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DEVELOPMENT OF A MIXTURE MODEL FOR NONLINEAR WAN'_.cces.i ,..

PROPAGATION IN FIBER-REINFORCED COMPOSITES
U.

H. Murakami, T. J. Impelluso, and G. A. Hegemier

Department of Applied Mechanics and Engineering Sciences

University of California at San Diego

La Jolla, CA 92093-0411, U.S.A.

Abstract- A method for constructing dispersive, nonlinear mixture models for unidirectionally

fiber-reinforced composites is described herein. System nonlinearities in the treated example

result from nonlinear material properties of the constituents. The proposed model is a nonlinear

generalization of the linear model developed by Murakami and Hegemier (1986) for elastic

constituents. Model construction is based upon a homogenization technique which employs

multivariable asymptotic expansions in conjunction with certain weighted residual procedures. The

methodology furnishes the equations of motion, the appropriate initial and boundary conditions,

and a set of consistent rate constitutive relations. Model validation for linear and nonlinear

dynamic responses is accomplished by comparing predicted results for waveguide and wave-reflect

problems with the available experimental data or the data obtained by use of a detailed finite

element (FE) analysis. The validation studies reveal that the derived continuum model provides

good simulation of complex wave phenomena and furnishes an economical alternative to detailed,

explicit FE models. The studies performed reveal the importance of wave dispersion and

attenuation phenomena in nonlinear as well as linear wave propagation in the composites.
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INTRODUCTION

Composites are "designer" materials in the sense that a designer has the freedom to prescribe the

material microstructure such that global response measures of interest are optimized for a given

load environment together with certain cost/weight constraints. Such designer freedom, however,

creates a need for material response models which are synthesized directly from material and

geometrical information at the microstructural level. This need, in turn, stems from a desire to

avoid a myriad of experiments which may be necessary to evaluate the material parameters

associatcd with piienoineologicai models.

A situation of special interest to material designers concerns fiber-reinfoned polymer and

metal-matrix composites subject to dynamic load environments. Within the context of such

materials and environments, response measures of stress wave attenuation and/or dispersion are

often sought. For such problem types, one of the earliest successful attempts to synthesize a

global response theory from microstructural information is due to Achenbach and Herrmann

(1968) who formulated a higher-order continuum model, known as the "effective stiffness theory,"

to simulate elastic wave motion. Subsequent extensions and Upplicatiuns of this work were

conducted by Bartholomew and Torvick (1972), Hlavacek (1975), Achenbach (1975, 1976), and

Aboudi (1981). By modifying the original methodology Aboudi (1982, 1985) extended the linear

model to account for viscoplastic material response. In parallel to the effective stiffness theories,

attempts were made to develop mixture (multi-phase) continuum theories vith microstructure. A

representative cross section of this subject includes the works by Martin et al. (1971), Choi and

Bedford (1973), Hegemier et al. (1073), Hegerrier and Gurtman (1974), Nayfeii (1977),

Murakami et al. (1979), Nayfeh et al. (1984), and Murakami and Hegemier (1986).

To-date, the foregoing mixture theories have not been extended to model nonlinear material

responses for arbitrary wave motion. In view of the potential modeling capability of the mixture

descriptions, and in response to a perceived need, a p,-,edure is illustrated in this paper for the

mathatic~.a consiruction of a higher-order mixture description of nonlinear wave propagation in
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unidirectional fiber-reinforced composites. The iesulting model incorporates wave dispersion,

wave attenuation, localized plastic flow, and effective anisotropy. For clarity of presentation, the

example construction treated herein is applied to a hexagonal array of fiber reinforcement and rate-

independent elastoplastic material nonlinearities. While the model construction procedure is

applicable to arbitrary fiber layout, rate-dependent material response, and interfacial slip, extension

and investigation of such cases are deferred to later publications.

The model construction method treated herein is based upon a multi-scale homogenization

technique developed by Hegemier and Gunman (1974) for waveguide propagation and by

Murakami and Hegemier (1986) for arbitrary linear wave motion. The methodology yields the

equations of motion, the appropriate initial and boundary conditions, and a set of consistent rate

constitutive relations. The derived continuum mixture theory is nonphenomenological in the sense

that the model is synthesized from the composite "microstructure" which consists of the fiber

mate-rial and geometrical properties, the interface properties, and the matrix properties.

A considerable effort is made to validate the resulting model subsequent to its derivation.

For this purpose, a numerical experiment is employed as the "exact" basis for comparison. Here

numerical predictions from the continuum description are compared with detailed finite element

(FE) results for several key time dependent boundary value problems. This task necessitatcd the

development of a special FE code for the model. The FE code DYNA2D (Hallquist, 1982) was

employed to generate the "exact" reference data; for this purpose a fine mesh was used to explicitly

model the composite microstructure.

In addition to information concerning accuracy, the validation calculations reveal some

interesting features regarding response characteristics associated with wave dispersion, wave

attenuation, localized plastic flow, and effective anisotropy. These calculations also furnish

enlightening information concerning computational efficiency.
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FORMULATION

Consider a domain V with a uniaxial periodic array of fibers embedded in the matrix, as

illustrated in Fig. 1. The position vector'i is described with respect to a rectangular Car, esian

coordinate system -i, i=1-3 with R in the axial direction of the fibers. In the x , x3-plae, a

typical cell that represents the geometrical microstructure of the composite is shown in Fig. 2 for a

hexagonal array. For notational convenience forms ( )(a), cx=1,2 denote quantities associated with

material ax; here ct=l represents fiber and ot=2 reoresents matrix. The notation V is the gradient

operator with respect to i and ";)= a( )/lt will be employed in which 1 represents time.

