
AD-A237 475
I 1111lUiii 11111 11111[111 11 11111li MASSACHUSETTSI S TU E O

LABORATORY FOR MNSCTUTO
COMPUTER SCIENCE PTCH O

., TECHNOLOGY

MIT/LCS/TM-451 r 1 C

" :JUL 0 3

C

COUNTING NETWORKS

AJa t~1~ i ~ f

James Aspnes o .-
Maurice Herlihy

Nir Shavit -

June 1991

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

91-03998I IlllI Illi~ III 11 III I II lt II !i ')

unclassitied
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified I

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM 451 N00014-91-J-1046

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (if applicable) Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD

8c. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Blvd. ELEMENT NO NO. NO ACCESSION NO.
Arlington, VA 22217

11. TITLE (Include Security Clas.sfication)

Counting Networks

12. PERSONAL AUTHOR(S) Aspnes, J., erlihy, M.., Shavit, N.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATEjF EP 1 (Year, Month, Da:') 15, PAGE COUNT 33
Technical FROM TO n

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse
Many fundamental multi-processor coordination problems can be expressed as

counting problems: proces~e: must cooperate to assign successive values from a

given range. such as addre_,ses in menory or destinations on an interconnection
aetwork. Conventional solutions to these problems pe.form poorly because of
synchronization bottlenecks and high memory" contention.

Motivated by observations on the behavior of sorting networks. we offer a
completely new approach to solving such problems. We introduce a new class of
networks called counting outcorks, i.e., networks that can be used to count. We
give two counting network constructions of depth log2 n. using nlog2 n '-gates."
avoiding the sequential bottlenecks inherent to former solutions, and substantially
lowering the memory comntemmion.

Finally, to show that counILtin itetworks; are not merelv mathematical creatures.

we provide experimental ,vi hv e I hat they outperform conventional synchroniza-
tion techniques iimder a vat ,,v of ircumistances.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Q3 UNCLASSIFIED/UNLIMITED El SAME AS RPT c DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Carol Nicolora (617) 253-5894

DO FORM 1473, 84 MAR 83 APR edition may oe used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*U.s. G.emiWt Pvbtis Mel: .. U-4O?-0
Unclassified

Counting Networks'

James Aspnes t Maurice Herlihy t Nir Shavit §

June 10, 1991

Abstract

Many fundamental multi-processor coordination problems can be expressed as
counting problems: processes must cooperate to assign successive values from a
given range, such as addresses in memory or destinations on an interconnection
network. Conventional solutions to these problems perform poorly because of
synchronization bottlenecks and high memory contention.

Motivated by observations on the behavior of sorting networks, we offer a
completely new approach to solving such problems. We introduce a new class of
networks called counting networks, i.e., networks that can be used to count. We
give two counting network constructions of depth log n, using nlog2 n "gates,"
avoiding the sequential bottlenecks inherent to former solutions, and substantially
lowering the memory contention.

Finally, to show that counting networks are not merely mathematical creatures,
we provide experimental evidence that they outperform conventional synchroniza-
tion techniques under a variety of circumstances.

'A preliminary version of this work appeared in the Proceedings of the 23rd ACM Symposium on
the Theory of Computing, New Orleans, May 1991.

t Carnegie Mellon University, Department of Computer Science.
IDigital Equipment Corporation, Cambridge Research Lab.
$MIT Lab. for Computer Science. Supported by ONR contract N00014-91-J-1046, NSF grant CCR-

8915206, DARPA contract N00014-89-J-1988, and by a Rothschild postdoctoral fellowship. A large
part of this work was performed while the author was at IBM's Almaden Research Center.

Keywords: Counting Networks, Parallel Processing, Itot-Spots, Network Routing.

1 Introduction

Many fundamental multi-processor coordination problems can be expressed as counting
problems: processors collectively assign successive values from a given range, such as
addresses in memory or destinations cn an interconnection network. In this paper,
we offer a completely new approach to solving such problems, by introducing counting
networks, a new class of networks that can be used to count.

Couii ;iig iaeuwrks, iike w, Ling networks [2, 5, 7], are constructed from simple two-
input two-output computing elements called balancers, connected to one another by
wires. However, while an n input sorting network sorts a collection of n input values
only if they arrive together, on separate wires, and propagate through the network in
lockstep, a counting network can count any number N > n of input tokens even if they
arrive at arbitrary times, are distributed unevenly among the input wires, and propagate
through the network asynchronously.

Figure 2 provides an example of an execution of a 4-input, 4-output, counting net-
work. A balancer is represented by two dots and a vertical line (see Figure 1). Intuitively,
a balancer is just a toggle mechanism 1, alternately forwarding inputs to its top and bot-
tom output wires. It thus balances the number of tokens on its output wires. In the
example of Figure 2, input tokens arrive on the network's input wires one after the other.
For convenience we have numbered them by the order of their arrival (thcse numbers are
not used by the network). As can be seen, the first input (numbered 1) enters on line 2
and leaves on line 1, the second leaves on line 2, and in general, the Nth token will leave
on line N mod 4. (The reader is encouraged to try this for him/herself.) Thus, if on the
ith output line the network assigns to consecutive outputs the numbers i, i+4, i+2.4,..,
it is counting t he number of input tokens without ever passing them all through a shared
computing element!

Counting networks achieve a high level of throughput by decomposing interactions
among processes into pieces that (-an be performed in parallel. This decomposition
has two performance benefits: It eliminates serial bottlenecks and reduces memory
contention. In practice, the performance of many shared-memory algorithms is often
limited by conflicts at certain widely-shared memory locations, often called hot spots
[25]. Reducing hot-spot conflicts has been the focus of hardware architecture design
[12, 13, 17, 24] and experimental work in software [3, 10, 11, 20, 22].

Counting networks are also non-blocking: processes that undergo halting failures
or delays while using a counting network do not prevent other processes from making
progress. This property is important because existing shared-memory architectures are

One can implement a balancer using a read-modify-write operation such as Compare 64 Swap, or a

short critical section.

I

themselves inherently asynchronous; process step times are subject to timing uncertain
ties due to variations in instruction complexity, page faults, cache misses, and opcr'tti:
system activities such as preemption or swapping.

Section 2 defines counting networks. In Sections 3 and 4, we give two distinct count-
ing network constructions, each of depth less than or equal to log2 n, each using less
than or equal to (n log 2 n)/2 balancers. Section 7 describes how to verify that a iv.

network counts. To illustrate that counting networks are useful, we use counting net-
works to construct high-throughput shared-memory implementations of concurrent data
structures such as shared counters, producer/consumer buffers, and barriers. A s/i:,r
counter is simply an object that issues the numbers 0 to m - 1 in response to "2 request:;
by processes. Shared counters are central to a number of shared-memory synchroniza-
tion algorithms (e.g., [8, 9, 13, 26]). A producer/consumer buffer is a data structure in
which items inserted by a pool of producer processes are removed by a pool of consumer
processes. A barrier is a data structure that ensures that no process advanccs beyond a
particular point in a computation until all processes have arrived at that point. Com-
pared to conventional techniques such as spin locks or semaphores, our counting network
implementations provide higher throughput, less memory contention, and better toler-
ance for failures and delays. The implementations can be found in Section 5.

Our analysis of the counting network construction is supported by experiment. In
Section 6, we compare the performance of several implementations of shared counters,
producer/consumer buffers, and barrier synchronization on a shared-memory multipro-
cessor. When the level of concurrency is sufficiently high, the counting network iml)le-
mentations outperform conventional implementations based on spin locks, sometimes

dramatically.

In summary, counting networks represent a new class of concurrent algorithms. They
have a rich mathematical structure, they provide effective solutions to import ant prob-
lems, and they perform well in practice. We believe that counting networks have other
potential uses, for example as interconnection networks [27] or as load balancers[23], and
that they deserve further attention.

2 Networks That Count

2.1 Counting Networks

Counting networks belong to a larger class of networks called balancing networks, con-
structed from wires and computing elements called balancers, in a manner very similar
to that in which comparison networks [7] are constructed from wires and comparators.
We begin by describing balancing networks.

