
Form Approved
1OPMl No. 0704-0188ADese A237 411 AENTATION PAGE _____o,_074_018

iverae I hur pe respnseindg lh ime for reviiiweig initrulim rhn g xsigdt w s al n ana" tedt
ganJ" this burden etmate or any othe aspect o4 tis collecion of information, exnldvgge stosfrngcig hi udn oWsig
.2 1115 Jefferson Davis Hig4way. Sute 1204. Ari VA 22202-4302. and to the Offe of Inlormation and Paa iry Aflai. Office of

i. AkiLNCY USE ONLY (Leave Blank) 2. REPORT DATE 3. R-PORT TYPE AND DATES COVERED

I Final: 15 Aug 1990 to 01 Mar 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Alsys Limited, Alsycomp_017, Version 5.2, Micro VAX II under MICRO VMS V5.3
(Host) to INMOS T425 transputer implemented on a B403 TRAM (Target),
901118N1.11064

6. AUTHOR(S)

National Computing Centre Limited
Manchester, UNITED KINGDOM

7- PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Computing Centre Limited REPORT NUMBER

Oxford Road AVFVSR_90502/74-910402
Manchester MI 7ED
UNITED KINGDOM

9. SPONSORING/MONITORING AGENCY NAM E(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABiLiTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Alsys Limited, Alsycomp_017, Version 5.2, Manchester England,MICRO VAX II under MICRO VMS V5.3 (Host) to INMOS
T425 transputer implemented on a B403 TRAM using the host running INMOS Iserver V1.3 for fil-server support via a
CAPLIN OTO board link (bare machine), ACVC 1.11.

14, SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

N f L,4 2.. .. Stand-I Form 298. (Rev. 2-89)
Prescribed by ANSI Std 239-128

CHAPTER 1

INTRODUCTION

This Validation Summary "ep-.zt desclibes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of .. ting this compiler using the Ada Compiler
Validation Capability ̂ t(. An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies-for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are

caninepoRt.rt.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. ",The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent b%4t is permitted by the Ada Standard. Six classes
of tests are used. These\tests are designed to perform checks at compile
time, at link time, and duni execution.

000V

A-

o e Y

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 901118.

Compiler Name and Version: Alsycomp_017 Version 5.2

Host Computer System: MICRO VAX 11 under MICRO VMS V53

Target Computer System: INMOS T425 transputer implemented on a B403 TRAM
using the host running INMOS Iserver V13 for
file-server support via a CAPLIN QTO board link (bare
machine)

A more detailed description of this Ada implementation is found in section 3.1 of this report.
As a result of this validation effort, Validation Certificate #901118N1.11064 is awarded to Alsys
Limited. This certificate expires on 01 JUNE 1992.

This report has been reviewed and is approved.

Jane Pink / Ada Valdh.t' Organization
Testing Services Manager 1/ Director, Comder & Software
The National Computing Centre Limited Engineering Division
Oxford Road Institute for Defense Analyses
Manchester Alexandria
MI 7ED VA 22311
England

AAda Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington
DC 20301

Validation Summarv P- AVFVSR_90502f74

Alas Limited Page ii of iii Aisyoomp_017 Vamioa 5.2

AVF Control Number. AVF VSR_9052i74-910402

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number. #901118N1.11064

Alsys Limited
Alsycomp_017 Version 5.2

MICRO VAX H under MICRO VMS V53

INMOS T425 transputer implemented on a B403 TRAM
using the host running INMOS Iserver V13 for

file-scrver support via a CAPLIN QT0 board link (bare machine)

Prepared by
Testing Services

The National Computing Centre Limited
Oxford Road
Manchester

M1 7ED
England

VSR Version 90-08-15 91-00482

91 5 24 03 ,~Il~ UIi
Validation Summary Report AVFVSR_90502/74

AIiys Limited Page i of iii Aisyonmp_017 Vemion 5.2

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer. Alsys Limited

Ada Validation Facility:. The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
United Kingdom

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name: AlsycompP17

Version: Version 5.2

Host Computer System: MICRO VAX II under MICRO VMS V5.3

Target Computer System: INMOS T425 transputer implemented on a B403 TRAM
using the host running INMOS Iserver V1.3 for
file-server support via a CAPLIN (M''O board link (bare machine)

Customer's Declaration

I, the undersigned, representing Alsys Limited, declare that Alsys Limited has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation(s) listed in this declaration.

Signature Date

Vdidatiao Summ"y Rp-t AVFVSR-90502/74

A's tisitod Page iii of iii Alsycnmp_O17 Venion 5.2

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1
1.2 REFERENCES ... 1
1.3 ACVC TEST CLASSES ... 2
1.4 DEFINITION OF TERMS 3

CHAPTER 2
2.1 WITHDRAWN TESTS .. 1
2.2 INAPPLICABLE TESTS.. 1
2.3 TEST MODIFICATIONS 4

CHAPTER 3
3.1 TESTING ENVIRONMENT 1
3.2 SUMMARY OF TEST RESULTS 1
3.3 TEST EXECUTION .. 2

APPENDIX A

APPENDIX B

APPENDIX C

Validation Summary Relt AVFVSR_90502/74

ALys Limited Table of Contents - Page i of i Alsycomp..017 Verzion 5.2

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to !he Ada Validation Procedures
[Pro90] against the Ada Standard [Ada831 using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to [Pro90]. A
detailed description of the ACVC may be found in the current ACVC User's Guide [UG891.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield
VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria
VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987

[Pro90] Ada Compiler Validation Procedures,
Version 2.1, Ada Joint Program Office, August 1990.

Validation Summary Report AVFVSR_90502/74

AlIys imited Chapter 1 - Page 1 of 4 Alsycmp_017 Vcrsioa 5.2

INTRODUCTION

[UG891 Ada Compiler Validation Capability User's Guide
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of
a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class
B and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECKFILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECKFILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is
provided in Appendix A. In addition to these anticipated test modifications, additional changes may
be required to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by the AVF. This customisation
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
(see section 2.1) and, possibly some inapplicable tests (see Section 3.2 and lUG891).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
according to the Ada Standard.

Validation Summary Report AVF_VSR_90502/74

AIsy Limited Chapter 1 - Page 2 of 4 Alsycomp_017 Version 5.2

INTRODUCTION

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation of
Ada programs into executable form and execution thereof.

A d a C o m p i I e r The means for testing compliance of Ada implementations, consisting
Validation of the test suite, the support programs, the ACVC user's guide and
Capability (ACVC) the template for the validation summary report.

Ada Implementation An Ada compilcr with its host computer system and its target
computer system

Ada Validation Facility The part of the certification body which carries out the procedures
(AVF) required to establish the compliance of an Ada implementation.

Ada Validation The part of the certification body that provides technical guidance for
Organization (AVO) operations of the Ada Certification system.

Compliance of an Ada The ability of the implementation to pass an ACVC version.
Implementation

Computer System A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part of a
program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-designated
programs; performs user-designated data manipulation, including
arithmetic operations and logic operations; and that can execute
programs that modify themselves during execution. A computer
system may be a stand-alone unit or may consist of several inter-
connected units.

Conformity Fulfilment by a product, process or service of all requirements
specified.

Customer An individual or corporate entity who enters into an agreement with
an AVF which specifies the terms and conditions for AVF services
(of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity is
Conformance realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer System A computer system where Ada source programs are transformed into
executable form.

Validation Summary Report AVFVSR_90502174

AIM Limited Chapter I - Page 3 of 4 Abycomp 017 Version 5.2

INTRODUCTION

Inapplicable test A test that contains one or more test objectives found to be
irrelevan, for the given Ada implementation.

Operating System Software that controls the execution of programs and that provides
services such as resource allocation, scheduling, input/output control,
and data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are
possible.

Target Computer A computer system where the executable form of Ada programs are
System executed.

Validated Ada Compiler The compiler of a validated Ada implementation.

Validated Ada An Ada implementation that has been validated successfully either
Implementation by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

Withdrawn test A test found to be incorrect and not used in conformit.' testing. A
test may be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains erroneous or illegal use of the
Ada programming language.

Validation Summazy Report AVFVSR_90502/74

Aqys limitod Chapter 1 - Page 4 of 4 Alzycomp_017 Vezuioa 5.2

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is
90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85001L C83026A C83041A C97 16A C98003B BA20 1A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226D
BC3009B BD1B02B BD1B06A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectivcs which are irrelevant for a given Ada
impiementation. The inapplicability criteria for some tests are explain,.d in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the format AI-dddd. For this
implementation, the following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

The following 201 tests have floating-point type declarations requiring more digit-, than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
('45641L..Y (14 tests) C46012L..Z (15 tests)

Validation Summary Report AVFVSR_90502174

AIM Limited Chapter 2 - Page 1 of 5 Asycamp_017 Version 5.2

IMPLEMENTATION DEPENDENCIES

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504(_ C45504F C45611C
C415612C C45613C C45614C C45631C C45632C
B52004D C55SBO7A 13551309C B86001W C86006C
CD7101F

C35404D, C45231D, B86001X, C86006E, and CD710IG check for a predefined integer type with a
name other than INTEGEP. LONGINTEGER, or SHORTINTEGER.

C35702A, C35713B, C4542313, B86001T. and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B8600lZ check for a predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORT_FLOA T.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point operoti nits for types that require a
SYSTEM. MAX-MANTISSA of 47 or greatei.

C45536A C4601313, C460311B, C46033B and C46034B contain 'SMALL representation clauses which
are not powers of two or ten.

C45624A checks t'iat the proper exception is raised if MACHINE_-OVERFLOWS is FALSE for
floating point types with digits 5, For this imiplementation, MACH INEOVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINETOVERFLOWS is FALSE for
floaline, pont types with digits 6. For this implementation, 'MACHINE-OVERFLOWS is TRUE.

C86001F recumpiles package SYSTEMI, making package fEXT_-10, and hence package REPORT,
obsolete-. For this ;mplementation, the package TEXT_10 is dependent upon packagp SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the range of DURATION.
There are no such values for this imphcmentation.

CD1009C uses a representation clause specifying a non-default size for a floating-point type.

CD2A53A checks operatio,-is of a fixed-point type for which a length clause specif,*.s a power-of-ten
type'small. (See 2.3).

CD2A84A, CD2A84E. CD2A84I.J (2 tests), and CD2A840 use represent-.tion clauses; specifying
non-default sizes for access types.

