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APRIL: A Processor Architecture for Multiprocessing

Anant Agarwal, Bcng-Iong Lirn, David IKranz, and John Kubiatowicz
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract Parallel applications impose processing and commu-
nication bandwidth demands on the parallel machine.

Processors in large-scale multiprocessors must be able An efficient and cost-effective machine design achieves a
to tolerate large communication latencies and synchro- balance between the processing power and the commu-
nization delays. This paper describes tue architecture nication bandwidth provided. An imbalance is created
of a rapid-context-switching processor called APRIL when an underutilized processor cannot fully exploit the
with support for fine-grain threads and synchroniza- available network bandwidth. When the network has
tion. APRIL achieves high single-thread performance bandwidth to spare, low processor utilization can re-
and supports virtual dynamic threads. A commercial suit from high network latency, An efficient processor
RISC-based implementation of APRIL and a run-time design for multiprocessors provides a means for hiding
software system that can switch contexts in about 10 latency. When sufficient parallelism exists, a processor
cycles is described. Measurements taken for several par- that rapidly switches to an alternate thread of computa-
allel applications on an APRIL simulator show that the tion during a remote memory request can achieve high
overhead for supporting parallel tasks based on fttures utilization.
is reduced by a factor of two over a corresponding im- Processor utilization also diminishes due to synchro-
plementation on the Encore Multimax. The scalability nization latency. Spin lock accesses have a low over-
of a multiprocessor based on APRIL is explored using head of memory requests, but busy-waiting on a syn-
a performance model. We show that the SPARC-based chronization event wastes processor cycles. Synchro-
implementation of APRIL can achieve close to 80% pro- nization mecha,,kss th* avoid busy **' ting through
cessor utilization with as few as three resident threads process blocking incur a high overhead.
per processor in a large-scale cache-based machine with Full/empty bit synchronization [22] in a rapid context
an average base network latency of 55 cycles, switching processor allows efficient fine-grain synchro-

nization. This scheme associates synchronization infor-

1 Introduction mation with objects at the granularity of a data word,
allowing a low-overhead expression of maximum con-

The requirements placed on a processor in a large-scale currency. Because the processor can rapidly switch to

multiprocessing environment are different from those in other threads, wasteful iterations in spin-wait loops are
interleaved with useful work from other threads. This

a uniprocessing setting. A processor in a parallel ma-

chine must be able to tolerate high memory latencies reduces the negative effects of synchronization on pro-

and handle process synchronization efficiently [2]. This cessor utilization.

need increases as more processors are added tu the sys- This paper describes the architecture of APRIL

tem. a processor designed for large-scale multiprocessing.
APRIL builds on previous research on processors for

To _ppea- :.; the 17th annual parallel architectures such as IIEP [22], MASA [8], P-
Symposium on Computer Architecture, RISC [19], [14], [15], and [18). Most of these processors

June, 1990. support fine-grain interleamng of instruction streams
from multiple threads, but suffer from poor single-
thread performance. In the IIEP, for example, instruc-
tions fromi a single thread can only be executed once
every 8 cycles. Single-thread performance is important
for efficieitly running sections of applications with low



parallelism.
APIII does not support cycle-by-cycle interleaving

of threads. To optimize single-thread perforimaice, AEFMCN

APIRL executes instructions fromi a given thread until / ALEWIFE MACHINE

it performs a remote memory request or fails ill a syn- ................

chronization attempt. We show that. such coarse-.rain CACHE

mnrillzih reading allows a simple processor design with NACLE

context switch overheads of 4-10 cycles, without sig-
nificantly hurting overall system performance (although MAIN

the pipeline design is complicated by the need to handle
pipeline dependencies). In APRIL, thread ;cheduling is ALE-FE NODE

(lone in software, and unlimited virtual dynamic threads
are supported. APRIL supports full/empty bit synchro-
nization, and provides tag support for futures [9]. In this Figure 1: ALFWIFE node.
paper the terms process, thread, coiitext, and task are
used equivalently.

By taking a systems-level design approach that con- a directory-based protocol [5] over a low-dimension li-
siders not only the processor, but also the compiler and rect network [20). The directory is distributed with th,

run-time system, we were able to migrate several non- processing nodes.
critical operations into the software system, greatly sini-
plifying processor design. APRIL's simplicity allows an 2.1 Hardware
implementation based on minor modifications to an ex-
isting RISC processor design. We describe such an in: A. shown in Figure i, each ALEWIFE node consists of
pletientation based on Sun Microsystem's SPARC pro- a processing element, floating-point unit, cache, main
cessor [23]. A compiler for APRIL, a run-time system, memory, cache/directory controller and a network rout-
and an APRIL simulator are operational. We present ing switch. Multiple nodes are connected via a direct.
simulation results for several parallel applications on packet-switched network.
APRIL's efficiency in handling fine-grain threads and The controller synthesizes a global shared meriorv
assess the scalability of multiprocessors based on a space via messages to other nodes, and satisfies requests
coarse-grain multithreaded processor using an analyt- from other nodes directed to its local memory. It niain-
ical model. Our SPARC-based processor supports four tains strong cache coherence [7] for memory accesses.
hardware contexts and can switch contexts in about 10 Oi exception conditions, such as cache niisses and failed
cyc!es, which yields roughly 80% processor utilization synchronization attempts, the controller c,,ll choose to
in a system with an average base network latency of 55 trap tile processor or t.o make the processor wait. A

