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EVOLUTION OF A FINITE PULSE OF RADIATION IN A
HIGH-POWER FREE-ELECTRON LASER

I. Introduction

Many of the analyses and numerical studies of the free-electron laser

(FEL) have been directed towards in-depth investigation of individual

aspects of the underlying mechanism. What emerges is that the FEL

interaction is sufficiently complex to be endowed with a variety of

interesting physical phenomena.1 The purpose of the present paper is to

discuss the results from a numerical study in a sufficiently general

setting wherein several of the phenomena of interest are simultaneously

operative. The particular case examined is that of a high-current (- kA),

high-power (- GW), short wavelength (- pm), tapered-wiggler FEL. The

results indicate that in addition to enhancing the extraction efficiency,

tapering of the wiggler has the further benefit of improving the quality of

the output by suppressing sideband modulation of the optical field. The

role of optical guiding is emphasized. Specifically, the results are used

to illustrate the characteristics associated with refractive guiding and

gain focusing. The gradual transition between the two forms of guiding as

the tapering rate is varied is discussed in detail.2
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II. Mathematical Model

The purpose of this section is to presert the complete set of

equations forming the basis of the numerical model. The vector potential

of the optical field is given by

As  exp[i( z - Wt e + c.c.,

where A is the slowly-varying envelope, w is the radian frequency, c is the

speed of light in vacuo, and ex is the unit vector along the x axis. In

the assumed azimuthally symmetric geometry considered, a = ielA/mc2 may be

expanded as

a(r,z,t) a an (z,t ) L n (2r 2/r s 2 )

n=0

x exp [(l - io) r 2 /rs 2 ], (1)

where -lel is the charge on an electron of rest-mass m, Ln is the Laguerre

polynomial of order n, and r is the radial coordinate. In this expansion

rs (z,t) is the spot-size, a(z,t) is related to the curvature R -1 of the

optical field by R-I= 2ca/wr2, and an(z,t), n = 0, 1, 2, ..., are the

expansion coefficients. Substituting Eq. (1) into the well-known parabolic

wave equation and employing the source-dependent expansion technique of

4
Ref. 3, one obtains the following set of equations

2
(T+ c I r cc - rsc Bi, (2a)

(L + c f rs O -t -2 -2(~ 2 B cB(b
S

at TZ2 2

T- + c T + c Aa =i a 1  i(n+1) B ca 1 - ic Fn,  (2c)

II J n n-1 + n



where

2V f 2 ) ]

* L) 1  ~~y~j j ~-iJexp[-i~j - (1+icc)r j/r s] (2d)
2ic E2e)

A n -i1 2 (2n + I - ) + i (2n BR + B), (2e)
wr~S

B = 1 /ao ,

e BR + iB (2f)

In the formula for Fn, v = Ib [kAj/17, where Ib is the electron beam

current in kilo-Amperes, the summation is over the electrons at radial

locations (r.} in a given ponderomotive bucket, N being the number of

electrons initially therein; *j = (w/c + kw)zj - wt is the phase of the jth

electron, located at zi, relative to the ponderomotive wave. The

normalized wigg'.r amplitude, aw, is defined in Eq. (5d).

A detailed presentation of the source-dependent expansion approach is

given in Ref. 3. For orientation, however, it should be noted that in

vacuo one has the well-known result

rs(z) rs(O) (1 + z2/ZR 2) / 2  (3a)

C(z) = z/ZR, (3b)

where r (0) is the minimum spot size (at z = 0) andS

s2(0) (3c)

is the Rayleigh range. These results follow from Eqs. (2) upon neglecting

B, i.e., neglecting t'- -!ectron beam, and assuming that the wavefronts

are plane at z=O.
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The scalar potential of the wiggler is represented by

X = - (B/k) cosh (kxx) sinh (kyy) cos (kwz), (4)

where B is the induction and, for the ,arabolic pole faces consideredw

herein, the wavenumbers along the three axes are related via kx = k =

k //2. With the scalar potential given by Eq. (4), th3 betatron motion of

the electrons is described by the quasi-classical (KB) solutions

x t "

X __P Cos dt' 1 + &X,(5a)

13

and

LP cos dtw(t') + (5b)

where x1, yo, &x, a id F are constants,
Y

a ck
-w w (5c)

13 - 2y

is the betatron frequency, and

aw - k mc2 (5d)
w

is the normalized wiggler amplitude.