2

input output
-- --NO_____5__

X Y I 76421 1357

, 5xo" 53 246

Figure 1: A Balancer.

A balancer is a computing element with two input wires and two outpl,' vres7 (6ee
Figure 1). Tokens arrive on the balancer's input wires at arbitrary times, and are outp;..
on its output wires. Intuitively, one may think of a balancer as a toggle mechanism, that
given a stream of input tokens, repeatedly sends one token to the left output wire and
one to the right, effectively balancing the number of tokens that have been output on its
output wires. We denote by xi, i E {0, 11 the number of input tokens ever received on
the balancer's ith input wire, and similarly by yi, i E {0, 1} the number of tokens ever
output on its ith output wire. Throughout the paper we will abuse this notation and
use xi (y;) both as the name of the ith input (output) wire and a count of the number
of input tokens received on the wire.

Let the state of a balancer at a given time be defined as the collection of tokens on
its input and output wires. For the sake of clarity we will assume that tokens are all
distinct. We denote by the pair (t, b), the state transition in which the token t passes
from an input wire to an output wire of the baiancer b.

We can now formally state the safety and liveness properties of a balancer:

1. In any state x0 + x, _> yo + yl (i.e. a balancer never creates output tokens).

2. Given any finite number of input tokens m = xO + x, to the balancer, it is guar-
anteed that within a finite amount of time, it will reach a quiesct:nt state, that is,
one in which the sets of input and output tokens are the same. In any quiescent
state, xo + xi = yo + yj = rn.

3. In any quiescent state, Yo [m/21 and yi = Lm/21.

A balancing network of width w is a collection of balancers, where output wires are
connected to input wires, having w designated input wires xo,xl,..,x,,,-i (which are
not connected to output wires of balancers), w designated output wires yo, YI,..,Yw-1

2In Figure 1 as well as in the sequel, we adopt the notation of [7] and and draw wires as horizontal

lines with balancers stretched vertically.

3

Inputs outputs

14 15 15

43l I3 26 26

4313 -3 26

__26 337

57 147 47 62 -1 4

Figure 2: A sequential execution for a BITONIC[4] counting network.

(similarly unconnected), and containing no cycles. Let the state of a network at a given
time be defined as the union of the states of all its component balancers. The safety
and liveness of the network follow naturally from the above network definition and the
properties of balancers, namely, that it is always the case that F--' xi) >E%- yj,
and for any finite sequence of m input tokens, within finite time the network reaches a
quiescent state, i.e. one in which E'- 1 y, = m.

It is important to note that we make no assumptions about the timing of token tran-
sitions from balancer to balancer in the network - the network's behavior is completely
asynchronous. Although balancer transitions can occur concurrently, it is convenient to
model them using an interleaving semantics in the style of Lynch and Tuttle [19]. An exe-
cution of a network is a finite sequence so, el, sl,. • • e,, sn or infinite sequence so, el, si,...
of alternating states and balancer transitions such that for each (si, eji+, sj+l), the tran-
sition ej+j carries state si to si+,. A schedule is the subsequence of transitions occurring
in an execution. A schedule is valid if it is induced by some execution, and complete if it
is induced by an execution which results in a quiescent state. A schedule s is sequential
if for any two transitions ej = (ti,bi) and e, = (tj, bj), where t, and t, are the same
token, then all transitions between them also involve that token.

On a shared memory multiprocessor, a balancing network is implemented as a shared
data structure, where balancers are records, and wires are pointers from one record to
another. Each of the machine's asynchronous processors runs a program that repeatedly
traverses the data structure from some input pointer to some output pointer, each time
shepherding a new token through the network (see section 5).

We define the depth of a balancing network to be the maximal depth of any wire.
where the depth of a wire is defined as 0 for a network input wire, and

max(depth(xo), depth(xi)) + 1

for the output wires of a balancer having input wires xo and xj. We can thus formulate
the following straightforward yet useful lemma:

4

Lemma 2.1 If the transition of a token from input to output by any balancer takes at
most A time, then any input token will exit the network within time at most A times
the network depth.

A counting network of width w is a balancing network whose outputs yo,..,y,-,
satisfy the following step property:

In any quiescent state, 0 < y1 - yj _ 1 for any i <j.

To illustrate this property, consider an execution in which tokens traverse the network
sequentially, one completely after the other. Figure 2 shows such an execution on a
BITONIC[4] counting network which we will define formally in Section 3. As can be
seen, the network moves input tokens to output wires in increasing order modulo w.
Balancing networks having this property are called counting networks because they can
easily be adapted to count the total number of tokens that have entered the network.
Counting is done by adding a "local counter" to each output wire i, so that tokens
coming out of that wire are consecutively assigned numbers i, i + w,..., + (y, - 1)w.
(This application is described in greater detail in Section 5.)

The step property can be defined in a number of ways which we will use interchange-
ably. The connection between them is stated in the following lemma:

Lemma 2.2 If yo,... , y,-i is a sequence of non-negative integers, the following state-
ments are all equivalent:

1. For any < j, 0 < y - Yj <1.

2. Either y= yj for all i,j, or there exists some c such that for any i < c and j > c,
Yi - Y3 = 1.

3. I f o

It is the third form of the step property that makes counting networks usable for count-
ing.

Proof: We will prove that 1 implies 2, 2 implies 3 and 3 implies 1.

Assume 1 holds for the sequence y... , y,-1. If for every 0 < i < j < w, y, - yj = 0,
then 2 follows. Otherwise, there exists the largest a such that there is a b for which
a < b and y. - yb = 1. From a's being largest we get that y, - ya+, = 1, and from 1 we

5

getyi=y,,forany0<i <a andyi =Ya+1 for anya+_1 <i <w. Choosing c=a+ I
completes the proof. Thus 1 implies 2.

Assume by way of contradiction that 3 does not hold and 2 does. Without loss of

generality, there thus exists the smallest a such that m = E y, and Ya # [ia1 if

S< - then since E y = m, by simple arithmetic there must exist a b J a such

that Yb > I and similarly if y. > , there exists a b # a such that Yb < "

Since lyb - Y.I > 2, no c as in 2 exists, a contradiction. Thus 2 implies 3.

Finally, for any indexes a < b, since 0 < a < b < w, it must be that 0 < [M-a] <

[W 1< 1. Thus 3 implies 1.

The requirement that a quiescent counting network's outputs have the step prop-
erty might appear to tell us little about the behavior of a counting network during an
asynchronous execution, but in fact it is surprisingly powerful. Even in a state in which
many tokens are passing through the network, the network must eventually settle into
a quiescent state if no new tokens enter the network. This constraint makes it possible
to prove such important properties as the following:

Lemma 2.3 Suppose that in a given execution a counting network with output sequence
yr u, is in a state where m tokens have entered the network and m' tokens havt
left it. Then there exist non-negative integers di, 0 < i < w, such that E di = rn - in'

and y- + di-=

Proof: Suppose not. There is some execution e for which the non-negative integers di,
0 < i < w do not exist. If we extend e to z comp!ctr ex, ,,:-C -, lwing no additional
tokens to enter the network, then at the end of e' the network will be in a quiescent
state where the step property does not hold, a contradiction. a

In a sequential execution, where tokens traverse the network one at a time, the
network is quiescent every time a token leaves. In this case the i-th token to enter will
leave on output i mod w. The lemma shows that in a concurrent, asynchronous execution
of any counting network, any "gap" in this sequence of mod w counts corresponds to
token- still traversing the network. This critical property holds in any execution, even if
quiescent states never occur, and even though the definition makes no explicit reference
to non-quiescent states.

6

I$ T

X.1

Merger[A I

Figure 3: Recuirsive St n ti ure of a 13ri'o N IC (ounrt ing Net work.