cycles. multithreaded processor reduces tile ill effects of the
The rest. of this paper is organized as follows. Sec- long-latency acknowledgment messages resulting from

tion 2 is an overview of our multiprocessor system archi- a strong cache coherence protocol. To allow experiniel-
tecture and tie programming model. The architecture tatioi with other programming models, the controller
of AP1R IL is discussed ii Section 3, and its instruction provides special niechanisnis for bypassing tle coher-
set. is described in Section '1. A SPARC-based imple- ence protocol and facilities for preemptiv interproces-

rmentat ion of AI'l]L is detailed in Section 5. Section 6 sor interrupts and block transfers.
(iscusses lhe implementation and performance of the The ALEWIFE system rses a low-dimension direct.
A ll~. r,,,u-timesystem. Perfornance ieLsurementsof network. Such networks scale easily and maintain high
APMIl, based on simulatioun are presented in Section 7. nearest-neighbor bandwidth. lowever, the longer ex
We ,valuate the sralability of multithreaded piocesso(Z pected latencies of low-dimension direct networks coin-
iii ction 8. pared to indirect muli.;' .ge .- works increase tie need

for processors that caii tolerate long latencies. Further-
more, the lower bandwidth of direct networks over iiidi-

2 The ALEW IFE System rect networks with t.-," :-am clua,,n .. .
11, is the proc essing ehient.of A LEWlFE, a large- interesting design tradeoffs.

A t sli the ALEWIFE systnem, a context switch occurs
i,, multiprocessor being designed at MIT. ALEWIFE whenever the network must be used to satisfy a re

iu a cache-colierenti m achine with distributed, globally- whenever file s tbhro sidao a m pt. a ,"

shrmd memory. ('ache coherenc,- is maintained using quest, or oii a failed syncironization ateipt.. Sice

2



caches reduce the network request rate, we call eni- such applications ou NIIM D nach~lhes, liot force unnec-
ploy coarse-grain niultitlhreading (context switch ev- essary serialization. The same serialization occurs in
cry 50-100 cycles) instead of fine-grain multithreading SIMD machines. Implementing data-level parallelism
(context switch every cycle). This simplifies proces- in a MINID machine that allows the expression of maxi-
sor design considerably because context switches can be mun concurrency requires cheap fine-grain synchroniza-
more expensive (4 to 10 cycles), and functionality 'such tion associated with each data object. We provide this
as scheduling can be migrated into run-time software, support in hardware with full/empty bits.
Single-thread performance is optimized, and techniques We are augmenting Nlul-T with const, acts for data-

used in RISC processors for enhancing pipeline perfor- level parallelism and primitives for placement of data
mance can be applied [10]. Custom design of a process- and tasks. As an example, the programmer can use
ing element is not required in the ALEWIFE system; future-on which works just like a normal future but

indeed, we are using a modified version of a commercial allows the specification of the node on which to schedule

RISC processor for our first-round implementation. the future. Extending Mul-T in this way allows us to
experiment with techniques for enhancing locality and

2.2 Programming Model to research language-level issues for programming par-
allel machines.

Our experimental programning language for ALEWIFE
is Mul-T [16], an extended version of Scheme. Mul-T's

basic mechanism for generating concurrent tasks is the 3 Processor Architecture
future construct. The expression (future X), where
" is all arbitrary expression, creates a task to evaluate APRIL is a pipelined RISC processor extended with

X and also creates an object, known as a future to even- special mechanisms for multiprocessing This section

tually hold the value of X. When created, tile future gives an overview of the APRIL architecture and fo-

is in an unresolved, or undetermined, state. When the cuses on its features that support multithreading, fine-

value of X becomes known, the future resolves to that grain synchronization, cheap futures, and other models

value, effectively mutating into the value of X. Con- of computation.

currency arises because the expression (future X) re- The left half of Figure 2 depicts the user-visible pro-

turns the future as its value without waiting for the cessor state comprising four sets of general purpose reg-

future to resolve. Thus, the computation containing isters, and four sets of Program Counter (PC) chains

(future X) can proceed concurrently with the evalu- and Processor State Registers (PSR). 'File PC chain

ation of X. All tasks execute in a shared address-space. represents the instruction addresses corresponding to

The result of supplying a future as an operand of a thread, and the PSR holds various pieces of process-

some operation depends on the nature of the operation. specific state. Each register set, together with a single

Non-strict operations, such as passing a parameter to PC-chain and PSR, is conceptually grouped into a single

a procedure, returning a result from a procedure, as- entity called a task frame (using terminology from [8]).

signing a value to a variable, and storing a value into a Only one task frame is active at, a given time and is

field of a data structure, caii treat a future just like any designated by a current frame pointer (FP). All reg-

other kind of value. Strict operations such as addition ister accesses are made to the active register set and

and comparison, if applied to an unresolved future, are instructions are fetched using the active PC-chain. Ad-

suspended until the future resolves and then proceed, ditionally, a set of 8 global registers that are always

using the value to which the future resolved as though accessible (regardless of the FP) is provided.

that had been the original operand. Registers are 32 bits wide. The PSR is also a 32-bit

The act of suspending if an object is an unresolved register and can be road irto and written from the gen-

future and then proceeding when the future resolves is eral registers. Special instructions can read and write

known as touching the object. The touches that auto- the FP register. The PC-chain includes the Program

rnatically occur when strict operations are attempted Counter (PC) and next Program Counter (nPC) which

are referred to as implicit touches. Mun-T also includes are not directly accessible. This assumes a single-cycle

an explicit touching or "strict" primitive (touch X) branch delay slot. Condition codes are set as a side

that touches the value of time exnrPssion V -,d 11-n effect, of comiute instructions. A !.r7g~ r k,... 'h ,!l,

rut iiu ns that va .,:. nght be necessary it the branch instruction itself does a

