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I PROJECT SUMMARY

The purpose of this work is to demonstrate the value of single crystal fibers of

I TiC and TiB2 as fibers for strengthening elements in matrix composite materials.

Single crystal fibers have the capability for significantly strengthening composite

3 materials for high temperature applications. If fibers of high quality can be

grown of sufficient length, they could have an important impact on the

I development of new high performance jet and rocket engine components as well

as other airframe components that experience high temperature environments.

LaserGenics has used the laser-heated pedestal-growth technique to grow

I short lengths of these materials in fiber form. Both TiC and TiB2 are quite

reactive in air and some care must be exercised to reduce the oxygen content in

the growth atmosphere. We were not able to reduce the oxygen content in the

growth chamber to a low enough of a level that would ensure single crystal

growth. The fibers grown were multicrystaline and, therefore, did not possess

the hoped for strength. By making improvements in the growth chamber so that

the atmosphere could be more precisely controlled, we feel, based on our results,

I that single crystal fibers of these materials could indeed be grown and

incorporated into matrix composite materials.

It is clear from these early growths that single crystal fibers of these materials

can be grown. Growth in a reduced level of oxygen should be done and then

fibers of significant length should be grown. These fibers should be tested in

I matrix composite materials at elevated temperatures to see if they could result in

3 materials that could be used in the critical components of the new generation jet

and rocket engines. If successful, this could result in higher operating

I temperatures for these engines and thereby improved efficiency. This could also

result in increased reliability for these systems.I
I



Section I

INTRODUCTION

* Aerospace propulsion systems have become highly sophisticated and they

require materials that are capable of withstanding extremely demanding

environments. Composite materials utilizing high strength fibers are very

attractive materials for meeting the demands of these extreme environments.

I To date these materials have not met their potential in strength and high

temperature capabilities. Fibers produced by sintering the solid have not

produced the strengths hoped for. The highest strengths observed have been

I with single crystal whiskers. The observed strengths have been near the

theoretical limits, between 3 and 17 % of the elastic modulus. Although

I whiskers have demonstrated high tensile strengths, they have not been

widely used because they are difficult to grow and can not be grown in

sufficient lengths. As ceramic fibers are not able to achieve strengths

I approaching the theoretical limit, it would seem that if single crystal fibers of

adequate length could be grown, these fibers could have wide use in

I specialized composite materials where high tensile strength, high thermal

i conductivity, light weight and high melting points are required. We have

investigated the growth of fibers of TiB 2 and TiC.

I From the observed strength of single crystal fibers, Brenner I has

calculated that at temperatures above 650 "C a composite containing 50% by

I volume of sapphire fibers is potentially much stronger than any of the

I present-day superalloys (see Figure 1). If it is true as is assumed that the

fibers in a composite carry almost all of the applied load, the most important

factor limiting the strength of composites is the strength of the fibers.

Therefore, the selection of the fiber is crucial to determining the strength of

I any composite material

I .I



Some of the factors that effect the strength of single crystal fibers other

I than the crystal composition are the crystal quality (impurities, dislocations,

voids, etc.), surface quality and the fiber diameter. Clearly, the lower the

I density of dislocations, cracks, voids and impurities the stronger the fiber

will be. As the surface of the fiber plays such a large part in determining

the strength of small diameter fibers it is no surprise that the strength of a

single crystal fiber is strongly dependent on the fiber diameter. Therefore to

optimize the strength of a single crystal fiber, we must be able to grow the

I fibers in small diameters with high purity and few defects.

As we mentioned above, the growth of whiskers has been studied for

many years and yet it is still not possible to grow the lengths required and

control the growth as one would like. Therefore, many other techniques

have been studied recently to grow long lengths of single crystal fibers with

I controlled diameters. As early as 1922, Von Gomperz 2 developed a

technique for the continuous growth of metal fiber crystals from their melts.

In 1960, Gaule and Pastore 3 studied the role of surface tension in pulling

single crystals of controlled dimensions and discussed the concept of guided

melts and its application to the growth of Ge single crystal filaments. In

I 1967, LaBelle and Mlavsky 4 reported on the growth of sapphire filaments

using a modified Czochralski puller and rf heating. Fibers with diameters in

the range of 50-500vm were grown at rates of up to 150 mm/min. These

c-axis fibers, which were probably grown dendritically, had an average

tensile strength of 300,000 lb/in2 . Their strength was much higher than

I bulk crystals prepared by the flame fusion technique which had tensile

strengths in the 72,000-102,000 lb/in 2 range.5 Vapor grown sapphire

I whiskers, however, had much higher, nearly theoretical tensile strengths in

the 1-2x 106 lb/in2 range. 6 LaBelle and Mlavsky found that when their

fibers were accurately oriented along the c-axis, the external surfaces were

I smooth, but if the fiber axis departed slightly from this orientation the

* . 2-.



external surface of the fiber reflected this in its morphology. In 1971,

I LaBelle and Mlavsky 7 published on the growth of sapphi,'e fibers by the

now famous die-shaped growth method known as edge-defined film-fed

growth (EFG). These fibers were grown in different orientations with c-axis

fibers grown at rates as high as 200mm/min. The major drawback to this

approach for high temperature materials is that the die material must be

able to withstand the melting point of the source material. Even in the case

of sapphire, the in-diffusion of the molybdenum die material seriously adds

to the impurity level of the grown fiber, thereby adversely affecting the

* strength of the fiber.

In 1972, Haggerty 8 reported on the development of a four beam

laser-heated float-zone system specifically designed for the preparation of

single crystal fibers. He grew fibers of A12 03 , Y20 3 , TiC and TiB2 for

evaluation, principally to study their mechanical properties. The idea of

using laser heating for crystal growth, however, originated with Gasson and

Cockayne 9 who prepared relatively large single crystal boules of high

I melting oxides such as A12 03 , Y20 3 , MgAI 2 04 and Nd20 3 by this method.

Haggerty grew fibers oriented in several directions, explored several growth

atmospheres including air, Ar, C12, H2 and CH3 alone and in various

I combinations, growth direction and rate, beam energy density and angle, and

radiation shielding. These early fiber growth activities 7 ,8 were directed

mainly toward fibers for high-strength lightweight composites. In the

mid- 1970's Burris and Stone 10 , I1 applied a technique similar to Haggerty's

to investigate small diameter fibers for laser applications. Small diameter

U fibers of Nd:YAG and Nd:Y2 03 were grown.