Furthermore, overbars will designate dimensional quantities; the lack of overbars will indicate non-

dimensional quantities.

The governing relations for the displacement vectorS'(=Ui) and the stress tensor (=U) in

each material domain are:

(a) Equations of motion

(a) + (a) (a) (a) T
=p (r +f P(X (a, a =ain(a()

where 7((x) (=fi(Q)) is a constant body force, T(c) denotes mass density, and ( )T denotes

transposion of the tensor ( );

(b) Rate constitutive relations

(a) - (a) (ep) e (a) (a) - (2)
:rCe (U )n mV

e(a) -(a) )=If i. +( u (a)T in (3)
e (u (a).U ) )i 3

where 6(a) (= ij(a)) is the rate of deformation under the small strain assumption, and C(cP)

(=Cfij(eP)) is a tangent modulus tensor which becomes a constant tensor'C for elastic response;

(c) Interface continuity rela6ons
- 2) (1) (1). (2) ,

u - 0, a -o )--J vii A1  (4)
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where Al is the interface between fiber and matrix, T(1) (=V( 1)) denotes the outward normal on A1 ,

and 0 is the zero vector,

(d) Displacement boundary data on aVu and traction data on aVT where aV=-VuUOVT is the

boundary of V;

(e) Initial conditions at T=0.

In eqns (l)-(4), the Cartesian components of V.a, C:e, and V.cF are aTji j , C1jkje, l, and vji ,

respectively. The initial boundary value problem defined by the relations (a)-(e) on V = (V('U v.)

V( 2)) is well posed.

Most domains of practical interest contain a multitude of fibers; for such domains, a direct

numericai finite element solution becomes intractable even with the use of supercomputers. In an

effort to alleviate this problem, a higher-order mixture model is developed to describe the average

deformation for both fiber and matrix simultaneously, along with higher order micro-structural

deformations. This procedure was successfully applied to elastic response of fiber-reinforced

composites with a hexagonal array of fibers by Murakami and Hegemier (1986). In what follows,

the above model is extended to include inelastic response of the constituents, eqn (2).

MODEL DEVELOPMENT

The multivariable field representation

The derivation of the model commences with a scaling of both dependent and independent

variables. To this end, it will be convenient to nondimensionalize the basic equations by using the

following quantities (Hegemier and Gurtman, 1974):
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A • typical macrosignal wavelength

A typical fiber spacing or cell dimension

C(m)' P(m) reference wave velocity and macrodensity

E() = p 2 reference modulus
( ) (in) (in)

t(m) = A C(M)  typical macrosignal travel time

£ = A / A • ratio of micro-to-macrodimensions

With the aid of the above notation, nondimensional variables are introduced according to:

(x, u (a ) = 7 -U("))/ -A , t = It/ ' M

-) (ai) -0 () (i() -
(C, ) =(C, a) (M), P P /P(m) (5)

The periodicity of both fiber array structure and material properties define a cell in the

x2,x 3-plane as shown in Fig. 2. The field variables in the composite exhibit significant varation

over two length scales: the global and cell geometry. Further, an order of magnitude difference in

the two length scales, suggests the use of a multiscale or multivariable asymptotic technique

(Babuska, 1976; Tartar, 1977; Benssousan et al., 1978; Hegemier et al., 1979; Sanchez-Palencia,

1980; Murakami et al., 1981). One introduces rnicroposition vector x*:

x* = x / (6)

Field variables are now considered to be functions of both macro-and microposition vectors:

(CE) - (ai)q ( x, t )=q ( x, x*, t ; F) (7)

where xe V and x*E A(a). The cell domain is heterogeneous in the x*-space and consists of A)

and A( 2) occupied by the fiber and matrix, respectively; the macrodomain V in the x-space becomes

homogeneous and is shared by the two constituents. Homogeneity of geometrical and material

properties in the xj-direction eliminates xj* dependence in eqn (7); heterogeneity is manifested

only in the x2, x3-plane. Consequently, spatial derivatives take the new form:
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(e) (a) 1 - (a) (O
vq -- + - q (8)

E

where V* is the gradient operator with respect to x*, and ( ),- --'( )/xl--0. In the sequel <will

be written as q for notational simplicity.

The operations (7) and (8) when applied to all field variables, nondimensionalized by eqn

(5) lead to the following synthesized field equations:

(a) Equations of motion

(a) 1 (a ) (a) (a), (a) () i and AC))
V•( + - V*. f =p u V=a in (9)

E

(b) Rate constitutive relations
.(a) (ep) (a) (a) (CL)

CF)=Ca(p) e(u ))+- (u + - in V and (10)

where

(a) I (a) (a) T
e ku ) V U + ( V u ) } (I la)

(0 (L) *
e* (u )=. { V*ti +(v*t'u) } (1lb)

(c) Interface continuity relations
u() =0, V () - (1)=0 on AI  (12)

where V*(1) is a unit outward normal to AM;

(d) Displacement boundary data on aV u and traction data on DVT;

(e) Initial conditions at t=O.

In eqns (9)-(l 1) it is understood that ( ),,.=O. The synthesized field variables (7) are now

continuous with respect to x in V and may be piecewise continuous with respect to x* in the cell

due to the heterogeneity of the composite.