Futures express control-level parallelism. In a large compare so that condition codes need not be saved [13];

class of algorithms, data pa; allelisin is more appropri- in this case the PC chain is correspondingly longer.

ate. Harriers are a useful ineans of synchronization for Words in memory have a 32 bit data field, and have

an additional synchronization bit called the full/empty

3



Processor State Memory ory operation involving a reoote request (or an uinsi -
Ready Supended cessful syncironization a(tiipt) is encountered. ilh,

Global ragir controller forces the pr ,',-ssor to switcl to another
frame thread, while it services the request. This approach is
0 called coarse-grain multithreading. Processors in mes-

PCadrSR sage passing multicomputers [21, 27, 6, 41 have tra-
Ot, 0ditionally taken this approach to allow uverdappi., of

0 El communication with computation.
Context switching in APRIL is achieved by -hangiing

2: _ . mthe frame pointer. Since APRIL has four task frames,

PSR :- El it can have up to four threads loaded. The thread that
6a / 1 is being executed resides in the task frame pointed t,

res t. by tile FP. A context switch simply involves letting th,an't "............ ..,....... . "

processor pipeline empty while saving the PC-chain - ithen changing the FP to point to another task frame,

0 Unloaded thread Threads in ALEWIFE are virtual. Only a small su,-

U Loaded thread set of all threads can be physically resident on the pro-

cessors; these threads are called loaded threads. The re-

Figure 2: Processor State and Virtual Threads. maining threads are referred to as unloaded threads and
live on various queues in memory, waiting their turn
to be loaded. In a sense, the set of task frames acts

bit. like a cache on the virtual threads. This organization
Use of multiple register sets on the processor, as in the is illustrated in Figure 2. The scheduler tries to choose

HEP, allows rapid context switching. A context switch threads from the set of loaded threads for execution to
is achieved by changing the frame pointer and empty- minimize the overhead of saving and restoring threads
ing the pipeline. The cache controller forces a context to and from memory. WVhen control eventually passes
switch on the processor, typically on remote network re- back to the thread that suffered a remote request, the
quests, and on certain unsuccessful full/empty bit syn- controller should have completed servicing the request.

chronizations. provided the other threads ran for enough cycles. By
APRIL implementsfuturesusing the trap mechanism. maximizing local cache and mneriory accesses, the need

For our proposed experimental implementation based for context switching reduces to once every 50 or 100
on SPARC, which does not have four separate PC and cycles, which allows us to tolerate latencies in the range
PSR frames, context switches are also caused through of 150 to 300 cycles with 4 task frames (see Section 8).
traps. Therefore, a fast trap mechanism is essential. Rapid context switching is used to hide the latency
When a trap is signalled in APRIL, the trap mechanism encountered in several other trap events, such as syn-
lets the pipeline empty and passes control to the trap chronization faults (or attempts to load from "empty"
handler. The trap handler executes in the same task locations). These events can either cause the proces-
frame as the thread that trapped so that it can access sor to suspend execution (wait) or to take a trap. In
all of the thread's registers. the former case, the controller holds the processor until

the request is satisfied. This typically happens on lo-

3.1 Coarse-Grain Multithreading cal memory cache misses, and onl certain full/empty bit

In most processor designs to date (e.g. [8, 22, 19, 15]), tests. If a trap is taken, the trap handling routine can

multithreading has involved cycle-by-cycle interleaving respond by:

of threads. Such rine-grain multithreading has been 1. spinning - immediately return from the trap and
used to hide memory latency and also to achieve high retry the trapping instruction.
pipeline utilization. Pipeline dependencies are avoided
by maintaining instructions from different threads in the 2. switch spinning - context switch without unloading

p;t)eline, at the price of poor single-thread performance. the trapped thread,

In the ALEWIFE machine, we are primarily con- 3. blocking- unload the thread.
cerned with the large latencies associated with cache

misses that require a network access. Good sin- The above alternatives must be consilered with care
gle thread performance is also important. Therefore because incorrect choices can create or exacerbate star-

A 'TIL continues executing a single thread until a mem- vation and thrashing problems. Ai extreme example

4



of starvahion is this: all loaded tireads arp spliling 'his is iml[ortant because we do not want to hurt the
or switch spinning on an exception condition that an efliciency of all compute instructions because of the pos-
unloaded thread is responsible for fulfilling. We are in- sibility an operand is a future.
vestigating several possible ieclianisms to handle such

problems, including a special controller initiated trap Lazy Task Creation Little can be done to reduce the
on certain failed synchronization tests, whose handler cost of task creation if future is taken as a command
unloads the thread. to create a new task. In many programs the possibility