Finally, the synchrotron motion of an electron of energy Ymc
2 located

at (zr) is described by

dt - i  w a L 2r[t  (1-ia)r 2 / 2] c.c., (6a)
4 n n n rJ S

4



-q = ~ [i + I- a 2 + y x 2+ y 2/~(6b)
dt - w 2y 2V

where ji (w/c + kw ) z - mt is the phase of the electron in the

ponderomotive wave, and f B = J0 OM~ - JlQ is the usual
6 difference of

Bessel functions with (a = a/2)2 /(1 + a 2 /2).
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III. Initialization

The initial electron distribution is as follows. The electrons are

uniformly loaded on the mesh corresponding to the z axis, and they are

weighted in such a way as to represent a parabolic density profile along z.

For the transverse coordinates (x,v yv y) the electrons are loaded

randomly in such a way that i) the radial density profile is parabolic, and

ii) the transverse velocity profile is Gaussian. The normalized edge

emittance for such a distribution may be defined in a ;aanner similar to

that for a Gaussian-Gaussian distribution given in Ref. 7:

= 2 V [<x2 ><2O2> - (7)/2 ,

and similarly for cy. Here <...> indicates an average over the entire

beam. For a monoenergetic electron beam with an initial parabolic radial

density distribution

nb(r) = no (1 - r2/rbo 2), (Ba)

and Gaussian velocity distribution

f( -'2O& ) = 2na1 -P(x1 2a 2 ) e p Y2 )' (8b)
y xy 2a 2cx y

the normalized edge emittance is given by

Cx,y = 2yrboax,y ,  (9)

where rbo is the initial electron beam radius, ox and ay are the initial

velocity space widths, and = (Vx/C,Vy/C,Vz /C).

From Eq. (6b) the relativistic factor for a synchronous (i.e.,

resonant) electron with no betatron motion is given by dwr/dt = 0:

6



2 1 1 2

Yr = T (w/ck w) (1 + waw ). (10)

Tne form of tapering employed in the computations is obtained simply by

prescribing a constant rate of decrease of energy dy r/dz < 0 for a

synchronous electron. With dYr/dZ equal to a given constant, one obtains

aw(z) from Eq. (10).

The parameters for the computations presented herein are listed in

Tables I and II. The high-current, high-energy electron beam would

correspond to an rf linear accelerator similar to that at the Boeing
8

Aerospace Company (BAC). It must be pointed out that, to reduce run-time

on the computer, the electron pulse length used here is shorter than that

at BAC.

The initial intrinsic energy spread is taken to be zero. The last two

terms in Eq. (6b), which are due to wiggler gradients, vary with the

initial conditions for each eleztron, but are approximately constant along

any individual orbit. This is, of course, the principal virtue of canted

magnetic pole faces.5 Hence, there is no constraint on the bucket height

from wiggler gradients as such. However, there is an effective energy

spread due to emittance which must, for a tapered wiggler, be less than the

bucket height. From Eq. (6b) it is simple to show t'.at the shift Syr in

the synchronous energy yr, defined by Eq. (10), due to the initial spread

in transveise coordinates and velocities is given by

6- = 2 +C 2 ) (11)

r emit (2rb (1 + a 2 /2)
where x' ,y and rbo are defined by Eqs. (7) and (8a). To derive Eq. (11)

use has been made of the fact that, for a matched electron beam, the

electron beam envelope equation implies9
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k <X2> x (12)

r

and that, from (8a), <2> = r bo/6. Here, <x2> indicates the average of x

taken with respect to the weight function given by the density nb(r), Eq.

(8a). In Eq. (12) k., the betatron wave number, is related to the betatron

frequency in Eq. (5c) via

W0 1 zck 0. (13)

There is, of course, a condition identical to Eq. (12) relating <y 2> to E .

