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PREFACE

The work described in this report was performed jointly by the Coastal

Engineering Research Center (CERC) and the Environmental Laboratory (EL) at

the US Army Engineer Waterways Experiment Station (WES) and is a product of

the Additional Plans Testing Project for the Ports of Los Angeles and Long

Beach. The purpose of the project is to Uetermi"c how facilities expansion

and channel deepening corresponding to Phase I of three different plans

(Schemes A, C, and D) will affect circulation and water quality in the harbors

and local vicinity.

The investigation was conducted during the period February through June

1989. Dr. S. Rao Vemulakonda and Ms. Lucia W. Chou of the Coastal Processes

Branch (CPB), Research Division (RD), CERC, conducted the circulation aspect

of the study under the diiect supervision of Mr. Bruce A. Ebersole, Chief,

CPB, and Mr. H. Lee Butler, Chief, RD, and under the general supervision of

Dr. James R. Houston, Chief, CERC, and Mr. Charles C. Calhoun, Jr., Assistant

Chief, CERC.

Mr. Ross W. Hall of the Water Quality Modeling Group (WQMG), Ecosystem

Research and Simulation Division (ERSD), EL, conducted the water quality

aspect of the study under the direct supervision of Dr. Mark S. Dortch, Chief,

WQMG, and Mr. Donald L. Robey, Chief, ERSD. and the general supervision of

Dr. John Harrison, Chief, EL, and Dr. John W. Keeley, Assistant Chief, EL.

This report was written by Dr. Vemulakonda and Mr. Hall.

During the course of the study, liaison was maintained between WES,

the US Army Engineer District, Los Angeles (SPL), and the Ports of Los Angeles

and Long Beach. Overall WES management of the study was performed by

Mr. William C. Seabergh of the Wave Processes Branch (WPB), Wave Dynamics

Division (WDD), CERC. Mr. Alan Alcorn was the SPL point of contact. Mr. John

Warwar and Ms. Lillian Kawasaki, Port of Los Angeles, and Mr. Rich Weeks,

followed by Mr. Angel P. Fuertes, and Dr. Geraldine Knatz, Port of Long Beach,

were port points of contact and provided invaluable assistance.

COL Larry B. Fulton, EN, was Commander and Director of WES during the

publication of this report. Dr. Robert W. Whalin was Technical Director.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)

UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain

acres 0.00404686 square kilometres

cubic feer 0.028317 cubic metres

degrees (angle) 0.01745329 radians

feet 0.3048 metres

miles (US statute) 1.6093 kilometres

miles per hour (mph) 0.4470 metres per second

square feet 0.0929 square metres

square miles 2.589846 square kilometres
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LOS ANGELES AND LONG BEACH HARBORS

ADDITIONAL PLAN TESTING

NUMERICAL MODELING OF TIDAL CIRCULATION AND WATER QUALITY

PART I: INTRODUCTION

1. Los Angeles and Long Beach (LA/LB) Harbors are located adjacent to

each other in San Pedro Bay on the California coast and share a common

breakwater system that encloses one of the largest harbor systems in the world

(Figure 1). Over the years, the harbors have expanded to meet the demands of

world commerce and national security by deepening channels and using the

dredged material to create additional landfill for facilities. Thousands of

acres of landfill have created the harbor complex as it exists today

(Figure 2).

2. To meet future needs, the Ports of Los Angeles and Long Beach have

recently undertaken a long-range cooperative planning effort known as the 2020

Plan. A special study known as the Operations, Facilities, and Infrastructure

(OFI) Study was performed to determine the cargo handling requirements. The

study t!xri-ae' - --ariety of -$h-sed pl "'q which could accommodate future

needs. Incorporated in the plans are deepening of existing channels, creatioa

of new landfill, and new development on existing land.

OL~zcti-!e

3. The purpose of the study described in this report is to determine

the impact of Phase 1 of three different plans (Schemes A, C, and D),

suggested by the OFI study, on three-dimensional (3-D) hydrodynamics and water

quality by comparing circulation, flushing, and dissolved oxygen (DO)

resources under existing and planned conditions. This objective will be

accomplished by applying state-of-the-art, 3-D numerical hydrodynamic and

water quality models. The hydrodynamic model (HM) results will be used to

drive the separate water quality model (WQM) which will determine the effects

of the plans on water quality in the harbor complex. For completeness, model
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results for Phase I of Scheme B, previously determined under the Harbor Model

Enhancement (HME) Program (Coastal Engineering Research Center (CERC) 1990;

Hall 1990), also will be included in this report.

Report Organization

4. Part II of this report reviews previous tidal circulation and water

quality moaeling work performed by US Army Engineer Waterways Experiment

Station (WES) for LA/LB Harbors. In Part III, the hydrodynamic model is

discussed and its relationship to the water quality model examined. Part TV

discusses the water quality model and Part V the results of hydrodynamic

testing of plan conditions. In Part VI, the results of water quality testing

of plans are discussed, and Part VII contains a summary of results and

conclusions.
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PART II: PREVIOUS STUDIES

5. A physical model of the LA/LB Harbors was constructed at WES in 1973

to study tidal circulation and harbor oscillations. The initial tidal

circulation test results were reported on by McAnally (1975). The 1:400

horizontal scale, 1:100 vertical scale distorted model was calibrated with a

limited prototype data set. Some difficulties were encountered in the

measurement of the relatively low velocities which normally exist in th;

harbors inside the breakwaters. A satisfactory calibration was obtained, and

the model was tested for a number of plan conditions. However, during the

mid-1970's, computer modeling of hydrodynamics was becoming more feasible as

computer memory and speed increased. It was felt that computer modeling would

be an alternative approach to modeling tidal circulation in harbors with

relatively low velocities (normally less than 1 ft*/sec). Also, the physical

model was heavily used at the time to examine harbor resonance conditions for

wave periods in the 30- to 400-sec range.

6. During 1975-76, a numerical model was applied by WES to study tidal

circulation in the LA/LB Harbors. The model selected for use was a two-

dimensional (2-D), depth-averaged numerical model of the hydrodynamic

equations. This model neglected the vertical components of velocity and

acceleration, and the general 3-D governing hydrodynamic equations were

integrated over the water depth. In this way, 3-D geometry could be

considered. The model solved the governing equations using a finite differ-

ence approximation of the equations and an alternating direction semi-implicit

techn-que. Application to San Pedro Bay required use of a grid of 20,000

finite difference cells, each cell representing a 300-ft square of the harbor

region. The model reproduced a 25-hr prototype tide sequence and was applied

by Raney (1976a,b) and by Outlaw and Raney (1979) for plans which included a

proposed Outer Harbor oil terminal in the Port of Long Beach in conjunction

with a proposed Los Angeles Harbor deepening project. These studies indicated

that the plans resulted in only miner overall changes in tidal circulation in

LA/LB Harbors and that any changes were very local in nature.