LaserGenics Corporation has recently obtained the exclusive rights to the

three patents held by Stanford University on single crystal fiber growth

I processes using the laser-heated pedestal-growth (LHPG) technique. We are

I 3



developing these processes in order to obtain high quality single crystal

I fibers of several meter lengths. Single crystal fibers of sapphire, YAG, ruby,

LiNbO3 , TiC, TiB2 and a whole host of other materials have already been

successfully grown on a research basis.

An important aspect of this technique is that the purity of the fiber is

completly dictated by the purity of the starting material as nothing but the

controlling atmosphere comes in contact with the molten zone of the source

I rod. The LHPG technique is an excellent method to grow single crystal fibers

with very high melting points. It is likely that for many such high melting

3 point materials no other technique will be able to grow similarly good

quality single crystal fibers.

I The primary objective of our program was to investigate the growth of

I single crystal fibers of TiB2 and TiC for potential use in very high

temperature composite materials for advanced gas trubine engines and

I transatmospheric flight vehicles. We have:

I) grow several different diameters of single crystal fibers of TiB2

and TiC;

1 2) measure the tensile strength of these fibers; and

3) develop a program for optimizing the growth and dimensions of the

I fibers to meet the requirements of composite materials for Air

3 Force applications.

The successful completion of this research would result in single crystal

3 fibers that would have widespread application in composite materials for

high strength and high temperature applications.

I In section 2 we discuss the physics of strong materials. We describe what

are the important parameters which determine the strength of any solid

material In section 3 we discuss the effects of cracks and dislocations on

Sthe strength of strong materials In section 4 we discuss fiber reinforced

1th4



solids and why they result in substantial strengthening of solids. In section
1 5 we discribe the laser-heated pedestal-growth technique and why this

method is unique for the growth of strong single crystal fibers. Finally, in

section 6 we present the results of our experimentation.

I5



I
Section 2

STRONG MATERIALS

The purpose of this section is to determine what makes a strong material.

If we know what it is that makes a strong material, we may be able to develop

I materials that are near their theoretical limit for strength.

One would expect that a perfect crystal would be the strongest solid.

Therefore calculations on these systems are of interest to indicate the limits

1 one might expect for materials, To make such model calculations, it is

necessary to select an interatomic potential that is accurate even when the

crystal is distorted. Polanyi 12 and Orowan 13 developed a simple theory that

gives a reasonable estimate of the tensile stress of a solid. They assume that

the stress in pulling apart any solid varies with displacement as a sine function,

This is given in Equation 2.1 as:

1a - K sin (n/a)(x-a o ) 2.1

The constant K can be found by relating the slope of the stress displacement

curve at equilibrium to Young's modulus. This gives:

I K = (E/ri)(a/a o ) 2.2

I
where a is a measure of how far the interatomic planes must be displaced

3 before fracture occurs.

Polyani 12 and Orowan' 3 relate the integral of the stress from equilibrium to

I fracture to the surface energy, g, of the two surfaces formed Thus-I'



a- ng/K. 2,3I
Therefore, since a is of the same order of magnitude as a., we have that:

I g, Eao/rJ2 z Eao/lO 2.4
I

From 2.1 we can also calculate the maximum theoretical cleavage stress to be:I
Omaxz K = /(Eg/a o ) 2.5

Therefore, strong materials will have large values of the Young's modulus

and the surface energy and small values of the interplanar spacing. Clearly,

I this is an isotropic theory that does not take into account the planar nature of

crystalline solids. However, the theory has been found to give the right order

of magnitude in most cases and generally overestimates the strength by a

factor of two. Table I are the results calculated for the cleavage stress for

several materials using this theory. It is interesting to note from this table that

I sapphire is one of the strongest materials in the table with a high melting

point.

In order to obtain a more exact description of the strength of materials,

we must have a more accurate description of the inter-atomic forces that act in

the material. de Boar 14 was the first to apply the Morse potential, given by

I Equation 2.6, to the strength of materials. If the constants of the potential can

be determined from spectroscopic data, results closer to the measured values

can be achieved.

I
U - Uotexp(-2a~r-ro)) - 2exp(-alr-ro))I 2.6I

I. . -



TABLE II
Material Direction E Surface Energy Smax

(GPa) (mJm - 2 ) (GPa)

I Silver 'I I1 121 1130 24
Silver <100> 44 1130 16
Gold <11I> 110 1350 27
Copper <11I> 192 1650 39
Copper <100> 67 1650 25
Nickel <I00> 138 1730 37
Tungsten <100> 390 3000 61
a-Iron <I I I> 260 2000 46
a-Iron (I00> 132 2000 30
Zinc <000 i > 35 100 3.8
Sodium <100> 1.46 228 0.9
Sodium <I I> 10.5 228 2.5
Graphite <0001> 10 70 1.4
Silicon < 111 > 188 1200 32
Diamond <111> 1210 5400 205
Silica Glass 73 560 16.0
Sodium Chloride <100> 44 250 6.3

I Magnesium Oxide <100> 245 1200 37
Aluminium Oxide <0001> 460 1000 46

I
Potential functions other than the Morse potential have been used to

calculate the strength of solids. Zwicky 15 calculated the strength of alkali

I halides using for the potential energy between a pair of ions the expression.

I = ± e2 /r + A/r9 . 2.7

I The Born-Mayer model, with and without Poisson contraction, has also

I been used for ionic crystals. These calculations have been reviewed by

Macmillan 16 Macmillan and Kelly 17 have investigated the use of the

I Lennard-Jones potential for van der Waals bonding. This potential is given by.

LI 8



I

IOir I 2U[ -(ro/ri 6 +(1/2)(ro/r' 12] 2.8

These more exact methods for calculating the tensile or cleavage stress of

I ionic solids typically yield values that are about half those obtained from

Orowan's estimate. These techniques have also been applied to metals but

because of the much more complex ion-ion interactions in these materials,

I these calculations are more approximate. We will not discuss these calculations

as we are concerned primarily with ionic solids and because the strengths of

I metals, particularly at elevated temperatures, does not approach those of ionic

solids.

