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PREFACE

This volume describes analyses that were conducted in connection with

the investigation of unrzrtainty and sensitivity of physiologically based

pharmacokinetic (PPPK) models. In particular, interest was focussed on the

impact of uncertainty about the values of -odel parameters and the sensitivity

of PBPK models and dose response models to the values of the parameters.

Part I of this volume describes a sensitivity analysis conducted using a

relatively simple PBPK model. Parameter values were varied one at a time by

an arbitracy, small percentage. The percentage change in PBPK model output

(dose surrogate estimates) was recorded for each parameter change.

Also presented in Part 1 are the preliminary considerations and

experimental data relevant to the conduct of an uncertainty analysis. In such

an analysis, the parameters are allowed to vary in biologically and

experimentally meaningful ways to a degree consistent with the observed

uncertainty and variability associated with the parameter values. Then, a

distribution of output values (dose surrogate estimates or risk estimates)

derived from those varying parameters is available for subsequent use. The

output distribution reflects all the parameter uncertainties.

Part 2 presents some additional analyses related to the uncertainty

analysis just described. The contribution of an individual parameter (or set

of interrelated parameters) to the overall output uncertainty is examined by

allowing only that parameter (or set of parameters) to vary. The variation in

the output values, relative to the variation in the output when all parameters

are allowed to vary, is taken as an indicator of the contribution of that

parameter (or set of parameters).

ii
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A. INTRODUCTION

An analysis of PBPK models and their use in risk assessment should

a-tempt to characterize the uncertaintias that are associat3d witF that us3.

Some unr:ertaint'es described in the Introduction to this document (Volume !,

Part 1) relate to the more or less general, conceptual problems that must be

resolved in order to make the use of PBPK modeling in risk assessment less

uncertain. This vol .e describes an investigation of a more spec:fic source

of uncertainty: the uncertainty associated with the estimation of parameters

for the PBPK model and the sensitivity of the desired dose surrogates to

changer in t..ose parameters. The investigation focussed on the simple PERC

model discussed in Volume III, Ltiz 1. The goal was to relate the extent of

kiowledge about the input parameters to the range of dose surrogate values,

and uti..;ately risk estimates, that arP consistent with thit Knowlidge.

The investigation of PBPK model uncertainty was divided into two phases,

a sensitivity analysis and an uncertainty analysis. The former was concerned

with the degree to which the mclel results (dose surrogate estimates) depended

on the values of the input parameters and the extent of change In those

estimates associated with changes in the Darameter values. The uncertainty

analysis examined uncertainty in the parameter values per se and the

associated distribution of dose surrogate values that resulted from the

simultaneous consideration of all the uncertainties. Of course, the resulting

distribution of the dose surrogate value-; depended not only on the degree of

uncertainty associated with a parameter but also on the :ensitivity of the

model to changes in that parameter. Thus, the sensitivity anelysis was the

basis for 'oth phases of this investigation and is described first.

VI-1-2



B. SENSITIVITY

The sensitivity analysis consisted of an examination of the sensitivity

of the PERC model to changes in single parameter values. Three dose

surrogates were used to measure sensitivity: area under the liver

concentration curve of the parent (AUCL), area under the arterial blood

concentration curve of the parent (AUCA), and virtual concentration of the

metabolite in the liver. The average daily values of these dose surrogates

were used. Three sets of "preferred" parameter values were selected, one for

mice, one for rats, and one for humans (Table VI-I-I). In addition, because

it is likely that route of exposure, pattern, and level of exposure may modify

the sensitivity of the model to a particular parameter, dosing variations were

defined by combining several options with respect to such aspects. The routes

and patterns used were:

* inhalation, exposure for 8 hours per day

0 inhalation, continuous exposure

* gavage, once per day

* intravenous injection, once per day.

For each of the four route/pattern combinations three separate dose levels

were chosen. A low level of exposure was selected such that the metabolic

pathaay was far from saturation. An intermediate dose level at which the

metabolic pathway was changing from first-order to zero-order and a saturating

dose provided the other two doses. Preliminary runs of the model with the

parameter sets listed in Table VT-l-l allowed estimation of the appropriate

dose levels (Table VI-I-2).

VI-1-3



For the gavage, intravenous, and 8-hour inhalation exposure

scenarios, the model was run to simulate 24 hours starting at the beginning of

exposure. For the continuous inhalation scenario, an initial time was

determined such that at that time the system was close to steady-state. The

model was then allowed to simulate another 24 hours. It was that 24-hour

period over which the PERC liver concentration and the arterial blood

concentration were integrated and over which the metabolism was summed to

yield the dose surrogates of interest. The times at which the appropriate

periods began are listed in Table VI-I-2.

For each of the sets of "preferred" parameter values and for each

selected combination of route, pattern, and level of dosing, the model was run

to obtain baseline values for each of the dose surrogates. Then, each

parameter (one at a time) was increased by 1%: when examining the sensitivity

to parameter X, all other parameters remained fixed at their "preferred"

values. A minor exception to this rule related to the handling of blood flow

rates. The flows to the tissue compartments must sum to the total cardiac

output. Thus when one compartment flow rate was increased by 1%, the total

caroiac ouLput was increased by the same amount. The other individual

compartment flow rates were not changed. Thus the effect of this treatment

was to change slightly the percentage of the cardiac output that reaches any

particular compartment.

Sensitivity was expressed in terms of the percent change in the values

of the three dose surrogates. If DS was one of the dose surrogates, DS0 was

its baseline value, and DS. was its value obtained by increasing the value of

parameter X by 1%, then 100*(DS. - DS0 )/DS0 was the percent change recorded.

Tables VI-1-3 through V-1-14 present the results of the sensitivity

VI-1-4



investigation of the PERC model. [In those tables, percent changes less than

10-5 have been uniformly designated by asterisks to indicate changes at or

below the accuracy of the model.]

Some patterns were evident from examination of the values reported in

the tables. Not surprisingly, the AUCL dose surrogate was most sensitive to

pl for almost all routes of exposure, dose levels, or species. The

liver/blood partition coefficient, pl, determines the extent to which PERC

concentrates in the liver. For some inhalation exposures at high enough dose

(Table VI-I-9), the sensitivity of AUCL to pb exceeded that of AUCL to pl.

This must be because the blood becomes so laden with PERC that a large amount

of the chemical will partition to the liver for both pl values examined. For

intravenous administration, AUCL was more sensitive to the parameter tiv (the

duration of an iv dose administration) than to pl in rats and humans at medium

doses (Tables VI-1-8 and VI-1-12).

For AUCA, pb and qpc (which, in general, were very similar for gavage or

intravenous dosing in the magnitude of the sensitivity values but differed in

sign) were the most important parameters. [Note: in this discussion,

parameters to which a dose surrogate is more highly sensitive are referred to

as "important" parameters. To a considerable degree this designation is

relative, depending as it does on the sensitivity of the dose surrogate to

other parameters.] For virtual concentration of metabolite (CM), vlc and,

especially for the human parameter set, vmaxc were most important.

The body weight parameter (bw) displayed an interesting pattern. AUCL

and AUCA were more sensitive to bw than was CM when dose was given by gavage

or iv but these two dose surrogates were less sensitive than was CM when

inhalation exposures were considered. This pattern was especially evident for

vI-l-5



the mouse parameter set. It is suspected that this pattern was due, at least

in part, to the manner in which doses were expressed. The iv and gavage

scenarios were defined in terms of doses given in mg/kg body weight. Thus,

changes in body weight also changed the dose administered by these two routes

but not for the inhalation exposures. The sensitivity of CM in the latter

cases is most likely a reflection of the differential scaling of vmaxc (scaled

according to bw- 7) and vl (scaled according to bw 1-0 ). Since all the flows

and compartment volumes are scaled proportionally to bw1 0, the effects on

blood and liver PERC concentrations due to a change in body weight were not as

substantial.

As mentioned above, vmaxc was important for CM. It was substantially

less important to AUCL and AUCA, although for mice, particularly at low doses,

its effect on these two dose surrogates can be relatively important and even

exceeded the effect on CM (Tables VI-1-3 through VI-l-6). It was also the

case that the sensitivity of CM to vmaxc increased as dose increased.

However, the sensitivity of AUCA and AUCL to vmaxc decreased as dose level

increased. As doses increased and as metabolism became saturated, entailing

relatively less PERC being metabolized, the effect of metabolism on the parent

concentrations became less important. Note that, of the three parameter sets

considered, the mouse set had the largest vmaxc, followed by the rat set. As

vmaxc decreased, the sensitivity of CM to vmaxc increased while the

sensitivity of AUCL and AUCA to vmaxc decreased.

The other metabolic parameter, km, became less important as dose level

increased, as expected. This was especially true for the dose surrogates AUCL

and AUCA. Those two dose surrogates were more sensitive to km for mice than

for rats or humans. On the other hand, at low to medium dose levels, CM was
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less sensitive to km when the parameters were equal to the values in the mouse

set than when they took the rat or human values. The km value for rats and

humans was about two times larger than the value for mice.

All the dose surrogates examined were relatively insensitive to changes

in the partition coefficients corresponding to compartments other than the

liver, tegardless of route or level of exposure. In fact, pl was important

only for the AUCL surrogate. Conversely, pb was relatively important for all

routes, species, and dose levels. The sensitivity of the dose surrogates to

pb tended to increase with dose level, although the differences across dose

levels were generally not great. An exception to this observation was noted

for the CM surrogate, for which the sensitivity to pb tended to decrease at

high doses, especially for continuous inhalation exposures. In those cases,

the high doses entailed high enough blood concentrations that the limiting

step was metabolism, not delivery of PERC to the liver.

For a compartment other than the liver, the sensitivity of the dose

surrogates to the partition coefficient and to the compartment volume were

almost indistinguishable. This relationship was strongest at the high doses

but was evident also at medium and, to a lesser extent, low dose levels.

(This observation may have important implications for the optimization of

parameters in the face of uncertainty about both compartment volumes and

partition coefficients. Generally, it will be the case that a partition

coefficient value is more uncertain than the corresponding compartment

volume.) The observation that partition coefficients other than pb and pl

were relatively unimportant extends to compartment volumes as well. Indeed,

dose surrogates other than CM were not very sensitive to liver volume changes,
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certainly no more so than to changes in the other compartment volumes. The

importance of vlc to the CM surrogate was noted above.

The ventilation rate parameter was relatively important for all dose

surrogates and all routes of exposure at low to medium dose levels. The

sensitivity of the dose surrogates to ventilation rate (qpc) varied somewhat

with the level of dose. Moreover, the dose trend that was observed depended

on the route of exposure. For inhalation exposures, the surrogates became

less sensitive to qpc as dose increased (at high enough doses the

concentration in the blood was high no matter how fast the animals took in the

chemical). For gavage and intravenous dosing, the sensitivity increased as

dose level increased (high iv or gavage doses saturated the blcod and

exhalation was a prime means of eliminating the parent but not, as in the case

of inhalation, of taking in PERC). As might be expected, increasing qpc

increased the dose surrogate estimates when dose was administered via

inhalation whereas an increase in qpc reduced the surrogate estimates when

breathing rate did not influence the absorption of the chemical, i.e., when

PERC was given via gavage or iv.

As noted above, qpc was a more important parameter for AUCA than for the

other surrogates. This was not due to qpc sensitivity values that were

substantially greater for AUCA than for the other surrogates. Rather, the

other parameters that were important for AUCL and CM (pl, vlc, and vmaxc, for

example) were much less important for AUCA so that the relative importance of

qpc to AUCA increased.

The blood flow rates were among the least important parameters for any

dose surrogate. It is interesting to note the changes in the direction of

change of a dose surrogate induced by an increase in a parameter value. For
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increases in the blood flow rates, it was frequently the case that the signs

on the sensitivity values differed for different dose levels, parameter sets,

and dose surrogates. No consistent pattern was apparent. This effect was not

anticipated.

Another way to examine the sensitivity issue is to rank-order the

parameters with respect to the degree of sensitivity of a dose surrogate to

those parameters. Tables VI-1-15 and VI-1-16 display the orderings obtained

for the CM surrogate when two routes of exposure and two species (parameter

sets) were considered. The importance of vlc and vmaxc to CM is underscored

in these representations. Several other observations are relevant.

0 The interaction of dose route and dose level in defining
sensitivities was seen, for example, in the increasing importance of
qpc as iv dose increased and as inhalation dose decreased for the rat
parameter set.

* The distinction between important and unimportant parameters was much
clearer whli a high inhalation dose was administered, whereas a more
continuous variation in sensitivity was seen at lower doses or for
other routes.

* Blood flow rates to the compartments were consistently unimportant
(with the possible exception of qlc).

There was little difference between the two parameter sets with respect

to the most sensitive parameters, although the particular ordering differed

somewhat between the species. This was a reflection of the difference in the

values assigned to the parameters. It was not the case, however, that the

sole determinant of the importance of a parameter was the value of that

parameter. Consider the parameters defining the percentage of cardiac output

directed to the compartments. Even though these parameters were the same in

the rat and mouse parameter sets, the ranks that these parameters received
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differed across species. So too did the ranking based solely on those blood

flow parameters, with qsc ranked higher than qfc in one species or for one

dose level and vice versa for the other parameter set and for other dose

levels.

As stated above, the sensitivity of the dose surrogates to the

parameters is an important factor in the determination of uncertainty

propagation. Those parameters for which uncertainty with respect to their

real value is great may not necessarily lead to great uncertainty in the dose

surrogates if the surrogates are not particularly sensitive to those

parameters. On the other hand, even relatively minor uncertainty regarding

the value of a parameter may entail large uncertainty in a dose surrogate (and

ultimately in risk estimates based on dose surrogate estimates) if the

surrogates of interest are extremely sensitive to the parameter in question.

Uncertainty is discussed more completely in the next section.

C. UNCERTAINTY

The values of the parameters that define a PBPK model are uncertain.

The uncertainty associated with a parameter estimate may be due to lack of

adequate data, differences in methods used to estimate the parameter value,

and/or recognition of the fact that a single value may not be adequate to

characterize a parameter that varies over the population of interest. The

goal of the uncertainty analysis described here was to relate the parameter

uncertainties to the distribution of the results of the PBPK models, i.e., to

the dose surrogates estimated by those models. In addition, that analysis

included computation of distributions of risk estimates, which depended on the
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values estimated for the dose surrogates, and thus were also related to

parameter uncertainty. We refer to the distribution of dose surrogates

attributable to parameter uncertainty as dose surrogate uncertainty.

Similarly, the distribution of risk estimates attributable to parameter

uncertainty is referred to as risk uncertainty. The definition of risk

uncertainty is extended to include effects of uncertainty about the true rate

of response for any group of animals tested (observed for tumor response) and

used for fitting of a dose-response model.

The first task in this uncertainty analysis was the definition of the

joint uncertainty distribution for the parameters. The description of that

work for the PERC model parameters comprises the bulk of this section. As

described below, the parameter uncertainty distribution takes into account as

many of the features of the Pstiziation of parameter values as possible. The

cmphtasis in this section is on development of methods and conceptual

approaches to the issue of parameter uncertainty estimation.

Given estimated uncertainty distributions for the parameters, the dose

surrogate uncertainty distributions were estimated by Monte Carlo simulation.

For each simulation, a value was sampled from each of the distributions

defined for the parameters. These values were then used in the PBPK model to

determine the corresponding values of the dose surrogates. A large number of

simulations allowed estimation of the uncertainty distribution of the dose

surrogates.

Dose surrogate uncertainty was then extended to estimate the uncertainty

in risk estimates due to uncertainties in model parameters. The uncertainty

distributions for the animal surrogate doses were estimated as described in

the preceding paragraph, for each of the dose patterns used in one or more
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carcinogenicity bioassay. Similarly, uncertainty distributions for human

surrogate doses were estimated for (the usually low) levels of exposure that

are of concern; this was accomplished by sampling from the parameter

uncertainty distributions corresponding to the human parameter values and

running the PBPK model many times exactly as described above for the animal

parameters and simulations.

Given the cistributions of the dose surrogate estimates (for each animal

dosing pattern and for the human exposure scenario of interest), it was

possible to estimate risk uncertainty. The methods by which this was

accornpli 3!,d for one carcinogenicity bioassay are described as follows.

1. A bioassay was selected. Carcinogenic responses appropriate for
use in estimation of human risk were chosen.

2. For the doses employed in the bioassay, the dose surrogate values
co-responding to the preferred PBPK model parameter values were

used to fit a dose-response curve.

3. In order to incorporate the uncertainty about the true response
rate at the doses tested, the probabilities of response estimated
by the dose-response curve fit in step 2 were used to randomly
regenerate response rates (from binomial distributions with their
parameters defined by the number of animals tested at each dose

and the estimated probabilities of response).

4. The dose surrogate distributions (previously estimated) were
sampled once for each dose group and a new dose-response function
was fit using the just-sampled dose surrogate values and the

randomly generated tumor response rates.

5. A value from the uncertainty distribution of the human dose
surrogates (also determined previously) was sampled; it determined
the value for which risk was estimated, which was accomplished
using the newly fitted dose-response curve.

Repetition of this procedure a large number of times allowed estimation of the

uncertainty distribution of the human risk estimates.
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Several results are available from an uncertainty analysis as described:

0 Uncertainty distributions for each of the parameters: the uncertainty
distribution for each parameter or set of parameters is represented by
a statistical probability distribution. Several of the parameters for
the PERC model are represented in this manner below.