A table of factors for converting non-SI units of measurement to SI

(metric) units is presented on page 4.
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7. Improvements were implemented in the previously discussed model

which increased numerical stability permitting reproduction of longer prot3-

type scenarios. Also, utilization of a stretched grid having the capability

to be smoothly varied permitted simulation of a complex plan form by locally

increasing resolution. Figure 3 shows the grid as applied to LA/LB Harbors.

Details of this model, known as the Waterways Experiment Station Implicit

Flooding Model (WIFM), can be found in Butler (1978a,b,c and 1980). Outlaw*

was the first to apply this model to LA/LB Harbors when he studied the

Los Angeles Harbor deepening and creation of a 190-acre landfill adjacent to

Fish Harbor. The model was calibrated with the 1971 prototype data. Results

indicated the channel deepening project had no substantial effect on tidal

elevation, phase, circulation, and flushing. Once again a 25-hr prototype

tide scenario was used.

8. The WIEM was used by Seabergh and Outlaw (1984) to study the 2020

Master Plan. Tidal scenarios used were for spring, mean, and neap tides; each

scenario was for a 70-hr duration. The version of WIFM used for this study

in,;luded the Pddition of the constituent transport equation (Schmalz 1983) so

that the dispersion of a conservative substance (a dye, for example) could be

followed over time. Results of this study indicated that a major Outer Harbor

landfill would create some minor redistribution of flow into and out of the

harbors, though no change in tidal range occurred. An interesting effect

noted was the change in net circulation in the Inner Harbor (i.e., Los Angeles

Harbor's Main Channel and Long Beach Harbor's Cerritos Channel). Existing net

circulation is east to west, i.e., from Long Beach toward Los Angeles, while

for the plan studied, net circulation became west to east. These net circu-

lations were about 10 and 17 percent, respectively, of the average flow in the

back channel. Another application of WIFM was made for the Port of Los

Angeles' Deep Draft Dry Bulk Export Terminal, Alternative No. 6 (Seabergh

1985), in which a landfill was studied on the Los Angeles side of the Outer

Harbor.

" D. Outlaw, Memorandum for Record, 5 March 1985, "Analysis of Tidal
Circ Lation for Los Angeles and Long Beach Harbors Navigation Channel
Improvements," US Army Engineer Waterways Experiment Station, Vicksburg, MS.
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9. In all of these studies, the plans examined called for landfills in

aifferent regions of the harbor complex. Associated with the landfills are

greater channel and harbor depths, which are necessary to accommodate larger

ships and to provide a source of material for the landfill by dredging.

Forecasted requirements indicate some portions or the LA/LB Harbors may have

depths as great as 90 ft, National Geodetic Vertical Datum (NGVD) of 1929.

Currently the average depth of the harbors is on the order of 40 ft. With

increased depths comes the possibility for greater variations in velocity,

temperature, and density with depth. Therefore, in order to better evaluate

flow conditions (and thus water quality) in the harbors, it became necessary

to advance to a 3-D modeling system, that is, a model which can resolve

hydrodynamic and water quality parameters at different depths in the water

column. The previous modeling efforts have been performed with depth-averaged

models, which have been effective in aiding understanding of the harbors'

global hydrodynamics but cannot provide the detailed input required for a

water quality model study of a deep harbor where vertical variations are

significant. As a result of these considerations, the ports together with the

US Army Engineer Dv;trict, Los Angeles (SPL), funded WES on the HME Program in

1987. As a part of the HME, WES developed 3-D hydrodynamic and water quality

models of the harbors (CERC 1990, Hall 1990) and calibrated and verified the

models, using extensive field data taken for this purpose in the summer of

1987 (McGehee, McKinney, and Dickey 1989; and Tekmarine, Inc. 1987). In

addition, the models were used to determine the 3-D hydrodynamics and water

quality under existing conditions, and model use was demonstrated by applying

the models to a plan condition determined by the OFI study and selected by the

ports (Phase I of Scheme B) and estimating the impact of the plan on

hydrodynamics and water quality of the harbors. The study described by the

present report follows up on these efforts and uses the same modeling

technology.

12



PART III: HYDRODYNAMIC MODEL

10. The models selected for simulating 3-D hydrodynamics and water

quality are based on the methodology used in HME. For convenience, the

following description of the hydrodynamic model CH3D is reproduced from CERC

(1990).

Model CH3D

11. Model CH3D is a time-varying 3-D hydrodynamic model for simulating

circulation affected by tide, wind, river inflow, and density currents induced

by salinity and/or temperature gradients. Assuming hydrostatic pressure

distribution and employing the eddy-viscosity concept, the basic equations can

be written for a right-handed coordinate system (Figure 4) as shown in

Figure 5. In the governing equations u , v , and w are the velocities in

x- , y- , and z-directions; f is the Coriolis parameter defined as

20sin 0 where 0 is the latitude; Pa is the reference density; p is the

pressure; g is the acceleration due to gravity; T is the temperature; S

is the salinity; AH , KH , and D, are the horizontal eddy coefficients;

and A, , Kv , and Dv are the vertical eddy coefficients. The nonlinear

inertia terms and the advection terms have been written in conservative forms.

Source/sink terms may be included in Equations 3.5 and 3.6 (Figure 5) to

account for such effects as radiation, precipitation, and evaporation.

12. Boundary conditions at the water surface include specification of

the wind stress and heat flux and satisfying the kinematic and dynamic

conditions. At the bottom, the boundary conditions include specification of

heat flux and use of a quadratic stress law.

13. Use of a vertical-stretching relationship (Figure 6) leads to a

smooth representation of the topography and the same number of vertical cells

in the shallow and deep regions of the water body.

14. The CH3D computer code can be used to simulate 2-D or 3-D unsteady

currents in Cartesian or curvilinear grids. To treat curvilinear grids, the

governing equations are transformed into a boundary-fitted coordinate system

(Figure 7). The resulting equations are very complex and will not be repeated

13
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Figure 4. Coordinate system

here*. To alleviate various problems experienced in similar model develop-

ments, the dependent and independent variables are transformed into the new

coordinate system. Equations in transformed coordinates ( , n, a) are

obtained in terms of the contravariant velocity components. These components

are locally orthogonal to the grid lines, permitting more accurate

specification of boundary conditions.

15. To facilitate a more efficient numerical scheme, an external-

internal mode-splitting technique is used. Numerical computation of the

internal mode, which is governed by the slower baroclinic vertical flow

structure dynamics, is separated from the computation of the vertically

integrated variables (external mode), which are governed by the fast

barotropic dynamics.

