X5

\\\\\\\\\\\\\\\\\\\\\\\\\\ L \\\\\\\

4

411 ENTATION PAGE

Form Approved
OPM No. 0704-0188

wverage 1 hour per responee, including the time for reviewing inetructions, searching existing dala souwrces gathering and maintaining the data
;a'dm"-sbmdanwmaxoounyarmmdlmmbctmdﬂormaon including suggestions for reducing this burden, to Washingion
5 Jefforson Davis Highway, Sute 1204, Arlington, VA 22202-4302, and 1o the Office of Information and Regulatory Affairs, Office of

1. AaENCY USE ONLY (Leave Biank)

2. REPORT DATE

3. RCPORT TYPE AND DATES COVERED
Final: 15 Aug 1990 to 01 Mar 1993

3. TITLE AND SUBTITLE

901118N1.11064

Alsys Limited, Alsycomp_017, Version 5.2, Micro VAX Il under MICRO VMS V5.3
(Host) to INMOS T425 transputer implemented on a B403 TRAM (Target),

5. FUNDING NUMBERS

6. AUTHOR(S)

Oxford Road
Manchester Ml 7ED
UNITED KINGDOM

7. PERFORMING ORGANIZATION NAME(S) AND A AD_D-RESS(ES)
National Computing Centre Limited

National Computing Centre Limited
Manchester, UNITED KINGDOM

8. PERFORMING ORGANIZATION
REPORT NUMBER

AVF_VSR_90502/74-910402

Ada Joint Program Office

Washington, D.C. 20301-3081

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

United States Department of Defense

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

[12a. DISTRIBUTION/AVAILAB,LiTY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

173 ABSTRACT (Maximum 200 words)

Alsys Limited, Alsycomp_017, Version 5.2, Manchester England, MICRO VAX 1l under MICRO VMS V5.3 (Host) to INMOS
T425 transputer implemented on a B403 TRAM using the host running INMOS iserver V1.3 for fil-server support via a
CAPLIN QTO0 board link (bare machine), ACVC 1.11.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

UNCLASSIFED

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Vali.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

18. SECURITY CLASSIFICATION

19. SECURITY CLASSIFICATION

15. NUMBER OF PAGES

renm—
16. PRICE CODE

20. LIMITATION OF ABSTRACT

OF ABSTRACT
UNCLASSIFIED

NCMN Tuayp 01 200 TR0

Stand~- Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

CHAPTER 1
INTRODUCTION

N\
“;%his Validation Summary Repcrt’ (VSRY describes the extent to vhich a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results %2,_;gs£3ng this compiler wusing the Ada Compiler
Validation Capability #€ACVC): An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard:>

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardvare, or implementation strategies. All
the dependencies observed during the process of testing this compiler are

Cguen._iuhis‘&oit_._)

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. “The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These\tests are designed to perform checks at compile
time, at 1link time, and durikg execution.

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 901118.

Compiler Name and Version: Alsycomp_017 Version 5.2
Host Computer System: MICRO VAX H under MICRO VMS V53
Target Computer System: INMOS T425 transputer implemented on a B403 TRAM

using the host running INMOS Iserver V1.3 for
file-server support via a CAPLIN QTO board link (bare
machine)

A more detailed description of this Ada implementation is found in section 3.1 of this report.

As a result of this validation effort, Validation Certificate #901118N1.11064 is awarded to Alsys
Limited. This certificate expires on 01 JUNE 1992.

This report has been reviewed and is approved.

Qe 7 Pne

Jane Pink Organization
Testing Services Manager ;m Director, Computer & Software
The National Computing Centre Limited Engineering Division
Oxford Road Institute for Defense Analyses
Manchester Alexandria
M1 7ED VA 22311
England

Ada Joint Program Office

Dr. John Solomond

Director

Department of Defense

Washington

DC 20301
Validation Summary Rannr i AVF_VSR_90502/74 '
Alsys Limited Page ii of iii Alsycomp_017 Version 52

]

AVF Control Number: AVF_VSR_90502/74-910402

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificatc Number: #901118N1.11064

Alsys Limited
Alsycomp_017 Version 52

MICRO VAX II under MICRO VMS V53

INMOS T425 transputer implemented on a B403 TRAM
using the host running INMOS Iserver V1.3 for
file-server support via a CAPLIN QTO board link (bare machine)

Prepared by
Tesling Services
The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
England

VSR Version 90-08-15 “ “?ﬁ“‘z
T |\\\ HR LR
91 5 24 $03 .\\..\.\\.u.ﬂ\..n Wi

Validation Summary Report AVF_VSR_90502/74

Alsys Limited Page i of iii Alsycomp 017 Version 52

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.
DECLARATION OF CONFORMANCE
Customer: Alsys Limited
Ada Validation Facility: The National Computing Centre Limited
Oxford Road
Manchester

M1 7ED
United Kingdom

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name: Alsycomp_017
Version: Version 52
Host Computer System: MICRO VAX I under MICRO VMS V53

Target Computer System: INMOS T42S transputer implemented on a B403 TRAM
using the host running INMOS Iserver V1.3 for
fileserver support via a CAPLIN QTO board link (bare machine)

Customer’s Declaration

I, the undersigned, representing Alsys Limited, declare that Alsys Limited has no knowledge of
deliberate deviations from the Ada Language Standard ANSIMIL-STD-1815A in the
implementation(s) listed in this declaration.

—S
SV Vb - V- 98

Signature Date
Validation Summary Report AVF_VSR-90502/74
Alsys Limited Page iii of iii Alsycomp_017 Version 5.2

TABLE OF CONTENTS

TABLE OF CONTENTS
CHAPTER 1
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1
1.2 REFERENCES ittt ettt 1
13 ACVC TEST CLASSES i e et e e 2
14 DEFINITION OF TERMS it 3
CHAPTER 2
21 WITHDRAWN TESTS i ettt eeann 1
22 INAPPLICABLE TESTS et 1
23 TEST MODIFICATIONS i i iiee i 4
CHAPTER 3
31 TESTING ENVIRONMENT ittt 1
32 SUMMARYOFTESTRESULTS0 0t iiiiinininnnann. 1
33 TEST EXECUTION ittt e e 2
APPENDIX A
APPENDIX B
APPENDIX C
Validation Summary Report AVF_VSR_90502/74

Alsys Limited Table of Contents - Page i of i Alsycomp_017 Version 52

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada Validation Procedures
[Pro90] against the Ada Standard [Ada83] using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to [Pro90]. A
detailed description of the ACVC may be found in the current ACVC User’s Guide [UG89).

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act” (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springhield

VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria

VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987

[Pro90] Ada Compiler Validation Procedures,
Version 2.1, Ada Joint Program Office, August 1990.

Validation Summary Report AVF_VSR_90502/74

Alsys Limited Chapter 1 - Page 1 of 4 Alsycomp 017 Version 52

INTRODUCTION

[UG89] Ada Compiler Validation Capability User’s Guide,
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of
a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class
B and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECK_FILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK_FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECK_FILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is
provided in Appendix A. In addition to these anticipated test modifications, additional changes may
be required to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by the AVF. This customisation
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
(see section 2.1) and, possibly some inapplicable tests (see Section 3.2 and [UG89)).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
according to the Ada Standard.

Validation Summary Report AVF _VSR_90502/74

Alsys Limited Chapter 1 - Page 2 of 4 Alsycomp_017 Version 5.2

INTRODUCTION

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation

Capability (ACVC)
Ada Implementation
Ada Validation Facility
(AVF)

Ada Validation
Organization (AVO)

Compliance of an Ada
Implementation

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer System

The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation of
Ada programs into executable form and execution thereof.

The means for testing compliance of Ada implementations, consisting
of the test suite, the support programs, the ACVC user’s guide and
the template for the validation summary report.

An Ada compiler with its host computer system and its target
computer system

The part of the certification body which carries out the procedures
required to establish the compliance of an Ada implementation.

The part of the certification body that provides technical guidance for
operations of the Ada Certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part of a
program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-designated
programs; performs user-designated data manipulation, including
arithmetic operations and logic operations; and that can execute
programs that modify themselves during execution. A computer
system may be a stand-alone unit or may consist of several inter-
connected units.

Fulfilment by a product, process or service of all requirements
specified.

An individual or corporate entity who enters into an agreement with
an AVF which specifies the terms and conditions for AVF services
(of any kind) to be performed.

A formal statement from a customer assuring that conformity is
realized or attainable on the Ada implementation for which
validation status is realized.

A computer system where Ada source programs are transformed into
executable form.

Validation Summary Report

Alsys Limited

AVF_VSR_90502/74

Chapter 1 - Page 3 of 4 Alsycomp_017 Version 52

INTRODUCTION

Inapplicable test

Operating System

Target Computer
System

Validated Ada Compiler

Validated Ada
Implementation

Validation

Withdrawn test

A test that contains one or more test objectives found to be
irrelevan. for the given Ada implementation.

Software that controls the execution of programs and that provides
services such as resource allocation, scheduling, input/output control,
and data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are
possible.

A computer system where the executable form of Ada programs are
executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully either
by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in conformit ' testing. A
test may be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains erroneous or illegal use of the
Ada programming language.

Validation Summary Report

Alsys Limited

AVF_VSR_90502/74

Chapter 1 - Page 4 of 4 Alsycomp_017 Version 52

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

21 WITHDRAWN TESTS

IMPLEMENTATION DEPENDENCIES

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is

90-10-12.

E28005C B28006C
C45346A CA45612B
C74308A B83022B
B8S001L C83026A
CB7001A CB7001B
BC3009B BD1B02B
CD2A23E CD2A32A
BD3006A BD4008A
Cb4024D CD4031A
CD7005E AD7006A
BD800ZA BD8004C
CE2117A CE2117B
CE3118A CE3411B
CE3812A CE3814A

C34006D B41308E C43004A
C45651A C46022A B49008A
B83022H BR&3025B B83025D
C83041A C97 16A C95003B
CB7004A CC1223A BC1226A
BD1B06A ADI1B0SA BD2A02A
CD2A41A CD2A41E CD2AS87A
CD4022A CD4022D CD4024R
CD4051D CD5111A CD7004C
CD7006E AD7201A AD7201E
CD9%005A CD9005B CDA201E
CE2119B CE2205B CE2405A
CE3412B CE3607B CE3607C
CE3902B

2.2 INAPPLICABLE TESTS

C45114A
AT4006A
B83026B
BA2011A
CC12268
CD2A21E
CD2B1S5C
CD4024C
ED7005D
CD7204B
CE21071
CE3111C
CE3607D

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
impiementation. The inapplicability criteria for some tests are explain~d in documents issued by ISO
and the AJPO knouwn as Ada Issues and commonly referenced in the format Al-dddd. For this
implementation, the following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

The following 201 tests have floating-point type declarations requiring more digit< than
SYSTEM.MAX_DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L..2Z (15 tests)
(C45641L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..Z (15 tests)
CA45321L..Y (14 tests)
C45521L..Z (15 tests)
C45621L..Z (15 tests)
C46012L..Z (15 tests)

Validation Summary Report

Alsys Limited

Chapter 2 - Page 1 of §

AVF_VSR_90502/74

Alsycomp_017 Version 5.2

IMPLEMENTATION DEPENDENCIES

The following 21 tests check for the predefined type LONG_INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C Cd5632C
B52004D C55B0O7A B5SBMOC B8GCOIW C86006C
CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined integer type with a
name other than INTEGEP. LONG_INTEGER, or SHORT_INTEGER.

