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VLASOV SIMULATIONS OF VERY-LARGE-AMPLITUDE WAVE
GENERATION IN THE PLASMA WAKEFIELD ACCELERATOR

I. INTRODUCTION

Novel plasma-based acceleration devicesI-3  are being actively

researched due to their ability to support acceleration gradients in excess

of 10 GeV/m, which is greater than two orders of magnitude beyond those

obtainable in conventional linear accelerators. The plasma wakefield

accelerator (PWFA)2 is one such device, wherein a moderate-energy electron

beam drives a plasma wave which, in turn, accelerates a high-energy

electron bunch. This process has been demonstrated experimentally.4 Of

interest in this scheme are limits on the obtainable accelerating gradients

and transformer ratios in the plasma wakefield.

The transformer ratio is defined as

R e E /E (1)+ -

where E is the peak decelerating field experienced by the driving electron
beam and E is the peak accelerating field in the wake. The physical

+

significance of the transformer ratio is that the energy gained by the

trailing beam in a single acceleration stage, AW, is given approximately by

AW - RWO, where W0 is the energy of the driving beam. Theoretical results

for linear wakefields have suggested that driving beam pulses that are

symmetric in the axial dimension produce transformer ratios that are
5

limited to R < 2. Further results showed that higher transformer ratios

may be obtained by using a nonsymmetric beam pulse 6 or by opterating in the

nonlinear regime.7 The difficulties asscciated with generating a shaped

beam pulse add to the attractiveness of the nonlinear PWFA approach. The

viability of the iolloiieaa 1W,, ievL, uy LL Limiied by the effects of

plasma temperature and trapping of plasma electrons by the large amplitude

Manuscnpt approved April '5. 1991.
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wave. For the present study we will consider, via simulation, generation

of nonlinear plasma waves by a symmetric beam pulse.

The properties of large-amplitude waves in cold plasmas have been

studied by a number of researchers.2 '7 - 1 2  For nonrelativistic plasma

waves, it was found that the peak electric field was limiteo by the

nonrelativistic wave-breaking field:
9

Emax - mVphwp/e < Ewb ' mCop /e (2)

where m is the electron mass, vph is the phase velocity of the plasma wave,

e, assumed positive, is the elementary charge, c is the speed of light in

vacuum, wp = (4 nn0e
2 /m)1/2 ,and n0  is the equilibrium plasma density. As

ph approaches c, Emax Evb Note, for instance, that at n = 1014 cm- 3,
13

Ewb = 1 GeV/m. Coffey , using the nonrelativistic Vlasov-Poisson

equations and a "waterbag" distribution function for the plasma electrons,

showed that this amplitude is reduced for a warm plasma. In this case,

1 8 1/4 1/2 1/2
Emax = (mvph wp/e)(1 - ?- ) + (3)

where P = 3T/mv 2 and T is the plasma thermal energy.

For relativistic plasma waves, E > Ewb is possible. For a cold
.8

plasma, the limit is

Emax - (mcwp/e ) T '(Yph - 1/2 (4)

where yph - (1 - vh2)-1/2 This suggests that as vph approaches c, E >>

E i possiblP. As in the nonrelativistic case, this limit is reduced by

thermal ;; . Katsoulcas and horn peifoied a calculation similar to

2



that of Ref. 13 for the relativistic case. Again a waterbag distribution

function was used. They found

E (mcw /e)p -1/4 [ln(2 1/2 1/4 1/2
max p (ph ) (5)

which is assumed to be valid as long as it gives a smaller value than Eq.