At this point, the variation of field variables which satisfy the periodicity with respect to x*

is assumed. According to this condition field variables take equal values on opposite sides of the

cell boundary. Let the fundamental translation vectors of the periodic array in the x-, x3-plane be
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denoted by ed, and Ed2. In the x2* , x3 *-plane d1 and d2 become the fundamental translation

vectors (for example, Kittel, 1971). Employng the direct notation x=(x 1, x2, x3 ), x =(O, x2",

x3*) the x*-periodicity condition for a general cell with the above fundamental translation vectors

is expressed as
q ( x,x*, t)= q ( x, x* + m1 d1 + m d 2, t) (13)

where m1 and m2 take ±1 or 0.

The cell domain in the x2*, x3*'plane consists of subdomains A(1) and A(2). Let the volume (area)

fraction of material cc be denoted by n(a); it satisfies
n(1) (2)
n +n = 1 (14)

For a hexagonal array the actual cell may be modeled as two concentric cylinders without loss of

accuracy in dispersion spectra. For the concentric cylinders model the cell subdomains, A) and

A(2), are represented as

Am= r (,0) 1 0 _< r < jn 0 !5 0 _5 2x 0 (5a)

= A (r,0) I .n I < r < 1, 0 0 2c } (15b)

where (r, 0) are polar coordinates defined in the x2 *, x3*-plane such that

2 22 3/~z + x an0x xr3 tan x*3 / X*.2 (15c)

For the concentric-cylinders model the cell boundary is denoted by r=l and the periodicity

condition (13) simplifies as follows:

q(x,r,0,t) = q(x,r,0+7r,t) on r= 1 (16)

When Fourier transforms are applied to both spatial variable x and time t, the x*-

periodicity (13) takes the same form as the Floquet and Bloch theorems for harmonic wave in

periodic structures (Brillouin, 1946; Kohn et al., 1972). Although equation (13) compromises the

ability to capture micro-boundary layer effects on a cell-scale, it provides an economical model for

predicting global boundary layer effects on a scale of down to a few cell lengths (Murakami,

1990), which is sufficient in most problems of interest.
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Weighted residual procedure

In this subsection, a weighted residual procedure is introduced. This procedu:r:, will be

subsequently used to eliminate x* from all field variables through an averaging operation, and to

establish appropriate equations of motion for the resulting average fields.

To begin, let Vl/(01), o.=1,2, denote the space of all 11l-functions (for example, Hughe ,

1987) q(x, x*; t) on V with respect to x and on A(s) with respect to x* that are x-Periodic

according to eqn (13). Functions q(1) and q( 2) may suffer a discontinuity on the interface Ar. Any

vector u(ct) whose components ui(x)x- f(c) with u(aC)=i(c) on aVu(cl), where j(c) is the specIfied

boundary displacement vector, will be called an admissible trial displacement. Any function 6uc{)

whose component 6ui(a)e Y.(c) with 6u(x)=O on aVu(a) will be called a weighting function or an

admissible variation of ui(a).

Next, consider the weighted residual R defined by
f (a) (a) (a)-- (a) (L)

[ V a ~ ) - V '  +f -p u ). u dA "

V 1Aa)

DAA
_1 .2. 2.S (2) ds. +_- [ .( - . (Su --u

+ (1) + ( C+ (2)) T*).5u (2) 5() )]ds] dV

2

+ f I f( vT (a). (a).u (a) dA* } dA=R (17)
aVT

where dV=dxldx-)dx 3 , dA*=dx2 *dx 3 *, aA is the cell boundary, ds* is an infinitesimal line

element, ,O*(2) is a unit outward normal to A( 2), and v'T(a) denotes the traction vector acting on an

infinitesimal surface element dA with a unit outward normal ,V on DVT. By virtue of the x*-

periodicity the integrations with respect to macrocoordinates x are carried out over the entire
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domain V, while that with respect to the microcoordinates x* is performed over the cell subdomain

A(a).

If R=O is satisfied for all admissible 8u(a) which satisfy (13) and are arbitrary over V, on

aV-r, and on A(), then it is evident that weak solution of the local equations of rnot.on (9) have

been generated. These weak solutions then satisfy the traction boundary condition specified in (d)

on aVT and the traction continuity (12) on A,.

From (17) with R=O, Gauss' theorem, and the x*-periodicity condition (13), one obtai;.,s

[~ ' 1 (, .)- £
1 c=() I A r

+- ( 6 u - u )T* ds* ] dV 6 6u vT () dAJ A (1)
IN a V T  CL.= I A' a,

where the component of 5e:a is 5ijaij, and
() I (a)+ (a)T(a) 1IV (a)+ a (a))T 1

6e (O) V 6u +(V 5u (a) )T, * = . 6 u (V 5u (19)

Equation (18) can be cn-,isioned as the principle of virtual work for the syntnesizeu fields.

This principle furnishes a useful tool for generating the equations of motion associated with an%

order of continuum models.

Asymptotic analysis

In oider to generate a continuum m-odel from (18), the assumed x*-dependency of the

displacement field must be described explicitly. The necessary microstructural information for this

operation was obtained for elastic response of composites with a hexagonal array of fibers by an

asymptotic procedure (Murakami aind Hegemier,1986). This procedure is based upon the pretmse

that the typical cell length is mch smaller than the macrodimension, e<<l. Therefore, the form of

scaled eqns (9)-(12) sugg,.st the expansion of the dependent variables in the asymptotic series

(Lene and Leguillon, 1982):
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(a)) (a)c) (at)U (x,x*,t £)=U(o)(X,X*,t)+CU (1)XXtj-.e u:(~.t-..2a

CF(-I) ( X  X *,t) +0(0) XE ( )

C (a) (ep) C ()() (ep) + E C (c) (ep) + 2 C (i) (ep) + (2Cc)

where U(n)(2), QF(n)(-) and C(n)(-) satisfy the x*-periodiciy cond ion. In the sequel, d class of

hardening elastoplastic materials, which adnt a -ate potential and have positive definite tan-en:

modulus tensor, is considered. Consequently, C(O(a) (eP) is also assumed to be symmeuc and

positive definite in th expansion (20c); this obviously holds for elastic response; where only

C(0)(a)(eP) = C () is required.

