation must create tasks of sufficient size based on estimating
method, where tasks are created only retroactively as the cost of various pieces of code [8, 16, 25]. But when
processing resources become available. execution paths are highly data-dependent (as for ex-

These strategies grew out of work on Mul-T [17], ample with recursive symbolic programs), the cost of
an efficient parallel implementation of Scheme, but a piece of code is often unknown at compile time. If
could be used with other languages as well. We de- only known costs are used, the tasks produced may
scribe our Mul-T implementations of lazy task creation still be too fine-grained. And for languages that allow
for two contrasting machines, and present performance mutation of shared variables it can be quite complex to
statistics which show the method's effectiveness. Lazy determine where parallel execution is safe, and oppor--
task creation allows efficient execution of naturally ex- tunities for parallelism may be missed.
pressed algorithms of a substantially finer grain than At the other end of the spectrum a language can leave
possible with previous parallel Lisp systems. granularity decisions up to the programmer, possibly

Earlier versions of this paper appeared as [20] and providing tools for building tasks of acceptable gran-
[21]. ularity such as the propositional parameters of Qlisp

[7, 9, 10]. Such fine control can be necessary in some
Index terms: load balancing, parallel Lisp, parallel cases to maximize performance, but there are costs in
programming languages, process migration, program programmer effort and program clarity. Also, any pa-
partitioning, task management. rameters appearing in the program require experimen-

tation to calibrate; this work may have to be repeated
for a different target machine or data set. Or, when the

1 Introduction code is run in parallel with other code or on a multi-
user machine, a given parameterization may be ineffec-

There have been numerous proposals for implementa- tive because the amount of resources available for that
tions of applicative languages on parallel computers. code is unpredictable. Similar problems arise when a
All have in some way come up against a granularity parallelizing compiler is parameterized with details of
problem-when a parallel algorithm is written natu- a certain machine.
rally, the resultiig program often produces tasks of We've taken an intermediate position in our research
a finer grain than an implementation can exploit ef- on Mul-T [17], a parallel version of Scheme based on the
ficiently. Some researchers look to hardware specially future construct of Multilisp [13, 14]. The program-

*Abridged version published in IEEE Transactions on Parallel mer takes on the burden of identifying what can be corn-
and Distributed Systern, July 1991 puted safely in parallel, leaving the decision of exactly



how the division will take place to the run-time system. parallelism has been preserved to achieve good load ba,-
In Mul-T that means annotating programs with future ancing.
to identify parallelism without worrying about granu- The first dynamic strategy we consider is load-based
larity; the programmer's task is to expose parallelism inlixing. In this strategy, (future X) means, "If the
while the system's task is to limit parallelism, system is not loaded, make a separate task to evalu-

In our experience with the mostly functional style ate X; otherwise inline X, evaluating it in the current
common to Scheme programs, a program's parallelism task." A load threshold T indicates how many tasks
can often be expressed quite easily by adding a small must be queued before the system is considered to be

number of future forms (which however may yield a loaded. Whenever a call to future is encountered, a

large number of concurrent tasks at run time). The simple check of task queue length determines whether

effort involved is little more than that required for sys- or not a separate task will be created.
tems with parallelizing compilers, where the program- The simple load-based inlining strategy works well
mer must be sure to code in anch a wav that parallclism on some programs, our its severai drawbacks (see sec-
is available. tion 3) led us to consider another strategy as well: why

In order to support this programming style we not inline every task provisionally, but save enough in-

must deal with questions of efficiency. The Encore formation so that tasks can be selectively "un-inlineY'

Multimax' implementation of Mul-T (17], based on the as processing resources become available? In other

T system's Orbit compiler [18, 19], is proof that the words, create tasks lazily. With this lazy task creatlor

underlying parallel Lisp system can be made efficient strategy, (K (future X)) means "Start evaluating X

enough; we must now figure out how to achieve suf- in the current task, but save enough information so that

ficient tas- granularity. For this we look to dynamic its continuation K can be moved to a separate task if

mechanisms in the run-time system, which have the another processor becomes idle." We say that idle pro-

advantage of avoiding the parameterization problems cessors steal tasks from busy processors; task stealing

mentioned earlier. The key to our dynamic strate- becomes the primary means of spreading work in the

gies for controlling granularity is the fact that that the system.

future construct 2 has several correct operational in- The execution tree of a fine-grained program has an
terpretations. The canonical future expression overabundance of potential fork points. Our goal with

(K (future X)) lazy task creation ie to convett a small subset of these
to actual forks, maximizing run-time task granularity

declares that a child computation X may proceed in while preserving parallelism and achieving good load
parallel with its parent continuation K. In the most balancing. In the subsequent discussion, this is con-
straightforward interpretation, a child task is created trasted with eager task creation, where all fork points
to compute X while the parent task computes K. Re- result in a separate task.
versing the task roles is also possible; the parent task An example will help make these ideas more concrete.
can compute X while the child task computes K. Fi-
nally, and most importantly for fine-grained programs,
it is also usually correct for the parent task to compute 2 An Example
first X and then K, ignoring the future. This inlin-
ing of A by the parent task eliminates the overhead of
creating and scheduling a separate task and creating a

placeholder to hold its value. 3  tions to the granularity problem, consider the following
algorithm (written as a Schehae program) to sum the

mining can mean that a program's run-time granu- leaves of a binary tree:
lar- ty (the size of tasks actually executed at run time)
is significantly greater than its source granularity (the (define (sum-tree tree)
size of code within the future constructs of the source (if (leaf? tree)
program). A program will execute efficiently if its aver- (leaf-value tree)
age run-time granularity is large compared to the over- (+ (sum-tree (left tree))
head of task creation, providing of course that enough (aum-tree (right tree)))))

IMultimax is a trademark of Encore Computer Corporation. (where leaf?, leaf-value, left, and right define the
2 (future X) returns an object cafled a fsre, a placeholder tree datatype). The natural way to express paralleiism

for the eventual value of X. The placeholder is said to be sure.-
solved until X's value becomes available. Any task attempting in this algorithm is to indicate that the two recursive
to use the value of an unresolved future is suspended until the calls to sum-tree can proceed in parallel. In Mul-T we
value is available. A tosch is a use of a value V that wiU cause a might indi'ate this by adding one future:4

task to be suspended if V is an unresolved future.

quch inlining is not always correct; sometimes it can lead to "This strategy for adding future relies on + evaluating its
,, as described in Section 3.3. operands from left to right; if argument evaluation went from
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Figure 1: Direct execution of psum-tree. Figure 2: BUSD execution of peau-tree on 4 proces-

sors.

(define (psum-tree tree)
(if (leaf? tree) ated at run time, will determine whether or not a sep-

(leaf-value tree) arate task is created. (One such predicate, (qeuptyp)
(+ (Iuture (psum-tro, (left tree))) [10], tests the length of the work queue, achieving the

(psum-tree (right tree))))) same effect as our load-based inlining.) We might use

Qlisp's spawn construct (equivalent to future with an
The natural expression of parallelism in this algo- additional predicate argument) to rewrite pa.nt-tree;

rithm is rather fine-grained. With eager task creation the style of this program psum-tree-2 is very similar
this program would create 24 tasks to sum a tree of to an example in [7]:
depth d; the average number of tree nodes handled by
a task would be 2. Figure 1 shows this execution pic- (define (psun-tree-2 tree cutoff-depth)
torially; each circled subset of tree nodes is handled by (if (leaf? tree)
a single task. Unless task creation is very cheap, this (leaf-value tree)
task breakdown is likely to lead to poor performance. (+ (spawn (> cutoff-depth 0)

The ideal task breakdown is one which maximizes (peua-tree-2 (left tree)

the run-time task granularity while maintaining a bal- (- cutoff-depth 1)))
anced load. For a divide-and-conquer program like this (psua-tree-2 (right tree)
one, that means expanding the tree b~eadth-first by ( cutoff-depth 1)))))

spawning tasks until all processors are busy, and then
expanding the tree depth-first within the task on each In this example, cutoff-depth specifies a depth be-
processor. We will refer to this ideal task breakdown yond which no tasks should be created. The predi-
as BUSD (Breadth-first Until Saturation, then Depth- cate (> cutoff-depth 0) tells spawn whether or not
first). Figure 2 shows this execution pictorially for a to inline the recursive call. A cutoff-depth value of 2
system with 4 processors. would achieve BUSD execution similar to that shown

How can we achieve this ideal task breakdown? A in Figure 2 (actually its mirror image); below level 2
all futures are inlined.

