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Abstract— A method for constructing dispersive, nonlinear mixture models for unidirectionally
fiber-reinforced composites is described herein. System nonlinearities in the treated example
result from nonlinear material properties of the constituents. The proposed model is a nonlinear
generalization of the linear model developed by Murakami and Hegemier (1936) for elastic
constituents. Model construction is based upon a homogenization technique which employs
multivariable asymptotic expansions in conjunction with certain weighted residual procedures. The
methodology furnishes the equations of motion, the appropriate initial and boundary conditions,
and a set of consistent rate constitutive relations. Model validation for linear and nonlinear
dynamic responses is accomplished by comparing predicted results for waveguide and wave-reflect
problems with the available experimental data or the data obtained by use of a detailed finite
element (FE) analysis. The validation studies reveal that the derived continuum model provides
good simulation of complex wave phenomena and fumnishes an economical alternative to detailed,

explicit FE models. The studies performed reveal the importance of wave dispersion and

attenuation phenomena in nonlinear as well as linear wave propagation in the composites.
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INTRODUCTION

Composites are "designer” materials in the sense that a designer has the freedom to prescribe the
material microstructure such that global response measures of interest are optimized for a given
load environment together with certain cosy/weight conswaints. Such designer tresdom, however,
creates a need for material response models which are synthesized directly from material and
geometrical information at the microstructural level. This need, in turn, stems from a desire 10
avoid a myriad of experiments which may be necessary to evaluate the material parameters
associated wiih puenoinenologicar models.

A situation of special interest to material designers concerns fiber-reinforced polymer and
metal-matrix composites subject to dynamic load environments. Within the context of such
materials and environments, response measures of swess wave attenuation and/or dispersion are
often sought. For such problem types, one of the earliest successful attempts to synthesize a
global response theory from microstructural information is due to Achenbach and Herrmann
(1968) who formulated a higher-order continuum model, known as the "effectve stiffness theory,”
to simulate elastic wave motion. Subsequent extensions and applications of this work were
conducted by Bartholomew and Torvick (1972), Hlavacek (1975), Achenbach (1975, 1976), and
Aboudi (1981). By modifying the original methodology Aboudi (1982, 1985) extended the linear
model to account for viscoplastic material response. In parallel to the effective stiffness theories,
attempts were made to develop nixture (muid-phase) continuum theories with microstructure. A
representative cross section of this subject includes the works by Martin et al. (1971), Choi and
Bedford (1973), Hegemier et al. (1973), Hegemier and Guritman (1973), Nayfen {1577),
Murakami et al. (1979), Nayfeh et al. (1984), and Murakami and Hegemier (1986).

To-date, the foregoing mixture theories have not been extended to model nonlinear matenal
responses for arbitrary wave motion. In view of the potential modeling capability of the mixture
descriptions, and in response to a perceived need, a preedure is illuszaied in ihis paper for the

mathematca. consiruction of a higher-order mixture description of nonlinear wave propagation in




unidirectional {iber-reinforced composites. The iesulting model incorporates wave dispersion,
wave attenuation, localized plastic flow, and effective anisotropy. For clarity of presentation, the
example construction treated herein is applied to a hexagonal array of fiber reinforcement and rate-
independent elastoplastic material nonlinearities. While the model construction procedure is
applicable to arbitrary fiber layout, rate-dependent material response, and interfacial slip, extension
and invesdgation of such cases are deferred to later publications.

The model constructon method treated herein is based upon a multi-scale homogenization
technique developed by Hegemier and Gurtman (1974) for waveguide propagation and by
Murakami and Hegemier (1986) for arbitrary linear wave motion. The methodology yields the
equations of motion, the appropriate initial and boundary conditions, and a set of consistent rate
constitutive relations. The derived continuum mixture theory is nonphenomenological in the sense
that the model is synthesized from the composite "microstructure” which consists of the fiber
material and geometrical properties, the interface properties, and the matrix properties.

A considerable effort is made to validate the resulting model subsequent to its derivation.
For this purpose, a numerical experiment is employed as the "exact" basis for comparisen. Here
numerica! predictions from the continuum description are compared with detailed finite element
(FE) results for several key time dependent boundary value problems. This task necessitated the
development of a special FE code for the model. The FE code DYNA2D (Hallquist, 1982) was
employed to generate the "exact” reference data; for this purpose a fine mesh was used to explicitly
model the composite microstructure.

In addition to information concerning accuracy, the validation calcuiations reveal some
interesting features regarding response characteristics associated with wave dispersion, wave
attenuation, localized plastic flow, and effective anisotropy. These calculations also furnish

enlightening information concerning computational efficiency.




FORMULATION

Consider a domain V with a uniaxial periodic array of fibers embedded in the matrix, as
illustrated in Fig. 1. The position vector X is described with respect to a rectangular Cartesian
coordinate system X;, i=1-3 with Tﬁl in the axial direction of the fibers. In the X5, X3-plane, a
typical cell that represents the geometrical microstructure of the composite is shown in Fig. 2 for a
hexagonal array. For notational convenience forms ( )@, a=1,2 denote quantiues associated with
material &; here a=1 represents fiber and a=2 represents matrix. The notation V is the gradient
operator with respect to X and (") = a( )/at will be employed in which T represents time.
Furthermore, overbars will designate dimensional quantities; the lack of overbars will indicate non-
dimensional quantities.

