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ABSTRACT

Analytical continuum formulations for the solvent inertial frequency,

constituting the anticipated zero-friction limit for adiabatic barrier

crossing in solvent-controlled electron-transfer processes, are derived and

discussed. The role of solvent inertia in solvent dynamical effects is

discussed with emphasis on the likely modifications brought about by nuclear

tunneling. Approximate formulations sultable for assessing the latter

correction in the presence as well as absence of solvent friction are outlined

and compared. Numerical calculations are provided that illustrate the partly

compensatory influence on the rate-solvent friction dependence resulting

from nuclear tunneling together with reaction nonadiabaticity. Such combined

quantum effects are anticipated typically to mask the clearcut emergence of

solvent inertial effects on electron-transfer reaction dynamics in common

low-friction media.



I. INTRODUCTION

The realization that the dynamical properties of the solvent can play

an important role in the kinetics of electron transfer, as in other condensed-

phase chemical processes, has spawned an impressive range of recent studies

of both an experimental and theoretical nature (see refs. 1 and 2 for recent

overviews). Inquiries of the former type have encompassed examinations of

activated electron-transfer (ET) reactions (i.e. featuring significant free-
1

energy barriers), as well as real-time dynamics of polar solvation as studied

by ultrafast laser techniques, especially time-dependent fluorescence Stokes

shift (TDFS) measurements.2,3 These considerations have led to the conclusion

that in many solvents, at least for near-ambient conditions, the nuclear

reaction dynamics are determined primarily by overdamped solvent relaxation

as characterized in the simplest case by the longitudinal relaxation time,

TL. In other words, the common occurrence of solvent friction depresses

the net frequency of adiabatic barrier crossing below the value, W0 /2w (s-I),

reflecting the inertia of individual solvent dipoles. The latter frequency

is that expected on the basis of transition-state theory (TST) treatments.

Nevertheless, it is anticipated that in some circumstances the solvent

friction will be sufficiently small so that rL-I >W0 whereupon the rate of

barrier crossing can be determined partly or wholly by the longitudinal

Inerrial polarization dynamics as reflected in w., rather than by the over-

damped frequency rL In principle, inertial-limiting effects could be

discerned by non-exponential TDFS decays ac short times 4 and also from L"

independent barrier-crossing frequencies for suitably adiabatic ET processes.5

In contrast to overdamped motion, however, no clearcut experimental

observation of such inertia] effoet- in pciar solvents hzs appa-.-tl bee.i

reported. Such observations are hampered by the high frequencies anticipated

for solvent dipole inertia, typically wo 2 5 x 1012 s-1 for typical dipolar

solvents. Since thereby wo > kT/A (where k. is the Boltzmann constant) at
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ambient temperatures, quantum effects may commonly be anticipated, specifi-

cally involving nuclear tunneling so to enhance the barrier-crossing rate

above the expectations of classical dynamics. An additional major limitation

to the emergence of solvent inertial effects is that the maintenance of reac-

tion adiabaticity, whereupon the full effect of nuclear dynamics upon the

ET rates will be felt even at such rapid frequencies, requires large degrees

of donor-acceptor electronic coupling.6 ,7  Conversely, diminishing values

of the electronic transmission coefficient, x.l, are often expected as the
6

friction is decreased by altering the solvent, so that such reaction non-

adiabaticity can often curtail the influence of solvent inertia on the bar-

rier-crossing dynamics under these conditions. Consequently, then, the occur-

rence of inertial limiting effects on solvent-dependent ET reaction rates

may be obscured by the increasingly accelerating and retarding influences

of nuclear tunneling and reaction nonadiabaticity, respectively, as the nu-

clear dynamics become more facile.

The central issue addressed herein is the numerical assessment of the

likely role and importance of solvent inertia on ET reaction rates given

the inevitable additional presence of such quantum effects. The organization

of the paper is as follows. We first discuss specific analytic formulations

for the inertial limiting frequency and related quantities, so to characterize

the magnitudes and physical origins of such effects, and to provide approxi-

mate estimates of wo. The latter is of practical interest given the absence

of direct experimental information on inertial frequencies. We then outline

theoretical formulations that enable the nuclear quantum corrections to be

made in the presence as well as absence of solvent friction. This is followed

by representative numerical calculations so to illustrate the likely experi-

mental consequences of coupled inertial-quantal effects upon ET exchange

rates in low-friction media. Of particular interest here is the manner in

which these factors are liable to influence rate-solvent friction dependencies
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since this issue is of specific relevance to recent (and ongoing) experimental

studies. '7 While the emphasis here is on the practical consequences of such

effects, some explanative discussion of the underlying physical origins is

provided since we found the theoretical literature on this topic often to

be as esoteric as it is extensive.

II. SOLVENT INERTIAL EFFECTS ON THE ELECTRON-TRANSFER RATE CONSTANT

1. Inertial Limiting Freauency

The unimolecular rate constant for an electron-transfer reaction (such

as within a given internuclear reactant geometry for a bimolecular outer-

sphere reaction 7) is conveniently expressed as
8

k. t - rn PC n exp (AG*/kBT) (la)

- ln P,.kA (lb)

where in is the nuclear frequency factor and AG* is the activation free ener-

gy. The terms r, and .,* provide quantum corrections to the "classical"

adiabatic rate constant kA arising from nuclear tunneling and electronic

nonadiabaticity, respectively. For a given reaction, most simply for a fixed

AG* and for a given donor-acceptor electronic coupling (as gauged by the

electronic matrix coupling element H12 ), rn will tend to increase and K.1

to decrease for progressively larger Pn values as engendered most readily

by altering the solvent. For suitably small vn, on the other hand, both Fn

and jic1 approach unity so that kt kA.