parallelizing compiler might be able to increase granu-

larity by unrolling the recursion and eliminating some This solution has two problems. First, the
futures, but in this example we want fine-grained tasks code has become more complex by the addition of
at the beginning so as to spread work as quickly as poe- cutoff-depth-it is no longer completely straightfor-
sible (breadth-first). The compiler might possibly pro- ward to tell what this program is doing. Second, the
duce code to do this as well if supplied with information program is now parameterized by the cutoff-depth
about available processing resources, but making such argument, with the associated calibration issues noted
a transformation general is a difficult task and would previously.
still have the parameterization drawbacks noted earlier. Load-based Iming and lazy task creation are

What if we control task creation explicitly as in both attempts to approximate the BUSD perfor-
Qlisp? In many of Qlisp's parallel constructs the pro- mance of psun-tree-2 without sacrificing the clarity
grammer may supply a predicate which, when evalu- of peau-tree. In an ideal run of pain-tree on a

right to left, then (pum-tree (right tree)) would evaluate to four-processor system with load-based inlining, the first
completion before (future (pum-tree (left tree))) began, three occurrences of future (at nodes a, b, and c of Fig-
and no parallelism would be rcalized. ure 2) find that processors are free, and separate tasks

3



are created (breadth-first). Depending on the value of 5. Load-based iiilining is ineffective in prograris
the load threshold parameter T, a few more tasks may where fine-grained parallelism is expressed throug!h
be created before the backlog is high enough to cause iteration.
inlining. But since there is a large surplus of work,
most tasks are able to defray the cost of their creation
by lulining a substantial subtree (depth-first). 3.1 Programmer Involvement

In an ideal run of psun-trea with lazy task creation, Even though load-based inlining is an automatic mech-
the future at a (representing the subtree rooted at b) is anism it still requires programmer input. Some pro-
provisionally inlined, but its continuation (representing grams run significantly faster with eager task creation
the subtree rooted at c) is immediately stolen by an than they do with load-based iming, so the program-
idle processor. Likewise, the futures at b and c are mer must identify where load-based iling should bo
inlined, but their continuations are stolen by the two applied. For example, load balancing is crucial in a
remaining idle processors. Now all processors are busy; coarse-grained prcg7'am creating relatively few tasks-
subsequent futures are all provisionally inlined but no inlining even a few large t isK- rn hurt I,?, kAlancir.g
further stealing takes place and each processor winds by lengthening the "tail-off" period wij" r-pssors are
up executing one of the circled subtrees of Figure 2. finishing their last tasks. With lazy task creation ri, w

This execution pattern depends on an oldest-first ever, load balancing can't suffer because all inlining de-
stealing policy: when an idle processor steals a task, cisions are revocable. At worst, all lazily-inlined tas,,
the oldcst available fork point is chosen. In this exam- will have their continuations stolen. But because th-
pie the oldest fork point represents the largest available cost of stealing a task is comparable to that of creating
subtree and hence a ta~k of maximal run-time granu- an eager task5 , performance will not be significanfly
larity. worse than with eager task creation. Thus lazy task

We now consider how these idealized execution pat- creatoa can be used safely on such programs without

terns match up with real-life execution patterns for the danger of degrading performance.

these methods. With load-based inlining, the programmer must also
get involved by supplying a value for the load threshold
T. Experience has shown that choosing the right value

3 Dynamic Methods Compared for T is crucial for good performance, but is difficult
to do except by experimentation [29]. Since lazy task

Load-based mImiing has an appealing simplicity and creation requires no parameterization the programmeris freed of this burden as well.
does in fact produce good results for some programs

[17], but we have noted several factors which decrease
its effectiveness. A major factor is that inlining deci- 3.2 Irrevocability
sions are irrevocable--once the decision to inline a task
has been made there is no way to revoke the decisionhas eenmadethee isno ay o reokethe eciion The irrevocability of load-based inlining can mean that
at a later time, even if it becomes clear at that time Thecirrevocabilityiofeload-basedgmimingccanimeanithaprocessors become idle even though the continuations
that doing so would be beneficial. of many inlined tasks havc not yet begun to execute.

The following list summarizes the drawbacks of load- Such problems can be caused by bursty task creation
based inlining; the following sections discuss each in and parent-child welding. Bursty task creation refers to
turn as a basis for comparing the two dynamic strate- the fact that opportunities to create tasks may be dis-
gies, tributed unevenly across a program. At the moment

when a task is inlined, it may appear that there are
1. The programmer must decide when to apply load- plenty of other tasks available to execute, but by the

based inlining, and at what load threshold T. time these tasks finish executing thcre may be too few
opportunities to create more tasks. Consequently, pro-

2. Inlined tasks are not accessible; processors can cessors may go idle because the continuations of the
starve even though many inlined tasks are pend- inlined tasks are not available for execution. This prob-
ing. lem never arises with lazy task creation because these

3. Deadlock can result if inlining is used on some continuations are always available for stealing.

types of programs. Parent-child welding refers to the fact that inlining ef-
fectively "welds" together a parent and child task. If an

4. pn an implementatien with one task queue per inlined child becomes blocked waiting for a future to re-
processor, load-based iing creates many more solve (or for some other event), the parent is blocked as
tasks than would be created with an optimal __________

Pr'SD division. 'An exceptional case is discussed in Section 4.4.
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well and is not available for execution. With lazy task with load-based inlining is significant for problems of
creation, the information kept for each inlined child al- substantial size.
lows the child to be decoupled if it becomes blocked, The bottom line is that load-based inlining with dis-
allowing the parent to continue. tributed task queues is unable to achieve oldest-first

scheduling; many of the tasks created represent small
subtrees. For example, consider what happens when a

3.3 Deadlock transfer removes a task from the queue of a processor
P. The next time F encounters a future call, P will find

Perhaps the most serious problem with load-based in- that its queue is empty and so will create a new task
lining is that, for some programs, irrevocable inlining to evaluate the call. But the position of T in the pro-
is not a correct optimization. Irrevocable inlining can gram's call tree is really a matter of chance, determined
lead to deadlock because it imposes a specific sequen- only by the timing of the transfer operation. Since the
tial evaluation order on tasks whose data dependencies majority of potential fork points lie toward the leaves
might require a different evaluation order. A simple ex- of the tree, T is likely to represent only a small subtree.
ample appears in [171, where an inlined task waits fora seaphre hichits"weded-n" aret wil nverIt is possible that using one central queue instead ofa sem aphore w hich its "w elded-on" parent w ill never s v r l d s r b t d q e e o l e r a e t e n m e
be able to release. But deadlock is possible even with- several distributed queues would decrease the number
out explicit inter-task synchronization, as shown by the of tasks, but the contention introduced by this alter-prie-inin pogamof [21] and [20] (omitted here be- native would probably be unacceptable and would cer-
prime-finding program o nd If (oittd h re tainly not be scalable. A much better alternative is the
cause of space considerations). If the wrong tasks are oldest-first scheduling policy of lazy task creation; as
inlined a task testing the primality of a number could olde s he task creatas
deadlock trying to access divisor primes which haven't can be seen by the task counts in Section 5, lazy taskits elde-onparets.creation results in many fewer tasks than load-based
yet been computed by iinlining. Tasks created by oldest-first scheduling are

This type of deadlock is not possible with lazy task able to inline larger subtrees, giving a much better ap-
creation because of the decoupling of blocked tasks proximation to BUSD execution.
mentioned above. Any inlined task can be separated
from its parent, so programs that are deadlock-free with
eager task creation are also deadlock-free with lazy task . Fine-Grained Iteration
creation.

Not all parallel programs have busby call trees; for ex-
Selective load-based inlining (as is possible in Qlisp) ample, some programs contain data-level parallelism

could be used by a sophisticated programmer to ensure expressed by iteration over a linear data structure. Un-
that inlining is never performed where it might cause fortunately, neither load-based inlining nor lazy task
deadlock. However, this solution requires the program- creation is particularly effective in increasing the run-
mer to accurately recognize all situations where the po- time granularity of such programs, so poor performance
tential for deadlock exists, and still does not offer the can result when tasks are fine-grained.
other advantages of lazy task creation. With both methods, granularity can only be in-

creased when tasks are able to inline many other tasks.