The governing relations for the displacement vector U (=3;) and the stress tensor 6 (=G;)) in
each material domain are:

(a) Equations of motion
E,;(“)+'f(“>=5(“)§(“), g@_ g@T i V@ )
where (@) (=f(®) is a constant body force, p(®) denotes mass density, and ( )T denotes

transposion of the tensor ( );

(b) Rate constitudve relations

d,(a) =C (a) (ep) . é(a) (u (a))

<i

in

1 T = (@)

@@= (V@ (Vi) 0V

t2]

where e(@) (=éij(a)) is the rate of deformation under the small strain assumption, and Ct¢p)
(=C, xi®P)) is a tangent modulus tensor which becomes a constant tensor C for elastic response;

(c) Interface continuity relations

-— -— - - =N , -
GO gDV W3O

)=9 o A I 4
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where Ap is the interface between fiber and matrix, ¥(1) (=V;(1)) denotes the outward normal on Ay,
and Q is the zero vector;

(d) Displacement boundary data on 8V, and traction data on dV where dV=0V oV is the
boundary of v,

(e) Initial conditions at t =0.

In eqns (1)-(4), the Cartesian components of V.g, C:¢, and V.o are gj; ;, Ci)kléklv and v 0,
respectively. The initial boundary value problem defined by the relations (a)-(e) on V=(Vho
V@) is well posed.

Most domains of practical interest contain a mulritude of fibers; for such domains, a direct
numericai finite element solution becomes intractable even with the use of supercomputers. In an
effort to alleviate this problem, a higher-order mixture model is developed to describe the average
deformation for both fiber and matrix simultaneously, along with higher order micro-structural
deformations. This procedure was successfully applied to elastic response of fiber-reinforced

composites with a hexagonal array of fibers by Murakami and Hegemier (1986). In what follows,

the above model is extended to include inelastic response of the constituents, eqn (2).

MODEL DEVELOPMENT

The multivariable field representation
The derivation of the model commences with a scaling of both dependent and independent
variables. To this end, it will be convenient to nondimensionalize the basic equations by using the

following quantities (Hegemier and Gurtman, 1974):




A typical macrosignal wavelength

A typical fiber spacing or cell dimensiori
C(m) » Plmy reference wave velocity and macrodensity
= - 2.

E @ = Pm) C(m)~ reference modulus

by = A / C(m) : typical macrosignal travel time

€= A/A : ratio of micro-to-macrodimensions

With the aid of the above notaton, nondimensional variables are introduced according to:
(x, u)y=(x, T¥)y/a, =1/

(m)’

@ = (@ ,=

@_ 7 T, .

The periodicity of both fiber array structure and material properties define a cell in the
X2,X3-plane as shown in Fig. 2. The field variables in the composite exhibit significant variatuon
over two length scales: the global and cell geometry. Further, an order of magnitude difference in
the two length scales, suggests the use of a multiscale or multivariable asymptotic technique
(Babuska, 1976; Tartar, 1977; Benssousan et al., 1978; Hegemier et al., 1979; Sanchez-Pualencia,
1980; Murakami et al., 1981). One introduces microposition vector x*:

X*=x/¢ (6)

Field variables are now considered to be functions of both macro-and microposition vectors:
1 (1= (x, x5 15¢) )
where xe V and x*€ A(@). The cell domain is heterogeneous in the x*-space and consists of A}
and A®@ occupied by the fiber and matrix, respectively; the macrodomain V in the x-space becomes
huinogeneous and is shared by the two constituents. Homogeneity of geometrical and material
properties in the xj-direction eliminates x;* dependence in eqn (7); heterogeneity is manifested

only in the xj, x3-plane. Consequently, spatial derivatives take the new form:




-~ 1 ~ .
Vq(a)=Vq(a)+ —V*q(u) 8)
£

where V* is the gradient operator with respect to x*, and ( ),;» =9( )/0x, =0. In the sequel q will
be written as q for notational simplicity.

The operations (7) and (8) when applied to all field variables, nondimensionalized by eqn
(5) lead to the following synthesized field equations:

(a) Equations of motion

1 ‘ . T .
v. c(u)+—V‘- <,«m)ﬁ_ f(cL)=p (a) u(a), G(a) ___O,(a) in V and Axu) ©)
€

(b) Rate counstitutive relations

@@ oy @ e (@) in v oand A© (10)
£
where
. i )
e(u(u))=-;-{Vu(a)+(Vu(a))T} (11a)
. 1 i W
e (u®) =z (Ve @ a(veu') (11b)
(¢) Interface contnuity relations
u@ uP20, v (s®.6Wy=0 on A (12)

I

where v*(1) is a unit outward normal to A(1):
(d) Displacement boundary data on 9V, and traction data on oV;
(e) Inidal conditions at t=0.
In eqns (9)—(11) it is understood that ( ),;»=0. The synthesized field vanables (7) are now
continuous with respect to x in V and may be piecewise continuous with respect to x* in the cell
due to the heterogeneity of the composite.