A.. important aspect of the ALEWIFE system is its of creating an excessive number of fine-grain tasks ex-
combination of caches and multithreading. While this ists. Our solution to this problem is called lazy task cre-
combination is advantageous, it also creates a unique ation (171. With lazy task creation a future expression
class of thrashing and starvation problems. For exam- does not create a new task, but computes the expression
pIe, forward progress can be halted if a context execut- as a local procedure call, leaving behind a marker indi-
ing on one processor is writing to a location while a con- cating that a new task could have been created. The
text on another processor is reading from it. These two new task is created only when some processor becomes
contexts can easily play "cache tag", since writes to a lo- idle and looks for work, stealing the continuation of that
cation force a context switch and invalidation of other procedure call. Thus, the user can specify the maximum
cached copies, while reads force a context switch and possible parallelism without the overhead of creating a
transform read-write copies into read-only copies. An- large number of tasks. The race conditions are resolved
other problem involves thrashing between an instruction using the ine-grain locking provided by the full/empty
and its data; a context will be blocked if it has a load bits.
instruction mapped to the same cache line as the tar-
get of the load. These and related problems have been
addressed with appropriate hardware interlock mecha-
nisms. Besides support for lazy task creation, efficient fihe-

grain synchronization is essential for large-scale parallel

3.2 Support for Futures computing. Both the dataflow and data-parallel models
of computation rely heavily on the availability of cheap

Executing a Mul-T program with futures incurs two fine-grain synchronization. The unnecessary serializa-
types of overhead not present in sequential programs. tion imposed by barriers in MIMD implementations of
First, strict operations must check their operands for data-parallellism can be avoided by allowing fine-grain
availability before using them. Second, there is a cost word-level synchronization in data structures. The tra-
associated with creating new threads. ditional testkset based synchronization requires extra

memory operations and separate data storage for the
Detection of Futures Operand checks for futures lock and for the assoiated data. Busy-waiting or block-
done in software imply wasted cycles on every strict ing in conventional processors waste additional proces-
operation. Our measurements with Mul-T running on sor cycles.
an Encore Multimax show that this is expensive. Even APRIL adopts the full/empty bit approach used in
with cle.er compiler optimizations, there is close to a the IIEP to reduce both the storage requirements and
factor of two loss in performance over a purely sequen- the number of memory accesses. A bit associated with
tial implementation (see Table 3). Our solution em- each memory word indicates the state of the word: full
ploys a tagging scheme with hardware-generated traps or empty. The load of an empty location or the store
if an operand to a strict operator is a future. We believe into a full location can trap the processor causing a
that this hardware support is necessary to make futures context switch, which helps hide synchronization delay.
a viable construct for expressing parallelism. From an Traps also obviate the additional software tests of the
architectural perspective, this mechanism is similar to lock in testkset operations. A similar mechanism is
dYnamic type checking in Lisp. However, this mecha- used to implement I-structures in dataflow machines (3],
nism is necessary even in a statically typed language in however APRIL is different in that it implements such
the presence of dynamic futures. synchronizations through software trap handlers.

APRIL uses a simple data type encoding scheme for
automatically generating a trap when operands to strict 3.4 Multirnodel Support Mechanisms
operators are futures. This implementation (discussed
in Scction 5) obviates the need to explicitly inspect APRIL is designed primarily for a shared-memory mul-
in software the operands to every compute instruction. tiprocessor with strongly coherent caches. However,
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we are consid,.,ing several additional inechanisins which
will permit explicit inanagemetit of caches aid efficient Type Format Data transfer oin tro If!,,w

use of network bandwidth, These mechanisnms present Compute op s s2 d d - sl op s2 PC+1

different computational models to the programmer. Memory Id type a d d - mem[a] PC+1

To allow software-enforced cache coherence, we have Bac tId aset

loads and stores that bypass the hardware coherence Branch jcond offset if cond
- PC+offset

mechanism, and a flush operation that permits soft- else pc+i
ware writeback and invalidation ofcache lines. A loaded jmpl offset d d - PC PC+offset
context has a fence counter that is incremented for
each dirty cache line that is flushed and decremented Table 1: Basic instruction set summary.
for each acknowledgement from memory. This fence

counter may be examined to determine if all writebacks
have completed. We are proposing a block-transfer Bit 31 Bit0

mechanism for efficient transfer of large blocks of data. I _I

Finally, we are considering an interprocessor-interrupt Fixnum

mechanism (IPIl) which permits preemptive messages Other I

to be sent to specific processors. IPIs offer reasonable Cons 1
alternatives to polling and, in conjunction with block- Future I
transfers, form a primitive for the message-passing com-
putational model. Figure 3: Data Type Encodings.

Although each of these mechanisms adds complex-
ity to our cache controller, they are easily implemented

in the processor through "out-of-band" instructions as type encoding scheme is to support hardware detection
discussed in Section 5. of futures.

Set Future Detection and Compute Instructions

Instruction SSince a compute instruction is a strict operation, special
action has to be taken if either of its operands is a fu-

APRIL has a basic RISC instruction set augmented tueAPIgnrasatapiaftresenotrd

with special memory instructions for full/empty bit op- ture. APRIL generates a trap if a future is encountered

erations, multithreading, and cache support. The at.- by a compute instruction, Future pointers are easily

traction of an implementation based on simple SPARC detected by their non-zero least significant bit.

processor modifications has resulted in a basic SPARC-
like design. All registers are addressed relative to a cur- Memory Instructions Memory instructions are

rent frame pointer. Compute instructions are 3-address complex because they interact with the full/empty bits

register-to-register arithmetic/logic operations. Condi- and the cache controller. On a memory access, two data

tional branch instructions take an immediate operand exceptions can occur: the accessed location may not. be

and may increment the PC by the value of the immedi- in the cache (a cache miss), and the accessed location

ate operand depending on the condition codes set by the may be empty on a load or full on a store (a full/empty

arithmetic/logic operations. Memory instructions move exception). On a cache miss, the cache/directory con-

data between memory and the registers, and also inter- troller can trap the processor or make the processor

act with the cache and the full/empty bits. The basic wait until the data is available. On full/empty excep-

instruction categories are summarized in Table 1. The tions, the controller can trap the processor, or allow the

remainder of this section describes features of APRIL processor to continue execution. Load instructions also

instructions used for supporting multiproccssing. have the option of setting the full/empty bit of the ac-
cessed location to empty while store instructions have