Retaining the lowest order optical mode a in Eq. (6a) and dropping

the betatron terms in Eq. (6b), the full ponderonotive bucket height for

electrons on axis is given by
10

[S] { 2a wai'fB [cos Q-(n sgn r 2 (14)

[r]bucket +( w /2Jc r- 2 g r sir]} (4

where

a °  la0 1 exp (i*), (15)

&r= wr + +'  (16)

Yr is defined by Eq. (10), and the phase r is related to the rate of

change of yr in the tapered FEL by

dyr awlaol fB
sin ( +r *) "  (17)

Table II lists the full bucket height for the various tapering rates

dyrldz = c-] dyr/dt employed in the computations. Comparing the set of

bucket heights with the effective energy spread due to emittance,



[Syr /Yriewit, one observes that tor the input power of 450 MW essentially

all the electrons are i iitially trapped. Also listed in Table II are the

initial resonance phases &r' Eq. (16), for the various tapering rates.

Note that since in the computations dyr /dz is prescribed to have a fixed

value throughout a run, in general &r is a variable through the wiggler.
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IV. Results and Discussion

In this section numerical results from the solution of Eqs. (2), (5)

and (6) are presented. As mentioned in the Introduction, the results will

be used to illustrate some of the key physical phenomena of the FEL

mechanism. 2 These include sideband growth,10-18 optical guiding,
3 ,10,19-28

efficiency enhancement, I0 ,19 ,2 0 and pulse slippage.

As indicated in Table II the conclusions presented in this paper are

based on numerical results that cover a wide range of tapering rates. For

brevity, the results for only two tapering rates will be discussed. Case

(a), -dyr/dz = 0.1 m
- 1 has a slow taper, and Case (b), -dyr/dz = 1.3 M-1

has a fast taper. The two cases discussed in detail suffice since there is

a gradual change in the physical characteristics in going from one tapering

rate to the next. The corresponding tapering of the wiggler amplitude, aw,

is shown in Figs. 1 (a) and (b), where a barely changes for Case (a). Asw

shown in Figs. 2 (a) and (b), the resonant angle for Case (a) starts out to

be &r = 2.60 and soon settles down to approximately t r - 1.50, while for

Case (b) the resonant angle changes from an initial value of 36.50 to a

final value of - 230. In general, the resonance phase, Er E * r + +, Eq.

(16), varies along the wiggler. For all the tapering rates indicated in

Table II, it is found that after an initial transient, &r settles down to a

fairly constant value through the rest of the run. The gain in radiation

power along the wiggler is shown in Figs. 3 (a) and (b). The tapering rate

in Case (b) is close to the optimal value and Fig. 3 (b) shows substantial

increase in the output radiation power.

(a) Sideband Instability and Pulse Modulation

Ordinarily, tapering of the wiggler field is a means of enhancing the

extraction efficiency of a FEL. In previous work it has beern shown that

tapering has the additional benefit of reducing sideband

I0



modulation. 2 '' 1 2'1 5 In particular, it is shown in Ref. 4 that as the

tapering rate is increased, the mr dulation of the output signal due to

sideband frequencies is reduced. Of course, there is an optimal rate of

taper, beyond which excessive electron detrapping from the ponderomotive

buckets leads to a reduction in the extraction efficiency.

For the finite pulse simulations, it also turns out that the tapering

rate has a dramatic effect on the profile of the output optical pulse.

This is illustrated rather well in Figs. 4 (a) and (b) which display the

normalized radiation field amplitude a (z) at the wiggler exiL, and Figs. 5

(a) and (b) which show the longitudinal profiles of the power in the

radiation pulses for Cases (a) and (b). Figures 6 (a) and (b) show the

transverse profiles of the radiation pulsc for Cases (a) and (b). Note

that in all the profiles for Case (a), there is significant amount of

modulation. The respective spatial Fourier spectra Ia(X)l as a function of

wavelength X are shown in Figs. 7 (a) and (b). The Fourier spectrum for

the-slow taper, Fig. 7(a), indicates two prominent sidebands on either side

of the main component, the anti-Stokes sideband in the vicinity of 0.9775

um and the Stokes sideband in the vicinity of 0.9915 um. The two sidebands

are seen to be of approximately equal amplitude and of equal separation

relative to the carrier. For the fast taper, Fig. 7(b), we notice that the

sidebands are significantly reduced compared to those in Fig. 7(a). It is

interesting to note that the carrier components and the anti-Stokes

components have merged into a broad-band feature in Fig. 7(b).

As is well-known, the wavelengths of the upper and the lower sidebands

are given by 1014

II



X
sb 1 a B 1/2 ' (18)

1 + a /2
w

where X = 2nc/w is the wavelength of the carrier. The expression in (18)
S

is based on the assumption that, in the trapped particle regime, electrons

undergo synchrotron oscillations in the ponderomotive potential wells.