2.2 Counting vs. Sorting

A balarici g net work anid a coHmpariso)n ntorak are' i.soij(jh ic ifuone cai Q)t'tost rutted
fron the other by replacinig ha lariccrs I by tor njarat ors or v i c versa. The touit rug

networks int rod(Iue ini this paper a ie isoH lurplil to the Bitolilt sortinHg net work of

lkatxher [N] and(to tAe leriolb I i l I I IAk atmm or i 'ntwk of I)owd INT Hm1. h~rdopi arid
Saks lb] There is a sense ini which toiitrililing toirit ig metworks is liariler than
conist ructinig sortinig networks:

Theorem 2.4 If (a balancing nit Iwrk count.-, it n ihs i.,oniorphic colnparoon m twork

sortj, but not iic i'crsa.

Proof It is easy to veify t hat I la Iaiti ig eWmaiks isomuorphic to the EVN - ()1)1) or
INSERTIO10N sort ing networks [7] are riot couint inig net wr.

For the other dlirettioni. wc(ouistrliit a miapping from1 I lic comrisonr101 nliwork I ran-
sliolis to the isoluorpilic Iamaitirig tiwork U arisit 101.

BYv the(0-1 principle [7], at comparisonr letwork whichi s-orts a11 sejruerites of' O's arid
1 s is a sort ing network Take any a rlitra rv setiti of H's aid I's as inpJuts5 to thre
cormpJarisonr network, and lor th e 'k i ig t wiiAp~t a to'' '" '-'atl 0 inipint wire

ali o 1 t okenl 1 atli 1 in put wir1e. \Ve now show t hat if we irn h ot h net works iii

lotkstep, the balanin liet work will simiuihie tite comlparison net work.

On every gate where to O'(Is m et ill thle compi arison niet work, two t okeris iiieet in

time balancin riet work. m) two (A leave m~ vati "Ire ill thle (0omparison1 net work. arid
bo0th tokens leave inr thle balaninrg neitwork. ()it every gate where t w()1 I'sine(t ini tit(e

comHparisoni network, nro tokt 15i iect ill the I a LaI ng liet wtrk . so tw wI'1s leave onI eatch
wire ill thle compuiarisoni network, arid rio t okeris leave inl thle balancing id work. On every
gate where a 0 arid I iiee iln thle ctr ~i:,oi iiet ork . I lie 0 leaves oni thre lower wire and
the I oil the uipper wire, while ill t ie(balancing net work thle t okern leaves onl th l ower

wire, arid rio oken oil the urpper wire.

If tire balancing network is a coii nrg rndtwork, ixe.. it has thle step p~roperlyv. then

the comparison mmwk nuiist have smt e thle inipnt sequnce of 0's ain(l I's. U

Corollary 2.5 The depth of any counting network is at least fl(log n).

3 A Bitonic Counting Network

Counting networks, of course, would not be interesting if we could not exhibit -xamples of
constructible networks. In this section we describe how to construct a counting network
whose width is any power of 2. The layout of this network is isomorphic to Batcher's
famous Bitonic sorting network [5, 71. though its behavior and correctness argumen..
are completely different. We give an inductive construction, as this will later aid us in
proving its correctness.

Define the width w balancing network MERGER[w] as follows. It has two sequen-(s
of inputs of length w/2, x and x', and a single sequence of outputs y, of length i.
MERGER[w] will be constiucted to guarantee that in a quiescent state where the se-
quences x and x' have the step property, y will also have the step property, a fact which
will be proved in the next section.

We define the network MERGER[w] inductively (see example in Figure 4). Since
w is a power of 2, we will repeatedly use the notation 2k in place of w. When k is
equal to 1, the MERGER[2k] network consists of a single balancer. For k > 1, we
construct the MERGER[2k] network from two MERGER[k] networks and k balancers.
Using a MERGER[k network we merge the even subsequence xo, x2... ,xk-2 of x withI x/ - is the input, to the
the odd subsequence x',3 k_ (i.e., 0, ... , xk-2,xl,. • . ,x' Is
MERGER[k] network.) while with a second MERGER[k] network we merge the odd sub-
sequence of x with the even subsequence of x'. Call the outputs of these two MERGER [k]
networks z and z'. The final stage of the network combines z and z' by sending each
pair of wires zi and z' into a balancer whose outputs yield y2i and Y2,+1.

The MERGER[w] network consists of log tv layers of w/2 balancers each. MERGER[w]
guarantees the step property on its outputs only when its inputs also have the step
property- but we can ensure this property by filtering these inputs through smaller
counting networks. We define BITONIc[w] to be the network constructed by passing
the outputs from two BITONIC[w/2] networks into a MERGER[w) network, where the
induction is grounded in the BITONIC[1] network which contains no balancers and simlply
passes its input directly to its output. This constrtction gives us a network consisting
of (,og J+1) layers each consisting of iv/2 balancers.

8

xX I -Y X.X 2 Y

X 3 yY X 2 Y

N, X3

Merger[41x6 Y b Xr,

Merger[8] Merger[8]

Figure 4: A MERGER [8] balancing network.

3.1 Proof of Correctness

In this section we show that B wro;lr[w] is a counting network. Before examining the
network itself, we present some simn)le lemmas about sequences having t he step property.

Lemma 3.1 If a sequence has the step) prop(rty. then so do all its subsquce.,.

Lemma 3.2 If Xo, ... ,x- _ has the step property, then its even and odd subsequ(rncts
satisfy:

"= = 0 =O i=O

Proof: Either X2 i X2 i~l for 0 < I < k/2, or by Lemmna 2.2 there exists a iqiue
j such that x2j = x2j+ + 1 and x2i = X2i+l for all i j, 0 < i < k/2. In the
first case, 2 x2i = 2 x2i+l = 2 xj/2, and in the second case -12i = [x, 1/21 and
E x2 1 L •xi/2.

Lemma 3.3 Let Xo, . . . , xk- and Yo, Yk-1 be arbitrary sequences havrig the strp
property. If :kI X, = T-i= yi, then x, y1 for all 0 < i < k.

Proof: Let m = xi =F yi. By Lemma 2.2, xi = y = k 1

Lemma 3.4 Let Xo, ... ,xk 1 and yo, ..- ,Yk-1 be arbitrary sequences having the step

property. I xi o Y + 1, then there exists a unique j, 0 < j < k, such that
Xj = yj + 1, and xi = yj for i 7 j, 0 < i < k.

9

Proof: Let m = = y+ 1. By Lemma 2.2, x, = r-]and yi = [i]

These two terms agree for all i, 0 < i < k, except for the unique i such that i = m - I
(mod k). U

We now show that the MERGER[w] networks preserves the step property.

Lemma 3.5 If MERGER[2k] is quiescent, and its inputs xs,. . ., xk-1 and x',... , x'
both have the step property, then its outputs YO. ., y2,-1 have the step property.

Proof: We argue by induction on log k.

If 2k = 2, MERGER[2k] is just a balancer, so its outputs are guaranteed to have the
step property by the definition of a balancer.

If 2k > 2, let zO,.. . , zk-1 be the outputs of the first MERGER[k] subnetwork, which
merges the even subsequence of x with the odd subsequence of x', and let z0,... , I-/
be the outputs of the second. Since x and x' have the step property by assumption, so
do their even and odd subsequences (Lemma 3.1), and hence so do z and z' (induction
hypothesis). Furthermore, E zi = [E xi/2 + [E x'/2J and E z = [Ex/2J + [Ex'121
(Lemma 3.2). A straightforward case analysis shows that E zi and E z' can differ by at
most 1.

We claim that 0 < yi - yj < 1 for any i <j. Ifzi = E z, then Lemma 3.3 implies
that zi z for 0 < i < k/2. After the final layer of balancers,

yi - yj = Z~i/2] - ZUj/2j,

and the result follows because z has the step property. Similarly, if E zi and E z' differ
by one, Lemma 3.4 implies that zi = z for 0 < i < k/2, except for a unique j such that
zj and z differ by one. The difference 0 < y, - yj <1 for any i < j can be expressed as
the difference between earlier and later terms either of z or of z', and the result follows
because these two sequences both have the step property.

The proof of the following theorem is now immediate.

Theorem 3.6 In any quiescent state, the outputs of BITONIC[w] have the step property.