BDFO0lA, BD8003A, BD8004A..B (2 tests), and A D8011A use machine code insertions.

'alidation Summary Report AVF_VSR_90502/74

ALsys .imnitcd Chapter 2 - Page 2 of 5 Alsycoaip_017 Version 5.2

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the given file operations are
supported for the given combination of mode and file access method.

Test File Operation Mode File Access Method

CE2102D CREATE INFILE SEQUENTIALIO
CE2102E CREATE OUTFILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10
CE21021 CREATE IN FILE DIRECT O
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN INFILE SEQUENTIAL_10
CE21020 RESET INFILE SEQUENTIAL_10
CE2102P OPEN OUTFILE SEQUENTIAL_10
CE2102Q RESET OUTFILE SEQUENTIAL_10
CE2102R OPEN INOUTFILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT_10
CE2102T OPEN IN FILE DIRECT_10
CE2102U RESET IN FILE DIRECT_10
CE2102V OPEN OUT FILE DIRECT 10
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE INFILE TEXT _10
CE3102F RESET Any Mode TEXT_10
CE3102G DELETE TEXT 10
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUTFILE TEXT_10

CE2107B..E (4 tests), CE2107L, CE2110B and CE2111D attempt to associate multiple internal
sequential files with the same external file when one or more files is open for writing. The proper
exception is raised when this association is attempted.

CE2107G..H (2 tests), CE21 IOD, and CE21 11H attempt to associate multiple internal direct files with
the same external file when one or more files is open for writing. The proper exception is raised
when this association is attempted.

CE2203A checks that WRITE raises USEERROR if the capacity of the ,xternal file is exceeded for
SEQUENTIAL_10. This implementation can not restrict file capacity.

CE2401H, EE2401D and EE2401G use instantiations of DIRECT 10 with unconstrained ariay and
record types; this implementation raises USE-ERROR on the attempt to create a file.

CE2403A checks that WRITE raises USE-ERROR if the capacity of the external file is exceeded for
DIRECT_10. This implementation does not restrict file capacity.

Validation Sumnmry Report AVF VSR 90502/74

Aiys IUmited Chapter 2 - Pagc 3 of 5 Aby.wmp_017 Version 5.2

IMPLEMENTATION DEPENDENCIES

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A attempt to associate multiple internal text
files with the same external file when one or more files is open for writing. The proper exception
is raised when this association is attempted.

CE3202A expects that function NAME can be applied to the standard input and output files; in this
implementation these files have no names, and USEERROR is raised. [See 2.31.

CE3304A checks that USE-ERROR is raised if a call to SETLINELENGTH or
SETPAGELENGTH specifies a value that is inappropriate for the external file. This
implementation does not have inappropriate values for either line length or page length.

CE3413B checks that PAGE raises LAYOUTERROR when the value of the page number exceeds
COUNT'LAST. For this implementation, the value of COUNT'LAST is greater than 150000 making
the checking of this objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 26 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B24007A B24009A B28003A
B32202A B32202B B32202C B37004A
B45012A B61012A B74304A B74401F
B74401R B91004A B95069A B95069B
B97103E BA1101B2 BA1101B4 BC2001D
BC3009C BC3204D

CD2A53A was graded inapplicable by Evaluation Modification as directed by the AVO. The test
..ontains a spcification of a power-of-10 value as small for a fixed-point type. The AVO ruled that,
under ACVC1.11, support of decimal smalls may be omitted.

CE3202A was graded inapplicable by Evaluation Modification as directed by the AVO. The test will
abort with an unhandled exception (USE ERROR) when function NAME is invoked for the standard
input file. The AVO ruled that this behaviour is acceptable pending a resolution of the issue by the
ISO WG-9 Ada Rapporteur Group.

CE3605A was graded passed by Test Modification as directed by the AVO. This test attempts to
write a line with 516 characters; this exceeds the implementation's default limit of 503, and
USE ERROR is raised. This behaviour is allowed by AI-00534, and so the test was modified as
follows:

On line 74, '86' was changed to '83'

Validation Summary Report AVEVSR_90502/74

Alsys Limited Chapter 2 - Page 4 of 5 Asycotp_017 Verion 52

IMPLEMENTATION DEPENDENCIES

On line 81, '517' was changed to '499'

The modified test was processed and passed.

EA3004D was graded passed by Evaluation and Processing Modification as directed by the AVO. The
test requires that either pragma INLINE is obeyed for the invocation of a function in each of three
contexts and that thus three library units are made obsolete by the re-complication of the inlined
function's body, or else the pragma is ignored completely. This implementation obeys the pragma
except when the invocation is within a package specification. When the test's files are processed in
the given order, only two unitc are made obsolete; thus, the expected error at line 27 of file
EA3004D6M is not valid and is not flagged. To confirm that indeed the pragma is not obeyed in this
one case, the test was also processed with the files re-ordered so that the re-compilation follows only
the package declaration (and thus the other library units will not be made obsolete, as they are
compiled later); a "NOT APPLICABLE" result was produced, as expected. The revised order of files
was 0-1-4-5-2-3-6.

Validation Summary Report AVFVSR_90502/74

Aisy limited Chapter 2 - Page 5 of 5 Asycomp_9017 Varioa 5.2

PROCESSING INFORMATION

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the information
given in the initial pages of this report.

For a point of contact for technical information about this Ada implementation system, see:

Jon Frosdick
Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire
RG9 1EN

For a point of contact for sales information about this Ada implementation system, see:

John Stewart
Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire
RG9 1EN

Testing of this Ada implementation was conducted at the customer's site by a validation team from
the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

a) Total Number of Applicable Tests 3780
b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 309

Validation Summary Report AVFVSR_90502174

Albs Limited Chapter 3 - Page I of 3 Alsywmp..17 Venion 5.2

PROCESSING INFORMATION

d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
f) Total Number of Inapplicable Tests 309 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation supports a file system. All
floating-point precision tests were processed because this implementation supports floating-point
precision to the extent that was tested. When this compiler was tested, the tests listed in section 2.1
had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was tested, the tests listed in
section 2.1 had been withdrawn because of test errors. The AVF determined that 309 tests were
inapplicable to this implementation. All inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were also processed.

A Magnetic tape containing the customized test suite (see section 1.3) was taken on-site by the
validation team for processing.

The contents of the magnetic tape were loaded onto a SUN 3/160. These were then transferred to
the MicroVax II host using File Transfer Protocol on an Ethernet link.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

The tests were compiled and linked on the host computer system, as appropriate. The executable
images were transferred to the target computer system by the communications link described above,
and run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The options invoked explicitly for validation
testing during this test were:

CALLS=INLINED Allows inline insertion of code for subprograms.

REDUCTION =EXTENSIVE Perform extensive high levcl optimisations.

EXPRESSIONS =EXTENSIVE Perform extensive common sub-expression elimination
optimisations.

OBJECT=PEEPHOLE Perform peephole optimisations.

Validation Summary Rcporl AVF_VSR_90502/74

Alys Limitod Chapter 3 - Page 2 of 3 Alsycoomp_017 Verioe 5.2

PROCESSING INFORMATION

MEMORY= 1000 Reserve 1000 Kbytes of memory for all the date manipulated
in the libraries.

OUTPUT= <file> <file> specifies the name of the compilation listing
generated.

WARNING=NO Do not include warning messages.

DETAIL=NO Do not add extra detail to the error messages.

SHOW=NONE Do not print a header and do not include an error summary
in the compilation listing.

ERROR=999 Set the maximum number of compilation errors perrnittcd
before compilation is terminated to 999.

FILEWIDTH=79 Set width for listing file to 79 columns.

FILELENGTH=999 Disable insertion of form feeds in the output.

In addition, the following options were used to produce full compiler listings:

TEXT Print a compilation listing including full source text.

The default options were used for the Binder

Test output, compiler and linker listings, and job logs were captured on Magnetic tape and archived
at the AVF. The listings examined on-site by the validation team were also archived.

Validation Summa y Repoul AVFVSR_9050274

AIp Limited Chapter 3 - Page 3 of 3 Albycomp_.017 Vesion 5.2

MACRO PARAMtERS

APPENDIX A

MACRO PARAMETRS

This appendix contains thc macro parameters used for customizing the ACVC. The meaning and
purpose of these parameters are explained in [UG89]. The parameter values are presented in two
tables. The first table lists the valued that are defined in terms of the maximum input-line length,
which is the value for MAX_-IN-LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V' represents the maximum input-line length.

Macro Parameter Macro Value

$MAXINLEN 255

$BIGIDi (1..V-1 = > 'A', V = > '1')

$BIG_1D2 (1.V-1 = > 'A', V = > '2')

$BIG_1D3 (1..V/2 = > 'A') & '3' & (1..V- 1-V/2 = > 'A')

$BIG_1D4 (1..V/2 = > 'A) & '4' & (l..V-1I-V/2 = > 'A')

$810_INTLiT (1..V-3 = > '0') & "298"

$BIGREAL LIT (1..V-5 => '0') & "690.0"

$BIGSTRINGI " & (1..V,'2 = > 'A') & "

$BIG-STRING2 '""& (1..V-1-Vt2 => 'A') & '1'& 'f

$BLANKS (1..V-20 =>'')

$MAXLENINTBASEDLITERAL "2:" & (1..V-5 => '0') & "l11:"

$MAXLENREALBASED LITERAL "16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRING LITERAL ''& (1..V-2 = > 'A') &

Validation Summnary Report AVF VSR_90502(74

Alays Umited Appendix A - Page 1 of 4 Akywap_9l? Versin 5.2

MACRO PARAMETERS

MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAIJLTMEMSIZE 4294967296

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME TRANSPUTER

$DELTADOG 2#1.0#E-31

$ENTRY-ADDRESS ADDRESSOFMEMBLOCK3

$ENTRY-ADDRESS1 ADDRESSOFMEMBLOCKi

SENTRY-ADDRESS2 ADDRESSOFMEMBLOCK2

$FIELDLAST 255

$FILETERMINATORVI

$FIXEDNAME NOSUCHTYPE

$FLOAT-NAME NOSUCHTYPE

$FORMSTRING

$FORMSTRING2 "CANNOTRESTRICT -FILECAPACITY"