*Y. P. Sheng, 1986, "A Three-Dimensional Mathematical Model of Coastal,
Estuarine, and Lake Currents Using Boundary Fitted Grid," Draft Report
prepared for WES, Vicksburg, MS.
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Figure 5. Governing equations
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Figure 7. Boundary-fitted coordinate transformation
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16. To apply a finite difference solution method, the study area is

approximated by a computational grid composed of a 3-D lattice network of

cells. Bathymetry and land-water interfaces, such as shorelines and break-

waters, are specified for each vertical column of cells. Flow field

parameters, such as velocities or surface elevations, are evaluated at each

cell. In order to improve model accuracy, mathematical mapping or

transformation techniques are applied independently to the horizontal and

vertical grid coordinates. The horizontal grid directions are mapped into a

general curvilinear system. This allows a greater density of cells in regions

of rapid change while coarser cell resolution can be used in the remainder of

the grid.

17. In the external mode, the vertically averaged conservation of mass

and momentum equations are solved, using an alternating-direction algorithm

similar to that used by Butler and Sheng (1982), to obtain the vertically

integrated horizontal velocities and water surface elevations. The vertical

velocity distribution is resolved in the internal mode. Here an implicit-

explicit scheme is usea to compute the vertically integrated perturbation

velocities.

Grid Selection

18. For the HM, the grid used in this study is the same grid

(Figure 3) used in HME. The study area was represented by a smoothly varying

rectilinear grid containing 12,032 grid cells (128 cells in the east-west

direction and 94 cells in the north-south direction) with the grid aligned to

coincide with the Inner Harbor entrance channels. The minimum cell width was

235 ft, and smaller cells were concentrated in areas where channel resolution

was necessary. The grid extended seaward of the Middle Breakwater approxi-

mately 4.2 miles and covered an area of about 146 square miles.

19. In the vertical, a stretching mechanism is used to smoothly

represent the bathymetry. It permits the same number of cells in shallow and

deep portions of the water body. The HM and WQM used three layers in the

vertical.

17



Model Input Data

20. Boundary conditions chosen for all model runs were the application

of measured tidal elevations at the seaward and western open boundaries, wind

stress on the water surface, and a quadratic bottom stress using the Manning's

n coefficient. Since wind stress was applied at the surface, measured tidal

elevations were used to drive the open boundary. These data contained the

effects of wind stress at the boundary.

21. Initial conditions for all model runs included setting all internal

grid cell velocities to zero and selecting a starting time in the tidal and

.d records consistent with the assumption of a quiescent water body. The

Ael requires a large input data stream which includes information relating

to physical constants, turbulence/wind/friction parameters, grid character-

istics (depth, coordinate locations), and input/output control variables.

Conditions Tested

22. Following the procedure used in the HME, the plans were tested

under two standard sets of conditions, which were used in model calibration

and verification under the HME. The period from 7 to 11 August 1987, called

the "calibration period," represented a large spring tidal event. Measured

tidal elevations (Figure 8) were used to drive the open boundary starting

at 0000 hr on the 7th of August (5232 hr). Wind data for this period

(Figure 9) were used to compute the surface stress boundary condition. The

wind direction shown is the direction, measured in degrees from the north,

from which the wind is blowing.

23. A time step of 60 sec was used in all model runs. The set of model

coefficients used were n - 0.02 , An - 20,000 cm2/sec and A, - 10 cm2/sec.

The period 19 to 23 August 1987 represented a mean tide condition and is

called the "verification period." Figure 10 displays the measured and model

tidal elevations imposed at the open boundary starting at 0000 hr on the 19th

of August (5520 hr). Wind data for this period (Figure 11) were used to

compute the surface stress boundary condftion.

18
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Figure 10. Ocean tide boundary condition for verification period
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PART IV: WATER QUALITY MODEL

24. The WQM selected for this study was a modification of the

Environmental Protection Agency WASP code (Ambrose, Vandergrift, and Wool

1986). Major adaptations included: (a) improved advective and diffusive

-ransport schemes, (b) provisions for the input and processing of 3-D

hvdrodinamic data from CH3D, and (c) implementation of kinetic routines

specific to the San Pedro Bay application.

Advective and Diffusive Transport Schemes

25. The original WASP model formulation considers both advective and

diffusive transport through faces of adjacent cells of arbitrary size, shape.

and distribution. For the HME study, horizontal flows were distinguished from

vertical fiows, and improved transport schemes were implemented.

26. The horizontal advective transport scheme used was a modified

version of QUICKEST (Quadratic Upstream Interpolation for Convective

Kinematics with Estimated Streaming Terms) scheme (Leonard 1979, Hall and

Chapman 1985, and Ray Chapman and Associates*). An implicit vertical

advective and diffusive transport scheme was implemented. Central differenc

were used for both vertical advection and diffusion terms.

ModlLink"&i

27. The hydrodynamic and water quality models were linked by spatiall';

and temporally averaging CH3D output to drive the WQM. The hydrodynamic model

used extensive spatial resolution to resolve geometric features of the

harbors. The CH3D spatial resolution was of the order of 100 m and required a

time step of 60 sec for stability. In contrast, the WQM has characteristic

time scales determined by the kinetic rate coefficients on the order of hours.

Ray Chapman and Associates, 1988. "Analysis and Improvement of the
Numerical and Physical Mixing Characteristics of the WASP Box Model," Final
Report, Contract DACW39-87-C-0060, prepared for the US Army Engineer
Waterways Experiment Station, Vicksburg, MS.
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Water quality analyses allow a spatial resolution an order of magnitude less

than that used by CH3D. Reductions in spatial and temporal resolution greatly

reduced computer time and storage required for the WQM.

28. Plate I is a schematic of the CH3D grid used for the existing

conditions. Existing conditions will be henceforth referenced as "Base."

Since the WQM required less spatial resolution than CH3D, spatial character-

istics of the hydrodynamic grid such as cell volumes, cell surface areas, cell

facial areas, and cell lengths were summed resulting in an "overlaid" WQM grid-

Plate 2 represents the resulting WQM grid overlying the CH3D grid for the Base

condition. The WQM grid maintained the same vertical resolution as the CH3D

grid of three vertical layers. Plates 3 through 6 represent the overlaid WQM

grid for Phase 1 of Schemes A, B, C, and D of the 2020 Plan, respectively.

29. Overlaying the WQM grid decreased the number of computational cells

by a factor of 12. The larger WQM cell sizes allowed an increase of the time

step used from 60 to 900 sec while maintaining computational stability.

30. The hydrodynamic data were averaged over 1-hr intervals. Subtidal

oscillations, characterized by a pulsating flow pattern with areas of flow

direction reversal, were simulated in CH3D. The flow pulsations occurred at a

frequency of 1 hr. Therefore, the influence of the subtidal flow oscillations

on the HM time-averaging interval was investigated (Hall 1990). A comparison

between 15- and 60-min HM time-averaging revealed that 60-min hydrodynamic

model averaging was equivalent to 15-min averaging.