10

4 A Periodic Counting Network

In this section we show that the bitonic network is not the only counting network with
depth O(log2n). We introduce a new counting network with the interesting property
that it is periodic, consisting of a sequence of identical subnetworks. Each stage of this
periodic network is interesting in its own right, since it can be used to achieve barrier
synchronization with low contention. This counting network is isomorphic to the elegant
balanced periodic sorting network of Dowd, Perl, Rudolph, and Saks [6]. However, its
behavior, and therefore also our proof of correctness, are fundamentally different.

We start by defining chains and cochains, notions taken from [6]. Given a sequence
x = {xili = 0,... ,n - 1}, it is convenient to represent each index (subscript) as a
binary string. The level i chain of x is the subsequence of x whose indices have the
same i low-order bits. For example, the subsequence x E of entries with even indices is a
level 1 chain, as is the subsequence x0 of entries with odd indices. The A-cochain of x
denoted xA, is the subsequence whose indices have the two low-order bits 00 or 11. For
example, the A-cochain of the sequence x 0,. .. , x7 is x0 , x3 , x 4 , x7 . The B-cochain xB is
the subsequence whose low-order bits are 01 and 10.

Define the network BLOCK[k] as follows. When k is equal to 2, the BLOCK[k] not-
work consists of a single balancer. The BLOCK[2k] network for larger k is constructed
recursively. We start with two BLOCK[ki networks A and B. Given an input sequence
x, the input to A is xA, and the input to B is xB. Let y be the output sequence for the
two subnetworks, where yA is the output sequence for A and yB the output sequence for
B. The final stage of the network combines each y4 and yB in a single balancer, yielding
final outputs z 2i and z 2i+ 1 . Figure 5 describes the recursive construction of a BLOCK [8]
network. The PERIODIC[2k] network consists of log k BLOCK[2k] networks joined so
that the ith output wire of one is the I h wire of the next. Figure 6 is a PERIODIC[8]
counting network 3

This recursive construction is quite different from the one used by Dowd et al. We
chose this construction because it yields a substantially simpler and shorter proof of
correctness.

4.1 Proof of Correctness

In the proof we use the technical lemmas about input and output sequences presented
in Section 3. The following lemma will serve a key role in the inductive proof of our
construction:

3 Despite the apparent, similarities between the layouts of the BLOCK and MERGER networks, there
is no permutalion of wires that yields one from the other.

11

X I Y I

X3

V
X4 " Y4 x4 W,.

x6- Block[4] Y6 X6

X7 -Y7 X7 Y i

block[8] Block[8]

Figure 5: A BLOCK [8] balancing network.

Lemma 4.1 For i > 1,

1. The level i chain of x is a level i - 1 chain of one of x 's cochains.

2. The level i chain of a cochain of x is a level i + 1 chain of x.

Proof: Follows immediately from the definitions of chains and cochains. a

As will be seen, the price of modularity is redundancy, that is, balancers in lower level
blocks will be applied to sub-sequences that already have the desired step property. We
therefore present the following lemma that amounts to saying that applying balancers
"evenly" to such sequences does not hurt:

Lemma 4.2 If x and x' are sequences each having the step property, and pairs xi and
I

x, are routed through a balancer, yielding outputs yi and y', then the sequences y and y'
each have the step property.

Proof: For any i <j, given that x and x' have the step property, 0 < xi - x, < 1 and
0 < x < - lx' < 1 and therefore the difference between any two wires is 0 < xi+ - (xj +

xj) < 2. By definition, for any i, y, = f] and y' = I and so for any i < j, it
is the case that 0 < y2 - yj :_ 1 and 0 < y' - y !< 1, implying the step property. U

To prove the correctness of our construction for PERIODIC[k], we will show that if a
block's level i input chains have the step property, then so do its level i - 1 output chains.
for i in {O,. .. , log k-l}. This observation implies that a sequence of log k BLOCK[k]
networks will count an arbitrary number of inputs.

12

Lemma 4.3 Let BLOCK[2k] be quiescent with input sequence x and output sequence y.
If xE and x° both have the step property, so does y.

Proof: We argue by induction on log k. The proof is similar to that of lemma 3.5.

For the base case, when 2k = 2, BLOCK[2k] is just a balancer, so its outputs are
guaranteed to have the step property by the definition of a balancer.

For the induction step, assume the result for BLOCK[k] and consider a BLOCK[2k].
Let x be the input sequence to the block, z the output sequence of the nested blocks A
and B, and y the block's final output sequence. The inputs to A are the level 2 chains
xEE and x° ° , and the inputs to B are xEO and xOE. By Lemma 4.1, each of these is a
level 1 chain of xA and xB. These sequences are the inputs to A and B, themselves of
size k, so the induction hypothesis implies that the outputs zA and zB of A and B each
has the step property.

Lemma 3.2 implies that 0 < ZxEE - ZXEO < 1 and 0 < Zx°OE X°° < 1.
It follows that the sum of A's inputs, xE E + Zx°° , and the sum of B's inputs,
SxE ° + x°° , differ by at most 1. Since balancers do not swallow or create tokens,
z A and E zB also differ by at most 1. If they are equal, then Lemma 3.3 implies that

z4 - z4 = Z2i = Z2i+l. For i < j,

A A
Yi - Yj -" Zi/2j - z~j/2j

and the result follows because zA has the step property.

Similarly, if E z and E zP differ by one, Lemma 3.4 implies that zA = zB for
0< i < k, except for a unique ' such that z and 4 differ by one. If i < j and i : 21
and j 5 2 + 1, then y, - yj is equal to the difference between earlier and later terms of
either zA or zB, and the result follows because the latter have the step property. Finally,
since zi and z, are joined by a balancer in the last layer, Y2t - Y2t+i = 1, and the result

is established. M

Theorem 4.4 Let BLOCK[2k] be quiescent with input sequence x and output sequence
y. If all the level i input chains to a block have the step property, then so do all the level
i - 1 output chains.

Proof: We argue by induction on i. Lemma 4.3 provides the base case, when i is 1.

For the induction step, assume the result for chains up to i - 1. Let x be the input
sequence to the block, z the output sequence of the nested blocks A and B, and y the
block's final output sequence. If i > 1, Lemma 4.1 implies that every level i chain of x
is entirely contained in one cochain or the other. Each level i chain of x contained in xA

13

fSt Slock(8I 2nd Slockl8l 3rd BlocklSi

X0 Yo

- T Y0

X2- i Y

X5 -5

X6 Y

x7 - y

Figure 6: A PERIODIC [81 counting network.

(xB) is a level i - 1 chain of xA (xB), each has the step property, and each is an input to

A (B). The induction hypothesis applied to A and B implies that the level i - 2 chains
of zA and zB have the step property. By Lemma 4.1 implies that the level i - 2 chains
of zA and zB are the level i - I chains of z. By Lemma 4.2, if the level i - 1 chains of z
have the step property, so do the level i - 1 chains of y. M

By Theorem 2.4, the proof of Theorem 4.4 constitutes a simple alternative proof that
the balanced periodic comparison network of [6] is a sorting network.

5 Implementation and Applications

In , MIMD shared-memory architecture, a balanrer can be represented as a record
with two fields: toggle is a boolean value that alternates between 0 and 1, and next is
a 2-element array of pointers to successor balancers. A balancer is a leaf if it has no
successors. A process shepherds a token through the network by executing the procedure
shown in Figure 7. It toggles the balancer's state, and visits the next balancer, halting
when it reaches a leaf. Advancing the toggle state can be accomplished either by a short

critical section guarded by a spin lock4 , or by a read-modify-write operation (rmw for
short) if the hardware supports it. Note that all values are bounded.

We illustrate the utility of counting networks by constructing highly concurrent im-
plementations of three common data structures: shared counters, producer/consumer
buffers, and barriers. In Section 6 we give some experimental evidence that counting
network implementations have higher throughput than conventional implementations
when contention is sufficiently high.

4 A spin lock is just a shared boolean flag that is raised and lowered by at most one processor at a
time, while the other processors wait.