At this point, the variation of field variables which satisfy the periodicity with respect to x*
is assumed. According to this condition field variables take equal values on opposite sides of the

cell boundary. Let the fundamental translation vectors of the periodic array in the x5, x3-plane be




denoted by ed; and ed;. In the x5*, x3*-plane d; and d» become the fundamental translation
vectors (for example, Kittel, 1971). Employ.ing the direct notation x=(x, X3, X3), x*=(0, x»*,
x3*) the x*-periodicity condition for a general cell with the above fundamental anslation vectors
is expressed as

q(x,x*,t)=q(x,x*+m1d1+m2d2,t) (13)
where m; and mj, take *1 or 0.
The cell domain in the x,*, x3*-plane consists of subdomains A(1) and A(2). Let the volume (area)
fraction of material a be denoted by n(®); it satisfies

]
n'V 4 a2 (14)

For a hexagonal array the actual cell may be modeled as two concentric cylinders without loss of
accuracy in dispersion spectra. For the concentric cylinders model the cell subdomains, A(1) and

A®), are represented as

AV = ((rey1 0sr<n L, 008 <) (132)
AP = ((r,0)1 Jn <r<1, 056 <2} (15b)

where (r, 8) are polar coordinates defined in the Xo*, Xx3*-plane such that

2 2
r X¥ 4 x*S

tan 6 = x"‘3 / x*._, (15¢)
For the concentric-cylinders model the cell boundary is denoted by r=1 and the periodicity
condition (13) simplifies as follows:
q(x,r,0,t) = q(x,r,0+m,t) onr=1 (16)
When Fourier transforms are applied to both spatial variable x and time t, the x*-
periodicity (13) takes the same form as the Floquet and Bloch theorems for harmonic wave in
periodic structures (Brillouin, 1946; Kohn et al., 1972). Although equation (13) compromises the
ability to capture micro-boundary layer effects on a cell-scale, it provides an economical model for

predicting global boundary layer effects on a scale of down to a few cell lengths (Murakami,

1990), which is sufficient in most problems of interest.




Weighted residual procedure

In this subsection, a weighted residual procedure is inroduced. This procedure will be
subsequently used to eliminate x* from all field variables through an averaging operation, and 0
establish appropriate equations of motion for the resultng average fields.

To begin, let w(®@), a=1,2, denote the space of all H!-functions (for example, Hughes,
1987) q(x, x*; t) on V with respect to x and on A(®) with respect to x* that are x*-periodic

according to eqn (13). Functions q(1) and q(?) may suffer a discontinuity on the interface A Any

13
i

vector u(® whose components u(@e y(® with u(@=4(®) on IV (@), where U@ is the specified
boundary displacement vector, will be called an admissible trial displacement. Any functior duid
whose component du;(®e y(® with du(@®=0 on 3V (@ will be called a weighting function or an
admissible variation of u;(®.
Next, consider the weighted residual R defined by
J'[z J’(v-a(“’+lv*. 6@ @ @@y 5 @ g
v £

a=1 ()
A

1 2 2 2 1 1 2 1 2
--J'v*( )-c( ).Su( )ds*+—- J’[;v*(l)-(c( )-Gm)~(5u( )+6u( ’)
E -

dA A‘
+ _i.v*“’. (6 P+a®y-T*). (5u®-5u")) ds*] av
2
+J{Zf(“T(“)-v-c‘“’)-Su(°’dA*}dA=R (17)
aVT a=1A(u)

where dV=dx;dxadxy, dA*=dx,*dx3*, JdA is the cell boundary, ds* is an infinitesimal line
element, v*(2) is a unit outward normal to A(?), and VT(®) denotes the traction vector acting on an
infinitesimal surface element dA with a unit outward normal ¥ on oV . By virtue of the x*-

periodicity the integrations with respect to macrocoordinates x are carried out over the entire




domain V, while that with respect to the microcoordinates x* is performed over the cell subdomain
Al

If R=0 is satisfied for all admissible du(®) which satisfy (13) and are arbitrary over V, on
dV, and on A(®), then it is evident that weak solution of the local equations of motion (9) have

been generated. These weak solutions then satisfy the traction boundary condition specified in (d)

on gV and the traction contnuity (12) on A;.

From (17) with R=0, Gauss' theorem, and the x*-periodicity condition (13), one obtaiis

J'[Z J.{(Se(“)+18e*(“)):c(“"-au‘“).(f(“’-p‘“)ij(“’) b aas
v €

(1=1A(a)
. 2
e f( Su®-su). T*ds* ] dv = J‘ > jBu @ v @ gax} da (18)
€ Aq BVT 0-=1Am,
where the component of de:s is 8¢y, and
1
Se @ = (Vou @+ (Vau@)), s =% (V*du P+ (V= Su *)T) (19)

Equation (18) can be cnvisioned as the principle of virtual work for the synthesizeu fields.
This principle furnishes a useful tool for generating the equations of motion associated with any

order of contnuum models.

Asymptotic analysis

In oider to generate a continuum madel from (18), the assumed x*-dependency of the
displacement field must be described explicitly. The necessary microstuctural informadon for this
operation was obtained for elastic response of composites with a hexagonal array of fibers by an
asymptotic procedure (Murakami and Hegemier,1986). This procedure is based upon the preinise
that the typical cell length is mi.ch smaller than the macrodimension, e<<1. Therefore, the form of
scaled eqns (9)-(12) sugg:st the expansion of the dependent variables in the asymptotic series

(Lene and Leguillon, 1982):

10




(

, ( .
u ")(x,x*,t's):utg))(x,x*,t)ﬁ-eu‘a)

- (a)
(1)(x,x",I,+E u(ﬁ)(x,x*,t)f... (20a)

1 , « .
G(a)(x,X*,[,é):—d’ii))(x,x*,t)+0'((§))(X,X*,I)‘rEO’ET))(X,\"‘,[)f e i2Uby
£
. 2 .
COP o P ae P et PP (20c)

where u()(3), 8y and Cy@ satisfy the x*-periodiciiy cond™ion. In the sequel, u class of
hardening elastoplastic materials, which admit a -ate potential and have positive detinite tangen:
modulus tensor, is considered. Consequently, C o)(®(P) is also assumed to be symmetric and
positve definite in the expansion (20c); this obviously holds for elastic responses where only
C0)/@eP) = C (@) i5 required.