31. A test was conducted to ensure that the transport properties of

CH3D were maintained with the interfacing (Hall 1990). After CH3D was

calibrated, a tracer injection was simulated. The same tracer injection was

simulated using the WQM. A comparison of the two tracer injections, CH3D and

WQM, indicated that transport properties were nearly equivalent.

Kinetic Routines

32. The WQM study focused on DO resources and flushing characteristics

of the harbor system. The WQM simulated the following variables: DO, 5-day

carbonaceous biochemical oxygen demand (CBOD5), ammonia nitrogen (NH4-N),

nitrite plus nitrate nitrogen (NO2 + N03-N), algal biomass as carbon (C),

orthophosphate (PO,-P), and a conservative tracer. Initial temperatures were
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specified horizontally constant yet vertically stratified based on the water

quality sampling program conducted during August 1987 by Tekmarine, Inc.

However, temperatures varied temporally through the specification of ocean

boundary temperatures. Saliinity was specified temporally and spatially

constant at 32 ppt. The water quality sampling program revealed rather

homogenleous salinities except near the Terminal Island Treatment Plant (TITP)

effluent and the Los Angeles River. Salinities were used in the WQM for

calculating DO saturation. Global specification of a constant salinity was

adequate since a 2-ppt variation in salinity at the temperatures observed

results in only a 1-percent variation in DO saturation.

33. The water quality kinetic algorithms were adapted from the WES

2-D laterally averaged model of hydrodynamics and water quality, CE-QUAL-W2

(Envi:onmental and Hydraulics Laboratories 1986), and HydroQual's Potomac

Eutrophication Model (Thomann and Fitzp-trick 1982). The water quality

kinetic routines are detailed in Hall (1990).

23



PART V: PLAN TESTING AND RESULTS: HYDRODYNAMICS

34. The plans tested in the models during the course of the present

study to analyze hydrodynamic/water quality impact were Phase 1 of Schemes A,

C, and D, shown in Figures 12-14. These plans were called Plans 2, 3,

and 4, respectively. For completeness, results of model testing for Phase 1

of Scheme B (designated Plan 1, Figure 15) from the HME are also included

in this report. To represent each plan, apprcpriate grid changes were made

to approximate landfills and dredged depths for all channel alterations

(Figure 16). As indicated in Part III, standard conditions adopted for

comparing plans witn existing harbors were the two periods used for model

calibration and verification. Simulations of existing and plan conditions for

the month of August 1987 were also made to support water quality modeling

efforts.

35. Several methods were used to analyze impacts of the plans on

hydrodynamic processes in the harbor complex. These included comparisons of

elevations and currents at specific locations, tidal prism changes, flow

changes through several cross sections, and changes in circulation patterns of

the harbors.

Tidal Elevations

36. Gage locations for comparing computed tidal elevations and currents

for existing and plan conditions are shown in Figure 17. Generally the same

gage locations were used for all four plans except special gage location

12A (Figure 18) was used for Plans 2 and 4 since it was more appropriate.

Plates 7-16 display tide hydrographs for the calibration period for existing

and plan conditions at gage locations TC1, TC3, TC5, TCI4, and TCl7, and

Plates 17-26 for the verification period. Existing and plan condition plots

are superimposed, and no discernible differences in amplitude or phase are

noted. From these results it can be concluded the plans have no significant

effect on tidal elevations or phase throughout the harbor complex.
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Tidal Currents

37. Plates 27-98 display velocity time series for the calibration

period, with and without plans at several gage locations, and Plates 99-170

for the verification period. Existing and plan condition plots are super-

imposed to permit easy visual inspection of impact. The following comments

are based on comparisons made for the calibration period and the surface

layer. Unless otherwise noted, behavior is similar at other levels and for

the verification period. In general, differences between various plans are

rather subtle and difficult to quantify. As may be expected, behavior is

similar for Plans I and 3 because the plan geometries are similar. Velocities

through the main entrances to the harbors are reduced both because of reduc-

tion in discharges through the entrances due to new landfills and increased

channel depths.

a. Gage Cl (Cerritos Channel) (Plates 27-34 and 99-106): Very
small differences are observed in magnitude and phase
throughout the water column for Plans 1, 3, and 4. Velocity
magnitude is reduced more for Plan 2.

b. Gage C2 (Main Channel) (Plates 35-42 and 107-114): Peak
vel'..city during the 5-day period is about the same or increases
slightly for Plans 1, 3, and 4. It decreases slightly for
Plan 2. Primary differences are noted in flood phase-the
velocity magnitude increases.

&. Gage C3 (Long Beach-Pier F) (Plates 43-50 and 115-122): reak
velocity decreases by 20 to 50 percent. In general, velocity
magnitude decreases throughout a tidal cycle. Velocity
direction at the surface is different from that at middepth and
bottom for existing and plan conditions. Significant phase
shift is noted at lower layers.

A. Gage C4 (Queen's Gate-Interior) (Plates 51-58 and 123-130):
Peak magnitude decreases (up to 25 percent) for Plans 1 and 3,
slightly less for Plans 2 and 4. Velocity magnitude is
generally reduced throughout a tidal cycle. Velocity direction
is consistently east at the surface and different from that at
middepth and bottom for existing conditions and plans.
Significant phase shifts are noted in lower layers.

j. Gage C5 (East Entrance-South) (Plates 59-66 and 131-138): More
velocity reduction is observed during a flood cycle. Velocity
direction at the surface differs from that at middepth and
bottom for both existing and plan conditions. Some phase shift
is noted.
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. Gage C14 (New Middle Breakwater Channel) (Plates 67-74 and 139-
146): This gage corresponds to new construction near PACTEX
terminal. For plan (onditions, the velocity magnitude is
considerably higher at the surface and reduced at the lower
levels. Obviously, the depth-averaged velocity magnitude is
increased because of channelization. For existing conditions,
the direction at the surface exhibits oscillatory behavior and
at the lower layers is primarily to the west. For plan
conditions, the direction is primarily to the east at the
surface and in the lower layers exhibits oscillatory behavior
typical of tides.

Z. Gage C18 (Angel's Gate) (Plates 75-82 and 147-154): Velocities
are reduced considerably (30 to 50 percent), with greater
percentage reduction during the verification period. Direction
at the surface differs slightly from that at lower layers for
both existing conditions and plans. Some phase shift is noted.

h. Gage C19 (Queen's Gate) (Plates 83-90 and 155-162): Velocities
are reduced by 20 to 30 percent, with greater reduction during
ebb phase. Direction at the surface differs slightly from that
at middepth and bottom. Some phase shift is noted, more in
lower layers.