In a similar fashion to the way we calculated the tensile stress, we can

calculate the shear stress. Frenkel 1 8 has made such a calculation using very

simple assumptions. If you consider two neighboring planes of ions in a crystal

which are separated by a distance h and have a repeat distance of b in the

direction of the shear, and assume that the planes remain undistorted during

the application of the shear stress T, we can then assume that the shear stress

* has the form:

T - k sin(2'nx/b) 2.9

I For small shear displacements x, we have that h dT/dx is equal to the

shear modulus, G, so that k is equal to Gb/2rrh. Then the maximum value of

the shear stress, Tmax, occurs at x = b/4, and is given by:I
1max Gb/2iih. 2.10

A more complete calculation of the maximum shear stress has been made

I. . 9



by Mackcnzi. 19 The variation of the potcntiul cnergy pcr unit area as a

I function of the displacement, x, is given in the Frenkel theory by:

U(x) = (Gb2/4T 2h)(l - cos(2Tnx/b)) 2.11

This is equivalent to considering only the first term in a Fourier series for

I the potential energy. Mackenzie determined how to take higher order terms

into account. He calculated the coefficients of the higher order terms for

several crystal structures from general arguments. Values of the theoretical

shear strength calculated by Mackenzie's method for several different crystals

is given in Table It.

I In Table II the theoretical shear strength of sapphire is given. The slip

geometry is shown in Figure 2.1. Taking account of the fact that the oxygen

ions are not close-packed, the value of Tmax/G is 0.115. This will only be a

rough estimate of the shear strength.

A number of calculations have also been done using the same techniques

I we have already described to calculate the tensile strength, The Born-Mayer

model was used by Tyson2 0 , Macmillan 21 and Macmillan and Kelly.2 2 ,2 3 to

investigate solid argon and sodium chloride. Tyson also investigated the

application of the Lennard-jones potential to determine the maximum shear

stress. Kobayashi, Maeda and Takeuchi2 4 used a modified Lennard-jones

I potential to study crystalline copper and zirconium. Huang, Milstein and

Baldwin 2 5 and Basinski, et al.2 6 have studied the ideal shear strength of

metals using a generalized Morse potential.

For our application, one of the most important considerations is the

performance of the materials at high temperature. Therefore the temperature

U dependence of the material strength will be important to determine. From

Equation 2 10, we can see that the temperature dependence of the shear stress

S10



I
TABLE II

Material Elastic Constant G Tmax/G' Tmax

(GPa) (GPa)I
Cu (at 100K) 33.2 0.039 1.29

I Cu 30.8 0.039 1.2

Au 19.0 0.039 0.74

Ag 19.7 0.039 0.77

Co 84 0.039 3.49

Al 23 0.039 0.9

I Al 23 0.114 2.62

Ni 62 0.039 2.4

Ni 62 0.114 7.1

Si 57 0.24 13.7

Fe 60 0.11 6.6

I W 150 0.11 16.5

A12 03  147 0.115 16.9

Zn 38 0.034 2.3

I Graphite 2.3 0.05 1 1.5x 10- 2

NaCI 18 0.159 2.9

I
is the same as the temperature dependence of the shear modulus and is

determined by the temperature dependence of the interatomic spacing which

is not strongly temperature dependent. However, the tensile strength is not so

simply related to the temperature because of the uncertainty of how the

I
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I
I Figure 2.1. The slip plane of sapphire (A1203 ) where the distance XY

represents one complete unit of slip
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surface energy is related to the temperature. Nishioka and Lee 27 used the

I Einstein model where each atom is assumed to perform harmonic motion with

a frequency determined from an interatomic potential that was calculated in a

self consistent way. However, the experiments of Milstein 28 and Parinello and

Rahman 2 9 on nickel showed a much stronger dependence on temperature than

that calculated by Nishioka and Lee. Gilyarov 3 0 made similar calculations on a

I simple cubic lattice that showed a more sensitive temperature dependence.

As we will see in the next section, the practical limits on the strength of

solids is determined by defects within or on the surface of the solid. At a finite

temperature, a crystal can fail due to the propagation of a crack or dislocation.

Frank 3 1 and Hirtlh3 2 have shown that if a dislocation of radius R is formed in a

I crystal under a shear stress T, the energy of the crystal is increased by U,

* where U is given by:

U - riR2(g-Tb) + (1/2)Gb 2 Rln(R/ro) 2.12

U Taking the derivative of U with respect to R and setting to 0 we obtain a

value for the critical radius of the dislocation given by:

I Rc(l-g/ b) = (Gb/4iTT)(In(Rc/ro)+l) 2.13

The critical energy is then given by:
I

Uc = Rc(Gb 2 /4)(In(Rc/ro) - 1) 2.14

If the dislocation is formed on the surface of the crystal, the critical

energy is one half of the bulk value as only one surface is involved in the

SI dislocation rather than two. However, the critical radius is tht same in the two
I. .1



i
cases. Therefore, it is easier to thermally reach this critical energy for surface

defects than for bulk defects. A loop of radius smaller than Rc will contract

while a loop of radius larger will grow. Therefore, Uc represents an activation

energy. Then, if g is small compared to Gb, a partial dislocation will be

nucleated and b must be set to the partial reciprocal lattice vector bp, Then

(l-(g/Tb)) z 1. For sapphire Gb/g z 40 so that this is a good approximation. To
estimate the temperature dependence of the ideal shear strength, we suppose
that thermal fluctuations can supply up to 50kT in energy at any temperature.

Knowing ro and b from the crystal structure and the value of G for the

material, we can determine the temperature dependence. For sapphire we
I have that bp = 0.159 nm, ro z 0.204 nm and G = 147 GPa. From this we

calculate a critical radius, Rc, at 300K of 0.75 nm and a G/r of 25.8. At 2000K,

we find that Rc is approximately 1.5 nm and G/ is about 39.6. Therefore the

shear strength is reduced by approximately 35% between 300K and 2000"K.