If eqn (20) is substituted into eqns (9)—(12) and the coefficients of different powers of € are
equated to zero, a sequence of micro-boundary value problerr: (MBVPs) defined on the cell is

obtai.._d. The first three sets of MBVPs for the coefficients of €2, e-1, and €0 are detined in wha:

follows.
ME VP for O(e-2):
v, cg))=0 in A (2 1a)
c;"_‘;f c('a‘)) ©P) . ax ( ufg))) in AW (21b,
@ (1) LD @ Ao
(O)—u(O)—O' v .(G(-l) ( ))-—O on A[ (21¢,

From eqns (21a,b) the operator for u;g)(®) may be expressed as

SO IR 2 (@) (ep), - (@)~ _ . (@) 4
L(u(o))—. -(C(O) .e*(u(o));—O in A (22)

A solution of the problum is o) Which is independent of 4*.

(@) _ N _
u(o)—u(o)(x,t), e (u(o))—c

(@ _
=0

(®3)

MBVP for O(e-!):




Vea o =0 inA'® 24a)

(a) (@) (ep), { - - (@) . (@) "

S0 =Cp :le(ug)+e(u i)} inA (24b)
@ W _ LD @ (y, _ 5 g
0 "(1)‘0’ v* {0 o) c(o))-O on A (24¢.d)

Equations (24a,b) imply that

3 ()= Ve (O Pheu () )= Ve (CT e (u

L (u (0) ()

0 )
Equation (25) shows that u(;){@® is governed by the sume operator as that of eqn (22) for ug(®
except for the right-hand side (RHS). Even if the RHS of eqn (25) is nonzero it vanishes when
integrated over the cell. As a result, the integrability condition for uu)(a) 1s satisfied. The form of

the forcing term in eqn (23) suggests the following expression for u(l)(ﬂ):

- (a) g (a) x NE
ugy(xx*ty=e (uqg)x (x*) (26)

where XP4 is x*-periodic. The substitution of (26) into (24) yields a MBVP for each xP4; this is
continuous over the cell due to the perfect bond condition (12). These problems are defined upto a
constant vector with respect to x*. This constant term may be included in u(o)(a)(x, 1) .

Therefore, it is convenient to choose XP4 such that its integration over the cell vanishes:

)

D, | xm@aa=o @7

a;lA(u)
MBVP for O(eV):
Ve =p @iy - 1Y-V.e ) inA® (282)
dg;’)) = CE:)) “P. (e (u (,) 'Y+ e*(u g)) )}
+COP: (e (ug)re(ugl in A (28b)
u=0, v(aD-a())=0 on A, (28¢.d)

At this point, it is instructive to outline O(1) homogenization procedures to compare it with

the proposed O(e) homogenization procedure. Both homogenization procedures require the

12




solution of the MBVPs for u(l)(a) defined by eqns (24) and (26). The O(1) equations of modon
are obtained by imposing the integrability condition for u(2)(® on eqn (28a) without solving the
MBVPs for u(?_)(a) (Benssousan et al., 1978; Sanchez-Palencia, 1980). According to the
Fredholm alternative theorem, the problem defined in eqns (28) has a unique solution up to a
constant vector with respect to x*, if the operator for u(;)(® in eqns (28) satisfies the integrability
condition— the range of L(u(g)(a)) is orthogonal to its kernel up)(®=ug)(x, 1) (for example,
Marsden and Haghes, 1983). The same O(1) equations of motion can be obtained by substituung
the trial displacenient field (31) in eqn (18) and keeping only O(1) terms. As a result, the O(1)
model neglects the kinetic energy associated with the O(e) displacement and fails 10 model

harmonic wave dispersion. This deficiency is improved in the O(g) homogenization procedure.

Trial displacement and mixture equations of motion
The development of an O(€) homogenization commences with the definiton of an average

displacement field for each constituent, keeping terms up to and including O(e2) terms:

a 1 a a
U (x,1)= (u. +eu®+e2y'?
(0) 09 2)
()
A @
A

} dAx (29)

where A(® denotes the cell subdomain for integration and the area for algebraic operations.

Cquation (25) shows that u (@ is excited by Up(0):q+Uq(0)p- Therefore, the mixture formulation

becomes more tractable by introducing generalized displacement variables (parameters) which

represent Up0),q+tYq(c;-pr SUCh that

Spq(x,t)=qu=

LJ- u @, v*“) ds* = -1-'[ u (@), v*(l) ds* 30
£A A
A

(1)
AI

where A=A(D+A () denotes the total area of the cell.

This yields the following trial displacement field

u(a)(x,X*.t;£)=U(a)(X.t)+ESpq(m)qu(x“) (31)

In eqn (31) U(®) is the average displacement associated with each constituent, while Spq(x. t) is the

13




generalized displacement which represents the amplitude of the O(g) displacement microstructure.
In the sequel, equation (31) will be used to obtain mixture equatons of motion from eqn (13).