* Uncertainty distributions for dose surrogates: the empirical
distributions resulting from the Monte Carlo sampling of the parameter
uncertainty distributions can be displayed graphically as cumulative
frequency plots, histograms, or displayed in tabular form, listing,
for example, the 2.5, 5, 10, 90, 95, and 97.5 percentiles.

0 Uncertainty distributions for the risk estimates: the empirical
distributions resulting from Monte Carlo sampling of the parameter
uncertainty distribution, PBPK modeling for each bioassay dose level
and human exposure level, and dose-response analysis.

The remainder of this section reviews the considerations and data relevant to

estimation of uncertainty distributions for the parameters of the PERC PBPK

model considered in Volume III, Part 1 (and used for the sensitivity analysis

in this volume). The focus has been on the development of the methodological

approaches and ider. fication of difficulties that may arise in the

specification of uncertainty distributions.

Appendix VI-l-A contains a published analysis that has completed the

task of deriving dose surrogate and risk estimate uncertainty distributions.

The example in that document is also for PERC, and uses results from a female

mouse carcinogenicity bioassay to get risk estimates.

1. Parameter Uncertainty Estimation

The uncertainty associated with a parameter value depends on the type of

data available for estimating the parameter and the way that the data are used

to arrive at an estimate. Frequently more complex and indirect estimates

(e.g., estimates based on numerous assumptions) will be attended by greater
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uncertainty than relatively simple and direct estimates. For example, if one

attributes to humans a value measured directly only in rats, then the

uncertainty for the human value is affected by the degree of variation in the

value from species to species, as well as whatever uncertainties are

associated with the direct measurement in rats.

In an uncertainty analysis as described here, it is necessary to have

preferred" values for parameters. In general, a preferred value for a

parameter is an estimate that has been determined by one or more users of the

specific PBPK model and has been validated to some extent. The preferred

value roughly corresponds to the center of the uncertainty distribution that

is to be estimated. For the PERC model parameters, for example, the preferred

values may be assumed to be those given by Reitz and Nolan (1986) (cf. Table

111-1-1).

The manner in which Reitz and Nolan derived estimates for the parameters

of their PERC model is iepresentative of the considerations that typically

apply to the issue of parameter estimation. The necessity of attributing to

humans parameter values based on measurements in animals is but one example.

Thus, the approaches that they have used are convenient starting points for

this investigation of parameter uncertainty estimation and are examined in

some detail here. The approaches of Reitz and Nolan do not necessarily

provide the most reliable estimates possible for PBPK model parameters;

however, by examining their approaches, one can evaluate the uncertainties

that will arise in many situations. One nice feature of the approach to

uncertainty estimation described below is that, as more reliable estimates of

parameter values become available, the uncertainties associated with the
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parametets will be reouced because of the consi'erations given to the sources

for and acsimptinns inherent in the estimation procedure.

Probaoility Models for Uncertainty. The first assumption underlying

this approach to uncertainty analysis is that uncertainties are naturally

expressed in terms ot probability. For example, if one is fairly certain that

a parameter value must lie within a specified inter-al then that interval will

be assumed to contain the true parameter value wich high probabillty. (Note:

for continuous variables the probability of any single value is zero, while

the probability density of the value may be greater than zero. A probability

density mcy be integrated over an interval to yield the probability associated

with the interval.) Civen this basic assumpt4 on, the formal treatment of

uncertainties involves specification of a joint probability distribution for

all he parameters tV-t are subject to uncertainty.

Consider an example for a pirameter that is assumed to be independent of

the other parameters. A parameter is independent of another para- -r when

information regarding the value of the other parameter is uninformative with

respect -o the value of the first parameter. In this case, the preferred

value of the parameter might be assigned the highest probability density, and

values at increasing distances (both above and below the preferred value) are

associated with lower density. If it Is further assumed that valu s

equiOistant from the preferred value have equal probability density and that

every value has nonzero (positive) density, then a natural representation of

the uncertainty distribution is given by the normal distribution. The mean of

the distribution is equated with the preferred value and the variance (the

only other parameter defining a normal curve) is estimated on the basis of tLie
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data used to derie the parameter estimates. The variance wo,,1d be the

probabilitf parameter reflecting uncertainty.

The probability distribution for a single parameter is called the

marginal probability distribution tor that parameter. A set of marginal

probability distributions (one for each parameter) specifies the joint

prohability distribution when the -arameters are independent. Whei, the

parameters are i.ot assumed to be independent, additional assumptions or

parameters may be required to specify the nature of the dependencies and to

characterize the joint distribution.

The assumptions discussed above in relation to the representation of the

uncertainty distribution of a narameter by a normal curve are generally not

appropriate for characterization of PBPK model parameter uncertainty. This is

true because of the known, logical bounds on the values of the parameters.

Obviously, all the parameters are constrained to be nonnegativo Moreover,

certain of the parameters (such as percentage of body weight that is occupied

by a compartment and proportions of cardiac output that flow to a compartment)

are bounded above by unity (or 100%). The parameters that are proportions or

percentages are also constrained by the values of the other parameters that

describe proportions associated with other compartments. Some distributions

that may be considered for defining parameter uncertainty are described below;

they all are expressed in terms of ?xplicit probability modeis that have a

finite mean (generally equated with the preferred value of the curresponding

parameter) atd addilional parameters specifying the distribution of

probability about the mean.

Two cases arc recognized. For parameters that are logically bounded

below, one may use the lognormal probability distribution, i.e., one assumes
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that uncertainty follows a normal distribution with a specified mean ard

variance when parameter values are expressed in the log scale. The lognormal

is flexible in the sense that different selections of log-scale mean and

variance may lead to distributions with widely different shapes, although all

assign zero probability density to values zero or smaller. If the variance is

small relative to the mean, then the shape of the density function is similar

to that of the normal distribution; relatively larger values of the variance

lead to J-shaped distributions.

For lognormal distributions, one can assume that the mean of the

distribution, in the log scale, is the log of the preferred value. Then for a

preferred value X and any positive number K, the values X/K and X*K have equal

probability density (i.e., the probability density function is symmetric in

the log scale about the log of the preferred value.) It is convenient to

represent uncertainty using an "uncertainty factor" (UF) not smaller than

unity .jch that for the preferred value X, the interval X/UF to X*UF is

considered to contain the true value cf the parameter with probability at

least 95%. More about uncertainty factors and their estimation is given

below.

In the second case, for parameters that are proportions (e.g.

compartment volumes as percentage of total body volume), a joint distribution

must be specified for each set of proportions, since the observed proportions

cannot be varied independently. One can use a Dirichlet distribution for each

set of proportions (Johnson and Kotz, 1972), which is a multivariate

generalization of the beta distribution. (The beta distribution is the most

commonly encountered continuous distribution for a single proportion: Iman and

Shortencarier (1984) have previously discussed the use of the beta
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distribution in the contexts of uncertainty analysis.) For each proportion or

percentage, the Dirichlet distribution permits only values between 0 and 1.

Subject to this constraint, the Dirichlet distribution is extremely flexible

in terms of the diversity of shapes which may result from selection of various

values for the parameters. Given a preferred value for each proportion, the

variances and covariances of the proportions are determined by a parameter

THETA. A brief discussion of the Dirichlet distribution is provided here.

For purposes of discussion, assume that the parameters are proportions,

i.e., that their sum is constrained to equal 1. For K proportions, it is

necessary to specify K parameters for the Dirichlet distribution. There are

two common ways of expressing the parameters of a Dirichlet distribution. One

representation is given in terms of the parameters p(l),p(2), .. ,p(K-l)

(where p(i) is the expected value of the ith proportion) and the parameter

THETA (which can be no smaller than zero). Note that the Kth expectation is

known if the first K-1 are specified. A second common representation is in

terms of a(i) - p(i)*THETA, for i - 1,...,K. The first representation is more

natural to PBPK modeling applications. The preferred value for the ith

proportion ie set equal to p(i); the parameter THETA must be estimated from

experimental data.

It is clear that two proportions (such as proportion of body weight that

is the liver and proportion that is fat) must be negatively correlated. That

is, as the proportion of body weight that is liver increases, the proportion

that is fat must tend to decrease. In fact, the covariance of two proportions

described jointly by a Dirichlet distribution is given by
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(1) COV(i,J) - - p(i)*p(J)/(THETA + 1).

Thus the uncertainties for members of a set of proportions assumed to be

Dirichlet-distributed are not independent. They are completely specified by

the preferred values and the parameter THETA.

As an example, consider volumes of tissue compartments. These can be

represented by a Dirichlet-distribution when they are expressed as proportions

of the total body weight. In fact, the proportions may change with changes in

body weight. For instance, it appears reasonable that the volume of the fat

compartment will be correlated with body weight. A relatively simple

representation of the dependence of fat volume on body weight is given by

(2a) pF(BW) - pF*BW/BWp for BW < BWp;

(2b) pF(BW) - 1 - (BWp/BW)*(l - pF) for BW > BWp,

where pF is the preferred value for proportion that is fat at the preferred

body weight, BWp. This formula implies that the expected value of fat volume

goes down quadratically with body weight for body weight less than BWp, and

that body weight in excess of BWp consists of fat. The preferred values of

the remaining (non-fat) proportions, p(i), can be adjusted by multiplying each

by (l-pF(BW))/(l-p(i)), so that compartment proportions other than that for

the fat compartment retain the same relationship among themselves that they

have at tne preferred body weight. The pF(BW) and other adjusted p(i)'s are

the parameters that, along with THETA, now define the Dirichlet distribution

for compartment proportions in an animal of weight BW.
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In summary, then, PBPK model parameter uncertainty can be modeled on the

basis of probability distributions. For parameters other than those that are

expressed in terms of proportions, log-normal distributions can be assumed.

For proportions, the Dirichlet distribution provides a convenient definition

of the relationship among the proportions. As illustrated in the case of

compartment volumes as proportions of body weight, inter-relationsbips among

parameters of a PBPK model can be inc',rporated so as to represent biological

realities.

What remains is to specify tlie relevant sources of uncertainty and the

manner in which they ca- be used :o estimate the othEr parameters of the

probability di.cributions (such as the log-variance or log-standard deviation

in the case of log-normal distributions), the ones that actually define the

uncertainty about preferred values.

Sources of Uncertainty. Two general types of uncertainty appear to be

relevant to the definition of the uncertainty distributions discussed above.

The first, which will be denoted as source I, is uncertainty about the value

of a parametez for a random individual in a population that is due to

individual variability about a population mean. This uncertainty may be

reflected in the variation in paidmeter estimates among individual subjects

within a study and expressed in terms of the standard deviation or coefficient

of variation. The second source of uncertainty is identified with uncertainty

regarding the population mean valje of a parameter; this source is denoted as

source M. Data from different studies that suggest different mean values are

relevant to this type of uncertainty. Both sources are pertinent to the

estimation of total uncertainty and can be incorporated by considering the

following framework.
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The total uncertainty is defined as the uncertainty regarding the true

value for an individual, selected at random from the population. This total

uncertainty may be evaluated by the following sort of two-step Monte Carlo

approach. (In practic. ' '- ,c -t-n v- ftpn he telesconed into one.)

First, pick a value at random to represent the population mean, from a

distribution with mean equal to the preferred value, and other parameters

(e.g., variance) determined by the variation that we observe among studies

(reflecting source M uncertainty). Second, randomly select a value to

represent the parameter value for an individual in the population, from a

distribution with mean equal to the simulated population mean from the first

step, and with other parameters determined by the variation observed among

individuals within studies (reflecting source I uncertainty). When the

complete process is performed an indefinite number of times, performing each

step precisely once for each final value generated, the distribution of the

final values (from the second step) describes the distribution of "total

uncertainty."

Note that of the two sources of uncertainty, source M is relatively more

subjective in nature, ideally depending on the scientific process of reviewing

the relative reliability of each study, and weighting studies appropriately in

their contribution to the preferred value. (Uncertainty may be reduced if the

more extreme values are determined by independent arguments to be based on

relatively unreliable procedures and are therefore given less weight.) In

view of this process, source M may be regarded as more legitimately the

subject of expert opinion than source I.

The two basic sources of uncertainty may be subdivided further for

particular parameters, depending upon the method by which parameter estimates
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were determined. For example, if one assumes for humans a value measured

directly for animals, then a component of source H uncertainty is due to

variation among the values typical for different species. Such considerations

can be incorporated into the estimation of uncertainty distributions.

In many instances, it is convenient to identify and estimate source-

specific uncertainty. Uncertainty factors corresponding to the sources can be

denoted either as UFI or UFM, as appropriate. These source-specific

uncertainty factors would represent the residual uncertainty, if uncertainty

from other sources could be eliminated. Presented below are methods for

combining source-specific uncertainty factors into a total uncertainty factor.

In the context of sources of uncertainty, it is valuable to distinguish

between reducible and irreducible sources of uncertainty. To a large extent,

uncertainty about the population mean (source M) is reducible uncertainty, in

principle. Mechanisms for reducing this uncertainty include scrutiny of

methods used in particular studies, possibly leading to identification of

extreme estimates that are based on faulty procedures. Also, LZOuction of

uncertainty may be achieved by averaging estimates that are considered

comparable in reliability. The studies that are properly conducted and

equally reliable should all be able to contribute to the estimation of a

population average.

In contrast, individual variation as a source of uncertainty is more or

less irreducible. This does depend on the context of application however. If

the goal of an assessment is to describe the distribution of risk levels among

individuals in a specified population, then some consideration of individual

variation in parameter values is appropriate and should be incorporated into

the analysis. In that case the object is not to reduce the source I
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uncertainty, but to incorporate a reliable estimate of that uncertainty. On

the other hand, if an assessment is desired for a particular individual, then

individual variation is a relevant source of uncertainty when attributes of

the individual are unknown. (In this case we equate uncertainty regarding the

individual's parameter values to the frequency distribution of values observed

for the population.) Obviously the uncertainty may be reduced if relevant

characteristics of the individual, such as sex, weight, or breathing rate, are

measured and taken into account.

Methods for Estimation of Uncertainty Factors. The discussion above has

indicated sources of uncertainty and the manner in which uncertainty about the

values of a parameter can be modeled, i.e. , either by a lognormal distribution

about a preferred value or by a Dirichlet distribution with expected values

for proportions set equal to the preferred values of those proportions. What

remains is to specify the methods that can be used to estimate the other

parameters of those distributions, the parameters that actually correspond to

uncertainty in the sense of defining the "spread" of the distribution.

In the case of the lognormally distributed uncertainties, several

statistics that are computed directly from available data are relevant to the

estimation oZ ulCeLtainty factors (Table VI-I-17). Recall that for a

lognormal distribution, the uncertainty factor (UF) that is desired is one

such that the interval (X/UF, X*UF) contains approximately 95% of the total

probability of the distribution, i.e., that specifies with about 95% certainty

the interval that contains the true value of the parameter, where X is the

preferred value of the parameter. Three cases can be identified that may lead

to estimates of UF based on different statistics shown in Table V1-l-17; all

are intended to yield UF estimates with the desired "95%" property.

VI-1-23



In the first case, suppose that data on the variation of a particular

parameter is given only in terms of a plausible range, perhaps specified by a

relevant expert. Assume that this range represents a "95%" interval in the

sense given above. Then it is natuial to equate the uncertainty factor to the

statistic Si - (UB/LB)0-5, where LB is the lower bound of the interval and UB

is th2 upper bound. This representation can be derived by equating LB to

GM/UF, and UB to GM*UF, where GM is the geometric mean of the range.

The second case arises when individual measurements (or relevant summary

statistics of those measurements) are available and it is assumed that the

measurements are independent and identically distributed (iid). The relevant

summary statistics are estimates of the log-scale standard deviation (SDL);

the primary ones considered are SSDL and CV (cf. Table VI-l-17). [As

indicated in Table VI-l-17, SSDL is the preferred estimate of SDL but it is

frequently the case that individual measurements are not provided, so that

SSDL can not be computed, and that SSDL itself is also not reported. Use of

CV, the coefficient of variation, is then sufficient. Its approximation of

SDL is based on a first-order Taylor's series expansion. Our experience

indicates that the approximation is accurate to one to three significant

digits.] Recall that, for a normal distribution, approximately 95% of the

probability is contained within two standard deviations of the mean. Thus

for the log-normally distributed uncertainty distribution, the interval

(X/exp(2*SDL), X*exp(2*SDL)) contains approximately 95% of the probability.

When the uncertainty in question is irreducible, or when no steps are taken to

reduce a reducible uncertainty, these considerations imply a choice for UF of

S2 (Table VI-l-17). When a reducible uncertainty has been reduced by

averaging the lid observations that underlie these statistics, so that the
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preferred value is the geometric mean of the observations, then the statistic

S3 (Table VI-I-17) appropriately reflects the reduction in uncertainty

attained by the averaging.

The third case involves obser-qtions that are likely to deviate strongly

from the iid assumption, with the nature of the deviation not fully understood

or specified. This case is obviously problematic. This type of situation may

hold frequently in evaluating source M: the available studies may have used

different methods to estimate the value of a parameter and particular studies

may have associated with them measurement biases or levels of measurement

error which are more or less specific to the study and are of unknown

magnitude. If some measure of relative reliability can be attached to each

available measurement, and if the relationships between the different

measurements can also be fully described, then in principle it may be possible

to develop a formal assessment of uncertainty using a probability model. In

the absence of such a complete analysis there is no guarantee that any formula

will produce a better UF than a guess from an experienced researcher. In some

cases one may have to apply methods based on iid assumptions, leading to

evaluations of uncertainty that may be relatively questionable. These cases

should be documented when they occur.