C35702A, C35713B, C45423B, B86001T. and C86006H check for the predefined type
SHORT_FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a name other than FLOAT,
LONG_FLOAT. or SHORT_FLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point operati s for types that require a
SYSTEM.MAX_MANTISSA of 47 or greatei.

C45535A, C46013B, C46031B, C46033B and C46034B contain 'SMALL representation clauses which
are not powers of two or ten.

C45624A checks that the proper exception is raised if MACHINE_OVERFLOWS is FALSE for
floating point types with digits 5, For this implementation, MACHINE_OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE_OVERFLOWS is FALSE for
floating point types with digits 6. For this implementation, '’MACHINE_OVERFLOWS is TRUE.

C86001F recuinpiles package SYSTEM. making package EXT_IO, and hence package REPORT,
obsolete. For this ‘mplementation, the package TEXT_IO is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION’BASE that are outside the range of DURATION.
There arc no such values for this implcmentation.

CD1009C uses a representation clause specifying a non-default size for a floating-point type.

CD2AS3A checks operatioiis of a fised-point type for which a length clause specifizs a power-of-ten
type’small. (See 2.3).

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use representation clauses specifying
non-default sizes for access types.

BDEOO1A, BD8003A, BD8004A..B (2 tests), and AD8OL1A use machine code insertions.

."alidation Summary Report AVF_VSR_90502/74

Alsys [imited Chapter 2 - Page 2 of § Absycomp_017 Version 5.2

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the given file operations are
supported for the given combination of mode and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN_FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL_IO
CE2102F CREATE INOUT_FILE DIRECT _10
CE2102] CREATE IN_FILE DIRECT_IO
CE2102) CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL_IO
CE21020 RESET IN_FILE SEQUENTIAL 1O
CE2102P OPEN OUT_FILE SEQUENTIAL_IO
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE2102R OPEN INOUT_FILE DIRECT_IO
CE2102S RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN_FILE DIRECT_IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_IO
CE3102E CREATE IN_FILE TEXT_1O
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE = = -eee TEXT_IO
CE31021 CREATE OUT_FILE TEXT_IO
CE3102) OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT _FILE TEXT_IO

CE2107B..E (4 tests), CE2107L, CE2110B and CE2111D attempt to associate multiple internal
sequential files with the same external file when one or more files is open for writing. The proper
exception is raised when this association is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H attempt to associate multiple internal direct files with
the same external file when one or more files is open for writing. The proper exception is raised
when this association is attempted.

CE2203A checks that WRITE raises USE_ERROR if the capacity of the cxternal file is exceeded for
SEQUENTIAL_IO. This implementation can not restrict file capacity.

CE2401H, EE2401D and EE2401G use instantiations of DIRECT_JO with unconstrained array and
record types; this implementation raises USE_ERROR on the attempt to create a file.

CE2403A checks that WRITE raises USE-ERROR if the capacity of the external file is exceeded for
DIRECT_IO. This implementation does not restrict file capacity.

Validation Summary Report AVF_VSR_90502/74

Alsys Limited Chapter 2 - Page 3of 5 Alsycomnp_017 Version 52

IMPLEMENTATION DEPENDENCIES

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A attempt to associate muitiple internal text
files with the same external file when one or more files is open for writing. The proper exception
is raised when this association is attempted.

CE3202A expects that function NAME can be applied to the standard input and output files; in this
implementation these files have no names, and USE_ERROR is raised. [See 2.3].

CE3304A checks that USE_ERROR is raised if a call to SET_LINE_LENGTH or
SET_PAGE_LENGTH specifies a value that is inappropriate for the external file. This
implementation does not have inappropriate values for either line length or page length.

CE3413B checks that PAGE raises LAYOUT_ERROR when the value of the page number exceeds
COUNT’LAST. For this implementation, the value of COUNT’LAST is greater than 150000 making
the checking of this objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 26 tests.

The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B24007A B24009A B28003A
B32202A B32202B B32202C B37004A

B45012A B61012A B74304A B74401F

B74401R BI1004A B95069A B95069B

B97103E BA1101B2 BA1101B4 BC2001D
BC3009C BC3204D

CD2AS3A was graded inapplicable by Evaluation Modification as directed by the AVO. The test
contains o specification of a power-of-10 value as small for a fixed-point type. The AVO ruled that,
under ACVC1.11, support of decimal smalls may be omitted.

CE3202A was graded inapplicable by Evaluation Modification as directed by the AVO. The test will
abort with an unhandled exception (USE_ERROR) when function NAME is invoked for the standard
input file. The AVO ruled that this behaviour is acceptable pending a resolution of the issue by the
ISO WG-9 Ada Rapporteur Group.

CE3605A was graded passed by Test Modification as directed by the AVO. This test attempts to
write a line with 516 characters; this excceds the implementation’s default limit of 503, and
USE_ERROR is raised. This behaviour is allowed by Al-00534, and so the test was modified as
follows:

On line 74, ‘86" was changed 1o ‘8%

Validation Summary Report AVF_VSR 90502774

Alsys Limited Chapter 2 - Page d of § Alsycomp_017 Version 52

IMPLEMENTATION DEPENDENCIES

On line 81, ‘517’ was changed to ‘499’
The modified test was processed and passed.

EA3004D was graded passed by Evaluation and Processing Modification as directed by the AVO. The
test requires that either pragma INLINE is obeyed for the invocation of a function in each of three
contexts and that thus three library units are made obsolete by the re-complication of the inlined
function’s body, or else the pragma is ignored completely. This implementation obeys the pragma
except when the invocation is within a package specification. When the test’s files are processed in
the given order, only two unite arc made obsolete; thus, the expectied error ai line 27 of file
EA3004D6M is not valid and is not flagged. To confirm that indeed the pragma is not obeyed in this
one case, the test was also processed with the files re-ordered so that the re-compilation follows only
the package declaration (and thus the other library units will not be made obsolete, as they are
compiled later); a "NOT APPLICABLE" result was produced, as expected. The revised order of files
was 0-1-4-5-2-3-6.

Validation Summary Report AVF_VSR_90502/74

Alsys Limited Chapter 2 - Page 5 of 5 Alsycomp_017 Version 5.2

PROCESSING INFORMATION

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the information
given in the initial pages of this report.

For a point of contact for technical information about this Ada implementation system, see:

Jon Frosdick
Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire

RG9 1EN

For a point of contact for sales information about this Ada implementation system, see:

John Stewart
Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire

RG9 1EN

Testing of this Ada implementation was conducted at the customer’s site by a validation team from
the AVF.

32 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or

inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

a) Total Number of Applicable Tests 3780
b) Total Number of Withdrawn Tests 81
<) Processed Inapplicable Tests 309
Validation Summary Report AVF_VSR_90502/74

Alsys Limited Chapter 3 - Page 1 of 3 Alsycomp 017 Version 52

PROCESSING INFORMATION

d) Non-Processed 1/0O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
£ Total Number of Inapplicable Tests 309 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation supports a file system. All
floating-point precision tests were processed because this implementation supports floating-point
precision to the extent that was tested. When this compiler was tested, the tests listed in section 2.1
had been withdrawn because of test errors.

33 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was tested, the tests listed in
section 2.1 had been withdrawn because of test errors. The AVF determined that 309 tests were
inapplicable to this implementation. All inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were also processed.

A Magnetic tape containing the customized test suite (see section 1.3) was taken on-site by the
validation team for processing.

The contents of the magnetic tape were loaded onto a SUN 3/160. These were then transferred to
the MicroVax II host using File Transfer Protocol on an Ethernet link.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

The tests were compiled and linked on the host computer system, as appropriate. The executable
images were transferred to the target computer system by the communications link described above,
and run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The options invoked explicitly for validation
testing during this test were:

CALLS=INLINED Allows inline insertion of code for subprograms.

REDUCTION=EXTENSIVE Perform extensive high level optimisations.

EXPRESSIONS=EXTENSIVE Perform extensive common sub-expression elimination
optimisations.

OBJECT=PEEPHOLE Perform peephole optimisations.

Validation Summary Report AVF_VSR_90502/74

Alsys Limited Chapter 3 - Page 2 of 3 Alsycomp_017 Version 52

PROCESSING INFORMATION

MEMORY=1000

OUTPUT=<file>

WARNING=NO

DETAIL=NO

SHOW=NONE

ERROR=999

FILE_WIDTH=79

FILE_LENGTH=999

Reserve 1000 Kbytes of memory for all the date manipulated
in the libraries.

<file> specifies the name of the compilation listing
generated.

Do not include warning messages.

Do not add extra detail to the error messages.

Do not print a header and do not include an error summary
in the compilation listing.

Set the maximum number of compilation errors permitted
before compilation is terminated to 999.

Set width for listing file to 79 columns.

Disable insertion of form feeds in the output.

In addition, the following options were used to produce iull compiler listings:

TEXT

Print a compilation listing including full source text.

The default options were used for the Binder

Test output, compiler and linker listings, and job logs were captured on Magnetic tape and archived
at the AVF. The listings examined on-site by the validation team were also archived.

Validation Summary Report

Alsys Limited

AVF_VSR_90502/74

Chapter 3 - Page 3 of 3 Alsycomp_017 Version 52

MACRO PARAMETERS

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning and
purpose of these paramelers are explained in [UG89]. The parameter values are presented in two
tables. The first table lists the valued that are defined in terms of the maximum input-line length,
which is the value for SMAX_IN-LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V" represents the maximum input-line length.

Macro Parameter

$MAX_IN_LEN

$BIG_ID1

$BIG_ID2

$BIG_ID3

$BIG_ID4

$BIG_INT_LIT

$BIG_REAL_LIT

$BIG_STRING1

$BIG_STRING2

$BLANKS
$MAX_LEN_INT_BASED_LITERAL
$MAX_LEN_REAL BASED_LITERAL

$MAX_STRING_LITERAL

Macro Value

255

(1.V-1 => A,V =>"1)

(1.V-1 => A", V => 2))

(1.V2 =>'A") & '3 & (1.V-1-V2 => "A")
1. V2 =>A") &4 & (1.V-1-V2 => 'A’)
(1.V-3 =>0") & "298"

(1.V-5 =>'0) & "690.0"

& (1LL.VR =>"A) & ™

™ & (1.V-1-VR => AN &'’ & "
(1.V-20 => ")

"2 & (1.V-5 =>'0") & "11:"

"16:" & (1.V-7 => '0’) & "F.E."

