
AD-A237 458 7

Hamiltonian 3-D Ray Tracing in the Oceanic Waveguide
on the Ellipsoidal Earth

by J. George Dworski and James A. Mercer

Technical Report

APL-UW TR 8929

December 1990

4V

91-03779
ONR Grant NW 14-89-J- 1979 Distributi1oni1Un iiimte

Approved for Public Release - Distribution is Unlimited



Hamiltonian 3-D Ray Tracing in the Oceanic Waveguide
on the Ellipsoidal Earth

J;,-- l0Ace"as104 Par /'

by J. George Dworski and James A. Mercer T" (7?

iDlat Speolal

Technical Report

APL-UW TR 8929
December 1990

II

I'-

AppiedPhyicsLabratry nivrsiy A Wasigkt *f

ONR Gant NOO 1489-J-19 7

Appovd fr ublc elese- Dstibuio isUnimtechd aRpr



I

Acknowledgments

This research was supported by the Office of Naval Research, Code 11250A, Marshall Orr.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
U



APL-UW TR 8929

II
ABSTRACT

I-,, Ray equations based on an acoustic Hamilton ian, and formulated by Jones et al.

(1986) for spherical coordinates in NOAA's 3-D ray tracer HARPO, are adapted to
ellipsoidal coordinates in the oceanic waveguide. The ensuing modified HARPO is
used to model very long range (up to antipodal) acoustic paths in which the
difference between geodesics and great circles is measurable. The eventual objective
of this modeling is to extract the predictable part of the travel-time trend and fluctua-
tions along several long paths that will be used to monitor hypothetical global warm-
ing effects. The requirements for easy assimilation and representation of realistic
environmental inputs are discussed. These requirements, when coupled with the pos-
sibility of classical chaos in the ray paths, dictate a new software architecture. We
use the existing software, however, to breadboard and test features of new ray tracers
in the global boundary layer, and to support the experimental design of a forthcoming
pilot experiment that will use a transmitter located at Heard Island in the Indian
Ocean near Antarctica. ,A path of particular interest links Heard Island, through the
Tasman gap, to the Washington-Oregon Coast in the northeast Pacific. A 3-D sound
speed model is formulated for the Indian/Pacific Ocean in the region of this path, and
a 3-D antarctic circumpolar current model with 180 Sverdrup transport is specified to
cross the path. Eigenrays are computed to within 2 m error on 18 Mm in the presence
and in the absence of currents. We draw conclusions specific to the acoustic com-
munication channel on this path. In particular, we infer a significant out-of-
(geodcsic)-plane deflection (of about 500 kin) of the acoustic eigenpaths. This 3-D
deflection is due to the thermohaline structure and can be quantified, at the present
time, only by ray tracing.
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1. Introduction The other eastward window is bounded by
Wilkes Land (west of Addlie Coast) in

An acoustic feasibility experiment for Antarctica and South Island of New Zealand.

long-term monitoring of global warming trends Acoustic paths sweep around New Zealand,

is planned for January 1991. The concept for pass through the Polynesian Archipelago, and

this remote sensing project, related to very long reach the continental slope off California.

range acoustic tomography, is described by While the geographical "choke" points
Munk and Forbes (1989) and is summarized by that bound these three sets of paths are reason-
Gibbons (1990). The single transmitter will be ably well identified, the stretches of continental
at Heard Island (53.5°S, 73.5'E) in the slopes in the northwest Atlantic and northeast
southwestern Indian Ocean. The listening Pacific, where we expect favorable listening
receivers will be located in several oceans and conditions, can be adequately identified only by
at several distances (at meganeter ranges) from modeling the refracted acoustic paths.
the transmitter. Windows for three of the long- These are some of the longest underwater
est paths are westward from Heard Island to the propagation paths on the globe. When modeled
Atlantic Coast of North America and eastward with realistic, nonsmooth, oceanic features of
from Heard Island to the US West Coast. The the sound speed and ocean current fields, com-
(unrefracted) geodesics that bound these three puted ray paths over such long distances may
windows are shown in Figs. I ana 2. Th:e west- exhibit chaotic behavior similar to that
ward, "Atlantic," window has the widest azimu- described by Palmer et al. (1988). Chaos, in the
thai aperture, 200; the two eastward windows analytical and computational sense, is
("Tasman" and "Polynesian") have apertures of suppressed by smoothness in the representation
8' each. of the ocean, but this suppression degrades the

The aperture of the westward window is realism of the model. Chaos is accentuated by
bounded by Brazil and West Africa. Sound dimensionality of the model, in that 3-D trajec-
transmitted from Heard Island has unobstructed tories are much more prone to exhibit chaos
access to receivers along a wide swath of the than 2-D trajectories. But 3-D modeling
northwest Atlantic Ocean between Nova Scotia enhances the realism and resolving power of the
in the north and Virginia in the south. Acoustic model. Hence the model design criteria are
signals on a more complicated and longer path, conflicting. We have paid attention to this
from Perth to Bermuda, were measured during a important topic in the Discussion (Section 5),
history-making 1960 experiment. Interpretation and have interspersed throughout the text con-
of these measurements was given by Schockley siderations that will facilitate development of
et al. (1982) and Munk et al. (1988). "2-D+" boundary layer ray tracers for use with

The main eastward window is azimuthally nonsmooth ocean data. However, our computed

limited to the "Tasman Gap," an opening results are obtained with a 3-D Hamiltonian ray

between Tasmania and North Island of New tracer in a moderately smooth ocean, and they

Zealand. It may be further limited by bathy- do not exhibit any sign of exponential sensi-

metric barriers created by the Western Polyne- tivity to initial conditions even at the extreme

sian Islands or the Hawaiian Islands. A rela- range of 18 Mm.

tively narrow stretch of the continental slope In the work reported here, our objective
along the North American Pacific coast off was to explore fundamental propagation condi-
Washington and Oregon seems to be suited for tions along the "Tasman" path and develop
locating receivers, modeling software to support and interpret the

-!-
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I
Heard Island feasibility and long-term acoustic Forbes (1989)-their Fig. 6. Our own analysis
monitoring experiments, of the SOFAR geometry along the hypothetical

A SOFAR acoustic propagation path from Tasman path has shown their Fig. 6 to be in

Heard Island through the Tasman Gap to the US error, and this puts the viability of a Tasman

West Coast is viable (in the ray approximation) SOFAR path into question. Therefore, the com-
if the SOFAR axis is not obstructed by bathy- puted results that we present for propagation

metry. We do not address bathymetry effects in along the Tasman path are more appropriate for

this report, and we assumed the viability of a illustrating modeling techniques than for draw-

Tasman path from the results of Munk and ing geophysical inferences.

I
I I

30 <

I
b-., , I ""c

30

II

- ? I

-10 0 -60 -40 -20 0 20 do 60 Be -30

L0 0 HNr GIsTUlaE[nde9 I

LONGITUDE [deg ]

Figure 1. Geodesics bounding the westward Atlantic window from Heard Island.
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Figure 2. Geodesics bounding the Tasman and Polynesian easti ard windows from Heard Island.
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Se'!ion Preview exhibit different azimuths at an arbitrary down-

Section 2 is the main body of this report. range point, then the corresponding ray paths I
It addresses geodesic considerations and the could not have been confined to a ruled cylindr-
Hamiltonian formalism. Section 3 describes the ical surface; these ra, paths are fully 3-D.

models used to represent the sound speed struc- How important is the 'fully 3-D" ray trac- m
ture of the Indian/Pacific Ocean and the flow ing? -'nch (1090) reports that the out-of-plane
field of the Antarctic Circumpolar Current. Sec- refraction effects are small, except when the ray
tion 4 presents general modeling results and path, get deflected from the cylindrical surface
specific eigenpaws to an arbitLrary point near b, reflection (from bathymetry) or by strong but
Coos Bay, Oregon. Section 5 is a discussion of spatially uneven refraction. We concur.
our conclusions and touche. on considerations Specifically, the propagation geometry of I
for the design of new modeling software. paths that oscillate only a few hundred meters in

the vertical (about the sound channel axis) can
be thought of as effectively confined to a single

2. Earth Coordinates and the 3-D Hamil- c' lindrical surface. A horizontally refracted

tonian Formalism geodesic is a good modeling directrix for this

cylinder. Nonetheles,, we will show that even
Exp '-ace with three-dimensional under- for such paths our stringent eigenray tolerances

water acoustic ray tracing over ranges oa the cannot be met without capturing the azimuthal
scale of one radius of the earth, or larger, is very deviations caused by out-of-plane refraction. I
recent and not generally available from the The "fully 3-D" modeling that we actually
literature. When reported, the results are typi- used may be much more important for rays that

cally based on substantial simplifying assump- oscillate vertically several kilometers, but we
ions. have not modeled such rays.

What "Fully" J-D Means to Ray Tracing I
The results shown here were obtained Global and Local Coordinates

from fully 3-D models, and it is important to In underwater acoustics, there is a
clarify wnat is mealnt by that. Ray paths that are geometrical aavantage in that the ocean is a
confined to a (general) cylindrical surface (with thin, sharply bounded waveguide with a thick-
a vertical generatrix) are 3-D, but they are not ness less than 1/1000 of the earth's radius. This
'fully 3-D" because they are confined to a sur- nearly decouples any local reference system
face. This surface is "ruled"; i.e., it is particu- from a global reference system. In this context
larly simple and regular. The dircctrix (the "local" is logically related to "vertical," and
curve through which the generatrix always "global" to the "horizontal" extent of the propa- m
passes) of such a cylinder is a great circle, a gation path.
geodesic, or a refracted geodesic. The particu- To focas attention to tie issues, visualize a
lar type of directrix depends on the sophistica- "flat earth" modeling (i.e., without embedding
tion of the given model, but all types have this curvature terms into the ray equations) of under-
in omAIon: at all "down-range" points, the ray water propagation on - spherical earth to, say,
paths have the same azimuth regardless of their 6000 km range. We stress the existerce of two
launch elevation angle. The converse is also types of errors. The first would be the inability
true. When tl'e rays launched with the same of the modeled ray paths to curve horizontally
azimuth, but different launch elevation angles,

-4-
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along a great circle route-an inability caused number of "earth flattening" devices. The best
by the intrinsic lack of azimuthal control. As a known among them was introduced by Booker
result, the modeled sound paths would and Walkinshaw in 1946. It is a modified index
encounter waters of substantially different pro- of refraction, and the computing is still done in
perties, and this would cause travel-time errors a Cartesian system. The validity of the ensuing
in addition to the errors due to the mis- approximation has been analyzed by Bre-
represented geometry. khovskikh (1960), and by Budden (1961; 1988)

The second error type of the "flat earth" for radio waves in the ionosphere.

model is due to the earth's curvature and occurs In underwater acoustics, the sound speed
in the vertical section. It is self-evident there, profile can be adjusted to compensate for the
but one should keep in mind that the computed earth's curvature. This has been done by Wein-
underwater sound paths, just like the actual berg (1981) in the Generic Sonar Model (GSM),
ones, cannot escape the oceanic waveguide no closely paralleling the modified index idea.
matter how bad the representation of the propa- The practice of modifying the medium's
gation geometry. The modeled sound will reach description to avoid dealing with more complex
the targeted distance with some, but not catas- coordinates is probably waning. Brekhovskikh
trophic, error in arrival time. no longer refers to it in 1980. The GSM models

The "horizontal" error can be attributed to a layered (range-independent) medium, and this
an inadequate topology of the Cartesian system limits the distances of practical interest.
in the global context of the problem. The "verti-
cal section" error reflects accumulation of errors Beyond the Flat Earth: The Perfect Sphere
due to an inadequate metric of the Cartesiansy'stem in the local context. We note that Most long distance ray tracing near and
sstematins woucal oxt Wefntes tt below the earth's surface is now done in spheri-mathematicians would call both deficiencies of cal coordinates. This removes both topological

the Cartesian system "metric" in the sphericalmetric errors as long as the spherical
context, but we use the term "topological" to admti rosa oga h peiaemphasize a difference in the overall shape of representation is considered to be sufficient for

empasie adiferece n te oeral sapeof the problem at hand. Among the models that
the propagation paths. In the horizontal and on use prl at in n rte os-
a large scale this difference would be quite dis- use healrdintinnderar aous
cernible, but in the vertical the correct and the tics are the already mentioned HARPO by Joneset al. (1986) and its extension (HARPO-MODI)
erroneous paths would look reasonably alike on by Lynch (1990). An overview of numerical
a large scale, as they zigzag between the seasurface and the ocean bottom. ocean acoustic propagation in three dimensions

is expected soon in book form, from Lee (1990).

How to "Flatten" the Earth's Cu-vature The ray trace equations for spherical coor-
Both Fltes oers E arssciated wit dinates are published in a number of texts and
Both types of errors are associated with papers, but rarely as completely and computa-

the earth's curvature. Actually, only the second tionally oriented as in Jones et al. (1986). An
was recognized early; it was dealt with using accessible account of ray tracing in spherical
approximations that were appropriate given the coordinates, as used in seismic work a decade
questions asked and the computational limita- ago, is given by Aki and Richards (1980).
tions at the time.

For ranges up to one earth radius, the Beyond the Sphere: The Ellipsoid
second (vertical) effect of earth's curvature can
be reasonably accounted for by introducing aThsue o ap -xmspheroia coite

system, and approximations to it, must beI
-5-I
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motivated by need-the need being to eliminate integration step, they may become a computa-
the error due to the horizontal lay of acoustic tional monster, but if omitted the coordinate I
Fermat paths over very long distances if they system becomes an approximation.
are modeled as great circles. The latter is, of The ocean data no longer possess the cus-
course, directly linked to ray path computations tomary structure if they are to be strictlyin a spherical coordinate system. At long pro- represented in the ellipsoidal coordinates.
pagation ranges, the lay of Fermat paths is sys- For example, data given at a constant depth,
tematically different on an ellipsoid (spheroid) but different position, no longer have the I
than on a sphere. Implications of this fact were same ellipsoidal "shell" coordinate.
thoroughly analyzed by Munk et al. (1988).

The longest paths for underwater sound on The maximum ratio of vertical ray path dis- I
placement in the 5-6 km ocean depth to the

this planet must involve the southern, near- earth radius is small (less than 1 x 10-3), and
Antarctic, Indian Ocean no matter how high the the relative change in the spheroid's eccentri-
latitude of a receiver or transmitter in the North city over this displacement is equally small.
Atlantic or North Pacific. The intrinsic ellip- This permits a local representation of data
soidal topology causes the true Fermat path at (depth can be used instead of the ellipsoidal
such ranges to always project "south" of the shell thickness), and the inherently local
corresponding great circle path. This argument (differential) computation of ray position can
is based on differential geometry, but remains be accurately based on the depth coordinate,
valid in the presence of arbitrary lateral gra- as will be shown in the discussion on the radii
dients of the sound speed field along the path. of curvature.

An oceanographic consequence of this
systematic deviation is that sound will traverse T
through "colder" (slower) waters than i The OblateSpheroid
apparently would have if the propagation had The earth's spheroid, or ellipsoid, is
been modeled in spherical coordinates. Hence mathematically classified an oblate spheroid. I
the interest of Munk et al. (1988), as well as This shape is an ellipsoid of revolution, revolv-
Munk and Forbes (1989), in identifying the need ing about its minor axis. It possesses less sym-
for modeling propagation as close as topologi- metry than a sphere and thus has more compli- I
,ally practical to the geometry of the planet. cated relations between its coordinates.