$GREATER THANDURATION 100000.0

$GREATERTHANDURATIONBASELAST
10000000.0

$GREATERTHANFLOATBASELAST 1.0E40

$GREATERTHANFLOATSAFELARGE 1.0E38

Vaidaition Swnazy Repon AVFVSR_905Z174

Akpy Limited Appendix A - Page 2 of 4 Ahycamp_017 Vamion 5.2

MACRO PARAMEETERS

$GREATERTHAN SHORTFLOATSAFELARGE
SHORTFLOATNOTSUPPORTED

$HIGHPRIORITY 10

$ILLEGALEXTERNALFILENAMEl ?#-@'[f}]+=

$ILLEGALEXTERNALFILENAME2 [{}]+=?#-@'

$INAPPROPRIATELINELENGTH -1

$INAPPROPRIATEPAGELENGTH -1

$INCLUDEPRAGMAI. PRAGMA INCLUDE ("A28006D1.TST")

SINCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006D1.TST')

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGFRLASTPLUS_1 2147483648

$INTERFACELANGUAGE OCCAM

$LESSTHANDURATION -100000.0

SLESSTHANDURATIONBASEFIRST -10000000.0

SLINETERMINATOR ASCII.LF

$LOWPRIORITY 1

$MACHINECODESTATEMENT NULL;

SMACHINECODETYPE NOSUCHTYPE

$MANTISSADOC 31

$MAXDIGITS 15

SMAXINT 2147483647

SMAXINTPLUS_1 2147483648

Validation Summary Report AVFVSR_90502174

AIlayimited Appendix A - Page 3 of 4 Alsywxnp_017 Versin 5.2

MACRO PARAMETERS

$MININT -2147483648

$NAME NOSUCHTYPE

$NAMELIST 180X86,I80386,MC68OX,370,TRANSPUTERVAX

$NAMESPECIFICATION1 X2120A

$NAMESPECIFICATION2 X2120B

$NAMESPECIFICATION3 X3119A

$NEGBASEDINT 16#FFFFFFFF#

$NEWMEMSIZE RELE VANT-TESTSWITHDRAWN

$NEWSTORUNIT RELEVANT TESTSWITHDRAWN

$NEWSYSNAME RELEVANTTESTSWITHDRAWN

$PAGETERMINATORII

$RECORD DE~IINITION NEW INTEGER

$RECORDNAME NOSUCHMACHINE CODETYPE

$TASKSIZE 32

$TASKSTORAGESIZE 2048

$TICK 64.011-6

SVARIABLEADDRESS ADDRESSOFMEMBLOCK3

$VARIABLEADDRESS1 ADDRESSOFMEMBLOCKi

$VARIABLEADDRESS2 ADDRESSOFMEMBLOCK2

$YOURPRAGMA NOSUCHPRAGMA

Validation Summary Report AVF-VSR_90502W74

Abys United Appendix A - Page 4 of 4 Alsyxunp 017 Version 52

COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

Compiler Options

SOURCE =filename The name of the source file.

LIBRARY =Iibraryname The name of the Ada program library.

ANNOTATE="" User specified character string annotating compilation unit
as stored in library.

LEVEL=UPDATE Compilation level - complete compilation of source code into
object code and update of program library.

ERRORS=999 Number of errors permitted before compilation is
terminated.

CHECKS=ALL All run time checks to be performed, except those explicitly
suppressed by use of pragma SUPPRESS.

GENERICS=INLINE Place code of generics instantiations inline in the same unit
as the instantiation rather than in separate units.

MEMORY=500 OR 1000 Number of Kbytes reserved in memory for compiler data
(before swapping commences). Set to 500 for the
AlsyCOMP_037 validation and 1000 for the AlsyCOMP_017
validation due to different host memory availability.

CODE=4 Number of transputer prefix instructions used to construct
Ada code addresses.

DATA= 1 Number of transputer prefix instructions used to construct
Ada data addresses.

INTERFACE=4 Number of transputer prefix instructions used to construct
interface code addresses.

OUTPUT=file_name Compilation listing file name.

TEXT=YES or NO Controls inclusion of full source test in the compilation
listing. Set to YES for tests requiring compilation listings (ie
B tests). Set to NO for tests not requiring compilation
listings (ie non-B tests).

Validation Summary Report AVFVSR_90502/74

Ahns Limited Appendix B - Page 1 of 3 Alsycowp_017 Verioa 5.2

COMPILATION SYSTEM OPTIONS

WARNING=NO Do not include warning messages in the compilation listing.

SHOW=NONE Do not print a header on compilation listing pages, nor an
error summary at the end.

DETAIL=NO Do not print extra detail in error messages in the
compilation listing.

ASSEMBLY=NONE Do not include an assembly listing of generated code in the
compilation listing.

STACK=8 Maximum size in bytes for objects allocated in the main
execution stack. Objects bigger than this limit are allocated
on an auxiliary stack.

CALLS=INLINED Allow inline insertion of code for subprograms.

REDUCTION=EXTENSIVE Optimise run-time checks and remove dead code.

EXPRESSIONS= EXTENSIVE Optimise expression evaluation.

OBJECT=PEEPHOLE Optimise locally the object code as it is generated.

COPY=NO Do not save a representation of the source code in the
program library.

DEBUG-NO Do not save information for debugging.

TREE=NO Do not save information for cross referencing.

FILEWIDTH=79 Width of compilation listing page in colunins.

FILELENGTH=9999 Length of compilation listing page in lines (effectively
unpaginated).

Binder Options

PROGRAM =unit-name The name of the main unit of the Ada program.

LIBRARY =library name The name of the Ada program library.

LEVEL=LINK Binding level - complete bind to produce an object module.
followed by invocation of the INMOS ilink and iboot tools to
produce a bootable load module.

Validation Summay Report AVFVSR_9052J74

Asky Uimited Appendix B - Page 2 of 3 AlywupO017 Vjzko 5.2

COMPILATION SYSTEM OPTIONS

OBJECT=AUTOMATIC Load module name derived automatically from PROGRAM
name.

UNCALLED=REMOVE Remove the code for uncalled subprograms from the loadI
module.

SLICE-NO Invoke the task scheduler only at synchronization points.

HISTORY=MAIN Trace the propagation of exceptions unhandled ir the main
program.

ENTRY POINY=AUTOMATIC Entry point name derived automatically from PROGRAM
name.

SIZEMAIN=160 Number of Kbytes allocated to the main program stacks.

RATIOMAIN=20 Percentage of SIZE_MAIN allocated to the primary stack.

FASTMAIN=NO Allocated the stacks of the main prgram in external memory
(as opposed to on-chip memory).

SIZETASK=16 Default number of Kbytes allocated to task stacks (in
absence of explicit length clause).

RATIO fASK=50 Percentage of SIZETASK allocated to the prima- zt.ck.

FASTTASK=NO Allocated task stacks in external memory (as opposed to on-
chip memory).

TARGET=DEFAULT Use the defau. OCCAM harness code for the target
processor.

DIRECTIVES="" User specified directives for the IINMOS linker tool.

MODULES="" Use specified object modLles to be included in thr INMOS
link step.

SEARCH=- User specified object libraries to be included in the INMOS
link step.

OUTPUT=filename Binder listing file name.

DATA=NONE Do not print additional mapping informaticn in the l;,nder
listing.

WARNING=NO Do not print warning messages in the binder listing.

DEBUG=NO Do not save information for debugging.

Validation Summay Repoti AVFVSR_90502/74

Alrp Iauitod Appendix B - Page 3 of 3 Alyowmp._017 Vclion 5.2

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

TVhe only allowed implementation dcpcndencies correspond to implementation-dependent pragmas,
It) certain machine-dependent conventions :is mentioned in Chapter 13 of the Ada Standard, and to
'crtain allowed restrictions or representation clauses. The implementation-dependent characteristics

Oft this Ada implementation, as describcd in this Appendix, are p'ovided by the customer. Unless
.pecificallv noted othecwise, references in this Appendix are to compiler documentation and not to
ihis report. Iplementation-specific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

type INTEGER is range -2**31 .. 2**31-1;
type SHORTINTEGER is range -2**7 .. 2"'7-1;

type FLOAT is digits 6 range -(2.0-2.0**127.. (2.0-2.0**(-23))*2.0**127;
type LONGFLOAT is digits 15 range -(2.0-2.0**(-51))*2.0**102.

(2.0-2.0"*(51))*2.0"1023;

type DURATION is delta 2.0**-14 range -131_072.0..131_071.0

.nd STANDARD;

Validation Summary Rcporlt AVF_VSR_90502174

Al.s Iimitel Appendix C - Page 1 Alsycomp_017 Version 5.2

Alsys Ada Compilation System

for the Transputer

APPENDIX F

Implementation - Dependent Characteristics

Version 5

Alsys S.A.
29, A venue Lucien-Ren6 Duschesne

78170 La Cecle St. Cloud, France

Al vs Inc. Alsys GnzbH

67 South Bedford Street An, Ruppurrer Schlofi 7
Burlington, MA 01803-5152, USA. D- 7500 Karlsruhe 51,Gemany

Alsys Lid ALsys AB
Partridge House, Newtown Road Patron Pehr Vag 10

Henly-on-Thanies Box 1085
Oxon, RG9 IEN, UK 141 22 Huddinge, Stockholm, Sweden

A/Isys KKE

223-1 Yaniashita-oho
Naka-ku, Yokahanta, 231, Japan

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: August 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases
consult Alsys to determine whether such changes have been made.

PREFACE

This Appehdix F is for programmers, software engineers, project managers, educators and

students who want to develop an Ada program for the INMOS transputer.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, January 1983 (throughout this appendix, citations in
square brackets refer to this manual).

This document assumes that the reader has some knowledge of the architecture of the

transputer. Access to the document Occan2 Toolset User Manual [Ref. 31 which
describes the program development environment for occam as supplied by INMOS
would also be advantageous.