From Fig. 7(a), the wavelength of the sideband radiation is within 1OZ of

th3t given by Eq. (18). Coupling of a parasitic wavelength Xsb to the

carrier at X via the synchrotron oscillations leads to a maximum growth of

the instability when Eq. (18) is satisfied. In the presence of the

sidebands, the optical field will be modulated at a wavelength Xmod given

by

2 1/2

mod = ( laof B J s(19)

Taking 1ao = O.8x10 -4 , the modulation period predicted by (19) has the

approximate value 0.12 mm, which is in close agreement with the period of

the prominent oscillations observed in Figs. 4(a) and 5(a). The close

agreement is, however, fortuitous due to several reasons. For one thing,

Eq. (19) is derived in a one-dimensional calculation for the case where

laol is constant in z, whereas there is significant modulation (- lOOZ) of

the amplitude in Fig. 4(a). Additionally, for the finite pulse case

examined here there is a spread in the wavelength of the main signal and

this leads to the rather complicated spectral distribution observed in Fig.

7(a).

The asymmetric profile of the optical pulse in Figs. 4(b) and 5(b) may

be understood in the following way. At the wiggler entrance, the electron

12



pulse and the optical pulse are symmetric in z and superimposed on top of

each other. Along the wiggler, the electron pulse slips behind relative to

the optical pulse, thus tending to amplify the trailing side of the latter

more than the leading edge. Still farther behind along the trailing side

of the optical pulse, the field amplitude is so small that a substantial

fraction of electrons are not trapped in the ponderomotive bucket. This,

in conjunction with the fact that diffraction further reduces the field

amplitude for 0 < z < 1 mm, accounts for the very small amplitude in this

region.

In Fig. 8 (a) and (b) the extraction efficiency is shown for the two

tapering rates, Cases (a) and (b). As usual, the efficiency, for the

slower tapering rate, is modulated by the synchrotron oscillations of the

electrons. For the more rapid rate of tapering the synchrotron

oscillations are barely noticeable. Note also that there is a ten-fold

improvement in the efficiency compared to the slower tapering rate.

Tapering reduces sideband modulation by decreasing the trapping

fraction and by distorting the synchrotron motion.4'12 The trapping

fraction drops from - 40% in Case (a) to - 35% in Case (b). A measure of

the distortion of electron orbits is given by
4

c(dvr /dz)
o Q (20)

1 9syn(YY r

where

a ao fB1/2

-- ck [2aaIfB] (21)
syn w 1+ a 2/2

V

is the synchrotron frequency. 0 is the ratio of the change in energy

cdyr /dz due to tapering and the change in energy <Q(y - yr)> due to

13



synchrotron motion. For Case (a), 0 = 1%, indicating a slight distortion,

whereas for Case (b), 0 = 25%, indicating significant modification of the

synchrotron motion and thus, reduced sideband modulation as is indeed

observed in Fig. 4(b) and 5(b).

(b) Optical Guiding

Optical guiding in the context of FELs has been the subject of

numerous discussions.1  Briefly, the resonant interaction between the

electrons and the optical field tends to guide the radiation along the

direction of the electron beam.

Tvo causes of guiding,3 '10 '19 - 2 5 gain focusing and refractive guiding,

have been distinguished based on the notion of a complex refractive

index. 2 4 In general these two participate simultaneously and their

combined effect on the spot size can only be ascertained via the envelope

equation for the radiation beam in an FEL.3 Refractive guiding, which is

described by the rccctive (real) part of the refractive index, is due to

the phase shift of light, as implied by the fact that vphase < c.1
0 ,20 ,2 1

A distinguishing characteristic of this type of guiding is that the optical

vavefronts are plane under the conditions of perfect guiding. The other

type of guiding, gain focusing, is described by the resistive (imaginary)

part of the refractive index. In this case, under the conditions of

perfect guiding,the vavefronts are convex, corresponding to the fact that

there is a net power flow, due to diffraction, away from the electron beam.

Figures 9 (a) and (b) show the spot size rs (z) (dashed line), and

wave-front curvature R- (z) (solid line) for Cases (a) and (b). In Fig. 9

(a), which correspond to the slow taper, one discerns the modulations

characteristic of sidebands, as in Figs. 4 (a) and 5 (a). Besides the

modulations, however, Fig. 9 shows a dramatic example of optical guiding.