The following discussion addresses details Figure 3(a) (adapted from Baer, 1972) gives a

of the geometrical concepts related to the coor- good 3-D picture of the coordinate surfaces on I
dinate system. The salient points are the spheroid. The surfaces labeled u 3 = const

are the "radial" shells, and the hyperboloidal
" The earth's ellipsoid offers a better topology mantle surfaces u2 = const are "latitudes." Thefor modeling long range propagation than coordinate surfaces u I = const are planes

does a sphere. through the axis of rotation and are defined as

• The ellipsoid has a weak eccentricity, and its "meridians." U
metric is not very different from that of a A cross section through the rotational axis
sphere. of such an ellipsoid is shown in Fig. 3(b). The

" The ellipsoidal coordinates are more complex meridional surfaces are no longer shown.
than the spherical ones. The differential Traces of the u2 

= const surfaces (constant lati-
operators have more terms and have the tudes) are hyperbolas, and they must be orthog-
eccentricity implicitly embedded in a compli- onal to the u 3 = const shells (though they are

cated way. If they are evaluated at every not shown as such in this textbook sketch).

I
-6-
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I

i(a)

I 'U 2 
= 
contl~

U 3 
= constl

(b)

Figure 3. (a) Coordinate surfaces on the spheroid (from Fig. ) in "Acoustic radiation impedance
of caps and rings on oblate spheroidal baffles" by R.V. Baier, J. Acoustic So. Am., 51 (5).
1705-1716, 1972]; (b) a cross section through the rotational axis (from Fig. 2.12 in
Mathematical Methods for Physicists (2nd ed.) by George Arfken, copyright 1970 by
Academic Press, New York].

-7-
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I
Details about these coordinates can be * The surfaces

found in Arfken (1970) (from which Fig. 3(b) = c 0 < I
was drawn), or from Morse and Feshbach

(1953) in even greater detail. Both works use a are oblate spheroidal shells (so that u3 partly
left-handed system in ordering the triplets describes a "radial" distance to the shell's sur-

(u 3 ,u 2 ,u1 ), and we retain it (cyclically per- face).
muted when necessary). * The surfaces

When attention is confined to the surface I
of the spheroid, u3., then the geodesic literature = const, -rt2 _ u2 -rc2

offers a wealth of detailed and specialized infor- are one-shelled hyperboloids. A limiting (and

mation (e.g., Bomford (1980), Zakatov (1962), degenerate) case is the equatorial plane, I
and Jordan et al. (1965). The relations of direct u 2 = 0. The coordinate u 2 becomes, by
interest for long range acoustic propagation are definition, the geodetic latitude, X.

not too readily extracted from that literature, so 0 The surfaces
they will be quoted or derived below for ease of u = const, 0 u 1  21r
reference.

are half planes through the z axis (the axis of

Relations Between Spheroidal Coordinates rotation), and u I is identical to the geodetic
longitude, ( .

The coordinates of an oblate spheroid are l

usually found in two forms. One (Fig. 3) Relations of these curvilinear coordinates I
employs the left-handed orthogonal triad to the Cartesian coordinates are

{U3 ,U 2 ,Ul}, for which one can express the x = ct coshu 3 COSU 2 COSU 1
right-handed Cartesian triad (x,y,z) in terms of
hyperbolic functions of u 3 and trigonometric = a e (1 + X3

2 )/ 2 (1 - X2
2 ) 1/2 cosX1 ; (1)

functions of u 2 and U I. This form is given by
Morse and Feshbach and by Arfken. y = a coshu 3 cosu 2 sinu I

The other, completely equivalent form is
more algebraic (Madelung, 1957). It employs = ac (1 + X3

2) (1 - ,22) 1/2 sinX ; (2)
the left-handed orthogonal triad [X3,?. 2,-}. It z = ctI sinhu3 sinu2
also results in notationally simpler differential
expressions. This is helpful while inspecting X X3 X-2. (3)
derivations; e.g., left-handedness of the curvi- =

linear coordinate triads can be tracked by apply- The proportionality factor a, is obtained
ing a minus sign to the Vx operator. by elimination of coordinates, using the follow-

The following equivalences hold (cf. ing geometrical facts: the smaller axis, b, of the
Fig. 3): spheroid satisfies z 2 = b2 for X2 = 1, and the

larger axis, a, satisfies x2 + y 2 = a2 fol X2 = 0.
X.3 = sinh U3 Therefore, t2 = a 2 - b 2 , and of, has a geometri-X2 = sin U2 cal interpretation as the radius of the "focal cir-

X1 = U . ce" of the oblate spheroid in the equatorial

Ranges of the arguments as well as the plane (Fig. 3(a)).
interpretations of surfaces generated by them The geocentric radius (distance from the
are origin to a point on any of the spheroidal shells) 3

is important for the metric properties of

I
-8- I
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approximate computations involving the earth's c = 521.85400842262 km (7a)
ellipsoid; it is given by

p82 = X2 + y2 + 22 X3e = 12.18109320164 (7b)

= a.2 (X32 _ X2 2 + 1). (4) uo = 3.1947128. (7c)

The extended precision of values in Eq. (7) is
carried along solely for checking the integrity of

Numerical Geometry of the Ellipsoid the approximate computations; their accuracy
A frequently used configuration of the depends on the accuracy of the ellipsoidal axis

earth's ellipsoid is parameterized by definitions a (seven significant digits) and the flattening f
of the WGS 84 (Department of Defense World (about seven significant digits). The parameters
Geodetic System 1984) spheroid, and we use it for our earth's oblate spheroid, Eq. (7), could
here in our text. However, most of the com- not be found in the topical literature, probably
puted results used parameters from the prede- because geodesy (including the physical one)
cessor WGS 72. The 72 spheroid is negligibly does not find much use for the earth's geometri-
different from the 84 (its major semiaxis is cal ellipsoid at any distance below the sea sur-
shorter by 2 m, and its "flatness" is smaller by face. However, the oblate spheroidal coordi-
3 x 10-8). Two parameters are sufficient to nates are useful in geophysical contexts, spurred
define the geometry: the major semiaxis length by the use of earth-orbiting satellites (Vinti,
a = 6378.137 km and the dimensionless flatness 1959).

f = 1/298.2572.
Approximations

From a and f one obtains the minor semiaxis In our application, the fundamental shapeb = a(l-f), and the "first" or "major" eccentri- parameters of Eq. (7) are essential for high reso-
city squared e2 =f(2f) = 1/149.3790. Note lution checks on the accuracy of approximate

that all ellipsoids in use so far (e.g., Bessel cuti on whe ra s apfewime

(1841), Clarke (1866), International, or Hayford computations when ray paths dip a few kilome-

(1924)) have their ellipticity described within

limits of the approximations f= 1/300 and A few qualitative arguments will intro-
e2 = 1/150. duce the approximations relevant to the global

oceanic boundary layer. It is evident fromTh folowing identFig. 3(b), and Eqs. (1) through (3), that constant

(1f) 2  1-e 2 = (b/a)2 , (5) latitude surfaces on the spheroid do not intersect
the rotational axis, unlike the constant latitude

in conjunction with Eqs. (1) through (4), yield a surason thesp whre the con e

definition of the earth's oblate spheroid terms: witha snle ere at the ne ore
2 with a single vertex at the earth's center. More

a2 =a e2  (6a) importantly, the local normal to any A3 = const

2 I- 2  shell, tangential to a X2 = const surface, does

X3 e2  (6b) intersect the rotational axis but not at the earth's
center.

= nh X3. (6c) Which Latitude?

where the subscript 0 indicates the parameter In geodesic terminology, the discussion
value at the earth's surface. Using the numeri- above gives rise to two latitudes, the geocentric
cal parameters of WGS 84, one obtains latitude

-9-
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W = tan-1 [z / (x 2 + y 2)121 + 2 ?2 + ?3 

2

and the geodetic latitude, X, introduced previ- 1- X22

ously. They are related by 2

tanV = (I - e2) tanx, + +rX ?.23
2) (- 2)dX1

2. (8)

which shows that X > W everywhere except at The first term of Eq. (8) represents a differential
the poles and the equator where they have equal "depth equation," as can be seen from the fol-
values. The difference between them is largest lowing argument.at latitude 450 where the angle is 11133 "°. In Consider a fixed latitude and longitude.I

acoustic propagation modeling this difference Then, Eq. (8) shows the relation between 

can be interpreted as a departure from the "verti- given change in X3 and the corresponding depth
cal" that affects the given data fields (though the change dz (because this ds is a change along the
concepts of vertical and normal have very pre- normal to the ellipsoid).
cise references that are of no concern here). In 2 2 + X 2

that sense it is a negligible difference. We do dz2 
= 3  (8a) I

not distinguish between the two latitudes, I + X3

though we do follow the more common practice The interesting fact is the presence of the lati-
and preferentially use the geodetic latitude, X. tude factor ?12 in Eq. (8a). This shows that a

surface of constant X3 cannot be at constant

Which Radius? depth in a global sense. Two limiting cases areeasy to check out: at the pole 2 = 1 and
A second point evident in Fig. 3(b) is that eas t a X 2 = (8a)

while the earth's surface is associated with the dz' = o2 dX32 (8b)

constant value of the spheroidal coordinate X., at the equator, X2 
= 0, SO I

which would conventionally be the "radial" =X 32
coordinate in a spherical analogue, the ellip- dz2 =c4 d.3  (8c)
soidal earth's surface is obviously not associ- 1 + 83

2  ) I
ated with the same value of the geocentric The fundamental parameters derived in
radius, Eq. (4), at arbitrarily chosen surface Eq. (7) become useful here. Our approximation
points. In the pure spherical system, all surface in the Hamiltonian differential equations willI
points have the same geocentric point-radius, assert that (8a) and (8b) are negligibly different
The neighborhood of each point has a unique at any relevant latitude for depth changes over
radius of curvature (identically equal to the the topmost few kilometers near the sea surface.point-radius, and with a center coinciding with This is because X.3

2 is very large compared
the point-radius origin) that is independent of with unity. Thus the case is made for abandon-
direction (azimuth) along the surface. ing a strict accounting of X3 in favor of the

The situation is more complicated in the layer-by-layer differential analysis that monitors
spheroidal system. Consider a general ray point depth changes of the ray path without referenc-
at a given depth below the ocean surface along ing the point-origin of the coordinates. This is
the acoustic propagation path. To get a handle essential for an efficient representation of
on consistent differential changes, one derives environmental data (sound speed, flow veloci-
the total differential of any 3-D path: ties, bathymetric depths, etc.).

ds2 =a, ) 2 
2 + )32 dA 3

2

1 + X.3
2

I
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Conversely, the spheroidal surface's cur- tion that is depth dependent. Since the factor w
vature radii that a ray reaches at any point in its in Eqs. (9)-(11) is close to unity, the true curva-
trajectory deserve careful attention. At any ture radii "at depth" are closely approximated
point on the surface of a spheroid, or on the sur- when the surface curvature radii are decreased
face of an interior shell, there is an infinity of by the local depth, z, of a ray point.
radii of curvature, and they a: e functions of lati- r(z) = r. -Z
tude and the azimuth at each point. Two of
these radii define all others. They are the prin- r,(z) = r" - z. (12)
cipal radii of curvature, the meridional radius rm
(curvature in the meridional plane), and the The curvature approximation error is
prime vertical radius r, (curvature in the plane sufficiently small for modeling propagation in
of the "prime vertical"; this plane is perpendicu- the ocean (at a depth of 5 km, it is 2 x 10-9 at the
lar to the meridional plane through the surface equator and 3 x 10- 6 at latitude 450), and it is
point), probably small enough even for modeling pro-

pagation at subacoustic frequencies (at a depth
The principal radii of curvature are cor- of 20 km, it is 3 x 10-8 at the equator and

pactly expressed by introducing an auxiliary 1 x 10- 5 at latitude 450).function, w, of e and latitude x:n w, It follows from (11) and (10), using (9),
w2 = 1 - e2sin2 X (9) that everywhere on the spheroid

so that r_ >r (13)
a(1-e 2)

rm = 2) (10) Furthermore, the radius of curvature, r,, in the
W direction of any azimuth Cth is determined by a

and relation due to Euler:
a

C - (11) CO=csh sin2 ah
w I/r -+ -r (14)

rm r

Equations (9) through (11) are valid only Taking the mean value integral of r., over all
on the earth's spheroid surface if one considers azimuths, one gets the earth's mean radius of
a and e fixed. This is the normal practice, but
conceptually one could let a and e vary as func-

tions of depth. As one looks at spheroidal shell r = " f. r
surfaces that are below the sea surface, the
equatorial radius a decreases and the first eccen- Using (13) with (14) it is clear that
tricity e increases with the same relative rate. rm -5 r.
This can be seen by taking the logarithmic
derivative of (6a), because the left-hand side and that
(the scale parameter (t) is an invariant for our r,,, < r < r,.
planet. Equation (6) can be "driven in reverse"
starling with the surface parameters in Eq. (7), Figure 4 shows the deviations of rv and of r,
and using Eq. (8a) to determine dX3 for any from r as a function of latitude. The deviations

prescribed z or dz. are largest at the equator where the difference
between the two principal radii of curvature

Alternatively, one leaves a and e fixed at exceeds 42 km. One sees that the spheroid
their surface value and considers an approxima- behaves like a sphere at the poles (having a

-11-
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single measure of curvature, albeit of larger kilometers or less, and adjusting data to the
radius-nearly 6400 km-than the earth's aver- matheiatics for longer paths. There are strong
age radius of 6371 km). But the spheroid does reasons for providing mathematics that adjustsnot behave like a sphere at the equator. In the to the data in all conceivable cases, regardless

tropics the azimuthal steering on the sphere and of the scale of the problem.

on the spheroid will be significantly different. Since that part of the recommendation that
Long acoustic propagation paths cannot be leaves data "as is" and uses a local radius of cur-I "very" long unless they cross the equator, and vature (i.e., adjust the mathematics) is also
therefore this difference matters. easier to implement in HARPO, we explored it.

Equation (14) furnishes the "local radius of
Azimuthal Steering on the Spheroid curvature ... in the propagation direction," but

Ethis direction changes even on a perfect sphere
Equation (14), and a text passage in the (i.e., the path is orthodromic and not loxo-I N Adouetfr ARO(oeeta, dromic), so one value of W(1) is hardly enough.NOAA document for HARPO (Jones et a., (~. h ahi rhdoi n o oo

1986, pp. 115-116), provide an instructive With just one representative radius of curvature
motivation for clarifying the "steering" issue: Wt utoerpeettv aiso uvtr
motivaone fonrcafng he "scaltiong ishe along the path, the results were really not distin-

o"caashrclmdlo h at a o e guishable from a pilot run on a perfectly spheri-"lFor some long-range ray calculations in the gisalfrmapotunnaprecyshr-

ocean, a spherical model of the earth may not be cal earth of nominal radius. This is undersand-accurate enough. Some applications may able in the context: both runs were done in

require ocean models to be expressed in geo-

detic (e.g., spheroidal) coordinates, which spherical coordinates, except the two radii were

would be transformed to spherical coordinates somewhat different.

for iay tracing. However, for paths of a few Next, by modifying HARPO's code, we
thousand kilometers and less, we would recom- used the local azimuth along the path to recom-
mend using a spherical computational coordi- pute the azimuthally dependent local curvature
nate system with W(I) set to the local radius of radius at every step. The results were, again,
curvature of the geoid in the propagation direc- hardly distinguishable from the spherical pilot
tion." run, but a close inspection of propagation times

The term "ocean models" in this passage revealed small differences between the runs.
reTferso the analytical models representing the The topological vs metric aspects of long range

refractive index or current velocity data, and acoustic ray computations had become clearer:

W(l) is the only admissible value of the radius As long as there is only one radius built into
for the computational sphere in HARPO. the differential equations associated with the

We have fundamental problems with parts Hamiltonian, the azimuthal steering will be

of this recommendation. It is clear that the ray topologically the same: on a golf ball, on the

paths cling to a "curved earth" because the earth, or on Jupiter, it will be a great circle.

