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VLASOV SIMULATIONS OF VERY-LARGE-AMPLITUDE WAVE
GENERATION IN THE PLASMA WAKEFIELD ACCELERATOR
I. INTRODUCTION
Novel plasma-based acceleration devicesl"3 are being actively
researched due to their ability to support acceleration gradients in excess
of 10 GeV/m, which is greater than two orders of magnitude beyond those
obtainable in conventional 1linear accelerators. The plasma wakefield
accelerator (PVFA)2 is one such device, wherein a moderate-energy electron
beam drives a plasma wave which, in turn, accelerates a high-energy

4 of

electron bunch. This process has been demonstrated experimentally.
interest in this scheme are limits on the obtainable accelerating gradients
and transformer ratios in the plasma wakefield.

The transformer ratio is defined as

ReE/E_ 1)

vhere E  is the peak decelerating field experienced by the driving electron
beam and E+ is the peak accelerating field in the wake. The physical
significance of the transformer ratio is that the energy gained by the
trailing beam in a single acceleration stage, 4W, is given approximately by
ov = RVO, vhere Vo is the energy of the driving beam. Theoretical results
for linear wakefields have suggested that driving beam pulses that are
symmetric in the axial dimension produce transformer ratios that are

3 Further results showed that higher transformer ratios

limited to R £ 2.
may be obtained by using a nonsymmetric beam pulse6 or by operating in the
nonlinear tegime.7 The difficulties asscciated with generating a shaped
beam pulse add to the attractiveness of the nonlinear PWFA approach. The
viability of the uwoailneai rwld, huwever, may we ilimiied by the effects of

plasma temperature and trapping of plasma electrons by the large amplitude
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vave. For the present study we will consider, via simulation, generation
of nonlinear plasma waves by a symmetric beam pulse.

The properties of large-amplitude waves in cold plasmas have been

2,7-12

studied by a number of researchers. For nonrelativistic plasma

waves, it was found that the peak electric field was limitea by the

nonrelativistic wave-breaking field:9

E =mv ,w/e < E ., E mcw /e (2)
max ph'p wb P

where m is the electron mass, vph is the phase velocity of the plasma wave,

e, assumed positive, is the elementary charge, ¢ is the speed of light in

2 2

vacuum, ®_ = (4nn0e /m)l/ , and n, is the equilibrium plasma density. As
[ 4

Note, for instance, that at np = 1014 cm'3,

vph approaches c, Emax = Evb‘

E = 1 GeV/m. Coffey13, using the nonrelativistic Vlasov-Poisson

wb
equations and a "vaterbag" distribution function for the plasma electrons,

showved that this amplitude is reduced for a warm plasma. In this case,

172

1. §u1/4 . 2u1/2) , (3)

Emax = (mvphwp/e)(l - ¥

w

vhere u = 3T/mv§h and T is the plasma thermal energy.

For relativistic plasma waves, E > Evb is possible. For a cold

plasma, the limit 158

1/2
E .y = (mcwp/e)(iﬁ(yph -1) ) (4)

vhere th = (1 - vih/cz)'llz. This suggests that as vph approaches ¢, E >>

E is> possible. As in the nonrelativistic case, this limit is reduced by

wvb
.- L14 . ..
thermal ¢ilecis. Katsouleas and hori performed a calculation similar to




that of Ref. 13 for the relativistic case. Again a waterbag distribution

function was used. They found

-1/4 1/2 1/4,,1/2
Epax = (meo /e “[1nC2y w170, )

wvhich is assumed to be valid as long as it gives a smaller value than Eq.
(4), as is the case for parameters of interest. An alternative approach
vas taken by Rosenzveigls, who calculated the saturation amplitude of the
plasma vave in two ways. Firstly, from an energy balance argument
involving loading due to the trapped portion of a Gaussian velocity
distribution, he found:

2 1/4
Emax = (mcwp/e)(mc /4T) . (6)

Secondly, from a warm fluid plasma model, he found a similar expression:

2 174
Emax = (mcwp/e)(émc /27T) . 7

In Eqs. (6) and (7) it was assumed that vph = Vi where b is the velocity
of the driving beam, Y = (1 - vtz)/cz)_l/2 > 1 and % >> 1/u. These
approximate expressions are interesting in that they are (approximately)
independent of th' In a later calculation, employing a three-fluid model

for the thermal plasma, Rosenzweig found16

2 174
Emax = (mcwp/e)(ybmc /27T) ’ (8)

vhich gives results that are similar to those of Eq. (5) for parameters of
interest here. This is not surprising in that, wvith both the three-fluid

and the wvaterbag models, there are no plasma electrons with p > Perit!




vhere p is the thermal momentum in the three-fluid model and the

crit
surface momentum of the waterbag in the waterbag model. In either case,
the onset of trapping is quite sudden.

In this paper we present simulations of plasma wvaves driven by an non-
evclving electron beam with velocity Vyr These are carried out by
following the time evolution of the plasma distribution function in one
spatial dimension via the Vlasov-Maxwell equations. Direct simulation via
the Vlasov equation is an ideal way of examining thermal and trapping
effects because the artificially high temperatures associated with typical
particle simulations are avoided.

In following sections we first describe the Vlasov~-Maxwell equations
for this system. We include a discussion of the cold plasma equations to
vhich we will compare our results. We then present simulations in the
linear and nonlinear cases, including simulations of the so-called

nonlinear PVFA7 in wvhich a plasma wave is driven by a beam of length Lb/)\p

>> 1, vhere Ap = 2nvph/wp, to provide R >> 1 and E+/Ewb >» 1.

II. 1D NONLINEAR VLASOV FORMULATION

To simulate plasma wave generation we use the Vlasov-Maxwvell

equations:
af + E£ 3 + eE 3 =0 (9)
9t ym 9z 2 3pz
and
azz
35 = -4me(n + ng - ng), (10)




vhere f(z,pz,t) is the distribution function, vy = (1 + pi/mzcz)l/z, n, is
the driving beam density, Ez is the electric field and
n = Jhpz £ . (11)

For this system, Maxwell’s equations reduce simply to Gauss’s lawv.

Changing variables from (z,pz,t) to (C=ct—z,pz,t=t), wve have

af P, | of af

-a? + (C - ﬁ )a— + eEZ 5‘62 =0 ’ (12)
and

aEz

sz = /-H'te(n + nb - no) . (13)

The simulation is carried out by solving for Ez((,r) from the current
value of f(C,pz,t) via Eqs. (11) and (13) and subsequently updating f via
Eq; (12). 1Initially £ is wuniform in =z and Gaussian in P, varying as
exp(-pi/ZmTo), vhere TO is the equilibrium plasma thermal energy. Ve
represent the driving beam as a fixed charge shape that propagates with
velocity Vb but that otherwise does not evolve. The details of the
simulation code are discussed in the appendix.

For comparison to our simulation results, we consider the cold-fluid
limit of the Vlasov equation, which we discuss here. For a non-evolving
electron beam with Vp = C steady-state may be assumed and derivatives with
respect to T may be neglected. It is convenient to vork in terms of the
normalized scalar potential, ¢ = eQ/mcz, the normalized electron velocity,

62 = vz/c, and the normalized electron momentum, u, = v8_, where vy =




2,172

(1+uz) In these variables, the relativistic Vlasov equation (12)

becomes
[a-efe- G5 Je-0 (16)

wvhere f = f(C,uz).
Analysis of the characteristics of the above equation indicate that
there exists a constant of the motion, w = y - u, - ¢, which is the

normalized electron energy in wakefield frame. Hence, any distribution

vhich is a function of this constant of the motion,

f(v) = (v -u, - ¢, (15)

is a general nonlinear solution of the relativistic Vlasov equation. 1In
terms of the normalized momentum u,, the distribution f(w) is related to
-2
£(u,) by du f(u)) = dvf(v)lduz/dw|, vhere |duz/dv| = [1 + (v+é)"“)/2.
Ve nov consider the cold plasma limit. This limit is valid as long as
the thermal velocity is small compared to the trapping width of the plasma

vave, v << |vp -V vhere ;z is the bulk longitudinal motion of the

z"

electrons in the plasma wave. This inequality holds for plasma wave
amplitudes sufficiently belov wavebreaking. The cold plasma electron

distribution function is given by f(v) = noa(v -1), i.e.,

f(v) = ngd(y -u, - ¢-1), (16)

vhere n, is the ambient plasma electron density. Analytically, thermal
effects may be included by choosing a more appropriate distribution

. . . . . 1
function f(w), such as a wvaterbag or a Gaussian distribution.