(4), as is the case for parameters of interest. An alternative approach

15
was taken by Rosenzweig , who calculated the saturation amplitude of the

plasma wave in two ways. Firstly, from an energy balance argument

involving loading due to the trapped portion of a Gaussian velocity

distribution, he found:

E = (mcp /e)(mc 2 /4T) 14  (6)

Secondly, from a warm fluid plasma model, he found a similar expression:

Emax = (mcw p/e)(4mc
2/27T)1/4 . (7)

In Eqs. (6) and (7) it was assumed that vph = Vb, where vb is the velocity

of the driving beam, yb - (1 - v2/c2) -1/2 >> 1 and yb >> 1/p. These

approximate expressions are interesting in that they are (approximately)

independent of yph. In a later calculation, employing a three-fluid model

for the thermal plasma, Rosenzweig found
16

Emax = (mCWp/e)(Ybmc2/27T)1 / 4  (8)

which gives results that are similar to those of Eq. (5) for parameters of

interest here. This is not surprising in that, with both the three-fluid

and the waterbag models, there are no plasma electrons with p > pcrit'

3



where pcrit is the thermal momentum in the three-fluid model and the

surface momentum of the waterbag in the waterbag model. In either case,

the onset of trapping is quite sudden.

In this paper we present simulations of plasma waves driven by an non-

evclving elactron beam with velocity vb. These are carried out by

following the time evolution of the plasma distribution function in one

spatial dimension via the Vlasov-Maxwell equations. Direct simulation via

the Vlasov equation is an ideal way of examining thermal and trapping

effects because the artificially high temperatures associated with typical

particle simulations are avoided.

In following sections we first describe the Vlasov-Maxwell equations

for this system. We include a discussion of the cold plasma equations to

which we will compare our results. We then present simulations in the

linear and nonlinear cases, including simulations of the so-called

nonlinear PWFA 7 in which a plasma wave is driven by a beam of length L b/Xp

>>1, where X p - 2 Vph /6p, to provide R >> 1 and E+/Ewb >> 1.

II. 1D NONLINEAR VLASOV FORMULATION

To simulate plasma wave generation we use the Vlasov-Maxvell

equations:

8f Pz af af8-+ T + eEz - (9)t Y z az(p9

and

aE
__z - 4ne(n + n b - (10)

z b- no) 4

4



2 2c2)1/2
where f(z,pzt) is the distribution function, y (1 + Dz /m c n b is

the driving beam density, Ez is the electric field and

n = fdpz (

For this system, Maxwell's equations reduce simply to Gauss's law.

Changing variables from (z,p zt) to (C=ct-z,p zT=t), we have

af Pz 8f-+ (c- - )L + eEz p 0 (12)

and

aE
4ne(n + nb - no) (13)

The simulation is carried out by solving for Ez (C,) from the current

value of f(,p zT) via Eqs. (11) and (13) and subsequently updating f via

Eq. (12). Initially f is uniform in z and Gaussian in pz' varying as

exp(-p2/2mTo), where TO  is the equilibrium plasma thermal energy. We

represent the driving beam as a fixed charge shape that propagates with

velocity vb but that otherwise does not evolve. The details of the

simulation code are discussed in the appendix.

For comparison to our simulation results, we consider the cold-fluid

limit of the Vlasov equation, which we discuss here. For a non-evolving

electron beam with vb = c, steady-state may be assumed and derivatives with

respect to x may be neglected. It is convenient to work in terms of the

normalized scalar potential, * = ef/mc2 , the normalized electron velocity,

z = v /c, and the normalized electron momentum, u. = yz where Y =

5



2 1/2
(1+u )1 In these variables, the relativistic Vlasov equdtion (12)

becomes

[1 - 13) f =a 0 (14)

where f = f(,u z).

Analysis of the characteristics of the above equation indicate that

there exists a constant of the motion, v - y - u - f, which is thez

normalized electron energy in wakefield frame. Hence, any distribution

which is a function of this constant of the motion,

f(w) = f(Y - u - *) , (15)

is a general nonlinear solution of the relativistic Vlasov equation. In

terms of the normalized momentum u , the distribution f(w) is related to

f(uz) by duzf(u 2 ) = dwf(w)Iduz/dwl, where Iduz/dw I [1 + (w++)-21/2.