Tasks But because the "call tree" of a fine-grained iteration
3.4 Too Many Tis long and spindly, granularity can be increased only

by grouping together adjacent iterations. The simple
The behavior of load-based inlining for programs like task stealing methods used in both load-based inlining
paus-tree has been analyzed by Weening [29, 30]. He and lazy task creation are unable to perform this type
assumes, as we do, that each processor maintains its of grouping (see [20] for further details), resulting in
own local task queue and that inlining decisions are many small tasks.
based only on the local queue's length. He shows two
ways in which the need to maintain at least one task on We have considered several alternatives for handling

the local queue leads to non-BUSD execution. First, a such programs, involving more complex dynamic meth-

lone processor P executing a subtree of height h cre- ods and/or compiler support. The best solution is not

ates h tasks instead of just one; second, removing a task clear at this point, but we will present some ideas at

from P's queue at an inopportune moment (a "trans- the end of the paper.

fer") can lead to the creation of 0(h 2 ) tasks. He derives
an upper bound of O(p2 h4 ) tasks using p processors,
and points out that this bound guarantees asymptot- 4 Implementation
ically minimal task creation overhead as the problem
size grows exponentially in h. In our experience, how- We have seen that lazy task creation has several strong
ever (see Section 5.3), the overhead of task creation advantages over load-based inlining. We now explore

5



the implementation issues to determine whether the these frames have been placed on the lazy task qu-u.
overhead of lazy task creation can be acceptably mini- Note that the oldest continuation is at the head (bot-
mized. tom) of the queue while the newest continuation is at

Both of our dynamic methods increase efficiency by the tail (top) of the queue.

ignoring selected instances of future. But lazy task At this point a lazy future call occurs, correspondin
creation requires maintaining enough information when to the code (future X), where X denotes an expres-
a future is provisionally inlined to allow another pro- sion to be evaluated. The continuation Kt to this call
cessor to steal the future's continuation cleanly. The represents all remaining computation. embodied in Fig-
cost of maintaining this information is the critical factor ure 4.1b by the frame labelled Kt and all those below
in determining the finest source granularity that can be it. As shown, a frame representing Kt has been puished
handled efficiently. The cost is incurred whether a new onto the stack and a pointer to this frame has been
task is created or not, so a large overhead would over- added to the tail of the lazy task queue.
whelm a fine-grained program. By comparison the cost
of actually stealing a task is somewhat less critical; if As a result of the lazy future call, P begins evaluating
enough inlining occurs the cost of stealing a task will X in-line. 4.1c shows what happens if P finishes exal-
be small compared to the total amount of work the task uating X before any stealing occurs-P simply returns

ultimately performs. to K, after first popping the lazy task queue (rcni. -

ing the pointer to Kt's top frame from the tail! cf the
Still, the cost of stealing a continuation must be kept queue).

in the ballpark of the cost of creating an eager future.
Stealing a continuation requires splitting an existing Now an idle consumer C decides to steal a continua-

stack, which in a conventional stack-based implemen- tion from the head of P's lazy task queue. This contin-

tation requires the copying of frames from one stack uation Kh was originally created by a lazy future call.

to another. Alternatively, we could use a linked-frame say (future Y). When P made this lazy future call it

implementation where splitting a stack requires only began evaluating Y in-line, and has not finished doing

pointer manipulations. However, care must be taken so at the time of the steal. In order to steal Kh, C must
with such an implementation to ensure that the normal change P's stack to appear as though an eager future

operations of pushing and popping a stack frame have had been created to compute Y. C does this by creat-

comparable cost with conventional stack operations. ing a placeholder and modifying P's stack so that the
eventual value of Y will resolve (i.e., supply a value for)

We have pursued both avenues of implementation: the placeholder rather than being passed directly to the
a conventional stack-based implementation for the En- continuation K%. C initializes its own stack to contain
core Multimax version of Mul-T as well as a linked- the frames of the continuation Kh and then "returns"
frame implementation for the ALEWIFE multiproces- to Kh, passing the unresolved placeholder as a value.
sor. The basic data structures and operations for lazy
task creation are common to both implementations Figure 4.1d shows the completed steal operation: it

however, and are discussed next. now looks as though an eager future had been created
originally, with one processor (the producer P) evalu-
ating the child Y and another (the consumer C) evalu-

4.1 The Lazy Task Queue ating the parent K%. Note an important feature of the
stealing operation: the consumer never interrupts the

Each task maintains a queue of stealable continuations producer.

called the lazy task queue, shown abstractly in Fig- Implementations must take care to guard against two
ure 4.1. When making a lazy future call correspond- kinds of race conditions to ensure correctness of the
ing to an instance of fu ture in the source code, a task stealing operation. First, two consumers may race to
T first pushes a pointer to the future's continuation stcal the same continuation; second, a producer trying
onto the lazy task queue. If upon return the continu- to return to a continuation may race with a consumer
ation has not been stolen by another processor, T de- trying to steal it.
queues it. We refer to T as the producer of lazy tasks;
another processor stealing them is called a consumer.
Consumers remove frames from the head of the lazy 4.2 Encore Implementation
task queue while the producer pushes and pops frames
from the tail.

We have implemented lazy task creation in the version
Figure 4.1 tells a lazy task creation story for a pro- of Mul-T running on the Encore Miltimax system, a

ducer task P. 4.la shows P's stack (growing upward), bus-based shared-memory multiprocessor. Our Mul-
which contains eight frames. Three of these frames rep- timax system has 18 processors; the National Semi-
re--wnt continuations to lazy future calls; pointers to conductor 32332 processors used have relatively few

6
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Stack Lazy Task Queue E3 (tail)
S(ail) :

(head) (head)

(a) Data structures for lazy task (b) A lazy future call causes a con-
creation. tinuation to be queued.

... ............ Producers
(tail S tack

(head)
(head) -

r--1 r-- ///

Consumees
Stack

; P= a ..... hold

(c) Returning from a lazy future (d) A continuation is stolen.
call causes a continuation to be de-
queued.

Figure 3: Lazy task queue data structures and operations.
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bs I~m The consumer then replaces frams 1 in the stack A.tti
bq-- ia continuation directing the producer to resolve a plac. -

-l~lqlaW holder. Next the consumer copies frames from frame 1
down to the bottom of the live area of the stack (ii -
dicated by base) to a new stack, updating base an..

ltq-head appropriately.

I aw € t 2 -To guard against the rac. ..unditions mentioned ear-
lazy cont2 3 lier there is a lock for the entire stack plus a lock for

each continuation on the lazy task queue. Only the .ro-
ducer modifies itq-tail, and only consumers modify
ltq-head and base.

4.2.1 Lazy Future Call and Return

frame 3 W, now present the lazy task queue operations in some-
what more detail. Figure 5 gives assembler pseudo-c,,

showing how the expression

(g (future (f x)))

frme2 would be compiled in Encore Mul-T with lazy task cre-
ation. The lazy future call and return in this example
show the crucial lazy task queue operations of enqueu-

frame ing and dequeuing a lazy continuation.

The first block (entry and call-g) shows the com-
piled code for the lazy future call to f and its ontin-
uation, containing the standard call to g. stack is a
pointer to the current stack; lazy task queue pointers
such as ltq-tail are referenced via an offset to this
pointer.

6

The code shows that 2 longwords (4 bytes each) are
Figure 4: Lazy task queue implemented in conjunction allocated in the lazy task queue area of the stack for
with a conventional stack. each lazy continuation--one for the continuation it-

self and one for a lock. After storing the continua-

general-purpose registers (8) but fairly powerful mem- tion pointer call-g and initializing the lock to 0 we
ory addressing modes. Synchronizaion betw-e! pro- increment the ltq-tail nointer, which makes the lazy
cessors is possible only by using a test-and-set instruc- continuation available for stealing. There is no need to
tion which acquires exclusive access to the bus. test explicitly for overflow of the lazy task queue; the

stack overflow check on entry simply tests the size of
In this implementation stacks are represented con- the empty region between the actual stack (growing up-

ventionally, in contiguous sections of the heap. As seen wards) and the lazy task queue (growing downwards).
in Figure 4, the lazy task queue is kept in contiguous
memory in the "top" part of a stack. As the producer Before calling f we push retu-u-froa-1f-ca.l on
pushes lazy continuations the queue grows downward the stack as the return address. This is a shared, out-
while the stack frames grow upward. Stealing contin- of-line routine that serves as the continuation to all
uations effectively shrinks the stack by removing in- lazy future calls. It is shown in the second block of
formation from both ends (the head of the lazy task code. Here we see synchronization to guard against

queue and the bottom frames of the stack). When inteference by a consumer trying to steal the same lazy
a stack overflows (t. e., when the gap between stack continuation the producer is trying to return to. The
frames and lazy task queue gets too small), it may ei- returning producer first acquires the lazy task queue
ther be repakcd to reclaim spaoe created by steal op- item lock (using the Encore's interlocked test and s't

erations or its contents may be copied to a new stack instruction), busy-waiting if the lock is currently held

of twice the original size. by a consumer. Once the lock -s acquired the return

To steal from the stack pictured, a consumer first Io- 6This is & slight simplification; in actuality, the current stack is
stored in a block of data kept locally by each processor: ltq-tsil

cates the oldest continuation by following the ltq-head is referenced using the double indirection capability of the NS
pointer, through the lazy cont 1 pointer, to frame 1. 32332 processor.
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(lambda x)
(g (future (f x))))

entry:
Standard stack overflow test (3 instructions).
push-addr call-g # push return address (a.k.a. current continuation) on stack
Move ltq-tail(stack) ,rl S get pointer to tail of lazy task queue
move up,8(rl) * store pointer to stack continuation in lazy task queue
move $0,12(ri) # initialize lazy task queue item lock
add $8,ltq-tail(stack) 0 lazy continuation officially enqueued
push-addr return-fro-lf-call S call to f will return to return-froa-lf-call
Standard call to unknown procedure f (5 instructions).

call-g:
Standard continuation code, including call to unknown procedure g (6 ir.structions).

return-from-if-call :
move ltq-tail(stack) ,rl # get pointer to lazy task queue tail
test&set 4(r) # try to lock tail item of lazy task queue
br-if-clr pop-ltq 8 if successful, go pop it
Busy-wait loop to lock tail item of lazy task queue.

pop-ltq:
sub $8,ltq-tail(stack) S lazy continuation officially dequeued
adjust-sp $-4 # remove return-from-lf-call address from stack
Standard return (2 instructions).