Preface

ii~ LS-ys Ada for Mhe Transputcr, Appendix F, ,.5

TABLE OF CONTENTS

INTRODUCTION 1

1 Implementation-Dependent Pragmas 3

1.1 INLINE 3
1.2 INTERFACE 3
1.2.1 Calling Conventions 4
1.2.2 Parameter-Passing Conventions 4
1.2.3 Parameter Representations 5
1.2.4 Restrictions on Interfaced Subprograms 8
1.3 INTERFACE NAME 9
1.4 INDENT 10
1.5 Other Pragmas 10

2 Implementation-Dependent Attributes 11

3 Specification of the Package SYSTEM 13

4 Restrictions on Representation Clauses 17

4.1 Enumeration Types 18
4.2 Integer Types 21
4.3 Floating Point Types 24
4.4 Fixed Point Types 26
4.5 Access Types 29
4.6 Task Types 30
4.7 Array Types 32
4.8 Record Types 36

Table of Contents ii

5 Conventions for Implementation-Gencrated Names 47

6 Address Clauses 49

6.1 Address Clauses for Objects 49
6.2 Address Clauses for Program Units 49
6.3 Address Clauses for Entries 49

7 Restrictions on Unchecked Conversions 51

8 Input-Output Packages 53

8.1 NAME Parameter 53
8.2 FORM Parameter 53
8.2.1 File Sharing 54
8.2.2 Binary Files 55
8.2.3 Buffering 56
8.2.4 Appending 57
8.3 USE-ERROR 57

9 Characteristics of Numeric Types 59

9.1 Integer Types 59
9.2 Floating Point Type Attributes 60
9.3 Attributes of Type DURATION 61

REFERENCES 63

INDEX 65

iv Alsys Ada for the Transpurer, Appendix F, v

INTRODUCTION

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
Ada Compilers for the INMOS transputer. This document should be considered as the
Appendix F to the Reference Manual for the Ada Programming Language ANSI/MIL-
STD 1815A, January 1983, as appropriate to the Alsys Ada implementation for the
transputer.

Sections 1 to 8 of this appendix correspond to the various items of information required
in Appendix F IF]*; sections 9 and 10 provide other information relevant to the Alsys
implementation. The contents of these sections is described below:

1. The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYSTEM (13.71.

4. The list of all restrictions on representation clauses 113.11.

5. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.4].

6. The interpretation of expressions that appear in address clauses.

7. Any restrictions on unchecked conversions [13.10.2].

8. Any implementation-dependent characteristics of the input-output packages [141.

9. Characteristics of numeric types.

* Throughout this manual, citations in square brackets refer to the Reference Manual
for the Ada Programming Language, ANSI/MIL-STD-1815A, January 1983.

Implemenltaion -Dependent Characwristcs

Throughout this. appendix, the name Ada Run-Tinze Executive refers to the run-time
library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, 110, and other utility functions,

2 Aliys Ada for the Transpuwer, Appendix F, %,5

CHAPTER 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported, except for the fact that it is not possible to inline a
function call in a declarative part.

1.2 INTERFACE

Ada programs can interface to subprograms written in occam through the use of the
predefined pragma INTERFACE [13.91 and the implementation-defined pragma
INTERFACE-NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (language nanie, subprogram name);

where:

* language nante is the name of the other language whose calling and parameter
passing conventions are to be used.

S ubprograniname is the name used within the Ada program to refer to the

interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is occam.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use.

Iniplenientation-Dependent Pragmas

The language name occam is used to refer to the standard occam calling and parameter
passing conventions for the transputer [Ref. 4, Section 5.101. The programmer can use
the language name occam to interface Ada subprograms to subroutines written in any
language that follows the standard occam calling conventions.

1.2.1 Calling Conventions

The following calling conventions are required for code to be called from Ada by use of
the pragma interface to occam.

On entry to the subprogram, the registers A, B and C are undefined. For the T8 only, the
floating point registers FA, FB and FC are similarly undefined. The return address and
any parameters are accessed relative to the workspace pointer, W, by the subprogram.

There are no assumptions concerning the contents of the register stacks (A, B, C and FA,
FB, FC) upon return from the interfaced subprogram, other than for interfaced
subprograms which are functions (see below). However, the workspace pointer, W,
should contain the same address upon return from the interfaced subprogram as it
contained before the call.

The setting of the error flag is ignored on return.

1.2.2 Parameter-Passing Conventions

On entry to the subprogram, the first word above the transputer workspace pointer
contains the return address of the called subprogram. Subsequent workspace locations
(from W+ I to W+n, where n is the number of parameters) contain the subprogram
parameters, which are all one word in length.

There is always an implicit vector space parameter passed as the last parameter to all
interfaced subprograms. This points to an area of free memory which can be used by the
occam compiler to allocate arrays declared in the interfaced subprogram.

Actual parameters of mode in which are access values or scalars of one machine word or
less in size are passed by copy. If such a parameter is less that one machine word in
length it is sign extended to a full word. For all other parameters the value passed is the
address of the actual parameter itself.

4 Alsys Ada for the Transputer, Appendix F, t-5

Since all large scalar, non-scalar and non-access parameters to interfaced subprograms

are passed by address, they cannot be protected from modification by the called
subprogram even though they may be formally declared to be of mode in. It is the
programmer's responsiuility to ensure that the semantics of the Ada parameter modes
are honoured in these cases.

If the subprogram is a function whose result is at most one machine word in length,
register A is used to return the result. All other results are returned by address in
register A-

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

1.23 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation
clauses have been used to alter the default representations of the types involved.
Chapter 4 describes the effect of representation clauses on the representation of values.

Integer Types 13.5.41

Ada integer types are represented in two's complement form and occupy a byte
(SHORT-INTEGER) or a word (INTEGER).

Parameters to interfaced subprograms of type SHORT INTEGER are passed by copy
with the value sign extended to a full machine word. Values of type INTEGER are

always passed by copy. The predefined type LONG-INTEGER is not available.

Enumeration Types 13.5.11

Values of an Ada enumeration type are represented internally as unsigned values

representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits. All other
enumeration types are represented in 32 bits.

Iniplementation -Dependent Pragmas

Consequently, the Ada predefined type CHARACTER 13.5.21 is represented in 8 bits,
using the standard ASCII codes [CJ and the Ada predefined type BOOLEAN 13.5.31 is
represented in 8 bits, with FALSE represented by the value 0 and TRUE represented by
the value 1.

As the representation of enumeration types is basically the same as that of integers, the
same parameter passing conventions apply.

Floating Point Types (3.5.7, 3.5.81

Ada floating-point values occupy 32 (FLOAT) or 64 (LONG-FLOAT) bits, and are held
in ANSI/IEEE 754 floating point format.

Parameters to interfaced subprograms of type FLOAT are always passed by copy.
Parameters of type LONGFLOAT are passed by address.

Fixed Point Types [3.5.9, 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed manrissa
and a constant small. The mantissa is implemented as an 8 or 32 bit integer value.
Small is a compile-time quantity which is the power of two equal or immediately inferior
to the delta specified in the declaration of the type.

The representation of an actual parameter of a fixed point type is the value of its
mantissa. This is passed using the same rules as for integer types.

The attribute MANTISSA is defined as the smallest number such that:

2 ** MANTISSA > = max (abs (upper bound), abs (lower-bound)) Isnial

The size of a fixed point type is:

MANTISSA Size
1..7 8 bits
8.. 31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

6 Alsys Ada for the Transputer, Appendix F, 0S

Access Types (3.81

Values of access types are represented internally by the address of the designated object
held in single word. The value MININT (the smallest integer that can be represented in
a machine word) is used to represent null.

Array Types [3.6]

Ada arrays are passed by address; the value pass, J is the address of the first element of
the first dimension of the array. The elements ol the array are allocated by row. When
an array is passed as ,a parameter to an interfaced subprogram, the usual consistency
checking between the array bounds declared in the calling and the called subprogram is
not enforced. It is the programmer's responsibility to ensure that the subprogram does
not violate the bounds of the array.

When passing arrays to occam, it may be the case that some of its bounds art; dndefined
in the source of the interfaced subprogrdam. If this is true, the missing bounds should be
passed as extra integer value parameters to the subprogram. These parameters should be
placed immediately following the array parameter itself and in the same order as the
missing strides appear in the occam source.

Values of the predefined type STRING 13.6.31 are arrays, and are passed in the same way:
the address of the first character in the string is passed. Elements of a string are
represented in 8 bits, using the standard ASCII codes. The elements are packed into one
or more words and occupy consecutive locations in memory.

Record Types [3.71

Ada records are passed by address; the value passed is the address of the first component
of the record. Components of a recoru are aligned on their natural boundaries (e.g.
INTEGER on a word boundary) and the components may be re-ordered by the Cumpiler
so as to minimize the total size of objects of the record type. If a record contains
discriminants or components having a dynamic size, implicit components may be added
to the record. Thus the default layout of the internal structure of the record may not be
interred directly from its Ada declaration. The use of a representa:ion clause ,- control
the layo it of any record type whose values are to be passed to inte, faced subprograms is
recommended.

Implementation -Dependent Pragmas 7

.. 2.4 Restrictions on Interfaced Subprograms

interfaced occam subprograms must be compiled using the UNIVERSAL erro; mode
(X). In this mode, thete is no error checking and any run-time errors in the occam code
are ignored This ensures that process,!s do not execute a STOPP or STOPERR
instruction and avoids the unpredictable t suts which may occur if this is allowed to
hiappen.

Par 3meters which are of a task or pri, -ite type, or are access values not of mode in,
should not be passed to interfaced subprograms.

It is not possible t,, interface to occam functions which return floating point values, nor
to those which have more that one return value. Also, records and arrays cannot be
returned from interfaced subprograms.

8

8 Alsys Ada for the Transpuier, Appendix F, i'5

1.3 INTERFACE NAME

Pragma INTERFACENAME associates the name of an interfaced subprogram, as

declared in Ada, with its name in the language of origin. If pragma INTERFACE-NAME
is not used, then the two names are assumed to be identical.

This pragma takes the form:

pragma INTERFACENAME (subprogrant name, stringliteral);

where:

" subprograminame is the name used within the Ada program to refer to the
interfaced subprogram.

" string litera" s Lhe name by which the interfaced subprogram is referred to at link-
time.

The use of INTERFACE NAME is optional and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is necessary, for example, if the name
of the subprogram in its original language contains characters that are not permitted in
Ada identifiers. Ada identifiers can contain only letters, digits and underscores, whereas
the INMOS linker allows external names to contain other characters, for example full
stops. These characters can be specified in the string.literal argument of the pragma

INTERFACENAME.

The pragma INTERFACENAME is allowed at the same places of an Ada program as the
pragma INTERFACE 113.91. However, the pragma INTERFACENAME must always

occur after the pragma INTERFACE declaration for the interfaced subprogram.