We now consider the cold plasma limit. This limit is valid as long as

the thermal velocity is small compared to the trapping width of the plasma

wave, vth << IVp - Vzj, where Vz is the bulk longitudinal motion of the

electrons in the plasma wave. This inequality holds for plasma wave

amplitudes sufficiently below wavebreaking. The cold plasma electron

distribution function is given by f(w) - n0 (w - 1), i.e.,

f(w) - n0 (y - u - * - 1) , (16)

where n is the ambient plasma electron density. Analytically, thermal

effects may be included by choosing a more appropriate distribution

function f(w), such as a vaterbag or a Gaussian distribution.
17

6



Using Eq. (16), various moments may be calculated, i.e., the electron

fluid density n(Q) = fdu z  f(uz) and the electron fluid velocity 3z =

n-1 dUz(uz/y)f(u z). One finds

n = n0 [1 + (I + )-2 1/2 (17)

and

z - + +)2l/[1 + (1 + f) 2 1 (18)

Using Poisson's equation, the self-consistent nonlinear equation describing

*( ) is

d 2 2} 2n/n
=+ (1 +~ )-2 _ 1] (19)

. ? 2n/n +( + (19

where k = w /c. Equation (19) describes the generation of nonlinearp P

wakefields in a cold plasma by a non-evolving beam nb( ) with vb L c. A

similar equation may be derived to describe the generation of nonlinear

wakefields by an intense laser pulse.
1 2

The cold plasma equations, Eqs. (17)-(19), were previously derived by

Rosenzweig 7 ,1 5 using cold fluid theory and were subsequently used to

analyze plasma wakefield generation. Numerical solutions to Eqs. (17)-(19)

will be compared to the simulations discussed below.

III. SIMULATIONS IN THE LINEAR REGIME

Simulations in the linear regime showed excellent agreement with

e14 -3
theory for To < 5 keV. Here, we considered no 2 x 10 cm , such that

7



Xp = 2nc/wp = 0.236 cm and Ewb = 1.36 GeV/m. The driving beam was of the

form

n bOsinfnt- (c-vb) ]/Lb) (c-Vb)T < (C-Vb)r + Lb
nb = (20)

b 0 otherwise

with nbO/n0 - 0.1, Lb - 0.24 cm = Xp and b 00. For these runs, we

modelled a region of phase space bouaded by 0 < 1.024 cm and -10.2 <

-3 -2
pz /mc < 30.7 with simulation parameters A = 10- cm and &p z/rc - 4 x 10-

After 1.6 cm of propagation, a near-steady state was established.

Subsequent runs at T0 - 19 keV showed deviations of = 5% from the cold

plasma equations. These were consistent with warm fluid calculations. For

instance, Ref. 14 points out that the warm-fluid oscillation wavelength is

p p(Vph/C)[l - y(vth/Vph)2 12 (21)

in agreement with our results, assuming Vph = Vb -

We diagnosed the plasma temperature as

T = P/n (22)

with P given by
18

P = fdpz(p z - Pz)(Vz - vz)f (23)

where pz and vz are the average momentum and velocity as given by moments

f(z,pz, ,). In the linear runs, T increased over the several plasma

wavelengths of the simulation region but with minimal impact on the

results.

8



IV. SIMULATIONS IN THE NONLINEAR REGIME

A series of simulations were performed with the beam profile given in

Eq. (20) with nbO/n0 = 0.1, 0.2 0.3, 0.4 and 0.5, Lb = 0.24 cm t Xp, Yb =

100 and T 0 = 19 keV. Peak electric fields and corresponding theoretical

values are plotted versus nbO/no in Fig. 1. Simulation parameters were as

in the linear-regime runs. As an example, the beam density, electric field

and perturbed plasma density, n1 = n - no, are plotted in Fig. 2 for the

nbO/n0 = . ase. Figure 3 shows the corresponding results from the cold

plasma equations. Note that in our plotting convention Ez > 0 is

accelerating.