It was argued above that when the technique used to reduce a reducible

uncertainty is averaging of the relevant iid observations, the statistic S3 is

an appropriate estimate of the uncertainty factor for the preferred value that

is the geometric mean of the observations. However, not all of the preferred

values are geometric means of observations and, moreover, observations from

different studies (pertinent to the estimation of source M uncertainty) are

frequently not lid. A development of estimates of uncertainty for other
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uncertainty-reduction mechanisms would require a formal model of such

mechanisms that have operated in producing the preferred values, including,

perhaps, the impressions of experts regarding the relative merits of different

studies. This is not a trivial undertaking. However, it may be the case that

an adjustment similar to that seen in statistic 53 (i.e., division by the

number of measurements) may be considered, replacing the number of

measurements by some number not larger than the number of study-specific

estimates considered in arriving at the preferred value. Again, source M

appears to be more legitimately evaluated on the basis of expert opinion than

source I.

The statistics such as those in Table VI-1-17 that are computed to

estimate source M uncertainty are all "impure" estimates. The value reported

in each study is affected to some degree by the variation of individuals

within studies, depending on the number of individuals measured.

Consequently, to an extent, individual variation is included twice in such an

evaluation of total uncertainty. Similar redundancy occurs in evaluating

various other sources of uncertainty. In principle a correction is possible

based on a components-of-variance approach, but such an approach has not been

investigated here.

For those parameters that are expressed as proportions and whose

uncertainty is modeled by a Dirichlet distribution, the uncertainty parameter

that must be estimated is THETA. For proportions described by the Dirichlet

distribution, the variance of an observed proportion f(i) is given by

(3) V - p(i)*(l-p(i))/(THETA + 1),
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where, as discussed above, p(i) is the expected value of the proportion.

Therefore a "quick and dirty" estimate of THETA can be obtained by equating

the variance of a sample of measurements of a proportion to V, substituting

the mean proportion for p(i). For example, Caster et al. (1956) reported that

the mean liver volume of rats, as a proportion of total body volume, was

0.0477, with a variance of 2.8*10 -5 . Thus, the approximation of THETA can be

determined from

(4) 2.8*0 -' - 0.0477*(l - O.0477)/(THETA + 1),

so that THETA is estimated to be 1621. Other sample variances may suggest a

different value for THETA, in which case some sort of average of the estimates

may be used. Figure VI-1-1 shows the implied probability density function

for liver as a proportion of body volume given by the equation above. (Each

of the f(i) will follow a beta distribution with parameters p(i) and THETA.)

In the discussion above, source-specific uncertainties (corresponding to

source M or source I) were discussed. The methods for estimating uncertainty

factors just presented were also specific to one source of uncertainty.

Methods for combining the source-specific uncertainty factor estimates to

obtain a total uncertainty factor are discussed here.

In practice, when the distributions are simple, the distributions

associated with the two sources can be combined into one. Where the source-M

distribution is normal with mean Ml and variance Vl, and the source-I

distribution is normal with mean 0 and variance V2, then the distribution

generated by the two-step algorithm is normal with mean MI and variance Vl+V2.

This distribution approximately describes total uncertainty for parameters

VI-1-27



whose uncertainty distribution is assumed to be log-normal, provided that the

means and variances refer to the log scale.

In the case of log-normally distributed uncertainty, if uncertainty is

evaluated for K independent sources (e.g. K-2 for source M and source I) then

we may estimate a UF specific to each source (UF for source i, i - 1,...,K.).

Corresponding to UFj is a log-scale standard deviation SDL, - ln(UFi)/2 for

the assumed lognormal probability distribution. If the sources of uncertainty

are assumed to be independent, then the appropriate value of SDL representing

our total uncertainty (SDLr) is

(5) SDLT - [Ei SDLj 2 ]0.5.

Consequently an appropriate UF for total uncertainty is

(0, UFT - exp[(Ej(inUFj)2 )0.5].

Thus, for example, any UFi equal to unity (i.e. any SDLi equal to zero) makes

no contribution to the overall UF.

These arguments apply to uncertainty associated with use of direct

measurements of a quantity of interest. In some cases, for example when a

measurement of a parameter for a rodent is used for humans, special treatment

may be required. In any case, uncertainty can be evaluated by constructing an

algorithm such as the "two-step" algorithm above, where the first step is to

pick a population mean value from a distribution with mean equal to the

preferred value and variance reflecting the source M uncertainty, and the

second step is to pick a value for the parameter from a distribution having a
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mean equal to the value s., pled in step une and a variance reflective of

individual variation. For the example just cited, Lhe variance for the first

step must include consideration of the differences in the parameter observed

for different species.

It is somecimes the case that a PBPK model parameter is not measured

directly but is a function of other variables that are themselves su'ject to

uncertainty. Let f(h) be a function of the vpctor of variables

h' - (hl,.. . hx), each subject to uncertainty. For example, a tissue/blood

partition coefficient (PC) for a gix'en compound is generally estimated by the

ratio of an estimate of the tissue/gas partition coefficient (here denoted hl)

to an estimate of the blood/gas partition coefficient (here denoted h2),

i.e., PC - t(h) - hl/h 2 . It is necessary to evaluate uncertainty in the

function f implied by uncertainty in its arguments h, and h2 .

The simplest case is when the function is linear. For example, in the

example of partition coefficients, it is convenient to deal with uncertainty

in the natural log of the tissue/blood PC, since we will assume that the PC's

are normally distributed in the log scale, with specified variance SDL2 .

Therefore we evaluate uncertainty for the function

(7) In PC - In h, - In h2.

A further simplication is to consider the uncertainties in the arguments to be

independent. In this case the variance of a linear function is simply the

same linear function of the varian-es of the arguments, but with the

coefficients squared (again, assuming that the arguments are distributed

independently.", If we assume independent lognormal distributions for h, and
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h 2 , with log-scale standard deviations SDL I and SDL2 , respectively, then the

log-scale standar deviation for the function f is

F7) SDif - [ (SDL1
2 + SDI2

2) 10. 5.

This is e's&ntially formula (5). The app-opriate UF is simply exp(2*SDLf).

For .,-,,linear functions of uncertain arguments, simple Taylor-series

approxlmiti~r~ 're available; also, nor- > dependent uncertainties in the

arguments can be handled in a simple nidrner, provided that the dependencies

are well described '/ cor !:tions cr covariances.

Uncertainty Evaluation for PERC Partition Coefficients. The first

example of how uncertainty from various sjurces, or arising from various

assumptions, car, be combined into an assessment of total uncertainty for PERC

PBPK model parameters was applied to the partition coefficients. A partition

coefficient (PC) is the ratio of concentrations in two compartments at

equilibrium, and so is a dimensionless quantity that is logically bounded

below by zero but not logically bounded above. In acrordance with the

discussions above, the uncertainty was modeled using a lognormal distribution

with log-scale mean equal to the log of the preferred value.

The examples of uncertainty estimation provideL here illustrate four

different scenarios. First were those PC's that were measured directly, i.e.

the blood/air PC's, and which may have been measured by several investigators.

Second, for the rat tissue/blood PC's, the estimates weze derived as functions

(ratios) of tissue/air and blood/air PC's and thus their uncertainty was

evaluated using equation (7). Third, human tissue/air PC's were not measured

directly so that rodent values had to be attributed to humans, illu-trating
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the importance of considering species-to-species variation in the estimation.

Fourth were the PC's such as rapidly perfused/air that were not measured in

any species but were equated with specific other PC's, in this case the

liver/air PC. The derivation of uncertainty estimates is illustrated for each

case.

For all of these "estimation scenarios" source M uncertainty was

visualized as shown in Figure VI-l-2. For each tissue group, there is a

(hypothetical) super-distribution of values of PC's for that group over

mammalian species. The species of greatest interest in the present context

were rats, mice, and humans. Each species has for each tissue group its own

distribution of values of PC's and an associated true mean value. This

distribution is manifested in the measurements that are obtained from

individual animals and the mean of those measurements from each study. Source

I uncertainty can be visualized in terms of additional branches added to the

top of Figure VI-l-2, branches emanating from the means of the measured values

to the measurements taken from individual animals.

The representation given by Figure VI-1-2 has associated with it certain

assumptions. The first is that a tissue group in one species is more similar

to that tissue group in another species than that tissue group is to other

tissue groups in the same species. This appears to be supported by the

observations of Fiserova-Bergerova (1983) on species differences in partition

coefficients. She stated that species differences in PC's appear to be

haphazard and most likely without biological significance. If this is

realistic, then perhaps it is appropriate to treat species-to-species

variation in PC's as independent for different compartments. This is the

second assumption underlying the representation given in Figure VI-1-2.
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As indicated in the figure, the estimation of the true mean of a species-

specific distribution requires, at least, the estimation of that mean from the

measured mean values. This has associated with it uncertainty represented in

the figure by SMl(xi), a log-scale standard deviation for species x and

tissue group i that reflects the variation one would expect to see in Mean

values given the distribution around the true mean PC for that species and

tissue group. Other components of source M uncertainty are displayed in the

figure as SM2(i) and SM3(i,j), log-scale standard deviations representing

variation across species of mean values of PCj and variability in the

relationship between PCj and PCj, respectively. Specific estimates for each

of the standard deviations are discussed below, but it is perhaps appropriate

to note here that, given those estimates, the overall source M uncertainty

(expressed in terms of a lognormal variance) can be

determined by summing the squared estimates of the standard deviations that

are associated with each branch that must be traversed to get from measured

means to the true mean desired.

Estimates of uncertainties for the directly measured PC's, the blood/air

coefficients, were considered first. In terms of Figure VI-I-2, the

uncertainty involved is associated with the single branch from the measured

values to the true mean. Tables VI-1-18 and VI-1-19 summarize blood/air

partition coefficient estimates that have been obtained for various chemicals,

including PERC. Source M uncertainty in this case is identified solely with

variation across studies. Thus, as indicated in Table VI-l-19, if no

uncertainty reduction is attempted, the value 0.32 is the estimate of SMl(h,b)

and the statistic S2, equal to 1.9 for PERC in humans, is the estimate for

UFM. However, if the geometric mean of the four PERC human blood/air PC
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estimates is used as the preferred value, and if the measurements from

different studies can be assumed to be iid (a questionable assumption), then

the estimate of SMl(h,b) (tor the mean of the measured values) is 0.32/(4)0.5

- 0.16 and UFM may be equated to S3, which in this case is equal to 1.4.

No direct information is available on the individual variation in the

humar. PERC blood/air PC for estimation of UFI . However, Table VI-1-20

displays some information on individual variation for other volatile

lipophilic compounds that may be used in the absence of more pertinent data.

That table indicates that inter-individual variation of the blood/air PC is at

a maximum for trichloroethylene in humans. Thus, let us assign the SDLE

estimate for that case to the SDLE that will be used to characterize inter-

individual variability for the PERC blood/air PC in humans. Using statistic

S2 to estimate UFI, one obtains the value 1.8 (-exp(2*0.3)). Finally,

combining UFM and UFI via equation (6), the estimate for UF1 is

(8) UFT - exp[{In(l.4) 2 + ln(l.8) 2 }0 -5 ] - 2.0.

If the same considerations were applied to rats ,nd mice, then the first

immediate problem would be that there are no data regarding study-to-study

differences in blood/air PC's for these two species. The data in Tables

VI-1-18 and VI-1-19 were used to address this issue. We tentatively based

evaluations for various tissue/air PC's on data for blood/air PC's, assuming

similar levels of relative variation between studies for different tissue/air

PC's. Also, we know of no reason to suspect different levels of relative

variation between studies for different blood/air PC's, provided that the

values of the PC's themselves are not too different in magnitude. (Based on
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preliminary investigations, very small PC's were expected to be accompanied by

somewhat larger SDL's, representing measurement error; consequently, we

ignored the large values of S2 in Table VI-1-19 which correspond rn small

values of the GM, e.g., 9.8 for carbon tetrachloride and 3.4 for ethane.)

Based on the S2 colun in Table VI-1-19, it appeared that a UF of 2 was a

reasonable (or slightly inflated) estimate for source M, for many tissue/air

PC's, if uncertainty-reducing procedures are not performed or taken into

account. In particular, a UFM of 2.0 for rat or mouse blood/air PC's was

assumed. Expressed in terms of the standard deviations displayed in Figure

VI-I-2, that estimate of UFM corresponds to SMl(r,b) - SMl(m,b) - 0.347.

Similarly, the data in Table VI-1-20 were used in the absence of data on

inter-individual variation in blood/air PC values in rodents. The maximal

SDLE for the blood/air PC from that table was 0.3, the same value used in the

derivation of the UFI for human blood/air PC. Thus, the same UFI value was

estimated for the rodent blood/air PC's as for the human PC, 1.8. Combining

UF, and UFI via equation (6), one obtains a total uncertainty factor for

rodent blood/air PC's as follows:

(9) UFT - exp[{ln(2.0) 2 + ln(l.8) 2 }° - 5] - 2.5.

The second case involved those rodent PC's that are ratios of tissue/air

and blood/air PC's. The derivation of an uncertainty factor in these

instances involved the use of equation (7). An example for liver/blood PC in

rats is provided.

Once again, no study-to-study variability data were available for rats

for this PC. As argued above, the data in Table VI-1-19 suggested that UFM -
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2.0 was not unreasonable, in this case both for liver/air and blood/air PC's.

The application of equation (7) to the two (identical) UFM values yields a

vnlue of 2.7 for UFN for rat liver/blond PC.

Table VI-1-20 presents data on the individual variation in the value of

liver/air partition coefficients. No data on rats were available, but the

maximum value for SDLE corresponding to the liver/air PC was 1.0. The use of

the maximum SDLE is recommended for all of those cases in which the particul-r

species of interest is not measured directly. In this instance, the maximum

value was from the study of Webb and Weaver (1981) using horses. The inter-

individual variation for those horses is likely to be greater than that for

carefully bred laboratory rats. The SDLE estimate of 1.0 corresponds to a UFI

estimate for the liver/air PC of

(10) exp(2*l.0) - 7.4.

Using equation (7) to combine Source I uncertainties for the liver/air and

blood/air PC's, one obtains UFI - 8.1 for the rat liver/blood PC. Combining

UFM and UFI using equation (6), the resulting UFT was

L_(II) UFT - exp[{In(2.7)2 + In(8.1)2}° - 5 ] _ 10.1.

A completely analogous situation applied to the derivation of rat fat/blood

and slowly perfused/blood PC uncertainty factors (if the slowly perfused

tissues are equated with muscle).

The third case for PC uncertainty estimation involved those PC's that

were not measured in the species for which estimates are desired. Human
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tissue/air PC's, and often mouse tissue/air PC's, have not been measured

directly for tissues other than the blood. The use of the PC's estimated from

rat tissues to approximate the human or mouse values added uncertainty to the

human or mouse estimates that was related to the variation in PC's seen across

species. In terms of Figure VI-l-2, this uncertainty involved the branches

connecting the measured species-specific mean values and the two branches

connecting the tissue group to the specific species of interest, the one for

which measurements were available and the one for which an estimate of the

population mean was desired. An example using the human liver/blood PC is

presented.

The liver/air PC value measured for rats was to be attributed to humans.

It was shown above that the source M uncertainty associated with the rat

estimate itself yields UFM - 2.0 (equivalently, SMl(r,l) - 0.347). This

uncertainty had to be combined with the uncertainty due solely to the need to

extrapolate the estimate across species. That is, SM2(l) had to be estimated

also. The resulting equation for combined uncertainty, expressed in terms of

the standard deviation is as follows:

S(12) SDLE - (2"SM2(I)2 + SMl (r,1) 2) 0'-5,

where the branches corresponding to the need to go from the true mean rat

liver/air PC's to the true mean human liver/air PC contributed the associated

standard deviation term, SM2(l), twice.

Table VI-1-21 gives data from Fiserova-Bergerova (1983) on variation in

tissue/air PC's among four species (human, monkey, dog, and rat) for

isoflurane and methylene chloride. Some statistics based on this data are
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reported in Table VI-1-22. Since the estimate used by Reitz and Nolan (1986;

the source of preferred values considered here) involved attributing rodent

estimates to humans, the most relevant data from Table VI-1-21 appeared to be

that for rats and humans. Therefore, included in Table VI-1-22 were estimates

of the error to be expected in extrapolations of this type ("human/rat

error"). It was reassuring that the uncertainty factors estimated by

statistic S2 were at least as large as the human/rat error term. Some

additional conservatism may be warranted since the iid assumption involved in

equating a UF to S2 may be doubtful in this case.

Based on the values of S2 shown in Table VI-1-22, use of a UF of 1.8

appeared reasonable or slightly conservative for most tissues. (An exception

was muscle, for which S2 was 2.3 for isoflurane and 2.0 for methylene

chloride.) Thus, an SM2(l) based on a UF of 1.8 for the liver compartment was

used; in this case SM2(l) was estimated to be ln(l.8)/2 - 0.29. Combining

this SM2(l) with SMI(r,l) (-O.J4) 7ia equation (12) yielded a standard

deviation of 0.54 or an uncertainty factor of 2.92.

The calculations just presented were for liver/air partitioning. To get

the liver/blood PC for humans, equation (7) was used to combine UFH's for

liver/air and blood/air. Recall that for humans the blood/air PC UFN was

equal to 1.4. Thus equation (7) yielded

(13) UFM - exp[(ln(2.9)2 + ln(l.4) 2) 0 "5 ] - 3.1

for the human liver/blood source M uncertainty factor.