If eqn (20) is substituted into eqns (9)-(12) and the coefficients of different powers of E ar-e

equated to zero, a sequence of micro-boundary value problem (MBVPs) defined on the ,:ell is

obtai,..d. The first three sets of MBVPs for the coefficients of E-2 , E- 1, and E0 are defined ;n Xha:

follows.

NI, VP for O(E-2):

(a) (a) (1a)*. (.A) = 0 in A Ia

(a) =C ) (ep) (L) in (1)(Y C (0) (0) in A (21b)

(2) (1) , ,(1) (2) _ (1)(o)U(0 ) = 0 '  "(a-) (,)=0 on A I  (21c,

From eqns (2 1a,b) the operator for u(0 )(c) may be expressed as
L ( (ct) T..( (a) (ep). U (C) 0 n A (cc)
L 0) {Cu( 0 i (2")(0) (0 ) ( 0)

A solution of the problm is t!(O) which is independent of *.

(a) (a)
U(0) U(o)(X~t), e*(U( 0 ))=a(.)=0 (23)

MBVP for O(E:-):

11



V . (a =0 in A(C)a)
(0)

(= () ( (2 (4)
(0) C (0) e( u( 0) ) + e*( u (1 ) ) in A (24b)

(2) (1) ) ( 2) (1) - 1
U U =0, t( ) a ) 0 on A,(1) (1)

Equations (24ab) imply that

L(U (C) V*. CE) (P) e(u U)} -C k CE) (u ) (25)(1)) = (0) ( 1) Uo) • 0)

Equation (25) shows that u( 1)(c) is governed by the same operator as that of eqn (22) for uM0)

except for the right-hand side (RHS). Even if the RHS of eqn (25) is nonzero it vanishes when

integrated over the cell. As a result, the integrability condition for u(j)(c) is satisfied. The form of

the forcing term in eqn (25) suggests the following expression for u(1)(a):

U (,) ( x, x*, t =e ( u )(x*) (26)

where )Pq is x*-periodic. The substitution of (26) into (24) yields a MBVP for each 7Pq; this is

continuous over the cell due to the perfect bond condition (12). These problems are defined up to a

constant vector with respect to x*. This constant term may be included in u( 0 )' ')(X, t)

Therefore, it is convenient to choose ylq such that its integration over the cell vanishes:

~f X pq (a)d* = 0 (27)

A

MBVP for O(0)):

V *. a (a) (a) ~ -(a) a) in A
() P (a) f V. C (0) in A (28a)

a (a) = (0 ) • ( e ( u (a) + e*( U (2)

+ C~~ ' (P)'{ e (u (0) ) + e*( u ( ' ) )  in A ()(28b)

S- ,(2) (1) o(28c,d)

(2) (2) V*(l).(a1()-Ca( 1))=0 on A1

At this point, it is instructive to outline 0(1) homogenization procedures to compare it with

the proposed O(c) homogenization procedure. Both homogenization procedures require the
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solution of the MBVPs for u(1)(ca) defined by eqns (24) and (26). The 0(1) equations of motion

are obtained by imposing the integrability condition for U(2)(Q) on eqn (28a) without solving the
MBVPs for u(2 )(0) (Benssousan et al., 1978; Sanchez-Palencia, 1980). According to the

Fredholm alternative theorem, the problem defined in eqns (28) has a unique solution up to a

constant vector with respect to x*, if the operator for u(2 f() in eqns (28) satisfies the integrability

condition- the range of L(u(2)(()) is orthogonal to its kernel u(0)(G)=u(0)(x, t) (for example,

Marsden and Hughes, 1983). The same 0(1) equations of motion can be obtained by substituting

the trial displacement field (31) in eqn (18) and keeping only 0(1) terms. As a result , the 0(1)

model neglects the kinetic energy associated with the O(E) displacement and fails to model

harmonic wave dispersion. This deficiency is improved in the O(e) homogenization procedure.

Trial displacement and mixture equations of motion

The development of an O(E) homogenization commences with the definition of an average

displacement field for each constituent, keeping terms up to and including O(E2) terms:

U x t )  1 {U(o)+ (+uE2)+Eu()+ u(2) dA (29)
A (a ) fa(1 

(2

AM

where A(a) denotes the cell subdomain for integration and the area for algebraic operations.

LquatioUi (25) shows that u( 1)(a) is excited by Up(o),q+Uq(o),p. Therefore, the mixture formulation

becomes more tractable by introducing generalized displacement variables (parameters) which

represent up(o),q+uq(O), p, such that
t =S u (a). *(1)ds* au . dsV (30)

Spq ( x, t)=Sqp =Ar- (1)"00

Al Al

where A=A(1)+A(2) denotes the total area of the cell.

This yields the following trial displacement field

(x, x*, t; ) = U (a)(x,t)+ES (x,t)X pq (x*) (31)Pq

In eqn (31) U(a) is the average displacement associated with each constituent, while SPq(x, t) is the

13



generalized displacement which represents the amplitude of the O(E) displacement M.crostructure.

In the sequel, equation (31) will be used to obtain mixture equations of motion from eqn (18).