Figure 5: Assembler pseudo-code showing lazy future call and return in the Encore implementation.

address on top of the stack is guaranteed to be valid; created placeholder, and we update the producer's base
in this case it will be either the original value call-g and ltq-head pointers. At this point the producer's
or else resolve-placeholder if the continuation has stack is in a consistent state, so we unlock the head
been stolen. After dequeuing the tail entry of the lazy item of the lazy task queue.' Then the bottom of the
task queue we return normally. producer's stack is copied to the consumer's stack (tak-

If, as is usually the case, the continuation to a lazy ing care to use the old continuation rather than the
future call is known (i.e., unless futue appears in newly swapped-in one!) and the consumer can begin
tail-call position), the code shown in Figure 5 can be executing the stolen continuation, passing the place-
streamlined by generating the return-froe-l-cab holder as an argument. The producer (or another pro-

code in line. This optimization, which saves 4 instruc- cessor if further stealing occurs!) will eventually returncodein ine Thi opimiatio, wichsave 4 nstuc- to our swapped-in continuation, providing a value for
tions (and increases the code size slightly), has not yet the placeholder.
been implemented in the current system.

4.2.2 Steal Operation 4.2.3 Blocking

Figure 6 gives the algorithm for stealing a lazy contin- There is one remaining loose end in this discussion:
uation from another processor's lazy task queue. The what happcus to the lazy task queue when a task T
task to be stolen is chosen by a round-robin search of blocks by touching an unresolved future? It is not suf-
other processors' lazy task queues. Two locks must be ficient to save the lazy task queue as part of T's state
acquired before a continuation is stolen-the producer's because the queued lazy tasks would become inaccessi-
stack is locked to avoid races with other consumers and ble. We would then have the same potential deadlock
the continuation itself is locked to avoid a race with the problem that arises with load-based inlining.
producer trying to return to it.

Once a stealable continuation has been chosen and 'The producer's stack is not unlocked at this point because
of the possibility of stack overflow- the repacking operation dis-

the necessary locks obtained, we replace it in the pro- cussed earlier would conflict mightily with a stealer's copying
ducer's stack with a continuation to resolve the newly operation.
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potential fork point. Performance can suffer i s.
this task is more likely to have small granviiar,t. k
further blocking may result, possibly leading to tii:- , 4i,

Allocate and initialize data structures: a place- mantling of the entire lazy task queue. An irnpro e0
holder SP. aesolution which avoids these problems has been imr!,.
stack S2 . mented for ALEWIFE, and is discussed in the nc

" Look for a cntinuation to steal. section.

- Poll other processors to find one whose cur-
rent stack S, has a non-empty lazy task 4.3 ALEWIFE implementation
queue (i.e. ltq-tail > ltq-head).

- Try to lock stack Si; if it's already locked, The Encore implementation of lazy task creat-T, p,'r
skip to next processor. forms reasonably well by lowering the overhead .f u-

- Try to lock head item of Si's lazy task queue ing the future construct, but it still has several ,,tL. -

Q; if it's already locked, skip to next pro- sources of overhead. Compiler support fnr futur , an
cessor. stack checking is costly (see Section .5 1). and loit i,

operations can be costly because a global repstirr, 
" Steal the continuation. In the head item (now bus) is used.

locked) of Q is a pointer CP into the stack S2 .
CP points to a stack frame C representing a The ALEWIFE machine [l]-a cache-coherent nm
stealable continuation. The bottom of the stack chine being developed at MIT with distributed. g!ohal!.%
(the portion between CP and Si's bass pointer) shared memory-is designed to address these probleii
must be copied to the new stack S2 . Its processing elements are modified SPARC8 chip.s '21the modifications of interest here are :-st traps for strict

- Replace C in S with the continuation operations on futures and support for full/empty bits in
(rosolve-placoholder P). each memory word. If a strict arithmetic operation or

- Update base and ltq-head pointers in Si. memory reference operates on a future a trap occurs
thus, explicit checks are not needed. The full,/empty

item of Q. bits allow fine-grained locking: ALEWIFE includ-,
memory-referencing instructions that trap when the

- Copy bottom portion of S, into S2 . full/empty state of the referenced location is not as ex-

- Unlock stack S1. pected. It should be noted that this modified SPAR(C

- "Return" to top continuation in new stack is not "special purpose" hardware for Mul-T prngramn'
The modifications do not affect the cycle tini, of the
processor and would be useful for the implementation

of lazy task creation in the context of any language

Figure 6: Algorithm for steal operation in Encore im- For the ALEWIFE implementation of lazy task cre-
plementation. ation, a stack is represented as a doubly linked list of

stack frames (inspired by [221) in order to minimiz,
copying in the stealing operation. In this scheme, each

The simple solution adopted here is for T to "bite its frame has a link to the previously allocated frame and
tail." T's stack is split above the most recent lazy con- another link to the next frame to be allocated. Thus
tinuation (at the tail of the lazy task queue), and only push-frame and pop-frame operations are simply load
the top piece is blocked along with T. As with a steal instructions. An important feature of this scheme is
operation, a placeholder is created to communicate a that stack frames are not deallocated when popped. A
value between the two pieces of the split stack. The subsequent push will re-use the frame, meaning that in
executing processor P can continue using the bottom the average case the cost of stack operations associated
piece of the stack, which contains all of the continua- with procedure call and return is very close to the eost
tions on the lazy task queue. No queued continuations of such operations with conventional stacks. The "next
are inaccessible to potential consumers. P dequeues frame" link is set to empty when no next frame has beoen
the tail lazy continuation and returns to it, passing the allocated. This strategy avoids the need to check ex-
placeholder as an argument. plicitly for stack overflow when doing a push-frame op-

eration: in the (uncommon) case where no next frame
In essence, P has stolen a task from 'he tail of T's is available the push-frame operation will trap and the

lazy task queue. One problem with this solution is that trap handler will allocate a new frame
it goes against our preference for oldest-first scheduling,
since we have effectively created a task at the newest 5 SPARC is a trademark of Sun MirrosqternA. In(
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Iqnext X x In these figures we use the following register names:
lq-prev LTOTLTOU ,
tq-link

liq-fnune FP Frame pointer register. Points to the current stack
frame (not frame stub).

f-franm -- LTQT Lazy task queue tail register. Modified only by

the producer. Points to the current frame stub.
(dau)

LTQH Head of the lazy task queue. This must be in

-nex- memory so that consumers on other processors
coan can steal frames from the head of the queue. Its

full/empty bit serves as the lock limiting access to
one potential consumer at a time.

rP

Figure 7: Just before lazy future call. Each stack frame has the following slots:

next This slot points to the "next" frame, which will
tq-next IX become current if a stack-frame push operation is

Itq-prev performed. The push-frame operation is thus per-

Nq-link formed simply by loading next [FP) into FP. If the

tq-frame next frame has not yet been allocated, next (FP)
is marked as empty.

LTQT

If-frame _cont This slot points to the "continuation" frame,
which will become current if a stack-frame pop op-

(deration is performed. The pop-frame operation is
(data) [thus a load of coat [FP) into FP.

next data Some number of slots for local variable bindings
cont and temporary results.

If-frame This slot points to the associated frame stub.
FP

Figure 8: Just after lazy future call. Each frame stub has the following slots:

ltq-next This slot points to the next frame stub on
An earlier version of this paper [20] described an ini- the lazy task queue (toward the tail of the queue).

tial ALEWIFE implementation. In that version, steal- This location's full/empty bit is the lock arbitrat-
ing a lazy task involved copying the topmost stack ing between a consumer stealing a continuation
frame. The version described here avoids this copying and the producer trying to invoke that continu-
and also fixes a subtle bug in the oeiginal version. ation.