In high-friction ("overdamped") solvents, the adiabatic barrier-crossing

frequency Pn is characterized in the continuum limit by rLj, this frequency

can fall substantially below the TST-limit value, w./2w. Nevertheless, theo-

retical treatments suggest that Pn is not greatly different from wo/27r in

some media, so that significant solvent inertial effects on the reaction

dynamics might often be anticipated. Especially since direct experimental

information on solvent inertial frequencies are lacking, at least approxi-

mately reliable analytic formulations of w0 are clearly desirable. We now
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consider specific expressions for w., along with their physical basis.

A straightforward formulation of o has been given by Hynes, who wrote
.9

(but without derivation) the following expression

2 (2c, + C) W (2)

o 3 e . g K

In Eq. (2), e. and c, are the static and "infinite" frequency dielectric

constants, and w is the "free rotor" frequency which for linear and

spherical-top molecules is given by

- 2kMT/I (2a)

where I is the moment of inertia. In Appendix A, we present a complete de-

rivation of Eq. (2).

The presence of the Kirkwood "g" factor in Eq. (2), gK' indicates that

solvent structural factors are important in determining Wo. The Kirkwood-

10.
Frolich formula is an adequate means of calculating g. in 

this context

9kaT (e. - c,)( 2e, + e.)

5K - 47rNpz fs(e,. + 2 )z (3)

where N is the Avogadro Number and M, is the gas-phase dipole moment.

Equation (2) reduces to an expression given earlier by Calef and 
Wolynes5

for polar, non-polarizable media by setting g. - 1 and e - 1 for the special

case of a rigid rotor. Their equation (72) in our nomenclature reads:

Several misprints in ref. 5 should be noted in this connection. Equation

73 in ref. 5 should read (in their notation):

r - 1 exp(.PAF )

Equation 77 should read:

T
ROT_1

r- (2 sY) exp(-PAFt )

and the equation for k in Table I should read:

k 1 1 2-r 2 exp(-PAFI)

k - + [1 + 2,rC

.. .-= - - -. l l irL i l l iI I eI I II
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kBT 6ye*
WO - % £ - i) (4)

where y, the reduced concentration of dipoles is given byII

4 m ,,p 2 (4a)
Y" 9

where p is the solvent density. Equation (4) can be rearranged to yield a

formula having the same structure as Eq. (2):

2kBT (2cs + 1)0 1 3gK

Equation (5) can also be expressed in the following form:
5

2k13T
W), ]1 (6)

where

S~ 1 4f pp2i 1

-3y 3kBT(e. - 1) - 1 + £ ho  (6a)

and 0 is a normalizing volume element and h o is the pair correlation func-

12
tion. This formulation reemphasizes how the solvent structure (via Y)

influences wo and hence the TST reaction rate. The use of Eq. (5) typically

yields ca twofold lower estimates of w. compared with Eq. (2) owing to the

neglect of e. in the former.

It is interesting to note that the expression for wo given in Eq. 2 is

also similar to that for the "dipolaron frequency" identified by Madden and

Kivelson.1 3  These authors developed a "three variable theory" to describe

the complex, frequency-dependent dielectric constant, e(w). The variables,

R, (IT and r are used to characterize three distinctly different processes

that occur in dipolar fluids. Two variables, OR and OT' describe dipolar

rotational and librational frequencies, respectively; the last variable, r,

describes how rR and OT are damped. All three of these quantities are con-
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sidered in the context of a time correlation function, 0(t), which is related
A

to C(w) using the one-sided Fourier-Laplace transform, Xi.:

A

CM - + (e [1 + X (t) (7)

Although all three variables combine to dictate the polarization dynamics
A

through C(W), nR is most relevant to this discussion. This quantity repre-

sents an inertial frequency (that is, a frequency which is inversely propor-

tional to the moment of inertia) that characterizes collective dipolar motions

contained in the short-time behavior of 0(t). For linear and spherical top

molecules:

(2es + e,) 2kBT

- 3e gk  I (8)

The dipolaron frequency is the longitudinal counterpart of r:

-2 " .'(e /E) (9)
0(9

as can be seen by comparing Eqs. (8) and (9) with Eq. (2) (see Appendix A).

Poley originally predicted the presence of a spectral feature on the

basis of the differences between c. and the square of the refractive index

at infrared frequencies for "Debye" flufds such as nitrobenzene. 14 He noted

that this difference was proportional to i2 and considered this unambiguous

evidence for a dielectric loss associated with molecular reorientation.

This "Poley" absorbance has since been observed in most polar liquids that

have been studied in the far infrared region.15  Unfortunately, wo cannot

be related directly to the frequency of the Foley band: the absorbance is

associated with the librational reorientation of solvent dipoles in the "cage"

formed by neighboring molecules, which is a transverse (0T), not a longi-

tudinal, oscillation.1 3  The Foley band is noted here since it constitutes

one of several high frequency dipole reorientations that have yet to be

considered in the context of their relevance (or lack thereof) for electron-
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transfer processes.