"data" (including the top and bottom boundaries Two distinct radii are needed, (10) and (11),

of the oceanic waveguide) are given in a to achieve a steering that results in a varia-

specific "curved space," not because the tionally (geodesic) minimal or stationary tra-

differential equations are cast in a particular jectory.

curved coordinate system. It is a question of The use of a local curvature radius "in the
adjusting mathematics to the data vs adjusting direction of propagation" is metrically
data to the mathematics. The cited passage correct. If one possesses an independently
recommends a variant of adjusting mathematics prescribed geodesic path, such as the
to the data for paths of a few thousand "refracted geodesics" of Munk et al. (1988),

-13-
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I

then the computation in the vertical does Antipodal Acoustic Paths on the Spheroid
better when a variable radius of curvature is Munk et al. (1988) discuss the longest
used instead of a fixed radius (e.g., equal experimental sound propagation path, from
volume or equal area, etc.). However, as Perth to Bermuda, that has been documented.
explained earlier, the major representation The range was 19,820 km, only about 185 kin
errors in long range acoustic propagation short of antipodal. They are also interested in
have a topological rather than a metric origin, true antipodal conditions because such

From here on, we can speed up the pace of geometries may be realizable in the future, but
presentation by referring to the literature, this is not a primary object of their paper. They
mainly Munk et al (1988) and Jones et al. say that the "great circle geometry fails catas-
(1986), without reproducing their analytical trophically for near-antipodal ranges," and that
treatment. "for exactly antipodal transmissions (geodesic

1800) the geodesic goes through the pole, as
does one of the infinite number of great circle

Hoina Rfroutes" (their Fig. 5). These are correct and

Spheroia important observations, particularly relevant in
A complete treatment of unrefracted (sur- view of their concluding remark that this land- I

face) geodesics and refracted geodesics (at the mark experiment may be worth repeating given
depth of the sound channel) is given by Munk et our present understanding of the issues
al. (1988). We have already discussed their involved.
assumptions. In each set of their equations (Eq. We are specifically interested in the forth-
(1) for the unrefrac.ed, Eq. (2) for the refracted coming Heard Island feasibility expenment.
case), there are three equations. Two relatively Heard Island is closer to Africa than it is to Aus-
simple ones describe changes in latitude and tralia, and the acoustic propagation geometries
longitude, and the more complex one describes from Heard Island are not antipodal. Heard
change of the azimuth. In the refracted case, Island's antipode is on land in western Canada, I
when the path length is used instead of the pro- as can be seen in Figs. I and 2. However, it is
pagation time as the independent argument, the clear that with a ship under way, say, from Perth
sound speed and its derivatives occur only in cr that t a de sa, fom erhth aimtaleqato. hi rifoce te or Freemantle to Heard Island, one reachesI
the azimuthal equation. This reinforces the potential oceanic transmission points that have
notion that this equation is the (horizontal) atpdlgoer eaiet oefail
"steering" equation for the propagation path. receiverplocationsmetryin the tNorth oAtlantic. ble

The following topology with respect to

curvature radii is relevant. The meridional Two questions regarding potential under-

radius occurs in the latitude equation (plausible water acoustic propagation on antipodal paths
and easy to visualize), the prime vertical curva- arise naturally:

ture radius occurs in the longitude equation, and * Are antipodes acoustically "reachable"?
both have a place in the azimuthal equation. If 0 If reachable, is there a likelihood of energy
the sound speed were constant there would be focusing at the antipode? If not, what sort of
no difference between the refracted and energy focusing can be expected in some
unrefracted equations, and if both principal cur- neighborhood of the antipode? I
vature radii become the same (as they nearly Munk et al. (1988) show that horizontal
would in the Arctic Ocean) then everything refraction s tl y moifies that alreverts to the spherical case. rercinsignificantly modifies the actual

sound paths relative to those defined by spheri-
cal or spheroidal geodesics. Such modification

I
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is one of degree rather than being related to the surface with nonunique geodesics is a cylinder
underlying fundamentals. of revolution. Take any pair of distinct points

Thus a conceptual dilemma exists: not on the same meridian, the eigen-geodesics
between these two points are helices of 1, 2, ... ,•In the spherical approximation the antipode is n n pt nifnt ubro idnsn, and up to an infinite number of windings.

reachable, albeit in a singular way, by many They are geodesics because each has a shorter
great circles passing through a feasible oce- (stationary) path length relative to any of its
anic window. This window has about the neighboring paths. The helix with a single
same azimuthal width as the corresponding winding has the absolute shortest path length; it
window in the spheroidal approximation. is the Fermat geodesic. The spheroid is topo-
Focusing can be strong (they estimate +20 dB logically between the sphere and the cylinder,
for the Perth-Bermuda geometry, 185 km but our spheroid is very close to a sphere. Hel-
short of the antipode), and becomes theoreti- men has done remarkably detailed computa-
cally unlimited at the antipode. tions of the geodesic geometry in the neighbor-

" Alternatively, in the spheroidal approxima- hood of the antipode and has identified the mul-
tion, the antipode is not reachable because the tipath region that constitutes our present con-
unique geodesic to the antipode must go text.
through a pole, and is definitely outside the The caustics that we label "audible" and
feasible oceanic window. "inaudible" in Fig. 6 constitute one leg of an

We investigate these questions in a short astroid, a star-like envelope of geodesics cen-
aside that fits the geodesic theme of this section. tered on the antipode. The term "inaudible"
Figures 5 and 6 describe the findings for a should be understood in context: each of the
viable propagation geometry. To emulate a pro- four legs of the astroid is a horizontal caustic
pagation window of similar azimuthal width (i.e., an envelope curve to a family of geo-
(about 200) to the "Atlantic" window from desics), and only part of one of them will be
Heard Island (Fig. 1), we place a hypothetical "audible." The family of geodesics emanating
source (Fig. 5) at the longitude of Perth but at a from the Indian Ocean transmit point is unique
higher latitude (400S). The horizontal center of only outside this astroid.
the radiated fan passes through Heard Island, The major axes of the astroid are aligned
and a hypothetical antipodal receiver is in the N-S and E-W. The size of the astroid depends
North Atlantic about 475 n.mi. NNW of Ber- on the eccentricity of the spheroid and on the
muda. latitude of the transmit point. In particular, the

Figure 6 shows the computed pattern in size of the N-S axis is the greater of the two,
the geographic neighborhood of the antipode. and is proportional to the cosine of the transmit
The horizontal ray fan focuses on an area about latitude. The E-W axis size is proportional to
20 km away from the antipode, which is not the cosine squared of the transmit latitude.
acoustically reachable through the ocean. The Consequently, high latitude transmit points are
focusing is not to a point but is spread along a associated with a small region of geodesic mul-
caustic, part of which we label "audible" in the tipathing at the antipode. The size of the astroid
belief that the pattern, if not its exact location, would shrink to zero if a geographic pole were a
will persist even in the presence of lateral feasible transmit point.
refraction. Moreover, the relative focusing (+20 dB at

This dilemma was clarified by Helmert Bermuda) estimated by Munk et al. using a
(1880), who investigated the uniqueness of geo- spherical argument is basically correct even in
desics on the spheroid. The prototype of a the spheroidal case, as evidenced by Fig. 5.
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Figure 5. Geode~sics from a location south of Perth. The fan of geodesics with azimuths between

2200 and 2400 approaches the Atlantic antipode. The geodesic with an azimuth of 1800

connects the antipodes exactly (1810 is computable).

-16.



APL-UW TR 8929

40 1 @v:

I0 ,

I4 E
Atlantic antipode

40240

e 220'

3 9 - 0

E6 66.4 66.2 6E 65.8 65.6

LONGITUDE W [deg;

Figure 6. The actual pattern of geodesics (from Fig. 5) in the vicinity of the Atlantic antipode.
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I
Figures 5 and 6 are generated from the same brought to light only in 1931 (Conway and
high precision geodesic computations, but the Syng-). I
ray fan in Fig. 5 is very similar to a ray fan on a The Hamiltonian approach to geometrical
spherical earth. Its gross structure does no, acoustics entered the literature in the 1950's
even hint at the dctails that are revealed by (Keller, 1954). This was nearly synoptic with I
Fig. 6. actual applications of the Hamiltonian ray

equations in radio-wave propagation by J.
Hamiltonian Haselgrove (1954). Her methodology stimu- I

We chose HARPO as a preliminary tool lated much of the subsequent work, bridging

for 3-D modeling of very long range acoustic applications in several media of propagation.

propagation. It was clear, though, that new The literat e cited, and the individual contri-
software would eventually be needed for easier butions of Jones et al., provide a good exam-
absorption of data updates on a global scale. pie of some activities in the 1960's and
Then the ray equations could be carried over as 1970's leading to HARPO. An overview by
Hamiltonian equations copied from HARPO, or Ostashev (1985) puts the Hamiltonian and
they could be written using the eikonal equation eikonally based ray formalisms into the con-
as a base. This accounts for our interest in text of the more general acoustic propagation
understanding the Hamiltonian formalism in a theory for an inhomogeneous moving
wider setting. medium.

A few comments about the Hamiltonian One may conclude on balance that the Hamil-
appoach, in parallel with those given by Jones tonian approach offers an elegant, but not
et al. (1986), may help explain why numerical always simple, path to ray tr-cing. This is
codes that are not based on the Hamiltonian well articulated by Lighthill (1979) who
may serve specific objectives rather well. relegates the Hamiltonian equations to what

" Not only are the ray paths computed from the he calls a "brief parenthesis on parallel with
Hamiltinian equations the same as those other fields of study" in his extensive sections

computed from differential equations that are on the general theory of ray tracing and ray
derived from the eikonal, but the Hamiltonian tracing in a wind.
itself is derivable from the eikonal (Whitham, 1 ie primary appeal of the Hamiltonian is that
1961) This is true for a broad formulation of it is independent of the coordinates used. The
the dispersion relation (e.g., including a mov- converse is also true; the Hamiltonian I
ing medium). differential equations in a given coordinate

" It is also true that the Hamiltonian is the more system do not change wh-n the Hamiltonian

original and fundamental construct if on,. changes because, say, a different set of propa- I
thinks of the eikonal as a related but different gation conditions is to be modeled. We rely
concept. This relation was the subject of a heavily on this in modifying HARPO's code

little-known polemic exchange in 1937 for use in the ocean on the ellipsoidal earth. I
regarding geometrical optics, but applicable However, the ray equations derived from the
to geometrical acoustics, between J. L. Synge eikonal also have a vector form (Pierce, 1981)

and M. Herzbergcr. It ended on the notion that is intrinsically independent of the compu- I
that Bruns (the formulator of the eikonal) rational coordinate system.
rediscovered in 1895 the ray propagation There are six ordinary, first orJer, non-
Ilamiltonian that was conceived in 1832, but linear Hamiltonian equations that define the ray I

I
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trajectory in a three-dimensional space. Three i.e., not contined to an idealized cylinder to
of them define the position coordinates of the which they would be bound in the asymptotic
ray point. Since we stan out with a spherical case.
coordinate system, all terminology refers to The ocean data (sound speed field and
such a system. The computed ray-point position current velocity field) remain defined in spheri-
is the (geocentrical) radius r, the colatitude 0, cal coordinates (latitude, longitude, and depth).
and the longitude 0. The other three equations Depth is defined as the difference between two
define the local components of the wavenumber geocentric radii, the radius to the sea surface
vector Zthat is tangent to the ray path. These and the radius to the point considered. For
six equations are integrated subject to six initial HARPO, the ocean data are appropriatedly
conditions; the three coordinates of the termed "ocean models" because they must be
transmitter, and the three components of the ini- given analytically rather than pointwise.
tial direction (initial value of the wavenumbervector).The earth's ellipticity is introduced into
vector). the Hamiltonian equations by distinguishing the

In adapting the given set of Hamiltonian two principal radii of curvature, r. from (10)
equations to propagation in the thin ellipsoidal and r, from (11), in the individual terms of the
planetary waveguide, one recognizes immedi- equations described below. The depth of a ray
ately the asymptotic and the actu! structure: point is based on the geocentric radius r = pg

* The "horizontal" components of the from (4). Equation (12) may then be substituted
wavenumber vector (icoc) must implement for (10) and (11).
the azimuthal steering that corresponds to a A term-by-term validation of the modified
" rcacted geodesic" of Munk et a. (1988). equations is accomplished by requiring that they
This is fed back to the latitude and longitude reduce to the surface geodesic equations when
cqi ion, ensuring a correct overall global all lateral gradients of the refractive index are
trajeL..)iy. Four of the six equations are set to zero, and ,vhen an artificial vertical sound
involved in this process, and this foursome is channel is established with its axis at the sur-
strongly coupled. face. A numerical validation was performed by

" The other two equations are the radial posi- running this reference case through the modified
tion and the radial component of the code.
wavenumber. One more equation, a horizon- The spherical Hamiltonian equations that
tal component for the wavenumber, is needed we adapted to the earth's ellipsoid are those
to define the ray path in the "vertical" %:ciiuidr- residing in HARPO's subroutine HAMLTN.
ical surface. But two more are available, the The original equations are (6.10) through (6.15)
aforementioned equations for (K,%). They in the HARPO document by Jones et al.
too comprise a foursome. Again, this four- Let H be the Hamiltonian, t the propaga-
some is strongly coupled. tion time, co a reference constant sound speed,

* Thus the six Hamiltonian equations subtend, c the local sound speed, p = cot the independent
in a topological sense, two overlapping four- variable of integration, (o a fixed wave fre-
somes of equations with strong coupling quency, and F = coaH/oa a fixed scale factor.
within each foursome and weak coupling The geocentrical radius to the ray point is r, the
across them. colatitude is 0, and the longitude is 0. Notice

" The weak coupling across these two equation that p is a "scaled time" with numerical value

sets is implemented in the numerical code, roughly equal to the path length. T'he exact
and it ensures that the ray paths are fully 3-D, relation between p, t, and the actual path length

S is
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I
d= co d 1 d Ray tracing results for the Heard Island to
ds c dp c dt Oregon Coast paths, utilizing (15) through (20) I

and both isotropic and anisotropic media, are
The six new Hamniltonian equations are presented in Section 4.
dr - la DH (15) One problem related to data representation
dp F DKr remains when using (15) through (20). These

dO I aH are, as stated, geocentrical equations on the
=p - r.F a o "(16) ellipsoid, but they are not oblate spheroidalequations. For them, even a level sea surface,

dO 1 aH or a flat bottom, has a radial position that varies

dp - rsin0F r. ' (17) with the horizontal coordinates.

Throughout this subsection on the Hamil-
d~r l aH dO tonian, we drew attention to alternative
dp -F r + p viewpoints that are relevant to ray tracing. A I

major alternative that loomed in the background

+ rcosind (18) is the abandonment of a sharp distinction
dp between 2-D and 3-D in the thin global boun-

dr _L [I H dr dary layer. This involves a "2-D+" boundary
- 1--Hd- layer coordinate system, and is beyond the

dp rm F o p scope of this text. However, the ray tracing
equations will be looked at in this emerging

+ K rpcosO4 1 (19) context. Therefore, before reporting some of
dp the numerical results obtained using a 3-D

dp ~ Hamiltonian ray tracer, we draw attention to

and Appendix A. In it we illustrate a 2-D set of ray

dr.DH 1 1H ^ dr equations in two coordinate systems, show their
dp r,sin0 F -sm dp relation to the Hamiltonian equations, and point

to the merit of having specialized equations that
dO affect possible cancellations analytically rather i

- %rmCO .--"A (20) than numerically. The illustrated equations are
dp those that Bold and Birdsall (1986) discuss as

The Hamiltonian H is used directly as the "third algorithm (angular form)," and that i
specified by Jones et al. in dispersion relations are used in a number of interesting applications

designed to cover specific propagation condi- (e.g., Baxter and Orr (1982) and Eliseevnin

tions. Two impotant ones are (1965).