Each frame is divided into two separate data struc-
tures, referred to as the stack frame and the frame stub. otq-prwe This slot points to the previous frame stub
The stack frames form a doubly linked list as described on the lazy task queue (toward the head of the
at the beginning of this section. Each stack frame con- queue).
tains local and temporary variables as in an ordinary
stack frame; in addition, each stack frame contains a t he ytur e all code so in ipoiner o is asocate frae sub.Eac frme tubthe return address that the consumer should use if
pointer to its associated frame stub. Each frame stub it steals this frame's continuation. If the continu-
also has a pointer back to its associated stack frame. ation is stolen, the consumer reads out this return
Separating these twn structures is important in allow- address and replaces it with the placeholder object
ing a non-copying steal operation. it creates.

In this implementation the lazy task queue is
threaded through the frame stubs. Figures 7-10 show frae This slot points to the associated stack frame.
the lazy future call and stealing operations graphically.
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In this implementation, every call-whether a lazy
future call or an ordinary procedure call-is preceded LTQTO.LTOi ........

by a push-frame operation and followed by a pop-frame LTOTLTO.

operation; this contrasts with the more common ap-
proach of pushing a frame upon procedure entry and
deallocating it at procedure exit. (The details motivat- Iq-t X X

ing this choice and a discussion of its cost nay be found ItINe -.
Itq-fink

in [21).)

Figure 7 shows how the stack frames and relevant reg-
isters might look just before a lazy future call (but after f- F h
that call's push-frame operation has already occurred).
Note that each stack frame's next pointer points to the
next frame toward the top of the stack and each coat
pointer points to the next stack frame toward the bot-

tom of the stack. If a memory location's contents dre next

left blank in the figure, its contents are either unim-
portant (they will never be used) or indeterminate: for
example, the next slot of the leftmost frame in Figure p I,

7 could either be empty or point to another, currently FftFPr

unused frame. An "X" in the left-hand part of a frame
slot (see, for example, the ltq-noxt slots in Figure 7) Figure 9: After steal; new structures shaded.
indicates that the full/empty bit of the corresponding
memory word is set to "empty."

ducer's stack did in Figure 7 just before the original
The lazy task queue in Figure 7 has no frames in lazy future call (and just like the producer's stack would

it. A consumer would discover this by seeing that the have looked in the case of a normal return from the lazy

ltq-next slot of the frame stub pointed to by LTQH future call). Effectively, the consumer has "taken over"
is empty-if this task had stealable frames, this slot the continuation, created a placeholder to stand for the
would point to the first such frame. value of the called computation (which is still being

Figure 8 shows the situation just after the lazy fu- performed by the producer), and forced an early return
ture call. The frame stub associated with the current from the lazy future call, supplying the placeh hier as
stack frame (pointed to by FP) has joined the lazy task the call's returned value. (No arrow is shown ft n any
queue. Accordingly, LTQr has changed to point to that of the consumer's data structures to the plac, Ider

frame stub, and the ltq-noxt and ltq-prev links have because that value is returned in one of the consi er's
been updated as needed to maintain the doubly linked registers.)
lazy task queue. Note that the rightmost frame stub in The consumer has also made the produ -'s

Figure 8 is not logically part of the lazy task queue-it ltq-link field point to the newly created placeholG r.
is serving as a convenient header object for the doubly When the producer completes its computation and
linked queue. The middle frame is also not part of the finds that its continuation has been stolen, it looks here
lazy task queue; it is simply part of the stack. The cur- to find the placeholder that should resolve to this cor
rent frame stub's ltq-linxk field contains the address putation's value. The synchronization here is unusual
for the lazy future call's continuation, as required. in that ltq-lik is marked "empty" even though it

If no consumer steals this continuation, then this lazy contains useful data. This technique handles close races
future call will eventually return. The code for the between a returning producer and a stealing consumer.
return will restore the state of affairs depicted in Figure By inspecting ltq-next and ltq-prev pointers, a re-
7, after which the pop-frame operation associated with turning producer can discover that its continuation has

the lazy future call can be performed. been stolen before the consumer has actually stored the
and con- placeholder in the ltq-liak field. Correct operationFigure 9 shows the state of the producer isesuenydain hccnuerstnh-tqln

sumer tasks if instead a consumer steals the continua- is empty fag the c huder s itall
tionfro th tak shwn n Fgur 8. he onsmer field's "empty" flag when the placeholder is installed,tion from the task shown in Figure 8. The consumer and having the producer wait for this "empty" flag be-

task's state variables are shown with a c appended, as fore attempting to read out the placeholder

in LTQHc. The shaded areas and shaded arrows show

structures that have been created by the consumer. An A producer returning from a lazy future call dis-

alternate view of this situation is shown in Figure 10. tinguishes between the situations shown in Figures 8
Note that the consumer's stack (the part that is not and 9 by locating the frame stub F pointed to by the
blacked out in Figure 10) now looks just like the pro- ltq-prev field of the frame stub pointed to by LTQT

12



Xi

LTQTo,LTQW¢-

LTOT,.TOH I. Select a processor for inspection and load its
LTQH pointer into a register H, leaving LTQH

Itq-next X--X empty. If LTQH is found already empty, move

Itl-pry on to another processor. (This enforces mutual
Itq-iink exclusion among consumers.)

Ilt-fwm 2. Load ltq-next [H] into a register F, leaving
ltq-next CHI empty. If ltq-next CH] is found

if-frame "already empty, then this processor's lazy task

queue is empty-write H back into LTQH and
(dat) move on to another processor.

3. Store F into LTQH. This step commits the steal
next -operation and ends the exclusion of other con-

cn sumers. Other consumers can now steal other
continuations from this processor, even as this
consumer continues its steal operation.

PPo P pcchle

4. Load ltq-lizk[Fl into a register retpc. This
is the consumer's return address from the lazy

Figure 10: After steal; frames belonging to producer future call.
shown in black.

5. Create a placeholder object and save its address

and looking at the ltq-niext field of F. In Figure 9, in a register reval.

where the continuation has been stolen, this field in F 6. Store reival
is empty; in Figu-e 8, where the continuation has not into ltq-liLk [F], leaving ltq-link( FJ empty.
been stolen, it is not. If the producer is already trying to return to the

The algorithm for lazy future calls is spelled out in continuation being stolen, this step frees the pro-

more detail in the pseudo-code shown in Figure 11. The ducer to proceed and deposit its result into the

in-line code for a lazy future call starts at the label placeholder.

'-.f-call; the code at stolen is out-of-line code shared 7. Create the stack frame and the two frame stubs
by all lazy future calls. The algorithm for a consumer shown shaded in Figure 9 and link them together
to find and steal a continuation is given in Figure 12. as shown by the shaded arrows in Figure 9. These

Since the producer is not explicitly notified when a data structures are accessed only by this con-
steal operation is performed on its stack, any resources sumer and hence neither the producer nor other
the producer may continue to use after a continuation consumers need to synchronize with these oper-

is stolen may not be used by the consumer. Some com- ations.

plexity in the algorithm for stealing results from this 8. Set the FPc, LTQTc, and LTQ~c pointers properly
fact. In particular, the consumer must copy the right- and execute a return to the address retpc, giving
most frame stub in Figure 9 so it can use the ltq-next retval as the returned value.
slot in that frame stub when it performs lazy future
calls. If this frame stub were shared with the producer,
such calls by the consumer could confuse the producer. Figure 12: Algorithm for steal operation in ALEWIFE

This approach has the drawback that a push-frame implementation.
operation occurs at every procedure call (lazy or not)
instead of at the entry point of a procedure, but there
are several mitigating factors: 3. Some push-frame operations at procedure entry

turn out to be unnecessary due to conditional
branches; this approach delays them until they are1. Push-frame and pop-frame operations are inexpen- sure to be necessary.

sive (one instruction).

2. Compiler optimizations can eliminate some of We do not know the net effect of using this approach

them (e.g., pop-push sequences that cancel out can but we believe that the difference is not significant.

be detected and eliminated). Finally, we return to the issue of what to do with the
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if-cal1:

load next [FP] ,FP # Push stack frame.

load if-frame [FP .tmp * Address of new frame stub.

store Scontinue,ltq-linkltemp] * PC for consumer's return.

store LTQT,ltq-prev[temp] # Make lazy task queue backward ...

store temp,ltq-next [LTQT) # ... and forward links.

move temp,LTQT * Advance lazy task queue tail pointer.

Call the procedure.
load ltq-prv[LTQT) ,temp * Dequeue from lazy task queue tail,

empty ltq-next [temp] S trap to stolen if continuation stolen.

move temp,LTQT # Reset lazy task queue tail pointer.

continue:
load cont [FP) ,FP $ Pop stack frame.

stolen:
Wait for ltq-linkELTQT] to be empty.

load-e ltq-link[LTQ I ,tmp # Get placeholder to resolve.

Resolve the placeholder in temp to the value returned by the procedure.
Terminate the current task and find new work to do.