Data r'ype Formats APRIL supports tagged point- the option of setting the bit to full. These options give
Dat f For ats API eBerkeleySUpro s or tagged prise to 8 kinds of loads and 8 kinds of stores. The load
ers for Mui-T, as in the Berkeley SPUR processor [12, instructions are listed in Table 2. Store instructions are
by encoding the pointer type in the low order bits similar except that the trap on full locations instead
data word. Associating the type with the pointer has

the advantage of saving an additional memory reference of empty locations.

when accessing type information. Figure 3 lists the dif- A memory instruction also shares responsibility for

ferent type encodings. An important purpose of this detecting futures in either of its address operands. Like
compute instructions, memory instructions also trap

6



____________5 An Implementation of APIL
Name l'ype Reset f/e bit L' trap C,%I' response

ldtt I No Yes Trap Ali ALEWIFE node consists of several interacting sub-
idett 2 Yes Yes Trap systems: processor, floating-point unit, cache, memory,
ldnt 3 No No Trap cache and directory controller, and network controllei.
ident 4 Yes No Trap For the first round implementation of the ALEWIFE
Idnv 5 No No Wait system, we plan to use a modified SPARC processor
ldenv 6 Yes No Wait and an unmodified SPARC floating-point unit.' There
ldtw 7 No Yes Wait are several reasons for this choice. First, we have chosen
idetv 8 Yes Yes Wait to devote our limited resources to the design of a custom

'Empty Iocation. Cache miss. ALEWIFE cache and directory controller, rather than

Table 2: Load Instructions. to processor design. Second, the register windows in
the SPARC processor permit a simple implementation
of coarse-grain niultithreading. Third. most of the in-
structions envisioned for the original APRIL processor

if the least significant bit of either of their address

operands are non-zero. This introduces the restriction map directly to single or double instruction sequences
thtoper s in mon-erycannotrblodcted retctn on the SPARC. Software compatibility with a commer-
that objects in memory cannot be allocated at byte cial processor allows easy access tc a large body of soft-
boundaries. This, however, is not a problem because ware. Furthermore, use of a standard processor permits
object allocation at word boundaries is favored for other u tre therte u re; w a n tae advant

reasons [I1l. This trap provides support for implicit fu- o n e technology i s veloped.

ture totkhes in operators that dereference pointers, e.g.,

car in LISP. Rapid Context Switching on SPARC SPARC
processors contain an implementation-dependent num-
ber of overlapping register windows for speeding up pro-

Non-trapping mnemory instructions allow testing of the cedure calls. The current register window is altered
full/empty bit by setting a condition bit indicating the via SPARC instructions (SAVE and RESTORE) that. meod-
state of the memory word's full/empty bit. APRIL ify the Current Window Pointer (CWP) Traps incre-
provides conditional branch instructions, Jfull and iyteCretWno one CVP.Tasice

pvide atdispatchothis conditiona brnhin tions, Ts a- ment the CWP, while the trap return instruction (RETT)
Jerpty, that dispatch on this condition bit. This pro- decrements it. SPARC's register windows are suited for
vides a mechanism to explicitly control the action taken rapid context switching and rapid trap handling because
following a memory instruction that woud iormally most of the state of a process (i.e., its 24 local reg-
trap on a full/empty exception. isters) can be switched with a single-cycle instruction.

Although we are not using multiple register windows for
Frame Pointer Instructions Instructions are pro- procedure calls within a single thread, this should not
vided for manipulating the register frame pointer (FP). significantly hurt performance [25, 24].
FP points to the register frame on which the currently To implement coarse-grain multithreading, we use
executing thread resides. An INCFP instruction incre- two register windows per task frame - a user window
ments the FP to point to the next task frame while and a trap window. The SPARC processor chosen for
a DECFP instruction decrements it. The incrementing our implementation has eight, register windows, allow-
and decrenmenting is done modulo the number of task ing a maximum of four hardware task frames. Since
frames. RDFP reads the value of the FP into a register the SPARC does not have multiple program counter
and STFP writes the contents of a register into the FP. (PC) chains and processor status registers (PSR), our

trap code must explicitly save and restore the PSRs
Instructions for Other Mechanisms The special during context switches (the PC chain is saved by the
mechanisms discussed in Section 3.4, such as FLUSH trap itself). These values are saved in the trap window.
are made available through "out-of-band" instructions. Because the SPARC has a minimum trap overhead of
Interprocessor-interrupts, block-transfers, and FENCE five cycles (for squashing the pipeline and computing
operations are initiated via memory-mapped I/O in- the trap vector), context switches will take at least this
structios (LDIO, STIO). long. See Section 6.1 for further information.