(i) Propagation through an inhomogeneous
stationary medium. This propagation is 3. Indian/Pacific Sound Speed Model and
isotropic; the ray paths are perpendicular the Antarctic Circumpolar Current
to the wavefronts. Model

(ii) Propagation through an inhomogeneous The computer code in HARPO requires
moving medium. This propagation is that the 3-D field of the sound speed and of the
anisotropic; the ray paths are no longer current velocity be continuous, and that they
perpendicular to the wavefronts. have continuous partial derivatives in the three l

spatial directions (Jones et al., 1986). For

I
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vector fields, each component must satisfy this in our experience it can match archived data
requirement. The menu-driven HARPO further over a significantly wider depth range at
requires that such fields obey a particular for- nearly every latitude of interest.
malism. This formalism is generally termed The functional form for the sound speed
OCEAN MODELS, and it includes additional c(z) as function of depth z (positive down) is
species of models, for the ocean bottom, absorp- defined in the Munk SSP as
tion, etc. In any HARPO run there may be no
more than one model of each species, but some c(z) = co [1 + c (y + e- y- 1)], (21)
fields allow a subspecies of the general model. where
The general model for a field is termed a "back- 2
ground" model, and the subspecies is termed the (z)= - (z -zo)
"perturbation" model for that field. This

arrangement permits the user to break up the This profile is completely determined by four
complexity of modeling a field, and to investi- parameters: zo, depth of the sound channel
gate sensitivity questions by switching the per- axis; co, sound speed at axis depth; e, a dimen-
turbation model on and off. sionless perturbation or shape parameter, and

The sound speed field for modeling propa- H, a characteristic scale depth.
gation paths in the Tasman window (Fig. 2) had A set of the fitted profiles, offset by 20 m/s
to be defined over ranges that were so long each and indexed by latitude, is shown in Fig. 8.
(18 Mm) that the existence of a single perturba- Table I contains some of the numerical data that
tion submodel was not sufficient to describe all were used to estimate the four parameters, and,
significant departures from the background. in the last two columns, the fitted sound speed at
Instead, the "background" field itself had to the surface and at a depth of 4400 dbars. The
include practically all the complexity that was archived data used to support this model were
required. Figure 7 shows an image of the final not selected by "objective means" (least square
analytical sound speed field as a function of fits, or equivalents) but were chosen after a sen-
depth (0 to 5 km) and latitude (700S to 550N), sitivity analysis of Eq. (21) that is outlined next.
with the sound speed color coded between Data from five sources were used in this
1450 m/s and 1550 m/s. The rationale for this analysis. The conditions at the sound channel
model, and its limitations, will be discussed axis were obtained from the appropriate graphs
after presenting its analytical configuration. (Figs. 3(a) and (b) of Munk and Forbes, 1989).

For the rest of the water column along the
Sound Speed Model acoustic path, the sound speed was computed

The Indian/Pacific Ocean 3-D sound speed from oceanographic data extracted from threemodel is valid in the neighborhood of propaga- atlases (Gordon et al., 1982; Wyrtki, 1988;
tion paths from Heard Island through the Tas- Craig et al., 1981). Also, tables and graphs of
tion pahsfom Hed is an d throughl hewTa Podeszwa (1976) were used to estimate the
man window. It is constructed as follows: sudseddt nteNrhPcfc

In te vrtial cordnat the"bakgrund sound speed data in the North Pacific.
* In the vertical coordinate the "background A few interesting facts, not described in

ocean model" satisfies the equations of a con- M originaer , no deced fm
tinum ofcannica sond seedprofles Munk's original paper, can be deduced from

tinuum of canonical sound speed profiles Munk's canonical profile. They show the versa-
(Munk, 1974) and is referred to simply as tility of Eq. (21) and the relevance of the under-
Munk's SSP (sound speed profile). This lying physics:

profile was primarily meant to be applicable

in the vicinity of the sound channel axis, but
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The parameter pair (e, H,) is independent of This explanation shows why a negative
the parameter pair (z 0, c 0) because acile -- 0 correlation between e and He, as e or Hc evolves
and ac/aHc - 0 as z -4 zo. Therefore, the along a hypothetical propagation path, could
parameters defining conditions at the sound never fit the SSP of any deep ocean: a small e
channel axis can be chosen independently and large Hc would estimate an SSP that is too 1
from those that define the upper and lower uniform top to bottom, while a large E and small
branch of the SSP. These relations are illus- H, would imply sound speeds that are much too
trated in Fig. 9. Note that (zo, co) determines high at the surface, or at the bottom, or both.
a single point, while (e, He) controls the inter- Thus, choices of c and H, that smoothly track
val behavior of c(z) away from the sound the path parameter, but randomly map about a
axis. positive correlation line, can help generate

" When (zo,co) is chosen at different latitudes canonical profdes that effectively model the

along the Tasman window propagation path vertical distribution of the sound speed in the

and (,Hc) is estimated from the near surfarc ocean. This holds in a wider neighborhood of I
and the deep water sound speeds, then Hc and the channel axis than we anticipated. Such

e show correlation in the form of an empirical representation is valuable while using HARPO,
but we stress that the architecture of a long
range ray tracer should be oriented toward

1 c [km] =a, e + ;o , (22) assimilation of gridded sound speed data upon
which one should not impose any smoothness

where -- 115 and Oo -0.3. The estimates requirements.
(e,Hc) from Table I are displayed in Fig. 10,
and it is seen that Hc "tracks" c over a wide The next step in developing the required
interval of latitudes. The scatter diagram analytical differentiability of the ocean sound I
(e,Hc) on which Eq. (22) is based is shown in speed model for HARPO is to link the individu-
the upper right comer of Fig. 10. But the ally fitted Munk SSPs horizontally, at constant

apparent relationship implied by (22) must be pressure-depth levels, thereby creating the con- I
interpreted guardedly. If nature behaved this tinuum. We decided on a fit by horizontal
regularly it would be disappointing, as well as splines-not to the profiles, but to their canoni-
unlikely. cal expansion parameters in Eq. (21). Figure 11 

shows the sound speed at the channel axis, atWhat is seen in Fig. 10 can be qualita- the surface, and at the depth of 4400 dbars. Fig-

tively explained by noting another asymptotic ure 12 shows the modeled depth of the channel 

behavior of (21): when e -- 0, then c -) co tr axis. The indepdent variable in both figures

any Hc and for all z-hence the term "perturba- is the latitude.

tion parameter" for c. This parameter attains its 
•

largest values where the sound channel axis is The splines are piecewise cubic splines, I
deep (between 300S and 400S), to account for but not the ordinary, analytically linear, splines.

the sound speed contrast between surface and They are quasi-Hermite (IMSL, 1979) nonlinear

deep water relative to the water at the channel splines that exhibit some "spline-in-tension" I
axis. The scale depth H, must also be large properties. Originally known as "splines

there to prevent the sound speed contrast from obtained by local procedures," they were

becoming too large. Conversely, e will be developed by Akima (1970) for applications I
small, and H, will be small when the surface where oscillations of linear splines must be
water is warm (high sound speed), but the chan- attenuated if not altogether suppressed. It can

nel axis moves closer to the surface, as in the be seen from Figs. 11 and 12 that the latitude I
low latitudes of the North Pacific. belt between 40°S and 55 0 S encompasses a

I
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Figure 8. Sample sound speed profiles for the Tasman window indexed by latitude and offset by
20 m/s from one another.
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Table ]. Parameterization of a Hermite splined model for the IndianlPacific sound speed field.

INDIAN/PACIFIC

SOUND CHANNEL* FROM ARCHIVES* PARAMETERS USING PARAMETERS
LAT z o c 0  c(surf) c(4400) E Hc c(surf) c(4400)
[deg] [m] [rn/s] /s] [/s) [-]X100 [kn] [r/s] [ms]

-70.0 150.0 1445.00 1445.00 1521.20 0.7811 1.1212 1445.44 1521.31
-65.0 150.0 1445.00 1446.00 1523.90 0.7675 1.0718 1445.48 1523.93
-60.0 150.0 1445.00 1446.50 1526.60 0.7595 1.0314 1445.51 1526.60
-50.0 250.0 1460.00 1462.30 1530.25 0.5477 0.8683 1461.62 1530.28
-40.0 1280.0 1480.00 1508.65 1530.65 1.5798 2.0657 1508.38 1530.55
-30.0 1280.0 1486.00 1523.70 1530.90 0.9271 1.5124 1523.77 1531.08
-20.0 1050.0 1484.00 1533.80 1531.10 0.4745 0.8954 1533.94 1531.23
-10.0 1000.0 1484.00 1538.45 1531.15 0.4011 0.7862 1538.67 1531.04 I

0.0 1000.0 1484.00 1539.00 1531.15 0.3993 0.7829 1539.17 1531.05
10.0 1000.0 1484.00 1537.75 1530.90 0.4002 0.7888 1537.97 1530.77
20.0 800.0 1482.00 1532.00 1530.60 0.2795 0.5815 1531.37 1530.58 I
30.0 750.0 1479.00 1521.00 1530.35 0.2883 0.5764 1521.19 1530.22
40.0 600.0 1477.00 1486.50 1530.10 0.5156 0.9722 1486.15 1530.49
50.0 450.0 1475.00 1477.50 1529.80 0.5068 0.9730 1479.46 1529.76 I
55.0 420.0 1474.00 1475.50 1529.70 0.5110 0.9727 1477.83 1529.66

*Sources for archive data:

Munk and Forbes, 1989
Gordon et a., 1982
Wyrtki, 1988
Craig et al., 1981
Podeszwa, 1976

I
I
U
I
U
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Figure9. A canonical sound speed profile and its partial derivatives with respect to Hc and E.
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Figure 10. Canonical parameters Hc and E as a function of latitude. The insert shows the correla-
tion between H, and c.
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Figure 12. Tasman window sound channel axis depth versus latitude.
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region of sharp horizontal changes. This, of velocity u positive eastward:
course, is the region of the circumpolar front,
albeit schematized here to a fairly narrow inter- u(z,) = Uo exp - Z -Zo

val of longitude. The sharp (horizontal) frontal
transitions cannot be reasonably represented by 6-60 _ 2]
linear splines at any depth. - , (23)

Akima's splines are better suited than 0 0 J
most under such conditions, but even they show where u -4 uo as z -* zo and 0 0. The vert-
a residual oscillation artifice at depths greater ical and meridional scale parameters are a, and
than 3000 dbars (Fig. 7). Their direct analytical co, respectively. They represent the Ile scale
extension to 2-D gridded data, Akima (1974) for the velocity drop-off from its maximum, uo.
was used in the aforementioned ray propagation The current is parametrized to satisfy anmodel by Baxter and Orr with entirely satisfy- integral constraint:

ing results. The quasi-Hermite Akima splines, fJu(z,O)dzdO = S, (24)

which were not quite "fiat" enough in this appli-
cation, are considered locally too fiat by some where S = 180 x 106 m3/s. This value is in the
spline experts (De Boor, 1978) because their midrange of estimates for the ACC transport
second derivatives are not continuous, that is known to exhibit a rather strong variabil-

Munk's SSPs are very smooth in the verti- ity in time.
cal (in terms of the number of continuous We made an a priori assumption about
derivatives). The Akima splines are merely opt- two of the parameters, zo = 200 m and
ically smooth in the horizontal (the first deriva- o3 = 1000 m, and retained a free choice for 00
tive is continuous), and this is all that the that defines the latitude of the current axis. The
HARPO code requires for its predictor-corrector parameterization was completed by demanding
integration, that uo and O be such that (23) satisfy (24).

I The composite sound speed field for the Thus, the estimation reduces to the functional
Indian/Pacific Ocean, and its partials, is easily dependence
evaluated. It obeys Eq. (21) in the vertical at Uo = u0)
any station, and the four parameters of that
equation are piecewise cubic (continuous and With OY large, uo will be small; i.e., the model

differentiable) functions of latitude. Their ACC will be wide and slow, and vice versa. A
spline expansion coefficients are stored into a guide to a reasonable selection is provided by
lookup table that is embedded in the subroutine measured profiles of the current, e.g., as given

that represents the "background" ocean model by Kamenkovich and Monin (1978) and shown

conforming to HARPO's formalism, in Fig. 13. The fitted profile, also shown there,
with uo = 0.314 m/s and ae = 2.730 __ 300 km,

satisfies the targeted transport of 180 Sverdrups.
Circumpolar Current Model While the meridional folding length seems

When HARPO's menu is executed using somewhat modestly defined at 300 km, making
the option "with current," an analytical module it any larger would reduce the maximum core
that provides current velocity and its partials velocity to a level that would poorly match the
must be supplied. We chose to model the data and would be less interesting acoustically.
Antarctic Circumpolar Current (ACC) as a The actual acoustic propagation runs were made
strictly zonal current defined with a Gaussian with 0o = 450S.
profile in depth z and in latitude 0, having

I
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Figure 13. The Antarctic Circumpolar Current versus depth. The component speeds,

after Kamenkovich and Monin (1978), are shaded to illustrate the variability.I
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4. General Modeling Results and the between Heard Island and ti. hypothetical
Specific Eigenpaths lo a Rxeive,- Near receiver in the northeast Pacific.
Coos Bay, Oregon On the distance shown (much shorter than

Munk and Foiocs (1989) have computed antipodal, cf. Fig. "7) the horizontal lays of the
horizontally ref icted paths from Heard Island grLat circle and the geodesic to the receiver are
through the T"sman window with launch not substantially different.
azimuths bctweL 1 110.50 and 117.50. We com- The acoustic eigenpath with launch
pute the ho-'cntally and vertically refracted azimuth 110.50870 and launch elevation angle
paths of launc', azimuth near 110.50 at small - 1.61480 is refracted away from the geodesic
elevation angles (h'c:ween -1.7' and +1.70) and "to Lhe left," toward the "faster water." This is
obtain their arrival at ltit'ie 43°N (exactly) as expected, because it is a Fermat path. But
and longitude 232.5134°E (127.4366°W). This the magnitude of the deviation (nearly 600 km
is an arbitrary location off the coast of Oregon at the widest point) is unexpectcd, and points to
where the depth to the bctt,,m exceeds 1500 m the importance of 3 ') modeling for identifying
and the sound channel axis is 2stinated at deviations of refracted paths from a nominal
550 m depth. We place the hypothetical vertical propagation surface that has either a
receiver at 547.8 m depth and seek to reach it great circle or a geodesic as a trace. This partic-
with eigenpaths within a few meters error in ular eigenpath will be further analyzed in the
latitude, longitde, and depth. The ray pa,2'- subsection on the search for eigenrays.
length depenis on t-,e specific value of thelengh dpend ont~cspecficvalu oftheThe "acoustic" path in Fig. 14 that seems
elevation angle for a given launch azimuth; it t e o stic path In f 14 thatto be obstructed by North Island of New Zea-
amounts to roughly 18,092 km for these shallow iand is computed merely as a consistency check.
launch elevation angles. The travel time is It is launched with the same azimuth,
about 12,289.7 s, so the average sound speed 119.16030, as the azimuth of the geodesic to the

sampled by the typical ray in this range of receiver. Because this path is not an eigerath
parameters is 1472.13 m/s. to the receiver, it is refracted away from the