In the most highly nonlinear cases, nbO/n0  = 0.4 and 0.5, several

interesting phenomena wore observed:

(1) Excellent agreement with the cold plasma equations was observed up

to the first accelerating E peak. In this region the temperature, givenz

by Eq. (22-23) and plotted in Fig. 4 for the nbO/n 0 = 0.5 case, drops by an

order of magnitude. Results did not vary when the initial plasma

temperature was decreased to T0  = 5 keV (see Fig. 4). For reasons of

numerical expense, it is difficult to drop the temperature further in the

code.

(2) Particle trapping was observed at the initial accelerating peak in

E . This is shown in Fig. 5, where the plasma electron distribution is

plotted versus pz and . Here, a small portion of the elect:ron

distribution was accelerated to the simulation boundary at pz,max/mc

30.7, where the boundary condition dictates f=0. The loss of plasma

electrons at the p. Pz,max boundary changed the results by <1% relative

to a case in which p z,max/mc = 60.0 was used. A later run with p z,max/mc =

5.12 shoed no change in either of the first two accelerating peaks in E .

z

9



This suggests that the trapped particle distribution is not a significant

load on the wakefield.

(3) Relativistic lengthening of the wake was observed. This was not

in agreement with Ref. 15, however, wherein X = 4T2Ymc/w . The difficultym p
is that trapped and nearly-trapped particles increase ym beyond the

expectations of the cold fluid model. Here, y is the average value of y as

given by a moment of f(C,p zT).

(4) The wakefield, Ez (C), decreased after the first peak to a value

less than the nonrelativistic wave-breaking limit of Eq. (2). This low

value of Ez was accompanied by an increased plasma temperature. Again,

this result did not vary with TO.

(5) Results were independent of Yb for yb 10. At Yb = 5, a

significant increase both in trapping and plasma heating was observed.

Note that Yb = 5 is highly unphysical, given our non-evolving beam.

Both the close agreement with the cold plasma equations in the region

near the beam, where the wakefield is larger than might be expected for a T

= 19 keV plasma, and the sudden thermalization behind the initial E peak,z

where the wakefield amplitude is somewhat reduced, are unexpected results.

The close agreement between the simulation and the cold plasma

equations in the region near the beam may be explained by a simple

argument. In the region near the beam, plasma electrons are accelerated in

bulk in the direction opposite the phase velocity of the wave. This

acceleration reduces the longitudinal thermal motion of the plasma

electrons. The resulting cold plasma distribution closely reproduces the

results of the cold plazma equations. From Eqs. (22-23),

T 1 (24)
T-P - TdP fby( -2 - 12) -31(4

Y Y Y

i0



where Ay = y - y and we have assumed that n(Q is constant o,,er the

accelerating region and that y >> 1 and y << y for regions in which f > 0.

A similar relation between thermal velocity and - has been observed in
19

conventional induction accelerators. This effect will be evident in the

highly nonlinear runs presented below.

The physics behind the initial peak in Ez , where thermalization of the

plasma electrons is associated with a lower value of the wake amplitude, is

less clear than the situation near the driving beam. Thermalization is

apparently caused by scattering of the plasma electrons from the large

amplitude plasma wave and may be associated with the fraction of plasula

electrons that are nearly-trapped, remaining in the region of peak density

for times of the order of -1.

Evidence for this concept is provided by a run in which we set Yb = 5.

Lowering vph allowed a significant increase (relative to the y 10 cases)

in the density of trapped and nearly-trapped electrons and an increase in

the thermal energy in the wake by approximately a factor of two. Further

evidence is provided in Fig. 4, wherein a lower value of T0 increased

(slightly) the thermal energy in the wake. We speculate that the lower TO

provided a more coherent nonlinear oscillation and stronger scattering of

the electron distribution. The temperature diagnostic is difficult to

interpret, however, in that T is lowered in the decelerating phase of the

plasma wave by the bulk acceleration mechanism described above. In the

accelerating phase of the plasma wave, T is artificially increased by

trapped and nearly-trapped electrons.