1.1

balancer = [toggle: boolean, next: array [0..1] of ptr to balancer]
traverse(b: balancer)

loop until leaf(b)
i rmw(b.toggle := -' b.toggle)

b := b.next[i]
end loop

end traverse

Figure 7: Code for Traversing a Balancing Network

5.1 Shared Counter

A shared counter [9, 8, 13, 261 is a data structure that issues consecutive integers in
response to increment requests. More formally, in any quiescent state in which m incre-
ment requests have been received, the values 0 to m - 1 have been issued in response. To
construct the counter, start with an arbitrary width-w counting network. Associate an
integer cell ci with the ith output wire. Initially, ci holds the value i. A process requests
a number by traversing the counting network. When it exits the network on wire i, it
atomically adds w to the value of ci and returns ci's previous value.

TLemmas 2.1 and 2.3 imply that:

Lemma 5.1 Let x be the largest number yet returned by any increment request on the
counter. Let R be the set of numbers less than x which have not been issued to any
increment request. Then

1. The size of R is no greater than the number of operations still in progress.

2. If y E R, then y > x - wRI.

3. Each number in R will be returned by some operation in time A • d + Ac, where
d is the depth of the network, A is the maximum balancer delay, and Ac is the
maximum time to update a cell on an output wire.

5.2 Producer/Consumer Buffer

A producer/consumer buffer is a data structure in which items inserted by a pool of m
producer processes are removed by a pool of m consumer processes. The buffer algorithm
used here is essentially that of Gottlieb, Lubachevsky, and Rudolph [13]. The buffer is

15

a w-element array buff [O..w - 1]. There are two w-width counting networks, a producer
network, and a consumer network. A producer starts by traversing the producer network,
leaving the network on wire i. It then atomically inspects buff [i], and, if it is 1, replaces
it with the produced item. If that position is full, then the producer waits for the item
to be consumed (or returns an exception). Similarly, a consumer traverses the consumer
network, exits on wire j, and if buff[j] holds an item, atomically replaces it with I. If
there is no item to consume, the consumer waits for an item to be produced (or returns
an exception).

Lemmas 2.1 and 2.3 imply that:

Lemma 5.2 Suppose rn producers and rn' consumers have entered a producer/consumrr
buffer built out of counting networks of depth d. Assume that the time to update cach
buff [i] once a process has left the counting network is negligible. Then if rn < in', every
producer leaves the network in time 2dA. Similarly, if ?n > in', every consumer leavcs

the network in time 2dA.

5.3 Barrier Synchronization

A barrier is a data structure that ensures that no process advances beyond a particular
point in a computation until all processes have arrived at that point. Barriers are often
used in highly-concurrent numerical computations to divide the work into disjoint phases
with the property that no Drocess executes phase i while another process concurrently
executes phase i + 1.

A simple way to construct an n-process barrier is by exploiting the following key
observation: Lemma 2.3 implies that as soon as some process exits with value n, the
last phase must be complete, since the other n - 1 processes must already have entered
the network.

We present a stronger result: one does not need a full counting network to achieve
barrier synchronization. A threshold network of width w is a balancing network with
input sequence xi and output sequence yi, such that the following holds:

In any quiescent state, y,,-i = rn if and only if mw < F_ x, < (7n + 1)w.

Informally, a threshold network can "detect" each time w tokens have passed through
it. A counting network is a threshold network, but not vice-versa.

Both the BLOCK[w] network used in the periodic construction and the MERGER[w]
network used in the bitonic construction are threshold networks, provided the input.
sequence satisfies the following smoothness property:

16

A sequence xo, ... , x,,-, is smooth if for all i < j, Ix; - rj < 1.

Every sequence with the step property is smooth, but not vice-versa. The following
two lemmas state that smoothness is "ste'le" under partitioning into subsequences or
application of additional balancers.

Lemma 5.3 Any subsequence of a smooth sequence is smooth.

Lemma 5.4 If the input sequence to a balancing network is smooth, so is the output
sequence.

Proof: It is enough to observe that if the inputs to a balancer differ by at most one,
then so do the outputs. M

Theorem 5.5 If the input sequence to BLOCK[w] is smooth, then BLOCK[w] is a thresh-
old network.

Proof: Let xi be the block's input sequence, zi the output sequence of nested blocks
A and B, and yi the block's output sequence.

We first show that if yw-I = m, then m w < E xi < (m+ 1)w. We argue by induction
on w, the block's width. If w = 2, the result is immediate. Assume the result for w = k
and consider BLOCK(2k in a quiescent state where Y2k-1 = m. Since x is smooth by
hypothesis, by Lemma 5.4 so are z and y. Since Y2k-i and Y2k-2 are outputs of a common
balancer, Y2k-2 is either m or m + 1. The rest is a case analysis.

If Y2k-1 = Y2k-2 = m, then Z2k-1 = z2k-2 = m. By the induction hypothesis and
Lemma 5.3 applied to A and B, mk < E xaA < (m + 1)k and mk < T xP < (m + 1)k,
and therefore 2mk < F x + F xi3 < 2(m + 1)k.

If Y2k2 = n + 1, then one of zi and z!' is m, and the other is m + 1. Without
loss of generality suppose zA = m + 1 and zP = m. By the induction hypothesis,
(m + 1)k <)x 4 < (m+±2)k and mk <xi < (m + 1)k. Since x is smooth, by

Lemma 5.3 xB is smooth and some element of xB must be equal m, which in turn
implies that no element of xA exceeds m + 1. This bound implies that (m + 1)k x 4A.
It follows that 2mk + k < Exz + E]xB < 2(m + 1)k, yielding the desired result.

We now show that if mw < E xi < (m + 1)w, then y,,-, = in. We again argue by
induction on w, the block's width. If w -- 2, the result is immediate. Assume the result
for w = k and consider BLOCK[2k] in a quiescent state where 21nk < E x, < 2(m + 1)k.
Since x is smooth, by Lemma 5.4 m < Y2N-1. Furthermore, since x is smooth, by
Lemma 5.3, either mk < Nx 4 < (m ± 1)k and mk< Ex'x - (,7 + 1)k -r -ice versa,
which by the induction hypothesis implies that zA I + zB 1 < 2m + 1. It follows that

Y2k-l <m I+ 1, which completes our claim. U

17

The proof that the MERGER[w] network is also a threshold network if its inputs are
smooth is omitted because it is almost identical to that of Theorem 5.5. A threshold
counter is constructed by associating a local counter ci with each output wire i, just as
in the counter construction.

We construct a barrier for n processes, where n = 0 mod w, using a width-w threshold
counter. The construction is an adaptation of the "sense-reversing" barrier construction
of [14] as follows. Just as for the counter construction, we associate a local counter c,
with each output wire i. Let F be a boolean flag, initially false. Let a process's phase
at a given point in the execution of the barrier algorithm be defined as 0 initially, and
incremented by i every time the process begins traversing the network. With each phase
the algorithm will associate a sense, a boolean value reflecting the phase's parity: true
for the first phase, false for the second, and so on. As illustrated in Figure 8. the token
for process P, after a phase with sense s, enters the network on wire P mod uw. If it
emerges with a value not equal to n- I mod n, then it waits until F agrees with s before
starting the next phase. If it emerges with value n - 1 mod n, it sets F to s, and starts
the next phase.

As an aside, we note that a threshold counter implemented from a BLOCK(k] network
can be optimized in several additional ways. For example, it is only necessary to associate
a local counter with wire w-1, and that counter can be modulo n rather than unbounded.
Moreover, all balancers that are not on a path from some input wire to exit wire w - 1
can be deleted.

Theorem 5.6 If P exits the network with value n after completing phase €, then every
other process has completed phase 0, and no process has started phase 0 + 1.

Proof: We first observe that the input to BLOCK[w] is smooth, and therefore it is a
threshold network. We argue by induction. When P receives value v = n at the end of
the first phase, exactly n tokens must have entered BLOCK[w], and all processes must
therefore have completed the first phase. Since the boolean F is still false, no process has
started the second phase. Assume the result for phase 0. If Q is the process that received
value n at the end of that phase, then exactly O n tokens had entered the network when
Q performed the reset of F. If P receives value v = n at the end of phase € + 1, then
exactly (0 + 1)n tokens have entered the network, implying that an additional n tokens
have entered, and all n processes have finished the phase. No process will start the next
phase until F is reset.