In order to find the O(E) displacement microstructure ;Plq(x*) one must solve six MBVPs

defined by eqns (24) and (26). These problems were solved analytically by .lurakami and

Hegemier (1986) for a hexagonal cell, consisting of elastic constituents, approximated by the

concentric-cylinders model. The exact solution indicates a good approximation for the O(E)

displacements, and the following trial displacement field (in component form) was constructed for

hexagonal cells:
(a))

U() (x,x*,t,c)=U(a)(x,t)+c[S 2(xt)cose+Si3(x , t)sine]g (r) (32a)

where

g (L ( r )=(-1) I ( r- ) (32b)
(a) 2 r

n

S 2 3 = S 3 2 (32c)

and where 5c,5 is the Kronecker delta. The generalized displacements Sij are not displacement

compoments but parameters; it is convenient to employ the component form in ecns (32). The

functions g(c)(r) cosO and g(rZ(r) sinO are the approximations for 7Pq and satisfy the x*-

periodicity condition (16) and the normalization condition (27). The effectiveness of :he above trial

displacements to simulate harmonic wave dispersion was demonstrated for hexagonal and square

arrays in the above reference. For arbitrary cells and elastic constituents one can numerically solve

the MBVPs for .Pq by finite element methods and numerically construct approximate solutions.

These approximate solutions are functions of x* and independent of material proper:.es," therefore,

they apply to both isotropic and orthotropic constituents.

For nonlinear responses XPq can be found by solving the rate-MB VPs sine the tangent

moduli must be evaluated for each i(u(o)); this implies that y.P' differs for each load increment. To

render the following analysis tractable, an approximate solution for XNP which is independent of the

load increment was constructed. By virtue of very weak anisotropy introduced to the nonzero and
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off-diagonal entries of elastic modulus tensor, it is found that the approximate Xpq for elastic

response furnishes a good approximation even for elastoplastic deformation. This situation is

similar to the nonlinear plate and shell analyses in which linear variation of in-plane displacements

over the thickness of the plate and shell - found for elastic responses - yields a good

approximation even for nonlinear response. The soundness of the above approximation will be

examined in the sequel by comparing the model prediction with the one of detailed fmite element

analyses. In what follows, the above theory will be applied to a hexagonal cell with the concenCic-

cylinders approximation.

Substitution of eqns (32) into eqn (18) yields the mixture equations of motion and

associated boundary conditions together with the inherited initial conditions; they are given in

component form:

(a) Mixture equations of motion

(a) (ca) + (1) a+ t p + n(a)f~) = ( () (a) (CE) (33)
n C ,J i U (

2 1 (2a) (Xa)
M. + - - +i 1 (34a)M i i 2 ( 2 i 2Zi 2 i i 2'-

E

3 1 (2a) (1 a) .- 11

.... = (3-b)MJ + 2 (y3 i _Y3 i +R3 i i 3'
E

3 2 (2a) (Ia)C2) r + R )IS (3,)

(M 2 .j +M j3,j)+ (223 - 3 2 3  2 3

where the average operations are defined by

(aa) I f (a) dA*ai. (X,t)- - Ja.. (x,x*, t)d (35)

A (a)

x, t ir= f (I)v ds* l f ra (a) v (1) ds* (36)

A, ,1
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2_
2 3 2 (a) (a)

e(Mi jM ) j) I f. iij g (cos ,sin0)dA* (37)
a=1 A~a)

R (T ! (2) cs20 + r(2) sin 20)dA*, i =1, 2 (3 8a)
R2 i n (2)A fc) r ( 2 i co Y3 i

A
J A!1 _(2)(2

R Y (2 n2-"cos 20 + a 2 ) sin 2 ) dA*, i = 1, 3 (38b)

1n" (2) 223)

R23n =A 2 2r ( 2  +  .33)2dA* (3,.)

nA r

2
i= h((a) ) h(1) 1 (2) 1(2) 2 I

I=-- h 2) (+ n + In n (39)I h ' - (2)=3n (2) dn

In eqns (36)-(38) A(--) denotes the area of the cell;

(b) Boundary conditions

U.(a) or n (a)() V specified for i=1-3 (40)
j i

2
Si2 or M.iv. specified for i= 1,2 (41a)

3
S i3 or M .v. specified for i = 1, 3 (41b)

3 2
S 2 3  or (Mj 2 +Mj 3 )v j  specified (41c)

(c) Initial conditions

U 0i S 2 ,S i3' i 2  S. 3 specified at t=0 (42)

It is noted here that the above mixture equations are identical to those for elastic constituents

(Murakami and Hegemier, 1986).

Incremental constitutive relations and trial transverse stress-rate

At first glance, it would appear that the trial displacements (32) could be used together with

the original three-dimensional material constitutive relations (10), and the stress-type averages
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(35)-(38) to establish a set of constitutive equations for the stress averages to accompany the

equations of motion (33) and (34). A closer examination, however, reveals that such an approach

will not yield a relation for the interaction body force P in (36) and will lead to a model which is

too "stiff' and which exhibits erroneous dispersive characteristics. These problems - common to

the use of direct variational methods - can be alleviated by the use of a judicious mixed weighted

residual procedure wherein Lhe trial functions include certain stress-rate components as well as the

velocity components. This is an incremental version of Reissner's mixed variational principle

(Reissner, 1984, 1986) which was employed to derive the mixture model for elastic constituents

(Murakami and Hegemier, 1986).