The SPARC floating-point unit does not support reg-

iThe SPARC-based implementation effort is in collaboration
with LSI Logic Corporation.
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ister windows, but has a single, 32-word register file. 6 Compiler and Run-Time Sys-
To retain rapid context switching ability for applica- tern
tions that require efficient. floating point per.ormance,
we have divided the floating point register fil , itito four The -ompiler and run-time system are integral parts
sets of eight registers. This is achieved by modifying of the processor design effort. A Muil-T compiler for
floating-point instructions in a context dependent fah- APRIL and a run-time system written part ly in A PRI I.
ion as they are loaded into the FPU and by maintaining assembly code and partly in T have been implemente,i

four different sets of condition bits. A modification of Constructs for user-directed placement of data and pro-
the SPARC processor will make the CWP available ex- cesses have also been implemented. 'Th, run-tillie q-
ternally to allow insertion into the FPU instruction. tern includes the trap and system routines. Mul-T run

time support, a scheduler, and a system hoot routine
Support for Futures Ve detect futures on the Since a large portion of the support for muliiwhread-
SPARC via two separate mechanisms. Future point- ing, synchronization and futures is provided in soft-
ers are tagged with their lowest bit set. Thus, direct ware through traps and run-time routines, trap 1,ar
use of a future pointer is flagged with a word-alignment dling must be fast. Below, we describe the implemen-
trap. Furthermore, a strict operation, such as subtrac- tation and performance of the routines used for tr-tr
tion, applied to one or more future pointers is flagged handling and context switching.
with a modified non-firnum trap, that is triggered if an
operand has its lowest bit set (as opposed to either one 6.1 Cache Miss and Full/Empty Traps
of the lowest two bits, in the SPARC specification).

Cache miss traps occur on cache misses that require

Implementation of Loads and Stores The a network request and cause the processor to context

SPARC definition includes the Alternate Space Indi- switch. Full/empty synchronization exceptions can oc-

cator (ASI) feature that permits a simple implemnenta- cur on certain memory instru-tions described in Sec-

tion of APRIL's many load and store instructions (de- tion 4. The processor can respond to these exceptions

scribed in Section 4). The ASI is available externally as by spinning, switch spinning, or blocking the thread

an eight-bit field. Normal memory accesses use four of In our current implementation, traps handle these ex-

the 256 ASI values to indicate user/supervisor and in- ceptions by switch spinning, whic'i involves a context

struction/data accesses. Special SPARC load and store switch to the next task frame.

instructions (LDASI and STASI) permit use of the other In our SPARC-based design of APRIL, we implement

252 AS! values. Our first-round implementation uses context switching through the trap mechanism using

different ASI values to distinguish between flavors of instructions that change the CWP. The following is A

load and store instructions, special mechanisms, and trap routine that context switches to the thread in the

I/O instructions, next task franme.

Interaction with the Cache Controller The cache rdpsr psrreg ; save PSR into a reserved reg.
save ; increment the window pointer

controller in the ALEWIFE system maintains strong save i by 2

cache coherence, performs full/empty bit synchroniza- save by 2

tion, and implements special me.ianisms. By examin- wrpsr psrreg ; restore PSR for the new context

ing the processor's ASI bits during memory accesses, jmpl r17 return from trap and

it can s~lect between different load/store and synchro- rett r18 ; reexecute trapping instruction

nization behavior, and can determine if special mecha- We count 5 cycles for the trap mechanism to allow
nisms should be employed. Through use of the Memory the pipeline to empty and save relevant processor state
Exception (NIEXC) line on SPARC, it can invoke syn- before passing control to the trap handler. The above
chronous traps corresponding to cache misses and syn- trap handler takes an additional 6 cycles for a total of II
chronization (full/empty) mismatches. The controller cycles to effect the context switch. In a custom APRIL
can suspend processor execution using the NIIOLD implementation, the cycles lost due to PC saves in the
line. It passes condition information to the processor hardware trap sequence, and those in calling the trap
through the Coprocessor Condition bits (CCCs), per- handler for the PSR saves/restores and double incre-
mitting the full/empty conditional branch instructions menting the frame pointer could be avoided, allowing a
(Jfull and Jempty) to be implemented as coprocessor four-cycle context switch.
brah instructions. Asynchronous traps (IPI's) are de-
liver,',l via the SPARC's asynchronous trap lines.
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6.2 Future Touch Trap Single-processor
Other parallel tracers execution trace of

\Vhet a futre touch trap is signalled, the future that trap bit, ATUM2 Mu-T program parallel program

caused the Ir ip will 'ie in a register. [lhe trap han- I I
dler has to ilicode the trapping instruction to find that Pos-moriem
register '[he future is resolveo if the full/empty bit of mleT schuler

Cpiletceue
fle futures vhltie slot is set to ftTl If it is resolved, _
the future III the register is replaced with the resolved Multlmax program APRIL machine language program
valtie: otherwise tie trap routine can Uccide to switch I
spin or kIock the thread that trapped. Our future touch T-Mu,-T APRIL
trap handler takes 23 cycles to execute if the future is emulator/ Simulatortracer Run-time sysresolved. M r

requests/ s
If the trap handler decides to block th, thread on an Parallel trazes Memory requestsacks

unresolved future, the thread must be unloaded from
the hardware ta-k frame, and an alternate thread may
be loaded. Loading a thread involves writing the state of Cache' Directory

the thread, including its general registers, its PC chain, Memory Sim.
and its tPSR, into a hardware task frame ott the pro

cessor, and unloading a thread involves saving the state Network
of a hliread out to memory. Loading atid unloading Simulator
threads are expensive operat ions unless there is special
hardware support for block movement of data between
registers atd ttietiory. Since the scheduling mechanismim
favors processor-resident threads, loading and uiload-
ing of threads should be infrequent.. Iowever, this is an the performance of APRIL running parallel programs
issue that is tnder investigation, is presented here. Table 3 lists the execution times of

four programs written in MulI-T: fib, factor, queens
and speech, fib is the ubiquitous doubly recursive Fi-