The practical applicability of Eq. (2) is subject to several important

constraints. One underlying assumption, of course, is the dielectric-con-

tinuum approximation. Although the presence of molecular moments of inertia

and dipole moments in Eq. (2) implies some innate consideration of solvent

molecularity, the many countervailing assumptions that are made to assure

tractability may lead to some serious uncertainties in the numerical

17
predictions. Nonetheless, one can use Eq. (2) as well as molecular-dynamics

simulations to provide reasonable estimates of wo .

Estimates of wo obtained from Eq. (2) for some common polar solvents,

encompassing a typical range of dynamical properties (at 25°C), are listed

in Table I alongside corresponding values of rL The first five solvents

each exhibit roughly Debye behavior (i.e. exhibit only a single clearcut

dispersion in the dielectric loss spectrum). While the 7L1 values for these

solvents vary by up to ca 40 fold, the inertial frequencies are seen to vary

to a markedly smalier extent. Given that with the exception of acetonitrile,

L 1 << wO, one might expect that solvent inertial effects upon electron-

transfer dynaics may commonly be unimportant at ambient temperatures. How-

ever, acetonitrile is but one member of a class of low-friction solvents

(also acetone, nitrometbane, etc.), for which inertial effects may well play

a significant role.

Corresponding molecular dynamics simulations of w. are as yet uncommon.

Nevertheless, such calculations yield, for example, values of 95 ps-1 for

water1 9 anf 23.5 ps-1 for acetonitrile.2 0 These values are within c, twofold

of (albeit sl'ghtly higher than) the corresponding estimates in Table I.

Given the unce,:tiinties contained in both Eq. (2) and the simulations, this

agreement is acceptable.

For larger solvent molecules, however, molecular asymmetry and break-

down of dielectric continuum theory may prove a more serious limitation to
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the applicability of Eq. (2). Furthermore, the use of Eq. (2) together with

a friction kernel for the rate expression that does not include the short

time dynamics of the longitudinal polarization modes brings a logical incon-

18
sistency into the calculations. The comple: nature of t,,ese high-frequency

procebses has been described in detail. 1 6 ,2 1 Further insight into dielectric

relaxation processes that can be gleaned from inertial effects is detailed

in Appendix B of ref. 30. For the calculations that follow, we choos, Wo/2W

values oveL the range 5 to 25 ps- , reflecting the anticipated range for

typical solvents (Table I).

2. Classical Ad-abatic Rate zxpressions

In the absence of solvent friction (i.e. .n the TST limit) the classical

adiabatic barrier-crossing frequency, u,,, (i.e. when rn - 1, K. 1 - 1) will

equal wl/2r irrespective of the shape of the barrier top as influenced by

the electronic coupling matrix element, H12. In the presence of solvent

friction, however, L/ should generally be sensitive to the barrier-top

curvature.7 8 Although s'vzh treatments for electron-transfer reactions have

beien discussed previously,9,18 the relevant relationships and the underlying

phyF4cs are now summarized briefly since they are utilized in the en.uing

numerical calculations.

In general, the friction at the barrier top is probed at different cros-

sing frequencies than the function experienced by a particle climbing up

(or sliding down) the well. It is useful to make a piecemeal parabolic ap-

proximation to the true potential-energy surface: fitting two parabolae to

the wells and an inverted parabola to the barrier top. 9  Since w. is the

characteristic frequency of oscillations in the wells, simple algebraic ar-

guments yield an equivalent frequency near the barrier top given by
1 8

2 G*
=0~ -1)" (10)-

W, 

012

W, H 12I
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where AG* is the "cusp" barrier height, i.e. in the limit where H12 * 0.

One may then consider the overall adiabatic rate constant kA as a composite

of the rate for crossing the barrier top, k., and that for diffusion in the

wells, k.:

- + 0.5 (1)

Equation (11) is a restatement of the Northrup-Hynes "Stable States Picture"

of barrier crossing dynamics, applicable if AG* > 2-3 kBT. 9,22

An expression for kb in the classical limit is the Grote-Hynes form-

ula :9,22,23

AR Wokb" T exp(.AG*/ kT) (12)

where AR is a reactive (or, equivalently, memory renormalized) frequency that

corresponds to the largest positive root of the equation

2b

AR AR + ,7(AR) (12a)

given the frequency-dependent friction, n(AR). For simplicity, the calcu-

lations here consider only Debye solvents, so that the friction is frequency

independent and q a w2 18
0

The treatment of k. requires a different approach. Hynes derived an in-

tegral expression for the temporal characteristics of a Gaussian (but not

9
necessarily Markov) process leading to k.. In the Debye limit this

simplifies approximately to
5'9

-2% ( 4G, )* exp(-AG*/kMT) (13)

In the limiting case where L 0, t -0, the ratio of A./wb appearing in

Eq. (17) is unity. As then k >> kb, the resulting expression for kA is the

usual TST result:
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kA =kb = (w./2f) exp(-AG*/k-T) (14)

More generally, in the presence of friction kA can be obtained from Eqs. (11)-

(13), which also enables the classical adiabatic barrier-crossing frequency

V. [Eq. (i)] to be found from

/n - kA exp(AG* /kT) (15)