In order to use the mixed weighted residual procedure, it is necessary to rewrite the rate

constitutive relations (10) in terms of in-plane strain rates and transverse ztress rates; these are

shown in matrix form for easy finite element implementation:

lY =E le I I+ [ E 12 ]  ( t} (4 3a)

tej ='[E 1 2 ]T e 1 1 +[E 2 2 ] 22 (43b)

where

Ti T

to-t} =[a-221 a 33 CT"23 G 31 all2 ] T

{e }=[e 22 e33 2e23 2e31 2e 2]T +. [ e. 22 e* 33 2e* 23 2e* 31 2e121]T  (44)

In eqns (43) and (44) []T is the transposition of [1; subscript t denotes transverse quantities. The

transverse stresses are those which appear in the traction continuity condition (12b), i.e., all stress

components except a-1 1(cl). The matrices [Ej ] are functions of the elements of Cijkl(eP) and

[E22 (a)] is symmetric and positive definite for hardening materials. Specific forms of [Eij(c)]

employed for the numerical study are given in Appendix A and obtained for the von Mises yield

criterion and associative flow rule with isotropic strain hardening.

Let *(a) (c=1,2) dcaote the space of all Hl-functions 4(x, x*, t) on V with respect to x

and on A(a) with respect to x* that are x*-periodic according to eqn (13). Functions 4jl) and t(2)
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may suffer a discontinuity on the interface A,. Any vector u(C) whose components belong to 4j{Q)

with 6(a)=d:(a) on aVu(cx), where u(i) is the specified boundary velocity, will be called an

admissible trial velocity. Any function 5 1(a) whose components belong to x(A") with 5u*(a)=O on

avu(a) will be called a weighting function. The space of admissible transverse stress-rate { t )}

(ur=l,2) consists of all H0 (=L 2 ) functions q*(x, x*, t) on V with respect to x and on A(c1) with

respect to x* that are x*-periodic. The mixed weighted residual procedure applied to the rate

boundary value problem defined by (9)-(12) yields in matrix form:

11 +{(a) C -( (a)1 (G)IT(,(a),

V aI )

+ Y()IT (CI [ (a) Te(at) E(a) t G (CO ) A

= fi t8 (a) (a) (45)
D3VT  a= 1 A (co

where{Sii), {pa), {T*}, and {vT) are, respectively, the matrix representation of 56, pii, T*, and

vT.

For arbitrary variation of ((a)j and (&t(a) }, one obtains the rate constitutive relation for {et(O)} in

(43b), as well as the rate equations of motion (9), the rate boundary conditions (d), and the rate

form of eqn (12). Equation (43a) is considered to be the definitions of aI 1(W). The mixed

weighted residual equation (45) with appropriate trial functions for {[i(a)1 (=fi(a)) and {dr() }

yields the rate constitutive relations for the stress averages in eqns (35)-(38). The rate form of

(32a) furnish a trail velocity field. The trail transverse stress rate has the form

{8< 1_-fa (' . () ) ( X, x*, t ) + e { )t ) } ( X, X*, t )(46)

In accordance with the 0(1) homogenization procedure, the 0(1) transverse stress-rate {atto)) can

be constructed by using the approximate velocity field defined from eqn (31). For a hexagonal
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array, substituting the trial velocity field obtained from (32) into (10) an appropria:e form is

obtained for the transverse stress-rate:

t (0) )X +6cA2 2 [ T(O)] { t } ( x, t )(4a

r

where ft(e)) and ft t} are stress variables defined as

X t(, (a) (a) (a) (a )]r

{t }(xt)=[t 2 2 t 3 3 t 2 3 t 3 1 t 1 2  (47c)

and where [T(O)] is a 5 x 5 matrix whose nonzero elements are
T II =T 12 T 1 T = T =cos 20

=T 1 2 =T 2 1 =-T 2 2 =T 4 4  5 5

T 13 =T 2 3 =T 3 2 =T 4 5 =-T 54=sin 20 (47d)

The O(E,) term {at(j)(a)} is governed by the MBVP (28) which requires the solution of

u(2)(a). The exact analysis of u(2)(a) based upon the expansion (20a) and eqns (23) and (26)

yields 42 sub-MBVPs. The formidable task of solving for the elements of U(2 )( c ) can be alleviated

by constructing (cr()(Q)] approximately from (28a). Examination of the analytical solutions for a

concentric-cylinders cell revealed that {at 1)()} which satisfies

V*.C(a)(-1) n((x) in A(a) (48)
(1)

yields a simple approximation for a general cell.

Equation (48) is obtained by applying the Gauss theorem to eqn (36) and satisfies the integrability
condition for u(2)(a) through the explicit introduction of P. For a hexagonal cell the following

approximation (adopted for elastic constituents) is employed.
{-(a),! g(a)( r ) [Q(e) ] 1 } x, t )(49a)

where (P) is a matrix representation of P, and [Q(O)] is a 5 x 3 matrix whose nonzero elements

are
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1 1

Q 2 2 =Q 3 3 = TQ1 2 =WQ51 =cos0

QI 1  1  = sin 0 (49b)741Q 1 3 =Q3 2 =Q2 3 =Q1 =  

Ii 4b

The trial transverse stress-rate is now obtained by substituting eqns (47) and (49) into eqn (46).