Referring to Figs. 4 (a) and (b), it is apparent that in the region where

14



the optical field amplitude is significant, the spot size of the radiation

is considerably smaller than in neighboring regions. In fact, in Fig. 9 in

the regions z < 1.0 mm or z > 3.0 mm the spot size rs and curvature 
R-1

take on values corresponding to vacuum diffraction from the initial values

of r5 and R
- 1 at the wiggler entrance. This is obviously as it should be,

since there is hardly any radiation in these two regions (z < 1.0 mm and z

> 3.0 mm) during the simulation.

Another significant feature of Fig. 9 is revealed by noting that the

curvature of the wavefronts R- 1 is less for the less rapidly tapered case.

In particular, in the vicinity of z v 1.2 mm in Fig. 9(a), the curvature is

negative, indicating that the wavefronts in this region are in fact

concave. On the other hand, in the case of rapid tapering, Fig. 9(b), the

wavefronts are convex all through the pulse, indicating a flow of power

away from electron beam throughout the pulse.

To shed more l4,ht on this behavior, it is useful to compare the

refractive index of the FEL for these two cases. Using a refractive index

v (r,z,t) to represent the entire FEL interaction, the vector potential may

be written as
3 ,10 ,2 0 ,

2 1 ,2 7

a(r,z,t) - e i  (22a)

= -2- z t, (22b)c

where

1 (wb/w) 2(aw/21al) <exp(-i&)/y>, (22c)

wb is the electron beam plasma frequency and <'''> denotes an average over

the local particle distribution. In terms of Fn defined by Eq. (2d),

15



1 c -0F (2r 2 /r 2 )
2 (r,z,t) 2 w anL (2r 2 /r 2 )

Figures 10 (a) and (b) sI-w the real part (Real(u) - 1) and Figs. 11 (a)

and (b) show the imagina;y part (Imag.(u)) of the refractive index on axis,

r = 0, at the end of the wiggler for Cases (a) and (b). Comparing Figs. 10

(a) and (b) it is apparent that there is more refractive guiding in the

former case, which is the less rapidly tapered example. This is consistent

with the fact that for slow tapering, &r < < 1,

Rep < 1 Y--- > (23a)

dominates over the gain term

sinImp - , sn > (23b)

Equation (23) is obtained by making use of Eqs. (2d), (15) and (16). On

the other hand, the more rapidly tapered case of Fig. 11 (b) is seen to

have a larger net gain in the region where the optical field is

significant. [Note from Eqs. (22) that Imp < 0 corresponds to gain.) In

the same region, Fig. 11 (a) indicates that the net gain is approximately

zero after averaging over the synchrotron modulations. Again, this feature

of Figs. 11 (a) and (b) is consistent with the fact that in the latter the

tapering rate ic fa~ter and therefore the gain should be larger. Moreover,

it is seen in Figs. 9 (a) and (b) that the larger gain corresponds to a

more convex optical wavefront.

The implication of these results with regard to the spot size may be

ascertained by a consideration of the terms in K2 in the envelope equation
3

16



r'' + K2 (ztr ,a 0 )rs = 0,

K 2 (2c/w) 2 (-1 + 2Ccos& + C2sin 2 & + (w/2c)r 2 'sin )r-4

(1r r s r s

where a0 is the amplitude of the fundamental Gaussian mode,

C=(21b/17yr)Haw/Ia0l, I E a/az - c?/;t, I b is the beam current in kilo-

Amperes, H, which is a form-factor related to the transverse profile of the

electron beam, is roughly a constant and close to unity herein, yr is the

relativistic factor for a resonant electron, and Er is the resonance phase

approximation for <&. The -1 in the expression for K2 is due to vacuum

diffraction, 2Ccos&r contributes to refractive guiding arising from the

real part of v, the third and the fourth terms, due to the imaginary part

of V, contribute to gain focusing. Taking account of the fraction of

trapped electrons, one finds that in going from Case (a) to Case (b) the

gain-focusing teim C 2 sin2r increases from 2.4x10 -3 to 7x1O -2 . The other

term, (w/2c)r2 C'sinr , changes from -4.4x10 -3 to -2.4x10 -2 , the negative
s r

sign indicating a defocusing contribution. On the other hand, the

refractive guiding term 2CcosE r decreases from 3.1 to 1.6. The increase in

the magnitude of the gain focusing terms in going from Case (a) to Case (b)