III. QUANTUM CORRECTIONS TO THE CLASSICAL ADIABATIC RATE CONSTANT

As already noted, the influence of the nuclear and electronic quantum

corrections, as contained in rn and K 01 upon the reaction rate will systemat-

ically be greater for larger vn values. Unlike vn itself, the magnitude of

both rn and ., in the absence of solvent friction is expected to be sensitive

to the shape of the barrier top as well as the wells. Thus diminishing the

extent of donor-acceptor electronic coupling (i.e. decreasing H12 ) will en-

large wb at a given w., which will enhance the extent of nuclear tunneling

(i.e. increase rn) as well as lessen the efficiency of electron tunneling

(i.e. decrease x..). The diminution of vn for a given barrier shape brought

about by the presence of solvent friction will tend to decrease the magnitude

of these quantum corrections (i.e. depress rn, enlarge x.1).

Consequently, then, the manner in which such quantum corrections can

influence solvent dynamical effects in electron transfer is a complex inter-

play between several factors. As a prologue to evaluating typical numerical

consequences of such quantum effects, we now outline and evaluate some can-

didate analytical expressions.

1. Nuclear-Tunneling Corrections

A convenient expression for nuclear tunneling through a parabolic barrier

top in the TST limit (i.e. when vn - Wo/2x) is: 24,2 5

cb sinh (A c/2kST)
r- (-) (16)

n o sin (A wb/ 2ksT)
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26

At higher temperatures (Awo/2kBT <<«), Eq. (16) can be approximated by

(h wb/2kST) ( Tk/2T)

n sin (h wb/ 2kET) sin (n Tk/ 2T) (17)

here Tk is a "characteristic temperature" of the system, such that at T -

Tk the probability for transitions above the barrier and those through it

are equal. This latter formulation is of particular value as a diagnostic

1
tool: if T < 2 Tk, large nuclear tunneling effects are predicted whereas

22

for T > 2 Tk tunneling effects will be small or negligible.
2 6

Both formulas given above face restrictions concerning the admissible

degree of barrier curvature; specifically, they require that b < 2rkT

to assure that Fn remains a positive definite quantity. These approximate

formulations also face difficulties when F is large (say, > 5-10). Such

a circumstance indicates that tunneling from deep within the well is sig-

nificant, complicating the analysis.

An expression for the tunneling correction that is appropriate for cusp-

like barriers (i.e. when H 2 is small) has been given by Holstein:
2 8

sinh (h wo/2kBT) 4AGc * ho W Ao
r ( -f/2kT) - t exp {(- o ) [ tanh( T) 4 T1 ]  (18)

Equation (18) should be valid over a wide temperature range.

Introducing friction into the nuclear-tunneling correction, as is needed

here, requires a rather more involved analysis. A lucid discussion of the

quantum corrections to the transition state theory and the generalized quantum

24
Kramer's theory has been provided by Hanggi. As noted there, and by

29
Wolynes, the ratio of XR/w b that distinguishes the classical adiabatic

rate constant kb from kTS [Eq. (12)] also serves to renormalize the char-

acteristic temperature, Tk, used in the calculation of rn [Eq. (17)]. Stated

differently, by regarding AR as a memory renormalized frequency, the presence
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of energy dissipation acts to change the path and frequency of barrier cros-

sing.24  In the present analysis, the nuclear-tunneling correction, in, is

taken into account entirely in the "barrier-top" component, kb, of the overall

rate constant kA (Eqs. (11), (12)1:

kb- rn (\R/wb)(wO/
2 ff) exp(-AG*/ kT) (19)

The overall nuclear-tunneling correction, F, in Eq. (1) is thereby smaller

than Fn, being weighted by the relative magnitudes of kb and kw:

(2kb + kw) fn

rn 2Tn kb + kw (20)

While this formulation satisfactorily considers the nuclear-tunneling cor-

rection to kb, it can also be questionable if rn is large since a tunneling

correction to k. would also then be necessary.

A useful, albeit cumbersome, formulation of Fn was derived 
by Wolynes

2 9

and by Daknovskii and Ovchinnikov
2 5 (and recapitulated lucidly by Hanggi 24):

r(l - x+/e) r(l - A-/9)
r n =ral - A-"/O) ral - A_/8) (21)

where for Debye solvents

17 172 2

A- - (21a)

2 2A-- -2) (21b)

given e - 2k 3T/h and w 2 T27 The variables A+ and A- are familiar as

the two poles obtained from the Grote-Hynes analysis for the c.,se of freq-

uency-independent friction.9 '2 2'2 3  Equation (21b) establishes the (memory

renormalized) frequencies characterizing fluctuations about the minimum.
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Note that Eq. (21) has simple poles at A+/O - 1 and at A-/O - 1. Moreover,

Eq. (21b) becomes complex for n < 2w.