The general modell.ig results demonstrate geodesic "to the ight," in this case, toward the
the effects of some of the remarkable oceanic "slower water," as expected. Its elevation angle
features encountered along these long paths. of -I' is just a nominal value to expose the
All fundamental and qualitative features of the computation to nontrivial sound speed gra-
westward propagation originating in the Indian dients.
Ocean (not from Heard Island but from Perth) Fi.iure 15 sho s the vertical oscillation of
have been described by Munk et al. (1988) and C

by Mnk nd Frbe (189) n abroaer eo- the acoustic eigenpath (110.50870 , -1.61480 ) in
Munk and Forbes (1989) in a broader geo- the sound channel. Because it started in a shal-

graphical context. We refer the reader to these lw sound channel at Heard Island, its oscilla-two sources for the important notions, and con- tion nearly reaches the surface at high southern
ce-itrate instead on the resolving powcr of ray latitude and establishes a pattern that persists
propagation computations, and on certain pro- along a distance of nearly 40X) km. The gentle
pagation features in the vertical plane. curve with which the envelope to this trajectory

Figure 14 shows four trajectories through comes closest to the sea surface about 2000 km
the Tasman window. Two are projections of down -ange from Heard Island attests to the Fer-
acoustic paths onto cie sea surface. The other mat behavior. To reach the distant receiver in
two are the transmitter-to-receiver geodesic on the Northern Hemisphere, the eigen, .th must
the WGS72 ellipsoid, ard the great circle first go south toward Antarctica, and there it
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I
travels in a channel where the axis gets shal- during that study, shows the average zonal wind
lower for quite a distance. In fact, this flat ray stress and wind stress cur! for July 1979, based
(elevation angle -1.61480) is the steepest eigen- on twice daily data for the whole Southern
ray that does not experience multiple interac- Hemisphere. One notices the exceptional inten-
tions with the surface. Beyond a limiting sity of atmospheric forcing over the southern I
"direct" ray of about ±1.70 elevation, all steeper Indian Ocean. Such forcing may intermittently
rays will experience more than 100 interactions destroy the sound channel, if it acts long
with the surface before the sound channel sinks enough. The communication link which is
to a greater depth in the Tasman window, cf. predicated on the existence of the channel may
Fig. 12. This could result in a large scattering then be interrupted. Clearly, realistic modeling
loss so that the corresponding paths may be hard of the time dependent sound channel in the
to detect at the receiver, antarctic Indian and Pacific Ocean is of high

Another propagation characteristic that we priority among our future tasks.

notice, but do not explore at this time, is the Figure 17 shows the propagation pattern
relation of oceanography, atmospheric forcing, for the axial ray with launch elevation angle 00.
and boundary interaction to the effective aper- It oscillates a little in the channel, and this was
ture of launch elevation angles for "direct" paths unexpected. Appendix B shows that a ray I
that will constitute the main acoustic communi- launched with 00 elevation angle from the exact
cation link to the US West Coast. Factors that depth of the channel axis oscillates, because of
influence this relation can be anticipated from earth's curvature and after an initial transient,
Fig. 8 by the shape of canonical SSPs that we about a mean depth that is shallower than the
used to model the high southern latitudes; channel axis. Appendix A gives the analytical
admittedly this goes beyond Munk's (1974) proof for this behavior.
expressed intention to limit the canonic profile
to temperate latitudes. Regardless of how the Eigenpaths
pound Piles w e soun dc Cd, th iwealbOgidpily The customary computation of eigenrays
produces a sound channel that is weak, in addi- propagating through 2-D layered media uses the
tion to being shallow. "shooting method." This is one of the original

The Indian Ocean near Antarctica is sub- techniques for numerically solving two-point I
jected, on the average, to the highest wind stress boundary value (BV) problems. When used
on the globe during the Austral winter. This is with an adaptive step integrator on a smooth
evidcnt from the SEASAT altimeter wind problem, it has an accuracy superior to other I
speeds for July-October 1978, as reported by BV solvers (finite difference, finite elements,
Chelton et al. (1981), as well as from computed etc.) for a comparable computational effort.
wind stress and wind stress curl for the same The main Heard Island project will focus on I
period, reported by Baker et al. (1980). The monitoring a time varying communication chan-
latter was part of a computational study of vari- nel in which the end-point boundary conditions
ous atmospheric ocean-forcing fields using remain fixed. We wondered whether a numeri- I
seven years of twice daily Australian sea sur- cal method other than shooting might provide
face pressure data. The wind stress in the belt an attractive modeling alternative for computing
between Prince Edward Island in the west and effects of the changes in the channel properties,
Macquarie Island in the east exceeded values of knowing that they will be localized in time and
0.4 Pa for prolonged periods. The forcing was space. We did consider the shooting method to
particularly strong during the SEASAT year establish a set of eigenpaths at an initial time,
(1978), but it was comparably strong in three followed by a perturbation routine for these
out of the seven years. Figure 16, computed paths at later times, but found that the accuracy
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Figure 16. Average zonal wind stress and wind stress curl for the month of July 1979.
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consideration prevails and favors the shooting abstract terms the linearization of the inherently
method alone, nonlinear relations for a ballistic targeting prob-

The computational accuracy (2 m) of lem. Since the shooting method is already
eigenpaths propagating over 18 x 106 m is assumed, the ballistic notions of targeting
extraordinarily high, even for the "smooth corrections are appropriate to our underwater
ocean" problem (the search for effective sound acoustic propagation problem.
paths in the "nonsmooth," possibly chaotic, case There are two vector spaces:
is addressed in Section 5). In relative terms, this The "input" space at the transmitter, withis about 50 times more stringent than anything dimensionality 3, where the variables are the
we had experienced before. It made us realize launch azimuth c, the launch elevation angle
that search methods that are very efficient
(Mercer et al., 1985) at intermediate precision ii, and the travel time t.
levels (about 5 m on 1000 km) need further ' The "output" space at the receiver. This is a
refinements, real 3-D space defined in terms of latitude X,

First, it is necessary to defend the stated longitude 0, and depth z.

precision goal for eigenrays (stressing the com- It may be somewhat odd to visualize the
putational rather than the physical aspect) travel time as part of the "input," rather than
against the argument that the targeted value is output, but the given allocation of variables is
about 1000 times finer than the probable accu- mathematically correct and posits the 3-D "for-
racy of our global travel time prediction. The ward" problem in clear terms. In 2-D eigenpath
answer is related to our plan to explore the problems it is certainly not of any advantage to
expected variability of travel times for global consider the travel time as an input because the
paths. We know, for example, that mesoscale ballistic analogy is for a target "on the ground,"
structures will cause large variations in the and the nearness of a miss is identified by a
travel times, but that the potential annual trend "spotter" (spotter algorithm) seeing the impact
from global warming is only about 100 ms. We of the search trajectory. In the 3-D ballistic
want our estimates of variability from various case, there is no easy way to set up the spotter
sources to contain computational errors that are algorithm, but the shooter controls the time at
a small fraction of this, say 10 ms, or about 5 m which the shell detonates.
or better.

This analogy carries directly over to theSecond, the eigenray search procedure acoustic case in which the ray point becomes a

must be described with sufficient precision to be tracer projectile that can telemeter its position at

implemented as an algorithm that can deal with
any time. However, a considerable complica-

any emerging pattern by itself, i.e., without tion arises in ray acoustics since the ray trajec-I ~ ~~assistance of human pattern recognition that ~tezdr
characterized the developmental effort. The tory is "wavy" in the z direction due to the oce-
phrced he deeles o pmebntal oftarTe anic waveguide. This motivates a reduction of
procedure relies on substantial software the 3-D target search to a 2-D targeting prob-
resources that reside on a standard library (LIN- lem; however, the 3-D acoustic targeting prob-
PACK, Dongarra et al., 1979, or equivalent) lem is actually simpler in principle and is

This is in keeping with a view on computing described first.
that parallels the hardware notions of LSI and
VLSI (large and very large scale integration): Consider a ray that is an eigenray. That is,
the software modules that are drawn upon are in the input space there is a specific vector (aO,
generic, but are the most potent one can access. l0o, To) that corresponds to the vector (Xo, o,
We introduce this procedure by describing in zo, the receiver position) of the output space.
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The mapping (Cao, 110, co) (X0o, o, Zo) is There is a vexing problem with (25) as it
highly nonlinear, stands, because the matrix condition number of I

Now consider that the receiver is dis- J tends to be very bad unless J is evaluated near
placed a little, by 8X = X-Xo, and similarly for the receiver. It easily exceeds 104, and balanc-

&p and 8z. Reestablish the eigenpath by chang- ing it by scaling is not a practical option. I
ing the input parameters a little, by Instead, one wants to reduce the dimensionality
8ot = ot - ac0 , and similarly for 8ij and ST. Since of the problem. This is why it is useful to have

this is done in the immediate neighborhood of written (25) in full, to recognize that involving z I
an eigenpath, this mapping is linear, and is and t in the scheme (one in the output space and

described by the other in the input space) causes the trouble.
For any given scaling, it turns out that c-Iat and

._ I.. _ X. 3/ will be relatively small (because of c),
a -T'l at 6a riwhile aziaat and azic-h1 will be relatively large

/8- - 4 =' . (25) (because of z). To eliminate both, one setsact al k 8 j 8z &t = 0 on the left and Sz = 0 on the right, which
az aZ aZ results in the reduced system
ac al 3 , a I

We call the Jacobian matrix on the left of act •11 So: x(6
Eq. (25) J, and note that its elements can be A 1 =  • (26)
estimated from information provided by three [ct JI
search rays in which a single input parameter is
varied at a time. The finite difference estimates Two germinal ideas were introduced in the
of the partials in J are thought to be evaluated eigenray search scheme of Mercer et al. (1985).
relative to a ray point that coincides -L1 the The first was to eliminate the dependence of the
receiver. But such a point is not avainble. dnd launch parameter correction on z at the onset.
so some other close point must be used. Also, The second idea was to institute a nonlinear

note that the initially perfect eigenpath condi- (global) procedure whereby a set of search rays
tion satisfies Eq. (25) in the trivial but valid (with associated "ridge" numbers) identifies a

form set of eigenrays.

j. = -6. The nonlinear procedure is very effective
because it functions even for large "miss" dis-

One can reverse the reasoning and con- tances; in our application this is about 30 km
sider (25) not as a vehicle for restoring the along-path and about 1 km across-path. How-
eigenpath condition for a slightly displaced ever, on the 30 km scale the essence of the non-
receiver, but as the means of establishing an linearity cannot be captured by just a few search I
eigenpath when a receiver in a fixed position rays, so the eigenray error after this zeroth
was missed by a ray having nominal launch iterate may be about 100 m. Then, the nonlinear
parameters (i.e, such that their deviation from algorithm must be repeated, or the linearization
the nominal value (o0 , io, to) is the null- using (26) may be substituted.
vector). Assume that the amount of miss is (8X, The idea and execution of the nonlinear
54, 8z); then the left-hand vector (Sot, 81, t) of search procedure is described now in some I
the nontrivial (25) is exactly the corrective detail. Figure 18 shows the regular pattern of
amount to be applied to the launch parameters 16 search rays at two closely spaced azimuths,
in order to exactly reach the receiver. 110.500 and 110.51 °, and 4 eigenrays that were I

located by this search pattern. This is a diagram
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Figure 18. The initial elevations and azimuths of 16 search rays and 4 corresponding eigenrays
through a Tasman window with circumpolar current.
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for a "start and end result" of the eigenray one-sided), but it should not be computed from
search. It depicts exclusively the setup of the output of the ray equations. If this was
parameters in the "input" space. done, accuracy would be lost because of the I

different rate of step convergence (i.e., the accu-M Ircer et al. (1985) to the very large distance mulation of output data is at most of first order,
Mcrcvery etg ac.c19 toem, e adte but the ordinary differential equation (ODE)
and very high accuracy problem, we had to solver is of higher order). Instead, an additional
modify some of the assumptions: differential equation should be used that shares

" Two azimuthal search patterns, as shown in the internal linkages in the ODE solver but
Fig. 18, are a minimum requirement The literally skims the surface of the earth's ellip- I
rays have to straddle the receiver in the "out- soid. HARPO, as available to us, does not have
put" space; i.e., their search ray parameters that equation.
have to straddle the eigenray parameters in
the "input" space. This is needed for interpo- The "Ridge" Concept
lation, and with only two azimuths this inter- Tpolaionwil ofnecesit belinar.The elimination of the z dependence is
polation will of necessity be linear, obtained by saving the X and 0 coordinates of

" The idea of relating the "receive" azimuths to the ray point as a ray crosses the depth of the
the "launch" azimuths, which enabled Mercer receiver-possibly many times for rapidly oscil- I
et al. to complete the search with only one lating rays. Visualize now the surface (horizon)
azimuthal pattern, must be dropped. It of the receiver depth over a wide area centered
worked for the specific propagation geometry on the receiver's latitude and longitude; then I
there, but it does not work here, and so prob- imagine a fan of rays of constant launch eleva-
ably does not work under conditions that are tion angle T1 being swept out by changing the
sufficiently general. launch azimuth ct in a continuous manner. I

" The "range" to the receiver is not defined for Without loss of generality, let the ray paths
the precision computations. This is because oscillate as they would in the sound channel,
in a strict 2-D acoustic problem the (horizon- and visualize the 3-D shape of the surface I
tal) range to the receiver together with the created by the ray points. It looks like a
depth of the receiver provides a complete and wavetrain inasmuch as it has pronounced crests
consistent specification of the geometry; in a and troughs, i.e., ray "turning" points. These I
3-D problem, or even in a 2-D scheme that is need not be perpendicular to the propagation
derived from a 3-D problem, the eigenray path. Now assign a sequential number to the
paths are not in a single surface, so a unique consecutive turning points. This is customary I
horizontal range to the receiver cannot be practice, usually implemented by +/- numbers,
defined with sufficient accuracy. but for the search algorithm to be presented it is

An "along-path" distance to aid the non- more efficient (for use of lookup tables) that this I
linear search can be defined, but it has a slightly numbering be simply by positive cardinals. We

strange geometry as will seen in the discussion use the term "ridge numbers" to name these car-

about "ridge" numbers. Also, a suitably defined dinals. The +/- convention, if desired, isI
"range" variable is still valuable for display of inferred by the even/odd ridge numbers. For the
computed results. One must be cautious, Tasman window path, the neighborhood of the
though, how such a variable gets quantified by receiver off Oregon is reached by shallow anglethe sethof ray tracing equationss ray paths after about 917 turning points, so

some eigenrays can be expected when the ridge

This along-path range is a parasitic vari- number counter displays values between 915
able (i.e., its coupling to the ray equations is and 920.