To determine the tensile strength as a function of the temperature, we
consider the introduction of a penney-shaped crack of radius R into the solid so

I that the crack is oriented perpendicular to the tensile axis. The Young's

modulus will vary with the applied stress as:

2

-E(a) =E( I- 0/a 2.15
max

where E is the conventional Young's modulus. Then the crack will release
I strain energy within a spherical volume about the crack given by:

I3 a?? -1/2 2
U=(41 R 1 3)( a2 /2E)( I- /a ) + ITrR g 2.16

max



Determining the critical radius by setting the derivative of U with respect to R

I equal to zero. we have that:

I 2 I1/2

Re = (4Eg/a 2)( 1 a 2/o ) 2.17

I Substituting this expression into 2.16, we have that:

I2 2
U = (64iE g3/3o;)( 1 - a/a ) 2,18iC max

We again set Uc equal to 50kT in order to determine the temperature

dependence of the tensile strength. For sapphire we set E - 460 GPa,

(Imax = 46 GPa and g - I J/m 2. Then, for T - 300K we find that a - 45 GPa so

that the tensile strength is reduced by approximately 2%. At T - 2000K we

find that a = 40 GPa or that the tensile strength declines by II % from its value

I at 300K. The critical radius increases from its value of 0.19 nm at 300K to

0.57 nm at 2000K.

We can now draw some conclusions from our earlier discussions. Equation

2.5 shows that a large breaking strength requires a large Young's modulus, a

large surface energy and a small interatomic spacing, A strong solid will have

I a large value for both 0 max and imax. This generally occurs in solids with

directional bonds. Such bonds are found in covalently bound materials or in

materials with strongly polarized ionic bonds. Covalent bonds are strongest

I when they are composed of small atoms linked by short bonds resulting in a

large number of bonds per unit volume, The valency of the atoms must be at

least three in order to insure a three dimensional lattice. For an ionic crystal,

the elastic modulus increases directly as the product of the valencies of the



ions and inversely as the fourth power of the interatomic distance.3 3

I Therefore, strong ionic solids contain small ions with high valence. These ions

are highly polarizable so that strong ionic crystals contain strongly polarized

bonds. Thus, we may say that for strong materials we must have a high

density three-dimensional network of strong directional bonds, The elements

that can possess these properties are beryllium, boron, carbon, nitrogen,

I oxygen, aluminum and silicon. The strongest materials always contain one or

p more of these elements,

Some important consequences of this definition of a strong solid must

follow. Small atoms insure the presence of the lighter elements and highly

directional bonds imply non-close-packed crystal structures resulting in low

I densities. A large elastic modulus means a large binding energy which implies

a high melting point and a low coefficient of thermal expansion. Restating, the

strongest materials will have a high elastic modulus, a low density, a high

Smelting point and a low thermal expansion coefficient.

Unfortunately, these large strengths are rarely achieved in practice. Solids

I normally contain many imperfections which cause them to break at stresses

much lower than the ideal strength. The fracture mechanism will be either

through cleavage or dislocation. These mechanisms will generally determine

the strength of a material. In the next section we will discuss these processes

which in a large way determine the strength of solids.I
I
I
I
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Section 3

CRACKS AND DISLOCATIONS

A crack is a flaw at the surface or in the interior of a solid where a high

stress is concentrated. At the tip of the crack the stress may reach levels close

to the tensile limit of the material. Dislocations occur when crystal planes glide

over one another. These can occur at shear stresses much less than the

theoretical limit. This is also referred to as plastic flow. We will first consider

the case of cracks in solids.

The determination of the stresses in a solid with a crack in the interior is a

very difficult problem. We will consider a very simple case which has been

worked out by Inglis 34 and Kolosoff.35 This determination can also be found

in the book by Timoshenko and Goodier. 36 This example gives a clear idea of

the stresses caused by such cracks.

We consider an elliptical hole which passes thruugh an infinite and thin

I plate. The equation of the hole centered at the origin is given by:

x2/a2 , y2/b2 = 1 3.1

The radius of curvature at the end of the major axis is equal to b2/a = B and

I at the minor axis end is a2/b. We also define the parameter e = b/a in terms

of which we can write the radius of curvature B at the end of the major axis as

e2a We can transform the ellipse so that it has unit radius of curvature at the

I end of the major axis and so that the origin is at this point, The equation of the

ellipse then becomes:

I [(x + a/13)/(a/B)]2 + [y'-(a/3)J2 = 1 32

I.17



Using this form we examine the case of a thin sharp crack which

corresponds to B/a - 0. In this limit we obtain for the form of the crack near

the tip:

Y,2 = -2x' 3.3

I If we now apply a uniform tensile stress parallel to the minor axis, the

3 tensile stress in this direction at the tip of the crack is given by:

Gmax -a Il+(2a/b)]- o[I + J(a/fi)J 3.4

U This is the maximum stress present. At the minor axis there is a

compressive stress present of magnitude amin - -0. In the direction along the

major axis, the stress parallel to the applied stress rapidly falls from the value

given by 3.4 to the value a. The stress perpendicular to the applied stress rises

from zero at the crack surface to a maximum value at a distance b2 /a from the

surface and then falls back to zero. Its maximum value is approximately one

fifth of 3.4. Along the minor axis, the tensile stress perpendicular to this axis

changes in a distance of approximately B from -a to a small positive tensile

I stress and then gradually to zero. The tensile stress parallel to the minor axis

is zero at the crack surface and gradually rises to the value a. In Figure 3.1 the

tensile stress parallel and perpendicular to the major axis as a function of the

I distance from the origin is plotted. Schijve 37 has calculated the shear stress in

terms of polar coordinates far many values of a/b around the crack tip. He has

I given many interesting graphs of his results in his paper.

The results just given apply to isotropic materials. Many materials, and in

particular most fibers, are orthotropic; that is materials that possess three

I planes of symmetry that are perpendicular to one another. Bishop 3 8

I 18
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investigated the stress around an elliptical hole oriented perpendicular to the

l fiber axis. He considered a carbon fiber reinforced composite with the stress

l parallel to the fiber axis. Bishop determined that the stresses scale as a4a/f3.

The parallel tensile stress maximum occurs at the end of the major axis and is

i given by:

wymax/a - (11 + lt2)/(l1 2) + c 3.5

I
where: 112 %Ex[ I + (l-I/( 2 F xxEyy))1/ 2 ] 3.6

l 22 = oEx1  I - (Il-l/( 2 ExxEyy)) 1 l 21; 3.7

%- (1/ 2 Gxy) -(Vy/Eyy)- (I/Gy) - (Vxy/Exx); and 3,8

I e= .15/a 3.9

wher-' Eii are the anisotropic Young's modulii, Gii are the anisotropic shear

I modulii and vii are the anisotropic Poisson's ratios.