"™ & (1.V2=>"A) &

Validation Summary Report

AVF_VSR_90502/74

Alsys Limited Appendix A - Page 1 of 4 Alsycomp_017 Version 52

MACRO PARAMETERS

MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter

$ACC_SIZE
$ALIGNMENT
$COUNT_LAST
$DEFAULT_MEM_SIZE
$DEFAULT _STOR_UNIT
$DEFAULT_SYS NAME
$DELTA_DOC
$ENTRY_ADDRESS
$ENTRY_ADDRESSI1
$ENTRY_ADDRESS2
$FIELD_LAST
$FILE_TERMINATOR
$FIXED_NAME
$SFLOAT_NAME
$FORM_STRING

$FORM_STRING?2

$GREATER_THAN_DURATION

Macro Value

32

4

2147483647

4294967296

8

TRANSPUTER

2#1.0#E-31
ADDRESS_OF_MEM_BLOCK3
ADDRESS_OF_MEM_BLOCK1
ADDRESS_OF_MEM_BLOCK2
255

NO_SUCH_TYPE
NO_SUCH_TYPE
"CANNOT_RESTRICT_FILE_CAPACITY"

100000.0

$GREATER_THAN_DURATION_BASE_LAST

10000000.0
$GREATER_THAN_FLOAT_BASE_LAST 1.0E40
$GREATER_THAN_FLOAT_SAFE_LARGE 1.0E38
Validation Summary Report AVF_VSR_90502/74
Alsys Limited Appendix A - Page 2 of 4 Alsycomp_017 Vemion 52

MACRO PARAMETERS

$GREATER_THAN_SHORT FLOAT SAFE_LARGE

$HIGH_PRIORITY
$ILLEGAL_EXTERNAL _FILE_NAME1
$ILLEGAL_EXTERNAL FILE_ NAME2
$INAPPROPRIATE_LINE_LENGTH
$INAPPROPRIATE_PAGE_LENGTH
$INCLUDE_PRAGMAL1
$INCLUDE_PRAGMAZ
$INTEGER_FIRST

$INTEGER_LAST
$INTEGFR_LAST_PLUS_1
$SINTERFACE_LANGUAGE
$LESS_THAN_DURATION
$LESS_THAN_DURATION_BASE_FIRST
$LINE_TERMINATOR
$LOW_PRIORITY
$MACHINE_CODE_STATEMENT
$MACHINE_CODE_TYPE
$MANTISSA_DOC

$MAX_DIGITS

$MAX_INT

$MAX_INT_PLUS_1

SHORT_FLOAT_NOT_SUPPORTED
10

1 ~@{}]+=

[{}]+=?#~@"

-1

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006D1.TST")
-2147483648

2147483647

2147483648

OCCAM

-100000.0

~10000000.0

ASCILLF

1

NULL;

NO_SUCH_TYPE

31

15

2147483647

2147483648

Validation Summary Report

Alsys Limited

Appendix A - Page 3 of 4

AVF_VSR_90502/74

Alsycomp_017 Version 52

MACRO PARAMETERS

$MIN_INT

$NAME

$NAME_LIST
$NAME_SPECIFICATION1
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
$NEW_MEM_SIZE
$NEW_STOR_UNIT
$NEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE_ADDRESS2

$YOUR_PRAGMA

-2147483648

NO_SUCH_TYPE
180X86,180386,MC680X0,5370, TRANSPUTER, VAX
X2120A

X2120B

X3119A

16#FFFFFFFF#
RELEVANT_TESTS_WITHDRAWN
RELEVANT_TESTS_WITHDRAWN
RELEVANT_TESTS_WITHDRAWN
NEW INTEGER
NO_SUCH_MACHINE_CODE_TYPE
32

2048

64.0E-6
ADDRESS_OF_MEM_BLOCK3
ADDRESS_OF_MEM_BLOCK1
ADDRESS_OF_MEM_BLOCK2

NO_SUCH_PRAGMA

Validation Summary Report
Alsys Limited

Appendix A - Page 4 of 4

AVF_VSR_90502/74

Alsycomp_017 Version 5.2

COMPILATION SYSTEM OPTIONS

Compiler Options
SOURCE=file_name
LIBRARY =library_name

ANNOTATE=""

LEVEL=UPDATE

ERRORS=999

CHECKS=ALL

GENERICS=INLINE

MEMORY=500 OR 1000

CODE=4

DATA=1

INTERFACE=4

OUTPUT =file_name

TEXT=YES or NO

APPENDIX B

COMPILATION SYSTEM OPTIONS

The name of the source file.
The name of the Ada program library.

User specified character string annotating compilation unit
as stored in library.

Compilation level - complete compilation of source code into
object code and update of program library.

Number of errors permitted before compilation is
terminated.

All run time checks to be performed, except those explicitly
suppressed by use of pragma SUPPRESS.

Place code of generics instantiations inline in the same unit
as the instantiation rather than in separate units.

Number of Kbytes reserved in memory for compiler data
(before swapping commences). Set to S00 for the
AlsyCOMP_037 validation and 1000 for the AlsyCOMP_017
validation due to different host memory availability.

Number of transputer prefix instructions used to construct
Ada code addresses.

Number of transputer prefix instructions used to construct
Ada data addresses.

Number of transputer prefix instructions used to construct
interface code addresses.

Compilation listing file name.

Controls inclusion of full source test in the compilation
listing. Set to YES for tests requiring compilation listings (ie
B tests). Set to NO for tests not requiring compilation
listings (ie non-B tests).

Validation Summary Report

Alsys Limited

AVF_VSR_90502/74

Appendix B - Page 1 of 3 Alsycomp_017 Version 52

COMPILATION SYSTEM OPTIONS

WARNING=NO

SHOW=NONE

DETAIL=NO

ASSEMBLY=NONE

STACK=8

CALLS=INLINED
REDUCTION=EXTENSIVE
EXPRESSIONS=EXTENSIVE
OBJECT=PEEPHOLE

COPY=NO

DEBUG-NO
TREE=NO
FILE_WIDTH=79

FILE_LENGTH=%999

Binder Options
PROGRAM =unit_name
LIBRARY =library_name

LEVEL=LINK

Do not include warning messages in the compilation listing.

Do not print a header on compilation listing pages, nor an
error summary at the end.

Do not print extra detail in error messages in the
compilation listing.

Do not include an assembly listing of generated code in the
compilation listing.

Maximum size in bytes for objects allocated in the main
execution stack. Objects bigger than this limit are allocated
on an auxiliary stack.

Allow inline insertion of code for subprograms.

Optimise run-time checks and remove dead code.
Optimise expression evaluation.

Optimise locally the object code as it is generated.

Do not save a representation of the source code in the
program library.

Do not save information for debugging.
Do not save information for cross referencing.
Width of compilation listing page in colunins.

Length of compilation listing page in lines (effectively
unpaginated).

The name of the main unii of the Ada program.
The name of the Ada program library.
Binding level - complete bind to produce an object module,

followed by invocation of the INMOS ilink and iboot tools to
produce a bootable load module.

Validation Summary Report

Alsys Limited

AVF_VSR_90502/74

Appendix B - Page 2 of 3 Alsycomp_017 Version 52

COMPILATION SYSTEM OPTIONS

OBJECT=AUTOMATIC

UNCALLED=REMOVE

SLICE=NO

HISTORY=MAIN

ENTRY_PCINY=AUTOMATIC

SIZE_MAIN=160
RATIO_MAIN=20

FAST_MAIN=NO

SIZE_TASK=16

RATIO_TASK=50

FAST_TASK=NO

TARGET=DEFAULT

DIRECTIVES="

MODULES=""

SEAKCH=""

OUTPUT=file_name

DATA=NONE

WARNING=NO

DEBUG=NO

Load module name derived automatically from PROGRAM
name.

Remove the code for uncalled subprograms from the 'oad
module.

Invoke the task scheduler onlv at synchronization points.

Trace the propagation of exceptions unhandled ir the main
program.

Entry point name derived automatically from PROGRAM
name.

Number of Kbytes allocated to the main program stacks.
Percentage of SIZE_MAIN allocated to the prir.ary stack.

Allocated the stacks of the main program in external memory
(as opposed to on-chip memory).

Default number of Kbytes allocated to task stacks (in
absence of explicit length clause).

Percentage of SIZE_TASK allocated to the prima- <tick.

Allocated task s.acks in external memory (as opposed to on-
chip memory).

Use the defaui: OCCAM harness code for the target
processor.

User specified directives for the INMOS linker tool.

Use specified object modules to be included in thr INMOS
link step.

User specified object libraries to be included in the INMOS
link step.

Binder listing file name.

Do not print additional mappinrg informaticn in the biader
listing.

Do not print warning messages in the binder listing.

Do not save information for debugging.

Validation Summary Report

Alsys 1 imited

AVF_VSR_90502/74

Appendix B - Page 3 of 3 Alsycomp_017 Version 5.2

-

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
10 certain machine-dependent conventions us mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions or representation clauses. The implementation-dependent characteristics
ol this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specificallv nnted otheiwise, references in this Appendix are to compiler documentation and not to
this repert. TIiplementation-specific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

type INTEGER is range -2**31 .. 2**31-1;
type SHORT_INTEGER is range -2**7 .. 2**7-1;

type FLOAT is digits 6 range -(2.0-2.0**127 .. (2.0-2.0**(-23))*2.0**127;
type LONG_FLOAT is digits 15 range -(2.0-2.0**(-51))*2.0**1027 ..
(2.0-2.0%*(51))*2.0**1023;

type DURATION is delta 2.0**-14 range -131_072.0..131_071.0

end STANDARD;

Validation Summary Report AVF_VSR_90502/74

Alxys [imita! Appendix C - Page 1 Alsycomp_017 Version 5.2

Alsys Ada Compilation System
for the Transputer
APPENDIX F
Implementation - Dependent Characteristics
Version $
Alsys SA.

29, Avenue Lucien-René Duschesne
78170 La Celle St. Cloud, France

Alsvs Inc. Alsys GmbH
67 South Bedford Srreet Am Riippurrer Schloff 7
Burlingion, MA 01803-5152, U.SA. D-7500 Karisruhe 51,Germany
Alsys Lid Alsys AB
Parmridge House, Newtown Road Parron Pehr Vag 10
Henley-on-Thames Box 1085
Oron, RG9 IEN, UK 141 22 Huddinge, Stockholm, Sweden
Alsys KKE

223.]1 Yamashita-oho
Naka-ku, Yokahama, 231, Japan

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: August 1990
Alsys reserves the right to make changes in specifications and other information

contained in this publication without prior notice, and the reader should in all cases
consult Alsys to determine whether such changes have been made.

PREFACE

This Appehdix F is for programmers, software engineers, project managers, educators and
students who want 10 develop an Ada program for the INMOS transputer.

This appendix is a required part of the Reference Manual for the Ada Programming

Language, ANSI/MIL-STD 1815A, January 1983 (throughout this appendix, citations in
square brackets refer 1o this manual).