For source I, the data on PERC PC's in humans were as scarce as those

for PERC PC's in rats. Thus the same procedure as described above for the rat
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UFI calculations was followed. The maximum inter-individual variation was

used (cf. Table VI-I-20). The SDLE of 1.0 was consistent with UF - 8.1.

Total uncertainty was reflected in the value UFT - 10.8 derived using equation

(6) with the indicated values of UFN and UFI .

The uncertainties associated with the human fat/blood and slowly

perfused/blood PC's were estimated in an analogous manner.

The final situation that arises in the estimation of partition

coefficients is illustrated by the rapidly perfused/blood PC (also referred to

as the rapid/blood PC) in rats and huwndns. In this case, no direct

measurements have been taken for this tissue group; instead, the value of its

PC was inferred from measurements on other tissue, i.e., the liver. Once

again, this is an uncertainty associated with source H, i.e., with the

estimation of a population mean value.

The estimation of a PC for one group of tissues using PC measurements

from another tissue is problematic. Although the liver may be representative

of rapidly perfused tissue in many respects, it is not at all certain that a

PC for liver is representative of a PC characterizing the entire tissue group.

Indeed, as the data in Table VI-1-20 show, other rapidly perfused tissues such

as the brain, kidney, or lung may have PC's that differ substantially from

that of the liver. If one represents the estimation of the rapid/air PC from

the liver PC by

(14) PC -

where a is a coefficient that must be estimated, then the uncertainty arises

in the estimation of that coefficient. Reitz and Nolan (1986) assumed that a
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was equal to i. The data in Table VI-1-20 indicate that a value for a of

around 0.5 to 0.7 may be reasonable for some of the chemicals shown there.

However, PERC itself is not represented in that table, and the variation seen

in that table is substantial.

Based solely on the information available in that table, an uncertainty

factor for this aspect of the estimation of the rapid/air PC of 2 appeared

justified and was used. If the rapid/air PC is set equal to half of the

liver/air PC, then this uncertainty factor has the effect of making the

liver/air PC the 95% upper bound (of the uncertainty distribution) for the

rapid/air PC.

This cross-tissue extrapolative uncertainty is reflected in Figure VI-l-

2 by the dotted line connecting the different tissue groups. It must be added

to the other uncertainties that are pertinent to the estimation of the

rapid/air PC, those that are reflected in the SMI and SM2 standard deviation

terms. The formula that combines the branch-specific variance estimates

pertinent to this estimation problem is

(15) SDLE - [SMI(r,l)2 + SM2(1) 2 + SM2(r)2 + SM3(I,r)2 ]0 .1,

where SM3(l,r) is the standard deviation associated with the extrapolation

across tissue groups just discussed. Both SM2 values were set equal to 0.29

on the basis of the data in Tables VI-1-21 and VI-1-22 (discussed above). The

value of SM3(l,r) was give2n by

(16) SM3(I,r) - In(2.0)/2 - 0.347,
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where the value 2.0 was the uncertainty factor postulated for the cross-tissue

extrapolation. Thus, equation (15) yielded an estimate of 0.64 for the SDLE

of interest. This corresponds to an uncertainty factor, UFm, of 3.6 for

rapid/air partitioning. Combining this with the source M uncertainty for

blood/air PC's (2.0 for rats, 1.4 for humans) using equation (7), the UFm's

for rapid/blood PC's were 4.3 and 3.8 for rats and humans, respectively.

Source I uncertainty was again estimated on the basis of the data shown

in Table VI-1-20. The brain and the kidney were assumed to be representative

of rapidly perfused tissues in general with respect to inter-individual

variation in PC values. The brain SDLE was 0.5; the SDLE for kidney was only

slightly smaller, 0.4. We assumed that the tissue group as a whole is not

more variable than the most variable component, in this case the brain. An

SDLE of 0.5 corresponds to UFI - 2.7 for the rapid/air PC. Using equation (7)

to combine this uncertainty with that for blood/air source I uncertainty (UFI

- 1.8) the resulting UFI was

S(17) UFI - exp[{In(2.7)2 + In(1. 8)2}0.1] - 3.2. 1

Finally, combining the source M and source I uncertainties via equation

(6) gave the total uncertainty factors, UFT - 6.5 for rats and UFr - 5.9 for

humans.

This concludes the examples of uncertainty estimation for the partition

coefficients of the PERC model. The other coefficients were analyzed in the

same manner as the examples just presented. The entire process is summarized

in Table VI-I-23.
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The entire set of partition coefficient estimates (preferred values) and

their estimated uncertainty factors are displayed in Table VI-1-24. Note that

the preferred values for human i/blood PC's (where i is one of the

compartments used in the model) were based on an average of mouse and rat

i/air PC's. The uncertainty factors derived did not consider this averaging

and any corresponding reduction in uncertainty. That is, as the examples

above illustrated, the human PC uncertainty factors were derived as if only

one rodent species formed the basis of the human coefficients. This is

probably not too bad. Even in the iid case, the log-scale standard deviations

that would correspond to the averages would be the unaveraged standard

deviations divided by the square root of 2 (the number of terms contributing

to the average). That would be a small change in and of itself. Moreover,

since the iid assumption is at best questionable in this case of two sets of

rodent PC's, the anpropriate adjustment should probably fall between 1 and the

square root of 2. Because the exact value of the appropriate adjustment

factor is not known, and because it will make little difference in the

estimation of uncertainty factors, the unadjusted uncertainty estimates are

presented and are considered adequate.

Estimation of Uncertainty for PERC Metabolic Constants. The parameters

vmax and km define metabolism for the PERC PBPK model. Values for these

parameters were reported by Reitz and Nolan (1986) and Hattis et al. (1986).

Reitz and Nolan employed an optimization technique to estimate the values

appropriate for mice, rats, and humans. They used the data of Schumann et al.

(1980) and gas uptake data obtained from WPAFB to derive two sets of mouse

values. The data of Pegg et al. (1979) were used to optimize the rat values

VI-l-41



and the data of Monster et al. (1979) and Fernandez et al. (1976) were used

for hunan optimization.

Hattis et al. did not employ a formal optimization procedure. They used

the same data sets for rat and mouse parameter estimation as used by Reitz and

Noian. Hattis et al. also referred to the results presented by Mitoma et al.

(1985) for parameter estimation in the two rodent species. For their human

metabolic constant estimates, Hattis et al. adjusted vmax and km based on

OhtsuJi et al. (1983) and Ikeda et al. (1972). Described here are

considerations of uncertainty related to the metabolic parameter estimates.

First, some comment on the use of optimization to derive parameter

estimates is warranted. Typically, a subset of PBPK parameters is estimated

by optimizing the fit of model predictions to data, while the remaining

parameters are fixed at constant values. In general the "fixed" subset will

include parameters fc- which in vitro measurements are available; the in vitro

values are assumed equal to in vivo values. The choice of which parameters

will be in each subset is not necessarily clear-cut. For example, Reitz and

Nolan fixed values of partition coefficients for their "Mouse I" estimates,

but optimized those values for their "Mouse 2" estimates; vmax and km were

fitted for both Mouse I and Mouse 2 sets.

Estimates for the fitted parameters depend to some degree on the values

assumed for the fixed set. Uncertainty for the fitted set will be determined

by uncertainty in the fixed set, as well as by experimental error in the data

to which the model is fit, by variations in the results of experiments used in

optimization, and by uncertainty regarding model structure. In principle,

uncertainty regarding the values of the fixed parameters can be evaluated by a

Monte Carlo approach in which values are selected randomly for the fixed set,
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re-fitting the model with each selection. That approach would be higlhy

computer-intensive. For each selection of values for the fixed parameters (a

selection that would have to be repeated many times to get an accurate picture

of the variation) an optimization wGuld have to be performed; the

optimizations themselves require many simulation runs.

Rather than adopt such a complex procedure, we obtai-ed a tentative

evaluation of uncertainty by treating the available estimates of the fitted

para:aeters as a representative sample of the values that were reasonable.

Implicitly, the vectors of fixed parameters associated with the various fitted

estimates were also tre.ed as a representative sample.

The units used to report %max and krm valueb in Hattis et al. (1986) were

not the same as those used by Reitz aid Nolan (1986). The Hattis et al.

units were converted to tho-e used by Reitz and Nolan, using the standard

body weights assumed by Hattis et al. (0.025, 0.25, and 70 kg for mouse, rat,

and hu..1, respectively). Also, since Hattis et a]. defined metabolism in

terms of liver concentration (as opposed to the use of concentration in the

venous blood leaving the liver, the formulation employed by Reitz and Nolan)

their km values were converted to units comparable to those of Peitz and Nolan

by dividing by pl, the liver/blocd partition coefficient. (This follows from

the fact Lh t, according to the models, liver concentration equals hepatic

portal venous concentration times pl.) In making the conversion, the "best

estimates" of pl reported by Hattis et al. were used (4.73 for humans, I.;-

for rodents). Vmax was s7aled, as was done in Rpitz and Nolan, by estimating

vmaxc such that
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(18) vmax - vmaxc * BWO'. J
All uncertainty estimates were estimated for vmaxc and km as defined by Reitz

and Nolan.

Tables VI-1-25 and VI-1-26 present the estimates reported in Reitz and

Nolan (1986) and Hattis e al. (1986). Hattis et al. gave two estimates for

each species, based on different data sets, for both km and vmaxc. The

estimates were named according to the sources of data used t(. estimate the

parameters. Note that the "Mouse 1" and human estimates of km (4.56) reported

in Reitz and Nolan were actually extrapolated from rats, so they were not used

for variance estimation in mice or humans.

For the different escimates of metabolic parameters reported in Tables

VI-1-25 and 41-1-26, the iid assumption clerrly seemed to be violated.

Consequently, methods based on iid assumptions were applied only because of a

lack of additional information.

For vmaxc, values of the sample standard deviation of logs (SSDL) are

0.1'15 for humans, 0.414 for rats, and 0.721 for mice. These differences do

not necessarily reflect real differences between species in the uncertainty

involved in measuring vmaxc, since SSDL is itself a statistic subject to some

measurement error. Tentatively we based an uncertainty factor for vmaxc on an

SSDL of 0.532, te weighted average of SSDL's from different species. Some

reduction of the uncertainty may be appropriate if one used the average of

several estimates as the preferred value for each species; however, proper

applicationi of the statistic S3, which accomplishes such a reduction in a

formal manner, is based on the lid assumption. Some conseivatism (implying
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greater uncertainty) was introduced by using S2 rather than S3. Accordingly,

the derived uncertainty factor was 2.9 (-exp[2*0.532]) for mice, rats, and

humans. (Uncertainty could still be reduced when S2 is used, but by a

different mechanism: if the spread of values that were considered reasonable

estimates was lowered by further study of estimation procedures, this would be

reflected in a smaller value of S2.)

Uncertainty for km was evaluated in a similar manner, arriving at an

uncertainty factor of 13 (-exp[2*l.28]) for all three species.

Tables VI-1-25 and VI-1-26 also display the geometric means of vmaxc and

km for all three species. In the absence of a reliable analysis of the

relative merits of the different estimates, we adopted the geometric means as

preferred values for the Monte Carlo simulations. Note the differences

between the geometric means and the estimates of Reitz and Nolan.

The uncertainty factors for vmaxc and km appeared to be representing

source M. We suspected that individual variation (source I) was small in

proportion to the source M uncertainty represented by factors of 2.9 for vmaxc

and 13 for km. In any case, quantitative information suitable for evaluating

individual variation for vmaxc and km was not available. Thus, tentatively,

we set the UFT's, representing total uncertainty, equal to the UFM's of 2.9

for vmaxc and 13 for km.

The statistical procedure for evaluating individual variation in

metabolic parameters estimated by optimization depends on whether the

available data consist of multiple measurements at different times for the

same individuals, or (e.g., Young and Wagner, 1979) different animals measured

at each time. In the first case, the optimization may be performed separately

for each subject, and the variation of subject-specific estimates summarized.
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In the second case the model may be fitted once to the combined data from all

individuals; then information on individual variation is represented by the

distribution of observed values at given times about the values predicted by

the model. A statistic summarizing this variation, and potentially useful in

describing individual variation, is the mean square error, which is

generally reported by least-squares optimization routines.

Uncertainties in parameters fitted simultaneously by an optimization

program are not independent, since for a given vector of fitted parameters a

change in the value of one parameter can be compensated for by changes in the

other fitted parameters. For example, since low-dose, first-order metabolic

rate is approximated by vmax/km, it may be the case that among combinations of

vmax and km providing similar fits to a given data set, a positive correlation

exists between the values of vmax and km. Such a relationship can be modeled

approximately by assuming a bivariate lognormal distribution for vmax and km

with an appropriate correlation parameter. If the fitting routine employed in

an optimization provides an estimated covariance matrix for the parameter

estimates, this matrix is potentially useful in estimating a value of the

correlation parameter. At this time we have no basis for estimating the

correlation between vmax and km; they have tentatively been treated as if they

were independent.

Estimation of Uncertainty for PERC Circulatory and Ventilatory Flow

Rates. This category of parameters included ventilation rate (qp) and cardiac

output (qc) (both in liters/hour), and percentages of cardiac output directed

to specific compartmcnts: qlc to liver, qrc to "rapidly perfused," qsc to

"slowly perfused," and qfc to fat. (In some cases it was more convenient to

treat absolute compartment flows, in liters/hr: ql for liver, qr for rapidly
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perfused, etc.) Because for physiological reasons these parameters are

correlated (and also probably correlated with compartment volumes), it was

convenient to treat them together.

A complete accounting of uncertainty might involve detailed assumptions

regarding physiological mechanisms regulating the relationships among the

parameters. The description here is sufficiently complete to demonstrate the

sort of physiological considerations that are relevant, along with

possibilities for quantifying the way that these considerations may determine

uncertainty.

The formal description of uncertainty involved the three following

assumptions. (1) Uncertainty with respect to compartment flows (ql, qr, etc.)

was related to uncertainty with respect to corresponding compartment volumes.

Volume-specific perfusion rates (e.g., liters blood/hr/liters tissue) were

assumed to be constant so that the rate of delivery of blood to a compartment

varies as the compartment volume varied. (2) Additional uncertainty was

incorporated for the flows in humans. This added uncertainty related

primarily to variation in the levels of physical exertion in daily activities

and primarily affected qc, qp, qs, and qf. (3) Ventilation rate (qp) was

related linearly to cardiac flow rate (qc).

Support for assumption 1 came from consideration of the relationship

between individual variation in compartment volumes and individual variation

in corresponding blood flow rates. Increase in a compartment volume should be

accompanied by an increase in blood supply, depending on the relationship

between compartment volume and oxygen demand per unit volume. We had no data

relevant to the latter relationship, and so we assumed constant weight-

specific perfusion rates for each compartment. Some uncertainty is associated
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with the values of the weight-specific perfusion rates. We did not quantify

this uncertainty; we assumed that perfusion rates were constant and were given

by the ratios of preferred compartment flows (in liters blood/hr) to

corresponding preferred compartment volumes (in liters tissue).

The assumption of constant perfusion rates accounted for some individual

variation in compartment flow rates. That is, as compartment volumes varied,

according to the scheme for incorporating uncertainty in the volume estimates

(see the discussion of the Dirichlet distribution modeling of volume

uncertainties given above), the flows varied, but the relationship between

flow rate and compartment volume was maintained.

Additional uncertainty for humans with given compartment volumes may

relate primarily to the level of physical exertion required in their daily

activities. Increasing activity levels result in higher values of qc and

therefore increasing values for one or more compartment flows. There is

evidence that the increased cardiac output is directed almost entirely to the

muscle. Folkow and Neil (1971) reported that a change in activity level from

resting to heavy exercise resulted in approximately equivalent increases in qc

and flow to muscle (qs), for average subjects and top athletes. Data

summarized by Hattis et al. (1986) were roughly consistent with this

conclusion (Table VI-I-27); the discrepancies may be due to the fact that

different entries in that table were taken from different primary sources.

Hattis et al. (1986) assumed that perfusion of fat and muscle was

related to activity level, and that perfusion of other tissues was independent

of activity level. (The conclusion that fat perfusion is related to activity

level is based on Astrand (1983).) Since fat is typically a smaller

proportion of body weight than muscle, this does not contradict the conclusion
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that activity-related increase in cardiac output is allocated primarily to

muscle. We assumed simply that for an activity-related increase in qc of dqc

liters/hour, qs increased by dqs - dqc*vs/(vs+vf) and qf increased by dqc-dqs,

where vs was the volume assumed for the slowly perfused (muscle) compartment

and vf was the volume assumed for fat. It was convenient to assume that dqc

was distributed lognormally with log-scale mean equal to zero and with an

uncertainty factor to be estimated.

Regarding the third assumption, some relationship between qp and qc is

to be expected on physiological grounds. Both parameters are related to the

oxygen demand of tissues, and both are reported to follow an allometric

relationship with body weight across species, with exponent about 0.8 (Stahl,

1967). Reitz and Nolan (1986) assumed that the two parameters were equal in

all species; data from various sources summarized by Hattis et al. (1986) (cf.