18

barrier()
v := exit wire of traverse(wire P mod w)
ifv=n-1 (modw)

then F := s
else wait until F = s
end if

S

end barrier

Figure 8: Barrier Synchronization Code

6 Performance

6.1 Overview

In this section, we analyze counting network throughput for computations in which
tokens are eventually spread evenly through the network. To ensure that tokens are
evenly spread across the input wires, each processor could be assigned a fixed input
wire, or processors could choose input wires at random.

The network saturation S at a given time is defined to be the ratio of the number
of tokens n present in the network (i.e. the number of processors shepherding tokens
through it) to the number of balancers. If tokens are spread evenly through the network,
then the saturation is just the expected number of tokens at each balancer. For the
BITONIC and PERIODIC networks, S = 2n/wd. The network is oversaturated if S > 1,
and undersaturated if S < 1.

An oversaturated network represents a full pipeline, hence its throughput is domi-
nated by the per-balancer contention, not by the network depth. If a balancer with S
tokens makes a transition in time A(S), then approximately w tokens emerge from the
network every A(S) time units, yielding a throughput of w/A(S). A is an increasing
function whose exact form depends on the particular architecture, but similar measures
of degradation have been observed in practice to grow linearly [3, 20]. The throughput
of an oversaturated network is therefore maximized by choosing w and d to minimize S,
bringing it as close as possible to 1.

The throughput of an undersaturated network is dominated by the network depth,
not by the per-balancer contention, since the network pipeline is partially empty. Ev-
ery O(1/S) time units, w tokens leave the network, yielding throughput O(wS). The
throughput of an undersaturated network is therefore maximized by choosing w and d
to increase S, bringing it as close as possible to 1.

19

70

60

50-

30-

.." B ito n ic [4]

20-

Bitonic[16]

10. Bitonic[81

0

0 10 20

concurrency (num. of proc.)

Figure 9: Bitonic Shared Counter Implementations

This analysis is necessarily approximate, but it is supported by experimental evi-
dence. In the remainder of this section, we present the results of timing experiments for
several data structures implemented using counting networks. As a control, we compare
these figures to those produced by more conventional implementations using spin locks
These implementations were done on an Encorc Multimax, using Mul-T [16], a parallel
dialect of Lisp. The spin lock is a simple "test-and-test-and-set" loop [21] written in as-
sembly language, and provided by the Mul-T run-time system. In our implementations,
each balancer is protected by a spin lock.

20

120

100-

80

~60
E

40- Spin-lock

Periodic[161

20 Periodic[4]

Periodic[8]

0.
0 10 20

concurrency (num. of proc.)

Figure 10: Periodic Shared Counter Implementations

6.2 The Shared Counter

We compare seven shared counter implementations: bitonic and periodic counting net-
works of widths 16, 8, and 4, and a conventional spin lock implementation (which can be
considered a degenerate counting network of width 2). For each network, we measured
the elapsed time necessary for a 220 (approximately a million) tokens to traverse the
network, controlling the level of concurrency.

For the bitonic network, the width-16 network has 80 balancers, the width-8 network
has 24 balancers, and the width-4 network has 6 balancers. In Figure 9, the horizontal
axis represents the number of processes executing concurrently. When concurrency is 1,

21

spin width 2 width 4 width 8
bitonic 57.74 17.51 10.44 14.2.5
periodic 17.90 12.03 19.99

Figure 11: Producer/Consumer Buffer Implementations

each process runs to completion before the next one starts. The number of concurrent
processes increases until all sixteen processes execute concurrently. The vertical axis rep-
resents the elapsed time (in seconds) until all 220 tokens had traversed the network. With
no concurrency, the networks are heavily undersaturated, and the spin lock's throughput
is the highest by far. As saturation increases, however, so does the throughput for each
of the networks. The width-4 network is undersaturated at concurrency levels less than
6. As the level of concurrency increases from I to 6. saturation approaches 1, and the
elapsed time decreases. Beyond 6, saturation increases beyond 1, and the elapsed time
eventually starts to grow. The other ietwo,:ks remain undersaturated for the range of
the experiment; their elapsed times cotinue to decrease. Each of the networks begins
to outperform the spin lock at concurrency it.vels between 8 and 12. When concurrency
is maximal, all three networks have throughiputs at least twice the spin lock's. Notice
that as the level of concurrency increases, the spin lock's performance degrades in an
approximately linear fashion (because of increasing contention).

The performance of the periodic network (Figure 10) is similar. The width-4 network
reaches saturation 1 at 8 processes; its throughput then declines slightly as it becomes
oversaturated. The other networks reniain undersaturated, and their throughputs con-
tinue to increase. Each of the counting networks outperforms the spin lock at sufficiently
high levels of contention. At 16 processes, the width-4 and width-S net works have almost
twice the throughput of the single spin-lock implementation. Each bitonic network has
a slightly higher throughput than its periodic counterpart.

6.3 Producer/Consumer Buffers

We compare the performance of several producer/constimer buffers implemented using
the algorithm of Gottlieb, Lubachevsky, and Rudolph [13] discussed in Section .5. Each
implementation has 8 producer processes, which continually produce items, and 8 -on-
sumer processes, which continually consume items. If a producer (consumer) process
finds its buffer slot full (emnpty), it spimis until the slot becomes empty (full).

We consider buffers with bitonic and periodic networks of width 2. 4. and S. As
a final control, we tested a circular buffer proteted by a single spin lock, a structure

99 "

Spin lock f Barrier 4 1 Barrier 8 Barrier 16
time (seconds) 62.05 43.53 41.27 42.32

Figure 12: Barrier Inplementations

that permits no concurrency between producers and consumers. Figure 6.2 shows the
time in seconds needed to produce and consume 220 tokens. Not surprisingly, the single
spin-lock implementation is much slower than any of the others. The width-2 network
is heavily oversaturated, the bitonic width-4 network is slightly oversaturated, while the
others are undersaturated.

6.4 Barrier Synchronization

Figure 12 shows the time (in seconds) taken by 16 processes to perform 21' barrier
synchronizations. The remaining columns show BLOCK[k] networks of width 4, 8. and
16. The last column shows a simple sense-reversing barrier in which the BLOCK network
is replaced by a single counter protected by a spin lock. 'file three network barriers are
equally fast, and each takes about two-thirds the time of the spin-lock implenientation.

7 Verifying That a Network Counts

The "0-1 law" states that a comparison network is a sorting network if (and only if)
it sorts input sequences consisting entirely of zeroes and ones, a property that greatly
simplifies the task of reasoning about sorting networks. In this section, we present an
analogous result: a balancing network having in balancers is a counting network if (and
only if) it satisfies the step property for all sequential executions in which up to 2 ' tokens
have traversed the network. This result simplifies rcasoning about counting networks,
since it is not necessary to consider all concurrent executions. However, as we show,
thc, number of tokens passed through the network in the longest of these sequential
executions cannot be less than exponential in the network depth.

We begin by proving that it suffices to consider only sequential executions.

Lemma 7.1 Let .s Ie a valid scheh(li of a giv'en balancing nctuio, k. Thcn thcr exists
a valid seque ntial schcduh s' .such that thc number of tokens vhich pass through (ach
balancer in s and s' is equal.

23

Proof: Let s = so- p. q . so, where so, sl are sequences of transitions, p and q are indi-
vidual transitions involving distinct tokens P and Q, and where "." is the concatenation
operator. If p and q do not occur at the same balancer, then so • q p - .sl is a valid
schedule. If p and q do occur at the same balancer, then so . q • p" s' is a valid schedule
where s' is constructed from sl by swapping the identities of P and Q. In each case we
can swap p and q without changing the preceding sequence of transitions so and without
changing the number of tokens that pass through any balancer during the execution.