Using Eq. (16), various moments may be calculated, i.e., the electron
fluid density n(g) = J'duz f(uz) and the electron fluid velocity Bz =

n"!fdu_(u_/v)f(u). One finds

n=ngll + (1+ $)72/2 (17)
and

B, = [1- 1+ &1L+ as 0. (18)

Using Poisson’s equation, the self-consistent nonlinear equation describing

$(Q) is
2
2 k
Q-g = Pl2n /0y + (1 + 2 -17, (19)
.14
wvhere k. = w /c. Equation (19) describes the generation of nonlinear

vakefields in a cold plasma by a non-evolving beam nb(C) with vy = C. A

similar equation may be derived to describe the generation of nonlinear

wakefields by an intense laser pulse.12

The cold plasma equations, Egs. (17)-(19), were previously derived by

! using cold fluid theory and were subsequently used to

Rosenzwveig
analyze plasma vakefield generation. Numerical solutions to Egqs. (17)-(19)

will be compared to the simulations discussed below.

ITI. SIMULATIONS IN THE LINEAR REGIME

Simulations in the 1linear regime showed excellent agreement with

theory for TO <5 keV. BHere, we considered ng = 2 x 1014 cm-3, such that




Xp = 2nc/wp = 0.236 cm and Ewb = 1.36 GeV/m. The driving beam was of the

form

(20)

{ nbosin{n[C - (c—vb)t]/Lb} (c—vb)r < ¢ < (c-vb)r + Lb
nb=

0 otherwvise

with nbo/no = 0.1, Lb = 0.24 cm = kp and Yy = 100. For these runs, we

modelled a region of phase space bouaded by O < { < 1.024 cm and -10.2 <

3 cm and 8p_/mc = 4 X 10‘2.

p,/mc < 30.7 vith simulation parameters Al = 10™
After 1.6 cm of propagation, a near-steady state was established.
Subsequent runs at T0 = 19 keV showed deviations of = 5¥ from the cold

plasma equations. These were consistent with warm fluid calculations. For

instance, Ref. 14 points out that the warm-fluid oscillation wavelength is

3 2,172
X = Ap(vph/c)[l - i(vth/vph) ] (21)

in agreement with our results, assuming vph = V-

Ve diagnosed the plasma temperature as
T = P/n (22)

wvith P given by18
P = [dp,(p, - B)(v, - ¥,)f (23)

vhere 52 and Vz are the average momentum and velocity as given by moments
f(z,pz,t). In the linear runs, T increased over the several plasma
wavelengths of the simulation region but with minimal impact on the

results.




IV. SIMULATIONS IN THE NONLINEAR REGIME
A series of simulations were periormed with the beam profile given in
Eq. (20) with n

= 0.1, 0.2 0.3, 0.4 and 0.5, L, = 0.24 cm = Xp’ Yy =

b0’ "0 b
100 and T, = 19 keV. Peak electric fields and corresponding theoretical

0
values are plotted versus nbo/nO in Fig. 1. Simulation parameters were as
in the linear-regime runs. As an example, the beam density, electric field
and perturbed plasma density, ny =n - ng are plotted in Fig. 2 for the
nbo/n0 = .0 ‘ase. Figure 3 shows the corresponding results from the cold
plasma equations. Note that in our plotting convention Ez > 0 is
accelerating.

In the most highly nonlinear cases, nbo/nO = 0.4 and 0.5, several
interesting phenomena were observed:

(1) Excellent agreement with the cold plasma equations was observed up
to the first accelerating Ez peak. In this region the temperature, given
by Eq. (22-23) and plotted in Fig. 4 for the nboln0 = 0.5 case, drops by an
order of magnitude. Results did not vary when the initial plasma
temperature was decreased to TO = 5 keV (see Fig. 4). For reasons of
numerical expense, it is difficult to drop the temperature further in the
code.