Table VI-1-27) suggested that such an equality may hold approximately for

individuals at rest but that with increasing activity levels, qp increases

more rapidly than does qc, so that the parameters differ by a factor of 1.6

with light exercise and by a factor of 2.4 with heavy exercise. Regarding the

linearity of the relationship, the data in Table VI-I-2-/ suggested that the

true relationship over activity levels may be convex: as activity level

changed from resting to "light exercise," qp increased by 540 liters/hour

while qc increased by 180 liters/hour, a ratio of increments of 3; going from

rest to heavy exercise, the ratio of increments had a value of 4. However,

the range of activity levels represented in Table VI-1-27 appears to be much

wider than the range of activity levels characteristic of usual daily

activities, which might be generally between sitting and light exercise. In

this range the assumption of a linear relationship may provide a good
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approximation. We approximated the relationship by a line with slope 3

connecting the "sitting" values (qp - 420; qc - 440) to the "light exercise"

values (qp - 960; qc - 582). An expression of the assumption that was

convenient for application in different species is

(19) qp - qp0 - 3 * (qc - qc0),

where qp0 and qc0 are the "resting values" of qp and qc, respectively, for a

given species. For rodents we tentatively equated resting values with

preferred values in Reitz and Nolan (1986); for humans we used the "sitting"

values from Table VI-1-27.

A summary of the uncertainty considerations associated with the flow

parameters is provided here. This is expressed in terms of the algorithm that

was implemented to generate flow parameter values (as well as other parameter

values, especially the compartment volumes) when randomly selected parameter

values were needed as input for dose surrogate uncertainty estimation. Note

that the volumes were generated by the appropriate Dirichlet distribution, as

discussed above, and the algorithm then maintained the relationship between

volume and flow rate discussed in the preceding paragraphs. The steps taken

were:

i. Generate compartment volumes from the Dirichlet distribution

describing their uncertainty. Denote their values by vi (i - l,r,s,f).

2. Calculate a compartment flow rate, qi, for each compartment

(i - l,r,s,f) according to the equation

VI-1-50



(20) qi - vi * (qip/vip),

where qiP and vip are the preferred values for compartment i flow rate and

volume, respectively. Calculate qc - q1 + qr + qs + q:.

3. For humans only. Randomly select the value of dqc from its lognormal

uncertainty distribution (with mean zero and estimated uncertainty factor) and

increment cardiac output and flow rates to the fat and slowly perfused

tissues:

(21a) qc - qc + dqc;

(21b) qs - qs + dqc*(vs/(vs+vf));

(21c) qf - qf + dqc*(vf/(vs+vf)).

4. Recalculate percentage of cardiac output flowing to the compartments:

(22) qic - qi/qc, i - l,r,s,f.

5. Compute ventilation rate according to formula (19).

In the implementation of this procedure, preferred values for flows and

volumes were equated to the values suggested by Reitz and Nolan (1986) with

the exception that, for humans, the "shoeworker" values from Table VI-1-27

were used. A value for the uncertainty factor associated with dqc was also

required. It was assumed that usual daily activities vary between resting and
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light exercise, so the qc values associated with those levels of activity were

taken as upper and lower bounds for a range of acceptable values. Following

the suggestions given above for estimation of uncertainty factors (cf. Table

VI-I-17), the uncertainty factor was equated to statistic Sl, which in this

case took the value (582/400)0.5 - 1.2, where 582 and 400 are the appropriate

qc values from Table VI-1-27.

2. Propagation of Parameter Uncertainties: Dose Surrogate and Risk

Uncertainty

Having estimated uncertainty distributions appropriate for all the PBPK

model parameters (for mice, rats, and humans) one can determine the effects of

the parameter uncertainties on estimates of dose surrogates and risks. Monte

Carlo simulation provides the basis for estimating dose surrogate and risk

uncertainties.

Appendix VI-I-A is a reprint of a published document describing an

example of this approach to risk uncertainty estimation. The example extends

the work presented above regarding estimation of PERC model parameter

uncertainties. Bioassay results for female mice exposed to PERC are used for

illustration.

VI-1-52



REFERENCES

Astrand, I. (1983). As cited in Fiserova-Bergerova, 1983.

Caster, W., Poncelet, J., Simon, A., et al. (1956). Tissue weights of the

rat. I. Normal values determined by dissection and chemical methods.

Proc Soc Exp Biol Med 91:122-126.

Fernandez, J., Cuberan, E., and Caperos, J. (1976). Experimental human
exposures to tetrachloroethylene vapor and elimination in breath after

inhalation. Am Ind Hyg Assoc J 37:143-150.

Fiserova-Bergerova, V. (1983). Gases and their solubility, a review of

fundamentals. Volume 1. Modeling of inhalation exposure to vapors:

uptake, distribution, and elimination. Boca Raton: CRC Press.

Folkow, B. and Neil, E. (1971). Circulation. New York: Oxford University

Press. (As cited in Schmidt-Nielsen, 1975.)

Hattis, D., Tuler, S., Finkelstein, L., et al. (1986). A

pharmacokinetic/mechanism-based analysis of the carcinogenic risk of
perchloroethylene. Center for Technology, Policy and Industrial

Development, Massachusetts Institute of Technology.

Ikeda, M., Ohtsuji, H., Imamura, T., et al. (1972). Urinary excretion of
total trichloro-compounds, trichloroethanol, and trichloroacetic acid as
a measure of exposure to trichloroethylene and tetrachloroethylene. Br
J Ind Med 29:328-333.

Iman, R. and Shortencarier, M. (1984). A FORTRAN 77 program and user's guide

for the generation of Latin hypercube and random samples for use with

computer models. NUREG/CR-3624. SAND83-2365, Sandia National

Laboratories, Albuquerque, New Mexico.

Johnson, N. and Kotz, S. (1972). Distributions in Statistics: Continuous

Multivariate Distributions. New York: John Wiley.

Mitoma, C., Steeger, T., Jackson, S., et al. (1985). Metabolic disposition
study of chlorinated hydrocarbons in rats and mice. Drug Chem Toxicol

8:193-194.

Monster, A., Boersma, G., and Steenweg, H. (1979). Kinetics of

tetrachloroethylene in volunteers: influence of exposure concentration

and work load. Int Arch Occup Environ Health 42:303-309.

Ohtsuji, T., Sato, K., Koizumi, A., et al. (1983). Limited capacity of humans

to metabolize tetrachloroethylene. Int Arch Occup Environ Health

51:381-390.

VI-1-53



Pegg, D., Zempel, J., Braun, W., et al. (1979). Disposition of
tetrachloro(14C)ethylene following oral and inhalation exposure in rats.
Toxicol Appl Pharmacol 51:465-474.

Reltz, R. , and Nolan, R. (1986). Physiological pharmacokinetic modeling for
perchloroethylene dose adjustment. Unpublished manuscript.

Schumann, A., Quast, J., and Watanabe, P. (1980). The pharmacokinetics and
macromolecular interactions of perchloroethylene in mice and rats as
related to oncogenicity. Toxicol Appl Pharmacol 55:207-219.

Schmidt-Nielsen, K. (1975). Animal physiology. Adaptation and environment.
New York: Cambridge University Press. 699 pp.

Stahl, W. (1967). Scaling of respiratory variables in mammals. J Appl
Physiol 22:453-460 (As cited in Schmidt-Nielsen, 1975).

Webb, A. and Weaver, B. (1981). Solubility of halothane in equine tissue at
370C. Br J Anaesth 53:479.

Young, I. and Wagner, P. (1979). Effect of intrapulmonary hematocrit
maldistribution of 02, 0C2, and inert gas exchange. J Appl Physiol
46:240 (As ciated in Fiserova-Bergerova, 1983).

VI-1-54



Table VI-1

Parameter Sets Used in Sensitivity Analyses

Parameter Mouse Rat Human

bw 0.025 0.25 70.0

tiv 0.003 0.003 0.003

tgav

vmaxc 3.6 1.27 0.346

km 2.22 4.56 4.56

pb 24.43 18.8 10.3
p1 4.05 3.74 5.88
pf 96.6 87.1 119.0
ps 5.2 1.06 3.10
pr 4.61 3.74 5.88

vlc 0.04 0.04 0.0314
vfc 0.05 0.07 0.231
vsc 0.78 0.75 0.62
vrc 0.05 0.05 0.0371

qpc 28.0 15.0 15.0
qcc 28.0 15.0 15.0
qlc 0.25 0.25 0.24
qfc 0.05 0.05 0.05
qsc 0.19 0.19 0.19
qrc 0.51 0.51 0.52
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Table VI-l-2

Doses Employed in Sensitivity Analyses

Dose Pattern Species Low Medium High

Gavage Mouse 0.30 30 2000
(doses in mg/kg) Rat 0.15 15 1400

Human 0.05 6.0 600

Intravenous injection Mouse 0.01 2.0 200
(doses in mg/kg) Rat 0.03 3.0 350

Human 0.04 4.0 450

Inhalation, 8 hrs/day Mouse 0.30 30 1600
(doses in ppm) Rat 0.60 60 5000

Human 1.0 115 11500

Inhalation, continuous Mouse 0.30 (24) 24 (24) 1400 (48)
(doses in ppma) Rat 0.50 (48) 44 (48) 3800 (48)

Human 0.90 (24) 90 (24) 9000 (48)

an parentheses are the times (in hours) that mark the beginning of the

24-hour period used to calculated daily dose surrogates. The times are
those at which the system is close to steady state.
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Table VI-1-15

Relative Ranking of Parameter Sensitivity of
Virtual Concentration of Metabolite; Mouse Parameter Set

Range of IV Dosing Continuous Inhalation ExRosure
Pecn ChneM H L M H

vlc-a vie- vic- vie- VIC. vrnaxc+
qpc- qpc- pb+ qpc+ vmaxc+ vic-
pb+ pb+ qpc- pb+ pb+ bw-

>10-1 kmn- vwaxc+ vxnaxc+ vynaxc+ km.
vinaxc+ kmn- km- kmn- bw-

qcc- pf+ bw- qpc+
vfc+
ps+

vsc+

qcc+ qlc+ qcc+ qcc+ qcc+
qic. qsc+ qlc+ qlc+ qlc+

p1+ pr+
10-2 .10-1 pr+ vrc+

vrc+ qfc+
qfc+

vsc+ p1+ kim-
10-3 . 10-2 ps+ pb+

vfc+t p1+ qrc- qsc- pf- qpc+
qsc+ bw- bw- vfc.

1 -4 10-3 vfc-
qfc+
vrc+

bv- qrc- pf- ps- qcc+
1 -5 10-4 qrc+ vfc- vsc- qlc+

qfc+ qfc+
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Table VI-1-15 (continued)

Relative Ranking of Parameter Sensitivity of
Virtual Concentration of Metabolite; Mouse Parameter Set

Range of IV Dosing Continuous Inhalation Exposure
Percent Changes L M H L M H

pf+ ps- qsc+ pf-
ps+ vsc- pr- vfc-
pr+ qsc+ vrc- ps-

<10-5 vsc+ vrc+ pl- vsc-
pl+ qrc+ qfc+

pr+ qsc+
qrc+ vrc-

qrc-
p l +
pr+

aThe plus or minus sign following the parameter indicates the direction of

change of CM given 1% increase in the parameter value.
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Table VI-1-16

Relative Rankin& of Parameter Sensitivity of
Virtual Concentration of Me~al-ol ite ; Rat Pai .neter Set

Range of - V Dosing - Continuous Inhalation Exposure
Percent Cha ~s L MHL K H

>100 vmaxc* a

vic- v1c. vlc- V1C- Vic- vic*
vmaxC+ pb+ Nmaxc+ pb+ vmaxc+ bw-

k.- qpc- qpc- vmnaxc+ pb+
10-1 -100 pb+ vitaxc+ pb+ km- kin-

qpc- km- km- bw- bw-
qcc+ qcc+ qpc+ qpc+
vfc- qfc+
pf- bw-

Vfc- qfc+ vsc+ qcc+ qcc+
pf- qlc+ ps+ qlc+ qlc+
qcc+ bw- vfc+
qlc+ pI+ pf+

10-2 -10-1 qfc+ vsc+ qlc+
bw- ps+

qsc+
pr+
vrC+

PS- qrc+ vrc+ vfc- pf- kin-
103- 10-2 vsc- pr+ pf- Vfc- pb+

p1+ qfc+ qfc+
qsc.

pr- vsc- VSC- vfc-
104-1- -) ps "i- f

qsc+ qpc 4

qrc+ qrc-- vrc- pr. qcc+
1 -5 10-4 pr- Wec- qfc4.

p1. p1 .
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Table VI-l-16 (continued)

Relativc Ranking of Parameter Sensitivity of
Virtual Concentration of Metabolite; Rat Parameter Set

Range of IV Dosing Continuous Inhalation Exposure
Percent Changes L M- H L M H

qsc+ qsc+ vsc-

qrc qrc+ ps-
qlc+

<10-5vrc-
pr-
pl-
qsc+

qrc

aThe plus or minus sign following the parameter indicates the direction of

change of CM given 1% increase in the parameter value.
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Table vi-l-17

Statistics Relevant to Uncertainty Estimation

GM Geometric mean: antilog of mean log.

SSDL Sample standard deviation of natural logs.
The maximum likelihood and preferred estimator
for SDL, the log-scale standard deviation.

CV Sample coefficient of variation
- standard deviation/mean. Used here often
to approximate the log-scale standard
deviation.

Sl - (UB/LB)0 "5  Use as an estimate of a UF based on a
reference interval LB to UB (usually
representing expert opinion.)

S2 - exp(2*SDLE) for SDLE an estimate of the log-scale standard
deviation, (either SSDL or CV.) Use as a
direct estimate of a UF for an irreducible
uncertainty source based on data
assumed iida .

S3 - exp(2*SDLE/SQRT(#M)) U"hen the prefered value is the GM of PM iid
measurements, use S3 as an estimator for
the UF.

a iid - independent, identically distributed. (Generated independently

from the same probability distribution.)
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Table VI-l-18

Data Comrpiled by Fiserova-Bergerova (1983) Regarding Study-to-Study
Variation in Estimates of Blood/Gas Partition Coefficients at 370C

Chemical Species Estimate (Referencea)

Acetone man 245(1), 341(2), 313(3), 302(4)
Acetone dog 363(2). 376(3), 291(4)
Benzene man 7.8(1), 6.5(5), 9.0(6),

7.8(7), 7.7(8)

Carbon Tetrachloride man 2.4(2), 0.6(9), 5.8(6)
Chloroform man 10.3(10), 9.0(9) , 8.2(5), 11.0(6)
Cyclopropane man 0.58(2), 0.35(3) , 0.43(11), 0.51(4)
1,1-Dichloroethane man 4.7(10), 4.5(9), 6.0(6)
1,2-Dichloroet'hane man 19.5(10), 20(9), 19.7(6)
Diethylether man 12.5(2), 11.6(3), 12.3(4),

12.8(6). 11.9(11)
Diethylether dog 12.7(2), 10.7(4), 11.8(3)
Metbylene Chloride man 9.7(10), 7.0(9), 9.4(6)
Ethane man 0.1(2), 0.05(3), 0.08(4)
Ethane dog 0.13(2), 0.04(3). 0.10(4)
Fluroxene man 1.3(12), 1.5(2), 1.4(11)
Halothane man 2 6(12), 2.5(2), 2.6(13),

2.8(3). 2.5(11), 2.5(14)
Halothane dog 1.7(3), 3.5(38), 3.8(2)
1,1,2,2-Tetrachloro- man 121(10), 73(9), 141(6)
e thane

*PERC man 11.1(10), 9.1(9), 18.9(6)
Toluene man 15.6(l), 15.6(5), 14.7(8), 16.3(6)
Styrene man 32(30). 52(1), 64(6)
Trichioroethylene man 9(5), 9.5(9), 9.9(6), 9.9(15)

a(l) Sato and Nakajima (1979); (2) Wagner et al. . (1974); (3) Young and
1.agner (1979); (4) Dueck er al..- (1978); (5) Sher-wood (1976); (6) Bocek
(personal communication to Fiserova-Bergerova, ibid.); (7) Teisinger
and Skramovsky (1947); (8) Sato et al.. (1972); (9) Morgan er al..
(1970); (10) Sato and Nakajima (1979); (11) Gibbs et &1..- (1975); (12)
Ellis and Stoelting (1975); (13) Saraiva er al.. (1977); (14) Eger
et al. (1962); (15) Fink and Morikawa (1970).
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Table VI-l-19

Analysis of Inter-Study Variation in Estimates of Blood/Air
Partition Coefficients: Suxruary of Data in Table VI-l-18

(From Data Compiled by Fiserova-Bergerova (1983))

Chemical (Species) GMa SSDLb S2c #Studies

Ethane (man) 0.074 0.35 2.0 3
Ethane (dog) 0.080 0.62 3.4 3
Cyclopropane (man) 0.46 0.22 1.5 4
Fluroxene (man) 1.4 0.072 1.2 3

Carbon Tetrachloride (man) 2.0 1.1 9.8 3
Halothane (man) 2.6 0.044 1.1 6
Halothane (dog) 2.8 0.44 2.4 3
1,l-Dichloroethane (man) 5.0 0.16 1.4 3
Benzene (man) 7.7 0.12 1.3 5
Methylene Chloride (man) 8.6 0.18 1.4 3

Chloroform (man) 9.6 0.13 1.3 4
Trichloroethylene (man) 9.6 0.045 1.1 4

Diethylether (dog) 12 0.086 1.2 3

Diethylethr'r (man) 12 0.039 1.1 5
PERC (man)d 12 0.32 1.9 4
Toluene (man) 16 0.042 1.1 4