Figure 11: Assembler pseudo-code showing lazy future call and return in the ALEWIFE implementation.

lazy task queue when a task blocks on an unresolved that information on the stack, and the cost of copying

future. To preserve both oldest-first scheduling and is unlikely to be significant in comparison.

laziness in task creation we would like to make the lazy One exception to this argument is a program that

task queue accessible for normal stealing by consumers. builds up a lot of stack and then enters a loop that

This is accomplished by placing the entire blocked task, builds u tofst

lazy task queue and all, on the task queue of an appro-

priate processor. 9 Consumers may steal either from a

task that is actually running or from a queued blocked (define (example)

task; a processor may steal from the lazy task queue of (build-up-stack-and-then-call loop))

one of its own blocked tasks if it runs out of other use- (define (loop)

ful work. This solution addresses the problems raised (future ... )

in Section 4.2.3. (loop))

Stealing the first lazy task's continuation requires
4.4 Discussion copying the built-up stack. As argued, that cost is un-

likely to be significant compared with the cost of build-
What are the advantages and disadvantages of these ing up the stack in the first place. But in this exam-

implementations? The main disadvantage of the con- pie the stolen continuation immediately creates another
ventional stack implementation is the copying it per- lazy task, so the next steal must copy the same informa-

forms. It would appear that the amount of copying re- tion again, In fact, spreading work to n processors in

quired for a stealing operation is potentially unlimited, this example via lazy tasks requires the built-up stack
so that the cost of stealing a lazy task is also unlimited, information to be copied n times.
While this is technically true it is somewhat misleading;
the overhead of copying when stealing a continuation There are two easy solutions to this problem. First,

should be viewed against the cost of creating the con- loop can be rewritten so that future appears around

tinuation in the first place. A program with fine source the recursive call to loop, resulting in a program where

granularity does little work between lazy future calls, the built-up stack is never copied. Or, future could be

and so is not able to push enough items onto the stack inserted around the original call to loop, resulting in a

to require significant copying. A program which cre- program where the built-up stack is copied only once.

ates large continuations (requiring stealers to do lots It appears then that the effects of copying in a con-
of copying) must do a fair amount of work to push all ventional stack implementation can be minimized. But

90f course, the task is marked as blocked, so the processor it is still attractive to eliminate copying altogether
will not attempt to run it. using the linked-frame implementation described for
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ALEWIFE. Such an implementation is certainly more 4. The run-time costs of multiprocessing, e.g. task
efficient on lazy task operations. It is somewhat more creation, idle processors, contention for shared re-
difficult to gauge exactly the overhead introduced in se- sources.
quential sections of code. One ramification of re-using
stack frames is that all frames have a fixed size; choos- To ensure that measurements of our task creation
ing the correct frame size involves a trade-off. If a small strategies are meaningful we must distinguish overhead
frame size is chosen, frames needing more space will due to task creation from overhead due to these other
need to create an overflow vector, increasing costs for sources-it is important to be sure that the overhead
accessing frame elements and for memory allocation. If of task creation really is low, rather than just looking
a large frame size is chosen, most frames will contain low because it is masked by overhead in the rest of the
a lot of unused slots. This could lead to more frequent system.
garbage collection and might use up valuable space in
cache and/or virtual memory, although these latter fac- The first two categories of overhead are addressed in
tors could well be minimal in today's memory-rich sys- Section 5.1 while the last two are considered in the con-
tems. The current ALEWIFE implementation uses a text of specific benchmarks in Section 5.3. Section 5.2
frame size of 17 slots. We must accumulate more ex- deals specifically wktt tn - overhead of lazy task cre-
perience with this promising implementation technique ation.
before making a final evaluation.

5.1 Overhead in Sequential Code

5 Performance Despite its reputation for inefficiency, overhead due to
Lisp is not a major factor in the benchmarks to be

In this section we present performance figures for both presented. First, we note that code produced by T's
Mul-T implementations. Measurements of Encore Mul- Orbit compiler is comparable in quality to code pro-
T used Yale's Encore Multimax system, configured with duced by other compilers for the same hardware [19].
18 NS-32332 processors and 64 megabytes of memory. Second, we have minimized run-time overhead in our

Figures for ALEWIFE Mul-T were obtained using benchmarks by using type-specific arithmetic, avoid-

a detailed simulator of the ALEWIFE machine. Both ing run-time storage allocation, and excluding garbage-

the Mul-T run-time system and code for the bench- collection time from performance statistics. The pro-

marks are compiled to SPARC instructions that are grams were carefully written for maximum efficiency.

interpreted by the simulator. Overheads due to fu- As a direct comparison, the "best" version of tridiag

ture creation, blocking, scheduling, etc., are accurately (see Section 5.3) was coded in C (3.33 sec) as well as T

reflected in the statistics. Memory-referencing delays (3.92 sec).

were not simulated in these experiments.' 0  The second category of overhead is significant for
Encore Mul-T but insignificant for ALEWIFE Mul-T.When assessing the performance of a multiprocessor Overhead is introduced in sequential Mul-T code by

system it is important to make comparisons with the the Encore implementation becaue compiler support

"best" sequential implementation. To compare a par- ire for futuresnan mu e cks.ie com-

allel Mul-T program with, say, a sequential C program, is provided for futures and multiple stacks. The com-

four categories of overhead must be considered: piler inserts future? checks on arguments to strict op-
erations, and inserts tests for stack overflow. Although
the Encore implementation is engineered to minimize

I. The cost of using Lisp instead of a language like C, these sources of overhead [17], the cost can be non-
e.g. automatic storage reclamation, manipulation trivial. (We note however that compiler support for
of run-time tags, dynamic linking, future checking is orthogonal to support for lazy task

creation-lazy task creation also performs well in the2. The cost of using sequential Mul-T instead of T, Encore implementation when the overhead of future

e.g. run-time checks for futures and stack overflow. Enoeipmntinwhnhevreaofuuechecking is eliminated by using explicit touch opera-

3. The cost of using a parallel algorithm instead of tions instead of implicit compiler checks.)

a sequential algorithm, e.g. using recursive divide Table 1 compares running times of several sequen-
and conquer instead of an iterative loop. tial programs 1 in T3.1 with the same programs run in

10 Minimizing memory-referencing delays is crucial to good per- Mul-T on one processor. Because of future and stack
formance in a distributed-memory machine. ALEWIFE's dia- checking overhead, the Mul-T programs run between
tributed caching scheme [5) reduces the need for remote refer- 1.4 and 2.2 times as long as their T3.1 counterparts.
ences; preliminary results of current research at MIT show that
ALEWIFE Mu-T also performs well when network delays are 11Some of these programs are described in Section 5.3; the rest
simulated. are described in [171.
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Machine / Operation Number of Instructions

Time (seconds) Encore / Eager Future 118
Program MuI-T T ratio Encore / Steal 150 + 4 per word copied
abisort 12.67 6.98 1.62 ALEWIFE / Steal 100
compiler 159 98 1.62
fib 0.24 0.12 2.00 These instruction counts include all aspects of creat-
mergesort 1.82 0.99 1.84 ing and executing a task; e.g., allocating and initializ-
permute 11,600 8,500 1.36 ing placeholder, task, and stack objects, queueing and
queens 3.95 2.44 1.62 dequeuing the task, and resolving the placeholder.
speech 95.9 43.4 2.21
tridiag (best) 6.01 3.92 1.53

5.3 Benchmarks
Table 1: Comparison of Running Times for Encore
Mul-T and T3.1. We begin our discussion of actual Mul-T programs with

the synthetic benchmark grain, designed to measure
the effectiveness of the various task-creation straez -s

The ALEWIFE implementation of Mul-T does not over a range of task granularities. grain adds up a
incur these overheads, as hardware traps eliminate the perfect binary tree of l's using a parallel divide and
need for explicit checks.12 The analog of Table 1 for conquer structure very similar to psun-tree, but b-
ALEWIFE would show identical "parallel" and "se- fore returning 1 at any leaf it executes a delay loop
quential" times for these programs. of a specified length, allowing granularity control By

All measurements of Encore Mul-T in Section 5.3 timing trials using a range of granularities we can get
include the overhead of future and stack checking; this an "efficiency profile" for each task-creation strategy.inclde he oerhad o fuureThe efficiency E for a given trial is calculated using the

means that the relative granularity of tasks is somewhat formula

larger for Encore than for ALEWIFE.

5.2 Cost of Lazy Task Queue Opera- E= t-
lt par

tions
where in this case the sequential time t,,, is for a Mul-

As mentioned earlier, it is crucial to minimize the over- T program without futures and the parallel time tpar
head of lazy future calls. Below are statistics for both was measured using n = 16 processors. Efficiency of 1.0
implementations on the additional cost of a lazy future means perfect speedup. The tree depth of 16 (65,536
call over that of a conventional call, namely pushing a l's) used in these trials ensures that processor idle time
continuation onto the lazy task queue and popping it at start-up and tail-off is minimal, so close-to-perfect
off. speedup should be achievable.