(2) Particle trapping was observed at the initial accelerating peak in

Ez. This is shown 1in Fig. 5, where the plasma electron distribution is
plotted versus P, and (. Here, a small portion of the elect:on
distribution was accelerated to the simulation boundary at pz’max/mc =
30.7, vhere the boundary condition dictates £=0. The 1loss of plasma
electrons at the P, = P, max boundary changed the results by <1X relative
to a case in which pz,max/mc = 60.0 vas used. A later run with pz.max/mc =

5.12 showed no change in either of the first two accelerating peaks in EZ.




This suggests that the trapped particle distribution is not a significant
load on the wakefield.

(3) Relativistic lengthening of the wake was observed. This was not
in agreement with Ref. 15, however, vwherein A = bif;;c/wp. The difficulty
is that trapped and nearly-trapped particles increase ;m beyond the
expectations of the cold fluid model. Here, vy is the average value of y as
given by a moment of f(C,pz,T).

(4) The wakefield, EZ(C), decreased after the first peak to a value
less than the nonrelativistic wave-breaking 1limit of Eq. (2). This low
value of Ez vas accompanied by an increased plasma temperature. Again,
this result did not vary with TO.

(5) Results were independent of Y for % > 10. At Y, = 5, a
significant increase both in trapping and plasma heating was observed.
Note that Yp = 5 is highly unphysical, given our non-evolving beam.

Both the close agreement with the cold plasma equations in the region
near the beam, where the wakefield is larger than might be expected for a T
= 19 keV plasma, and the sudden thermalization behind the initial Ez peak,
vhere the wakefield amplitude is somewhat reduced, are unexpected results.

The close agreement between the simulation and the cold plasma
equations in the region near the beam may be explained by a simple
argument. In the region near the beam, plasma electrons are accelerated in
bulk in the direction opposite the phase velocity of the wave. This
acceleration reduces the longitudinal thermal motion of the plasma

electrons. The resulting cold plasma distribution closely reproduces the

results of the cold plzsma equations. From Eqs. (22-23),

11 1
T - P jdpz “’*(52 - '2) T3 (24)

10




wvhere Ay = vy - Yy and we have assumed that n(l) is constant over the
accelerating region and that y >> 1 and Ay << y for regions in which £ > 0.
A similar relation between thermal velocity and Y has been observed in
conventional induction accelerators.19 This effect will be evident in the
highly nonlinear runs presented below.

The physics behind the initial peak in Ez’ vhere thermalization of the
plasma electrons is associated with a lower value of the wake amplitude, is
less clear than the situation near the driving beam. Thermalization is
apparently caused by scattering of the plasma electrons from the large
amplitude plasma wave and may be associated with the fraction of plasia
electrons that are nearly-trapped, remaining in the region of peak density
for times of the order of wgl.

Evidence for this concept is provided by a run in which we set Y = 5.
Lowering vph allowed a significant increase (relative to the y > 10 cases)
in the density of trapped and nearly-trapped electrons and an increase in
the thermal energy in the wake by approximately a factor of two. Further
evidence is provided in Fig. 4, wherein a lower value of TO increased
(slightly) the thermal energy in the wake. Ve speculate that the lower T0
provided a more coherent nonlinear oscillation and stronger scattering of
the electron distribution. The temperature diagnostic is difficult to
interpret, however, in that T is 1lowered in the decelerating phase of the
plasma wave by the bulk acceleration mechanism described above. 1In the
accelerating phase of the plasma wave, T 1is artificially increased by
trapped and nearly-trapped electrons.