Example

package SAMPLEDATA is
function SAMPLEDEVICE (X: INTEGER) return INTEGER;
function PROCESS SAMPLE (X : INTEGER) return INTEGER;

private
pragma INTERFACE (OCCAM, SAMPLEDEVICE);
pragma INTERFACE (OCCAM, PROCESS SAMPLE);
pragma INTERFACE-NAME (PROCESSSAMPLE, "process.sample');

end SAMPLE DATA;

Implementation -Dependent Pragmas

1.4 INDENT
This pragma is only used with the Alsys Reformatter (AdaReformat); this tool offers the
functionalities of a source reformatter in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

The Reformatter does not modify the source lines after the OFF pragma INDENT.

pragma INDENT(ON)

The Reformatter resumes its action after the ON pragma INDENT. Therefore any source
lines that are bracketed by the OFF and ON pragma INDENTs are not modified by the
Alsys Reformatter.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragmas STORAGE SIZE_- RATIO and FASTPRIMARY which are applicable only
to task types are discussed in detail in section 4.6.

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress checks in a given compilation
by the use of the Compiler option CHECKS.

The following language defined pragmas have no effect.

CONTROLLED
MEMORY-SIZE
OPTIMIZE
STORAGE-UNIT
SYSTEM-NAME

Note that all access types are implemented by default as controlled collections as
described in 14.81.

10 AIsys Ada for the Transputer, Appendix F, v5

CHAPTER 2

Implementation-Dependent Attributes

in addition to the Representation Attributes of [13.7.2] and [13.7.3], the four attributes
listed in section 5 (Conventions for Implementation-Generated Names), for use in
record representation clauses, and the attributes described below are provided:

T'DESCRIPTOR SIZE For a prefix T that denotes a type or subtype, this
attribute yields the size (in bits) required to hold a
descriptor for an object of the type T, allocated on
the heap or written to a file. If T is constrained,
"rDESCRIPTOR SIZE will yield the value 0.

TISARRAY For a prefix T that denotes a type or subtype, this
attribute yields the value TRUE if T denotes an
array type or an array subtype; otherwise, it yields
the value FALSE.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses. The attribute ADDRESS will
deliver the value SYSTEM.NULLJADDRESS if applied to such prefixes and a compilation
warning will be issued.

" A constant or named number that is implemented as an immediate value (i.e. does
not have any space allocated for it).

" A package specification that is not a library unit.

" A package body that is not a library unit or subunit.

If the attribute ADDRESS is applied to a named number, a compilation error will be
produced.

Implementation-Depcndent Attribute 1)

12 Alsys Ada for the Transputer, Appendu F, 1,5

CHAPTER 3

Specification of the Package SYSTEM

package SYSTEM is

type NAME is (180X86,
180386,
MC680XO,
S370,
TRANSPUTER,
VAX);

SYSTEM-NAME : constant NAME := TRANSPUTER;

STORAGEUNIT :'constant 8;
MAX INT : constant 2"'31 - 1;
MIN INT : constant - (2*"31);
MAX MANTISSA constant 31;
FINE DELTA constant 2#1.0#E-31;
MAX DIGITS constant 15;
MEMORY SIZE constant 2**32;
TICK constant 64.Oe - 6;

subtype PRIORITY is INTEGER range I .. 10;

type ADDRESS is private;
NULL-ADDRESS : constant ADDRESS;

function VALUE (LEFT : in STRING) return ADDRESS;

subtype ADDRESSSTRING is STRING(1..8);

function IMAGE (LEFT : in ADDRESS) return ADDRESSSTRING;

type OFFSET is range -(2*'31) .. 2*'31-1;

-- This type is used to measure a number of storage units (bytes).

function SAME SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

ADDRESS-ERROR : exception;

function " (" CLEFT in ADDRESS; RIGHT in OFFSET) return ADDRESS;

function ** (LEFT in OFFSET; RIGHT in ADDRESS) return ADDRESS;

Specification of the Package SYSTEM 13

function "-" (LEFT in ADDRESS; P!GHT in OFFSET) return ADDRESS;

function "-" (LEFT in ADDRESS; RIGHT in ADDRESS) return OFFSET;

function (=" CLEFT, RIGHT in ADDRESS) return BOOLEAN;

function "'" (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function "=" (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function "" (LEFT. RIGHT in ADDRESS) return BOOLEAN;

function "mod" (LEFT : in ADDRESS; RIGHT : in POSITIVE) return NATURAL;

type ROUND DIRECTION is (DOWN, UP);

function ROUND (VALUE in ADDRESS;

DIRECTION in ROUND DIRECTION;
MODULUS in POSITIVE) return ADDRESS;

generic
type TARGET is private;

function FETCHFROM ADDRESS (A in ADDRESS) return TARGET;
generic

type TARGET is private;
procedure ASSIGN TOADDRESS (A in ADDRESS; T : in TARGET);

-- These routines are provided to perform READIWRI1E operations in memory.

type OBJECTLENGTH is range 0 .. 2**31 -1;

-- This type is used to designate the size of an object in storage units.

procedure MOVE (TO in ADDRESS;
FROM in ADDRESS;
LENGTH in OBJECT LENGTH);

end SYSTEM;

The function VALUE may be used to convert a string into an address. The string is a
sequence of up to eight hexadecimal characters (digits or letters in upper or lower case in

the range A.F) representing the address. The exception CONSTRAINTERROR is raised

if the string does not have the proper syntax.

The function IMAGE may be used to convert an address to a string which is a sequence of

exactly eight hexadecimal digits.

The function SAME-SEGMENT always returns TRUE and the exception

ADDRESSERROR is never raised as the transputer is a non segmented architecture.

14 Alsys Ada for the Transputer, Appendix F, v5

The functions "+" and "-" with an ADDRESS and an OFFSET parameter provide support
to perform address computations. The OFFSET parameter is added to, or subtracted
from the address. The exception CONSTRAINTERROR can be raised by these
functions.

The function "-" with the two ADDRESS parameters may be used to return the distance
between the specified addresses.

The functions "< =", "<, "> =" and ">* may be used to perform a comparison on the
specified addresses. The comparison is unsigned.

The function "mod" may be used to return the offset of LEFT address relative to the
memory block immediately below it starting at a multiple of RIGHT storage units.

The function ROUND may be used to return the specified address rounded to a specific
value in a particular direction.

The generic function FETCHFROM ADDRESS may be used to read data objects from
given addresses in store. The generic function ASSIGNTO.ADDRESS may be used to
write data objects to give iadar sses in store. These routines may not be instantiated
with unconstrained types.

The procedure MOVE may be used to copy LENGTH storage units starting at the address
FROM to the address TO. The source and destination locations may overlap.

Specification of the Package SYSTEM 15

16 Aliys Ada for the Transpuler, Appendix F, .5

CHAPTER 4

Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys Ada
Compiler for the Transputer and how it is possible to control this using representation
clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,

fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

The transputer supports operations on the data types byte, word and double-word, so
these data types are used to form the basis of the representation of Ada types. The word

length is 32 bits. Currently, the compiler does not support operations on double 32 bit
word quantities. This affects the representation of integer, fixed point and enumeration
types.

Except in the case of array and record types, the description of each class of type is

independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule
applies to a record type.

Apart from implementation defined pragmas, Ada provides three means to control the

size of objects:

" a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

" a record representation clause, when the object is a record or a record component

" a size specification, in any case.

For each class of types the effect of a size specification is described. Interaction between
size specifications, packing and record representation clauses is described under array

and record types.

Restrictions on Representation Clauses 17

Size representation clauses on types derived from private types are not supported when

the derived type is declared outside the private part of the defining package.

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2, ... , n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in 113.31. The Alsys Compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range .231 .. 231-1.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the Compiler.

Enumeration subtypes

Minimum size: The minimum size of an enumeration subtype is the minimum number
of bits that is necessary for representing the internal codes of the subtype values in
normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. For m > = 0, L is the
smallest positive integer such that M < = 2L--1. For m < 0, L is the smallest positive
integer such that -2 L < = m and M < = 2L't-1.

18 ALsys Ada for the Transputer, Appendix F, v5

For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKANDWHITE is COLOR range BLACK.. WHITE;
-- The minimum size of BLACK AND WHITE is 2 bits.

subtype BLACKORWHFT is BLACKAND.WHITE range X.. X;
-- Assuming that X is not static, the minimum size of BLACK OR WHITE is
-- 2 bits (the same as the minimum size of the static type mark
-- BLACK ANDWHITE).

Size: When no size specification is applied to an enumeration type or first named
subtype, the objects of that type or first named subtype are represented as either
unsigned bytes or signed words. The Compiler selects automatically the smallest such
object which can hold each of the internal codes of the enumeration type (or subtype).
The size of the enumeration type and of any of its subtypes is thus 8 bits in the case of an
unsigned byte, or the machine word size (32 bits) in the case of a signed word.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type EXTENDED is
-- The usual American ASCII characters.

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DCI, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,
I.' , T 1' #', -S', 1%., 1&1.",
T I' '', ,-,, .+", '' ., ,,.

'0, '11, '2', W3, W4, '5', 6, 7,

'A', 'B', 'C, 'D', 7,

'', ', ' 'V, T, 'U', 'V',

'x, ', 2s, 'Repres, T, ena to C, lauss'1... .V, Vb, 'c', 'd, 'e, T,"

Restrictions on Representation Clauses 19

'r', '', I', u', 'v,

'x , 'y, 'z', '' 1, '' - DEL,

-- Extended characters

LEFT ARROW,
RIGHTARROW,
UPPER ARROW,
LOWER ARROW,
UPPER LEFT CORNER,
UPPER RIGHT-CORNER,
LOWER RIGHT CORNER,
LOWER LEFTCORNER,

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
- as unsigned 8 bit integers.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an enumeration subtype has the same size as its subtype.

Alignment: An enumeration subtype is byte aligned if the size of the subtype is less than
or equal to 8 bits, word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an enumeration subtype is a
multiple of the alignment of the corresponding subtype.

20 ALsys Ada for the Transputer, Appendix F, v

4.2 Integer Types

Predefined integer types

In the Alsys Ada implementation for the transputer the following predefined integer
types are available:

type SHORT INTEGER is range -2**07 .. 2"'07-1;
type INTEGER is range -2"*31.. 2*"31-1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from one of the predefined integer types. The compiler
automatically selects the predefined integer type whose range is the shortest that
contains the values L to R inclusive.

Encoding of integer values

Binary code is used to represent integer values, using a conventional two's complement
representation.