If we take T = 50 keV, we can somewhat explain the low value of E

behind the first peak by the theoretical saturation limits given in Ref. 15

and quoted as Eqs. (6) and (7) above. These give E max/Ewb - 1.26 and 1.10

ma]b=126ad11



respectively. Equation (5) gives the much higher value of Emax /E = 2.22,

suggesting that elements of the model of Ref. 15, particularly the trapping

process, represent physics that comes into play before the limit of Ref. 14

is reached. It is interesting to note that our results are independent of

Yb for Yb 10 whereas Eqs. (4), (5) and (8) vary with Yb This suggests

that expectations based on Eqs. (4), (5) and (8) may not be meaningful in

this instance as long as one assumes Vph = Vb -

V. NONLINEAR PLASMA WAKEFIELD ACCELERATOR

For a beam pulse with n b = np /2 and Lb > Xp, theory suggests that

transformer ratios R >> 2 may be obtained. We consider a beam pulse of

the form:

n np/2 (C-Vb) r (c-vb)x + Lb
nbI =(25)

0 otherwise

The nonlinear cold plasma equations, (17)-(19), have been solved for this
7

case. Defining x e (1 + +) and o p w (t - Z/Vb), x(&) within the beam is

given implicitly by

= x1 /2(x - 1)1/2 + lnl(x 1)1/2 + x 1/2 (26)

Defining E.f r 2 mLLb/Xp and xf E X(f), it can be shown that the maximum

fields within and behind the beam, respectively, are given by

E (OCW - x1/2 (27)

and

12



-mc(xf )1/2  (28)+ e f

such that the traisformer ratio is

R = E /E = x1/2 (29)
+ f

Vlaqov-Maxwell simulations of the nonlinear plasma wakefield

accelerator were performed with parameters similar to those of the linear

and nonlinear cases above: n p 2 x 1014 cm-3 , T0 = 19 keV, nb given by Eq.

(25) and yb = 100. In this case, however, we use L b/Xp - 0.83, 1.63 and

2.79 such that Eqs. (26-29) give R = 2, 3 and 4 respectively.

Simulation results are summarized in Table I. Cold plasma model

results are also given. As an example, the beam density, electric field

and perturbed plasma density, n1 = n - no, are plotted in Fig. 6 for the

Lb/X p - 2.79 case.

- As before, we observe a reduction in the thermal velocity spread of

the plasma in the region near the beam, excellent agreement with the cold

plasma equations up to the initial accelerating peak, thermalization of the

plasma behind the initial peak in Ez, and a drop in Ez  to Ez < Ewb

thereafter. In the Lb/Xp = 2.79 case, the temperature behind the initial

Ez peak was diagnosed by smoothly setting Ez  = 0 beyond this point and

allowing the oscillating plasma to "settle". Results indicate 50 keV < T <

150 keV.

Agreement with the cold plasma model up to the first peak is made

clear when Fig. 6 is compared to Fig. I of Ref. 7. In fact, the Lb /X =

2.79 case shows a peak electric field which, while down by 6Z from the cold

plasma result, exceeds the expectations of Eqs. (5-8) for a T 0 19 keV

13



plasma. This surprising result is caused by the reduction in the thermal

velocity spread in the plasma in accordance with Eq. (24) as is observed in

Fig. 7, which shows plots of T and y for this case.

Our observation of Ez  < Ewb following the initial Ez  peak is

interesting in light of Eqs. (2-8). Again we find relativistic

oscillations of the hot plasma limited in a way most closely corresponding

to Eqs. (6-7). Taking T = 100 keV after the first peak, Eqs. (6) and (7)

give E max/Ewb 1.06 and 0.93 respectively, in reasonable agreement with

Figs. 6 and 7. As before, Eqs. (5) and (8) give higher values of Emax

VI. CONCLUSIONS

Simulations of the plasma wakefield accelerator were carried out by

following the time evolution of the plasma distribution function in one

dimension via the Vlasov-Maxwell equations. Results were in surprisingly

good agreement with numerical solutions of the nonlinear relativistic cold

plasma equations in the vicinity of the driving beam, where the thermal

velocity spread of the plasma is reduced by the mechanism of Eq. (24).