1,2-Dichloroethane (man) 20 0.013 1.0 3
Styrene (man) 47 0.36 2.0 3
1,1,2,2-Tetra- (man) 108 0.34 2.0 3
chloroethane

Acetone (man) 298 0.14 1.3 4
Acetone (dog) 341 0.14 1.3 3

aCeometric mean of available estimates. The table is sorted on this

column, to demonstrate any relationship between GM and SSDL.
bStandard deviation (in In scale) of available estimates.
CS2 - exp(2*SSDL).
din addition to the values reported in Table IV-I-18, a value of 10.3 has

been included based on communication of M. Andersen to Reitz and Nolan
(1986).
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Table VI-l-20

Estimates of the Log-Scale Standard Deviation (SDLE) Representing
Variation Among Individual Hunans and Animals in Tissue/Air Partition
Coefficients, for Trichloroethylene, Haloethane, Cyclopropane and NO2

Trichloroethylenea Halothane a  Halothaneb
5 Humans 5 humans 18-38 horses

Mean SDLE Mean SDLE Mean SDLE

Blood 8 0.3 2 0.2 2 0.2
Brain 21 0.2 6 0.5 5 0.1
Kidney 15 0.3 6 0.3 3 0.4
Liver 29 0.4 9 0.5 9 1.0
Lung 14 1.0 4 0.7 3 0.2
Muscle 19 0.3 8 0.2 4 1.0
Fat 569 0.03 222 0.1

Cyclopropanec N02c5-9 Rabbits 5-6 Rabbits Max SDLEd

Mean SDLE Mean SDLE

Blood 0.7 0.04 0.5 0.01 0.3
Brain r.8 0.1 0.4 0.02 0.5
Kidney 0.9 0.1 0.4 0.04 0.4
Liver 0.7 0.1 0.4 0.03 1.0
Lung . . .... .. 1.0
Muscle 0.51 0.1 0.4 0.07 1.0
Fat .... .. 0.1

aSDLE - CV, computed from standard deviations and means reported by

Fiserova-Bergerova e al. (1984), each based on five subject-specific
estimates (the same five subjects for each chemical). Tissues were

from autopsied individuals.
bSDLE from Webb and Weaver (1981), each the square-root of a variance
component computed in the log scale.
CSDLE based on variance components reported by Mapleson et al. (1970).
Since computations were carried out in the log scale, square roots of
reported variance components are estimates of the log-scale standard
deviations. For NO2 , we use the reported between-animals component;
for cyclopropane a separate between-animals component was not
reported, and so the estimate used incorporates relatively more
measurement error. For cyclopropane, our CV is the square root of the
average of the 'In vlvo* and *in vitro* variance component estimates.
Multiple strains of rabbits were used in the experiment.
dSDLE for a tissue is the maximua of the SDLE tabulated, over species

and studies.
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Table VI-1-21

Species-to-Species Variation in Measurements of Tissue/Air
Partition Coefficients (Flserova-Bergerova, 1983).

I SOFLURANEa

I I
Tissue I Man Monkey Dog Rat I GMb

I I

Brain 1.9 2.0 2.5 2.2 2.1
Heart 1.8 1.6 2.7 2.8 2.2
Kidney 2.1 1.9 3.6 2.5 2.4
Liver 4.1 4.6 4.2 3.2 4.0
Lung 1.6 1.5 2.6 2.4 2.0
Muscle 2.4 1.4 3.4 1.6 2.1
Fat 69 66 75 63 68

METHYLENE CHLORIDEC

II
Tissue I Man Monkey Dog Rat GMC

Brain 7.1 6.8 7.9 7.4 7.3
Heart 7.1 6.3 7.4 9.2 7.4
KI d-.y 5.8 6.3 9.5 7.4 7.1
Liver 7.1 11 11 8.9 9.4
Lung 5.8 5.5 7.6 7.9 6.6
Muscle 4.7 3.7 7.9 4.7 5.0
Fat 84 86 97 91 89

aData from Table 3 of Fiserova-Bergerova, 1983.
bGeometric mean of four species-specific estimates.
CEstimated from Figure 5 of Fiserova-Bergerova, 1983.
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Table VI-1-22

Analysis of Species-to-Species Variation in Tissue/Gas Partition
Coefficients, for Isofluorane and Methylene Chloride

(Data Compiled by Fiserova-Bergerova, 1983;

Species are Man, Monkey, Dog, and Rat.)

I SOFLURANE METHYLENE CHLORIDE

Human/Rat Human/Rat

Tissue I GM Error a  S2 GM Error a  S2

I I I

Brain 2.1 1.2 1.3 7.3 1.0 1.1

Heart 2.2 1.6 1.7 7.4 1.3 1.4

Kidney 2.4 1.2 1.8 7.1 1.3 1.6

Liver 4.0 1.3 1.3 9.4 1.3 1.5

Lung 2.0 1.5 1.7 6.6 1.4 1.4

Muscle 2.1 1.5 2.3 1 5.0 1.0 2.0

Fat 68 1.1 1.2 89 1.1 1.1
I

aLet R be the ratio of the human value to the rat value; the value
reported is the larger of R and I/R. (This corresponds to taking the
absolute difference in the log scale, then transforming back to the
original scale.)
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Table VI-1-23

Summary of PERC Partition Coefficient Uncertainty Estimation

Source N:
1. Estimate from data SDLE s for directly measured tissue/air PC's:

a. SMl(i,b)a i - r,m,h.
b. SMI(r,l)
c. SM1(r,m)
d. SMI(r,f)

2. Estimate from data SDLE's corresponding to variations across species of
tissue/air PC's: SM2(j)b, j - b,l,r.m,f.

3. Estimate SDLE corresponding to difference between log of liver/air PC
and log of rapid/air PC: SM3(l,r)c.

4. Compute SDLE's for human or mouse tissue/air PC's (tissues other than
blood or rapidly perfused organs) when these are based on measurements

in rats:
SM4(i,j) - [SMl(r,J) 2 + 2*SM2(j) 2]O. 5 , i - m,h; j - l,m,f.

5. Compute rapid/air PC's when these are based on rat liver/air
measurements:

SM4(i,r) - [SMl(r,l) 2 + SM2(I) 2 + SM2(r)2 + SM3(l,r) 2 O.5.

i - r,m,h.
6. Compute SDLE's and UFM's for blood/air and tissue/blood PC's:

a. Blood/air, for species i (i - r,m,h) -

SDLE(i,b2. - SMl(i,b).
b. Tissue/blood, for rats and tissue j other than rapidly perfused (j -

l,m,f)
SDLE(r,j) - [SMl(r,j) 2 + SMl(r,b)30.5.

c. Tissue/blood, for species i other than rats (i - m,h) and tissue j

(J - l,r,m,f) or for rats and rapidly perfused tissue (i- r,

j - r) -
SDLE(i,J) - [SM4(i,j) 2 + SMl(i,b) 2 ]O- 5.

In each case, UFM(ij) - exp(2*SDLE(i,J)).
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Table VI-1-23 (continued)

Sunurary of PERC Partition Coefficient Uncertainty Estimation

Source I:
1. Estimate from data SDLE's representing individual variation in

tissue/air PC's. Denote these by
SIl(i,J)d i - r,m,h; j - b,l,rm,f.

2. Compute SDLE's and UFI's for blood/air and tissue/blood PC's:
a. Blood/air, for species i (I - r.m,h)

SDLE(ib) - SII(1,b).
b. Tissue/blood, for species i (I - r m,h) and tissue j (j - l,r,m,f)

SDLE(i,J) - [SIl(i,j) 2 + Sll(i,b)2) 0.5.

In each case, UFI(i,j) - exp(2*SDLE(iJ)).

Total Uncertainty:
i. Combine source M and source I uncertainty factors for species i and

tissue j (I - r,m,h; j - b,l,r,m,f):

UFT(i,J) - exp[(In(UFM(i,j)) 2 + ln(UFI(i,J)) 2)O-5].

aThe first variable in parentheses is a species code and the second is

a tissue code. This notation corresponds to that in Figure V1-l-2.
bThe variable in parantheses is a tissue code. This notation

corresponds to that in Figure Vi-1-2.
cThe two variables in parentheses are tissue codes. This notation

corresponds to that in Figure VI-1-2.
dThe variables in parentheses are like those for the analogous SMI

standard deviations, i.e., a species code followed by a tissue code.

VI-1-80



Table VI-1-24

Source I, Source H, and Total Uncertainty Factors
for PERC Partition Coefficient Estimates

Prefezred
Parameter

PBPK Parameter Value UF1  UFM UFT

RATS

Blood/air 18.8 1.8 2.0 2.5
Liver/blood 3.74 8.1 2.7 10
Rapid/blood 3.74 3.2 4.3 6.5
Muscle/blood 1.06 8.1 2.7 10

Fat/blood 87.1 1.9 2.7 3.2

MI CE

Blood/air 16.9 1.8 2.0 2.5
Liver/blood 3.01 8.1 2.7 10
Rapid/blood 3.01 3.2 4.3 6.5

Muscle/blood 2.59 8.1 2.7 10

Fat/blood 48.3 1.9 2.7 3.2

I{UMALN S

Blood/air 10.3 1.8 1.4 2.0
Liver/blood 5.88 8.1 3.1 11

Rapid/blood 5.88 3.2 3.8 5.8

Muscle/blood 3.10 8.1 4.1 12
Fat/blood 119.1 1.9 3.1 3.6
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Table VI-1-25

Variation In Vmaxc Estimates

Estimates Reitz &

Source (mg/hr/kg0 .74 ) GM Nolan a  SSDLb

Mice

Hattis er al. "Schumann" 1.53c 3.96 8.34 0.721
Hattis et al. 'Mitoma" 5.34
Reitz & Nolan "Mouse 1" 8.34
Reltz & Nolan "Mouse 2" 3.60

Rats

Hattis er al. "Pegg" 2.39 2.03 1.27 0.414
Hattis et al. "Mitoma" 2.78
Reitz & Nolan, F344 1.27

Hattis et al. "Ohitsu(+)" 0.389 0.330 0.346 0.195
Hattis et al. "Ikei (+)" 0.266
Reitz & Nolan 0 .34 6d

Weighted Average SSDL•  0.532

apreferred values from Reitz & Nolan, using the "Mouse 1" estimates for

mice.
bSSDL - standard deviation of ln estimates.
CFrom the range of values 1.53-1.72 suggested by Hattis et al., the

value 1.53 yields the largest value of SSDL.
dA value of 0.256 is given in Table 1 of our draft of Reitz and Nolan.

We have used the value of 0.346 from the text of the draft, which we
believe to be the correct value.
, Welghted averagt. - [sum(df*SSDL2 )/sum(df)]0 -5 where summation is over
mice, rats, and huians, and df is the number of measurements available
for a species, minus one (e.g. df - 3 for mice).
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Table VI-1-26

Variation in Ka Estimates

Estimates Reitz &

Source (mg/liter) GM Nolana  SSDLb

Mice

Hattis et al. "Schumann' 0.268c 1.47 4.56 1.54
Hattis et a]. "Mitoma" 5.35

Reitz & Nolan "Mouse 2" 2.22

Rats

Hattis et al. "Pegg" (.78 8.19 4.56 0.700
Hattis et al. "Mitoma" 17.8
Reitz & Nolan, F344 4.56

Hwrans

Hattis et al. "Ohltsu(+)" 5.69 1.86 4.56 1.58
Hattis e al. "Ikeda(+)" 0.609

Weighted Average SSDLd 1.28

apreferred values from Reitz 6 Nolan, equal to the rat estimate for

all three species.
bSSDL - standard deviation of In estimates.
CFrom the range of values 0.268-0.669 suggested by Hattis er al., the

value 0.268 yields the largest value of SSDL.
dWeighted average - [sum(df*SSDL 2 )/sum(df)]O.5 where summation is over

mice, rats, and humans, and df is the number of measurements available
for a species, minus one (e.g. df - 3 for mice).
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Table VI-1-27

Hour Volumes (in liters) for Ventilation (qp). Cardiac Output (qc),

and Muscle Blood Supply (qm), as a Function of Activity Level in Humans
(from Hattis et al., 1986)

Activity Level qp (incr.) a  qc (incr.)a qm (incr.)a

Sitting 420 400 66

Shoeworker "b 683 ( 263) 489 ( 89)

Light exercise 960 ( 540) 582 ( 182) 324 (258)

Heavy exercise 2040 (1620) 840 ( 440) 540 (474)

alncrement from sitting value - value at specified activity level minus

corresponding sitting value.
bqp from Brugnone er al. (1980), assumed typical for occupational

settings; qc estimated by linear interpolation between adjacent values

of qp and qc.
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APPENDIX VI-I-A

EVALUATION OF UNCERTAINTY
IN INPUT PARAMETERS TO PHAR.MACOKINTIC MODELS

AND THE RESULTING UNCERTAINTY IN OUTPUT
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Ke) ,ords Uncertainty anal)sis. PBPK modeling. Risk assessment. Teirachloroth% lene

SUMMARY

Pb)siolcF--', ),based p.,ar-macokine¢ic (PBPK) mod-,els may be used to predict the concentrations of

parent chcm,,W or metabolites in tissues, resulting from speced chenbc.a! exposures An important appb-
cation of PBPK modeling is in assessment or carcinogenic nss to hurnans, based on animal data The
parameters of a PBPK model may include metabolic parameters blood air and tissue 'blood partition co-

effients. and physiological parameters, such as organ A*eights and blood flow rates. Uncertainty in esti-
mates of these parameters resu!ts in uncertaint) regarding tissue con,:.niratioas and resulting risks Data
are reie,*ed rele.ant to the quantificaton of these uncertainties. for a PBPK model-based nsk assessment
for ietrachloroethylene Probability distrnbutions are de,,eloped to express uncertainty in model param-
e~rrs, and uncerlamnties are propagated by a sequence of opcrabons Lhat simulates processes recognized
as contributing to estimates of human nsk Distribitions of PBPK model output and human risk estimates
are used to characterize uncertainty resulting from uncertaint) in model parameters.

INTRODUCTION

Physiologically-based pharmacokinetic (PBPK) models can be used in the animal-
based assessment of human cancer risks. A PBPK model is assumed for rodents and
humans (with parameter values that are possibly species-specific) and dose surrogates
are calculated on the basis of that model. A dose surrogate is a particular measure
or chemical delivered to a putative target tissue. The dose surrogate values corre-

Addre for €orrtspondrnce B Allen. Clement Associates. Inc.. 1201 Gaines Street. Ruston. LA 71270,

US&

G371-4274,89,S3 50 © 1989 Elsevier Science Publishers B.V. (Biomedcal Division)
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sponding to the dose levels and dose regimen followed in a chosen carcinogenicity
bioassay and the observed tumor count data are the input to dose-response model
(e.g., the multistage or Weibull mod~cls [11). Values or the chosen surrogate dose are
estimated rot humans, corresponding to specified external exposures, and human
risks arc estimated based on the fitted dose-response curve.

This report describes the dc,.lopmcnt of methods for analyzing the effect of uncer-
tainties associated wAith PBPK model parameters. The methods arc illustrated in the
context of a risk assessment for tetrachloroeshylene that employs a multicompart-
ment PBPK model and a carcinogenic enid-point observed in female mice 12).

PHYSIOLOGICALLY- BASED PHARMACOKINETIC MODEL FOR TETRLACHLOROETH.
YLENE

The Environmental Protection Agency (EPA) (3] and H-attis ct a]. 14] have devel-
oped t%%o slightly different PBPK models for tetrachloroethylene. Reitz and Nolan
15) have revie~ked the parameter values adopted o'v the EPA and ha'.e recommended
some revisions. In order to e~aluate uncertainties within the framework of a given
PBPK model, anal,,;s Presented here are based on the EPA model (Fig. 1). Flow-

6C 4C

Iie isue

=cl .?Y Ca

Fig. 1. Tctrachloroeth)lene PBPK model. Notaton, . .. c. aod c. art concentration of parcel in aD-
baled air. exhlaled air. areria blood. and v'evou bWood. q. c, and, an the JiC~rusion rate, penal concer-
tration, and tissue ' Iood partition coeftiiesn fr compartment k and V.,. and Kt. ame consants determin-
ing the rate of metabolism in liva.
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373

limited comptmnents and Mic.haelis- Mentien metabolism (occurring in the liver) arc
assumed.