Integer subtypes

Minimum size: The minimum size of an integer subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal
binary form (that is to say, in an unbiased form which includes a sign bit only if the range
of the subtype includes negative values).

For a static subtype, if it has a null range its minimum sizv is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m > = 0, L is the smallest positive integer such that M < = 2 L-1. For m <
0, L is the smallest positive integer such that -2 L-1 < = m and M < = 2L-1-1.

Resinctions on Representation Clauses 21

For example:

subtype S is INTEGER range 0.. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of the static type mark S).

Size: The sizes of the predefined integer types SHORT-INTEGER and INTEGER are
respectively 8 and 32 bits.

When no size specification is applied to an integ,-- type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly.

For example:

type S is range 80.. 190;
-- S is derived from SHuPT INTEGER, its size is 8 bits.

type J is range 0.. 65535;
-- J is derived from INTEGER, its size is 32 bits.

type N is new J range 80.. 100;
-- N is indirectly derived from INTEGER, its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype tc which it applies.

22 Alsys Ada for the Transputer, Appendix F, v

For example:

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SHORT INTEGER, but its size is 32 bits
-- because of the size specification.

type J is range 0.. 255;
for J'SIZE use 8;
-- J is derived from INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is S bits
-- because N inherits the size specification of J.

The Alsys Compiler implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an integer subtype has the same size as its subtype.

Alignment: An integer subtype is byte aligned if the size of the subtype is less than or
equal to 8 bits, word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an integer subtype is a multiple of
the alignment of the corresponding subtype.

Restrictions on Representation Clauses 23

4.3 Floating Point Types

Predefined floating point types

There are two predefined floating point types in the Alsys implementation for
transputers:

type FLOAT is
digits 6 range -(2.0- 2.0"*(-23))'2.0"*127.. (2.0- 2.0"*(-23))*2.0'*127;

type LONG-FLOAT is
digits 15 range -(2.0- 2.0**(-51))*2.0* *1023.. (2.0- 2.0"*(-51))*2.0"*1023;

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L.. R];

is implicitly derived from a predefined floating point type. The Compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L and R.

Encoding of floating point values

In the program generated by the Compiler, floating point values are represented using
the ANSI/IEEE 754 standard 32-bit and 64-bit floating point formats as appropriate.

Values of the predefined type FLOAT are represented using the 32-bit floating point
format and values of the predefined type LONG FLOAT are represented using the 64-
bit floating point format as defined by the standard. The values of any other floating
point type are represented in the same way as the values of the predefined type from
which it derives, directly or indirectly.

24 ALs's Ada for the Transputer, Appendix F, '5

Floating point subtypes

Minimum size: The minimum size of a floating point subtype is 32 bits if its base type is

FLOAT or a type derived from FLOAT and 64 bits if its base type is LONGFLOAT or

a type derived from LONGFLOAT.

Size: The sizes of the predefined floating point types FLOAT and LONGFLOAT are

respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the

predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32, or 64 bits).

Object size: An object of a floating point subtype has the same size as its subtype.

Alignment: A floating point subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of a floating point subtype is a

multiple of the alignment of the corresponding subtype.

Restricrions on Representation Clauses 25

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by 13.5.91.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys Compiler for the transputer uses a set of
anonymous predefined types. These are:

type SHORT-FIXED is delta D range -2"'7"S.. (2'7-1)*S;
for SHORT FIXED'SMALL use S;
type FIXED is delta D range -2"'31°S .. (2"'31-1)*S;

for FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The Compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L and R.

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / FBASE'SMALL

26 Alsys Ada for the Transpuer, Appendix F, v5

Fixed point subtypes

Minimum size: The minimum size of a fixed point subtype is the minimum number of

binary digits that is necessary for representing the values of the range of the subtype
using the small of the base type (that is to say, in an unbiased form which includes a sign
bit only if the range of the subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i > = 0, L is the smallest positive
integer such that I < = 2L-1. For i < 0, L is the smallest positive integer such that -
2L- 1 <=iandl<=2Ll 1.

For example:

type F is delta 2.0 range 0.0.. 500.0;
--The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X.. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size: The sizes of the sets of predefined fixed point types SHORTFIXED, and FIXED are
8 and 32 bits respectively.

When no size specification is applied to a fixed point type or to its first named subtype,

its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly.

For example:

type F is delta 0.01 range 0.0.. 1.0;
- F is derived from a 8 bit predefined fixed type, its size is 8 bits.

type L is delta 0.01 range 0.0.. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0.. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

Restrictions on Representafion Clauses 27

When a size specification is applied to a fixed point type, this fixed point type and each of

its subtypes has the size specified by the length clause. The same rule applies to a first

named subtype. The size specification must of course specify a value greater than or

equal to the minimum size of the type or subtype to which it applies.

For example:

type F is delta 0.01 range 0.0.. 1.0;

for PSIZE use 32;
-- F is derived from a 8 bit predefined fixed type, but its size is 32 bits

-- because of the size specification.

type L is delta 0.01 range 0.0.. 300.0;
for FSIZE use 16;
-- F is derived from a 32 bit predefined fixed type, but its size is 16 bits
-- because of the size specification.
-- The size specification is legal since the range contains no negative values

-- and therefore no sign bit is required.

type N is new F range 0.8.. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys Compiler implements size specifications. Nevertheless, as fixed point objects
are represented using machine integers, the specified length cannot be greater than 32
bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of a fixed point type has the same size as its subtype.

Alignment: A fixed point subtype is byte aligned if its size is less than or equal to 8 bits,

word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of a fixed point subtype is a multiple

of the alignment of the corresponding subtype.

28 A'sys Ada for the Transputer, Appendix F, v

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is

reserved for its collection, and the value of the attribute STORAGE-SIZE is then 0.

As described in (13.21, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys Compiler fully
implements this kind of specification.

Encoding of access values

Access values are machine addresses represented as machine word - sized values (i.e. 32
bits).

Access subtypes

Minimum size: The minimum size of an access subtype is that of the word size of the
target transputer.

Size: The size of an access subtype is the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size.

Object size: An object of an access subtype has the same size as its subtype, thus an
object of an access subtype is always one machine word long.

Alignment: An access subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an access subtype is always on a
word boundary, since its subtype is word aligned.

Restrictions on Representation Clauses 29

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in 113.21, a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

Both the length clause and the bind time parameter specify the combined size of the
task's primary and auxiliary stacks. Further bind time parameters specify the percentage
of this storage size to be allocated to the primary stack and indicate whether or not to
attempt to allocate the primary stack in fast internal memory. These bind time
parameters indicate the default action and can be overridden using the implementation
defined pragmas STORAGESIZERATIO and FAST-PRIMARY.

pragnia STORAGESIZERATIO (task name, integerjliteral);

pragma FAST-PRIMARY (task-name, YES I NO);

These two pragmas are not allowed for derived types. They apply to the task type
task name. For each pragma, the pragma and the declaration of the task type to which it
applies must both occur within the same declarative part or package specification,
although the declaration of the task type must precede the pragma.

Pragma STORAGESIZERATIO specifies the percentage of the total storage size
reserved for the activation of the task to be used as the task's primary stack. Any
remaining storage space will be used as the task's auxiliary stack. In the absence of the
pragmni th,. def,,, iai -"if.d at b ai, time is useu tor the activation.

Pragma FASTPRIMARY specifies whether or not an attempt should be made to
allocate the task's primary stack in fast internal memory. In the absence of the pragma
the default indication specified at bind time is used for the activation.

30 Alsys Ada for the Transputer, Appendix F, v5

Encoding of task values

Task values are represented as machine word sized values.

Task subtypes

Minimum size: The minimum size of a task subtype is 32 bits.

Size: The size of a task subtype is the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual
size.

Object size: An object of a task subtype has the same size as its subtype. Thus an object
of a task subtype is always 32 bits long.

Alignment: A task subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause, the address of an object of a task subtype is always on a word boundary, since its
subtype is word aligned.

Restrictions on Representation Clauses 31

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Component Gap Component Gap Component Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components.

For example:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMALDIGIT is range 0.. 9;
for DECIMALDIGIT'SIZE use 4;
type BINARYCODEDDECIMAL is

array (INTEGER range < >) of DECIMAL-DIGIT;
-- The size of the type DECIMAL-DIGIT is 8 bits. Thus in an array of
-- type BINARY CODED-DECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components.

32 Alsys Ada for the Transputer, Appendix F, %-5

For example:

type A is array (1 .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1 bit.

type DECIMALDIGIT is range 0.. 9;
type BINARYCODEDDECIMAL is

array (INTEGER range < >) or DECIMAL-DIGIT;
pragma PACK(BINARY.CODEDDECIMAL);
-- The size of the type DECIMALDIGIT is 8 bits, but, as
-- BINARY CODEDDECIMAL is packed, each component of an array of this
-- type will be represented in 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the Compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype

For example:

type R is
record

K: INTEGER; -- INTEGER is word aligned.
13: BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is word aligned. Its size is 40 bits.

type A is array (I .. 10) of R;
-- A gap of three bytes is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 640 bits.

Rescrictions on Representation Clauses 33

Component Gap Component Gap Component Gap

Arry of t)pe A: each subcomponent K has a word offset.

If a size specification applies to the subtype of the components or if the array is packed,

no gaps are inserted.

For example:

type R is
record

K: INTEGER;
B: BOOLEAN;

end record;

type A is array (I .. 10) of R;

pragma PACK(A);
-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR Is new R;
for NR'SIZE use 40;

type B Is array (1 .. 10) of NR;
-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

Component Component Component

Array of type A or B: a subcomponent K can have any byte offset.

34 Alsys Ada for the Transputer, Appendix F, v5

Array subtypes

Size: The size of an array subtype is obtained by multiplying the number of its
components by the sum of the size of the components and the size of the gaps (if any). If
the subtype is unconstrained, the maximum number -f components is cons; ;. :od.

The size of an array subtype cannot be computed at compile time

* if it $-as non-static constraints or is an unconstrained array type with non-static
index subtypes (because the 'umber of components can then only be determined at
run time).

* if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the componeni: and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
,znstraints of their subcomponents (if any) are not static, the Compiler ignore.,
pragn"a PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named sL'nype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Object size: I he size of an object of an array subtype is always equal to the size of the
subtype of the object.

Alignment: If no pragma PACK applies to an array subtype and no size specification
applies to its components, the array subtype has the same alignment as the subtype of its
componen-s.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype , the lesser
of tiae alignment of the subtype of its components and the relative displacement of th,.
components.