Performance Measurements bonacci program with 'future's around each of its re-

This section presents some results on APRIL's perfor- cursive calls, factor finds th, largest prime factor of

mance in handling fine-grain tasks. We have imple- each number in a range of ntumbers and sums them up.

mented a simulator for tle AI,EWIFE system written quet.i's finds all solutions to the n-que ns chess prob-

in C ard 1'. Figure 4 illustrates the organization of the lem for n- 8 and speech is a modified Viterbi graph

ititilator. The Nful-T comipier produces APRIL code, search algorithm used in a connected speech recognitionwhich gets linked with the run-time system to yield an system called SUMMIT, developed by the Spoken Lan-

execitable program. '[ie instru-tion-level APRIL pro- guage Systems Group at MIT. We ran each program
cessor simulator interprets APRIL instructions. It. is on the Encore Multimax, on APRIL using normal task
written i T and simulates 40,000 APRIL instructions creation, and on APRIL using lazy task creaticn. For

per secontI when rin Oh a SPARCServer 330. The pro- purposes of comparison, execution time !;-As been nor-pesr Si o r ihenrat o l th~er cac .The pdirecoy malized to the time taken to execute a sequential % -rsion
sisulator (written in C) on metory instrctions. '[he ofeach program, i.e., with no futu.es and compiled with

cache imulator in turn interacts with f', network si- T an optimizing T-cohpiler.
ulator (also written in C) when making remote memory The difference between running the same sequential

io code on T and on Mul-T on the Encor Multimax
operations. The simulator has proved to be a usefultool iin evaluating system-wide architectural tradeoffs (columnns "T seq" and "Mul-T see") is due to tre over-
tsl in vespoed oa r te irhit r hae allowed rae of su a hardwre detection ofnfu tre an oe otsimtoinde mored ccurte rsu~lso thas & alloedive suppoto, hardware detection of futures, an overhead of a
s to n e The gthysparale rogeran has alamped its factor of 2 is introduced, even though no future, are ac-t o e x e c u te le n g th y p a ra lle l p ro g r m n s . A s a n e x a m p le , i ii t a l r a e . T e e i o o e h a n A R L l 1
a run of speech (described be!lw), the simulated pro- tulyceedThrisoovhadnAPLwc!a ran ofo 100ech (desrionte simulated cyclesbf rco- denionstrater the advantage of tag support for futures.
grain The differcnce betwecn running sequential code on

Evaluation of tle ALWIFE archit'clure through Mul-T and runiong parallel code on Mul-T with one

sivlatiosn rogess A sapligofour hrults processor ("Mul-T seq" and 1) is due to the o' rhead
sinnflations is in progress. A sampling of our results on of thread creation and synchronization in a parallel pro-
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_24 _ _ 8 _f

E~ncore 1 [ 1 28 911631 9.2 5.
fib APIM1, 1.0 1.u 142 7 .1 3.. 1.8 1).-97

______Apr-lazy t 1.0 L 1.51 0.78 0.44 0.21 0.19

Encort 1 0 1 1 1.L9 10.96 0.50 10.261
factor A 'L 1.0 1.0 i6 0.90 0.45 1.23 0.12

_____ Ar-zy 1.0 1.0 t.0 j 0.52 0.26 0.14 0.09'

Encore 11.0 1.8 2.i 10 10.5410.31 __

ques APRIL j1.0 1.0 1. .7 0.33 0.18 0.101
____-Apr-lazy 1.0 1T.0 ___ 0.1 0.26 0.13 0.7-

Encore 11.0 2.0 2.3 11.21 0.__ 2 __ 0.36 _

sipeech APRIL 11.0 1.0 1.2 10.60 0.31 0.17 0.10
_________ 1____ 1. 10 1.0 ]0.52 0.27 0.15 0.09

Tab, 3: Execution time for Mul-T het chmiarks. '-T seq" is T1 running sequlential code, "MuI-T seq- is Nlul-T ruunning~
sequential code, I to 16 denote number of processr-s running parallel code.

grain. This overhead is very large for the fit) benchmark memtory requests of other threads are being satisfied.
onl hoth the Encore aad A lPRlL using normal tas-k cre- However, any new nmechuanisnm is ujseful only if it en-
atilon because of very fine-grain thbread creation. This hances overall system performnanco. This sect ion n-
overhead accounts for approxiit~tely a factor of 28 in lvzes the systemn performance of inult itlxreade1 prores-
execution tine. For APlRlIL withI normal futures, this sors.

verluead accounts for a factor of 14. Lazy task u-re- A niultithreaded processor design nmust. adldross f
a ion on APFRILf creates threads only whiein the miachime tradeoff between reduiced processor idle timie and InI-
hias the "resouirces to execute themn, and performs much c-reased -ache miss rates, network contention, and mu.-

I Ier because it 1-t-~ uie effect of dynanmically partition- text management ovterhead. The private wvorki ng sets of
ing the program Iiito coarser-graiii threads and creat; g multiple contexts interfere in thle cache. The added in-
fewer futurtes. r'we overhead introduced is only a fac- terference misses coupled with If lie higher average t rallic
for of 1.5. In ail of the programs, APRIL coiisistently generated by a higher utilized processor impose greater
denionstratos lower overhead due to support for thread bandwidt!' demands onl the interconnection net, -k.
-reation a~nd synchronization over the Encore. Context management instructions required to switch