On substituting the rate form of eqn (32) and eqn (46) into eqn (45), one obtains the rate

form of (33), (34), (40) and (41). In addition, the arbitrary variation of ( c }ci)) yields the rate

constitutive relations for the transverse stress variables:
(c)] Iia T t ) gc IQt *1 dA*

f 22( a28 2 4 []t} Q{}

A( r

= n(a) / r( {,e t(U)a)~l )T(0A(())

n A(W

I L[T]T[E (2)2)}( -[Tt't.+.- g (2)[Q] t 1)

fr 2 2Q

]T IE}+ (2][T]T[E(2) e (

N 2 1 2 11 (1
A r

2

r (a)IQ TIE(a(a) 1+8 (~t+~~)Qfp)cA
[QJ.{l(A)J) r4 [ 2 21 a2 2 i ~~i i

2i(fj2 }E h , Rm]4 4. 13

2

where { U(a)G is a matrix representation of U(a), h=h(I)+ h(2), and

e~)t 22 33 3U  U +U 7U 4+1

23 3.2 3.1 1,3 1.2 2,1

{S} :[[$22 S33 2S 2 3 S 1 3 S 1 21  (53)
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In eqns (50)-(52), [W] is a 5 x 5 matrix, and [RI], [R11], [R111] are 3 x 5 matrices. Nonzero

elements of those matrices are

w =-w 1 2 =w 3  =---.L W 2=W 2=- W44= W 5 5=2l W 12 '3 2 n( 1)

I I I IllII I Ill 111

R II=R 1 2 =R 1 5 =R 1 4 =2, R 2 1 =R 3  , R 2 2=R 3 3=R 3 1 =R 21 3  (54)

The solution of (51) and (52) yields i (W)}, [i J, and [Pj in terms of e(u)(i)}, , (c), and

{u(2)}.{:J(1). For inelastic response the integrals in (50)-(52) have to be evaluated numerically at

each increment (time step); for elastic constituents the above relations can be evaluated explicitly

and this produces the results obtained from a fully elastic approach to the problem (Murakarni and

Hegemier, 1986). Substituting eqn (47) into eqns (37) and (38) one Finds
2 2 3 3
M 22=3h 2/4, M 23=hP2/4 , M 3 3 =3hP 3 /4

2 3 3 2 2 3
M 12 =M 3 1 =hP 1 /2, M 22 =M 2 3 =hP 3/4, M 31 =M 12=0 (55)

( , 2(1) 1)
R 2 1= t1 2 / a 1  R 2 2(t 2 2+ t 33)/n (1  R 31 t 3 1/n

R23t23/2n(1) , R33=--(-t22/2+t3)/n3(1) (56)

The remaining constitutive equations for i1(aa) and Ml are obtained from eqns (43), (35) and

(37). The results are

(a) (cia) Cr(a) -(ca) (ai) . l r
n'% Ira*1 f[E e= ''1 , + E, '"[}52I Tl~ I + L g<=)[ Q I fr }* ) dA* (57)

1= 1A 1 12 2

r

where

( 2 3 TTfMPI=[M I 1 M1 1 T {n}=[cosO sin0]'6 (58b)
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The above operations were carried out at each integration point in a constitutive subroutine for the

mixture finite element code: HFEC2D (Impelluso, 1990).

MODEL VALIDATION STUDIES

In this section, validation studies are conducted in an effort to ascertain the simulation

capability of the O(E) mixture continuum model. The model consists of the equations of motion

(33) and (34), the boundary conditions (40) and (41), the initial conditions (42), and the rate-

constitutive relations (50)-(52) and (55)-(58). The problems examined include linear and

nonlinear wave propagation. In the dynamic response, mixture model predictions were compared

with experimental data or "exact" numerical data generated from DYNA2D based upon detailed

explicit modeling of fibers and matrix. Material properties of the investigated composite which

consists of elastic fiber and elastoplastic matrix are shown in Table 1.

For elastic harmonic wave propagation, the model was validated by comparing the

predicted phase velocity spectra with experimental data (Murakami and Hegemier, 1986).

Therefore, the validation of the model was conducted in the time domain. As was noted

previously, the validation strategy is to compare mixture model predictions with experimental data

or "exact" numerical data generated from DYNA2D based upon detailed explicit modeling of fibers

and matrix. For this purpose, an explicit finite element code: HFEC2D (Impelluso, 1990) was

developed using four-node quadrilateral elements for the generalized plane strain in the xj, x2-

plane. The mixture element has six nodal degrees-of-freedom for Ui(c) and Si2 (i=1,2). The

element carries the microstructure of the cell at each integration point where the numerical

integration of incremental constitutive equations (50)-(58) are conducted. For simplicity of

notation in the numerical results, dimensional quantities are referred without overbars.

The geometry of the wave-reflect problem is shown in Figs. 3 with meshes for HFEC2D

(Fig. 3b) and the detailed DYNA2D (Fig. 3c). A composite half space with free boundary at x2=--
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was loaded uniformly with respect to x3 under plane strain condition in the x1-direction. For this

globally one dimensional wave phenomena in the x2 -direction, a column of cells of width

A=0.0975 cm, shown in Fig. 3a, is discretized by the mesh shown in Fig. 3c for DYNA2D

calculation; for the mixture model only one row of elements shown in Fig. 3b is employed. The

following bondary conditions were posed for the DYNA2D calculation:

o 2 2 =o 0 {H(t)-H(t-t 0) ), G23=0 at x =0

U 3= 23=0 at x 3 =0, A (59)

For the mixture model, the corresponding boundary data was specified as

(aa) (a)) 2)

022 =n 0 {H(t)-H(t-t}, 12M =. =0 at x,02212 12 2 2

(a) (aa) 2 2
U = = =M =0 at x =0,A (60)1 12 11 121

where H(t) denotes the Heaviside step function, and to = 3jasec. is the pulse duration.