38. For both test periods, current behavior was analyzed in newly

constructed slips, Gages C12, and C12A (see Figures 17 and 18 for locations of

gages), Plates 91-98 and 163-170.

a. Gage C12 applies to Plans 1 and 3. At this gage, the behavior
is similar for Plans 1 and 3. Compared with existing
conditions, the velocity magnitude decreases for the two plans.
Since for plan conditions the gage is no longer in open water,
the velocity direction is no longer oscillatory but is approxi-
mately steady. The direction in lower layers is opposite to
that at the surface.

b. Gage C12A applies to Plans 2 and 4. At this gage the behavior

is similar for the two plans. For existing conditions, the
velocity is highest at the surface, and its direction exhibits

oscillatory behavior except near the surface. For the two
plans, the velocity is less at the surface and greater at the
bottom than for existing conditions. Thus it tends to be more

uniform for the plans. Its direction is approximately steady
and varies from toward the north at the surface to toward the
west at the bottom.

Tidal Discharges

39. Total tidal discharges through several ranges (Figure 19) estab-

lished in the model grid are shown in Plates 171-184 and 185-198 for the
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calibration and verification periods, respectively. ExisLing and plan

condition results are superimposed for visual inspection of impact. Results

show the expected small reduction in discharge through the entrances,

especially Angel's Gate (Range 1) caused by the introduction of new landfill

for plans. The Middle Harbor Range (Range 5) was taken from the Navy Mole to

the Middle Breakwater for existing conditions and Plan 4 (Range 5E). For

Plans 1, 2, and 3, this range was taken from the PACTEX landfill to the Middle

Breakwater (Range 5P). Its location is shown in Figure 19. Plates 179-180

and 193-194 display results from this range. For Plans 1 and 3. the discharge

cycles are similar to existing conditions with a 2- to 3-hr phase lag. For

Plans 2 and 4, there is a reduction in amplitude as well as phase shift.

40. In addition to comparing time series of discharge, the discharge

was integrated over a specific period during the simulation to estimate

changes in net channel flow and tidal prism of the harbors. For the latter

purpose, Ranges 1, 6, and 7, located across Angel's Gate, Queen's Gate, and

the East Entrance, respectively, were used. Range 7 extends from the

easternmost tip of the breakwater to the shore south of Anaheim Bay. Because

of the rectilinear nature of the grid, it was convenient to take Range 7 in

this manner. The total water surface area bounded by these three ranges is

approximately 660 x 106 sq ft. The total landfill areas associated with Plans

&, 2, 3, and 4 within the harbor complex are 63 x 106, 71.1 x 106, 62.5

x 106, and 60.5 x 106 sq ft, respectively. These represent reductions in

available water surface area of 9.5, 10.8, 9.5, and 9.2 percent, respec-

tively, and are expected to cause corresponding losses of tidal prism.

41. A period of 2 lunar days (hours 5282-5331.6 in the 7-11 August

period and 5571-5620.6 in the 19-23 August period) was chosen to calculate

total flood and ebb volumes. Since the tidal range is fluctuating over the

entire period and is influenced by wind, the total flood volume into the

system will not equal total ebb volume out of the system. The approach

adopted is to sum results over each range and average inflow and outflow

volumes for the two tidal cycles. Tables 1-4 give total flood and ebb volumes

for both simulation periods and prism computations. Percent reductions for

both periods are similar and compare well with the expected reduction.
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Circulation

42. To aid in comparing plans with existing conditions, plate figures

for circulation during near peak flood, peak ebb, and slack water for existing

conditions are repeated along with patterns for plan conditions to permit easy

visual inspection of plan impact (Plates 199-213 for calibration and Plates

214-228 for verification). The reader is reminded that velocity vectors are

plotted at every third grid line. The major conclusion reached is that the

new landfill eliminates the gyre circulation in the Outer Harbor and peak

flood and ebb velocities in the outer breakwater entrances are reduced.

Specific comments for the three snapshot periods are:

a. Peak flood-Changes in circulation patterns are confined to the
Outer and Inner Harbor areas. Results for Plans I and 3 are
similar. For the specific point in the calibration period at
which thr peak flood snapshot was taken, flow direction in
Cerritos Channel for Plans 2 and 4 is the same as for existing
conditions (i.e., to the west), whereas for Plans 1 and 3, it
is to the east. Note the velocity magnitudes are small in
either case (on the order of 0.1 to 0.15 fps). This trend is
true for all three levels. A stronger clockwise eddy is
noLceable within the Navy Basin for Plans 1 and 3. Flow is
accelerated near the surface in the new channel near PACTEX for
all plans. In the new slip near PACTEX and Middle Breakwater.
flow direction is reversed from surface to bottom for all
plans. The velocity magnitudes are small.

b. Peak ebb-Changes in circulation patterns are again confined to
the same areas as for peak flood. Results for Plans 1 and 3
are similar. For all four plans, flow in Cerritos Channel has
the same direction as for existing conditions for all three
levels (easterly). In the slips and channels near the new
landfill on Los Angeles side, velocity direction at surface is
opposite to that at middepth and bottom for all four plans.
For the Plan 4 channel between the new landfill and the
shallow-water habitat, the velocity direction is opposite to
that for existing conditions for all three layers.

&. Slack water-Plan condition results show the absence of the
large gyre observed for existig conditions. For the
verification period, for all plans the surface velocities
outside the breakwaters and through the entrances are greater
than the velocities for existing conditions at this time.
Also, the velocities in the PACTEX channel near the Middle
Breakwater are greater than the velocities for existing
conditions and in the opposite direction.
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43. In order to determine the effects of plans on net circulation in

the Inner Harbor areas (Los Angeles Main Channel, East Basin Channel, Cerritos

Channel, and Back Channel), the discharges across Ranges 2, 3, and 4

(Figure 19) were integrated over two lunar cycles for existing conditions and

plans and net flow volumes across the ranges were computed. The direction or

sign of the discharges was duly taken into account in these calculations. The

resulting net flow volumes are shown in Tables 5 and 6 for calibration and

verification, respectively. Ranges 2 and 3 are located across the entrances

to Los Angeles Main Channel and the Navy Basin, respectively, whereas Range 4

is located across Cerritos Channel (Figure 19). The following sign conven-

tions are used for net tow volumes (Tables 5 and 6) and net flows. At both

Ranges 2 and 3, positive and negative signs respectively indicate the net flow

across the ranges is to the north and south. At Range 4, positive and nega-

tive signs denote the Laet flow across the range is to the east and west,

respectively.