is principally due to the increase in &r" Concurrently, the 50% reduction

in the refractive guiding term is due to the increase in la0I and the

decrease in a . Since the refractive guiding term is the dominant term,

2
the reduction in its value leads to a decrease in K , and hence to reduced

optical guiding. The net effect is the increase in the spot size and the

curvature observed in Fig. 9(b) as compared to Fig. 9(a). In other words,

the vavefronts become increasingly convex with faster tapering rate.

It should be remarked that since the peak output field amplitudes for

the two different tapering rates are about equal [cf. Figs. 4 (a) and (b)],

17



the increascd peak output power of the more rapidly tapered case is

principally due to the larger spot size. Thus, by increasing the tapering

rate there results a reduction in the refractive guiding; however, the

increased gain then causes the wavefronts to become more convex,

diffracting the optical field into a larger cross-section. As a result the

2output power, which is proportional to (lair S) , increases as shown in Fig.

3(b). Detailed examination of the results for all the tapering rates

indicates that the optical field amplitude is very little affected by

tapering - aside from reducing synchrotron modulations. As a result,

increased output power and extraction efficiency is principally due to the

larger lateral extent of the optical field. This is in sharp contrast to

the situation in one dimension wherein rs is necessarily constant and

increased efficiency can only come about as a result of an increase in the

field amplitude.

Figure 12 suirmwrizes the results for the nine tapering rates -dy r/dz =

0.1f 0.3, ..., 1.7 m 1 , corresponding to final resonant angles &r = 1.80,

3.50, ..., 35* . Beyond -dy r/dz 0.3 m- 1 , the amplitude lal is fairly

constant up to -dyr /dz 1.3 m , after which it decreases. However, there

is a near-monotonic increase in the spot size. Therefore, it is the

increased transverse extent of the optical field -- and not an increase in

intensity -- that is responsible for the enhancement in the power (-

r sa12) observed in Figs. 3 (b) and 5 (b). Based on the desired output

power and the constraint on the maximum spot size one can determine the

optimal tapering from Fig. 12.
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V. Conclusions

This paper presents the results from the simulation of a high-power,

high-current, short wavelength FEL. The simulations include many of the

important aspects of a realistic experiment, including finite-pulse

effects, diffraction and emittance. A wide range of wiggler-field tapering

rates have been examined. Summarizing the results, it is found that in

addition to enhancing the efficiency, tapering improves the quality of the

output by suppressing sideband growth. Further, it is found that as the

tapering rate is increased there is a gradual transition from a refractive-

guiding regime to one where gain focussing dominates, with optical power

diffracting laterally along the convex wavefronts. The increased transverse

extent of the optical field, rather than an increase in the field amplitude

is the major reason for efficiency enhancement as the tapering rate is

increased.
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Table I. Parameters for a high-power, rf-linac FEL

Electron Beam

Energy, ymc 
175 MeV

Current, Ib 
':0 A

Normalized edge emittance, C x = y 153 mm-mrad

Radius, rbo 
1 mm

Betatron period, 2n/k 
11.5 m

Pulse length 
6.7 ps

Wiggler

Induction, B 
6.4 kG

Period, 2n/kw  
4.7 cm

Length 
42 m

Input Radiation

Wavelength, 2nc/ 
1 lim

Spot size, r s(01.25 
mm

-Rayleigh range, ZR 
4 m

Radius of curvature of optical wavefronts, ZR/M
0 ) 10 m

Pulse length (FVHM) 
31.4 ps

Peak input power 
450 MNW
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Table II. Resonance phases and tapering rates (The energy spread due to

emittance is approximately the same for all tapering rates)

dy r/dz Initial Full bucket Energy spread

(M- 1 Resonance Phase height due to

&r (0)'r/yr 1 bucket emittance

-0.1 2.6 0.96

-0.3 7.9 0.89

-0.5 13.2 0.82

-0.7 18.7 0.75

-0.9 24.3 0.68 0.12

-1.1 i) .2 0.6

-1.3 36.5 0.5

-1.5 41.2 0.44

-1.7 48.0 0.35
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