This reduction in the plasma thermal velocity allowed the generation of

wake amplitudes that exceeded of the predictions of relativistic warm

plasma models as given in Eqs. (5-8).

Thermalization of the plasma, however, apparently due to particle

scattering from the large amplitude plasma wave, limited the wake to E_ <

Ewb behind the initial accelerating peak. The thermal energy in this

region was observed to increase with the density of nearly-trapped

particles (those that remain in the region of peak density for times of the

order of u p). 'Wake amplitude limits behind the initial accelerating peak
P



were in reasonable agreement with Ref. 15. This agreement may be

serendipitous, however, given the complexity of the observed phenomena.

These results were insensitive to Yb for Yb > 10 and to the

equilibrium plasma temperature over the range 3 keV < T0 < 20 keV. Results

were also insensitive to the presence or removal of the trapped portion of

the distribution function.

Finally, the nonlinear PVFA concept of Ref. 7 was found to be viable,

within the context of the one-dimensional simulation, up to the first

accelerating peak. Here, a transformer ratio R = 3.78 was demonstrated for

a case in which the theoretical value was R = 4.
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APPENDIX: VLASOV-MAXVELL SIMULATIONS IN ONE DIMENSION

To model beam-plasma and laser-plasma interactions, we have developed

numerical solutions of the relativistic Vlasov-Maxwell system of equations

for implementation on the Connection Machine at the U. S. Naval Research

Laboratory. Fir further numerical discussions of the relativistic Vlasov

equation see Ref. 20.

The code is formulated in ( ,p x,p pz,-) coordinates where ? = ct - z

and - = t. The Vlasov equation in this case has only one spatial

dimension.

af Pz. f 8 p~
a-.+ (c -) + --z [(E  +  - )f] = 0, (Al)

where f( ,p z,) is a reduced distribution function for the plasma, p x and

py are momenta which are determined from canonical momentum conservation, y

= [1 + (px2 + py2 + pz 2)/m2c2]1/2 and Ex, Ey, Ez, Bx and By are determined

from Maxwell's equations.

Here, Maxwell's equations are formulated in the Lorentz gauge. In

terms of the potentials, Ax, Ay and a = A -

1 2 .2
1 a 2 + 2-- 4n(J - PC) , (A2)
c ax 2  ac-

a2A a2A1 x 2 _.x
+ 2  = 4 LJ~ (A3)

2--.y 2 . 4nJ (A4)

c a[2 aca =  y

16



and

1 2 t 2 2 =

c 2 + -- 4T, (A5)

where J and p are the current and charge densities, respectively. The

fields are given by

E =-1 8 B_ 1 (A6)z~ c T3rT -c- T'

E i x - @x (A7)x c=- T

aA aA
E -.y __y (A8)my c- 3T ac

3A

Bx  (A9)

and

aA

By = - (AlO)

The Connection Machine handles these equations well if they are

differenced explicitly. We split the Vlasov equation into the following

two equations:
2 1

af +(c - 0 (All)

and

17



af a[ 'E p cxf B pA B
+ T- [(E + pB fB (A12)

apz ymc m

For the first of these equations, we do a simple upwind differencing. For

the second, we use a flux-corrected transport (FCT) algorithm.2
2

18
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L b/X R R [theory] E +/Ewb E +/Ewb [theory]

0.83 2.09 2.09 1.81 1.83
1.63 2.90 3.00 2.71 2.82
2.79 3.78 4.00 3.63 3.86

Table 1. Simulation results for the nonlinear PWFA runs. Theoretical
results are foom numerical solutions to Eq. (17).
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