Now suppose that s is a complete schedule. We will transform it into a sequential
schedule by a process similar to selection sorting. Choose some total ordering of the
tokens in s. Split s into so • to where so is the empty sequence and to = .s. Now
repeatedly carry out the following procedure which constructs si+l • ti+l from si • t':
while ii is nonempty let p be the earliest transition in t, whose token is ordered as less
than or equal to all tokens in ti. Move p to the beginning of tI by swapping it with
each earlier token in t, as described above, and let si+l = si "p and ti+l be the suffix of
the resulting schedule after p. This procedure is easily seen to maintain the following
invariant:

1. After stage i, si • ti is a valid schedule in which each balancer passes the same
number of tokens as :n ,.

2. After stage i, si is sorted by token.

Thus when the procedure terminates, we have a valid sequential schedule s' in which
each balancer passes the same number of tokens as in s. U

Theorem 7.2 A balavcing network with n balancers satisfies the step propcrty in all
executions if (and only ;f) it satisfics it in all scquential executions in which up to 2"'
tokens traverse the network.

Proof: Since by definition the step property depends only on the number of tokens
that pass through the network's output wires, it, follows from Lemma 7.1 that a balancing
network satisfies the step property in ali executions if (and only if) it satisfies it in all
sequential executions. It remains to be shown that verifying the step property in all
executions involving at most 2 ' tokens will suffice.

Consider sequential executions of a balancing network with 77? balancers. When the
network is quiescent, its state is completely characterized by specifying for each balancer
the output wire to which it will send the next token, yielding a maximum of 2"' distinct
quiescent states. In a sequential execution, each time a token traverses the network, it
carries the network from one quiescent state to another. Thus, in any execution, after
at most 2' tokens the network nust reenter it previously occupied state. U

24j

How tight is this bound? We now construct a balancing network that is not a
counting network, yet satisfies the step property for any execution in which the number
of tokens is less than exponential in the network depth.

First, consider the following balancing network STAGE [2w]. Take two counting net-
works A and B of width w having outputs wires a0 through a,,-1 and b0 through b,,-,
respectively. Add a layer of w balancers such that the i-th balancer has inputs ai and
b,,-l-j and outputs a' and b'_l1 i. The resulting network STAGE [2w] is not a counting
network; however, it is easily extended to one by virtue of the following lemma.

Lemma 7.3 For any input to STAGE [2w], there exists a permutation 7r, of the output
sequence ao; ... , a 1 and a permutation 7rb of the output sequence bo,... , bw such that
the sequence 7ra(a', . . , a/). 7r(bo, ... , b' 1) has the step property.

Proof: Let us begin by showing that the total inputs to any two balancers in the last
layer differ by at most 1. Since the sequences a0,..., a,_I and bo,... , b,,-I have the step
property, there exists a ca (similarly there exists a cb) such that ai = ao if i < c' and
ai= a0 - 1 if i > c'.

Suppose ca < w-l-cb. Then ai+b _ji ao+(bo-1) for i < ca, (aO-1)+(bo-1)
for c <i < w-l-c b, and (ao- 1)+b 0 fori > w-l - cb. A similar analysis shows
that when ca > w - 1 - c6 each ai + 6 w-l-_ is either ao + bo or ao + bo - 1.

Thus there is always a k such that every balancer in the last layer outputs either
k or k + 1 tokens. If k is even, then b' = k/2 for all i and a = a, + bw-,_i - k/2,
which is either k/2 or k/2 + 1. One can obtain a sequence with the step property by
setting 7ra to sort the values in a'. If k is odd, then each a' is (k + 1)/2 and each b is
a- 1- + b, - (k + 1)/2, which will be either (k + 1)/2 or (k + 1)/2 - 1. In this case
having 7rb sort the values in b' produces the desired result. U

By Lemma 2.2 it follows that

Corollary 7.4 For any m tokens input to STAGE [2w], Zw_ 1 a' = T 1 [rm -i/2w] and
-Y- ' - '[- i/2w.Y i=0 bI - ,--,=W

In other words, the total number of tokens that end up on the as,, at 1 (respectively
j...,b ,) output wires is the same as in a proper counting network.

An immediate consequence of the Lemma 7.3 and Theorem 7.2 is that if we pass
th t .. and b,... ,b 1 to two separate balancing networks, each of

which is isomorphic to a sorting network, we will obtain a (not very efficient) counting
network. But we are not interested in getting a working counting network; what we wish

25

to construct is a balancing network which counts all input sequences up to some bound,
but fails on sequences with more tokens.

We construct such a balancing network (denoted ALMOST [2w]) as follows. Take a

STAGE [2w] network and modify it by picking some x other than 0 or w - 1 and deleting
the final balancer between a, and b Denote this balancing network as STAGE'[2w].

Let ALMOST [2w] be the periodic network constructed from k stages, for some k > 0,
each a STAGE'[2w] network, the outputs of one stage connected to the inputs of the
next.

Let At and Bt be the sums of the number of tokens input to each of the two sub-

networks A and B in the t-th stage of ALMOST [2w]. Let y = {y0,... ,Y2w-1} be the

sequence given by y= [(A 0 + Bo - i)/2w (that is, yi is the number of tokens that
would exit on output wire i if ALMOST [2k] were a counting network). A, = E' yi,
and Boo E 2 =,-1 yi. Note that At+Bt = A 0 +B 0 = A,,+B.. for allt and that by
Lemma 2.2, [(Ao - i)/w 1 = y, and [(Boo - 1)/w] = yw+i for all i.

Finally, let the imbalance 6t = At - A.o = -(Bt - B.); this quantity represents
"how far" the network is from balancing the tokens between the A and B subnetworks
in stage t, in other words, how many excess tokens must be moved from the A part of
the network to the B part (clearly, if the quantity is negative then tokens should be
moved from B to A).

The following lemma follows from arguments almost identical to those of Lemma 5.4.

Lemma 7.5 If the input sequence to a balancing network has the step property, then so
does the output sequence.

Lemma 7.6 If 6 = 0 then the output sequences of stage t of ALMOST [2w] have the

step property.

Proof: If 6t = 0, then A= A,, so a, = [(At - i)/w = [(A, - i)/wl =y, for each
i (Lemma 2.2); similarly bi = yw+i and thus the outputs of the counting networks form
the sequence y. Since y has the step property it is left unchanged by the final laver of
balancers (Lemma 7.5). U

Lemma 7.7 6 [

Proof: If a balancer were placed between a' and b',_ after stage t, then the STAGE'[2zv]
network would become a STAGE [2w] counting network, and by Corollary 7.4, exactly
A,, tokens would emerge from the A half of the network after stage t + 1. Therefore,

removing the balancer shifts precisely this number of tokens (possibly negative) from
the B part of the network to the A part. U

2(6

Lemma 7.8 b5t+l = StIw + c where -1 < c < 5/2.

Proof: From Lemma 7.7 it follows that:

t+i -" [[(At - x)/wl - (Bt -(w -- x))/wl]

= [[(At-x)/w] - [(Bt+x)/wJ]

= [(At - x)w- (Bt+ x)/w +cl

At - Bt x +cl

2w w 2
2t + (A, - Bo) x cl- + +C2

2w w 2
st
W

where 0 <cx <2 and 0 < c2 < 1, which, adding 0 < Ao - B < w and 0 <x < w -1,

implies -1 < c < 5/2. U

Lemma 7.9 If 5 # 0 then ISt+iI < 1 j 1- 1.

Proof: It is clear from Lemma 7.7 that bt+l and St must have the same sign; thus we
need only show that b increases when it is negative and decreases when it is positive. By
definition, if St # 0 the sequence a0,... ,a,-1, b0,... , b,,,-i (recall these are the outputs
of the A and B parts in the t + 1-th STAGE' before the last layer of balancers) does not
have the step property. Since each of the sequences ao,. . , a,-i and bo,... , b,,,- 1 in itself
has the step property, the step property of ao,..., a,-1, bo,..., b,-1 must be violated in
one of the following two ways by some ai and bj:

1. ai < bj. Then St < 0 (or else y < ai < bj < yw+j which contradicts the step
property of y.) Furthermore, since ai > aw- and bo > b, it follows that bo > a.- 1,
and at least one token is moved from B to A by the balancer between those two
outputs, increasing S.