This document assumes that the reader has some knowledge of the architecture of the
transputer. Access to the document Occam?2 Toolset User Manual [Ref. 3] which

describes the program development environment for occam as supplied by INMOS
would also be advantageous.

Preface

i

Alsys Ada for the Transpuier, Appendix F, v5

1.1
1.2
1.21
122
123
124
13
14
1.5

4.1
4.2
43
44
45
4.6
4.7
48

TABLE OF CONTENTS

INTRODUCTION

Implementation-Dependent Pragmas

INLINE

INTERFACE

Calling Conventions
Parameter-Passing Conventions
Parameter Representations
Restrictions on Interfaced Subprograms
INTERFACE_NAME

INDENT

Other Pragmas

Implementation-Dependent Attributes
Specification of the Package SYSTEM

Restrictions on Representation Clauses

Enumeration Types
Integer Types
Flioating Point Types
Fixed Point Types
Access Types

Task Types

Array Types

Record Types

Table of Contents

w

[r—
CO VO WnaEDWW

11

13

17

18
21
24
26
29

32

iii

5 Conventions for Implementation-Gencrated Names 47
6 Address Clauses 49
6.1 Address Clauses for Objects 49
6.2 Address Clauses for Program Units 49
6.3 Address Clauses for Entries 49
7 Restrictions on Unchecked Conversions 51
8 Input-Output Packages 53
8.1 NAME Parameter 53
8.2 FORM Parameter 53
8.2.1 File Sharing 54
822 Binary Files 55
823 Buffering 56
824 Appending 57
83 USE_ERROR 57
9 Characteristics of Numeric Types 59
9.1 Integer Types 59
9.2 Floating Point Type Attributes 60
93 Attributes of Type DURATION 61
REFERENCES 63
INDEX 6S

v Alsys Ada for the Transputer, Appendix F, v5

INTRODUCTION

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
Ada Compilers for the INMOS transputer. This document should be considered as the
Appendix F to the Reference Manual for the Ada Programming Language ANSI/MIL-

STD 1815A, January 1983, as appropriate to the Alsys Ada implementation for the
transputer.

Sections 1 to 8 of this appendix correspond to the various items of information required
in Appendix F [F]*; sections 9 and 10 provide other information relevant 10 the Alsys
implementation. The contents of these sections is described below:

1. The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and type of every implementation-dependent atiribute.

3. The specification of the package SYSTEM [13.7].

4. The list of all restrictions on representation clauses {13.1].

S. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.4).

6. The interpretation of expressions that appear in address clauses.

7. Any restrictions on unchecked conversions [13.10.2].

8.

Any implementation-dependent characteristics of the input-output packages [14].

9. Characteristics of numeric types.

%*

Throughout this manual, citations in square brackets refer 10 the Reference Manual
for the Ada Programming Language, ANSI/MIL-STD-1815A, January 1983.

Implementation-Dependent Characieristics

Throughout thic appendix, the name Ada Run-Time Executive refers 10 the run-time
library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, 1/0, and other utility functions.

2 Alsys Ada for the Transputer, Appendix F, v5

CHAPTER 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supporied, except for the fact that it is not possible to inline a
function call in a declarative part.

1.2 INTERFACE

Ada programs can interface to subprograms writien in occam through the use of the

predefined pragma INTERFACE [13.9] and the implementation-defined pragma
INTERFACE_NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of

the programming language for which calling and parameter passing conventions will be

generated. Pragma INTERFACE takes the form specified in the Reference Manual:
pragma INTERFACE (language_name, subprogram_name);,

where:

e language_name is the name of the other language whose calling and parameter

passing conventions are to be used.

s subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is occam.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the

Compiter how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques 10 use.

Implementation-Dependent Pragmas

The language name occam is used to refer to the standard occam calling and parameter
passing conventions for the transputer [Ref. 4, Section 5.10]. The programmer can use

the language name occam 1o interface Ada subprograms to subroutines written in any
language that follows the standard occam calling conventions.

1.2.1 Calling Conventions

The following calling conventions are required for code to be called from Ada by use of
the pragma interface to occam.

On entry to the subprogram, the registers A, B and C are undefined. For the T8 only, the
floating point registers FA, FB and FC are similarly undefined. The return address and
any parameters are accessed relative to the workspace pointer, W, by the subprogram.

There are no assumptions concerning the contents of the register stacks (A, B, Cand FA,
FB, FC) upon return from the interfaced subprogram, other than for interfaced
subprograms which are functions (see below). However, the workspace pointer, W,

should contain the same address upon return from the interfaced subprogram as it
contained before the call.

The setting of the error flag is ignored on return.

1.2.2 Parameter-Passing Conventions

On entry 10 ihe subprogram, the first word above the transputer workspace pointer
contains the return address of the called subprogram. Subsequent workspace locations

(from W+1 1o W+n, where n is the number of parameters) contain the subprogram
parameters, which are all one word in length.

There is always an implicit vector space parameter passed as the last parameter to all
interfaced subprograms. This points to an area of free memory which can be used by the
occam compiler to allocate arrays declared in the interfaced subprogram.

Actual parameters of mode in which are access values or scalars of one machine word or
less in size are passed by copy. If such a parameter is less that one machine word in

length it is sign extended to a full word. For all other parameters the value passed is the
address of the actual parameter itself.

Alsys Ada for the Transputer, Appendix F, v5

Since all large scalar, non-scalar and non-access parameters to interfaced subprograms
are passed by address, they cannot be protected from modification by the called
subprogram even though they may be formally declared to be of mode in. It is the

programmer’s responsivility to ensure that the semantics of the Ada parameter modes
are honoured in these cases.

If the subprogram is a function whose result is at most one machine word in length,

register A is used 10 return the result. All other results are returned by address in
register A

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer’s responsibility to ensure correct access 10 the parameters.

1.2.3 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation
clauses have been used 1o alter the default representations of the types involved.
Chapter 4 describes the effect of representation clauses on the represen.ation of values.

Integer Types [3.5.4])

Ada integer types are represented in iwo's complement form and occupy a byte
(SHORT_INTEGER) or a word (INTEGER).

Parameters (o interfaced subprograms of type SHORT_INTEGER are passed by copy
with the value sign extended to a full machine word. Values of type INTEGER are
always passed by copy. The predefined type LONG_INTEGER is not available.

Enumeration Types [3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values

representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits. All other
enumeration types are represented in 32 bits.

Implementation-Dependent Pragmas

Consequently, the Ada predefined type CHARACTER [3.5.2] is represented in 8 bits,
using the standard ASCII codes [C] and the Ada predefined type BOOLEAN [3.5.3] is

represented in 8 bits, with FALSE represented by the value 0 and TRUE represented by
the value 1.

As the representation of enumeration types is basically the same as that of integers, the
same parameter passing conventions apply.

Floating Point Types {3.5.7, 3.5.8]

Ada floating-point values occupy 32 (FLOAT) or 64 (LONG_FLOAT) bits, and are held
in ANSV/IEEE 754 floating point format.

Parameters to interfaced subprograms of type FLOAT are always passed by copy.
Parameters of type LONG_FLOAT are passed by address.

Fixed Point Types [3.5.9, 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed maniissa
and a constant small. The mantissa is implemented as an 8 or 32 bit integer value.

Small is a compile-time quantily which is the power of two equal or immediately inferior
10 the delta specified in the declaration of the type.

The representation of an actual parameter of a fixed point type is the value of its
mantissa. This is passed using the same rules as for integer types.

The attribute MANTISSA is defined as the smallest number such that:
2 ** MANTISSA >= max (abs (upper_bound), abs (lower_bound)) / small
The size of a fixed point type is:
MANTISSA

Size
1.7 8 bits
8..31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Alsys Ada for the Transputer, Appendix F, v5

Access Types [3.8]

Values of access types are represented internally by the address of the designated object

held in single word. The vaiue MIN_INT (the smallest integer that can be represented in
a machine word) is used to represent null.

Array Types [3.6]

Ada arrays are passed by address; the value pass d is the address of the first element of
the first dimension of the array. The elements ol the array are allocated by row. When
an array is passed as 4 parameter to an interfaced subprogram, the usual consistency

checking between the array bounds declared in the calling and the callec subprogram is

not enforced. It is the programmer’s responsibility to ensure that the subprogram does
not violate the bounds of the array.

When passing arrays to occam, it may e the case that some of its bounds arc undefined
in the source of the interfaced subprogram. If this is true, the missing bounds should be
passed as extra integer value parameters (0 the subprogram. These parameters should be

placed immediately following the array parameter itself and in the same order as the
missing strides appear in the occam source.

Values of the predefined type STRING [3.6.3] are arrays, and are passed in the same way:
the address of the first character in the string is passed. Elements of a string are

represented in 8 bits, using the standard ASCII codes. The elements are packed into one
or more words and occupy ccnsecutive locations in memory.

Record Types [3.7]

Ada records are passed by address; the value passed is the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a word boundary) and the components may be re-ordered by the Compiler
so as 1o minimize the total size of objects of the record type. If a record contains
discriminants or components having a dynamic size, implicit components may be added
to the record. Thus the default layout of the internal structure of the record may not be
interred directly from its Ada declaration. The use of a representation clause “ " control

the layo 1t of any record type whose values are to be passed to intei faced subprograms is
recommended.

Implementation-Dependent Pragmas

1.2.4 Restrictions on Interfaced Subprograms

interfaced occam subprograms must be compiled using the UNIVERSAL erro; mode
(X). In this mode, there is no error checking and any run-time errofrs in the occam code
are ignored. This ensures that process:2s do not execute a STOPP or STOPERR

instruction and avoids the unpredictable 1 :suits which may occur if this is allowed 10
happen.

Parimeters which are of a task or pri: 1te type, or are access values not of mode in,
should not be passed 1o interfaced subprograms.

Itis not pessible t~ interface to occam functions which return floating point values, nor

to those which have more that one return value. Also, records and arrays cannot be
returned from interfaced subprograms.

Alsys Ada for the Transpurer, Appendix F, v5

1.3 INTERFACE_NAME

Pragma INTERFACE_NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma INTERFACE_NAME
is not used, then the two names are assumed to be identical.

This pragma takes the form:

pragma INTERFACE_NAME (subprogram_name, smming_literal);

where:

a subprogram_name is the name used within the Ada program 1o refer to the
interfaced subprogram.

» sming_literal is the name by which the interfaced subprogram is referred to at link-
time.

The use of INTERFACE_NAME is optional and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is necessary, for example, if the name
of the subprogram in its original language contains characters that are not permitted in
Ada identifiers. Ada identifiers can contain only leuters, digits and underscores, whereas
the INMOS linker allows external names to contain other characters, for exampie full

stops. These characters can be specified in the sming_literal argument of the pragma
INTERFACE_NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program as the

pragma INTERFACE [13.9]. However, the pragma INTERFACE_NAME must always
occur after the pragma INTERFACE declaration for the interfaced subprogram.