If ve take T = 5C keV, we can somewhat explain the low value of Ez
behind the first peak by the theoretical saturation limits given in Ref. 15

and quoted as Eqs. (6) and (7) above. These give Emax/Ewb = 1.26 and 1.10

11




respectively. Equation (5) gives the much higher value of Emax/Ewb = 2.22,
suggesting that elements of the modzl of Ref. 15, particularly the trapping
process, represent physics that comes into play before the limit of Ref. 14
is reached. It is interesting to note that our results are independent of
Y for Y, > 10 whereas Egqs. (4), (5) and (8) vary with Yy This suggests
that expectations based on Eqs. (4), (5) and (8) may not be meaningful in

this instance as long as one assumes vph = V-

V. NONLINEAR PLASMA VAKEFIELD ACCELERATOR
For a beam pulse with n, = np/2 and Lb > Xp, theory suggests that

transformer ratios R >> 2 may be obtained. We consider a beam pulse of

the form:

np/2 (c—vb)T £ T KL (c-vb)T + Lb
ng = . (25)
0

othervise

The nonlinear cold plasma equations, (17)-(19), have been solved for this
case.7 Defining x 2 (1 + ¢) and & = wp(t - z/vb), x(&) within the beam is

given implicitly by

1/2

£-x2x - DY2 4 nix - DY? L K2 (26)

Defining Ef = 2an/Xp and X E x(if), it can be shown that the maximum

fields within and behind the beam, respectively, are given by

ncw
E - —Pa - xpt? (27)

and

12




mcw
E, - —(x; - D2 (28)

such that the trausformer ratio is

1/2
R = E+/E =Xg . (29)

Vlasov-Maxwell simulations of the nonlinear plasma wakefield
accelerator vere performed with parameters similar to those of the linear

and nonlinear cases above: np =2 x 1014 cm'3

’ TO = 19 keV, ny given by Eq.
(25) and Y = 100. In this case, hovever, we use Lb/)\p = 0.83, 1.63 and
2.79 such that Eqs. (26-29) give R = 2, 3 and 4 respectively.

Simulation results are summarized in Table I. Cold plasma model
results are also given. As an example, the beam density, electric field
and perturbed plasma density, n, =n -~ n, are plotted in Fig. 6 for the
Lb/)\p = 2.79 case.

As before, we observe a reduction in the thermal velocity spread of
the plasma in the region near the beam, excellent agreement with the cold
plasma equations up to the initial accelerating peak, thermalization of the
plasma behind the initial peak in Ez, and a drop in Ez to Ez < Ewb
thereafter. In the Lb/)\p = 2.79 case, the temperature behind the initial
Ez peak was diagnosed by smoothly setting Ez = 0 beyond this point and
allowing the oscillating plasma to "settle". Results indicate 50 keV < T <
150 keV.

Agreement with the cold plasma model up to the first peak is made
clear vhen Fig. 6 is compared to Fig. 1 of Ref. 7. In fact, the Lb/xp =

2.79 case shows a peak electric field which, while down by 6% from the cold

plasma result, exceeds the expectations of Eqs. (5-8) for a TO = 19 keV

13



plasma. This surprising result is caused Ly the reduction in the thermal
velocity spread in the plasma in accordance with Eq. (24) as is observed in
Fig. 7, which shows plots of T and y for this case.

Our observation of Ez < Ewb following the initial Ez peak is
interesting in 1light of Egs. (2-8). Again we find relativistic
oscillations of the hot plasma limited in a way most closely corresponding
to Eqs. (6-7). Taking T = 100 keV after the first peak, Eqs. (6) and (7)
give Emax/Ewb = 1.06 and 0.93 respectively, in reasonable agreement with
Figs. 6 and 7. As before, Egs. (5) and (B) give higher values of Emax'
VI. CONCLUSIONS

Simulations of the plasma wakefield accelerator were carried out by
following the time evolution of the plasma distribution function in one
dimension via the Vlasov-Maxwell equations. Results were in surprisingly
good agreement with numerical solutions of the nonlinear relativistic cold
plasma equations in the vicinity of the driving beam, where the thermal
velocity spread of the plasma is reduced by the mechanism of Eq. (24).
This reduction in the plasma thermal velocity allowed the generation of
wvake amplitudes that exceeded of the predictions of relativistic warm
plasma models as given in Eqs. (5-8).