2. ai > bj + 2. Then bi > 0; furthermore a0 > ai > b + 2 > b,,- 1 + 2; thus the
balancer between ao and bw- will move at least one token from A to B, reducing

2.

27

a

Theorem 7.10 There exists a width-2w balancing network that has the step property in
all executions with up to w (k- 4) tokens, yet is not a counting network.

Proof: Lemmas 7.6 and 7.9 together imply that if 1btl <- s, then the outputs of stage
t + s will have the step property. We may conclude from Lemma 7.8 that It+1I <
I6tI/w + 5/2. Solving this recurrence yields the upper bound 16t4 < Ibow- + (5/2) - - '

Now suppose the network is given an input involving at most wt tokens. Then 16oI
cannot possibly exceed w, and after t stages ISt I < 1 + (5/2)w-,. < 5; since Jb must
be an integer, it follows that 6b, <4. Thus the outputs of stage t + 4 will have the step
property, and a network with k = t + 4 stages will count up to w (k - 4) tokens.

To see that this k-stage network is not a counting network, suppose 16o1 > 5w(k+l).
From Lemma 7.8 it follows that biS+1I > lbtl/w - 5/2, and solving as above yieldsl~k , (ow-k ' -¢/ -v(k_+I) k
Ibk+1I > 160 1W_(k+l) - (5/2)w-7 > 1. Since $ k+0l 0, the outputs of stage k (and
hence the entire network) cannot have the step property.

8 Discussion

Counting networks deserve further study. We believe that they represent a start toward
a general theory of low-contention data structures. Work is needed to develop other
primitives, to derive upper and lower bounds and new performance measures. We have
made a start in this direction by deriving constructions and lower bounds for linearizable
counting networks [15], networks which guarantee that the values assigned to tokens
reflect the real-time order of their traversals. Work is also needed in experimental
directions, comparing counting networks to other techniques, for example those based
on exponential backoff [1], and for understanding their behavior in architectures other
than the single-bus architecture provided by the Encore.

We close by raising an open question: does there exist an O(log n)-depth count-
ing network? From Theorem 7.2, one can easily show that "smoothing + sorting =
counting," that is, given a balancing network which smoothes its output sequence (see
Section 5.3), and a balancing network isomorphic to any sorting network, the balancing
network constructed by joining the outputs wires of the first to the input wires of the
second is a counting network (Karchmer and Klugerman [18] have recently used this ob-
servatio- to construct an O(log n log log n) depth counting network based on [2]). Since
it is known that there exists an O(log n)-depth sorting network [2], it follows that there

28

exists an O(log n)-depth counting network if and only if there exists an O(log n)-depth
smoothing network. '

9 Acknowledgments

Orli Waarts made many important remarks. The serialization lemma and the observa-
tion that smoothing + sorting = counting, are products of our cooperation with her and
with Eli Gafni, to whom we are also in debt. Our thank. to Heather Woll, and Shanghua
Teng for several helpful discussions, to Cynthia Dwork for her comments, and to David
Kranz and Randy Osborne for Mul-T support. Finally, the first and third authors wish
to tha-k David Michael Herlihy for remaining quiet during phone calls.

5Smoothing networks are interesting in their own right since they can be used as hardware solutions
to problems such as load balancing (cf. [23]).

29

References

[1] A. Agarwal and M. Cherian. Adaptive Backoff Synchronization Techniques 16th Sympo-
sium on Computer Architecture, June 1989.

[2] M. Ajtai, J. Komlos and E. Szemeredi. An O(nlogn) sorting network. In Proceedings of
the 15th ACM Symposium on the Theory of Computing, 1-9, 1983.

[31 T.E. Anderson. The performance implications of spin-waiting alternatives for shared-
memory multiprocessors. Technical Report 89-04-03, University of Washington, Seattle,
WA 98195, April 1989. To appear, IEEE Transactions on Parallel and Distributed Sys-
tems.

[4] J. Aspnes, M.P. ierlihy, and N. Shavit. Counting Networks and Multi-Processor Coor-
dination In Proceedings of the 23rd Annual Symposium on Theory of Computing, May
1991, New Orleans, Louisiana.

[5] K.E. Batcher. Sorting networks and their applications. In Proceedings of AFIPS Joint
Computer Conference, 32:338-334, 1968.

[6] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The Periodic Balanced Sorting Network
Journal of the ACM, 36(4):738-757, October 1989.

[7] T.H. Cormen, C.E. Leiserson, and R. L. Rivest. Introduction to Algorithms MIT Press,
Cambridge MA, 1990.

[8] C.S. Ellis and T.J. Olson. Algorithms for parallel memory allocation. Journal of Parallel
Programming, 17(4):303-345, August 1988.

[9] E. Freudenthal and A. Gottlieb Process Coordination with Fetch-and-Increment In Pro-
ceedings of the 4th International Conference on Architecture Support for Programming
Languages and Operating Systems, April 1991, Santa Clara, California. To appear.

[10] D. Gawlick. Processing 'hot spots' in high performance systems. In Proceedings COMP
CON'85, 1985.

[11] J. Goodman, M. Vernon, and P. Woest. A set of efficient synchronization primitives for a
large-scale shared-memory multiprocessor. In 3rd International Conference on Architec-
tural Support for Programming Languages and Operating Systems, April 1989.

[12] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir. The
NYU ultracomputer - designing an mimd parallel computer. IEEE Transactions on Com-
puters, C-32(2):175-189, February 1984.

[13] A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic techniques for the efficient coor-
dination of very large numbers of cooperating sequential processors. ACM Transactions
on Programming Languages and Systems, 5(2):164-189, April 1983.

30

[14] D. Hensgen and R.Finkel and U. Manber. Two algorithms for barrier synchronization.
International Journal of Parallel Programming, 17(1):1-17, 1988.

[151 M.P. Herlihy, N. Shavit, and 0. Waarts. Low-Contention Linearizable Counting. In 32th
IEEE Symposium on Foundations of Computer Science, October 1991, to appear.

[16] D. Kranz, R. Halstead, and E. Mohr. "Mul-T, A High-Performance Parallel Lisp", ACM
SIGPLAN '89 Conference on Programming Language Design and Impiementation, Port-
land, OR, June 1989, pp. 81-90.

[17] C.P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multiprocessors with
shared memory. In Fifth A CM SIGA CT-SIGOPS Symposium on Principles of Distributed
Computing, August 1986.

[18] M. Karchmer and M. Klugerman. An O(lognloglogn) depth counting network. In
preparation, MIT, May 1991.

[19] N.A. Lynch and M.R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms.
In Sixth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
August 1987, pp. 137-151. Full version available as MIT Technical Report MIT/LCS/TR-
387.

[20] J.M. Mellor-Cruiiiney and M.L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. Technical Report Technical Report 342, University of Rochester,
Rochester, NY 14627, April 1990.

[21] L. Rudolph, Decentralized cache scheme for an MIMD parallel processor. In 11th Annual
Computing Architecture Conference, 1983, pp. 340-347.

[22] J.M. Mellor-Crummey and M.L. Scott Synchronization without Contention In Proceedings
of the 4th International Conference on Architecture Support for Programming Languages
and Operating Systems, April 1991, Santa Clara, California. To appear.

[23] D. Peleg and E. Upfal. The token distribution problem. In 27th IEEE Symposium on
Foundations of Computer Science, October 1986.

[24] G.H. Pfister et al. The IBM research parallel processor prototype (RP3): introduction
and architecture. In International Conference on Parallel Processing, 1985.

[25] G.H. Pfister and A. Norton. 'hot spot' contention and combining in multistage inter-
connection networks. IEEE Transactions on Computers, C-34(11):933-938, November
1985.

[26] H.S. Stone. Database applications of the fetch-and-add instruction. IEEE Transactions
on Computers, C-33(7):604-612, July 1984.

[27] U. Vishkin. A parallel-design distributed-implementation (PDDI) general purpose com-
puter. Theoretical Computer Science, 32:157-172, 1984.

31

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Gameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