Example

package SAMPLE_DATA is

function SAMPLE_DEVICE (X : INTEGER) return INTEGER;

function PROCESS_SAMPLE (X : INTEGER) return INTEGER;
private

pragma INTERFACE (OCCAM, SAMPLE_DEVICE);
pragma INTERFACE (OCCAM, PROCESS_SAMPLE);

pragma INTERFACE_NAME (PROCESS_SAMPLE, "process.sample”),
end SAMPLE_DATA;

Implemeniation-Dependent Pragmas

1.4 INDENT

This pragma is only used with the Alsys Reformatter (AdaReformar); this 100l offers the
functionalities of a source reformatter in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

The Reformatter does not modify the source lines after the OFF pragma INDENT.
pragma INDENT(ON)

The Reformatier resumes its action after the ON pragma INDENT. Therefore any source

lines that are bracketed by the OFF and ON pragma INDENTSs are not modified by the
Alsys Reformatter.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragmas STORAGE_SIZE_RATIO and FAST_PRIMARY which are applicable only
10 task types are discussed in detail in section 4.6.

Pragma PRIORITY is accepted with the range of priorities running from 1 1o 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress checks in a given compilation
by the use of the Compiler option CHECKS.

The following language defined pragmas have no effect.

CONTROLLED
MEMORY_SIZE
OPTIMIZE
STORAGE_UNIT
SYSTEM_NAME

Note that all access types are implemented by default as controlled collections as
described in [4.8].

10 Alsys Ada for the Transputer, Appendix F, v5

CHAPTER 2

Implementation-Dependent Attributes

In addition to the Representation Attributes of [13.7.2] and [13.7.3], the four attributes
listed in section 5 (Conventions for Implementation-Generated Names), for use in
record representation clauses, and the attributes described below are provided:

TDESCRIPTOR_SIZE For a prefix T that denotes a type or subtype, this

attribute yields the size (in bits) required o hold a
descriptor for an object of the type T, allocated on
the heap or written to a file. If T is constrained,
TDESCRIPTOR_SIZE will yield the value 0.

TIS_ARRAY For a prefix T that denotes a type or subtype, this
attribute yields the value TRUE if T denotes an
array type or an array subtype; otherwise, it yields

the value FALSE.
Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses. The attribute ADDRESS will

deliver the value SYSTEM.NULL_ADDRESS if applied 1o such prefixes and a compilation
warning will be issued.

s A constant or named number that is implemented as an immediate value (i.e. does
not have any space allocated for it).

e A package specification that is not a library unit.
s A package body that is not a library unit or subunit.

If the attribute ADDRESS is applied to a named number, a compilation error will be
produced.

Implemeniation-Dependent Atmibutes 11

Alsys Ada for the Transputer, Appendix F, v$

CHAPTER 3
Specification of the Package SYSTEM

package SYSTEM is

type NAME is (180x86,
180384,
MC680X0,
s370,
TRANSPUTER,
VAX):

SYSTEM_NAME : constant NAME := TRANSPUTER;

STORAGE_UNIT :’ constant := 8;

MAX_INT 1 constant := 2**31 - {;
MIN_INT : constant := - (2**31);
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2#1.0%#E-31;
MAX DIGITS : constant := 15;
MEMORY_SIZ2E : constant := 2%*32;

TiCK : constant := 64.0e - 6;

subtype PRIORITY is INTEGER range 1 .. 10;
type ADDRESS is private;
NULL_ADDRESS : constant ADDRESS;

function VALUE (LEFT : in STRING) return ADDRESS;

subtype ADORESS_STRING is STRING(1..8);

function IMAGE (LEFT : in ADDRESS) return ADDRESS_STRING;

type OFFSET is range -(2**31) .. 2%*31-1;
-- This type is used to measure a number of storage units (bytes).

function SAME_SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
ADDRESS_ERROR : exception;

function "% (LEFT : in ADORESS; RIGHT : in OFFSET) return ADORESS;
function “+" (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;

Specification of the Package SYSTEM 13

function *-" (LEFT : in ADDRESS; RIGHY : in OFFSET) return ADDRESS;

function "-* (LEFT : in ADDRESS; RIGHT : in ADDRESS) return OFFSET;
function %“<=% (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function "< (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function “»>=" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function “>" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

function "mod" (LEFT : in ADDRESS; RIGHT : in POSITIVE) return NATURAL;

type ROUND_DIRECTION is (DOWN, UP);

function ROUND (VALUE : in ADDRESS;

DIRECTION : in ROUND_DIRECTION;

MOOULUS : in POSITIVE) return ADDRESS;
generic

type TARGET is private;

function FETCH_FROM_ADDRESS (A : in ADDRESS) return TARGET;
generic

type TARGET is private;
procedure ASSIGN_TO_ADDRESS (A : in ADDRESS; T : in TARGET);

-- These routines are provided to perform READ/WRITE operations in memory.

type OBJECT_LENGTH is range 0 .. 2**31 -1;
-- This type is used to designate the size of an object in storage units.

procedure MOVE (TO : in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECT_LENGTH);

end SYSTEM;

The function VALUE may be used to convert a string into an address. The string is a
sequence of up 1o eight hexadecimal characters (digits or letters in upper or lower case in

the range A..F) representing the address. The exception CONSTRAINT_ERROR is raised
if the string does not have the proper syntax.

The function IMAGE may be used to convert an address to a string which is a sequence of
exactly eight hexadecimal digits.

The function SAME_SEGMENT always returns TRUE and the exception
ADDRESS_ERROR is never raised as the transputer is a non segmented architecture.

14

Alsys Ada for the Transputer, Appendix F, v5

The functions "+" and "-" with an ADDRESS and an OFFSET parameler provide support
1o perform address computations. The OFFSET parameter is added 1o, or subtracted

from the address. The exception CONSTRAINT_ERROR can be raised by these
functions.

The function "-" with the two ADDRESS parameters may be used to return the distance
between the specified addresses.

The functions "< =", "<", ">="and ">" may be used to perform a comparison on the
specified addresses. The comparison is unsigned.

The funciion "mod" may be used to return the offset of LEFT address relative to the
memory block immediately below it starting at a multiple of RIGHT storage units.

The function ROUND may be used to return the specified address rounded to a specific
value in a particular direction.

The generic function FETCH_FROM_ADDRESS may be used 1o read data objects from
given addresses in store. The generic function ASSIGN_TO_ADDRESS may be used 10

write data objects to give 1 addrzsses in store. These routines may not be instantialed
with unconstrained types.

The procedure MOVE may be used to copy LENGTH storage units starting at the address
FROM 1o the address TO. The source and destination locations may overlap.

Specification of the Package SYSTEM 15

16

Alsys Ada for the Transputer, Appendix F, v

CHAPTER 4

Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys Ada

Compiler for the Transputer and how it is possible 10 control this using representation
cClauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,

fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

The transputer supports operations on the data types byte, word and double-word, so
these data types are used to form the basis of the representation of Ada types. The word
length is 32 bits. Currently, the compiler does not support operations on double 32 bit

word quantities. This affects the representation of integer, fixed point and enumeration
types.

Except in the case of array and record types, the description of each class of type is
independent of the others. To understand the representation of an array type it is

necessary to understand first the representation of its components. The same rule
applies o a record type.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

s a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

e arecord representation clause, when the object is a record or a record component
s asize specification, in any case.

For each class of types the effect of a size specification is described. Interaction between

size specifications, packing and record representation clauses is described under array
and record types.

Restrictions on Representation Clauses 17

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies t0 an enumeration type, the
internal code associated with an enumeration literal is the position number of the

enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2, ..., n-1.

An enumeration representation clause can be provided to specify the value of each

internal code as described in [13.3]. The Alsys Compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -2 .. 23)-1.

Encoding of enumeration values

AR enumeration value is always represented by its internal code in the program
generated by the Compiler.

Enumeration subtypes

Minimum size: The minimum size of an enumeration subtype is the minimum number

of bits that is necessary for representing the internal codes of the subtype values in
normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. For m >= 0, L is the

smallest positive injeger such that M <= 2L-1. For m < 0, L is the smallest positive
integer such that -21 <=mand M <= 2L-1.1.

18 Alsys Ada for the Transputer, Appendix F, v5

For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACK_AND_WHITE is 2 bits.

subtype BLACK_OR_WHITE is BLACK_AND_WHITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACK_OR_WHITE is

-- 2 bits (the same as the minimum size of the static type mark
-- BLACK_AND_WHITE).

Size: When no size specification is applied to an enumeration type or first named
subtype, the objects of that type or first named subtype are represented as either
unsigned bytes or signed words. The Compiler selects automatically the smallest such
object which can hold each of the internal codes of the enumeration type (or subtype).

The size of the enumeration type and of any of its subtypes is thus 8 bits in the case of an
unsigned byte, or the machine word size (32 bits) in the case of a signed word.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type EXTENDED is
(-- The usual American ASCII characters.

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, us,
', ", ”, #, 'S, ‘%', &, ",
(¢ Y, -, "+ '’
0, 1, 2, '3, ‘4, 5, '6’, T,
'8, 9, <, =, >, ",
@, A, B, 'C, D, CE, 'F, 'G',
'H', T, Y, 'K, 'L, ™', 'N’, 'O,
P, @, R, 's', T, u, v, W,
X', Y, AR T \, T, N S
", ‘a’, ‘b, 'c’, 'd’, e, T, e,
Restricrions on Representation Clauses 19

b, 7

T, 'k’ T, 'm’, n, '0’,
'p', 'q', ‘r', 'S', 'l', 'u', ‘v‘, ’w',
%', Y, AR ', 1, '}, -, DEL,
-- Extended characters

LEFT_ARROW,
RIGHT_ARROW,
UPPER_ARROW,
LOWER_ARROW,
UPPER_LEFT_CORNER,
UPPER_RIGHT_CORNER,
LOWER_RIGHT_CORNER,
LOWER_LEFT_CORNER,
-

for EXTENDED'SIZE use §;

-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an enumeration subtype has the same size as its subtype.

Alignment: An enumeration subtype is byte aligned if the size of the subtype is less than
or equal to 8 bits, word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an enumeration subtype is a
multiple of the alignment of the corresponding subtype.

20 Alsys Ada for the Transputer, Appendix F, v5

4.2 Integer Types
Predefined integer types

In the Alsys Ada impiementation for the transputer the following predefined integer
types are available:

type SHORT_INTEGER

is range -2**07 .. 2**07-1;
type INTEGER

is range -2**31 .. 2**31-1,

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from one of the predefined integer types. The compiler

automatically selects the predefined integer type whose range is the shortest that
contains the values L to R inclusive.

Encoding of integer values

Binary code is used to represent integer values, using a conventional two’s complement
representation.