In order 1o find the O(e) displacement microstructure xP4(x*) one must solve six MBVPs
defined by eqns (24) and (26). These problems were solved analytically by Murakami and
Hegemier (1986) for a hexagonal cell, consisting of elastic constituents, approximated ty the
concentric-cylinders model. The exact solution indicates a good approximation for the O(€)
displacements, and the following trial displacement field (in component form) was consaucted for
hexagonal cells:

uga)(x,x*,t,e)nga)(x,tHe[Siz(x,t)cosG+Si3(x,t)sine}g“a)(r) (322)

where
1 1 -
g @ (r)=(D"" —(r-8 =) (32b)
(@) s T
S 2355, (32¢)

and where Sag is the Kronecker delta. The generalized displacements 5;; are not displacement
compoments but parameters; it is convenient to employ the component form in egns (32). The
functions g(@)(r) cos8 and g(*)(r) sin® are the approximations for XP4 and sztisfy the x*-
periodicity condition (16) and the normalization conditon (27). The effectiveness of the above tral
displacements to simulate harmonic wave dispersion was demonstrated for hexagonal and square
arrays in the above reference. For arbitrary cells and elastic constituents one can numernically solve
the MBVPs for xPd by finite element methods and numerically construct approximate solutions.
These approximate solutions are functions of x* and independent of material proper:ies, therefore,
they apply to both isotropic and orthotropic constituents.

For nonlinear responses XP4 can be found by solving the rate-MBVPs since the tangent
moduli must be evaluated for each e(uq)); this implies that xP4 differs for each load increment. To
render the following analysis tractable, an approximate solution for P4 which is independent of the

load increment was constructed. By virtue of very weak anisotropy introduced to the nonzero and

14




off-diagonal entries of elastic modulus tensor, it is found that the approximate %P4 for elastic

response furnishes a good approximation even for elastoplastic deformation. This situation is

similar to the nonlinear plate and shell analyses in which linear variation of in-plane displacements

over the thickness of the plate and shell — found for elastic responses — yields a good

approximation even for nonlinear response. The soundness of the above approximation wiil be

examined in the sequel by comparing the model prediction with the one of detailed finite element

alyses. In what follows, the above theory will be applied to a hexagonal cell with the concentic-

cylinders approximaton.

Substitution of eqns (32) into eqn (18) yields the mixture equations of motion and

associated boundary condidons together with the inherited initial conditions; they are given in

component form:

(a) Mixture equations of modon

n(a)cﬁ“’)ja-(-l)u”Pi+n(a)f§a)=n(a)p(a)ﬂga)
134 +1—(0(23)-o'(m+R )=I§ i=1.2
jivi 2 2i 2i 2i i2° » <
€
M. o+ (6@ .ol L R y=15 i=1,3
jivi 2 3i 3i 3i i3 ’
€
1 3 2 1 (2a) (1a) 1
-2-(sz'j+MJ.3.J.)+-—2-(cy23 - O, +RB)—IS23

3

where the average operations are defined by

1
oga.a)(x,t)=_Ic@(x,x*.t)dA*
H A@ H
A(G)
_1 | @ *zlJ‘ (@) M .
Pi("")‘EAJGjiVJ" ds = oji(l)vj‘ ds
A A
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2
2 3 _ 1 (@ (o) : «
E(Mij’Mij)"'A' E J’oijg (cos 8,sinB)dA
a=1A<a)

1 ) @ .
= — ) ) x 1=1297
R21 mAJ (czicos-9+o3ism-e)dA, i=1,2
n r
A®
1 [ 1 ) . .
3= -—(-0(2? cos26+0’(,?sm29)dA*,1=1,3
i @, J 2 3i 21
n AT
A
R, =t (6@ + 6@ )sin20da
237 @, J 522 33/ 802
n r
A@
22 1 1 2
4 4 2) (2
a=1 n n

In eqns (36)-(38) A(=n) denotes the area of the cell;
(b) Boundary conditions

or n oV, specified for i=1-3

specified for i=1,2

F jl

3 . .

S,; or M,‘,V specified for i=1,3
3 2 .
S,y or (Mj2+Mj3)vj specified
(c) Inidal conditions
(n) () : : .
U U, S8,,,8,5 S,,, S, specified at t=0

(38a)

(38b)

(39)

=0

(41a)

(41b)

410)

(32)

It is noted here that the above mixture equations are identical to those for elastic constituents

(Murakami and Hegemier, 1986).

Incremental constitutive relations and trial transverse stress-rate

At first glance, it would appear that the trial displacements (32) could be used together with

the original three-dimensional material constitutive relations (10), and the stress-type averages
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(35)-(38) 1o establish a set of constitutive equations for the stress averages to accompany the
equations of motion (33) and (34). A closer examination, however, reveals that such an approach
will not yield a relation for the interaction body force P in (36) and will lead to 2 model which is
too "suff" and which exhibits erroneous dispersive characteristics. These problems — common 1o
the use of direct variational methods‘- can be alleviated by the use of a judicious mixed weighted
residual procedure wherein the trial functions include cerain stress-rate components as well as the
velocity components. This is an incremental version of Reissner's mixed variational principle
(Reissner, 1984, 1986) which was employed to derive the mixture modei for elastic constituents
(Murakami and Hegemier, 1986).