The perpendicular compressive stress maximum occurs at the end of the

minor axis and is given by:I
i(-Gxmax)/ - 1 12 3.10

From these expressions we can determine the stresses that exist for a crack

by letting e go to zero. For the parallel tensile stress maximum we get that:

II 2



I. Crymax/cr = 1 +JI(a/13)(2(1/(Eyy/E 11 ) -Vy.) + Eyy/Gxy) -(-(/)2f~a

3.11

I We can extend the analysis we have given for the stress caused by a cavity

in a solid to the surface of the solid by considering a notch at the surface. This

has been done by Inglis 3 4 and by Bishop.3 8 Inglis has shown that the stresses

at the end of a cavity or a notch depends almost entirely on the length of the

cavity. It does not make too much difference what the shape of the cavity is,

I only that the tip can be approximated by an ellipse. A notch is formed by

cutting the plate we considered earlier along the minor axis. The stresses in a

plate with this elliptical notch will have the same maximum tensile stress at

I the end of the notch as the cavity, for an isotropic material we found this to be

Gymax = a(1+2J(a/1)).

I Equations 3.10 and 3.11 can be used to calculate the concentrated stress

around the end of a hole or a notch for an isotropic or orthotropic material,

respectively. For example, if the radius of curvature at the end of a crack of

3 length 6 pim or notch of length 3 Pim is 3 nm, the applied stress in an isotropic

material will be magnified by a factor of 64. Clearly, this can lead to the

I attainment of fracture strength at the end of a crack or notch at relativly small

I applied stresses. This can than lead to material failure. Because of this stress

magnification, solids usually fail due to the existence of such defects.

I Griffith has developed an energy balance theory that has accounted in a

large way for the discrepancy between the calculated values of the strength of

I ideal brittle solids and the observed values for real solids. Griffith postulated

i that this discrepancy was due to the existance of cracks and notches and that

rupture occurrs by the spreading of these cracks and notches. Griffith found

I from his analysis that the tensile stress perpendicular to a crack of length c in

an isotropic solid that causes the crack to propagate is:I
I| 21



I
o - ((ZEg/lic) 3.1.Z

in plane stress, and

' - J1(2Eg)/(ir(l-v 2 )c) 3.13

I in plane strain. Griffith also found that the strength was not reduced by a

3 stress parallel to the crack. He also found that for a notch of depth c, Equations

3.12 and 3.13 are valid for the two cases if each is multiplied by a constant

factor 0.89. Therfore, surface defects will be very important in determining

the strength of fibers.

I
I
I
I
I
I
I
I
I
I
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I
* Section 4

FIBER REINFORCED SOLIDS

I In the previous sections we have seen that strong solids are sensitive to

cracks. Clearly, fibers will be more useful than the bulk as an engineering

material as the cracks across a fiber must be short because of the small

diameter of the fiber or they will be along the fiber where they will not effect

the strength of the material. Therefore a very strong solid with a high and

reproducible strength can be formed by having a large number of fibers

parallel to one another and imbedded in another solid. The parallel fibers will

be much less susceptible to cracking than an equivalenL mass of the bulk

I material. However, the fibers will have no strength perpendicular to the fiber

axes.

The solid in which the strong fibers are imbedded is called the matrix. The

matrix has several important functions when used with fibers of strong

I materials. First, it supplies the medium by which the load is transmitted to the

* Ifibers. Secondly, it separates the individual fibers so that a crack in one of the

fibers can not propagate. Finally, it protects the surface of the fibers so that

the fibers do not lose their strength by abrasion with other fibers or with

another material.

I We will now attempt to give some explanation of the strength of a

composite from the properties of the two components which make up the

material From classical elasticity theory it can be shown 3 9 that for a two

component system the volume average of the stress components are functions

of the tractions at the boundary only and the volume average of the strain

I components are functions of the surface displacements. Then, by determining

the stresses and strains in a fiber composite, the elastic moduli can be

determined for a homogeneous system An aligned composite will have five

I..



constants if the system is orthotropic and is isotropic in the plane

perpendicular to the fiber axis. Under these conditions five constants can be

I selected so that only one moduli appears in the strain energy function. These

moduli are:I
Ez = C3 3 - (2C3

2 /(CI + C12 )) 4.1

G = Gxz = Gyz = C4 4  4.2

I Kp = (C I + C1 2 )/2 4.3

Gxy = Ex/2(l + vxy) = (C I - C12)/2 4.4

and C3 3 . The z axis is the fiber axis. Ez is Young's modulus parallel to the fiber

axis and E, perpendicular to the fiber axis. G is the shear modulus for shear

I parallel to the fiber axis and Kp is the strain bulk modulus for strain applied in

the x-y plane with no contraction along z. Hashin 40 obtained bounds for Kp,

Gxy, and G. Hill4 1 had obtained bounds for Ez, Kp and v, the Poisson's ratio

relating transverse contraction to strain parallel to the fibers. These bounds are

represented by the following equations:

E = El VI + E2 V2 + 4V1V2 (v2 - vl )2/I(V2 /Kpl) + (VI/Kp 2 ) +G2
"  4.5

I
v=vV 1~ + vaV2 + VIV 2(v I -va)(Kp 2

- I -KpI1 1)k V2 /Kpl)+(VI/KpE) +G2 -1 ]- I

4.6

Kxy-I (VI/Kpl)p(V 2/Kp 2 ) - VIV 2 (Kp lI -Kp 2 ) 2 / I(V2 /Kp1)4(VI/Kp 2 )+

G2-11- 4.7I



G-1 = VI/GI + V2 /G2 - VIV 2(GI - G2 )2/1GIG2 (GI(1 + VI) + G2 V2)I 4.8

I
Gxy-1 = V/GI+V 2 /G2 - V1 V2 (GI - G2 )2/[G1

2G
2 2(V 2 /G + l / G2 +

I

I In these expressions VI and V2 are the volume fractions of the two

I components. If G2 >GI and Kp2>Kpl, these expressions give the upper bounds

on the five moduli. The lower bounds ae obtained by interchanging the

I suffixes I and 2. If GI>G2 and KpI>Kp2, the expressions give the lower bound.