Integer subtypes

Minimum size: The minimum size of an integer subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal

binary form (that is 10 say, in an unbiased form which includes a sign bit only if the range
of the subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as

follows. For m >= 0, L is the smallest positive integer such that M <= 2L-1. For m <
0, L is the smallest positive integer such that -2L'' <= mand M <= 2L-1.1.

Resrictions on Representation Clauscs

For example:

subtype S is INTEGER range 0.. 7,
-- The minimum size of S is 3 bits.

subtype Dis Srange X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of the static type mark S).

Size: The sizes of the predefined integer types SHORT_INTEGER and INTEGER are
respectively 8 and 32 bits.

When no size specification is applied to an integ. - type or to its first named subtype (if

any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly.

For example:

type S is range 80 .. 190,
-- S is derived from SHOPT_INTEGER, its size is 8 bits.

type J is range 0 ... 65535;
-- J is derived from INTEGER, its size is 32 bits.

type N is new J range 80 .. 100;
-- N is indirectly derivert from INTEGER, its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype tc which it applies.

Alsys Ada for the Transputer, Appendix F, v§

For example:

type S is range 80 .. 100;
for S'SIZE use 32;

-- Sis derived from SHORT_INTEGER, but its size is 32 bits
-- because of the size specification.

type J is range O .. 255;
for 'SIZE use §;

-- Jis derived from INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;

-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys Compiler implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an integer subtype has the same size as its subtype.

Alignment: An integer subtype is byte aligned if the size of the subtype is less than or
equal to 8 bits, word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of an integer subtype is a multiple of
the alignment of the corresponding subtype.

Restrictions on Representation Clauses

4.3 Floating Point Types

Predefined floating point types

There are two predefined floating point types in the Alsys implementation for
transputers:

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0°*127 .. (2.0 - 2.0**(-23))*2.0°*127;

type LONG_FLOAT is
digits 15 range -(2.0-2.0**(-51))*2.0**1023 .. (2.0- 2.0**(-51))*2.0**1023;

Selection of the parent of a floating point type

A floating point type declarcd by a declaration of the form:

type T is digits D [range L .. R};

is implicitly derived from a predefined floating point type. The Compiler automatically

selects the smallest predefined floating point type whose number of digits is greater than
or equal 1o D and which contains the values L and R.

Encoding of floating point values

In the program generated by the Compiler, floating point values are represented using
the ANSI/IEEE 754 standard 32-bit and 64-bit floating point formats as appropriate.

Values of the predefined type FLOAT are represented using the 32-bit floating point
format and values of the predefined type LONG_FLOAT are represented using the 64-
bit floating point format as defined by the standard. The values of any other floating

point type are represented in the same way as the values of the predefined type from
which it derives, directly or indirectly.

Alsys Ada for the Transpurter, Appendix F, v5

Floating point subtypes

Minimum size: The minimum size of a floating point subtype is 32 bits if its base type is
FLOAT or a type derived from FLOAT and 64 bits if its base type is LONG_FLOAT or
a type derived from LONG_FLOAT.

Size: The sizes of the predefined floating point types FLOAT and LONG_FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32, or 64 bits).

Object size: An object of a floating point subtype has the same size as its subtype.
Alignment: A floating point subtype is always word aligned.
Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of a floating point subtype is a
multiple of the alignment of the corresponding subtype.

Restricrions on Representation Clauses

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by {3.5.9].

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys Compiler for the transpuier uses a set of
anonymous predefined types. These are:

type SHORT_FIXED is delta D range -2°*7*S .. (2**7-1)*S;
for SHORT_FIXED'SMALL use S;

type FIXED is delta D range -2**31°S .. (£**31-1)*S;
for FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal 1o D.
Selection of the parent of a fixed point type
A fixed point type declared by a declaration of the form:
type Tisdelta D range L. R;
possibly with a small specification:

for TSMALL use S;

is implicitly derived {rom a predefined fixed point type. The Compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L and R.

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V /FBASE'SMALL

Alsys Ada for the Transputer, Appendix F, v§

Fixed point subtypes

Minimum size: The minimum size of a fixed point subtype is the minimum number of
binary digits that is necessary for representing the values of the range of the subtype

using the small of the base type (that is to say, in an unbiased form which includes a sign
bit only if the range of the subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such thats < mand M < S,
then the minimum size L is determined as follows. For i > = 0, L is the smallest positive
integer such that I <= 2L-1. Fori < 0, Lis the smallest positive integer such that -
l<e=jand | <=2V11.

For example:

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype DisSrange X .. Y;

-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size: The sizes of the sets of predefined fixed point types SHORT_FIXED, and FIXED are
8 and 32 bits respectively.

When no size specification is applied 10 a fixed point type or 10 its first named subtype,

its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly.

For example:

type F is delta 0.01 range 0.0 .. 1.0;
-- Fis derived from a 8 bit predefined fixed type, its size is 8 bits.

type L is delta 0.01 range 0.0 .. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0.. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

Restrictions on Representation Clauses 27

When a size specification is applied 10 a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type F is delta 0.01 range 0.0 .. 1.0;
for F'SIZE use 32;

-- F is derived from a 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type L is delta 0.01 range 0.0 .. 300.0;
for F'SIZE use 16,

-- F is derived from a 32 bit predefined fixed type, but its size is 16 bits
-- because of the size specification.

-- The size specification is legal since the range coniains no negative values
-- and therefore no sign bit is required.

type N is new F range 0.8 .. 1.0;

-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys Compiler implements size specifications. Nevertheless, as fixed point objects

are represented using machine integers, the specified length cannot be greater than 32
bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of a fixed point type has the same size as its subtype.

Alignment: A fixed point subtype is byte aligned if its size is less than or equal t0 8 bits,
word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of a fixed point subtype is a multiple
of the alignment of the corresponding subtype.

28 Alsys Ada for the Transputer, Appendix F, vS

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE_SIZE is then O.

As described in [13.2], a specification of collection size can be provided in order to

reserve storage space for the collection of an access type. The Alsys Compiler fully
implements this kind of specification.

Encoding of access values

Access values are machine addresses represenied as machine word - sized values (i.e. 32
bits).

Access subtypes

Minimum size: The minimum size of an access subtype is that of the word size of the
target transputer.

Size: The size of an access subtype is the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size.

Object size: An object of an access subtype has the same size as its subtype, thus an
object of an access subtype is always one machine word long.

Alignment: An access subtype is always word aligned.
Object address: Provided its alignment is not constrained by a record representation

clause or a pragma PACK, the address of an object of an access subtype is always on a
word houndary, since its subtype is word aligned.

Restrictions on Representation Clauses

4.6 Task Types

Storage for a task activation

When no length clause is used 10 specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in {13.2], a length clause can be used 10 specify the storage space for the

activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

Both the length clause and the bind time parameter specify the combined size of the
task's primary and auxiliary stacks. Further bind time parameters specify the percentage
of this storage size to be allocated to the primary stack and indicate whether or not to
attempt to aliocate the primary stack in fast internal memory. These bind time

parameters indicate the default action and can be overridden using the implementation
defined pragmas STORAGE_SIZE_RATIO and FAST_PRIMARY.

pragma STORAGE_SIZE_RATIO (task_name , integer_litcral),
pragma FAST_PRIMARY (rask_name ,YES | NO);

These two pragmas are not allowed for derived types. They apply to the task type
task_name. For each pragma, the pragma and the declaration of the task type to which it
applies must both occur within the same declarative part or package specification,
although the declaration of the task type must precede the pragma.

Pragma STORAGE_SIZE_RATIO specifies the percentage of the total storage size
reserved for the activation of the task to be used as the task’s primary stack. Any
remaining storage space will be used as the task’s auxiliary stack. In the absence of the
pragma the deluun iadiv spenifi 2 1 bing ume 1s useu tor the activation.

Pragma FAST_PRIMARY specifies whether or not an attempt should be made to
allocate the task’s primary stack in fast internal memory. In the absence of the pragma
the default indication specified at bind time is used for the activation.

30 Alsys Ada for the Transputer, Appendix F, v5

Encoding of task values

Task values are represented as machine word sized values.

Task subtypes
Minimum size: The minimum size of a task subtype is 32 bits.
Size: The size of a task subtype is the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual
size.

Object size: An object of a task subtype has the same size as its subtype. Thus an object
of a task subtype is always 32 bits long.

Alignment: A task subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause, the address of an object of a task subtype is always on a word boundary, since its
subtype is word aligned.

T — e e s

Resrrictions on Representation Clauses 37

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have

the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

.....

Component Gap Component Gap Component Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components.

For example:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL _DIGIT is range 0 .. 9,
for DECIMAL_DIGITSIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range < >) of DECIMAL_DIGIT;
-- The size of the type DECIMAL_DIGIT is 8 bits. Thus in an array of

-- type BINARY_CODED_DECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components.

Alsys Ada for the Transpuier, Appendix F, v5

For example:

type A is array (1 .. 8) of BOOLEAN,;
pragma PACK(A);

-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1bit.

type DECIMAL _DIGIT is range 0 .. 9;
type BINARY_CODED_DECIMAL is
array (INTEGER range < >) of DECIMAL_DIGIT;
pragma PACK(BINARY_CODED_DECIMAL),
-- The size of the type DECIMAL _DIGIT is 8 bits, but, as
-- BINARY_CODED_DECIMAL is packed, each component of an array of this
-- type will be represented in 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies 1o the subtype of
the components and the array is not packed, then the Compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access 10 the array components and (o their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype

For example:

type R is
record
K : INTEGER,; -- INTEGER is word aligned.

B : BOOLEAN; -- BOOLEAN is byte aligned.
end record;

-- Record type R is word aligned. Its size is 40 bits.

type Aisarray (1..10)of R;

-- A gap of three bytes is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 640 bits.

Restrictions on Represeniation Clauses 33

Component Gap Component

Gap Component Gap

Array of type A: each subcomponent K has a word offset.

If a size specification applies 10 the subtype of the components or if the array is packed,
no gaps are inserted.

For example:

type R is
record
K : INTEGER;
B : BOOLEAN;
end record;

type A is array (1 .. 10) of R;

pragma PACK(A),

-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR is new R;
for NR'SIZE use 40;

type B is array (1.. 10) of NR;

-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

......

Component Component Component

Array of type A or B: a subcomponent K can have any byte offsel.

34 Alsys Ada for the Transputer, Appendix F, v5

Array subtypes

Size: The size of an array subtype is obtained by multiplying the number of its
components by the sum of the size of the components and the size of the gaps (if any). If
the subtype is unconstrained, the maximum number «{ components is cons: - -2d

The size of an array subtype cannot be computed at compile time

a if it *as non-static constraints or is an unconstrained array type with non-static

index subtypes (because the “umber of components can then only be determined at
run time).

if the components are records or arrays and their constraints or the constraints of

their subcomponents (if any) are not static (because the sizc of the componenic and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is (0 suppress

the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components Of an array are records or arrays and their constraints or the
oustraints of their subcomponents (if any) are not static, the Compiler ignores - - -
pragma PACK applied o the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Object size: The size of an object of an array subtype is always equal to the size of the
subtype of the objeci.