Measurements for multiple processor executions on the processor between threads also add to the over-
APRIL (2 - t6) used the processor simulator without head. Furthermore, the application must display suf-
t ie cach- an ' iietwork simulators, in effect simulating a ficient parallelism to allow multiple thread assignment
sluared-inenuory machine with no mremnory latency. The to each processor.
numibers dlemuonstrate that APRIL and its run-timne sys- What is a good p~erformance metr - to evaluate inuil-
tern allow parallel program r.rformance to scale when titlxreading? A good measure of system pct:. _rmiance is
synchmroinizati~on and task creation overheads are taken system power, which is the product of the number of
into account, lbut when mnemory latency is ignored. The process(-s and the aver; ge processor utilization. Pro-
effect. of cornuimication in large-scale macnines depends vided the cumputation ol processor utilization takf-, into
on several iacrtors such as scheduling, which are active account the deleterious effect! of cache, network. anid
areaLs of in vest igation. context-switching overhied, the processor uitilizat ion is

itself a good meastire
We have developed a miodel for nmultithireaded pro-

8 Scalaiity of Multithireaded c usrttilization that includes the cache, netwe.k. and
Processor Systems switching overhead effects. A dletailedl analysis is, prte-

sented in [i]. Trhis section will sumnari7e the miodel
Nlu,t ithlreading enhances processor eff16 ency by allow- and our chief results. Processor utilization U as a funr-
uiw - %'cution t~o proceed on alternat~e threads while the Can of the nmrber -f' threads r-sideit. onl a procerssor
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p is derived as a function of the cache miss rate m(p),
the net'work latency T(p), and the context switching i Ideal
overhead C: Network Effects

Cache and Network Effects
CS Overhead

(for p < _lr(rnp) Useful Work
( 11 C ()

t+C ) for p > l+T(p)m(p)
I r,,rn(p) 0.9

When the number of threads is small, complete over- 0.8

lapping of network latency is not possible. Processor 0.7
utilization with one thread is 1/( 1 + n(l)T(l)). Ideally,
with p threads available to overlap network delays, the 0.6
utilization would increase p-fold. In practice, because e o

the miss rate and network latency increase to rn(p) and CL

T(p), the utilization becomes p/( 1 + tn(p)T(p)). 0.4

When it is possible to completely overlap network 0.3
latency, processor utilization is limited only by the con-
text switching overhead paid on every miss (assuming
a context switch happens on a cache miss), and is given 0.1
by 1/(1 + m(p)C).

The models for the cache and network terms have 0 1 2 3 4 5 6 7 a

been validated through simulations. Both these terms Processes p
are shown to be the sum of two components: one coin-
ponent independent of the number of threads p and the Figure 5: Relative sizes of the cache, network and overhead
other linearly related to p (to first order). Multithread- components that affect processor utilization.
ing is shown to be useful when p is small enough that
the fixed components dominate.

Let us look at sonic results for th default set of svs- Figure 5 displays processor utilization as a function of

tern parameters given in Table 4. TI.e analysis assumes the number of threads resident on the processor when
8000 processors arranged in a three dimensional array. context switching overhead is 10 cycles. The degree
In such a system, the average number of hops between a to which the cache, network, and overhead components
random pair of nodes is nk/3 = 20, where n denotes net- impact overall processor utilization is also shown. The
work dimension and k its radix. This yields an average ideal curve shows the increase in processor utilization

round trip network latency of 55 cycles for an unloaded when both the cache miss rate and network contention
network, when memory latency and average packet size correspond to that of a single process, and do not in-
are taken into account. The fixed miss rate comprises crease with the degree of multithreading p.
first-time fiches of blocks into the cache, and the inter- We see that as few as three processes yield close to
fercnce due to multiprocessor coherence invalidations. 80% utilization for a ten-cycle context-switch overhead

which corresponds to our initial SPARC-based imple-
_mentation of APRIL. This result is similar to that re-

Parameter Value ported by Weber and Gupta [261 for coarse-grain mul-
Mere ry latency 10 cycles tithreaded processors. The main reason a low degree of

Network dimensmon n 3 mnultithreading is sufficient is that context switches are
Network radix k 20 forced only on cache misses, which are expected to hap-
i:ixed miss rate 2% pen infrequently. TIe marginal benefits of additional

Average packet cite 4 processes is seen to decrease due to network and cache
,ache block size 16 byt'_s interference.

Th read working set size 250 blocksCache size 64 Kbytes Why is utilization limited to a maximum of about
Cach size 64 Kby0.80 despite an ample supply of threads? The reason is

that available network bandwidth limits the maimum
rate at which computation can proceed. When avail-
able network bandwidth is used up, adding more pro-
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cesses will not improve processor utilization. On the oln aln Encore Multiinax-based implementation to ,l.'r
contrary, more processes will degrade performance due 5% on APtI. We evaluated the scalability of mulic-

to increased cache interference. In such a situation, threaded processors in large-scale parallel machines ds-
for better system performance, effort is best spent it ig an analytical model. For typical system parameters
increasing the network bandwidth, or in reducing the and a 10 cycle context-switch overhead, the processor
bandwidth requirement of each thread. can achieve close to 80% utilization with 3 processor

The relatively large ten-cycle context switch overhead resident threads.
does not significantly impact performance for the de-
fault set of parameters because utilization depends on
the product of context switching frequency and switch- 10 Acknowledgements
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