Encore I12 instructions, 12.6 psec The granularity figures across the top of Table 2
ALEWIFE 9 instructions, 15 SPARC cycles tell how many NS-32332 instructions were used at the

leaves to execute the delay loop and return 1; they do
For the Encore, 4 instructions could be eliminated not include the instructions which implement the basic

by using the compiler optimization mentioned in sec- divide and conquer loop. The average source granular-
tion 5, saving roughly 3 tsec. Still, the ALEWIFE ity is actually half of the given figure because internal
sequence is probably the cheaper of the two, since the nodes of the tree (where no delay loop is executed)
RISC instructions of the SPARC processor are simpler account for half of the futures in this program. The in-
than NS-32332 instructions, struction counts would be different for ALEWIFE due

to its RISC instruction set, but because the source code
The cost of stealing a continuation from another pro- is the same the efficiency figures are roughly compara-

cessor's task queue is not as critical, since steals are ble.
relatively rare. Still, as seen below, stealing a task in
the Encore implementation has comparable cost to cre- As expected, the high cost of eager task creation
ating an eager future. Stealing a task in the ALEWIFE leads to poor efficiency at fine granularities. With load-
implementation is noticeably cheaper; the linked-frame based inlining 90-95% of the 216 tasks are eliminated,
stack implementation allows a much cleaner steal. improving efficiency substantially. Lazy task creation

"SIt is interesting to note that the presence of hardware tag makes an additional mprovement by eliminating more
checking may be more significant in machines supporting parallel than 99% of the tasks. Still, the overhead of lazy fu-
Lisp than in machines supporting sequential Lisp. ture calls is significant, hurting efficiency at the finest
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'" Leaf task granularity (number of NS-32332 iistiructions)
Machine / Strategy 6 12 24 48 96 192 384 768 1536 3072
Encore / Eager .06 .07 .09 .12 .17 .27 .44 .62 .77 .87
Encore / LBI (T = 2) .51 .52 .54 .63 .69 .80 .88 93 .96 .98
Encore / Lazy .56 .59 .62 .71 .81 .84 .92 .95 .97 .99
ALEWIFE / Lazy .74 .78 .82 .86 .91 _95 .97 98 99 ,.n

Table 2: Efficiency of the grain benchmark on 16 processors.

granularities. The lower overhead of lazy future calls to find all solutions stemming from the current config-
in ALEWIFE leads to yet higher efficiency. uration.

Table 3 shows performance statistics for several Mul- abisort (g = 119) performs an adaptive bitoric sort
T programs. For each task creation strategy, the col- [4] of n = 16, 50-t numbers. The "adaptive" algorithm
umn marked t shows the elapsed time (in seconds for has complexity O(n log n) rather than the O(n log2 n)
Encore and in millions of simulated SPARC cycles for of the standard bitonic sort algorithm. For compari-
ALEWIFE) as well as the relative speedup in parenthe- son, the "best sequential time" shown in Table 3 is for
ses. The column marked f shows the number of tasks an optimized merge sort. Adaptive bitonic sort per-
(futures) created. Statistics are given for 1, 2, 4, 8, forms about twice as many comparisons as merge sort,
and 16 processors; in addition, the row marked "seq" and has somewhat greater bookkeeping costs. How-
gives the Mul-T time on one processor when future ever, its merge operation has substantial parallelism
is ignored, and the row marked "best" gives the Mul- which allows close to linear speedup; such speedup is
T time for running the best sequential version of the not possible with straightforward implementations (on
benchmark. hardware like ours) of other divide-and-conquer sorts

such as merge sort or quicksort.
In our experience, Encore timings vary somewhat be-

tween trials even when each process acting as a virtual tridiag (g = 314) solves a tridiagonal system of
Mul-T processor is given exclusive control of an actual n = 65, 535 equations using cyclic reduction [15] and
Multimax processor. It appears that changes in pro- backsubstitution. "best" measures the standard Gaus-
gram and data locations from trial to trial substantially sian elimination algorithm, which performs fewer oper-
affect the miss ratio in the Multimax's direct-mapped, ations per equation than cyclic reduction (8 as opposed
physically-addressed cache. Each figure shown here is to 17) but is inherently sequential. The "seq" time re-
the average of several trials; code was reloaded between flects this difference, as well as some overhead due to
each trial. the use of recursion in cyclic reduction. The large value

of n simply shows our preference for non-trivial prob-
Knowing the source granularity of a benchmark (see lems; good performance was also achieved for smaller

Section 1) is important in interpreting the performance values of n.
results. To get a measure of source granularity we can
divide the sequential execution time of a benchmark t)y The performance figures show fairly consistent re-
its total number of calls to future: suits for these first three finer-grained benchmarks.

Comparing the "seq" and 1-processor rows for these

toeq programs gives an indication of the overhead of task
g = f- creation for each strategy; in queens for example, creat-ing tasks eagerly nearly triples the running time. Load-

based inlining greatly reduces this impact (to only 3%)
g estimates average task execution time, excluding because there is very little overhead when no task is

task creation overhead. For these benchmarks our En- created. Lazy task creation has somewhat higher over-

core runs at about 1 Mips, so g is roughly comparable head, though not overwhelmingly so (11%).

to the average number of NS32332 instructions per task

as well. Load-based inlining improves running times substan-
tially over the eager task creation times, but it consis-

queens (g = 113) finds all solutions to the n queens tently suffers significant task-creation overhead due to
problem, with n = 10 in this case.13 A queen is placed the mechanism discussed in Section 3.4. For these pro-
on one row of the board at a time; each time a queen is grams, LBI eliminates only 80-87% of the possible tasks
legally placed, future appears around a recursive call when 16 processors are used. Lazy task creation per-

13This version of queens is different from the ones measured in forms much better, eliminating 98-99% of the possible
[20] and [21]. tasks. Despite its higher overhead, lazy task creation
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queens
11 Encore ALEWIFE

Eager LBI (T =2) Lazy Lazy
t f t f t f f

seq 3.95 3.95 4.28 6.47
1 11-69 (1,00) 34814 4.06(l 00) 30 4.75 (1.00) 0 7.20 (1.00) 1

2 5.91 (1.98) 34814 2.09 (1.94) 528 2.38 (2.00) 11 3.6C (2.90) 11
4 3.05 (3.83) 34814 1.15 (3.53) 2135 1.20 (3.96) 45 1.84 (3.91) 104
8 1 63 (7.17) 34814 .67 (6.06) 4771 .61 (7.79) 98 .94 (7.66) 229

16 1.08 (10.82) 34814 .43 (9.44) 6826 .34 (13.97) 377 .50 (14.40) 554

abisort
Encore ALEWIFE

Eager LBI (T = 2 ) Lazy Lazy
nt f t f t f t f

best 3.67 3.67 3.56 6.03
seq 12.67 12.67 12.63 20.27

1 37.99 (1.00) 106K 15.29 (1.00) 910 i4. 15 (±.-)0) 0 23.64 (1.00) 1
2 19.29 (1.97) 106K 7.84 (1.95) 2449 7.13 (1.98) 8 11.82 (2.00) 13
4 9.85 (3.86) 106K 4.19 (3.65) 6309 3.61 (3.92) 55 5.93 (3.99) 55
8 5.17 (7.35) 106K 2.31 (6.62) 12627 1.84 (7.69) 263 3.02 (7.83) 388

16 3.36 (11.31) 106K 1.37 (11.16) 19248 1.00 (14.15) 894 1.57 (15.06) 1018

tridiag
Encore ALEWIFE

Eager LBI (T = 2) Lazy Lazy
n t f i f t f t f

best 6.01 6.01 6.02 4.78
seq 15.43 15.43 15.40 14.20

1 26.58 (1.00) 49150 16.04 (1.00) 225 17.18 (1.00) 0 15.35 (1.00) 1
2 13.56 (1.96) 49150 8.10 (1.98) 792 8.61 (2.00) 5 7.68 (2.00) 4
4 6.87 (3.87) 49150 4.18 (3.84) 2524 4.29 (4.00) 13 3.84 (4.00) 9
8 3.54 (7.51) 49150 2.17 (7.39) 4157 2.18 (7.88) 133 1.97 (7.79) 190

16 2.01 (13.22) 49150 1.16 (13.83) 6637 1.14 (15.07) 550 1.02 (15.05) 461

speech
Encore ALEWIFE

Eager LBI (T = 2) Lazy Lazy
n t I t / t I t 

seq 96.0 96.0 97.2 85.3
1 106.1 (1.00) 39856 97.7 (1.00) 6254 96.8 (1.00) 0 85.6 (1.00) 0
2 53.9 (1.97) 39856 50.8 (1.92) 13562 49.8 (1.94) 632 44.0 (1.95) 613
4 27.8 (3.82) 39856 26.6 (3.67) 19481 26.1 (3.71) 1917 23.3 (3.67) 1946
8 15.1 (7.03) 39856 14.6 (6.70) 24150 14.2 (6.81) 4414 13.0 (6.58) 4807