Thermalization of the plasma, however, apparently due to particle
scattering from the large amplitude plasma wave, limited the wake to E: <
Evb behind the initial accelerating peak. The thermal energy in this
region was observed to increase with the density of nearly-trapped
particles (those that remain in the region of peak density for times of the

order of w;l). Vake amplitude 1limits behind the initial accelerating peak

14




were in reasonable agreement with Ref. 15. This agreement may be
serendipitous, however, given the complexity of the observed phenomena.

These results were insensitive to Yy for Y 2 10 and to the
equilibrium plasma temperature over the range 3 keV < TO < 20 keV. Results
wvere also insensitive to the presence or removal of the trapped portion of
the distribution function.

Finally, the nonlinear PWFA concept of Ref. 7 was found to be viable,
wvithin the context of the one-dimensional simulation, up to the first
accelerating peak. Here, a transformer ratio R = 3.78 was demonstrated for

a case in which the theoretical value was R = 4.
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APPENDIX: VLASOV-MAXWELL SIMULATIONS IN ONE DIMENSION

To model beam-plasma and laser-plasma interactions, we have developed
numerical solutions of the relativistic Vlasov-Maxwell system of equations
for implementation on the Connection Machine at the U. S. Naval Research
Laboratory. For further numerical discussions of the relativistic Vlasov
equation see Ref. 20.

The code is formulated in (Cst,P ,Pz,t) coordinates where { = ct - z

y
and T = t. The Vlasov equation in this case has only one spatial
dimension:
B B
of P2 3f 9 Py Pyx
(et p B, + 1pd e M1 =0, (A1)

vhere f(C,pz,T) is a reduced distribution function for the plasma, P, and
p.. are momenta which are determined from canonical momentum conservation, v
2 2 22,172 .

y + P, Y/m“e”] and Ex, Ey, Ez’ Bx and By are determined

from Maxwell’s equations.

-1+ ey

Here, Maxwell’s equations are formulated in the Lorentz gauge. 1In

terms of the potentials, A , A and a« = A_ - &,
x' Ty z

2 2

1 37 9 a

¢ g2 * %atar = AU - ko) (A2)
T

VDY

z ; 7+ 28(31 = &an ’ (A3)
T

1 azgy 325y

¢ 57 *hagr T My (a4)

16




and

2 2
1 379% a ¢
Eaz‘#zaca_t:lﬂ'[p, (AS)
T
vhere J and p are the current and charge densities, respectively. The
fields are given by
13 3a 1 3¢
I Tl Tl (46)
1 an 3A
Ex=—z‘é—{ -3 (A7)
9A A
1 _v__y
Ey=-c3 ~ 3¢ ¢ (48)
9A
B, = 37 - (A9)
and
an
= - = 1
By Y (A10)

The Connection Machine handles these equations well

differenced explicitly. We split
two equations:zl
af z,9f
Pk T

and

17

if they are

the Vlasov equation into the following

(All)




d pry EXEX
+ EBZI(EZ * e T yme £} =0 . (A12)

mlm
Al

For the first of these equations, we do a simple upwvind differencing. For

the second, we use a flux-corrected transport (FCT) algorithm.22
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b ’'p

0.83 2.09 2.09 1.81 1.83
1.63 2.90 3.00 2.71 2.82
2.79 3.78 4.00 3.63 3.86

Table 1. Simulation results for the nonlinear PWFA runs. Theoretical
results are from numerical solutions to Eq. (17).

21




-A11Susp weaq SNS13a

pa1107d seny{ea [EJ}12108y3} Buipuodsaiiod pue Sp[afy OFIId2[a yeagd 1 314

o~H\\onHH
090 0G0 0% 0 0€°0 020 010 0
LML N L L L L R B LA SNLANLIND BNLINL NN BRI SL LA AL AL LN LA AL L L BN L mv
" la)