Restrictons on Representation Clauses 35

Object address: Provided its alignment is not constrained by a record representation
clause, the address of an object of an array subtype is a multiple of the alignment of the
corresponding subtype.

4.8 Record Types

Layout of a record

Each record is alloca.zd in a contiguous area of storage units. The size of a record

component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in [13.4). In the Alsys implementation

for transputer targets there is no restriction on the position that can be specified for a
component of a icezord. If a component is not a record or an array, its size can be any size

from the minimum size to the size of its subtype. If a component is a record or an array,

its size must be the size of its subtype.

In a record representation clause, the first storage unit (that is, a byte) and the first bit
position within a storage unit are numbered zero. Bits are ordered, and thus numbered,

least significant bit first within a storage unit. Storage units are numbered such that
lower numbers have the least significance in a machine word.

A compe "nt clause may be specified such th. the component overlaps a storage unit
boundaiy. In this case, the bits are numbered in sequence from the least significant bit of

the first storage unit tu the most significant bit of the last storage unit occupied by the
component. For example:

type BIT 3 is range 0 .. 7;
for BIT 3'SIZE use 3;

type BITS5 is range 0.. 31;
for BIT_5'SIZE use 5;

type BIT8 is range 0.. 255;
for BIT_8'SIZE use 8;

36 Alsys Ada for the Transputer, Appendix F, v5

type R is
record

FIRST: BIT 3;
SECOND: BIT 8;
THIRD : BIT_5;

end record;
for R use

record
FIRST at 0 range 0.. 2;
SECOND at 0 range 3.. 10;
-- Component SECOND overlaps a storage unit boundary.
THIRD at I range 3 .. 7;

end record;
for R'SIZE use 16;

1 0 Storage unit nuiber

Most Significant SECOO Least Significant
sit (MSB) BtISt I it (LSB)

7 3 2 0 7 3 2 0 Bit number within
storage unit

Resentaion of a Record of type R

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component ol a record, its size is the size of its
subtype. Its position is chosen by the Compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of
the component so as to reduce the number of gaps and thus the size of the record
objects.

Because of these optimisations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the Compiler for
the components in a record object.

Restrictions on Representation Clauses 37

Pragma PACK has no furt ier effect on records. The Alsys Compiler always optimizes the
layout of records as described above.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Beginning of the record

Conpite time offset
DIRECT

Conpile time offset
,OFFSET

Run time offset

INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components.

38 Alsys Ada for the Transputer, Appendix F, 05

For example:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range < >) of INTEGER;

type GRAPH (L: NATURAL) is
record

X : SERIES(l .. L); -- The size of X depends on L
Y SERIES(1 L); -- The size of Y depends on L

end record;

Q: POSITIVE;

type PICTURE (N : NATURAL; D: DEVICE) is
record

F: GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN = >

C: COLOR;
when PRINTER = >

null;
end case;

end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the Compiler groups the dynamic components together and places
them at the end of the record:

Restrictions on Representation Clauses 39

D = SCREEN 0 = PRINTER
N =2 N = 1

Beginning of the record
S OFFSET S OFFSETCompile time offsets

MF OFiSET

F JOFFSET

D D

Run time offsets - F

- F

The record type PICTURE: F and S are placed at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time.

40 A lsy5 Ada for the Transpuier, Appendix F, v5

For example:

Beginning of the record
- OFFSET

Compite time offset

L

Compile time offset

X Size dependent on discriminant L

L3 Run time offset

Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The Compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0.. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

implicit component.

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid
unnecessary recomputation, the Compiler stores this information in the record objects,
updates it when the values of the discriminants are modified and uses it when the objects
or their components are accessed. This information is stored in special components
called implicit components.

Restrictions on Representation Clauses 41

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD SIZE and the other VARIANT INDEX.

On the other hand an implicit component may be used to access a given record
component. In this case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAY DESCRIPTORs or
RECORD DESCRIPTORs.

RECORDSIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD-SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The Compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0.. MS.
If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'RECORD SIZE.

VARIANTINDEX

This implicit component is created by the Compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANT-INDEX.

42 Alss Ado for the Transpuier, Appendix F, %5

For example:

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR = >
WHEELS: INTEGER;
case KIND is

when AIRCRAFT => --

WINGSPAN: INTEGER;
when others = > -- 2

null;
end case;

when BOAT = > -- 3
STEAM : BOOLEAN;

when ROCKET = > -- 4

STAGES: INTEGER;
end case;

end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

I 1(KIND, SPEED, WHEELS, WINGSPAN)

2 (KIND, SPEED, WHEELS)
(KIND, SPEED, STEAM)

(KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Restrictions on Representation Clauses 43

Component Intervat

KIND
SPEED
WHEELS 1 .. 2
WINGSPAN 1 1

STEAM 3 .. 3
STAGES 4. 4

The implicit component VARIANT 7 INDEX must b4. large enough to store the number V

of component lists that don't contain variant parts. The Compiler treats this implicit

component as having an anonymous integer type whose range is I .. V.

If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'VARIANT_INDEX.

ARRAY-DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

The Compiler treats an implicit component of the kind ARRAY-DESCRIPTOR as having
an anonymous record type. If C is the name of the record component whose subtype is

described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name C'ARRAY DESCRIPTOR.

RECORD-DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD..DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of

the component using the ASSEMBLY parameter in the COMPILE command.

44 Alsys Ada for the Transputer, Appendix F, "

The Compiler treats an implicit component of the kind RECORD-DESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD-SIZE and/or VARIANT-INDEX from a record type. This can be
done using an implementation defined pragma called IMPROVE. The syntax of this
pragma is As follows:

pragma IMPROVE (TIME I SPACE, ION = >] simple.name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the Compiler only inserts a VARIANT INDEX or a
RECORD-SIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Record subtypes

Size: Unless a component clause specifies that a component of a record type has an
offset or a size which cannot be expressed using storage units, the size of a record subtype
is rounded up to a whole number of storage units.
The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

" when the record sebtype has non-static constraints,

" when a component is an array or a record and its size is not computed at compile
time.

Restrictions on Representation Clauses 45

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Object size: An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 4 Kbyte. If the size of the subtype is greater than this, the object
has the size necessary to store its current value; storage space is allocated and released as
the discriminants of the record change.

Alignment: When no record representation clause applies to its base type, a record
subtype has the same alignment as the component with the highest alignment
requirement.

When a record representation clause that does not contain an alignment clause applies
to its base type, a record subtype has the same alignment as the component with the
highest alignment requirement which has not been overridden by its component clause.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause.

Object address: Provided its alignment is not constrained by a representation clause, the
address of an object of a record subtype is a multiple of the alignment of the
corresponding subtype.

46 AIsys Ada for the Transputer, Appendix F, %5

CHAPTER 5

Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the Compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined for referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implementation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if
this check fails.

There are four such attributes:

TRECORDSIZE For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a record type with
defaulted discriminants when the sizes of the record objects
depend on the values of the discriminants.

T'VARIANTINDEX For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of a
record type with variant type.

C'ARRAY DESCRIPTOR For a prefix C that denotes a record component of an array
type whose component subtype definition depends on
discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

Conventions for Implementation Generated Names 47

C'RECORD DESCRIPTOR For a prefix C that denotes a record component of a record
type whose component subtype definition depends on
discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

48 Alsys Ada for the Transputer, Appendix F, v

CHAPTER 6

Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in 113.5].
When such a clause applies to an object no storage is allocated for it in the program
generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor lor unconstrained records whose
maximum possible size is greater than 4 Kbytes.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented.

Address Clauses 49

50 Airvs Ada for the Transpurer, Appendix F, 5'

CHAPTER 7

Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand: the
result has the size of the source.

" if an unchecked conversion is achieved of a composite source type to a scalar or
access target type, the result of the function is a copy of the source operand: the
result has the size of the target.

Restricions on Unchecked Conv'ersion -51

52 ALsi's Ada for the Transputer, Appen xr F, 0S

CHAPTER 8

Input-Output Packages

The predefined input-output packages SEQUENT1ALIO 114.2.31, DIRECT 10 114.2.51,
TEXTIO 114.3.10] and I_EXCEPTIONS [14.51 are implemented as described in the

Language Reference Manual.

It should be noted that, in order to generate output, calls to PUT procedures should be
followed by a call to either PUTLINE or NEWLINE.

The package LOWLEVEL_10 114.61, which is concerned with low-level machine-
dependent input-output, is not implemented.

All access to the services of the host system are provided through the INMOS supplied
iserver tool [Ref.3], so much of Ada input - output is host independent.

8.1 NAME Parameter

No special treatment is applied to the NAME parameter supplied to the Ada procedures
CREATE or OPEN 114.2.11. This parameter is passed immediately on to the INMOS
server and from there to the host operating system. The file name can thus be in any

format acceptable to the host system.

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical

rules of (21, separated by commas. The FORM parameter may be given as a null string

except when DIRECTIO is instantiated with an unconstrained type; in this case the

record size attribute must t, provided. Attributes are comma-separated; blanks may be

inserted between lexical elements as desired. In the descriptions below the meanings of

natural, positive, etc., are as in Ada; attribute keywords (represented in upper case) are

identifiers 12.31 and as such may be specified without regard to case.

USEERROR is raised if the FORM parameter does not conform to these rules.

Input-Output Packages 53

The attributes are as follows:

8.2.1 File Sharing

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. If such rules are violated or if a
different file sharing attribute is specified in a later OPEN or CREATE call,
USE-ERROR will be raised. The syntax is as follows:

NOTSHAREDI

SHARED = > access mode

where

access_mode ::= READERS I SINGLEWRITER I ANY:

A file sharing attribute of:

NOT SHARED implies only one internal file may access the
external file.

SHARED = > READERS imposes no restrictions on internal files of
mode INFILE, but prevents any internal files
of mode OUTFILE or INOUTFILE being
associated with the external file.

SHARED = > SINGLE WRITER is as SHARED = > READERS, but in
addition allows a single internal file of mode

OUTFILE or INOUTFILE.

SHARED = > ANY places no restriction on external file string.

If a file of the same name has previously been opened or created, the default is taken
from that file's sharing attribute, otherwise the default depends on the mode of the file:
for mode IN FILE the default is SHARED = > READERS, for modes INOUT FILE
and OUT-FILE the default is NOT-SHARED.