It can be shown that Eq. (21) reduces analytically to Eq. (16) in the

zero-friction limit.3 0  Given that Eq. (16) can be approximated under same

conditions by Eq. (17), this suggests that Eq. (21) might also be approximated

by the memory renormalized version of Eq. (17):

AR sinh(fi w,/2kBT)

Wo sin(h AR/2kBT) (22)

The effect of friction upon 1n is therefore considered to arise simply from

the diminution of the net velocity along the reaction coordinate close to

the barrier top from the TST value, wb' to AR. This treatment of friction

effects in terms of renormalized velocities is closely analogous to procedures

commonly used to describe such effects upon reaction nonadiabaticity (vide

infra).7 We have found Eq. (22) to be a good approximation to Eq. (21) (with-

in ca. 20%) over the range of parameters encountered in the numerical calcu-

lations described below. Equation (22) has the virtue of allowing the exam-

ination of the complete rate-friction regime, using a single, physically

transparent, formula. Another simple expression which provides a reasonable

approximation to Eq. (21) is 9(cf ref. 31):

.- exp((A/kT:)2(w2 + W2)/24) (23)

In view of Eq. (10), Eq. (23) can be rewritten as

rn = exp((A/k3 T)2AG* w/12H2 ) (24)

Equation (24) emphasizes the sensitivity of fn to W., H12 and the temper-

ature.

Appendix B presents a brief numerical comparison of nuclear-tunneling

factors extracted using some formulae presented in this section.
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2. Nonadiabaticity Corrections

The anticipated influence of reaction nonadiabaticity (i.e. K 1 < 1 in

Eq. (1)] on the ET rate-solvent friction dependence is well docu-

mented. 1,7,9,32,33 The prediction that the extent of this dependence can

be sensitive to both the donor-acceptor electronic coupling and the magnitude

of the friction has recently received direct experimental verification.
6

Since we have discussed the treatment of such electronic nonadiabaticity
7

effects in detail elsewhere, our remarks here are confined to a brief summary

of simplified formulae relevant to the numerical calculations described below.

A generally useful expression for nonadiabatic effects upon the unimolec-

ular ET rate constant in the presence of solvent friction is
7

- kTST
Ke 1k

kt - - (25)
1 - cel + [K.Ik ST/kA]

where kTsT is the rate constant corresponding to the adiabatic TST limit,

and r.1 is related to the overall electronic transmission coefficient K. 1 by

PC, - e I/[Ka + ,c*1(I - K.)] (26)

where Ka - kA/kTST. The ZI values are related to the extent of electronic

coupling by
7

PC* 1 4f3/_VT /(+ 4 312T) (27)

where

T I H1 2 12/4A(w,0G*k 3 T)h (27a)

A particularly straightforward, albeit more approximate, formulation

of K 1 which is applicable either in the presence or absence of friction is

the Landau-Zener multiple-crossings expression
7 ,3 2

2[1 - exp(-v 1 /2vn)]
9- 2 - exp(-v 1 /2Ln) (28)

where the "electronic frequency factor" v 411 is given by
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v -H22 (r/16G* h2 kT) (28a)

Since the nuclear frequency factor vn describes the net velocity for classical

adiabatic passage over the barrier top, it accounts simply for the effect

of solvent friction upon x.1 [cf Eq. (22) for nuclear tunneling]. Equation

(28) therefore provides a useful means of interpolating between the adiabatic

limit (where x., - 1) to the nonadiabatic limit, where x.1 n H12 .

IV. NUMERICAL RESULTS

Having outlined reasonably versatile means of formulating the influence

of nuclear and electronic quantum corrections on the ET rate both in the

presence and absence of solvent friction, it is of interest to examine the

combined numerical consequences of such effects, especially regarding their

influence upon the anticipated rate-friction dependence in the vicinity of

the inertial limit.

Figures 1 and 2 show how the friction influences the magnitude of the

nuclear tunneling correction, f., as obtained from Eq. (21), with

-" " 5 x 1012 or 2.5 x 1013 s-1, respectively, T - 298 K, and AG: - 5.0 kcal

mol-1 . The horizontal dashed lines represent the TST limiting values of

for the electronic matrix coupling (H1 2 ) values indicated [as given by Eq.

(16)], while the corresponding solid curves include the effects of solvent

friction. Comparing the fn values given in Figs. 1 and 2 illustrates

the sensitivity of the nuclear tunneling correction to the magnitude of W.

as well as to wb (i.e. to H12 ), particularly in the low friction (high ri')

regime. This sensitivity was initially surprising to us. However, the

observation becomes readily understandable upon examining the simplest approx-

imate formula for Fn, Eq. (24), in that this relation exhibits an exponential

dependence of rn upon H12 . The inclusion of friction effects, however, re-

duces the magnitude of fn as well as its dependence upon H12.

In a similar fashion, Fig. 3 illustrates how the presence of solvent
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friction can diminish the dependence of T. upon the reciprocal temperature

(K-1 ) as calculated using Eqs. (16) and (21). The dotted curve representing

the nuclear-tunneling correction in the TST limit (for H12 - 0.2 kcal

mol -1) is seen to be significantly more temperature depen nt than are the

corresponding solid curves which illustrate the influence of friction. The

latter show that fn decreases markedly with increasing friction; the three

solid curves refer to rLwo values of 2, 5, and 20, co being fixed at 2 x 1013

s-1. The dashed curve in the upper left-hand corner of Fig. 3 illustrates

further the greater importance of nuclear tunneling for more cusp-like bar-

riers; here H12 - 0.05 kcal mol-1 with rLwo - 20. The TST results shown in

Fig. 3 merit a note of caution, however: Eq. (16) becomes a progressively

worse approximation as the temperature approaches the divergence point at

T - hAb/ 2lrk. This limitation arises from the presumption that the barrier

top can be approximated by an inverted parabola.