I
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Now visualize the intersection of the launch elevation angle, and the launch azimuth
receiver horizon with the wavetrain surface is read along the cut curve at the receiver posi-
(such a cut is almost assured by the usual tion. Note that when we speak of angles we are
geometries). The set of these cuts consists of strictly referring to the input space variables.
distinctly separate smooth curves (with Graphically, this search procedure is easy,
smoothly varying X and 0 coordinates) in the but computationally it is not so easy. The main
receiver horizon. Each of the curves is problem is that the pattern recognition requires
identified by the ridge number of the preceding several azimuths and elevation angles, and this
turning point, is expensive. Acquiring a number of ridge cut

Keep in mind this characterization: the coordinates for a given elevation/azimuth is
described wavetrain is associated with a single inexpensive, and they need to be stored because
launch elevation angle 7l, and each curve is they are not going to be used in the sequence in
parameterized along the curve by a continuum which they were computed. The next six figures
of launch azimuths (x. What happens when the will explain in detail how the outlined algo-
elevation angle changes a little? The wavetrain rithms are applied in practice.
advances or recedes a little, and the cut curves Figure 19 displays cut sets for four ridge
advance or recede with it. This much visualiza- numbers (#916-#919) in the 30km neighbor-
tion is essential for understanding the abstract hood about the receiver (which is taken as the
scheme. origin of the local coordinates). Six ray trajec

I In the context of Eq. (26), and recognizing tories are involved in this computation. The
that the receiver is at a fixed X and 0, the input space includes the two azimuths of Fig. 18
described cut curves are a thin solution subset in and the three bottom-most elevation angles in
X and 50 (relative to the receiver position) that that figure (-1.5*, -1.6', and -1.7o).

exactly satisfies 8z = 0. Only a few discrete Figure 20 is a detail of Fig. 19. It displays
points on the cut curves are computed, and any the cut set for ridge #917 at two elevation
collection of these points is referred to as a "cut angles (-1.6' and -1.7°). Four ray trajectories
ing cut sets for efficient information processing. wise so close (at same azimuth) that only two

As will be shown, at the top is a chosen launch traces are distinct. The displayed cut set of four
azimuth and at the bottom there are two typical points will help locate the bottom-most eigenray
groupings: several ridge numbers at a given shown in Fig. 18. That eigenray is the one dis-
launch elevation angle, or several elevation cussed in conjunction with Figs. 14 and 15. It
angles at a given ridge number. Now, the addi- has launch azimuth 110.5087' and launch
tional objective of the search procedure is to elevation -1.6148'. Note: When we cite eigen-
render SX = 0 and &0 = 0. If one were sure that ray angles to 10-4 °, the resolved values are at
some cut curve, and a known point on it, were in least 10 times finer because the sensitivity of the
the linear neighborhood of the receiver, one launch angles (x and 11 to a unit distance error is
could solve (26), evaluate the 5's, and estimate about 3 x 10-5 0/m.
the partials at that point. While the foursome of search rays closest

In the more general (nonlinear) geometry to that eigenray, in terms of launch parameters
the search algorithm has a clearly definable of Fig. 18, helps identify the approximate
task: it advances the cut curves (by changing parameters for launching the eigenray, it does
the launch elevation angle) until one of them not provide sufficient information to attain the
sweeps across the receiver position. The eleva- desired accuracy. The complete search pattern
tion angle at that moment becomes the eigenray in Fig. 18 has to be used at once, but then one

-43-



APL-UW TR 8929 1
I
I

.3

.2k

see detail

109)6 #918 #)II

-. 1. #916 r917
0 Z;

-. 2 geoptetry of rhe#9166#917 ridge

.3 .-. 2 .4 \

LONGITUDE dev. (deg

Figure 19. Positions at which various rays pass through the depth of the receiver in the vicinity of
the receiver. Labels for the cumulative number of ray turnings help one visualize the
formation of ridge cut sets.
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RIDGE #917
(detail of Fig. 19)
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Figure 20. Blowup of the insert area from Fig. 19 showing the cut set for ridge #917 at elevation

angles of -1.6' and -1.7' .
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expects that several eigenrays can be identified The cut set point characterized by tie i-th
in one operation. The geometrical idea of the launch elevation angle Tl, and the j-th ridge
combined procedure is to "advance" the ridges, number Rj (a single azimuth is assumed, and no
find the appropriate launch elevation angles at a special notation is assigned to it) maps the
given azimuth, repeat the process for a different "descriptor" (1i, Rj)k into the latitude longitude
azimuth, correct the elevation angles if neces- position (, , k), where k is an integer. To
sary, and determine the appropriate launch operate locally in a linear approximation, we
azimuth for each eigenray found. limit k to (0,1). The ridge numbers are b)

The linear algebraic equivalent to the definition consecLtive integers; i.e., Ry 1 =

geometrical idca is not a direct one. This is R - 1.

because the geometry displayed in Figs. 19 and The procecure has the following steps:
20 is curved. The trajectories (Fig. 20) are (lfori = 1,2.... choosefl =7i,
curved, and the ridge (e.g., #917 in Fig. 19) is andfor j = 1, 2,... choose R = Ry,
not orthogonal to the trajectories. The along-
path miss distance of a cut set point (xO) from (2) define Po = (rI,R) => Q0,00),
the receiver at (X,,'>,) should be parallel to the and define PI = (Tl,R-l) => Q1,1),
footprint of the ray trajectory, and the cross-path (3) define vectors aT = -
miss distance of the same point should be paral- and bT = -Xo,-Or
lel to the ridge. A glance at Fig. 20, which is to
scale, shows that this geometry describes a tra- (determine scalar X suci that a T(b - ka) = 0),
pezoid with four slightly curved sides. The (4) evaluate X = (a Tb) /(a Ta).
displayed 1 km bar in Fig. 20 shows that thecurvlate, I to the eye, may. nsowstb ht Steps (3) and (4) implement an orthogonal pro- mcurvature, slight to the eye, may not be slight jeti n -f onowhen compared with a 2 m or even 5 m scale. jection of b onto

A formalism intelligible to the machine is This procedure yields the "status" of the

needed to cope with tmis n,,)rinearity. The full cut set point Po relative to the receiver. PO

formalism is too long to show here. Its main exhibits an along-path miss distance 5,,

elenment computes oblique projections, and it S,- I ma I ,
does this by combining orthogonal projections, and a cross-path miss distance
inner products, and trigonometry. The task
becomes much simpler when there is no 8C = I b - a Im
obliqueness; i.e., when the trapezoid in Fig. 20 The signs of 5, and 5c must be determined by
becomes a rectangle. This variant is shown in the supenisory algorithm of the model such that
full below. The relevant point is that while one m5i, i.; positive when P0  "overshoots" theI
could compute the along-path and cross-path receiver, i.e., misses it in the direction of
miss distances from the "nearest" trapezoid to increasing range; 8c is positive when P0 misses
the receiver, these obliqu," projections are still the receiver in the direction of increasing
linear entities. However, ;f one computes the azimuth. I
miss distances based on many trapezoids, some
of which are not near the receiver, one obtains A set containing 64 values of 8, is

inputs to construct the nonlinear curves that are displayed by the curves in Fig. 21. This large m
the key to high accuracy in determining eigen- number is accounted for by two azimuths, eight
rays. This will be discussed shortly. The elevation angles (iln) for each azimuth, four

simplified formalism follows, ridges (RI) for each elevation angle. The four I
along-path miss values tend to be large, and the

-
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Figure 21. Along-path miss di3sance versus initial elevation angle for ridge numbers 917 through
920. The square blocks indicate proper choices for eigenray initial launch angles.
Each ridge consists of data from two azimuthal angles 0.01' apart, but they are not visi-
bly different on this ?lot.
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two azimuths can hardly be separated in Fig. 21. the eigenrays parameterized by Fig. 23 have a
There are eight curves in the figure, but only surprisingly small final error, less than 2 m. I
four are distinct. They link cut set points that The various segments of this eigenray
are associated with the same ridge number. The parameter search procedure were implemented
intersections of the curves with the "zero miss" by calling a number of LINPACK routines, for I
line yield the launch (transmit) elevation angles linear algebra, root seeking, etc. They could not
for the eigenrays. be used with HARPO on-line, and there was no

Figure 22 displays the 64 values of 5, in sufficient reason to embed them in HARPO's
two sets of 32 because the azimuthal depen- modules. The implication is that the era of
dence is well resolved here. Consequently, self-contained computer models is on the wane,
there are two distinct sets of four curves. Recall because so much more can be done nowadays l
from the previous exposition that an intersection by adopting a software architecture that is loose
of these curves with the "zero miss" line cannot and library oriented.
yield information about the launch elevation I
angles. The cross-path miss distances are paral-
lel to the ridges, and the elevation angles were
already determined from the construct of Fig. 5. Discussion I
21. By marking the eigenray elevation angles in
Fig. 22, one can seek the intersection of each of Perspective
these lines (vertical in Fig. 22) with a particular The original intent of this work was to I
curve that carries exactly the same ridge introduce earth ellipsoidal coordinates into a
number as the corresponding curve that gave the 3-D Hamiltonian ray tracer and suitably modify
particular eigenray elevation angle in Fig. 21. HARPO while maintaining its software archi- I
For example, the two curves #917 are associated tecture and I/O structures. After completing this
with the launch elevation angle TI = -1.6148'. task, the intent was to explore fundamental pro-
The two 5, at that value of T1 show that the pagation conditions along the "Tasman" path, I
cross-path miss relative to cc = 110.51 is small and possibly replace HARPO's integrator (a
(about 50 m) and positive, while 8, relative to predictor-corrector) with a "marching" integra-
= 110.50 is large (about 300 m) and negative. tor that would be better suited for stiff problems. I

The appropriate azimuth for this eigenray is It was not the usual multiscale stiffness that was
obtained by interpolation and is estimated at expected in future applications, but its
cx = 110.5086. This pair of values (X, T) is equivalent that would accrue from using I
shown in Fig. 18 as the bottom-right eigenray. nonsmooth cellular data to characterize the

Figure 23 corresponds to Fig. 18, except ocean.
that the HARPO runs were made without A number of additional and demanding I
including the Antarctic Circumpolar Current. tasks were on the horizon, all of them associated
The search ray parameterization was kept the with developing modeling software for prepar-
same as in Fig. 18 (which did include the ACC). ing and interpreting the Heard Island feasibility I
One reason for this setup was that switching the and long-term acoustic monitoring experiments.
ACC on and off was much easier than changing These considerations started to become dom-
s .rch parameters; the other reason was to see inant, not only because the prospective applica- I
whether the search procedure was robust tions were important, but also because it
enough to produce a good estimate of the eigen- became evident that HARPO was not a viable
ray parameters even when the receiver was not base for work on this second group of objectives I
azimuthally bracketed. The results were good; no matter how much effort was spent on it. I
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Figure 22. Cross-path miss distance versus initial elevation angle for ridge numbers 917 through
920. In this dimension the ridge cut sets for azimuths of I10.50') and 110.5J0 are
clearly separable. The dashed vertical lines indicate the eigenray initial elevationI angles from Fig. 21.
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Figure 23. Initial elevations and azimuths of 16 search rays and 4 corresponding eigenrays
through a Tasman window without the circumpolar current. (Compare with Fig. 18.)
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This required a dual approach: an analyti- a realistically modeled ocean, and on the other
cal effort, to absorb and adapt the most valuable hand applying to that objective inherently non-
part of HARPO, i.e., its mathematics, the Ham- linear ray tracing with the maximum possible
iltonian, and the dispersion relations; and a degrees of freedom, i.e., three. This awareness
computational effort, to breadboard alternative is really a notion of the late 80's; it points not
software using HARPO as a gauge or demons- just to a possibility but also to the likelihood of
trator. This is the role that it has played histori- chaotic behavior in long distance ray paths (Pal-
cally. mer et al., 1988). We did put some effort into

As to applications such as the interpreta- analyzing the implications and into seeking

tion of the Heard Island feasibility and long- ameliorating modeling compromises, such as
term acoustic monitoring experiment, a chasm- reducing the freedom of the problem by visual-
like conceptual gap developed relative to what izing sound propagation in the thin global boun-

is accepted as state-of-the-art in ray tracing. It dary layer in which vertical and horizontal

can be safely said that most of the ray tracing effects may be only weakly coupled. This is not

literature is rooted in the 70's, 60's, and before. an original idea; it has been practiced recently

In much of this the medium is to be smooth, by Munk et al. (1988), and we will touch upon

maybe undulating sinusoidally or meandering this too.
with a mesoscale eddy here and there. In addi- After addressing this emerging and impor-
tion, the integrators are to be of "high order," in tant iss,:c of nonlinear instability, we will sum-
the Taylor expansion sense. maize the work actually completed, in four

Of course, the real ocean does not look categories: technical, software, geophysical,

that way. High order integrators are murderous and oceanographic.

I on functions (without loss of generality,
integrands) that do not have a rapidly converg- The "Classical" Chaos
ing Taylor expansion, or do not possess it at all. In Section 2, a ray-geometrical explana-
This we will explain later in some detail tion of the notion "fully 3-D" was given, but
because it still seems to be regrettably novel. there is also the notion of classical chaos.
We owe much to the influential work of J. F. When the integration of 3-D ray equations is
Kaiser of Bell Labs, who labeled, during the executed over large distances through a
Summer Conference in Computer Science at nonsmooth medium, the ray trajectories may
Princeton University in 1966, the "high order" exhibit a deterministic chaos. Since this chaos
methods as "18th century mathematics, good for is associated with deterministic systems, it is
planetary orbits, and nearly worthless on noisy simply called chaos (Jackson, 1989). The sys-
data" (see also Kuo and Kaiser, 1966), and to R. tem here is an "IV (initial value) problem," con-
W. Hamming (1983), who states "the implica- sisting of an ODE (ordinary differential equa-
tions of what the formulas do to noisy (high fre- tion) set, subject to initial value conditions.
quency) data was intuitively understood in When these equations are thought to faith-
hand-calculating days but has not, generallyspeaking, appeared in modem textbooks." We fully represent a modeled phenomenon, then the
recall that Hamming developed this theme (at specific chaotic features (more about them later)lecalthat ance 1970),evelcoud tlothme t are attributed to the phenomenon regardless ofleast since 1970), but w e could not locat e th e h o t e eq ai n ar nu r c l y i t g a edIreference, how the equations are numerically integrated.