The uppeL' bounds are obtained for this case by interchanging the suffixes I

and 2 as before. For G1 =G2 the expressions are exact. For most practical cases

I G I>G2 as the fiber is more rigid than the matrix.

The expressions for the upper and lower bounds of the axial Young's

modulus and the Poisson's ratio are close together in value so that they can be

I used for a good approximation to the true values. Hashin 4 2 has reviewed the

attempts that have been made to obtain good values for these moduli.

From equations 4.7 and 4.8 we see that the strain bulk modulus in the plane

and the shear modulus of the composite are in large part determined by the

properties of the matrix as I/Kp2.>I/Kpl and I/G 2>>I/G I . The transverse

I shear modulus is also dominated by the shear modulus of the matrix when this

is much less than that of the fibers. For a transversely isotropic composite, the

transverse Young's modulus is given by:

I



We now define the strength of the composite, ac , as the maximum load

I divided by the initial cross sectional area. We use subscripts c, f, and m to

refer to the composite, fibers, and matrix, respectively. The ultimate tensile

strength of the composite may be written:I
i Iuc =aufVff + %umVmMAm 4.11

)f and A.m are complicated expressions containing the constants used to

describe the stress-strain curves of the components. If the ultimate tensile

strains of both components are the same, Af and Xm both equal unity and we

I have that:

Cauc = 6ufVf + aumVm 4.12
I

This expression gives an upper limit to the tensile strength of the composite.

If the ultimate tensile strain of the fibers is much less than that of the matrix

and aufVf)>umVm then 4.12 becomes:

I 41
auc = CufVf + 'm( I - Vf) 4.13

I
where a'm is the stress on the matrix at the ultimate tensile strain of the fibers.

The envelope of possible strengths for the composite is shown in Figure 4.1

The strength must lie within the triangle AOB. From these expressions we see

that as the volume fraction of the fibers increases, the strength of the

I composite will approach that of the fiber.

For a brittie matrix we have that cymcum. If we also have that Cuf Cum,
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I.
the matrix will fail first. In this case there will be a critical value of the

3 volume fraction. The transition point between the matrix or the fiber failing

first will occur at a volume fraction of:

Vf = 6um/{ %m + ( auf - ( f)} 4.14

I where a'f is the stress on the fibers at the point of failure strain of the matrix.

For volume fractions smaller than that given by 4.14 the matrix will fail first.

For larger volume fractions, the composite will crack into a series of thin discs

I with a thickness between x' and 2x'. We can determine a value for x' by

calculating the stress transfered to the matrix by the fibers because of the

shear force at the interface sufficient to break the matrix. If d is the stress

transferred to the matrix in the distance dx, then:

U VmdO - (2Vf/r)tdx 4.15I
since 2Vf/r is the area of interface per unit length of the composite so that the

shear force is given by (2Vf/r)Odx. Therefore, in order to transfer a stress

I equal to the maximum, aum, we have that:

I
x' - (Vm/Vf)(2umr/ 2 ) 4.16I
After cracking is complete, the slope of the stress-strain curve will equal

EfVf until failure at a stress of aufVf. The predicted composite strength as a

I function of fiber fraction is shown in Figure 4.2. It should be noted that the

work done in the cracking process depends only on the elastic modulus of the

* .28
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composite and the cracking strain of the matrix. The area of cracked surface

I produced in a unit volume is proportional to Vm/x' and therefore to 2Vf/r. If

we assume that the production of a unit area of crack surface requires an

energy of gm then the work necessary to produce the cracks is proportional to

I gmVf/r and therefore can be made to increase without limit by decreasing the

3 fiber radius. This will require infinite energy as the fiber diameter goes to zero

and so the matrix can be made to resist cracking, resulting in extremely large

failure strains. This is of particular interest to us in this project as this concept

can be used to significantly increase the strength of high temperature ceramics

I using aligned fibers.

For metallic matrices, stress is transferred to the fibers by plastic flow.

Metals have some advantages over ceramics in that they can decrease the

notch-sensitivity of ;i.e composite, they have high thermal conductivities, low

thermal expansion coefficients, and are stable over long times and over wide

I temperature variations. One of the problems of incorporating fibers of oxides

such as sapphire in a metal matrix is that these oxides possess lower surface

energies than most metals. Because of this the equilibrium contact angle

f between the molten metal and the solid oxide is steep. Therefore, fibers of

these oxides are not easily incorporated into the molten metal. This problem

*i can be overcome by coating the fibers with a high melting point metal by

vacuum deposition or sputtering. Also, infiltration of the fibers can be aided

by controlling the atmosphere during incorporation and by using additives. 4 3

3 However, it should be pointed out that carbides and borides have lower contact

angles than the oxides so that they should be more easily incorporated into

I metals. Of course, the metals are of considerable interest because of the wide

variety of ways that the material can be fabricated into a composite structure

as well as by casting the molten metal around the fibers. Powder metallurgical

3 methods can be used, where the fibers and a metal powder are pressed and
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i.
sintered in the same way as with ceramic composites. A metal composite can

I also be produced by electrodeposition, by electroless deposition, and by

spraying. These methods have been reviewed by Chou, Kelly, and Okura.44

i

I

I
I
i

I
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I
Section 5I

LASER HEATED PEDESTAL GROWTH TECHNIQUE

*It is clear from the discussion given earlier that the growth of crystal fibers

of high melting point materials must overcome several difficult challenges in

order to be useful for the many applications listed. A number of techniques

have been used to produce single crystal fibers and these are schematically

I illustrated in Figure 5.1.

In the hot rolling process, shown in Figure 1 (a), a rod is extruded through

a series of progressively smaller wire dies to produce a fiber of reduced

diameter. 4 5 The method is primarily applicable to relatively soft materials

with low melting points, e.g. alkali halides.

IIn the capillary-Bridgeman approach, Figure 1(b), a glass capillary tube is

Eimmersed in a melt of the crystal to be grown. The apparatus is slowly

lowered through a temperature gradient to produce a crystalline core inside

the glass tube.4 6 Capillary-Bridgeman growth has primarily been applied to

low-melting point organic crystals, as thermal expansion matching and

I chemical compatibility are critical requirements in this technique.