Alignment: If no pragma PACK applies to an array subtype and no size specification

applies to its components, the array subtype has the same alignment as the subtype of its
componen's.

If a pragma PACK applies to an array subtype or if a size specification applies 10 its
components (so that there are no gaps), the alignment of the array subtype .- the lesser

of tiie alignment of the subtype of its components and the relative displacement of th-.
comp-.nents.

Restrictions on Representation Clauses 35

Object address: Provided its alignment is not constrained by a record representation

clause, the address of an object of an array subtype is a multiple of the alignment of the
corresponding subtype.

4.8 Record Types

Layout of a record

Each record is alloca.2d in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in [13.4). In the Alsys implementation
for transputer targets there is no restriction on the position that can be specified for a
component of a ;ecord. If a component is not a record or an array, its size can be any size

from the minimum size o the size of its subtype. If 2 component is a record or an array,
its size must be the size of its subtype.

In a record representation clause, the first storage unit (that is, a byte) and the first bit
position within a storage unit are numbered zero. Bits are ordered, and thus numbered,

least significant bit first within a storage unit. Storage units are numbered such that
jower numbers have the least significance in a machine word.

A compe ~nt clause may be specified such th2. the component overlaps a storage unit
bounda:y. In this case, the bits are numbered in sequence from the least significant bit of

the first storage unit tu the most significant bit of the last storage unit occupied by the
component. For example:

type BIT 3isrange0.. 7,
for BIT_3'SIZE use 3;

type BIT_S is range 0 .. 31;
for BIT_5'SIZE use 5;

type BIT_8is range 0 .. 255;
for BIT_8'SIZE use §;

36 Alsys Ada for the Transputer, Appendix F, v5

type R is
record
FIRST : BIT_3;
SECOND : BIT_8;
THIRD : BIT_S;
end record;
for R use
record
FIRST atOrange0.. 2;
SECOND atOrang~3.. 10,
-- Component SECOND overlaps a storage unijt boundary.
THIRD at 1 range 3 .. 7;
end record;
for R'SIZE use 16;

1 0 Storage unit number
T
Most Significant THIRD SECOND FIRST Least Significant
Bit (MSB) Bit (LSB)
1
7 3 2 07 3 2 0

Bit number within
storage unit

Resentarion of a Record of type R

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to 4 component ol a record, its size is the size of its
subtype. Its position is chosen by the Compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of

the component so as 10 reduce the number of gaps and thus the size of the record
objects.

Because of these optimisations, there is no connection between the order of the

components in a record type declaration and the positions chosen by the Compiler for
the components in a record object.

Restrictions on Representation Clauses 37

e —————

Pragma PACK has no furt ier effect on records. The Alsys Compiler always optimizes the
layout of records as described above.

Indirect components
If the offset of a component cannot be computed at compile time, this offset is stored in

the record objects at run time and used 10 access the component. Such a component is
said 10 be indirect while other components are said 10 be direct:

T Beginmning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset
INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components.

38 Alsys Ada for the Transputer, Appendix F, v5

For example:

type DEVICE is (SCREEN, PRINTER);
type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range < >) of INTEGER;

type GRAPH (L : NATURAL) is
record
X : SERIES(1 .. L); -- The size of X dependson L

Y : SERIES(1 .. L); -- The size of Y depends on L
end record;

Q : POSITIVE;

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); -- The size of F depends on N

S : GRAPH(Q); -- The size of S depends on Q
caseDis

when SCREEN = >
C:COLOR;
when PRINTER =>
null;
end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order (0 minimize the number of

indirect components, the Compiler groups the dynamic components together and places
them at the end of the record:

Resrictions on Representation Clauses 39

D = SCREEN

D = PRINTER
N=2 N =1
Beginning of the record
S OFFSET S OFFSEY
Compile time offsets
F OF/SET F OFFSET
N N
0 D
c - -
Run time offsets - F -
L L
Lo | |
- - - s -
- s -

The record type PICTURE: F and S are placed at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic

component of this list is a direct component because its offset can be computed at
compilation time.

40 Alsys Ada for the Transputer, Appendix F, v5

For example:
Beginning of the record
Y OFFSET

Compile time offset

L
Compile time offset

X Size dependent on discriminant L
Run time offset

Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store

the size of any value of the record type (the maximum potential offset). The Compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access 10 an object of a record type or 10 its components involves
computing information which only depends on the discriminant values. To avoid
unnecessary recomputation, the Compiler stores this information in the record objects,
updates it when the values of the discriminants are modified and uses it when the objects

or their components are accessed. This information is stored in special components
called implicit components.

Restrictions on Representation Clauses 4]

An implici component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD_SIZE and the other VARIANT_INDEX.

On the other hand an implicit component may be used to access a given record
component. In this case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the

record component). Components of this kind are called ARRAY_DESCRIPTORs or
RECORD_DESCRIPTORsS.

RECORD_SIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space

necessary 1o store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD_SIZE componen! may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a2 number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The Compiler evaluates an upper bound MS of this

size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORD_SIZE.

VARIANT_INDEX

This implicit component is created by the Compiler when the record type'has a variant

part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANT_INDEX.

Alsys Ada for the Transputcr, Appendix F, v5

For example:

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND is
when AIRCRAFT => --1
WINGSPAN : INTEGER;

when others => -2
null;
end case;
when BOAT => -3
STEAM : BOOLEAN;
when ROCKET => -4
STAGES : INTEGER;
end case;
end record,

The value of the variant index indicates the set of components that are present in a
record value:

variant Index Set
1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Restrictions on Representation Clauses 43

Component interval
KIND --

SPEED --

WHEELS 1..2
WINGSPAN 1..1
STEAM 3..3
STAGES 4 .. 4

The implicit component VARIANT_INDEX must be large enough to store the number V
of component lists that don’t contain variant parts. The Compiler treats this implicit
component as having an anonymous integer type whose range is 1.. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANT_INDEX.

ARRAY _DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record

component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

The Compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as having
an anonymous record type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name CARRAY_DESCRIPTOR.

RECORD_DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

44 Alsys Ada for the Transputer, Appendix F, v$

The Compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be

denoted in a component clause by the implementation generated name
C'RECORD_DESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD_SIZE and/or VARIANT_INDEX from a record type. This can be

done using an implementation defined pragma catled IMPROVE. The syntax of this
pragma is as follows:

pragma IMPROVE (TIME | SPACE, [ON =>] simple_name),

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the Compiier only inseris a VARIANT_INDEX or a
RECORD_SIZE component if this component appears in a record representation clause

that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Record subtypes

Size: Unless a component clause specifies that a component of a record type has an

offset of a size which cannot be expressed using storage units, the size of a record subtype
is rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

« when the record svitype has non-static constraints,

s when a component is an array Or a record and its size is no1 computed at compile
time.

Restrictions on Representation Clauses 45

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a

component or of a gap cannot be evaluated exactly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful 1o verify
that the layout of a record is as expected by the application.

Object size: An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 4 Kbyte. If the size of the subtype is greater than this, the object

has the size necessary 10 store its current value; storage space is allocated and released as
the discriminants of the record change.

Alignment: When no record representation clause applies 10 its base tvpe, a record

subtype has the same alignment as the component with the highest alignment
requirement.

When a record representation clause that does not contain an alignment clause applies
10 its base 1ype, a record subtype has the same alignment as the component with the
highest alignment requirement which has not been overridden by its component clause.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause.

Object address: Provided its alignment is not constrained by a representation clause, the

address of an object of a record subtype is a multiple of the alignment of the
corresponding subtype.

46 Alsys Ada for the Transputer, Appendix F, v5

CHAPTER §

Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the Compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined for referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implementation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this

component and the storage locations of other components. An error message is issued if
this check fails.

There are four such attributes:

TRECORD_SIZE For a prefix T that denotes a record type. This attribute

refers to the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a record type with
defaulted discriminanis when the sizes of the record objects
depend on the values of the discriminants.
TVARIANT_INDEX For a prefix T that denotes a record type. This atribute
refers to the record component introduced by the Compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of a
record type with variant type.
C'ARRAY_DESCRIPTOR For a prefix C that denotes a record component of an array
type whose component subtype definition depends on
discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store

information on subtypes of components that depend on
discriminants.

Conventions for Implementarion Genzrated Names 47

C'RECORD_DESCRIPTOR For a prefix C that denotes a record component of a record
type whose companent subtype definition depends on
discriminants. This attribute refers 1o the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

48 Alsys Ada for the Transputer, Appendix F, v5

CHAPTER 6

Address Clauses

6.1 Address Clauses for Objects
An address clause can be used 1o specify an address for an object as described in [13.5].

When such a clause applies 1o an object no storage is allocated for it in the program

generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
maximum possible size is greater than 4 Kbytes.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented.

Address Clauses 49

50

Alsys Ada for the Transpurer, Appendix F, v5

CHAPTER 7

Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

» if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand: the
result has the size of the source.

« if an unchecked conversion is achieved of a composite source type 10 a scalar or

access larget type, the result of the function is a copy of the source operand: the
result has the size of the target.

Restrictions on Unchecked Conversions

Alsys Ada for the Transputer, Appen x Fvs

CHAPTER 8

Input-Output Packages

The predefined input-output packages SEQUENTIAL 1O [14.2.3], DIRECT _1O {14.2.5],

TEXT_10 [14.3.10] and 10_EXCEPTIONS [14.5] are implemented as described in the
Language Reference Manual.

It should be noted that, in order 10 generate output, calls 10 PUT procedures should be
followed by a call to either PUT_LINE or NEW_LINE.

The package LOW_LEVEL_IO [14.6]. which is concerned with low-level machine-
dependent input-output, is not implemented.

All access to the services of the host system are provided through the INMOS supplied
iserver 100l [Ref.3), so much of Ada input - output is host independent.

8.1 NAME Parameter

No special treatment is applied to the NAME parameter supplied to the Ada procedures
CREATE or OPEN {14.2.1]. This parameter is passed immediately on to the INMOS

server and from there 1o the host operating svstem. The file name can thus be in any
format acceptable 10 the host system.

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of (2], separated by commas. The FORM parameter may be given as a null string
except when DIRECT_10 is instantiated with an unconstrained type; in this case the
record size attribute must be provided. Attributes are comma-separated; blanks may be
inserted between lexical elements as desired. In the descriptions bejow the meanings of

narural, positive, €ic., are as in Ada; auiribute keywords (represented in upper case) are
identifiers {2.3} and as such may be specified without regard to case.

USE_ERROR is raised if the FORM parameter does not conform to these rules.

Inpui-Outpui Packages 53

The attributes are as follows:

8.2.1 File Sharing

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. If such rules are violated or if a

different file sharing attribute is specified in a later OPEN or CREATE call,
USE_ERROR will be raised. The syntax is as follows:

NOT_SHARED |
SHARED => access__mode

where

access_mode ::= READERS | SINGLE_WRITER | ANY:

A file sharing attribute of:

NOT_SHARED implies only one internal file may access the

external file.