44. Considering existing conditions, it is seen that for both cali-

br~tiun and verification, the net flow is negative at Ranges 2 and 4, and

positive at Range 3. This means the net flow is directed towards the south

at Range 2, towards the north at Range 3, and towards the west at Range 4,

implying a net counterclockwise circulation (i.e., from Long Beach to Los

Angeles) in the Inner Harbor areas. This agrees with the results of previous

WES studies, as mentioned in Part II. Similarly, it can be deduced from

Tables 5 and 6 that for Plans 1 and 3, the net circulation is clockwise during

the calibration period and has a strong tendency towards the clockwise

direction during the verification period. For Plan 2, the net circulation is

clockwise for both calibration and verification. For Plan 4, the net

circulation has a strong tendency towards the clockwise direction for both

calibration and verification.

45. In summary, with the introduction of plans, tidal elevations remain

unchanged; however, current velocities through the harbor entrances are

reduced along with the tidal prism. There were some changes in the harbor

circulation, but these changes were primarily confined to the Outer Harbor and

Inner Harbor areas. Results indicate the plans have a strong tendency to

cause a reversal in the net circulation through the Inner Harbor.
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Hydrodynamic Simulations for Water Quality Modeling

46. Hydrodynamic information for running the WQM was provided by

simulating most of the month of August 1987. Appropriate tidal elevation and

wind forcing data were used and several HM runs were made to complete a 28-day

simulation (1-28 August 1987), and the results were concatenated to form a

continuous output file of HM results averaged over 1-hr intervals. Similar

information was produced for both existing and plan conditions.
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PART VI: PLAN TESTING AND RESULTS: WATER QUALITY

Flushing Studies

47. Flushing studies consisted of insertion of a conservative tracer

and noting movement and dilution of the tracer. The flushing studies provide

a qualitative comparison between Base and the Harbor Enhancement Schemes. A

decrease in the flushing rate prolongs the period of time that oxygen-

demanding substances exert their influence on the DO concentration. A decrease

in flushing rate can intensify other potential water quality problems and

indicates that more detailed water quality analyses are required. In this

study, the flushing studies provided identification of areas within the harbor

that exhibited decreases in flushing. Such areas were selected for more

detailed characterization during subsequent DO simulations.

48. Four flushing comparisons between Base and the enhancement plans

are presented: (a) Tracer Simulation 1-insertion of tracer in all WQM cells

interior to the breakwater, (b) Tracer Simulation 2-insertion of tracer in

East Basin Channel, (c) Tracer Simulation 3-insertion of tracer in the

embayment adjacent to the Outer Harbor located between West Basin of Middle

Harbor and Fish Harbor, and (d) Tracer Simulation 4-insertion of tracer in

the West Basin of Middle Harbor. Tracer Simulation I identified areas of less

flushing wbile Tracer Simulations 2 through 4 examined potential local water

quality problems like accidental spills.

49. Figures 2 and 20 provide clarification of the location of the

tracer experiments. Figure 2 is a map of the study area and Figure 20

indicates the cells inserted with tracer. The East Basin Channel comparison

was selected because of minimal flushing observed from the simulations; the

embayment between West Basin and Fish Harbor was selected because Schemes A,

B, and C appear to isolate these waters; and the West Basin of Middle Harbor

was selected because initial tracer comparisons indicated decreased flushing

with harbor enhancement.

50. The boundaries were specified exterior to the breakwaters. Tracer

could exit the Outer Harbor through the breakwater openings, but only water

without tracer material could enter the Outer Harbor from the ocean boundary.

The initial tracer concentration was arbitrarily set to 10.0. The tracer
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studies used the HM simulated flow data for the period 1 August 1987 through

28 August 1987.

51. Tracer Simulation I was the insertion of tracer in all WQM cells.

Plates 229 through 234 display the dilution of tracer in the Base condition at

5-day intervals while Plates 235 through 258 display the dilution of tracer in

the enhancement plans. Examination of the figures reveals that circulation

through Los Angeles Main Channel is rather static, but slightly counter-

clockwise in the Base condition and clockwise in Schemes A, B, C, and D. The

clockwise circulation in the enhancement plans is apparent through the

movement of tracer into Inner and Middle Harbors.

52. Examination of Plates 234, 240, 246, 252, and 258 (Tracer

Simulation I after 25 days for Base and Schemes A, B, C, and D) reveals that

tracer is more rapidly flushed from the Inner Harbor-Back Channel-Middle

Harbor of the Port of Long Beach under existing conditions than under plan

conditions. Based on the areal extent of residual tracer concentrations

greater than 7.0, Schemes B and C flush more completely than Schemes A and D.

53. It should be noted that flushing is reduced south of the Naval Base

Mole for Scheme A (Plate 240). Because of reduced flushing observed south of

the Naval Base Mole for Scheme A, the area was selected for more detailed

characterization during subsequent DO simulations. This station was in

addition to the 23 locations selected in the earlier report (Hall 1990).

54. Shade plots for Tracer Simulations 2, 3, and 4 are not presented;

Plates 229 through 258 indicate the general circulation pattern and corrob-

orate the conclusions discussed in subsequent tracer simulation experiments.

The earlier report (Hall 1990) presents shade plots for the tracer simulations

under Base conditions and Scheme B conditions.

55. The tracer concentrations in the cells corresponding to the initial

tracer injection in East Basin Channel (Tracer Simulation 2) were averaged and

plotted as a function of time (Plate 259). Examination of Plate 259 reveals

that East Basin Channel flushes more rapidly in the enhancement plans than in

the existing condition. Tracer concentration in the existing conditions was

asymptotically approaching 20 percent of initial concentration after 25 days.

In contrast, tracer surface layer concentrations achieved 20 percent within

7 days in the enhancement plans. Bottom layer flushing was slower than the

surface; the bottom layer required 9 days to achieve 20 percent of initial
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concentration. The flushing was nearly equivalent between the enhancement

plans.

56. Tracer Simulation 3 consisted of insertion of tracer between West

Basin and Fish Harbor. Plate 260 indicates that flushing occurs slightly less

rapidly in the enhancement plans (20 percent in 14 days) than in the existing

conditions (20 percent in 10 days). The flushing rates of the enhancement

plan conditions were nearly equivalent; however, Scheme A displayed slightly

more rapid flushing.

57. The result of Tracer Simulation 4, insertion of tracer in the West

Basin of Middle Harbor, is presented in Plate 261, which indicates that

20 percent of initial concentration was not achieved in 25 days in Scheme A;

20 percent was achieved in 25 days in Schemes B, C, and D; and 20 percent was

achieved in 16 days for the existing condition. The conclusion is that

flushing occurs less rapidly in the enhancement plans than in the existing

condition and that Scheme A flushed less rapidly than Schemes B, C, or D.

58. The four flushing studies indicated areas that exhibited decreased

flushing. Ten locations were selected for more detailed characterization

during subsequent DO simulations (Figure 21). The selected locations are

noted as X-1 through X-10. X-1O was an additional location not simulated in

the earlier report (Hall 1990). The locations prefixed with the letter I or B

represent the interior and boundary stations sampled during August 1987.