Figures 4-7 illustrate how the combination of nuclear and electronic

quantum corrections can affect the dependence of the reaction rate on solvent

friction, in the form of logarithmic plots of k.e versus rL1. (Although we

have previously evaluated bimolecular rate constants by spatial integration

of k.t values so to explore detailed friction-dependent effects7 , attention

is restricted here to the latter unimolecular quantity for simplicity).

The results in Fig. 4 were calculated by taking H12 - 0.2 kcal mol -1 , AG* -

5.0 kcal mo 1-2, and T - 298 K (see the Figure Caption for calculational de-

tails). The inertial frequency was also fixed at 5 x 1012 s-1 ; this value

was selected as being a typical value for polar solvents (vide supra).13

The range of rL values, 1 x 1011 s- to 5 x 1012 s"1, reflects that commonly

encountered in polar Debye-like media.6  The solid log k.t - log L 1 curve

was obtained without quantum corrections; the curvature seen towards larger

TL arises entirely from the progressively larger influence of the TST limit

set by the chosen inertial frequency. The dotted curve includes the influence
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of nuclear tunneling, and the dashed curve the combined effects of nuclear

tunneling and electronic noLadiabaticity. (Admittedly, in real experimental

systems alterations in rL brought about by solvent substitution also yield

significant variations in AG* and wo. Nevertheless, holding the latter para-

meters fixed, as in Figs. 4-7, enables their influence on the rate-friction

functionality to be more readily discerned).

The accelerating influence of the former quantum effect is seen to be

small under these conditions, being swamped by the progressive rate retarda-

tion seen towards larger eLI that arises from reaction nonadiabaticity. The

latter effect has been discussed in detail recently. '
7  Not surprisingly,

the extent of friction-dependent rate retardation due to reaction nonadia-

baticity increases markedly as H12 decreases. While the importance of nuclear

tunneling also increases under these conditions, reaction nonadiabaticity

tends to constitute the dominant quantum effect for a wide range of H1 2 values

for the barrier parameters as in Fig. 4.

Significantly different behavior, however, can be obtained under other-

wise similar conditions but by choosing somewhat larger wo values. This is

illustrated in Fig. 5, which contains log k.t - log TL 1 plots obtained as

in Fig. 4 but for a fivefold larger wo value, 2.5 x 1013 S-1 . This inertial

frequency is characteristic of relatively small solvent molecules such as

acetonitrile (vide supra). Inspection of Fig. 5 shows that while the deceler-

ating effect of reaction adiabaticity still tends to be greater than the

accelerating effect of nuclear tunneling (compare solid, dashed curves),

the magnitude of the latter is now comparable to the former (compare solid,

dotted curves). This is especially the case for high or moderate solvent

friction (i.e. lower rjI values).

Given that the numerical importance of nuclear tunneling is sensitive

to the temperature (Fig. 3), it is of interest to examine such combined quan-

tum effects on the rate-friction behavior at lower temperatures. For this
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purpose, Figs. 6 and 7 contain log kt - log i1 plots calculated as in Figs.

4 and 5, respectively, but with T - 150 K. The markedly enhanced influence

of nuclear tunneling is clearly evident in these results. In particular,

Fig. 7 (for which wo - 2.5 x 1013 s-1) shows that the rate-decelerating non-

adiabatic effects are largely overshadowed by nucleai tunneling, yielding

kt values (dashed curve) that are larger than the corresponding classical

quantities (solid curve) throughout the range of solvent friction shown.

General Conclusions

One overall conclusion which emerges from such numerical calculations

is that the inclusion of such quantum effects can mask partially or even

completely the influence of the solvent inertial TST limit on the reaction

rate. Electron tunneling rather than nuclear dynamics is often expected to

at least partly control the net barrier-crossing velocity [i.e. x9 1/n - Vel

rather than xelvn - v', Eq. (28)] once the latter approaches the anticipated

inertial limit frequencies, ca 1013 s-1 Nevertheless, some influence of

the inertial dynamics can be anticipated for systems displaying moderate or

strong donor-acceptor electronic coupling, say H1 2 > 0.2 kcal mol
- . While

the compensatory influence of nuclear tunneling associated with solvent iner-

tia is typically milder, this factor can mask the rate-limiting effects of

both reaction nonadiabaticity and the TST inertial frequency. Given that the

quantum effects associated with nuclear tunneling and reaction nonadiabaticity

are inherently compensatory and friction-dependent, the common experimental

strategy of examining the ET rate-solvent friction dependence 6 may not provide

a clear indicator of TST limiting effects. Indeed, the occurrence of the

classical solvent-controlled TST limit, whereby the barrier-crossing freq-

uency (x,2 vy) equals o/21r, should require the presence of substantial elec-

tronic coupling (i.e. large H 12) so to both maintain reaction adiabaticity

and diminish the importance of nuclear tunneling.

While nuclear tunneling involving solvent inertial motions may often
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be small or negligible at room temperature, Fig. 7 illustrates the potential

importance of this phenomenon at lower temperatures. Electron-transfer

kinetic experiments of this type concerned with solvent dynamical phenomena

have apparently yet to be performed. Nevertheless, there are several prac-

tical reasons to earmark such studies for future consideration, not the least

of which is the markedly diminished reaction rates expected under these condi-

tions.