A number of techniques, for example the edge-defined film-fed growth and

Irelated processes, involve feeding the melt through a capillary to a die, which

serves to shape the resulting fiber 47 , Figure l(c). These methods are reviewed

in reference 48 Single crystal fibers of silver and thallium halides have been

produced by such techniques 5 , as have lower

quality fibers of high melting point oxides such as sapphire, lithium niobate

and spinel 47 Particularly for high melting point materials, the choice of

appropriate die material is crucial to minimize contamination of the melt and

provide proper wetting conditions for stable growth. For sapphire

Igrowth with such a high melting point, this technique leads to in-diffusion of
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the die metal such as molybdenum.

I Laser-heated pedestal growth (LHPG), illustrated n Figure I (d), uses a

focussed laser beam to melt the tip of a solid rod of the material to be grown.

I A seed crystal is dipped into the melt, then withdrawn at a faster rate than

the source rod is fed in, resulting in the growth of a fiber of reduced diameter.

This approach has the advantages of eliminating any possibility of crucible

contamination and of achieving melt temperatures limited only by the

available laser power. Moreover, difficulties in the stabilization of the fiber

I diameter have in large part been solved. LHPG has been applied primarily to

refractory oxide materials 8, 10 ,5 1, though halides, borides, and elemental

K semiconductors have also been grown.5 2

I No one of these approaches is best suited to the production of high quality

fibers in all materials. We have focused on the refractory oxide materials, for

I which LHPG offers great flexibility and has the potential to produce the purest

fibers.

As mentioned earlier, the LHPG technique involves melting the tip of a

I source rod with a focussed laser beam, dipping in an oriented seed crystal,

then pulling a fiber while feeding in the source rod. This process, quite simple

in principle, has several attractive features from a materials processing

standpoint.

I (I) Very high temperatures can be achieved, limited in principle only by

the radiation temperature of the laser, and in practice by the available laser

power. Only a few watts of absorbed laser power are necessary to raise the

temperature of 500 pim diameter rods of typical oxide materials to their

melting point.

I (2) The temperature gradients at the freezing interface are on the order of

thousands of degrees per cm. These large temperature gradients, in turn,

allow stable growth at rates orders of magnitude larger than in bulk crystals,

typically 0 1-20mm/min As thermal stresses in a surface cooled cylinder
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scale with the radius, these large gradients do not lead to a cracking problem

in small diameter fibers.

(3) The process is entirely crucibleless, minimizing the incorporation of

11 undesired dopants, and facilitating the growth of a variety of materials in the

same apparatus with a high degree of purity equal to the purity of tie starting

~material.

SI (4) It is theoretically predicted that in the absence of phase separation or

volatilization, the composition of the source rod and the fiber should be

I identical, so that the effective distribution coefficient approaches unity5 2 -5 4 ,

which is particularly important in the growth of compositionally uniform

solid-solution crystals. The prediction that convection in the molten zone is

not oscillatory further reduces the probability of compositionrs -,triations.

In order to take advantage of these features of the LHPG process to

I produce fibers of high melting point materials, stable growth conditions must

be realized, which in turn requires thermal and mechanical stability of the

I |growth zone, nd symmetric heat input from the laser. The heat should be

delivered to a spot whose size is comparable to the source rod diameter, to

produce the short molten zones necessary for stable growth. The apparatus

I designed to meet these requirements is now described.

A block diagram of our fiber growth apparatus is shown in Figure 2. A

I focused 0O2 laser melts a surface tension supported liquid zone which bridges

the source and seed rods. Growth proceeds by simultaneous upward

translation of the seed and source rods with the molten zone positioned

I ~ between them. The laser focal spot, and consequently the molten zone, remain

fixed during fiber growth. The source rod to fiber diameter ratio is set by mass

conservation to be the square root of the fiber to source rod translation rate.

I In order to achieve a constant fiber diameter, stable fiber growth conditions

must be realized. This in turn dictates a rigid mechanical apparatus, smooth

I source feed and fiber pull rates, stable laser power, and symmetric heat input
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into the molten zone. The LHPG apparatus utilizes novel optical and mechanical

systems to achieve stable growth conditions and a uniform diameter fiber.

Descriptions of the fiber growth apparatus sub-systems are given below.

I A polarized C02 laser serves as the heat source for crystal growth. The

water cooled laser cavity is temperature stabilized and produces a polarized

HEI I output mode with power fluctuations of less than 0.75%. A polarization

I power control system is used to adjust the laser power incident on the molten

I zone. After passing through a ZnSe beam expanding telescope and

some beam steering optics the C02 beam enters the controlled atmosphere

I growth chamber.

Within the growth chamber a novel optical system focuses the laser beam

onto the fiber with a 360 degree axially symmetric distribution as shown in

I Figure 3. The symmetric irradiance prevents cold spots in the growth zone and

represents a significant improvement over the previously used two beam,5 5

I rotating periscope, 5 6 or ellipsoidal5 7 focusing systems.

A novel optical element incorporated into the design is a reflexicon 5 8 which

I consists of an inner cone surrounded by a larger coaxial cone. In order to

I achieve good optical performance It is critical that the reflexicon's two cones be

accurately aligned. A mated surface design using diamond turned copper

optical components, assures centering of the cone's axes. A gold coating on the

copper optical surfaces enhances reflectivity and protects the copper substrate.

The reflexicon and parabolic mirror provide near diffraction limited f/2

I focusing, yielding a minimum spot size of 30 microns. This tight focus is

important for the stable growth of small diameter fibers. The focal spot size

can be controlled by modifying the input beam divergence with the focusing

telescope X-Y stages on the fiber and source rod translation devices permit

I adjustment of the fiber position with respect to the fixed laser focal spot.
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Fiber translation speed is controlled by a phase-locked control circuit which

enables d.c. motor operation over a 250,000:1 speed range with acquisition

times of I ms. A useful control option allows the pull-to-feed translation ratio

to be fixed while adjusting the growth speed. Since starting transients exist

during initiation of fiber growth, a slow growth rate allows time for

adjustments. As the equilibrium growth conditions are reached, the growth

speed can be increased without affecting the fiber diameter.