Water Quality Studies

59. Kinetic constants, boundary conditions, and initial conditions used

are detailed in the earlier report (Hall 1990). Boundary conditions included

observed water quality at the ocean boundary, measured sediment oxygen demand

(SOD), light exchange and reaeration through the surface, and water quality of

the TITP discharge. The TITP discharge was simulated for the Base condition,

but was not in the plan simulation. Initial conditions were specified by

assuming horizontally constant yet vertically stratified water quality based

on the water quality sampling program conducted during August 1987 by

Tekmarine, Inc. The initial values represented averages measured during the

first week of August 1987. No algae or CBOD5 was detected during the first

week of sampling. Therefore, the monthly average data values of algae were
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used for initial conditions. The initial phosphorous concentration was

substantially inflated by the values measured near the TITP sewage effluent.

nh- "inflated." h.._phorou. initial concentcacions .ece U.ci Ln the enhancement

scheme simulations.

60. Plates 262-307 display simulated algae (Alg), PO4-P, NH4-N, N0 2+NO 3-

N, CBOD5, and DO at the surface and bottom. The solid line represents the

Base condition, and the dashed lines represent the different enhancement

conditions. The circles represent observed values. The station numbering

corresponds to the identification in the water quality sampling program

(Tekmarine, Inc. 1987), with the addition of 10 locations prefixed with "X"

(Figure 21). Water quality Station 1-3 is not represented in the enhancement

schemes because of landfill. Stations I-10 and I-li were sampled for SOD and

sediment organic nitrogen; therefore, water column constituents were not

measured and not displayed on the plates. The simulated period extended from

1 August 1987 (Julian Day 213) through 28 August 1987 (Julian Day 240).

61. The measured and simulated results are in general agreement except

for Station 1-7. Apparently, the Los Angeles River is contributing some flows

to the bay that were not modeled. The water quality sampling program

(Tekmarine, Inc. 187) revealed less saline, nutrient-enriched surface waters

at Station 1-7 (Figure 21).

62. Discrepancies at several stations between computed and observed

values (such as 1-4 in East Basin Channel, Plate 265) near the beginning of

the month are due to the use of "global" nitrogen nutrient values which exceed

initial measured values at some stations. The "global" initial nutrient

values represented the average over all interior stations for each layer.

Algae were nitrogen limited in the simulations; slight variations in initial

nitrogen concentrations resulted in variations in the simulated algal concen-

trations. However, the simulated DO was insensitive to minor variations in

initial nitrogen concentrations. The excess nitrogen resulted in rapid growth

of algae followed by a gradual decline. Greater algal growth in the existing

conditions, particularly at Stations X-6 and X-7, are due to TITP effluent

contributions of nitrogen.

63. The apparent discrepancies between simulated Base condition and

measured algal biomass such as displayed at the surface at Station 1-i

(Plate 262) are not significant. Measured algal biomass varies between 0.0
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and 0.5 g C/m3 (0 to 14 mg chlorophyll a (Chl-a)/M 3), and simulated algal

biomass was rather constant near 0.2 g C/m3 (6 mg Chl-a/m3). Water quality

qtandar,'s fr '"! b4 =aZ' dO E. exiSt. 11b.over, i. i generaly accepted

that algal concentrations greater than 25 mg Chl-a/m 3 (0.875 g C/m3) are

undesirable. Both measured and simulated algal concentrations were below the

criterion of 25 mg Chl-a/m3 and much less than the general visible algal

concentration of 100 mg Chl-a/m3.

64. Examination of Plates 262-309 reveals that both observed and simu-

lated DO decreased at all stations during August 1987. The decrease in DO was

due to a decrease in boundary DO concentration. For example, the measured

boundary surface layer DO at Angels Gate (Station B-I, Figure 21) decreased

from 9.0 g/m3 on 4 August 1987 to 7.4 g/m3 on 25 August.

65. Simulated DO of the enhancement plans was either equal to or less

than existing conditions. Maximum deviations of 0.5 g/m3 occurred in Inner

Harbor-Back Channel-Middle Harbor of the Port of Long Beach (Stations 1-5,

1-6, I-I1, and X-5). It should be noted that Tracer Simulation I revealed

decreased flushing in these areas.

66. The bottom waters exhibited lower DO relative to the surface

waters. The maximum deviations between surface and bottom waters occurred in

Cerritos Channel (Station I-l0), Back Channel (Station 1-6), Middle Harbor

(Station I-11), East Basin of Middle Harbor (Station X-9), and the dead-end

channels connected to Inner Harbor (Stations X-4 and X-5). It should be noted

that only the stations in Back Channel (1-6) and Middle Harbor (I-11) exhib-

ited differences between existing and enhancement conditions. Differences in

DO between existing conditions and enhancement plans were not greater than

0.5 g/m3. The minimum predicted DO at all stations and all depths was

6.0 g/m3. The minimum of 6.0 g/m3 was predicted in the bottom layer in West

Basin of Middle Harbor (Station X-7).

67. The only differences observed between enhancement plans were for

Stations I-1 and X-8. Station I-1 is located at the junction of Outer Harbor

and the Los Angeles Main Channel. The DO simulated at Station I-1 in Scheme D

was about 0.25 g/m3 greater than the other plans. Similarly the bottom layer

DO simulated at Station X-8 (located in the West Channel of Los Angeles

Harbor) was about 0.5 g/m3 greater in Scheme D than in the other enhancement

plans; the surface layer DO variations was less than 0.5 g/m3.
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PART VII: SUMMARY AND CONCLUSIONS

Tidal Circulation

68. Based on the results of the 3-D numerical model tidal circulation

study of the Los Angeles and Long Beach Harbors for existing and plan

conditions, it is concluded that:

a. The hydrodynamics for Plans I (Scheme B) and ' (Scheme C) were

similar, which is to be expected since the plan geometries are

similar and their landfill areas are approximately equal.

b. In an overall sense, no single plan was significantly better or

worse than the other plans. The performance of all four plans

tcsted was approximately equal, though there were minor

differences.