In order to use the mixed weighted residual procedure, it is necessary to rewrite the rate
constitutive relations (10) in terms of in-plane strain rates and transverse stress rates; these are

shown in matrix form for easy finite element implementaton:

611=E11é11+[E12]{6x} (433)
. T' . .
{et}z-[El2] ell+[E22]{Gt} (+3b)
where
{0 }=lo..0. . 0..06. © ]T
t 22 733 “23 31 127 7
{e }"[e €., 2e,, 2e, 2e ]T+1[e* e*. e Je*.  dex ]T ()
722 M3 <3 31 “M12 - 2 33°% 23 ~Y 31 Tt

In eqns (43) and (44) [ ]T is the transposition of [ ]; subscript t denotes ransverse quantities. The
transverse stresses are those which appear in the traction continuity condition (12b), i.e., all stress
components except g11(®). The marrices (E;;] are functions of the elements of Cjjy(¢P) and
[E72(®)] is symmetric and positive definite for hardening materials. Specific forms of [E;;(®)]
employed for the numerical study are given in Appendix A and obtained for the von Mises yield
criterion and associative flow rule with isotropic strain hardening.

Let (@ (a=1,2) denote the space of all H!-functions g(x, x*, t) on V with respect to X

and on A(®) with respect to x* that are x*-periodic according to eqn (13). Functions g(!) and ()

17




may suffer a discontinuity on the interface A;. Any vector (®) whose components belong to (@)
with 4(@)=i(®) on oV (@), where (@) 15 the specified boundary velocity, will be called an
admissible trial velocity. Any function 8u(®) whose components belong to W{®@ with 5u(®)=0 on
0V, (@ will be called a weighting function. The space of admissible transverse stress-rate {g @)},
(ot=1,2) consists of all HO (=L,) functions q(x, x*, t) on V with respect to x and on Al®) with
respect to x* that are x*-periodic. The mixed weighted residual procedure applied 10 the rate

boundary value problem defined by (9)«12) yields in matrix form:

[[3 [(5@6®s (5@} (6} (5} (55

+6{ (a)} ({ (a)} E(a) T [E(a)] {d(a)})}dA*

L

+% f[( (80@) {60 D)) {1+]+ {5T*}T({u‘2’}-{d(1’})1ds*]dV

J'[ 2 ‘( (a)} "7 @) A% aa @3)

ovy o=l @

where{8u), {pa), {T*}, and [¥T} are, respectively, the matrix representation of du, pi, T*, and
VT.

For arbitrary variation of (1(®} and (&(®}, one obtains the rate constitutive relation for (¢ (@} in
(43b), as well as the rate equations of motion (9), the rate boundary conditions (d), and the rate
form of eqn (12). Equation (43a) is considered to be the definitions of 611(@). The mixed
weighted residual equation (45) with appropriate trial functions for {u(@)) (=(®)) and {g,(®)}
yields the rate constitutive relations for the stress averages in eqns (35)-(38). The rate form of

(32a) furnish a trail velocity field. The trail transverse stress rate has the form
- (a) (@)
{cl“] {cﬁo)}(x.x*,t)+e{ ;(1)}(" X* 1) (46)

In accordance with the O(1) homogenization procedure, the O(1) transverse stress-rate {6“0)) can

be constructed by using the approximate velocity field defined from eqn (31). For a hexagonal
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array, substituting the trial velocity field obtained from (32) into (10) an appropriate form is

obtained for the transverse stress-rate:

{6:0223) = {T.(m)}(x,t)+5m2 -:;[T(B)] {i‘}(x,t) (473)

where {1(®} and (t,} are stress variables defined as

{1(“)}()& t)-[t(“) (3(1; (,a; tgai T(la;] (47b)
T
{tt}("’t):[‘zz tyy tag t3y Uya) (47¢)

and where [T(8)] is a 5 x 5 matrix whose nonzero elements are
T, ,=T7,,=T,,= T22=T44=T55=c0528

T 3=T,3=T;,=T 5=

3 =sin 26 (+7d)

T 54

The O(g) term {01(1)(a)} is governed by the MBVP (28) which requires the solution of
u2)(@. The exact analysis of u)(@) based upon the expansion (20a) and eqns (23) and (26)
yields 42 sub-MBVPs. The formidable task of solving for the elements of u(g)(a) can be alleviated
by constructing (Gt(l)(a)} approximately from (28a). Examination of the analytical solutions for a

concentric-cylinders cell revealed that oy )(0‘)} which satisfies

veo =D P/n® in A® (48)

yields a simple approximaton for a general cell.

Equation (48) is obtained by applying the Gauss theorem to eqn (36) and satisfies the integrability

condition for u(z)(a) through the explicit introduction of P. For a hexagonal cell the following

approximation (adopted for elastic constituents) is employed.