The first step in the growth of a fiber is the preparation of the source

material. The requirements on the source rod are: (1) it should have the

composition of the desired end product (assuming that no volatilization takes

place during growth); (2) it should have constant density, and have as close to

theoretical density as possible; (3) the cross-section should be constant, as

small as possible, and preferably circular. We have had good success using a

center!ess grinder to fabricate starting rods with diameters as small as 300 gtm

and tapers as small as I jim/cm. The rod material itself can be a single crystal

obtained elsewhere, a polycrystalline source material from solidified melts, a

cold-pressed and sintered powder, or a hot-pressed powder. All of these have

been used successfully. 11,59,60

The next step In the growth Is to melt the tip of the source rod with the CO2

laser beam, and to dip in a seed crystal. The seed can be an oriented

centerless-ground rod, a previously grown fiber or, in the case of a first

growth, a platinum wire or a fiber of a higher melting point material. Because

of the symmetrical heat input of the reflexicon focussing system, the azimuthal

orientation of the seed has no direct effect on the growth.

After the seed is oriented, the laser power is adjusted to produce the

desired length of molten zone. The molten zone must also be adjusted to

produce the proper contact angle between the melt and the seed.

Growth is initiated at this point by simply simultaneously switching on the

pull and feed motors, which have previously been set to run at the appropriate
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speeds. Lengths over 100 cm have been grown to date. In principle, lengths of

fiber are limited only by the available feed material. This latter limitation is

not serious in practice, in that each centimeter length of 1.25 mm diameter

feed material could produce 5 meters of 50 4m diameter fiber if processed

three times.

Only a modest amount of power is necessary to produce an appropriate

molten zone. For example, 2 watts incident power is adequate for the growth

of a 170jim diameter sapphire fiber from a 500gm diameter source rod.

Typical growth rates are 0.1-20 mm/min, several orders of magnitude faster

than is typical of bulk crystal growth. The mechanism that limits the

maximum possible growth rate appears to vary for different materials. In

Reference 603, Nightingale shows that for sapphire grown at rates faster than 8

mm/min, constitutional supercooling with respect to an unknown species,

possibly Al or 02 leads to the formation of microvolds along the axis of the

fiber that cause severe optical scattering problems. Growth in a He atmosphere

to increase the thermal gradients at the interface may lead to higher useful

growth rates.

We have generally found it possible to grow fibers approximately a factor

of three smaller in diameter than the source rod for growth in air. As the

diameter reduction is increased, the damping c.fficient for diameter variation

decreases, eventually becoming negative at a critical diameter reduction Rc.

Growth at diameter reductions larger than Rc is thus unstable. For A12 03 this

instability occurs at a reduction between 3 and 4 when grown in air. It is

possible that diameter reductions between 4 and 5 could be achieved when

grown in a helium atmosphere.

LaserGenics W, oration has recently obtained the exclusive rights to the

three patents held by Stanford University on this single crystal fiber growth

process using the LHPG technique. We are developing this process in order to
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obtain high quality single crystal fibers of several meter lengths. The LHPG

I technique is an excellent method to grow single crystal fibers. It is likely that

for many high melting point materials no other technique will be able to grow

I similarly good quality single crystal fibers.

With this process, the atmosphere can be accurately controlled during

growth as well as the crystal growth temperature. Because of the steep

thermal gradients in the growth zone with this technique, the crystal structure

that is "frozen in" can to some degree be controlled. We feel that this is an

I ideal technique to investigate the growth of high melting point materials. This

technique is closely related to the float-zone method which is the best known

technique to grow incongruently melting compositions.

I
I
I
I
'I
I

I
I
I
I
I
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I Section 6I
RESULTS AND CONCLUSIONSI

Single crystals of TiC and TiB2 are not commercially available so that we

were unable to obtain these as source material for our program. We purchased

four inch wafers two millimeters thick of both TiC and TiB2 . The wafers were

formed by hot pressing fine powders of the pure materials. These were

subsequently cut into .mmx2mm square bars. The bars were ground or, a

centerless grinder to 8004tm in diameter. These served as the source material.

Initially a platinum wire served as the nucleation point for the fiber growth.

I After preliminary fibers were grown, these served as seed fibers for later

growth runs. Both the TiC and TiB2 were difficult to melt with source rods of

this diameter. The TiB2 seemed to have a tendency to sublime in an air

IJ atmosphere. We were only able to grow relatively short lengths of this

material in air. Growth in an inert atmosphere (Argon) proved superior to an

oxidizing atmosphere. The growth temperature had to be controlled quite

aocurately as stable growth could not be achieved with a relatively small

variation in the melt temperature. It was also necessary to grow these two

I materials at a slow rate. The growth rate for stable growth was at or less than

I I mm/minute. It is possible that the rate can be increased with a different

atmosphere or with a purer atmosphere than we were able to achieve.

3 With the source material that we had available, we grew fibers that had a

diameter of around 250gim. Smaller diameters could be grown by using the

I iinitial fibers as source material but we did not have sufficient time to make

many attempts at fiber diameter reduction.

Fibers of several centimeters were grown. Microscopic investigation of

I these fibers indicated that the fibers were polycrystaline. This is probably due
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I
to the fact that the CO2 laser was not adequately stabilized. For high melting

point materials, it is necessary to reduce the temperature fluctuations as much

as possible. We had recently installed a new laser that was specified to have a

stability of better than 0.75%. This is the most stable commercial laser on the

I market at this time. It was discovered later, however, that problems in the

pumping system resulted in amplitude variations that were outside the

specifications of the laser. We feel that this fact explains the polycrystaline

I nature of the fibers grown and of the limited lengths achieved.

A tensile tester was used to determine the strength of these fibers even

I though we did not expect strengths near what we had anticipated because of

the polycrystal nature of the fibers. The tensile tester is shown in Figure 6.1

The fibers were mounted in epoxy and then tested by pulling in the tester until

the elastic limit was exceeded. These tests resulted in a maximum tensile

strength of approximately 1.7 GPa. Earlier tests of sapphire yielded strengths

appreciably greater than this. Clearly, in order to improve on these results we

must improve the crystal quality.

In order to increase the fiber lengths, we must utilize the process

demonstrated on a program with the National Science Foundation. With this

process the length of the fiber is limited only by the amount of source material

I available.

I
I
I
I
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Figure 6.1 Tensile tester
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