SHARED => READERS imposes no restrictions on internal files of

mode IN_FILE, but prevents any internal files

of mode OUT_FILE or INOUT_FILE being
associated with the external file.

SHARED = > SINGLE_WRITER is as SHARED => READERS, but in

addition allows a single internal file of mode

OUT_FILE or INOUT_FILE.

SHARED => ANY places no restriction on external file string.

If a file of the same name has previously been opened or created, the default is taken

from that file’s sharing attribute, otherwise the default depends on the mode of the file:

for mode IN_FILE the default is SHARED => READERS, for modes INOUT_FILE
and OUT_FILE the default is NOT_SHARED.

54 Alsys Ada for the Transputer, Appendix F, v5

8.2.2 Binary Files

Two FORM attributes, RECORD_SIZE and RECORD_UNIT, control the structure of
binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive RECORDS.

The structure of such a record is:
[HEADER] OBJECT [UNUSED_PART |

and it is formed from up to three items:

« an OBJECT with the exact binary representation of the Ada object in the executable
program, possibly including an object descriptor

» a HEADER consisting of two word sized fields:
- the length of the object in bytes
- the length of the descriptor in bytes
« an UNUSED_PART of variable size to permit full control of the record’s size

The HEADER is implemented only if the actual parameter of the instantiation of the 10
package is unconstrained.

The file structure atiributes take the form:

RECORD _SIZE = > size_in_bytes
RECORD_UNIT = > size_in_bytes

Their meaning depends on the object’s type (constrained or not) and the file access mode
(sequential or direct access):

a) If the object’s type is constrained:
The RECORD_UNIT attribute is illegal

- If the RECORD_SIZE attribute is omitted, no UNUSED_PART will be
implemented: the default RECORD_SIZE is the object’s size

Input-Output Packages

'« present, the RECORD_SIZE attribute must specify a record size greater than

u: equal to the object’s size, otherwise the exception USE_ERROR will be
raised

b) If the object’s type is unconstrained and the file access mode is direct:

- The RECORD_UNIT attribute is illegal

The RECORD_SIZE attribute has no default value, and if it is not specified, a
USE_ERROR will be raised

An attempt 10 input of output an object larger than the given RECORD_SIZE
will raise the exception DATA_ERROR

€) If the object’s type is unconstrained and the file access mode is sequential:

- The RECORD_SIZE atiribute is illegal
- The default value of the RECORD_UNIT attribute is 1 (byte)

The record size will be the smallest multiple of the specified (or default)
RECORD_UNIT that hoids the object and its header. This is the only case
where records of a file may have different sizes.

In all cases the value given must not be smaller than a minimum size. For constrained
types, this minimum size is ELEMENT_TYPE'SIZE / SYSTEM.STORAGE_UNIT;
USE_ERROR will be raised if this rule is violated. For unconstrained types, the
minimum size is ELEMENT_TYPE'DESCRIPTOR_SIZE /
SYSTEM.STORAGE_UNIT plus the size of the largest record which is to be read or

written. If a larger record is processed, DATA_ERROR will be raised by the READ or
WRITE.

8.2.3 Buffering

This attribute controls the size of The buffer used as a cache {or iaput-output operations:

BUFFER_SIZE = > size_in_bytes

The default value for BUFFER_SIZE is 0; which means no buffering.

56 Alsys Ada for the Transputer, Appendix F, v$S

8.2.4 Appending

This attribute may only be used in the FORM parameter of the OPEN command. If
used in the FORM parameter of the CREATE command, USE_ERROR will be raised

The affect of this attribute is to cause writing to commence at the end of the existing file
The syntax of the APPEND attribute is simply:
APPEND

The default is APPEND => FALSE, but this is overridden if this attribute is specified.

In normal circumstances, when an external file is opened, an index is set which points 10
the beginning of the file. If the APPEND attribute is present for a sequential or for a text
file, then data transfer will commence at the end of the file. For a direct access file, the
value of the index is set 10 one more than the number of records in the external file.

This attribute is not applicable to terminal devices.

83 USE_ERROR

The following conditions will cause USE_ERROR 10 be raised:

e Specifying a FORM parameter whose syntax does not conform 10 the rules given
above.

« Specifying the RECORD_SIZE FORM parameter attribute to have a value of zero, or
failing to specify RECORD_SIZE for instantiations of DIRECT_IO for unconstrained
types.

« Specifying a RECORD_SIZE FORM parameter attribute 10 have a value less than
that required to hold the element for instantiations of DIRECT_10 and
SEQUENTIAL_IO for constrained types.

« Violating the file sharing rules staled above.

Attempting to perform an input - output operation which is not supported by the
INMOS iserver due to restrictions of the host operating system.

Errors detected whilst reading or writing (€.g. writing t0 a file on a read-only disk).

Input-Output Packages

58

Alsys Ada for the Transputer, Appendix F, v5

CHAPTER 9

Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORT_INTEGER -128..127 -2

INTEGER -2147483648 .. 2147483647 - 2" 31 .1

Other Integer Types

For the packages DIRECT_]O and TEXT_IO, the ranges of values for types COUNT
and POSITIVE_COUNT are as follows:

COUNT 0.. 2147483647 --2%*31.1

POSITIVE_COUNT 1..2147483647 --2**31-1
For the package TEXT_lO, the range of values for the type FIELD is as follows:

FIELD 0..255 -2**8-1

Characteristics of Numeric Types 59

9.2 Floating Point Type Attributes

FLOAT

Approximate

value
DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 2.0 ** .20 9.54E-7
SMALL 2.0 ** -85 2.58E-26
LARGE 20%* 84 * (1.0 - 2.0 ** -21) 1.93E425
SAFE_EMAX 125
SAFE_SMALL 2.0 ** -126 1.18E-38
SAFE_LARGE 20** 125* (1.0 - 2.0 ** -2]1) 4.25E+37
FIRST -2.0 ** 127 * (2.0 - 2.0 ** -23)-3.40E+38
LAST 2.0 ** 127 * (2.0 - 2.0 ** -23) 3.40E+38
MACHINE _RADIX 2
MACHINE _MANTISSA 24
MACHINE_EMAX 128
MACHINE__EMIN -125
MACHINE_ROUNDS TRUE
MACHINE_OVERFLOWS TRUE
SIZE 32
60 Alsys Ada for the Transputer, Appendix F, v5

LONG_FLOAT

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

15

51

204

2.0°° .50

2.0**-205

2.0°*204* (1.0-2.0** -51)
1021

20°*-1022

2.0°* 1021 * (1.0- 2.0 ** -51)
-2.0°° 1023 * (2.0-2.0 ** .51)
20°* 1023 * (2.0-2.0 ** .51)
2

53
1024
-1021
TRUE
TRUE
64

9.3 Attributes of Type DURATION

DURATION'DELTA
DURATION'SMALL
DURATION'LARGE
DURATION'FIRST
DURATION'LAST

Characteristics of Numeric Types

20°°-14
20** 14
1310720
-86400.0
86400.0

Approximate
value

8.88E-16
1.94E-62
2.57E+61

2.22E-308
2.25E+307
-1.79E+308
1.79E + 308

61

Alsys Ada for the Transputer, Appendix Fovs

REFERENCES

[1] Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A-1983).

{2] Occam2 Reference Manual,
INMOS Limited
Prentice Hall, 1988.

(3] Occam2 Toolset User Manual.
INMOS Limited, 1989.

INMOS document number 72 TDS 184 00.

[4] Transputer Instruction Set - A Compiler Writer's Guide
INMOS Limited

Prentice Hall, 1988

References

63

Alsys Ada for the Transpuicr, Appendiz F, 5

’

ADDRESS attribute 11
restrictions 11

Append attribute 57

ARRAY_DESCRIPTOR auribute 47

ASCIl 6,7

Altributes 11
ARRAY_DESCRIPTOR 47
DESCRIPTOR_SIZE 11
IS_ARRAY 11
RECORD_DESCRIPTOR 48
RECORD_SIZE 47,53
representation attributes 11
VARIANT_INDEX 47

BOOLEAN 6

CHARACTER 6
COUNT 59

DESCRIPTOR_SIZE attribute 11, 56
DIRECT_1O 53,59
DURATION

attributes 61

Enumeration types 5
BOOLEAN 6
CHARACTER 6

FAST_PRIMARY 10, 30

FIELD 59

File sharing attribute 54

Fixed point types 6
DURATION 61

FLOAT 6,60

Floating point types 6
FLOAT 6, 60
LONG_FLOAT 6,61

Index

INDEX

FORM parameter 53
FORM parameter attributes
append 57
file sharing autribute 54
record_size attribute S7

lmplememalion-dependem attributes
11
Implementation-dependent pragma 3

lmplememation-generalcd names 47
IMPROVE 10

INDENT 10

INLINE 3

Input-Output packages 53
DIRECT_1O 53
IO_EXCEPTIONS 53
LOW_LEVEL 10 53
SEQUENTIAL _IO 53
TEXT_IO 53

INTEGER 5, 59

Integer types $, 59
COUNT 59
FIELD 59
INTEGER 5, 59
POSITIVE_COUNT 59
SHORT_INTEGER 5, 59

INTERFACE 3

INTERFACE_NAME 3.9

Interfaced subprograms
Restrictions 8§

10_EXCEPTIONS 53

IS_ARRAY attribute 11

Language name 3

LONG_FLOAT 6, 61
LOW_LEVEL 10 53

65

NOT_SHARED s4
Numeric types

integer types 59

Occam 4

PACK 10
Parameter representations §
Access types 7
Array types 7
Enumeration types S
Fixed point types 6
Floating point types 6
Integer types s
Record types 7
Parameter~passing conventions 4
POSITIVE_COUNT s9
Pragma INLINE 3
Pragma INTERFACE 3
language name 3
occam 4
subprogram_name 3
Pragma INTERFACE_NAME 3
string_litera] 9
subprogram_name 9
Pragmas
FAST_PRIMARY 10,30
IMPROVE 10
INDENT 10
INTERFACE 3
INTERFACE_NAME 9
PACK 10
PRIORITY 10
STORAGE_SIZE_RATIO 10, 30
SUPPRESS 10
PRIORITY 10

characteristics 59
Fixed point types 61
RECORD_DESCRIPTOR autribute
48

RECORD si1zZE autribute 47,53, 57

Representation atiributes 11

Representation clauses 17
restrictions 17

SEQUENTIAL 10 53
SHARED 54
SHORT_INTEGER 5, 59

STORAGE_SIZE-RATIO 10, 30
STRING 7

String literaj 9
Subprogram_name 3.9
SUPPRESS 10
SYSTEM package 12

TEXT_IO 53,59
Unchecked conversions S1
restrictions 51

USE_ERROR 53, 57

VARIANT_INDEX attribute 47

Alsys Ada for the Transpurer, Appendix F, v§