(6@} =ze%m [Q® ] {P}(x.0) (49a)

where (P} is a matrix representation of P, and [Q(8)] is a 5 x 3 matrix whose nonzero elements

are
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Q,,=5Q,, =sin8 (49b)

The mial transverse swress-rate is now obtained by substituting eqns (47) and (49) into egn (36).
On substituting the rate form of eqn (32) and eqn (46) into eqn (43), one obtains the rate
form of (33), (34), (40) and (41). In addition, the arbirrary variation of {c(®)) yields the rate

consttutive relatons for the ransverse stress variables:

_[[E“’) (t®)+5_ —m{t}+E @ Qi{p})das

(@) (@) g (@) T - (@) .
=n®x({eg S+ 0™ (a){s}) J.[EaJc”dA (50)

{a)
A

S OSSR I PR SR B +£e¥1Q1{Phaar
1’

D Y——
HNI,_

=n[W]{S}+J ST EGT ¢ &) aa (51)
o T
A

£ [ e E () az—lz- T1{i J+ £¢“1Qi{P))das

0f=lA(u)
2
=x({U®}-{U (1)})+7r£4—h([R‘]{S}.1+[RH]{S}2+[Rm]{S}_3)

+£Z _[ g QI TE® e ™ aa (52)

a=1 (a)

where { U(®) is a matrix representation of U@, h=h(D+ h(2), and

(@) V_ (a) (a) (a (o) (@) (a) (@) (@) T
{e(U)x_[U2.2 Ug 3 Uyy+Uy, Uy +U 5 U+ U0
T
{S}z[szz S35 25,3 S5 §,,] (53)
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In eqns (50)~(52), [W] is a 5 x 5 marrix, and [RI], [R1], [RI] are 3 x 5 matrices. Nonzero

elements of those matrices are

1 !
Wii=-W =W, ,=- m’ W21=W22=-W“=W55=_<_1)
2n n
I 1 i m it mw _, o _.0 _.m__m

The solution of (51) and (52) yields {t (@}, {i,}, and [P} in terms of (Ey®), (S}, €11\, and
{0(2)]-{0(1)}. For inelastic response the integrals in (50)~(52) have to be evaluated numerically at
each increment (time step); for elastic constituents the above relations can be evaluated explicitly
and this produces the results obtained from a fully elastic approach to the problem (Murakami and

Hegemier, 1986). Substituting eqn (47) into eqns (37) and (38) one finds

2 2 3 3
2=3hP2/4 , M33=M23=hP2/4 , M33=3hP3/4 ,

-

2 3 3 2 2 3 i
M =M, =hP /2, M,, =M  =hP /4, M, =M ,=0 (55)
(1) 1) 1)
Ry =t ,/n » Ropp=(t /24t 30 /n 7, Ry =-t /),
_ ) _ (1) <
Ryy=t,3/20 Y Ry =(-1,,/2+t,,)/n (56)

The remaining constitutive equations for &1,(2a) and M| are obtained from eqns (43), (35) and

(37). The results are

6= [(EW e+ (2@ {i}es_L 11 J+£e¥1Qi{p haar 1)

(a) r

ex(3,)= Y, [4@(a)[E@ e

0l=1A(o)

+[E(°"]({r‘°"}+5 —[T]{t} £ £1Q1{P}H] aax (58a)
where

{Mp}:[l&[” 134“]T, {n}=[c059 sin()]T (58b)
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The above operations were carried out at each integration point in a constitutive subroutine for the

mixture finite element code: HFEC2D (Impelluso, 1990).

MODEL VALIDATION STUDIES

In this section, validaton studies are conducted in an effort to ascerntain the simulation
capability of the O(e) mixture continuum model. The model consists of the equations of motion
(33) and (34), the boundary conditions (40) and (41), the initial conditions (42), and the rate-
constitutive relations (50)—(52) and (55)-(58). The problems examined include linear and
nonlinear wave propagation. In the dynamic response, mixture model predictions were compared
with experimental data or "exact" numerical data generated from DYNA2D based upon detailed
explicit modeling of fibers and matrix. Material properties of the investigated composite which
consists of elastic fiber and elastoplastic matrix are shown in Table 1.

For elastic harmonic wave propagation, the model was validated by comparing the
predicted phase velocity spectra with experimental data (Murakami and Hegemier, 1986).
Therefore, the validation of the model was conducted in the time domain. As was noted
previously, the validation strategy is to compare mixture model predictions with experimental data
or "exact” numerical data generated from DYNA2D based upon detailed explicit modeling of fibers
and matrix. For this purpose, an explicit finite element code: HFEC2D (Impelluso, 1990) was
developed using four-node quadrilateral elements for the generalized plane strain in the x1, x2-
plane. The mixture element has six nodal degrees-of-freedom for Ui®) and S;2 (i=1,2). The
element carries the microstructure of the cell at each integration point where the numerical
integration of incremental constitutive equations (50)-(58) are conducted. For simplicity of
notation in the numerical results, dimensional quantties are referred without overbars.

The geometry of the wave-reflect problem is shown in Figs. 3 with meshes for HFEC2D
(Fig. 3b) and the detailed DYNA2D (Fig. 3¢). A composite half space with free boundary at xo=0
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was loaded uniformly with respect to x3 under plane strain condition in the x-direction. For this
globally one dimensional wave phenomena in the xp-direction, a column of cells of width
A=0.0975 cm, shown in Fig. 3a, is discretized by the mesh shown in Fig. 3¢ for DYNA2D
calculation; for the mixture model only one row of elements shown in Fig. 3b is employed. The
following bondary conditions were posed for the DYNA2D calculation:

c =O’O{H(t)-H(t-t0)], 023=0 atx2=0

22

u3=023=0 at x,=0, A (39)

For the mixture model, the corresponding boundary data was specified as

aa) 2 2
o3 =0 o HO -H(t- 1)), o'¥=M =M, =0 atx, =0
(@) _ @ Z I B .
U/ "=06,,=M =M ,=0 at x , =0, 4 (60)

where H(t) denotes the Heaviside step function, and 1y = 3usec. is the pulse duration.
A load of 6p = 1 x 109 dyn/cm? is applied to induce a purely elastic resporse in both constituents,
while a load of Gg = 3 x 109 dyn/cm? is applied 1o induce an elastoplastic response in the matrix.
The numerical results are shown for observation points located in the 33rd cell. The time
variations of fiber particle velocity, atr =0, Ua() and of marrix particle velocity U2(® atr = 1 and
8=0° are shown , respectively in Figs. 4a and 4b. The corresponding time variations for the
elastoplastic case are shown in Figs. 5a and Sb. Amval time, peak response, and damping are
well correlated by the mixture elements. The dispersive behavior is evident and well martched;
furthermore, the spreading of the wave pulse to a duration larger than 3psec. is demonstrated in
both DYNA2D and HFEC2D.