W /74

- uore[nuIIg — X

1

- o Liosy] - O

.
r_—ppb__»F———-F—Phr—bh_—ph—-—_PPLhLbhh»——-.p»»hhtr_hphhhpwyb mH




rased ¢+ = OuO% ays 103 awpy paxyz
ie 3 susiaa payyord (pryos) <Aiysusp euserd paqaniiad pue (paysep)
PI213 911310372 ‘(pajiop) 4Airsuap weaq 3Buraoys Ij[nsai uojle[nuwis 7z -814

o
Al
—

-

T ¥ T T 1] L1 T 1 T L — 1 T r L 0 S ¥ i) T ﬂ T °T T T 1 T ¥ T ~ T T T 1T 1771 T H T
- 1
- -~
- 1 —
. Vi -~ l‘ ﬂ
- AR s\ 4
- / \ / { R
- , , , , N
= | / i ~
- \ | B H
2 | \ i N ﬂ/
- _ L _ 10 ™
= \ { ! / . = M
i { / t / . - o
u { / ! ; . R 2
i / ! ’ e i
| ﬁ \ ' \ “p = —
- , . H
L 1 / -
i 7 . —
- ’ - 1, B
C ) ] I o
L LI -1
C / N
3 o]
o
] ™~
) i
— 2
L R
»
B
1 -
-
i A 4 Y R B 3 A A — S B W | L 1 1 L 4 ;F 4 i 1 b ) S . 1 L i _r Ao J I Je A l 1 L J m

23




-z *873 01 uosyiedwod 103 ITNS3A 1epou p¥n{3 PTOD

€ 314

[ U I T O B S O

Illlll.L"

(qM:H/'Z.:H

24




*9sed moo - o—.—\oa

£f3rariysuasuy AOYS BW) PpaxyJ

ie

/29

U 3y} uy aanjeradwa) [efIful ayl o3 3dadsaa yiia

snsiaa aanjeiadwa) Jo sjo01d

v 3yd

o

l]l|l1lllll—

TTITTT

Tllll7l}l|illerI[ITrTlllll[

»th 1

lngJ_lillLllJlllLllllllLlLUllillllll_LlllJJl;lll

0T

0¢

0€

07

06

(A2A) L

25




+33auty yonu
ST PYi3 uoypiBInUWIS aYy]J ‘3wl poxry e 7 pue 24 snsiaa pailord
ST ‘prad asieod e 19a0 pardwes ‘uofInqyIISTP uoIldaTd ewseyd dYr G ‘314

Q\ — QS

26




252 6,7 = 4% 243 105 oups paxty
le J snsasa P31301d (pytos) AL1ysuap ewserd Paqanjiad pue (paysep)
PT213 dra3oayas ‘(paiiop) £)suap weaq 3Buraoys 1[ns31 uorievrnuig 9 *314

<
™
a
—i

o

—___-.ucld'-‘—\--—-—--Ju-_--—-.——q_j-—-«-——-__
]
=
e J1-
~ / .Il/. -
/4 / ~ 3
! d N
/ \ / /,..
/ / ’“
, \ ) 30 =3
/ ) 7 ; - z/
/ I / : J
i / : n {71 ~
{ / feanas Ctrenriaieaa., L . H3 N
]
! / 3 4
) / -
) / — ;
\ ’ . -
| / 3 N !
/ 5 o)
] / ] o i
| / g ~
i / -
_ / 1S 4
1 / -
- (=2
! / - ~
| / . o
] / ] o
i / 3
, "
i
/ ..m w
/ ] !
/ - i
t ) u ;
. !
= i
_—_h_r__h-—-P—-_L_—--_—-—___—-———-h—h____---r~—#.v W
i
f
i
i
I
. |
—_—



ayl 103 (pyTos) A euwed aleiase

*(y7) b3 woaj paidadxs se | U} UOTIONP3I B MOYS ISED 6/°T =

N/3
v g 2 I

d
/M

pue (paysep) ] @2injeradwdl jo s101d

T 1 v ¥ 7T

\—\ld] 1 .|-IJ14144;~1-\~|¢I|_ T -J‘-«.ﬂq.ﬂldﬂqlql.‘.lqllt*uﬂl-'_ T T

~h__.>_..»L—-[.»F—!-.—F-»-»L.-L.-»L&.».-L

L "3y

0c

)%

‘(A®Y) L

09

L

08

001

28