But poorly conceived integration may by itself
Last but not least comes the awareness add to the instability. For example, the Runge-

that there is a contradiction in advocating on Kutta "four," which is equivalent to the Simpson
one hand ray techniques of wave propagation in formula, is unstable on noisy data.
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A fair number of modeling elements must behavior. Consider a function to be integrated
contribute to the attainment of a chaotic thres- as having 103 values that alternate between + I
hold. The threshold itself is poorly defined and -1. One expects the integral to be zero, but
because of nonlinearity. Most of the contribut- Simpson returns the value -300 if the initial
ing elements, but not all, are beyond the function value is +I, and the integral becomes
modeler's control. They are the intrinsic non- +300 according to Simpson if the initial value is
linearity of the problem, the long range to be -1. It is absolutely warranted to call this
modeled, and a rich wavenumber spectrum of a unstable and huge error a "dependence on initial
realistically described ocean. Two of these ele- values" because the integral will change little if
ments are somewhat under the modeler's con- one repeats the thought experiment and changes
trol: the dimensionality of the phase space for a few values at the tail of the integration inter- I
the ODE system, and the inner structure of the val to arbitrarily distributed ±Is (even the entire
integration algorithm. tail to +1 or to -1). However, the trapezoidal

Hamming (1983) has shown that the cause integration (Heun's method in ODEs) returns I
for instability of the Simpson formula is its par- the correct zero value. Fortunately, the stability

ticular form of recursiveness, which has a spec- of low order integration methods is beginning to

tral ii-,isfer function that amplifies the (spectral be recognized in the nonlinear dynamics litera- I
content at) high wavenumbers. He considered ture. For example, Jackson (1989) speaks about

this behavior mainly as an error, and did not the desirability of modifying Runge-Kutta when

address its unstable dependence on initial con- the dynamics involves "fast" and "slow mani- a

ditions. This latter effect requires consideration folds," and watching that the modification is

of spectral phases, and that was a topic of some adequate because "they can 'run away' in some

interest in mechanical radiation along charac- cases." More to the point in chaos computations U
teristics of internal waves in the ocean (Rattray is the work of Parker and Chua (1989), who

et aL., 1969). As with underwater acoustics, pro- smply state that the trapezoidal integration is

gress was evolving from a smooth representa- well suited for stiff problems. l
tion of the ocean to one including finer struc- We want to make clear that 3-D ray trac-
ture. Dworski (1973) showed, in the form of a ing on realistic data in long range propagation
small theorem, that the internal wave charac- deserves a cost/benefit analysis. This analysis
teristics are systematically steeper in the pres- cannot be done unless one has 3-D capability
ence of thermohaline fine structure than they with gridded data. This report is a foundation to
would be without it. This theorem is based on that end. An optimization of the benefits/cost I
the fact that, during the integration, the Lebes- ratio seems to point toward a "boundary layer
gue measure of vertical intervals of weak static type" treatment in "2-D+" dimensions as a sub-
stability must be large compared with the ject of future efforts. A short explanation on I
Lebesgue measure of intervals where the stabil- potential handicaps of the "fully 3-D" modeling
ity is high. The theorem holds, of course, is appropriate now.
regardless of what spectrum the fine structure I
has, but to determine how much steeper the Chaotic behavior is directly linked to the

characteristics were, simulation of fine structure degree-of-freedom (DOF) of the ODE system,

was used. and not to the Hamiltonian from which the ODE
system is derived. However, a better qualitative

In this simulation the Simpson (Runge- understanding of the specific type of classical
Kutta four) integration showed large and, more chaos is facilitated by the assurance that the
importantly, erratic departures from the smooth ODE system stems from a Hamiltonian; in brief,I

case. The following dramatically illustrates the
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the chaos will be more benign than it could be practical consequence from our viewpoint is
for an arbitrary nonlinear system of the same that eigenpaths cannot be precisely determined.
dimensionality. This dimensionality is Chaotic effects on underwater sound rays
reckoned either by DOF (our 3-D means DOF = were the topic of several recent papers, in par-
3) together with the statement that the system is ticular, Palmer et al. (1988), Brown et al.
autonomous or nonautonomous, or by the (1990), and Tappert et al. (1990). While chaoti-
dimension of the phase space. The phase space city of rays is not evident in the material
of autonomous systems has dimension 2 x DOF, presented in this report, we think we understand
while the dimension of a nonautonomous sys- why it did not occur and why it may occur once
tern is 2 x (DOF - 1). Keep in mind that the a detailed description of eddies, fronts, and
clear graphical displays are only possible for other oceanographic structures is added to the
phase spaces up to dimension two, and that non- model. Such a "detailed" description need be
linear systems with phase space of dimension only relatively nonsmooth; that is, these struc-
larger than four will almost certainly display tures may have length scales of 10& acoustic
chaos for some range of parameters. wavelengths, rather than 104 wavelengths. The

The "fully 3-D" treatment requires a phase latter is a typical horizontal length scale used in
space of dimension six. In the material dis- our computations with HARPO.
cussed in this report no chaos was detected, but However, in some other work (Dworski,
we attribute this primarily to the smoothness of 1991), we have had fairly extensive experience
the model ocean and of the modeled Antarctic with evaluating chaotic appearing ray propaga-
Circumpolar Current, and to the very flat (low tion of short pulses riding on a short wavelength
elevation angles) rays that were modeled carrier. Unusually interesting results, and
because of site-specific (Heard Island) con- excellent correspondence to ground truth data,
siderations. To better grasp the ray evolution in were obtained when the distribution of the
a simulated propagation problem of lower refractive index was modeled using highly
dimensionality, but in a peculiarly perturbed resolved "noisy" profiles from actual field data
ocean, one can look at the work of Palmer et al. to a vertical length scale of only three acoustic
(1988). After numerically solving a 2-D Hamil- wavelengths. There was no smoothing what-
tonian system, they illustrate a partly chaotic ever. The discrepancies between hindcast and
behavior for underwater acoustic rays. This ground truth were small and could be attributed
system would evolve in a phase space of dimen- to lack of sufficient information about the hor-
sion four, but they ingeniously reduced the evo- izontal distribution of the sound speed field.
lution to a phase space of dimension two (for Because the propagation path was under the
ease of display), making the system nonauto- polar ice cap, this field was laminated, and the
nomous by aliasing range into time. horizontal scales of the lamina were long.

The evolution of Hamiltonian trajectories Looking at this experience in the context of the
in a phase space of dimension six is very rich, work of Palmer et al. (1988), one notices a pat-
with 3-D structures named after Kolmogorov- tern: when they introduce horizontal perturba-
Arnold-Moser KAM "surfaces" (3-D subspaces tions to the sound field, the flat rays (near eleva-
embedded into the 6-D phase space) that tion angle zero) do not get chaotic but the steep
separate, but do not isolate, the trajectories rays do. In the cited arctic experiment, the per-
(Rasband, 1990). Separation and isolation are turbation is in the vertical, and the flat rays get
distinct technical terms, and the trajectories chaotic but the steep rays do not.
undergo a so-called "Arnold diffusion" in pat- We summarize now our experience with
tems that are known as "Arnold webs." The eigenrays in the presence or absence of chaotic

I
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behavior from both the physical and the * Differential geometry of the earth's ellipsoid
mathematical viewpoint of a user who seeks pri- was explored for practical near-antipodal
marily to characterize travel times. The longest conditions (Figs. 5 and 6). The astroid at the
underwater propagation paths on earth are those antipode was computationally outlined.
we are dealing with, and they are finite. The e Oblate spheroidal ccardinates were analyzed I
evolution time of the corresponding Hamil- for applicability, both in full form and in
tonian system is also finite. The wavenumber approximation. We conclude that the approx-
spectrum of the sound speed disturbances to the imations are very accurate for oceanic ray I
waveguide is limited at both ends. The interest- tracing and moderately accurate for
ing one is the high wavenumber end, since a subacoustic ocean/crust ray tracing. The idea
smooth integrator there may be a primary cause of a boundary layer ray tracer and a I
of computational instability. Also, the real corresponding coordinate system gained in
ocean spectrum is much broader, with lots of appeal because of the potential in reducing
possibi, out-of-phase "driving" terms for the the phase space dimensionality of the Hamil- I
Hamiltonian equations, than the line spectrum tonian.
of the perturbations that Palmer et al. (1988)
used in their simulation model. Aside from The decoupling, or weak coupling, of the hor-

computational instabilities that can be avoided, izontal and vertical ray equations was con-
we believe that the chaotic trajectories represent strued as an extension of the concept of
valid physics for specific representations of the refracted geodesic, and the adiabatic invari-

medium. For this very reason, the Fermat prin- ance (Munk et al., 1988).
ciple remains "active," and we think that the 9 Ray equations in cylindrical coordinates were
travel times are not chaotic on scales of interest derived (Appendix A), and their relation to
to us. This statement, in order not to become a the Hamiltonian equations clarified.contradiction, implies that clusters of initialconditions map into clusters of ray points with A nonlinear search algorithm, Figs. 18-23,similar travel times at the receiver. If this was developed for eigenrays. Its final iteratesimiar ravl tmesat te rceier.If his may use linearization by a 3-D or 2-D Jaco-
materializes, then such a cluster-to-cluster map- may us lieaian bo2 a
ping becomes a generalized eigenray. Its bian, Eqs. (25) and (26).
numerical signature, perfectly amenable to com- A formalism to generate smooth range-
putational identification, is the clustering of dependent sound field models based on
travel times. The "ranging in" shooting of rays Munk's canonical profiles was developed.
is then not appropriate; instead, a "shotgun Quasi-Hermite splines link the four parame-
blast" of many rays is applied with the some- ters of the canonical profiles, not the data.
what sophisticated feature that the trajectories Lookup tables of the spline expansion
"report" to the supervisory algorithm the nearest coefficients permit fast evaluation.
"fly-by" travel time. The ray tracer must be very
fast (we have some positive experience with Software Considerations
that) as well as very flexible to integrate "back-
wards in time." The 3-D smooth Hamiltonian ray tracer was

identified as a good demonstration and cali-

Technical Results bration device but not a working model to
support long range propagation experiments.

* The Hamiltonian equations, (15)-(20), were We will write a library-based, 3-D,
modified for use on the ellipsoidal earth. moderately stiff ray tracer (variable order I

Runge-Kutta-Fehls marching integrator)

5
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I
using the ellipsoidal Haniltonian equations. "data-directed style." One of the precepts of
It will use both the quasi-Hermite splined Abelson et al. (1985) is: "Encapsulation
representation of the ocean and the GFDL reflects the general system-design principle
(Levitus) gridded data base. Its main purpose known as the hiding principle. One can make
will be computational comparison with faster, a system more modular and robust by protect-
possibly semianalytical on a cellular basis, ing parts of the system from each other, that
ray tracers of "low-pass" wavenumber capa- is, by providing information access only to
bility. those parts of the system that have a 'need to

One of our objectives was to modify HARPO know'." Fortunately, ray modeling lends

for work with a Hamiltonian in spheroidal itself to these partitioning approaches

coordinates. When it became clear that an because of its structural simplicity as an in-

extensive modification of the HARPO archi- tial value problem in ordinary differential

tecture was also needed, an entirely different equations. This part is expressly suited for

level of effort was indicated. Because that configuring it as a generic library, because the

level could not be sustained with available interfaces of ODE-IV software are by now

resources, we reappraised the software archi- nearly standardized. It is the data structures

tecture for ray propagation in general. The that present a real challenge, and probably no

conclusions point away from the idea of cure-all solutions are in sight-the more rea-

integrated models (where the I/O and ray son to insist on an adaptable I/O, and to make

tracing codes are closely coupled). Even it as abstract as possible. We are in the pro-

though a model is highly modular (HARPO cess of doing this.

has, including plotting, 81 modules), the
information flow between modules may be so Geophysical
diffuse that the effect is strong coupling. This The horizontal refraction of acoustic eigen-
must be avoided. paths over distances of 18 Mm can be impres-
Sophisticated concepts of modem software sive (Fig. 14). The 500 km deviation of that
development, e.g., those described in the MIT eigenpath relative to either the unrefracted
"weed eater" (Abelson et al., 1985) have now spherical or ellipsoidal geodesic is primarily
reached the early levels of l i' d1 q tu- due t- the thermohaline circumpolar front,
dies. This merely points to the extremely with the transmitter located on one side of it
rapid development in computing. Most and the receiver on the other.
hardware people understand this, and it is up • While the front and the Antarctic Circumpo-
to us as model developers to follow suit. lar Current are the two major zonal structures
Models should be subjected to some form of of the Southern Oceans, the current has a very
"sunset law"; every five years or so, they small effect on the sound propagated across
ought to be completely disassembled, retain- it. Neither the path nor the travel time is
ing the mathematics but recon,,!ructing the affected much. The sound path is displaced
I/O and the supervisory algorithms to match by no more than 300 m, as can be seen by
the data structures and the capabilities of the comparing Figs. 18 and Fig. 23 for the effect
host computers. If this reconstruction turns on the launch azimuth, and then realizing
out to be hard, then the original model archi- from Fig. 20 that a launch azimuth difference
tecture was most likely deficient. of 0.010 produces paths that are less than

Specifically, the key emerging concepts are 350 m apart at the receiver. Figure 24 shows
"abstraction barriers," and application of a the time delays. The circumpolar current
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Figure 24. Reduced travel time comparison of eigenrays with and without the circumpolar current.

Arrows indicate the direction of arrival at the receiver. Selected arrivals for each case
are identified with the corresponding ridge number and the initial elevation angle.
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speeds up acoustic paths through the Tasman data becomes very important. Fortunately,
window (it slows down the Atlantic window the initial value problem acts to our advan-
paths). But the speed-up in Fig. 24 amounts tage. The oceanic stretch over which wind
to a mere 55 ms. Both of these results forcing may control the presence or absence
confirm a "back of the envelope" calculation, of the shallow channel is not extraordinarily
for the sound is a fast "swimmer" traversing at long.
1450 m/s the "stream" that flows at 0.3 m/s. It
is not advected much, because it takes no
more than a few hundred seconds to get out-
side the influence of the stream.

An antipodal geometry exists for underwater
paths on earth, and it is most likely realizable
only between the southern Indian Ocean and
the North Atlantic. The interesting conjec-
ture is that a horizontal caustic may develop
at points between Bermuda and the U.S.
mainland-from paths that originate at points
between Perth and Antarctica-and vice
versa (Fig. 6). The net azimuthal width of the
acoustic window between Africa and Brazil
is about 200, and a reasonable part of the
emitted acoustic energy may refocus along
that caustic.

Oceanographic

The vertical span of launch elevation angles
for rays transmitted from Heard Island would
be small if one could not count on paths that
experience multiple interactions with the sea
surface (about 100 surface reflections for the
flattest rays of about ±1.7').

We had too little information about the actual
sound channel at high southern latitudes.
Because there is a consensus that the channel
axis is shallow, we conjecture that the chan-
nel itself is weak. There is strong wind forc-
ing at these latitudes most of the time, and
particularly fierce forcing during the Austral
winter. The Heard Island feasibility experi-
ment will be staged in the favorable time of
the year, but we are preparing to look early at
as much time-dependent data as we can get
hold of. The flexible modeling capability of
looking at gridded or even randomly spaced
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APPENDIX A

Reduced Dimensionality Ray Tracers and the HamiltonianI
Vertically Refracted Paths on the Spheroid gave the 3-D Cartesian version of the equations

To gain flexibility in using environmental without derivation.

data, such as those given along a transect, Recognizing the future potential of inter-
numerical codes can be based on special ver- facing our long range calculations with the type
sions of the ray tracing equations. In the Hamil- of field data Baxter and Orr (1982) worked with,
tonian vs eikonal debate (Synge, 1937; we include the earth's curvature in these equa-
Herzberger, 1937). one of the arguments con- tions. While Eliseevnin's equations are correct,
cemed the numr. ,, variables (and equations) the derivation was not entirely straightforward
needed to describe ray propagation in geometri- (at least in the translation). Thus we compactly
cal optics: six (Hamiltonian) or only four-to-six re-derive these equations from the eikonal, and
(Bruns' eikonal). From the modem computa- then proceed to cast them into the desired
tional viewpoint it may matter less how many curved coordinate frame. If we assume that the
equations are integrated than how "convenien. vertical and horizontal equations are separable,
for the user" are the variables in the equations. and that the horizontal equations are the
For example, the local elevation angle of the ray refracted geodesics of Munk et al., the vertical
path is a dependent variable that the user may equations need be defined in only a cylindrical
want computed directly, because integration two-space.
step adjustment criteria can be coupled to its
evolution (e.g., fine stepping near turning Range-Dependent Cartesian 2-D Equations
points). The elevation angle is directly com-
puted in Eqs. (A4) and (A 12) here. Let n = c0 Ic be the refractive index, with

co a constant and c the variable sound speed.Afringe benefit of having specialized vc.r- Using the same notation as in the Hamiltonian

sions of ray equations available is that certain equations, the relation between travel time t and

propagation features may become particularly the path length s is given by

clear. An illustration that shows the effective

axis of the sound channel to be systematically d = I d

offset relative to the geometrical axis will be ds c dt
given as a by-product of the development The eikonal can be written with w as the phase
below, variable so that its intrinsic geometry of direc-