Special attention is paid now to the localized plastic deformation in the composite. Figure 6
shows the effective plastic strain contour obtained from DYNA2D; plastic deformation is localized
near 6=0° and 180°. To examine the capability of the model in predicting those localized effects,

the effective stresses at 0=150° and 180° both at r=0.761 are shown, respectively, in Figs. 7a and
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7b. From those figures, the localization is modeled accurately by the mixture element. This
accur-.y is also reflected in the predictons of the effective plastic strain.

In order to further assess the accuracy of the model, the waveguide problem illustrated in
Fig. 8 is considered. The load is applied at the boundary x,=0 in the fiber axis direction.
Hexagonal symmetry, approximated by axisymmetry, allows for an extraction of un a cell of radius
A=0.0975 cm. First, a comparison is made witi: a shock tube test conducted by the Acrospace
Corporation and reported by Hegemier et al. (1972). The composite is subjected 10 a step pressure
loading of 4.826 x 105 Pa. The results of the model are obtained by using 110 elements. The
comparison of the rear surface velocities on a specimen 4.33 mm thick is shown in Fig. 9. In the
above expenment the nonlinear effect was negligible.

Numerical experiments were conducted to test the model's capahulity for predicting
elastoplastic wave propagation. The following boundary conditions with respect 1o the cylindrical
coorlinate system were pused for the DYNA2D calculation; x; and x; are, respectively the axial
and radial coordinates:

g, =GO{H(I)-H(t-[0) ) o, 2=O at x . =0

u,=6,,=0 ax,=0,4 (61)

For the mixture model, the corresponding boundary data was specitied as

(@) _ (a) 2 2 )
g,, =n O’O{H(t)-H(I—IO)], clz-MH-Ml:—O at x, =0
U@ 2@ N =M..=0 arx.=005Ia (62)
2 S0 =M =My, = av x, =4, U -

A pulse load a¢= 5.0 x 109 dyn/cm?2 of duration tg = 3usec. was applied. Axial velocities at
x1=43.5A were plotted in Fig. 10a for fiber and in Fig.10b for matrix.

The above compa-isons with the detailed FE analyses indicate the cost efficiency of the
mixture element due to the coarseness of the mesh; the mixture code, HFEC2D, runs at least ¢ .

order of magnitude faster than the detailed finite element computation.
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CONCLUDING REMARKS

The construction of a higher-order mixture description of fiber-reinforced composites has
been demonstrated herein for the case of material nonlinearities. For simplicity of presentation,
composites with a hexagonal array of fibers and elastoplastic matrix were considered. The
methedology is based upon an asymptot.c homogenization method and yields tne equations of
motion, the appropriate inigal and bouadary conditions, and a set of consistent rate-constitutive
relations. For transient response a finite element wave code was developed for the mixture model
to solve linear and nonlinear problems; results using this code were compared with those from
DYNA2D in which a fine mesh was utilized to explicitly model the microsiructure of the
composite. These comparisons revea! that the mixture model is capable of furnishing an accurate
and economical description of complex wave phenomena. In the foregoing analyses the
importance of wave dispersion and attenuaton effects was confirmed for nonlinear as well as linear

composite responses.
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~— 7 7 77 APPENDIX. DEFINITIONS OF [E;;] IN EQN (43)

—— ~Ttis computauonally advantageous to rewrite eqn (10) in’ terms of the clastoplasuc comphance =

matrix D=C-1. For a von Mises yield criterion and associated flow rule with linear strain

.. __—hardening, D{®)(€P) may be expressed as SE———

p @R _p@ 9 §@ J@T (A1)
(a)2 H.(ﬁ)

In eqn (A1), H' is the sirain hardening parameter, s (=0-tro.8) is the deviatoric stresses, and

(=V3s:s/2) is the Mises effective stress.

Rewriting the rate compliance relation by using a 6 x 6 matrix [D] for D, one finds

@ _ 1 @) : (@)(ep)
E , [ET)= (D,,D,,D, D, D]
tre p (®Xep) 12 D (lai(ep) 12 13 14 15 16
D,..D, .
D 11
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Tabie 1 Material Properties for Wavereflect Problem.

Material Volume  Density Young's Poisson's  Yield Hardening
Fracton Modulus Ratio Stress Parameter
o n@  pl@g/ec) E@X(dyn/cm?) vi@) oy(dyn/cm?) H'(dyn/cm?)
1 0.272 1.85 292.0 (10%) 0.3776 - _
2 0.728 1.29 82.24 (109) 0.357 1.33 (109  11.38 (109)
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Fig. 2. A typical cell representing the geometric microstructure of the composite.
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Fig. 6. Effective plastic strain contour obtained from DYNA2D.
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Fig. 9. Time variation of normalized rear velocity.
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