A load of o0 = 1 x 109 dyn/cm 2 is applied to induce a purely elastic response in both constituents,

while a load of o = 3 x 109 dynlcm 2 is applied to induce an elastoplastic response in the matrix.

The numerical results are shown for observation points located in the 33rd cell. The time

variations of fiber particle velocity, at r = 0, 0 2(l) and of matrix particle velocity tu2(2) at r = I and

0--0* are shown , respectively in Figs. 4a and 4b. The corresponding time variations for the

elastoplastic case are shown in Figs. 5a and 5b. Arrival time, peak response, and damping are

well correlated by the mixture elements. The dispersive behavior is evident and well matched;

furthermore, the spreading of the wave pulse to a duration larger than 31.isec. is demonstrated in

both DYNA2D and HFEC2D.

Special attention is paid now to the localized plastic deformation in the composite. Figure 6

shows the effective plastic strain contour obtained from DYNA2D; plastic deformation is localized

near 0--0* and 180". To examine the capability of the model in predicting those localized effects,

the effective stresses at 0=150" and 180" both at r=0.761 are shown, respectively, in Figs. 7a and
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7b. From those figures, the localization is modeled accurately by the mixture element. This

accur:...y is also reflected in the predictions of the effective plastic strain.

In order to further assess the accuracy of the model, the waveguide problem illustrated in

Fig. 8 is considered. The load is applied at the boundary x1=0 in the fiber axis direction.

Hexagonal symmetry, approximated by axisymmetry, allows for an extraction of an a cell of radius

A--0.0975 cm. First, a comparison is made witi a shock tube test conducted by the Acospace

Corporation and reported by Hegemier et al. (1972). The composite is subjected to a step ?ressure

loading of 4.826 x 105 Pa. The results of the model are obtained by using 110 elerncnts. The

comparison of the rear surface velocities on a specimen '.33 mm thick is shown in Fig. 9. In the

above experiment the nonlinear effect was negligible.

Numerical experiments were conducted to test the model's capal-,ility for predicting

elastoplastic wave propagation. The following boundary conditions with respect to the cylindrical

coor,.*nate system were pced for the DYNA2D calculation; x, and x, are, respectively the axial

and radial coordinates:

0' =c0 (H(t)-H(t-t 0) 1, a 12=0 at x 1 =0

u 2 = G 12 =0 at x 2 =0, A (61)

For the mixture model, the corresponding boundary data was specified as

(aa) (a) (a) 2
G I=n o ( H(t) -H(t - to)), aY = M i =M 20 at x =0

(a) (wa) 2 2
U2 =0G"12 M = 2 12 = 2 21 =0 at x =0,0.51,5 (62)

A pulse load a()= 5.0 x 109 dyn/cm 2 of duration to = 3lisec. was applied. Axial velocities at

x I=43.5A were plotted in Fig. 1Oa for fiber and in Fig.IOb for matrix.

The above comp:z-isons with the detailed FE analyses indicate the cost efficiency of the

mixture element due to the coarseness of the mesh; the mixture code, HFEC2D, runs at least

order of magnitude faster than the detailed finite element computation.
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CONCLUDING REMARKS

The construction of a higher-order mixtu:e description of fiber-reinforced composites has

been demonstrated herein for the case of material nonlinearities. For simplicity of presentation,

composites with a hexagonal array of fibers and elastoplastic matrix were considered. The

methodology is based upon an asymptotic homogenization method and yields tne equations of

motion, the appropriate initial and bouidary conditions, and a set of consistent rate-constitutive

relations. For transient response a finite element wave code ,vas developed for the nixture model

to solve linear and nonlinear problems; results using this code were compared with those from

DYNA2D in which a fine mesh was utilized to explicitly model the microstructure of the

composite. These comparison- reveal that the mixture model is capable of furnishing an accurate

and economical description of complex wave phenomena. In the foregoing analyses the

importance of wave dispersion and attenuation effects was confTrmed for nonlinear as well as linear

composite responses.
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... . APPENDIX. DEFINITIONS OF [Eij] IN EQN (43)

. .... I s computationally advantageous to rewrite eqn (10) in terms of the elastoplastic compliance -

matrix D=C -1.For a von Mises yield criterion and associated flow rule with linear strain

- -hardening, D(a)(eP) may be expressed as
a)p ()9 (a) (a)T

D(a)(ep) D + (a) s s (A 1)
4 ()2

In eqn (Al), H' is the strain hardening parameter, s (=a-tra.5) is the deviatoric stresses, and bc

(=,13s:s/2) is the Mises effective stress.

Rewriting the rate compliance relation by using a 6 x 6 matrix [D] for D, one finds

E 1 [E= I (a)11 ,[12,  - [D 1 2 D l3D1 r I ] a (

D (a)(ep) D (a)(ep) 13 14 D 16(

[( a]) (DXcp) D I D ) (aXp) i, j=2-6 (A2)
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Table 1 Material Properties for Wavereflect Problem.

Material Volume Density Young's Poisson's Yield Hardening
Fraction Modulus Ratio Stress Parameter

a n(a) p(a)(g/cc) E(aL)(dynlcm 2) V(a) cy(dynlcm2) H'(dynlcm2)

1 0.272 1.85 292.0 (109) 0.3776 - -

2 0.728 1.29 82.24 (109) 0.3 57 1.33 (109) 11.38 (109)
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Fig. 2. A typical cell representing the geometric mnicrostructure of the composite.
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Fig. 6. Effective plastic strain contour obtained from DYINA2D.
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Fg. 9. Time variation of normalized rear velocity.
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