16 8.9 (11.95) 39856 8.7 (11.19) 29324 8.3 (11.65) :5: ,I 7.8 k&u.27) 9930

Table 3: Performance of Mul-T benchmarks (absolute times are in seconds for Encore and in millions of simulated
SPARC cycles for ALEWIFE).
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consistently has the best time on 16 processors. In ad- swered help requests, "steals" cne, and applies its proc
dition, lazy task creation shows better relative speedup to its data. When the requester finishes its other work,
than LBI, suggesting that it will scale better to larger it calls GotHelp to see whether the RequestHelp task
systems. was stolen. If not, it proceeds to do the work itself; if

speech (g = 2410) is part of a multi-stage speech so, it looks for other work to do. The performance of

understanding system under development at MIT. This WorkCrews was evaluated on several parallel Quicksort
i programs and on MultiGrep, a program that searches

stage is essentially a graph-matching problem, findiag for occurrences of a given string in a group of files [27].
the closest dictionary entry to a spoken utterance. The
program contains about 150 steps separated by barrier The principal difference between WorkCrews-style
synchronizations; each step contains 200-300 parallel lazy task creation and Mul-T's lazy futures is that in-
tasks of rather coarse average granularity. The coarse yoking lazy task creation in WorkCrews requires a sig-
granularity means that eager task creation doesn't per- nificantly larger amount of source code to be written-
form too badly, so the improvement with lazy task cre- the work performed by proc must be broken out into
ation is modest. The barrier synchronizations cause a separate proceoure, the argument block to be passed
significant idleness, hurting speedup for all strategies. as data must be explicitly allocated and filled in, and
The statistics we have gathered do not allow precise finally the RequestHelp and GotHelp procedures must
Thclsttistcs wt thae gtere of noltiroecisve- be called. Moreover, synchronization with and value re-

conclusions about the extent of multiprocessing over- trieval from the lazily created task are explicit respon-
head from sources such as cache turbulence and con- sibilities of the programmer. By contrast, in Mul-T it
tention for shared resources. However, because speedup is o te togrnser t y :utresto begin
for the finer-grained benchmarks is close to linear with is only necessary to insert the keyword future to begin
_: ask creation, we can conclude that the effect of enjoying the benefits of lazy task creation.
these other sources of overhead is fairly small for that These stylistic differences lead to some implementa-
strategy. tion differences: our lazy future implementations di-

rectly manipulate implementation objects such as stack
frames and are thus more "built in" to the implemen-

6 Related Work tation than in the case of WorkCrews. We think some
efficiency improvements result from our approach, but

Load-based inlining has been studied previously in the the systems are different enough that it is hard to make
a conclusive comparison. In any case, although the me-Mul-T parallel Lisp system [17], and is also available caiso h w ytm r ahrdfeet hr

in Qispby uing(deqe-sze)or (empyp) o snse chanics of the two systems are rather different, there
in Qlisp by using (deque-aize) or (qeuptyp) to sense

the current load [10, 29]. An analytical model of load- is a very close relationship between their underlying

based inlining for programs like psun-tree has been de- philosophies.

veloped by Weening [29, 30]. His analytical results gen- Motivated by the idea of lazy futures presented in
erally agree with empirical observations of load-based [17], Feeley has independently implemented lazy task
inltning in both Mul-T and Qlisp; however, neither the creation in a parallel version of Scheme which runs on
prior Mul-T work nor the prior Qlisp work have ex- the BBN Butterfly [12]. His implementation is roughly
plored the alternative of lazy task creation. similar to our Encore implementation, and contains

some innovative features.
Pehoushek and Weening [291 also present a strategy

which reduces task creation overhead when a queued Our philosophy of encouraging programmers to ex-
task is executed by the processor that created it. This pose parallelism while relying on the implementation
strategy takes advantage of the same phenomenon that to curb excess parallelism resembles that of data-flow
lazy task creation leverages: that when parallelism is researchers who have been concerned with throttling
abundant most tasks are executed locally. Executing [6, 23]. However, the main purpose of throttling is
such tasks with lazy task creation appears to be cheaper to reduce the memory requirements of parallel com-
than with their scheme; furthermore, their scheme only putations, not to increase granularity (which is gener-
works in programs with a fork/join style of parallelism, ally fixed at a very fine level by data-flow architectures
Lazy task creation has no such restriction, interacting [3, 11]). Throttling thus serves the same purpose as our
well with the unlimited lifetime of futures in Mul-T. preference for depth-first scheduling and i iot directly

WorkCrews [27] is a package that does perform lazy related to lazy task creation.

task creation, intended for use with a fork-join or
cobegin style of programming. It is implemented on
top of Modula-2+ (an extension of Modula-2). For 7 Conclusions and Future Work
every task that is to be created lazily, a WorkCrews
program calls Request Help(proc, data) and then pro- We are encouraged that our performance statistics sup-
ceeds with other work. A free processor looks for unan- port the theoretical benefits of lazy task creation. For
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programs with bushy call trees the programmer can benefits greatly from the ALEWIFE architecture's sui-
use future to identify parallelism, effe ., .',iy ignoring port for full/empty bits in memory that can be access-u
granularity considerations. efficiently as a side effect of a load or store instruction.

A remaining challenge are fine-grained programs Nevertheless, the linked-frame implementation still
without bushy call trees, such as those with data-level requires some memory operations for every call, and
parallelism expressed iteratively (see Section 3.5). For even a few more memory operations for every lazy fu-
example, consider a program fragment which performs ture call. For architectures whose processors have reg-
a fine-grained operation on all elements of an array us- ister windows we have contemplated another approach
ing an iterative loop, creating one task per element. with the potential of eliminating most memory opera-
This program will not execute efficiently in parallel un- tions: each register window could have an associated bit
less its granularity is increased so that tasks handle in a processor register indicating whether it is logically
several array elements instead of just one, but dynamic part of the lazy task queue, but only when a register
methods alone are unlikely to partition this program window was unloaded due to a window overflow trap
effectively because they are unable to change program would the frame actually be linked into the in-memorN
structure. If the iterative structure of the program is data structure representing the queue. This wnuld fur-
obeyed, parallelism is inherently limited. ther reduce the cost of lazy future calls. since one might

If instead of using iteration this program were re- expect a large fraction of lazy future calls to return

structured to perform a divide-and-conquer division of without their associated register window ever having

the array's index set, we know that lazy task creation been unloaded. However, some mechanism would have

would achieve the desired partition. But such a re- to be provided for querying a processor to see if it

structuring has two problems: it raises program com- contains any stealable continuations (in the event that

plexity and it lowers program efficiency. To address the none are found in memory) and for interrupting a pro-

complexity problem we envision expressing such paral- cessor to request it to unload stealable continuations

lel operations on data aggregates at a higher level, con- needed by other processors. The costs and benefits of

verting the high-level expressions to appropriate divide- this idea are not currently known.

and-conquer divisions at compile time. Ideas for how to The larger quest in which we have been engaged is
express such high-level operations appear in the work to provide the expressive power and elegance of future
of Waters [28], Steele and Hillis [26], and Sabot [24]. at the lowest possible cost. Complete success in this

The efficiency problem arises because the execution endeavor would make it unnecessary for programmers
overhead of a divide-and-conquer division is large com- ever to shun future in favor of lower-level, but more
pared to the low overhead of an iterative loop. This efficient, constructs. Success would also encourage pro-
overhead can be reduced substantially by smart com- grammers to express the parallelism in programs at all
pilation, but it will still be significant if the inner loop levels of granularity, rather tG.an forcing them tc, 1,,r d-
code is fine-grained. We observe though that a fine- tune the granularity (at the source-code level) for the
grained inner loop is very likely to contain straight-line best performance. Lazy task creation moves us closer
code rather than additional loops or calls to unknown to this ideal, producing very acceptable performance
procedures, so estimating its cost should be straightfor- and greatly reducing the number of tasks created for
ward. Knowing the inner loop cost allows the compiler all of the benchmark programs in Section 5. And while
to unroll enough iterations to balance out the overhead the ideal may never be achieved completely, every step
of a divide-and-conquer division, in the direction of making future cheaper increases the

number of situations in which the cost of future is noThere is also the important issue of scalability. In bar to its use.

both the Encore machine and the ALEWIFE simula-

tor (with memory delays turned off), all memory refer-
ences are of approximately equal cost, an unreasonable
assumption for a large-scale multiprocessor. We are 8 Acknowledgments
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