54 AIrvs Ada for the Transputer, Appendix F, 0S

8.2.2 Binary Files

Two FORM attributes, RECORD-SIZE and RECORD-UNIT, control the structure of
binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive RECORDS.

The structure of such a record is:

[HEADER] OBJECT I UNUSED-PART I

and it is formed from up to three items:

" an OBJECT with the exact binary representation of the Ada object in the executable
program, possibly including an object descriptor

" a HEADER consisting of two word sized fields:

- the length of the object in bytes

- the length of the descriptor in bytes

* an UNUSEDPART of variable size to permit full control of the record's size

The HEADER is implemented only if the actual parameter of the instantiation of the 10
package is unconstrained.

The file structure attributes take the form;

RECORD SIZE = > size inbytes
RECORDUNIT = > size-in-bytes

Their meaning depends on the object's type (constrained or not) and the file access mode
(sequential or direct access):

a) If the object's type is constrained:

The RECORDUNIT attribute is illegal

If the RECORD SIZE attribute is omitted, no UNUSEDPART will be
implemented: the default RECORD-SIZE is the object's size

Input-Output Packages 55

- present, the RECORDSIZE attribute must specify a record size greater than

u: equal to the object's size, otherwise the exception USEERROR will be

raised

b) If the object's type is unconstrained and the file access mode is direct:

- The RECORD-UNIT attribute is illegal

- The RECORDSIZE attribute has no default value, and if it is not specified, a

USE-ERROR will be raised

- An attempt to input or output an object larger than the given RFCORD SIZE
will raise the exception DATA-ERROR

c) If the object's type is unconstrained and the file access mode is sequential:

. The RECORD-SIZE attribute is illegal

. The default value of the RECORD UNIT attribute is 1 (byte)

- The record size will be the smallest multiple of the specified (or default)

RECORDUNIT that ho ds the object and its header. This is the only case
where records of a file may have different sizes.

In all cases the value given must not be smaller than a minimum size. For constrained
types, this minimum size is ELEMENT TYPE'SIZE /SYSTEM.STORAGEUNIT;
USEERROR will be raised if this rule is violated. For unconstrained types, the

minimum size is ELEMENTTYPE'DESCRIPTORSIZE /
SYSTEM.STORAGE_- UNIT plus the size of the largest record which is to be read or
written. Ira larger record is processed, DATAERROR will be raised by the READ or
WRITE.

8.23 Buffering

This attribute conlrols the size of 'he buffer used as a cache for input-output operations:

BUFFER-SIZE = > size in bytes

The default value for BUFFERSIZE is 0; which means no buffering.

56 Alsys Ada for the Transputer, Appendx F, %5

8.2.4 Appending

This attribute may only be used in the FORM parameter of the OPEN command. If
used in the FORM parameter of the CREATE command, USEERROR will be raised.

The affect of this attribute is to cause writing to commence at the end of the existing file.

The syntax of the APPEND attribute is simply:

APPEND

The default is APPEND = > FALSE, but this is overridden if this attribute is specified.

In normal circumstances, when an external file is opened, an index is set which points to
the beginning of the file. If the APPEND attribute is present for a sequential or for a text
file, then data transfer will commence at the end of the file. For a direct access file, the
value of the index is set to one more than the number of records in the external file.

This attribute is not applicable to terminal devices.

8.3 USEERROR

The following conditions will cause USE-ERROR to be raised:

" Specifying a FORM parameter whose syntax does not conform to the rules given
above.

" Specifying the RECORDSIZE FORM parameter attribute to have a value of zero, or
failing to specify RECORDSIZE for instantiations of DIRECT-1O for unconstrained
types.

Specifying a RECORDSIZE FORM parameter attribute to have a value less than
that required to hold the element for instantiations of DIRECTIO and
SEOUENTIAL10 for constrained types.

* Violating the file sharing rules stated above.

* Attempting to perform an input - output operation which is not supported by the
INMOS iserver due to restrictions of the host operating system.

* Errors detected whilst reading or writing (e.g. writing to a file on a read-only disk).

input-Output Packages 57

58
A Is's Ada for the TransputerAppendix F, %-5

CHAPTER 9

Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORT INTEGER -128.. 127 -- 2 7- 1

INTEGER -2147483648.. 2147483647 -- 2 31 - 1

Other Integer Types

For the packages DIRECT IO and TEXT_10, the ranges of values for types COUNT
and POSITIVE COUNT are as follows"

COUNT 0..2147483647 -- 2"31 -1

POSITIVE COUNT 1 .. 2147483647 -- 2"31 - 1

For the package TEXT 10, the range of values for the type FIELD is as follows:

FIELD 0..255 -- 2**8-1

Characteristics of Numeric Types 59

9.2 Floating Point Type Attributes

FLOAT
Approximaie

value

DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 2.0 * -20 9.54E-7
SMALL 2.0 * -85 2.58E-26
LARGE 2.0 ** 84 * (1.0 - 2.0 ** -21) 1.93E+25

SAFE EMAX 125
SAFE SMALL 2.0 -126 1.18E-38
SAFE LARGE 2.0"* 125 * (1.0 - 2.0"* -21) 4.25E+37
FIRST -2.0 * 127 * (2.0 - 2.0 * -23) -3.40E+38
LAST 2.0 ** 127 * (2.0 - 2.0 ** -23) 3.40E+38
MACHINERADIX 2
MACHINE MANTISSA 24
MACHINEEMAX 128
MACHINEEMIN -125
MACHINEROUNDS TRUE
MACHINE_OVERFLOWS TRUE
SIZE 32

60 Alsys Ada for the Transputer, Appendix F, r0

LONG-FLOAT
Approximate

value
DIGITS 15
MANTISSA 51
EMAX 204
EPSILON 2.0 ** -50 8.8E-16
SMALL 2.0 * * -205 1.94E-62LARGE 2.0 °* 204 * (1.0 - 2.0 - -51) 2.57E+61
SAFEEMAX 1021
SAFE-SMALL 2.0 * * -1022 2.22E-308
SAFELARGE 2.0 * 1021 (1.0 - 2.0 * -51) 2.25E+307
FIRST -2.0 ** 1023 * (2.0 - 2.0 -51) -1.79E+308
LAST 2.0 1023 ' (2.0. 2.0 ** -51) 1.79E+308
MACHINERADIX 2
MACHINE-MANTISSA 53
MACHINE EMAX 1024
MACHINEEMIN -1021
MACHINE-ROUNDS TRUE
MACHINEOVERFLOWS TRUE
SIZE 64

9.3 Attributes of Type DURATION

DURATION'DELTA 2.0 -14
DURATION'SMALL 2.0" -14
DURATION'LARGE 131072.0
DURATION'FIRST -86400.0
DURATION'LAST 86400.0

Characteristics of Numeric Types 61

62
Ally-, Ada for the Transputer, Appendix F, 0S

REFERENCES

III Reference Manual for the Ada Programming Language
(ANSI!MIL-STD-1815A-1983).

[21 Occam2 Reference Manual.
INMOS Limited
Prentice Hall, 1988.

(31 Occam2 Toolset User Manual.
INMOS Limited, 1989.
INMOS document number 72 TDS 184 00.

[4] Transputer Instruction Set - A Compiler Writer's Guide
INMOS Limited

Prentice Hall, 1988

References 63

64 Alss Ada/for Mhe Transpurer. Appendi F, _5

INDEX
ADDRESS attribute 11 FORM parameter 53restrictions 11 FORM parameter attributes
Append attribute 57 append 57ARRAY DESCRIPTOR attribute 47 file sharing attribute 54ASCII 6,7 record-size attribute 57
Attributes I I

ARRAY DESCRIPTOR 47 Implementation-dependent attributes
DESCRIPTORSIZE 11 11IS_ARRAY 11 Implementation-dependent pragma 3RECORD DESCRIPTOR 48 Implementation -generated names 47RECORDSIZE 47,53 IMPROVE 10
representation attributes 11 INDENT 10
VARIANTINDEX 47 INLINE 3

BOOLEAN 6 Input-Output packages 53BOO E A 6DIRECT 10 53
CHARACTER 6 10 EXCEPTIONS 53C C TER 6 LOWLEVEL 10 53COUNT 59 SEQUENTIAL 10 53

TEXT 10 53
DESCRIPTOR SIZE attribute 11, 56 INTEGERX 5 59DIE INTGE 53,59
DIRECT_10 53,59 Integer types 5, 59DURATION COUNT 59

attributes 61 FIELD 59
INTEGER 5,59Enumeration types 5 POSITIVE COUNT 59BOOLEAN 6 SHORT INTEGER 5,59CHARACTER 6 INTERFACE 3

INTERFACENAME 3,9FAST PRIMARY 10, 30 Interfaced subprogramsFIELD 59 Restrictions 8
File sharing attribute 54 10_EXCEPTIONS 53
Fixed point types 6 ISARRAY attribute 11DURATION 61
FLOAT 6,60 Language_name 3
Floating point types 6 LONGFLOAT 6, 61FLOAT 6,60 LOWLEVEL10 53

LONGFLOAT 6,61

!,ndex
65

NOT SHARED 54Numeric types characteristics 59integer types 59 Fixed point types 61RECORD DESCRIPTOR attribute
Occam 4 48RECORD SIZE attribute 47, 53, 57
PACK 10 Representation attributes 11Parameter representations 5 Representation clauses 17

Access types 7 restrictions 17Array types 7
SEQUENTIAL 10 53Enumeration

types

S
Fixed point types 6 SHARED 54Floating point types 6 SHORT-INTEGER 5.59Integer types 5 STORAGESIZERATIO 10,30Record types 7 STRING 7Parameter-passing conventions 4 String literal 9POSITIVECOUNT 59 Subprogram name 3,9

Pragma INLINE 3 SUPPRESS10Pragma INTERFACE 3 SYSTEM package 1?language name 3
occam 4 TEXT_10 5359subprogram-name 3 Unchecked conversions 51Pragma INTERFACENAME 3 restrictionsi
string~literal 9 rERROR 51subprogramname 9USEERROR 53,57Pragmas

VARIANT INDEXattribute 47FAST PRIMARY 10,30
IMPROVE 10
INDENT 10
INTERFACE 3
INTERFACENAME 9
PACK 10
PRIORITY 10
STORAGESIZERATIO

10, 30
SUPPRESS 10

PRIORITY 10

66
Alsys Ada for the Transputer, Appendix F, ,5