Regarding data utilization, a relevant tion cosines are highlighted:
example of ray propagation modeled through r OwIx 1 2 [_ ]2
sound velocity fields calculated from thermistor n + I= 1
chain, CTD, XBT, and acoustic backscattering
is given by Baxter and Orr (1982). They The two terms on the left are direction cosines
integrate range dependent ray equations in a of the ray wrt (with respect to) the x and the y
Cartesian frame, focusing on ranges where the axis. The x axis is the horizontal range axis,
earth curvature is not important. These equa- and y is along the vertical axis. If ot denotes the
tions were derived from the eikonal by Eliseev- ray elevation angle wrt the x axis, the first term
nin (1965), where he numerically treated a is cosot and the second term is sinat. Multiply
strongly range dependent problem. Also, he these trigonometric functions by n and then

I -Al -
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cross-differentiate, the first wrt y and the second Let the sound speed gradient vector be Vc,
wrt x. Since the two mixed second partials of w the unit vector tangent to the ray path be- and
must be equal, set the unit vector perpendicular to the propagation

(n coso)/Dy - (n sinc)/Dx =0. (Al) surface be e In subsequent matrix operations,
vectors are considered as one-column matrices

The ray path element is ds = (dx, dy), and even when they are written in transposed (hor-
the first two differential equations for the ray izontal) form. Two of the vectors are
become simply Vc = [clay

dxlds = cosa

dy/ds = sina. (A2) and= [cosa [dx/ds] U[Sinaj [ dy/ds] (A5)
From the definition of the refractive index as

n = co/c, one obtains by logarithmic Equation (A4) can now be written as a triple
differentiation the generic form scalar product

an n ac (A3) dciids =1- t. (Vc x')J (A6) IK) c a(.) *=c I"

By using the chain rule on (Al) one can segre- The relation between the Cartesian and
gate to the left the terms that do not feature the cylindrical coordinate system is shown in
anla(.), and to the right those that do. Then Fig. Al. The ray point vector-iis defined by its
replace the trigonometric functions on the left magnitude r and the angle in the cylindrical
by substituting (A2), but leave the trigonometric system, so
functions on the right alone. The intermediate systemiso I
result is "r= [ ]= [rcsn J "

+ dx a dy an an. u rco

n- axc s + n ay ds ayo sinOc- The unit vectors of the coordinate axes
transform by rotation:

Use (A3) on the right-hand side of the above, 'Iep
and notice that each term on both sides includes A ,
n as a factor. Since n is never zero, cancel n [1
everywhere. Note that the left side is the total where A is the orthonormal rotation matrix
derivative of a wrt the path length s, so that the I
third equation of the ray trajectory in a range A = [ e01 sino3 1
dependent medium is LsiflI cosJj

d mediu . asuch that its transpose is also its inverse,

dds = -sna- . (A4) AT=A

Note from Fig. Al that the ray elevation
angle in the (global) cylindrical system is no

Range-Dependent Cylindrical 2-D Equations longer a but TI:

Equations (A2) and (A4) are to be cast I+. (A7)
into a cylindrical coordinate frame to account
for the earth's (spherical) curvature. Thereupon, The gradient vector of the sound speed in the
they can easily be adapted to the spheroidal cur- two systems is
vature.

I
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Vc = (ac/ax, aclay) = (0I43, ac/ar), Dc = C

r ar r

and its components transform in the same way This means that a ray launched with Tl = 0
as do the unit vectors: elevation at the geometrical axis of the sound

I cl1 channel, where aclar = 0 by definition, cannot
aclx [r j (A8) maintain T) a 0. It will oscillate about a lesserLc/ya Ac/lar depth (larger r) than the channel axis depth,because c/r is inherently positive, and Oc/ar is

Take the dids derivative of the components of? positive above the axis (and negative below).

to obtain We first noticed this behavior numerically
rdx/ds] [rdo/ds] from HARPO's runs, but could not immediately
Ldy/ds =A L dr/ds J (A9) say that it represented a correct outcome. After

concluding that it does, we were satisfied with

Invert (A9) and expand A. Use the addition an approximate analysis that produces the
formulas for the sine and cosine of (a + t3) and above quantification. The Hamiltonian equa-

substitute (A7)to obtain the first two equations. tions produce the correct result, but (A12) is
d P/ds I cosn , (AlO) more amenable to simple limiting analyses. I

r This appendix has emphasized, in addition

and to geodesic issues, the communality of various
dr/ds = sinrl . (A 11) formulations of the ray equations in geometrical

acoustics. It ends with an illustration of how

Consider (A6) again. Substitute (A7) on the this communality can be exploited. The Hamil-
left, and work on the right-hand side by substi- tonian equations (15) through (20), together
tuting (A8) for Vc, and the trigonometric form with the various dispersion relations defining H,
of (A) for? Use again the addition formulae are a rich source for the extraction of new rela-
for the sine and cosine of (a +3) and substitute tions, or validation of existing ones. An instruc-
(A7) to obtain the third equation, after transpos- tive and simple example iq the derivation of
ing dp3/ds from the left to the right side: (A11) from (15).

dr/ds I T1 Let H be the Hamiltonian for the disper-
r sion relation defined as acoustic waves, no

current, no losses. Then, from Eqs. (6.21),
+ I(sinl 1 c/p - cosrl ac/ar). (A12) (6.29), and (6.30) in Jones et al. (1986) one gets

c r = to2/c ,

Equations (A10) through (A12) com- aH/0o= 2o, 2

pletely describe ray trajectories for which the aH/Iac, = -2c2 Kr.
horizontal path is independently specified. An Use (15) in conjunction with the definitions for
interesting special case exists when one F and dids that precede it. Then I
demands that T1 0 all along the path on the
curved earth. Equation (A12) then is dr Co dr C = Kr .

0= -1 - 'acar , ds c dp o 3 .

r C Though exceedingly simple (Eq. (Al) is self-

or, alternatively, this ray can materialize only at evident from Fig. 7), this example is still
such r where instructive. It shows the Hamiltonian

machinery in action: some variables (o) and c)

I
-A4-

I



APL-UW TR 8929

that do not affect the answer are nonetheless
carried along in the Hamiltonian function.
There is the necessary cancellation of factors to
attain the correct result, but in an application
this cancellation is numerical instead of being
analytical before the run.

Hence, in general, there are a number of
operations that can be eliminated by reformulat-
ing the ray equations. The following pattern is
associated with all ray equations, regardless of
what approximation to the wave equation they
involve:

* The "position evolution" equations (e.g., (15)
through (17), (A2), (A1O), and (All)) are
always simple.

* All the physics and all the complexity are in
the "direction evolution" equations (e.g., (18)
through (20), (A4), and (A 12)).

I
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APPENDIX B

Effective Axis of Sound Channel

Newton's Apple of the Second Kind Why bother? In our case, it was to test the

Recall Newton's second apple? Not the integrity of the 3-D ray tracing codes. But it is

one that fell on his head, but the one he ima- useful to know, more generally, that in sound
gined tossing on a tangent to the earth with channels in which the minimum velocity ;.
velocity V = [r g (r)]"'. It kept smoothly falling "smeared" over a wide depth interval the
and falling because its trajectory exactly effective channel axis is at the upper (shallow)

matched the earth's curvature. The situation end of that interval.

with an acoustic "axial" ray in the oceanic
sound channel is somewhat similar, except it Numerical Experiment
does not involve gravity. The didgnostic potential offered by a

This fay has to oe launched tangentially to sharp test of an "axial" ray became evident dur-
the channel axis, and the curvature radius of its ing our changes in the HARPO code to intro-
trajectory must equal the along-path curvature duce the modified ellipsoidal Hamiltonian. Far
radius of the channel. For a range independent from anticipating the qualitative behavior of the
channel, the launch must be parallel to the sea axial ray as explained above, we were worried
surface, and the trajectory curvature radius must that the obvious oscillation of the nominally
equal the geocentric radius to the ray point, axial ray implied some deficiency in specifying
Moreover, the trajectory must be concave the permissible integration error (i.e., we
toward the earth's center, thought that the oscillation would disappear if

We did not say whence to launch the the error criterion were made more stringent).
"axial" ray. From the axis of the sound chan- To explore this issue, the following test
nel? Not really, because there the local vertical configuration was run with the spherical version
curvature radius of the trajectory is, by of HARP66 (the FORTRAN 66 version of
definition, infinite. HARPO). The range independent sound speed

If the ray is launched with elevation angle profile was a canonical profile, Eq. (21). ( co =
zero from a point below (i.e., deeper than) the 1500 m/s, nominally centered on z = 1000 m,
geometrical axis of the sound channel, one can but relocated to the sea surface, z = 0; thus it
match the desired magnitude of the curvature was located partly in the "air" (negative depths),
radius, but the sign will be wrong; the trajectory with a perturbation parameter e = 0.005 and a
will be convex toward the earth's center. Thus, "scale height" Hc = 1 km.) The ray was shot at
only points above the geometrical axis qualify zero elevation angle from a transmitter point
as potential source points for the "effective" chosen realistically in the Indian Ocean (Perth
axial ray in a sound channel. By "effective" or Heard Island), unrealistically at the sea sur-
axial ray we mean a ray that does not oscillate face (the geometrical axis of this "channel"),
at all, or, if the sound channel is range depen- and at an initial azimuth of interest for subse-
dent, oscillates least. Then, that appropriate quent simulation of the actual propagation.
depth can be termed the effective axis depth of Such a run exercised the whole HARP66 code,
the sound channel, and it will always be smaller using its complex linkages.
than the depth of the sound speed minimum.

-BI-
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l
The results turned out to be independent sound speed keeps decreasing before and at the

of the specified computational accuracy levels, lower turning point. Why the turning of the i
but they were weakly dependent on the launch path under these circumstances?
azimuth (in a way that will be explained). The A qualitative explanation lies in the
finding of a fortuitously "clean" run is illustrated inherent nonlinearity: preceding a lower turn-
in Fig. B 1, in which the described ray oscillates ing point, the ray path has a depressed elevation
about a position 7.8 m above the nominal axis z angle and the path tends toward z = 0, but its
= 0 for a few hundreds of kilometers and then curvature radius grows rapidly. The ray path i
stabilizes to that constant height for the rest of radius becomes much larger than the curvature
nearly 20,000 km. Other runs (other initial radius of the channel axis, and this axis literally
azimuths) would make the ray oscillate forever "sinks" in front of the ray point. Consequently, I
with small amplitudes about the mean position the ray path "turns" and gets to the "up-swing"
of about 7.8 m. again.

To summarize, Details of this behavior seem to depend on
The effective sound channel axis is always at small changcs in initial conditions, but on the
a lesser depth than the depth of the sound spheroidal earth and in a slowly varying rangc
speed minimum (the nominal sound channel dependent sound channel, tl- least oscillation
axis). The effective axis is exactly at that of a ray path can be expected when the ray is
point "q" above the nominal axis at which launched from a point above the nominal sound

I dc 1=I channel axis with an elevation angle that is
c Iq- , (B1) parallel to that axis. Equation (BI), with a

cq dz q aq minor adjustment to the meaning of aq, can be
where c is the sound speed and aq is the geo- used to estimate the best height above the axis
centric radius to q. for placement of the transmit point.

Keep in mind that the transmit depth was Thus, one infers that the results displayed
at the geometrical channel axis (minimum in Fig. B I are a correct interpretation (by the
sound speed). The explanation for the 7.8 m HARP66 code) of one of the effects of the
displacement was sought only after it became Earth's curvature on ray propagation. This is
obvious that the resulting trajectories were not discussed by Brekhovskikh (1960) in his classic
an artifact of the code (spherical Hamiltonian) book on waves in random media. He points out
or of the run configuration. The exceptionally that the original work on this problem was done
clean result in Fig. BI seems to come about by Pekeris (1946), by the method of successive
because the ray path starts to satisfy the condi- approximation.
tions of Eq. (B 1) more and more, and the oscil- However, radio waves are not usually
lation appears to be damped even through there visualized in a parabolic channel, and the exact
is no explicit damping mechanism. An intrigu- position of the channel axis is not discussed by
ing question remains: not only is there no Brekhovskikh even though he presents an
apparent damping mechanism, but there is no extensive section on the underwater sound"restoring force" to the apparent oscillator in channel.
Fig. Bla, because the oscillation never crosses O
the nominal axis z = 0, and consequently dc/dz On the other hand, underwater sound pro- I
never changes sign. The upper turning points pagation is often best listened to at or near the
have an explanation based on refraction: the channel axis, so we thought the channel axis

path reached a higher sound speed region. This would be worth explaining analytically, in addi- I
is not true for the lower turning points; the tion to offering the plausibility arguments.

I
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Figure B1. Example of ray trajectory during thefirst 1000 km (a) and near 20,000 km (b).
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U
Using approximations to the full wave equation axis is not where c (z) is minimum (i.e., n is

Brekhovskikh (1960), following Pekeris maximum) but where nwo. has a maximum. A I
(1946), summarizes the analysis of the two necessary condition for this is that its z-
scalar functions that satisfy the wave equation, derivative be zero.

introduces spherical coordinates, and looks for a Take a dldz of (32) and set it to zero, mak-
"modified" refractive index that would approxi- ing use of the fact that zia is small while taking
mate the same results in a Cartesian framework. the derivative of reciprocals. After dividing by

This idea used to be common in the factors that cannot materially affect the zero l
radio-wave propagation literature, and it con- condition, we conclude that the effective chan-

jures an observer at a virtual position who does nel axis is where

not know that the earth is curved, but observes dc Co
that radio waves emanating at zero elevation dz c a

from a distant transmitter reach his station con-
siderably above the height they were sent from. This is equivalent to Eq. (B 1). I
The ionosphere has a uniform refractive index
(the isovelocity acoustic analogue) in this con- Using the ray invariant (the vertex velocity)
ceptualization, but the naive observer concludes This second analysis uses the ray invariant
that the refractive index is nonuniform and that (valid only for propagation in a range indepen-
it has caused the waves to be refracted upward. dent medium) that prescribes, on a flat earth,
He then sets out to find the functional form for where the rays have an upper and a lower ver- m
the refractive index that would explain the tex; it demands that they occur at depths having
observations. he same local sound speed, regardless of the

Unlike the naive observer, we do not seek sound speed gradient there. On the curved U
a "modified" index but try to show that the earth, the ray invariant points to other relations.

deduced analysis accurately describes the chan- The ray invariant I is defined by (varia-
nel axis displacement for any refractive index. tional principle)

Brekhovskikh, in an unnumbered equation I := coso = const = cos0, (B4)
after his Eq. (40.8), writes c co(

k2n 2(z) + 2k2 - = k2n2 (B2) where o = 1/c is the wave "slowness" and * is
a the elevation angle.

in which the wavenumbers k and km are close From the constancy of I one obtains I
and can be canceled on both sides. Introduce dE = 0, and differentiating (34) one has
into Eq. (32) the refractive index n by its velo- do (
city ratio equivalent dO -a tan. 35a)

Co Considering the geometry of a path element of
n (z) length ds, one obtains

where co is a fixed reference velocity, close in = do do
value to c (z) over the z-interval of interest. The sin0 = d
radius of the earth is a, and n,,,M is the The curvature of the ray path is"modified" refractive index that will, we hope,

undo the effects of the earth's curvature. I (Bo/. 16)

We conclude from the above, and from our p - ds - ds d 6

parochial viewpoint, that the effective channel which upon substitution of Eq. (35) becomes

-B4- nI



I APL-UW TR 8929

I d
COSO. (B7)

p - adz

These are generally valid statements for any
point of the ray path.

We are interested in a level ray, * = 0,
near the channel axis, at a point for which
lI/p = -(I/a), and where a is the local, along-
path radius of curvature of the axis (the azimu-
thally weighted combination of the two princi-
pal radii of curvature for the spheroid,
decreased by the depth). Equation (B7) now
becomes

do -- (B8)do _ (8
dz a

and, because the product a c = 1,

dc - c (B9)
dz a

This result replicates Eq. (B1), as expected.
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