Notation and preferred values for model parameters are listed in Table 1. In gencr-

TABLE I

PARAMETERS OF THE TETRACHLOROETHYLENE PBPK ;"10DEL, WITH PREFERRED
VALUES AN',D UNCERTAINTY FACTORS (UFI

Parameter Preferred values (U Fs)

Micz Humars,

Sod) i% eight (b- I kg9) 0023 70
Comparirneni prop~rions (range 0-1)

Liver (v,,) 0056 (1 24) 0026 (1.35)
Rapiuiy perf (v,,) 0.049 (1.24) 0050 (1.23)
S101A 1) pel (V.,) 0 767 (1 03) 0620 (1 04)
Fat (ih) 0049 (1.25) 0230 (1,09)

Cardiac output (I i) (q,) I 13% (1 .08) 348- (1.12)
Waking value (q-,) -486' (1.12)

Alveolar '.eniaion -ate (I 1)

(q,) 1.64 (1. 11) 2W3 (1.50)
Waking '%aluedq,) - 6.83' (1.26)

Compartment perfusions (1,b)
Liver (q,) 0.282 (1 24) 90.6 (1.35)
R~apidly perf (q.) 0.576 (1.24) 153 (1.2.5)
S10A 1) per( (0 1 0.170 (101l) 37.0 (1.04)
Waking value 'j) -225 (1.17)
Fat (q 0.102 (1.25) 17.4 (1.09)

Partition coefficients (unitless)
Blood gas (pb) 16.9 (1.97) 12.0 (0.97)
Ltvcr,b'ood (p,) 3.01 (2.69) 5.05 (9.37)
L i e r, gas (p,,) 50.9 (1.97) 60.6 (3.36)
Liver gas (p,) 50.9 (1.97) 60.6 (3.36)
Rapid blood (p.) 3.01 (4.34) 505 (5.69)
R apid gas (p~,) 50.9 (3.51) 60.6 (4.92)
Slox%.blood (p,) 2.59 (2.54) 2.66 (11.0)
Slo%.'gas (P,) 43.3 (1.97) 31.9 (10.1)
Fat ,'.lood (Pf) 48.3 (2.56) 102 (2.15)
Fatlgas fp1 ) 316 (3.93) 1230 (2.13)

Metibotic constants
V.~ (mgib) 3A9 (2,33) 0-33 (2.34)
K.(mg!I) 1.47 (12.4) 1.36 (12.3)

'The uncertainty faclor artestiated from I000 Litin-b)-peeeube saimples such that tfo preferred vilue
A, the interval from A,/UF to A, x UF contains 95% oftb valun.

"Preterred values for mice- 24 b/ld.
'Pnctcrred values for steeping bwijs as 3 b4.
,Prercrrd values for waking humans, 16 hid.
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al the definition of model parameters and the units adopted follow Reitz and Nolan
IS] Absolute compartment %olumes (,) (in liters) are related to compartment propor.
lions (r, Tdble I) by:

tkee b% is body vcight in kilograms. The maximal metabolic rate (V,,,) is scaled
according to V,,,, = Vrx x b%' 7' 15]. The %,, and Vm,, parameters are those for
vhich uncertainties are estimated.

The partition coefficients that are measured directly in vitro are limited to some
of the tissue,'gas coefficients (Pb and p,,. i= l,r,sj). Tissueblood partition coefficients,
Ahich are those actually used in the PBPK model, are estimated by dividing the
tissue'gas coefficients by the blood,!gas coefficient (,=Pg,/Pb, i=lI',s,.

The dose surrogates that are estimated herein, and for which uncertainties are esti-
mated, are (I) the ae,ae daily area ui,,er the liver concentration-time curve for
the parent (AUCL). (2) the average daily area under the arterial blood concentra-
tion-time curve for the parent (AUCA), and (3) the average daily amount of parent
metabolized per volume of liver tissue (CML).

PARAMETER UNCERTAINTY EVALUATION FOR THE TETRACHLOROETHYLENE
MODEL

For each parameter we have identified a preferred value (Table I), and have speci-
fied a probability distribution to represent uncertainty. The preferred value repre-
sents some s,' -mary of information available from the literature (see below). The
probability di ribution is selected in such a way as to assign relatively high probabili-
ty to values that are close to the preferred value. A useful device for communicating
uncertainties is to define an 'uncerlainty factor' (UF > I) such that for a preferred
parameter value (hp) the range of values hp 'UF to hp x UF is considered highly prob-
able (we assume probability 95%). Table I gives uncertainty factors estimated from
the observed distributions of the values generated for the parameters, which are
based on the probability distributions described below.

Specification of probability distributions to express uncertainty in parameter val-
ues involves, first of all, selection of appropriate families of distributions for individu-
al parameters, or in some cases for groups of interrelated parameters. The families
selected for expressing uncertainty are the log-normal or truncated log-normal family
(for partition coefficients and metabolic constants) and the Dirichlet family (for com-
partment volumes as proportions of total body volume). Other PBPK model param-
eters are functionally related to the compartment volumes and their empirical distri-
butions depend on the distribution of the volumes.

Uncertainty factors Awee derived largely on the basis of analyses of variation in
reported measurements or estimates. That being the case, different sources of unccr-
lainty and variation must be recognized. Variation among average measurements re-

VI-1-91



3 5

ported in different evcpnmcnts reprcsents a diffcrent source or sources of uncertainh
than ,ariation from measurcments takcnr n dtfferent individuals in the same experi-
ment. Furthermore, vhen a parameter %alue is not measured directly so that a value
of another variable is attributed to that parameter, additional uncertainty is in-
troduced. Consequently, the evaluation of total uncertainty theoretically requires
combining dis.ribJtons repres.-ning multiplc !evcls of uncertainty.

Of interest for test species PBPK parameters is uncertainty with respect to an aver-
age parameter value. This is the case because an aggregate response variable (propor-
tion of animals k ith tumor) is to be related to an aggregate predictor (the single dose
surrogate %alue assumed for a treatment group). For humans, in contrast, interest
is in individual variation of dose surrogate levels die to variation in PBPK model
parameter values. Therefore, for humans, it is desirable to incorporate into an esti-
male of relevant total uncertainty a component representing inter-individual varia-
tion specifically. Consequently the probability distributions derived below for hu-
mans app, to individuals selected at random, but distributions derived for rodents
appl) to mean ,alues for groups of animals in the bioassay considered.

Presented here are uncert.inty deriations for mice and humans. The concepts ex-
emplified b) the anal)sis for mice generalize to other test pecies.

Partition coefficients
Preferred values for tissue'gas partition coefficients (equated with the medians of

the log-normal distributions characterizing uncertainties) are taken from Reitz and
Nolan [51. The blood'gas preferred value (12) is the geometric mean of the value from
Reitz and Nlan [5] (10.3) and 3 values (9.1, 13.1, 18.9) reported by Fiserova-Berge-
rova [61.

Three sources of uncerlainty are recognized, one or more of which are relevant
to the esi;lation of total uncertainty for a given partition coefficient. For parameters
measured directly by vial equilibration techniques, uncertainty is due to differences
in values estimated in different experiments (source 1). These parameters are the ro-
dent bloodjgas, liver/gas, fat/gas, and slov 'gas (actually muscle/gas) and the human
bloodjgas coefficients. The unmeasured paiameters - the rapid'gas coefficient in ro-
dents (equated to the rodent lier 'gas coefficient) and all tissue:gas coefficients other
than blood'gas in humans (equated to the average of the corresponding coefficients
estimated in rats and mice) - have additional uncertainty due to the attribution of
the measured values to those parameter values (source 2). For all human coefficients.
individual variation is also relevant (source 3).

Each source of uncertainty is represented by a separate log-normal distribution
'Aith specified geometric standard deviation (GSD). Therefore, the distribution de-
scribing total uncertainty is also log-normal. with geometric variance (squared geo-
metric standard deviation) given by the sum of geometric variances expressing specif-
ic contributing uncertainties. Details of the derivation of source-specific uncertainty
distributions are available from the authors.
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It is common practice in uncertainty an3Tysc, ! derie dii5lribution parameters by
directly assigning subjecti,e probabilities to ranges or parameter values [7). An analo-
gous procedure ha% been used here to modify the uncertainty estimates for the parti-

tion cocfficients.
Plausible constraints on values of partition coefficients are p1. <p,,<pf<

po(i-I.r.s,b) %%here p.. and P,, are the %ater/gas and oil 'gas partition coefficients.

respectively. Using the preferred values (Table 1) and source-specific uncertainty fac-

tors as discussed abovc to define the log-normal distributions, the value of pl will

be larger than the value of 1917 estimated for p50 by Sato and Nakajima [8], with

probably about 20%. Similarly, in sampling from log-normal distributions for the

partition coefficients, values of other tissue;'gas partition coefficients were occasional-
ly larger than values of the fat/gas coefficient. (Other suggested constraints were vio-

lated with very low probability.) Consequently, the distribution of the fat,'gas parti-

tion coefficient was truncated at 1917, and other tissuegas coefficients were truncated
at the value of the fat.'gas coefficient. These adjustments represent a significant altera-
tion of both the shape and the variance of the distribution representing uncertainty
of the fat,'gas partition coefficient, and relatively slight alteration of the distributions
for other tissue,"g-5 Partitior coefficients.

Compartment volumes
For each species, uncertainty regarding compartment proportions of total body

volume is expressed using the Dirichlet distribution. For a set of random complemen.

tary proportions, the Dirichlet distribution function can be expressed in terms of the

expected proportions and a parameter 9 'hich determines the variances and co-var.

iai,"s of the ran -om proportions [9]. Consequently, it is convenient to equate the

preferred proportions v,,.p (i = I,r,sj) given in Table I to the expectations of the corre-

sponding random proportions v,, (i=I,rsj). The value chosen for e expresses the

uncertainty regarding the joint distribution of the proportions; more specifically var-
iance of v,, is given by:

Varv,] = v, x (I - v p)(9 + !), i = Irsf. (i)

Fixing the variance of one compartment proportion determines 9. Variation in

liver volume had been used because preliminary analysis revealed that, for the 3 dos,:
surrogates studied and for inhalation exposure, the model is roughly equally sensitive

to all compartment volumes (for the AUCL and AUCA surrogates) or more sensitive
to the liver volume than to other volumes (for the CML surrogate). Also, published

information is easily incorporated since the compartment is identified unambiguously
with a specific organ.

On the basis of liver volume measurements for mice reported in Arms and Travis

[101 the prtferred value of ,, and 9 for mice are estimated to be 0.056 and 1456,
respectively. Volume proportions for other compartments are taken from Reitz and

Nolan [5, adjusted for the change in Y1-
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For humans, the parameter value of v, (0 026) is also taken from Arms and Tra,
110] and other volume proportions from Reitz and Nolan [5], adjusted, again, for t
differc.nct bctcen vk %,aluCs from the t,o sources. For e, individual variation shou
be considered (as discussed above). Data on individual variation in liver volume
humans (as a proportion of body veight) is not available. Caster et al. [11] rep<
variances of Vk ,timates for individual rats, Ahich we assume to express plausit
levels of individual . ariation for humans. Using value from Caster et al. [II) in Equ
tion (I), the solution for O is 1621. We tentatively adopt this value to represent unu
tainty for humans, noting, hovcver, that individual differences do not account f
total uncertainty regarding compartment volumes, so that some under-estimate
uncertainty is possible.

Circulatory and % ienilatory paraneters
The paraneterts ,Ieri-g t .ortipartrnent proportions of body volume, cardi

output (q,), ventilatory output (q,), and perfusion rates of specific compartments (,
i= ,r,sf) are functionally interrelated. An account presented here demonstrates t:
sort of ph)siological considerations that are relevant, along with possibilities f
quantifying the .%ay that these considerations may determine uncertainty. Data r
garding circulatory and ventilatory parameters for rodents and humans have bei
summarized by Arms and Travis [10].

Distributions for q,, q,, and the q,'s are derived as follows:

(1) Gi,,en a v, value sampled from the Dirichlet distribution and the correspondir
absolute compartment volume (vJ, q, (the absolute compartment perfusion rate)
given by q, = ' q,,p x qw)/v1, where q,,p is the preferred proportion of total cardi;
output ected to compartment i [10) and q,p is the preferred total cardiac outpi
The total cardiac output is then given by q,=q1+q,+qj+q. These values of tot
and compariment-specific perfusion are assumed to hold for sleeping humans at
for rodents during all hours.

(2) For humans, sleeping and waking values of cardiac output and alveolar ventil
tion rate are desired. The '%aking" value (q,.) is computed by q,,=q,+(q,-,p-
q,p) x edq,, A here q, is the 'sleeping" value computed in step 1, q,p and qP are pre-
ferred values for sleeping and waking individuals, and edq, is distributed log-normal-
1) wvith preferred value I and uncertainty factor to be specified. The increment to total
cardiac volume is assumed to be directed entirely to the slowly pcrfused compart-
ment. Preferred values of waking and sleeping cardiac output and alveolar ventila-
tion rate are derived from Hattis el al. [4].

An uncertainty factor for edq, is also based on the data presented in Hattis et al.
[4]. An arbitrarily low probability (0.001) is assigned to an increment in q, values
(q,- q,) as large as the difference between values for sleeping and fight exercise (234
I/h). Using this difference, the assumed difference in preferred values (q.,p-
q,p = 138), the log-normal distribution assumed for edq,. and the relationship be-

vI-1-94



tvcct the GSD of the distribution and the associated UF, the uncertainty factor of

1.3 is obtained.

(3) Ventilatory ,.olume (qp) is assumed to be related linearly to the cardiac volume
(q,). For humans, qp - qpr- [(qp.p - qrp)'(q,.p - q,p)J x (q, - qp). The same relation-
ship holds for A.aling values. q,. and q,.. For mice, an analogous treatment requires
specification of ;- second q,.-q coordinate (to replace q,.p and qp..), in addition to
the values represtnting ordinary acti%,it) leels. Data from anesthetized mice have
been used to determine the second coordinate [I10.

Metabolic constants
After scaling V,,,, estimates (to get V N,,,. 'alues) and expressng Km in comparable

units, geometric means of the values reported in Hattis et al. [4] and Reitz and Nolan
[5] are equated with the preferred values.

It is assumed here that the uncertainty regarding the metabolic parameters arises

chiefly from different experimental approaches and assumptions applied in deriving
estimates. It may be argued that an uncertainty factor based on a geometric standard
error is an appropriate measure of uncertainty, the geometric standard error is relat-
ed i,,,ersel) to the sample size, representing formally the inverse relationship between
uncertainty and additional information. Ho%,e,er, such a formalization is based on
the assumption that the available measurements are independent and identically dis-
tributed (i.i d.). The estimates of metabolic constants are suspected to deviate strong-
ly from these assumptions. A likely pattern of deviation from the i.i.d. case is for
clusters of estimates based on similar procedures to assume similar values. Such a
pattern can lead to too-small estimates of uncerlainty. Here, some conservatism (im-
pl)ing greater uncei .dinty) is introduced by basing an uncertainty factor on the geo-

,._.. . , ,,, . t , t r I,.1r ,c St a u a r c h1 6 , . ; a o th c l W 0 1 U s ,

uncertainty regarding the metabolic constant; is represented by a lob-normal distri-
bution haing the same geometric standard deviation as the sample geometric stand-
ard deviation computed from the a'.ailable estimates [4, 5].

A tentative uncertainty factor for , is given by cxp (2 x 0.532)=2.9, for mice
and humans, Ahtce 0.532 is CSD derived as a %4eighted average of species-specific
GSD values. Uncertainty for K,, is evaluated in a similar manner, resulting in an un-
certainty factor of 13 for micc and humans. The representation of uncertainty with
respect to these metabolic constants is considered problematic, especially because
their estimation via optimization of the model fit to in vivo data is dependent on esti-
mates for the other model parameters. The 'Discussion' (see below) elaborates on
this point.

PROPAGATION OF PARAMETER UNCERTAINTIES

Procedure
Parameter distributions defined in the section on 'Parameter Uncertainty Evalua-
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Fig 2Prcopagator or prarncic 'incrtainines for PBPK modct-based nsk asumesrnt.

lion' for mice and humans suere sampled using the Latin-hy-percube method 17, 12).

For each random selection of parametecr ,.alues, the operations depicted in Figure
2 vAere performed to generate disinbutions of dose surrogate values and risk esti-
mates.

In order to characterize uncertainty in the 3 dose sarrogates (AUCL, AUCA.
CML), 100 sts of parameters %%crc generated and the PBPK model was run for cach
set. Mice %kcrc exposed as in the carcinogenicity biczssay- via inhalation at 0, 100
and 200 ppm, for 6 hours per day in 5 consecutive days per w~eek [2). Humans w*ere
assumed to be exposed to 50 ppmn (the current OSHA standard) for 8 hours per day
in 5 consecutive days per week.

Uncertainty in dose surrogate values was propagated rurther to evaluate uncer-
tainty in human risk estimates. A single tumor response, hepatocellulay carcinoma,
is considered here for illustrative purposei.
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Surrogate dose %alues v.ere related to the tumor response rates using a version of
uLOB AL82 [13i to irvTcrnent the mult:,,iage model. For the estimation of risk un-
certainty, tumor response rates Aere also considered uncertain. For each of 100 ran-
doml) gcncrated sets of dose surrogate .alues (one dose surrogate value per treat-
mcnt group) the multitage model %kith a fixed number oh stages was refitted, based

on those dose surrogate salues and random tumor counts for the treatment groups
generated from a binomial distribution vith parameters N, and p,. Here N, is the

nfrr'Lr of anmals in treatment group j (48 at 0 ppm, 50 at 100 and 200 ppm), while
p, is the estimated response proportion for dose group iobtained by fitting the multi-

stage model to the obsered response rates (i at 0 ppm, 13 at 100 ppm, and 36 at

200 ppm) and the dose surrogate xalues corresponding to the preferred mouse pa-
rameter values.

Finally, a distribution of human maximum-litelihood and upper bound estimates

of rsk vere generated by pairing each of the 100 sets of multistage model parameters
voth a randornly selected human dose surrogate value corresponding to the human
exposure s,:enano of interest. Extra risk is defined by R = (P(d) - Pt0))(I -P(0)),
,Ahen P(d) is the lifetime probabilt\ of observing a tumor given exposure that results

in a surrogate dose ,alue of d. No adjustments vere made to the risk estimates ob-

tined in this mjr.ner iThus, for example, no adjustment vas made to account for
the someA hat different proportions of the human and mouse lifespans lived prior to

first exposure.

RESULT S

Table II gies sc,.cted percentiles for the distnbutions of human dose surrogate

salues and extra risks Median surrogate values are approximately equal to the dose
surrogate salues computed using preferred parameter values, which are 23.9 for
AUCA, 118 for AUCL, and 27 8 for CML.