C. The landfill of the plans did not affect the filling of the

harbors since tidal ranges were maintained and no discernible

differences in phase of surface elevations were noted.

d. Integrated volumes into the system were reduced by an amount

equivalent to the reduced harbor surface area (about

10 percent).

e. The plans caused only small changes in the flow distribution

throughout the harbor complex.

f. Velocity magnitude and direction were changed at specific

locations. The greatest change in magnitude occurred at the
entrances to the harbors. Peak flood and ebb velocities at

Angel's and Queen's Gates were reduced up to 50 and 30 percent,

respectively, for a large spring tide condition. The decrease

in velocity was due to increased channel depths and reduction

of harbor surface area served by these channels. While the
percentage changes were large, it should be noted that velocity
magnitudes throughout the harbor are small (less than
I ft/sec). Even for a large spring tide (tide ranges of almost
9 ft) maximum velocities in Angel's Gate are less than
1.5 ft/sec.

g. Net circulation in the Inner Harbor areas (Los Angeles Main

Channel, East Basin Channel, Cerritos Channel, and Back

Channel) showed a strong tendency to reverse under all four

plans. The net circulation under existing conditions is

counterclockwise (i.e., from Long Beach to Los Angeles), while

under plan conditions, it tended to be clockwise.
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h. Circulation vector plots provided information on overall flow
patterns in the harbors. Existing condition patterns were

dominated by large horizontal eddies within the Outer Harbor.
Tntroduc-ic- of the plan landfills eliminated these eddies.
The plans also caused stronger gradients in velocity profiles.
Often upper and lower layers were characterized by flows in
opposite directions, especially in the new slips and cLannels.

Water Quality

69. The results of the WQM study indicate that Phase .1 of Schemes A, B,

C, and D for LA/LB Harbor enhancement will reduce circulation and flushing in

several areas, such as West Basin, Middle Harbor, and the embayment between

West Basin and Fish Harbor. Residual circulation in the Los Angeles Main

Chaunel is expected to change from counterclockwise (existing conaitions) to

clcckwis. for the enhancement schemes. The enhancement schemes will result in

less rapid flushing in Li.e Inner Harbor-Back Channel-Middle Harbor of the Port

of Long Beach. Schemes 8 and C flush more completely than Schemes A and D in

these areas.

70. The main DO impacts of the enhancement plans are experiencee in the

Inner Harbor-Back Channel-Middle Harbor of the Port of Long Beach. Simulated

differences did not exceed 0.5 g/m3. The bottom waters exhibited lower DO

than the surface waters, but simulated concentrations were greater than

6.0 g/m3  The simulated DO indicated little difference between enhancement

plans. The only difference observed was that Scheme D provided slightly

greater DO at the junction of Outer Harbor and the Los Angeles Main Channel

(0.25 g/m3) and in the West Channel of Los Angeles Harbor (0.5 g/m3).

However, because of the observed small deviations, no plans are preferred for

DO.
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Table I

Total Flood and Ebb Volumes (106 cu ft) for Plan 1 During Two Lunar Cycles

Calibration Verification
Flood Ebb Flood Ebb

Range No. Ex* Plan I Ex Plan 1 Ex Plan 1 Ex Plan 1
1 5830 5280 5210 3930 5190 4530 3330 24!u

6 3570 3580 3880 3750 2320 2380 3080 2880

7 5340 4110 5490 5800 2690 2170 4620 4720

Total 14740 12970 14580 13480 10200 9080 11030 10010

Average Ex 14660 Plan 1 13225 Ex 10615 Plan 1 9545

Difference 1435 1070

Percent
Change -9.8 -10.1

* Ex - existing conditions.

Table 2

Total Flood and Ebb Volumes (106 cu ft) for Plan 2 During Two Lunar Cycles

Calibration Verification
Flood Ebb Flood Ebb

Range No. Ex Plan 2 Ex PIan 2 Ex Plan 2 Ex Plan 2
1 5830 4900 5210 3650 5190 4200 3330 2320

6 3570 3760 3880 3930 2320 2790 3080 2870

7 5340 4000 5490 5660 2690 2080 4620 4810

Total 14740 12660 14580 13240 10200 9070 11030 10000

Average Ex 14660 Plan 2 12950 Ex 10615 Plan 2 9535

Difference 1710 10O0

Percent
Change -11.7 -10.2



Table 3

Total Flo, d and Ebb Volumes (106 cu ft) for Plan 3 During Two Lunar Cycles

Calibration Verification
Flood Ebb Flood Ebb

Range No. Ex Plan 3 Ex Plan 3 Ex Plan 3 Ex Plan 3
1 5830 5360 5210 3830 5190 4560 3330 2330

6 3570 3590 3880 3800 2320 2380 3080 2930

7 5340 4110 5490 5830 2690 2160 4620 4770

Total 14740 13060 14580 13460 10200 9100 11030 10030

Average Ex 14660 Plan 3 13260 Ex 10615 Plan 3 9565

Difference 1400 1050

Percent
Change -9.5 -9.9

Table 4

Total Flood and Ebb Volumes (106 cu ft) for Plan 4 During Two Lunar Cycles

Calibration Verification
Flood Ebb Flood Ebb

Range No. Ex Plan 4 E Pan 4 Ex Plan 4 Ex Plan 4
1 5830 4880 5210 3640 5190 4340 3330 2290

6 3570 3910 3880 3870 2320 2790 3080 2900

7 5340 4200 5490 5850 2690 2130 4620 4990

Total 14740 12990 14580 13360 10200 9260 11030 10180

Average Ex 14660 Plan 4 13175 Ex 10615 Plan 4 9720

Difference 1485 895

Percent
Change -10.1 -8.4



Table 5

Net Flow Volumes (106 cu ft) During Two Lunar Cycles

for the Calibration Period

Range No. Ex* Plan 1 Plan 2 Plan 3 Plan 4

2 -109 56 87 28 52

3 179 -11 -8 -1 15

4 -166 22 36 13 2

* Ex - existing conditions.

Table 6

Net Flow Volumes (106 cu ft) Durinz Two Lunar Cycles

for the Verification Period

Range No. -12x Plan I Plan 2 Plan 3 Plan 4

2 -138 26 31 22 20

3 179 21 -10 23 25

4 -157 5 26 3 2
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c 5.0 50
0 0
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------ SCHEME B

- - SCHEME C
- - SCHEME D
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1.0 i0 50P
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025 E 0.5z z
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E 5.0 E 5.0-
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0.0 0.0
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Day Day
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- - SCHEME D
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Day Day
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- SCHEME C
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K CL
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0.50 1.0

pn~
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--- SCHEME C
- - SCHEME D
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-j-
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0
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* 243

- 5 .0 5 0 -

0.0 - - - . --- = 0. 0,
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1010
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05 1
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0
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0,5 - CO,-

1.0- A 0 50- -

,c'-0 0 .2 5

0.0 0.00

NH -N NO,+NO -N
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E 5.0 5.0
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0.0 , 00
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Day D ay
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.----- -SCHEME B
-- - SCHEME C

- - SCHEME D
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? -
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00 0.00

NH -N NO, NO -N
0.50 10-

0 0.25 E 05
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5.0 - 50

0.0 0.0 1
2130 228,0 243.0 213 0 228.0 243.0
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PLATE 302



BottoDm

i -
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NH -N N GZ+ 1..

0.50 N N1.0
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