Quite apart from nuclear tunneling involving solvent rotational/libra-

tional modes, substantial quantal effects involving high-frequency reactant

vibrational and related solvent modes can often be anticipated. For suf-

ficiently high frequencies (say 2 5 x 1013 s-1), especially for cusp-like

barriers (i.e. small H1 2), nuclear tunneling involving such modes can be

sufficiently Important even at ambient temperatures so that their effective

contribution to the activation barrier is muted or even essentially removed.

Interesting recent calculational examples of such phenomena include

Fe(OH2 )3 + /2  self exchange in aqueous media, for which the presence of sub-

stantial nuclear tunneling was deduced for hydrogen atoms motions involving

34
the solvent as well as the aquo ligands. Along with the high w. values

estimated for water (_1014 s-1, vide supra), sizable nuclear-tunneling effects

might often be expected in this solvent. Such effects will be lessened sub-

stantially, however, for processes featuring strong donor-acceptor orbital

overlap, such as the cobaltocenium-cobaltocene self-exchange reaction recently

evaluated in water as well as other solvents in our laboratory.6 ,3 5 ,3 6 More-

over, the reaction dynamics may well be largely overdamped in water (i.e. sol-

vent friction is prelevant), since ri << WO (Table I).

The uncertainties in estimating the solvent inertial frequency, noted

above, could be construed as providing a major impediment to numerical cal-

culations, especially involving larger and more asymmetric molecules. Fortun-

ately, however, the commonly anticipated prevalence of overdamped motion



20

for such solvents1 8 makes such uncertainties less serious in practice. Of

greater anticipated significance is the occurrence of additional dissipa-

tive relaxations at higher frequencies than r1 These oft-present com-

ponents can diminish greatly the effective solvent friction, yielding substan-

tial rate accelerations beyond that anticipated for frequency-independent

friction.9'1 8'3 5'3 6 A quantitative understanding of the influence (or lack

thereof) of such high-frequency frictional components, however, will inevit-

ably require detailed consideration of quantum effects.
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AP~endix A: Derivation of Eg. (2) and Related Considerations

Equation (2) can be generalized to include a somewhat more involved

definition of wf than Eq. (2a). The free rotor frequency, wf, is defined

as..9,37

f-< >" <(u')> _ <;2> A.1

where w is the molecular angular velocity vector, and u is thc- unit vector

that lies along molecular dipole moment vector, p. Here, we will explore

the derivation more fully, following Hynes9 and Brot.37 Evaluating

-<W'> - <(u'w)
2
> term by term, we find

2 <2 + + W2  (uW + u'W + u W )2 > A.2
f W; Z X X Y Y 22Z

Evaluating the square, and taking advantage of the fact that cross terms in

Eq. (A.2) vanish, allows the simplification:
3 7

W 2_ < 2+ 2+ W (2 +U2)2 (,Z +U2W2 Y Z Z Wi Y XZ U2 + u2)W2]> A.3

Since u is a unit vector, u2 + u 2 + u 2 _ 1, where ux , u and u2 are the pro-
2 Y Z

jections of the unit vector along the dipole moment onto the principal axes

of inertia, the foimula for w2 in equation A.3 (after inserting the equ-parti-

tion values for w, i.e. w 2 - kBT/Ia) becomes: 37

a

2u u2 + u 2 2) (u 2+u 2)
wf - kBT [ I + IX + IY A.4

or, restated in more compact form,

A2 2

- kBTE ( - ) (1-1) A.5

where p2  pTp (T connotes the vector transpose)and a - x,y,z This more

general expression reduces to Eq. (2a) in the text for linear and spherical-

top molecules.
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The three individual components of tl'9 complete dipole moment vector

can be "erived from the Stark effect splitting of the 'gas phase] rotational

spectra for the molecule. (Dipole moments are often markedly different in
38

condensed phase than in vacuum so the use of these pprameters generates some

uncertainty in estimating wo.) The principal moments of inertia may be ex-

tracted from tabulations of the three rotational constants, R. (usually called

A, B and C, respectively), using the relation:
3 7

R- A.6

where c is the speed of light.

The dielectric parameter terms in Eq. (2) arise from the form of the

dielectric response function, expressed as th dielectric permittivity

- s :37 ,3 9

A 3c gk
E(s) - (1+ 2E5 + -- )

2% C (s)A .I~) I 2 + Zs (-g(t)) A.7

- C 3e% gk

where g(t) - ag(t)/8t. Equation A.7 utilizes the notion of the time-dependent

Kirkwood "g" factor - a collective function describing the structural correla-

tions in the ensemble of solvent molecules. If the structural-correlation

function decays exponentially in time, X(-g(t)) a 1/(l + s *), in which case

E becomes a simple exponential with the relaxation time, r , characterizing

the decay of the structural correlation function g(t); i* is related to che

Debye relaxation time rD by:

3(

D 2c a + CO A.8

As pointed out by Hynes, g(t) obeys a Langevin equation having the usual
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9
form:

t(t) -"f dr K(t - r) g(r) A.9
0

where the kernel, K(t), has the Laplace transform:

R(o) 2

K(s) - - +A.10S + L(s) g [s + L(S)] .1

The frictional term CL(S) contains the dielectric loss information. The

kernel, K(O) in Eq. (A.10), equals f/gk" Inserting this into the overall

expression for the dielectric response function E(s) as given in equation

A.7, the high frequency term (multiplied by s2) can be identified as an "iner-

tial limited" transverse frequency if we assume a friction coefficient having

the form wT 37 Assuming r - rD (i.e. Debye behavior),

E(s) can then be reexpressed as:

E(s) - (1 + + D - A.11

where wT is now identified as:

2e, + CC W 2
W 222 - A. lla

T " 3ce k 
Agk

One then extracts the corresponding longitudinal quantity, wo, using

(cf Eq. (9)]:

Wo - T h/) A 12

which yields

(2e. + ,) w 2

- 3 t. gk A.13

Eq. (A.13) is identical with Eq. (2) in the text. It is also worth noting

that the proportionality coefficient relating the transverse and longitudinal

inertial frequencies wT and wo in Eq. (A.12), (e,/E,) , is similar to but

not identical with the well-known factor (,/ ) relating the transverse

and longitudinal overdamped relaxation frequencies r'D1 and rLi. A detailed
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derivation of Eq. (A.12) along with a discussion of the underlying physics

responsible for these differences is to be found in Appendix A of ref. 30.

Appendix B: A Numerical Comvarison of Nuclear-Tunneling Corrections

We outlined above a number of different approximate formulations of

the nuclear tunneling correction factor r.. Table B.I presents a numerical

comparison of r. values using Eqs. (16), (17), and (24) for three different

values of Hif and o". It is seen that all three expressions yield similar

results when w. - 5 x 1012 s-1  However, significant discrepancies (even

divergences!) are obtained at larger values of o, particularly for small

values of Hi2.

Table B.I

A Comparison of Nuclear Tunneling Correction Factors
in the Transition State Theory Limit at 298 K

rb
n

Approximation H 2a - 5xi0 12  WO ( xi013  w - 2.5x10 13

(kcal tool - )  (s - 1)  s - 1)  (s'1)

Equation 16 0.05 1.15 1.87 c
0.125 1.06 1.34 10.04
0.2 1.04 1.26 2.92

Equation 17 0.05 1.15 1.86 c
0.125 1.06 1.33 9.87
0.2 1.03 1.25 2.87

Equation 24 0.05 1.15 1.79 5.41
0.125 1.06 1.32 3.93
0.2 1.04 1.25 2.35

a The cusp barrier height was taken as AG - 5.0 kcal mol" .

b The barrier top frequency, w, was calculated using Eq. (10).

c No numerical estimate could be obtained owing either to divergence in the

expression or violation of boundary conditions for the approximation.
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TABLE I Comparison Between Inertial Frequencies Estimated from Eq. (2) and
Inverse Longitudinal Relaxation Times for Some Common Solvents at
25°C.

Solvent 
bL b

ps- 1  ps- 1

Acetonitrile 4 11

D2 0 1.9 40

Dimethylsulfoxide 0.5 9.5

Benzonitrile 0.2 4

Hexamethylphosphoramide 0.11 -4

Methanol (0.135) 11

Ethanol (0.033) 9.5

a Inverse longitudinal relaxation times for solvent indicated, as obtained

from dielectric loss data (see ref. 6 for data sources). Values for

methanol and ethanol (given in parentheses) refer to large-amplitude,

longer time, portion of multicomponent dielectric disposition.
b Solvent inertial frequency, estimated from Eq. (2) (see rzf. 18 for

data sources).
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FIGURE CAPTIONS

Nuclear-tunneling correction to rate constant as a function of log rLj

where rL is the solvent longitudinal relaxation time, for three different

electronic matrix coupling elements H12 as indicated, calculated from Eqs.

(10) and (21). The dashed horizontal lines represent the TST limiting value

(i.e. for TL -+ 0), calculated from Eqs. (10) and (16). Other parameters:

Wo - 5 x 1012 s-1, &G: - 5.0 kcal mol-1, T - 298 K.

As in Fig. 1, but for H12 values indicated with a higher inertial limit-

ing frequency, wo - 2.5 x 1013 s-1 .

Nuclear-tunneling correction factors as a function of the reciprocal

absolute temperature. Solid curves refer to TL values (in order of decreasing

r.) equal to 2/o, 51w., and 20/w, with H12 - 0.2 kcal mol -1 , calculated

by using Eqs. (10) and (21). Dashed curve refers to TL - 20/wo and H12 -

0.05 kcal mol -1 . Dotted curve represents the TST result (i.e. for T L _ 0)

for H12 - 0.2 kcal mol -1 obtained from Eqs. (10) and (16). Other parameters:

o " 2 x 1013 s-', AG: - 5.0 kcal mol"1.

Logarithmic plot of the unimolecular ET rate constant, k.t, versus the

inverse longitudinal solvent relaxation time. Solid curve is the classical

adiabatic result, obtained from Eqs. (1), (10)-(13), and (15), with

o " 5 x 1012 s-1 , H12 - 0.2 kcal mol-1, AG: - 5.0 kcal mol "1, T - 298 K.

Dotted curve includes nuclear tunneling correction as calculated from Eq.

(21). Dashed curve includes additionally the electronic transmission co-

efficient (i.e. reaction nonadiabaticity) calculated from Eq. (28).

As in Fig. 4, but for o " 2.5 x 1013 s-1

As in Fig. 4, but for T - 150 K.

As in Fig. 4, but for oo - 2.5 x 1013 s-1 and T - 150 K.
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