Median nsk estimates ,ary substantially among the 3 surrogate doses. For corn-

parison, consider the risks estimated in the 'traditional' manner, using applied doses
s.ith no pharmacokinetic transformations (Table Ill). Maximum-likelihood risk esti-

mates (MLE) obtained ,Aithout using a PBPK model (assuming mice and humans
are equall) su,,ceptible to doses expressed in mg'kg body wt. per day) are higher than

maximum likelihood estimates based on metabolite in liver, but lower than MLEs
based on parent concentrations. For tetrachloroethylene, it appears that the structur-

al uncertainty associated with the selection or an appropriate dose metric for crow-

species extrapolation is of relatively greater imporlance than is the uncertainty asso-
ciated with the values of the PBPK model parameters.

Also shown in Table III arc the risk estimates obtained by using the preferred
mouse and human PBPK parameters to estimate risk (i.e., the risk estimates that
would be obtained if the parameter values were known without uncertainty to be
equal to the preferred values). Except for the estimates based on CMI. the median
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TABLE II

SELECIED PERCLNIILES FROM THE SIMULATED DISTRIBUTIONS OF HUMAN DOS
SU RROGATE AD RISK VALUES tBASED ON 100 LATIN-HYPERCUBE SAMPLES)

1.% 25% 0% 75% 975%

Pose" Jwrugatej

AUCA 12 1 18 9 24 4 303 431
(j.crage dal) atca under the arenal

cr-ritntra!:zn . -r-t, Ing h- I 1-11

AUCL 131 549 116 243 1060

(a crage dal', area under he lier con-
crntrauor cjr'e. rng h-I -') 2.24 13.9 27.8 5139 I17

CML

ALICA 00275 00910 0 164 0243 0494

ACL W391 0 244 04.80 0 700 092
C.L 3 65E-9 3 73E-5 8 5E-4 7 06E-3 0 04"

-Erxa nrsk isjPd)- PtO)j (I - P(O)), Abcre Ptd)a, the fYetume probability of tumor ,hbncxp>od to -

d Here dccrr >p nds to an 8 h d. 5 d & cxposu to 50 ppm

TABLE !lIl

RISK ESTIMATES, OBTAINED 'A ITHOU"T USE OF A PBPK MODEL, AND USING THE PBPK

M ODE L 'A1ITH NO U:.ERTAINT'f

Ana) sis Risk etima tes

MLE Upper bound

No PBPK :r4mforma'job' 5 57 X 1 KI 4.28 x 10-1
PBPK transfornation iLth nio unctrtainly

A UCA 0.126 0.231
AUCL 0.425 0.506
CML 1.95 x I0-, 7.0X 10-

*Exlra risks for I hld. 5 d,'% exposures to 50 pp.
bHurmans and mwce are assumed to be equarl suscrptibk to ictrachloroc thy ly wben adminisercd dc,

are expressed i mg kg- '-d- 1.

of the simulated risk estimates is close to the risk estimate obtained with no unr,-
tainty In the case of CML, risks tend to be skewed to the right in comparison with
the estimate corresponding to the preferred parameter values. This is a result of the
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fact that the linear term of the multistage model fit to the preferred-value dose and
response data is zero. Alteration of CML doses and response rates introduced in the

course of the uncertainty analysis cannot decrease the linear term and this would tend
to increase the Jisk estimates at the relati'cly loA dose corresponding to the human
eposure scenario. With the AUCL and AUCA surrogates, the linear terms are posi-
ti'.e then the multistage model is fit to the obser'ed response rates and doses corre-
sponding to the preferred parameter values.

DISCUSSION

Evaluations of the carcinogenicity of tetrachloroethylene have implicated a meta-
bolite as the moiety responsible for the tumorigenic responses following exposure
(14). The high degree of non-linearity betv,een the CML dose surrogate and the hepa-
iocellular carcinoma response rates in female mice (as discussed in the preceding sec-
lion) is interesting in that light. Either there are non-linear steps, in addition to the
saturable metabolic transformation, lead.ng to the interaction that initiates the carci-
romas (i.e., the surrogate represented by CML is not close enough to the events caus-
ing cancer to yield linearity Ietveen that measure of dose and the response), or the
?BPK model is not adequate for describing tetrachlroethylene pharmacokinetics.
We are continuing investigation of tetrachloroethylene carcinogenicity in hopes of
elucidating the substance and the mechanisms responsible. This may entail the devel-
opment of alternative means of characterizing and calculating the risks.

The approach to uncertainty analysis that has been illustrated in the context of
tetrachloroethylene risk assessment has several features that are essential for an ap.-
propriate uncertainty assessment. First. the uncertainties related to the PBPK model
parameters are formall) expressed in terms of probability distributions that can in-
corporate multiple leels (or sources) of uncertainty. The parameter uncertainty dis-
tributions are based on the inspection and analysis of relevant data, sometimes in
combination Aith the application of more subjective evaluations (or those based on
expert opinion) of reasonable bounds for particular parameter values. Second, the
parameters are not. in general, regarded as being independent of one another. The
implied correlation structures (as, for example, among the volumes of the compart-
ments) are modeled using multivariate distributions. Moreover, certain assumed
functi. nal relationships between the parameters have been maintained, even though
the magnitudes of those rflationships (the ratio of cardiac and pulmonary rates, for
example) are subject to ur'certainty. Finally, the approach employs an efficient tech-
nique (Monte Carlo !ctimulation using the t.atin-hypercube procedure) to make ex-
plicit the relationships between parameter uncertainties and uncertainties in dose sur-
rogate values and risk estimates.

By far the most difficult aspect of this approach is the characterization of the un-
certainties in the parameters. This requires extensive review of the literature and at-
tention to the difrerent sources of uncertainty that are inherent in the observed varia-
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lions in mcasurcmcnts. It is appropriate to stress that the estimates or uncertainty
derived here are tentative. First of all, as illustrated by the measurcmcnt of individual
variation in liver volume as a proportion or body %eight, various of the GSD est-
mates are not based on data that are directi) relevant, but on data from contexts
that are considered more or less analogous to the context of immediate interest. Mo-
reoer, ihc i.araions identified %4ith specific sources of uncertainty may not relec
only those sources of uncertainty. For example, individual variation will contribute
to observed vanation between mean measurements reported by different laborato-
ries, particularly if the number of animals per mean is small.

Certain parameters are difficult to measure and equally difficult to characterize
with respect to their uncertainty. When parameter estimates are based upon data col-
lected in vivo, as is the case Aith metabolic constants, the values obtained are deter-
mned in part by the values assumed for other physiological parameters, as well as

bv the structural assumptions underl)ing the PBPK model. Also, uncertainties in es-
timates of parameters fitted simultaneousl) by an optimization program are not inde-
pendent, because the fit of the model to the data is determ;ned jointly by all of the

fitted parameters. Information on the correlation among estimates of such param-
cers is necessary for a complete treatment of their uncertainty. This information is
not currently available, and so. for example, Vmu and Km are treated as though they
were independentl) determined. Because of these difficulties, the evaluation of uncer-
tainty for metabolic constants could be improved by techniques that account for the
uncertainty in the other parameters and that simultaneously estimated uncertainty
for V,,,, and Kn.

Other ,efinements to the characterization of uncertainties in PBPK model param-
cetrs are p-,sible. In particular, the use of variance components analysis to denve
more pure cstimales of source-specific uncertainties is of interest.

The results of the analysis, the distribution of surrogate doses and of risk estimates.
have several potential uses. The distribution of simulated risk estimates can be inter-
preted as follows, keeping in mind the fact that, precisely because of uncertainty with

respect to the parameter values and individual variation, consideration of a single
risk estimate is not adequate. The proportion (P) of the simulated estimates that fall
in an interval (I) may be interpreted as the probability that the true risk for a random-
ly selected individual is in I, Ahen the uncertainties are taken into account. This inter-
pretation should be useful in risk management decision-making contexts. One major
advantage of this type of analysis (i.e., risk assessment that uses PBPK modeling and

considers input uncertainties) is that reasonable variations in risk estimates become
explicit. Traditionally, using administered doses, the uncertainties associated with the
point estimates of risk have not been emphasized.

The distribution of the dose surrogates and the risk estimates result from uncer-
tainties concerning true (average) values as well as variation around those averages.
The uncertainty regarding the true values is theoretically reducible via further experi-
mentation. The approach illustrated here can assist in directing the efforts to reduce
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uncertaint). If, for cainplc, a sci of paramcicr,, is fixed at an assumcd ascrage %alue.
the reduction in thc spread of the risk estimates, KfoA that obtained s' hen all param-
ciers are allo~ed to %ary, pros ides an indication of the potential %alue or additional
information 'A ith re!,pcct to that set or parametiers. Such anal)scs take into account
both seni-its ty of model output to the %aluv, assumed for the paramciers, and the
current lesecl of uncertaint) regardinE the parameters.

The approach to uncertainty analysis preisenlcd here has been illustrated for a sim-
ple PBPK model for ltrachloroethylene. It is applicable to PBPK models of greater
complexity as AcelI. Some of the parameters of those models - such as partition coeffi-
cients, compartment \olumes, and floA rates - are identical to those in the tetrachlo-
roethylene model used herein. Thus, for those parameters. the ground vAork has been
laid here for their analysis In general, the considerations described here are mean-
ingful and useful for an% analy sis of PBPK model-based risk assessment-
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VOLUME VI

SENSITIVITY/UNCERTAINTY ANALYSIS

PART 2 OF 2 PARTS

CONTRIBUTIONS OF INDIVIDUAL
PARAMETERS TO OVERALL UNCERTAINTY



A. INTRODUCTION

In Part 1 of this vclume, a sensitivity analysis for individual

parameters of a simple PERC PBPK model was completed. Appendix VI-I-A

presented an uncertainty analysis for that same model. The uncertainty

analysis built upon the discussion in Part 1 concerning parameter

uncertainties. The uncertainty analysis also presented results in terms of

distributions of output variables, in particular distributions of risk

estimates.

In this part of the volume, one other set of results is presented.

Those results also apply to the uncertainty analysis and again focus primarily

on the distribution of output variables. In this case, however, the analysis

highlights the contributions of individual parameters or sets of interrelated

parameLers.

The goal of the analysis reported here was to determine which parameters

contributed most significantly to the variability in the dose surrogate or

risk estimates. A variable can contribute to output uncertainty through a

combination of 1) the sensitivity of the models to the output, and 2) the

degree of uncertainty (variability) associated with the parameter estimate. A

model is said to be sensitive to a parameter if relatively small changes in

the parameter values result in relatively large changes in model output

values. As stated in Section I of Part 1 of this volume, a parameter with a

high degree of uncertainty associated with it does not contribute greatly to

output uncertainty if the model is relatively insensitive to that parameter.

Conversely, a parameter to which the model is highly sensitive may contribute
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substantially to the output uncertainty even if the uncertainty associated

with the parameter is relatively minor.

B. METHODS

The technique that was used to measure the contribution of individual

parameters involved estimation of the variance of the output (dose surrogate

or risk estimates). The variance for a sample of N values (x1 , x2, . X.N. )

is defined as

(1) V - E(x i -)/(N-I)

(2) p - Exi/N

where the sums in each equation are over all values of i (- 1, 2, ... , N).

Let VT denote the variance associated with the output variable values

when all parameters were allowed to vary according to their uncertainty

distributions. Similarly, let Vi denote the variance associated with the

output variable values when parameter i (or parameter set i) was allowed to

vary, but all other parameters were fixed. Then

(3) Ri - Vi/VT

is a representation of the contribution of parameter i (or parameter set i) to

the overall uncertainty associated with the output variable values. When R,

is small, parameter i has a small impact on uncertainty in the output
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variable. Larger values of Ri indicate greater impact on the variability of

the output variable.

The representation characterized by the Ri valu s combined two factors.

One was the amount of vqrlation allowpd for a parameter, as rcprczented by its

,;-certainty distribution. Clearly, if a parameter was assumed to be known

with certainty (i.e., the uncertainty distribution allowed for no

variability), then Ri for that parameter would be zero (since Vi would be

zero). The more uncertain a parameter value is (i.e., the greater the

variation allowed by its associated uncertainty distribution) the greater the

chance that the R, for that parameter will be larger.

However, the other factor that affected the values of Ri influenced the

degree to which increasing parameter uncertainty is manifested in increased

output variable uncertainty. The second factor was the sensitivity of the

model to the parameter under consideration. Thus, a parameter to which the

PBPK model is relatively insensitive will probably have a small Ri value, even

if the uncertainty associated with that parameter is very large. Sensitivity

for the perchloroethylene PBPK model was addressed in detail in Part 1.

C. RESULTS

Tables VI-2-1 and VI-2-2 display results that extend the analysis of the

perchloroethylene example presented in Appendix VI-I-A. Those tables show the

R, values for each parameter or set of parameters when the output variable was

either a dose surrogate estimate or a risk estimate. The dose surrogates

examined include those discussed in Part 1 of this volume and Appendix VI-l-A.
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In one instance (the contribution of uncertainty in pla to uncertainty

in the estimation of human AUCL; Table VI-2-1), the variability in the output

found when a single parameter was varied exceeded that observed when all

parameters varied. This result may have arisen as follows. When all

parameters were allowed to vary, the random matching of sampled parameter

values may have moderated some of the extreme AUCL values produced when pla

alone varied. That would tend to decrease the variability; i.e., AUCL

variance associated with uncertainty in the pla parameter would be smaller

than that associated with uncertainty in all the parameters, as observed.

T -i r-,l uill - 'x amined further.

The contributions of all of the individual parameters or sets of

parameters to risk uncertainty were small when virtual concentration of

metabolite was used as the dose surrogate (Table VI-2-2). This can be seen by

comparing values in the three columns of Table VI-2-2. This result was

accompanied by a shift in the median risk estimates; i.e., the median risk

estimate when all parameters were allowed to vary was higher than the risk

estimate medians observed when individual parameters were allowed to vary.

This result could have arisen in the following way. The original fit of

the multistage model (using the observed response rates and the preferred PBPK

parameter values) estimated that the linear term of the model was zero.

Changes in parameter values affect risk estimates by altering multistage model

parameter estimates, but such changes could never decrease the linear term.

Consequently, risk estimates would tend to be increased, especially at low

doses where the linear term dominates. Thus, when all parameters were allowed

to vary, the linear term tended t- be increased more often than not because of

the overall variability. However, when individual parameters were varied, the
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variability of the dose surrogate estimates was not so great, inducing a

smaller change in risk estimates (i.e., tending not to increase the linear

term more often than not). This would cause a shift in the median risk

estimates (smaller median values, more similar to that obtained with the

original fit of the multistage model) when single parameters varied, and may

also have zesulted in less variability associated with the risk estimates.

A similar phenomenon was not observed and would not be expected for risk

estimates based on the other two dose surrogates. This is because, in those

cases, the linear term was positive when the multistage model was fit to the

observed responses using the preferred PBPK model parameters. Thus, changes

in the parameters (either one at a time or all together) could induce both

increases or decreases in the linear term, tending to keep the median close to

that observed with the original fit.

Despite the fact that the above arguments can explain the pattern of

risk estimates observed for risks based on the metabolite virtual

concentration, further investigation of this issue will be carried out.

D. DISCUSSION

The contributions of the individual parameters to the output

uncertainties matched fairly closely the pattern observed when the model was

examined with respect to sensitivity (Part 1 of this volume). Contribution to

dose surrogate uncertainty corresponded extremely well with contribution to

risk estimate uncertainty.

For the AUCL dose surrogate, the model was particularly sensitive to pla

and pb. Those two parameters contributed zczt highly to the AUCL dose
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surrogate uncertainty (Table VI-2-1). This was true for the human pb and pla

values as well as for the mouse pb and pla values.

For the dose surrogate based on virtual concentration of metabolite, the

response rates contributed most highly to the risk uncertainty. The metabolic

constants were the most significant contributors to risk uncertainty of all

the PBPK model parameters. Because of the relatively low atmospheric

concentrations to which the mice were exposed (100 and 200 ppm). the mouse km

parameter contributed more to risk uncertainty than did the mouse vwaxc

parameter. Model predictions of virtual concentration of metabolite were

found to be very sensitive to the value of the liver volume parameter (Part 1

of this volume). That sensitivity is reflected in the relatively large

contribution of uncertainty in all volumes (varied together because of their

interrelationships) to dose surrogate and risk uncertainty, when based on

metabolite virtual concentration.

The dose surrogate AUCA was most sensitive to the blood/air partition

coefficient. This parameter also contributed very significantly to

uncertainty in the risk estimates. The contributions of uncertainties with

respect to response rates, mouse vmaxc, and mouse km were also substantial for

the risks based on the AUCA dose surrogate. The contributions of all other

parameters were considerably less.

Some parameters were consistently unimportant in determining output

uncertainties. Those parameters included the partition coefficients for the

fat, slowly perfused, and richly perfused compartments. Of those partition

coefficients, the one for the slowly perfused compartment contributed to

output uncertainty more than the other two. The parameter describing the
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relationship between the waking and sleeping cardiac output rates in humans

(dqc) was also consistently unimportant for determining output uncertainty.
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Table VI-2-1

Contributions of Individual Parameters

to Uncertaintv in Dose Surrogate Estimatesa

S urrogateb
Virtual Concentration

Parameter AUCL of Metabolite AUCA

Vmaxc 4 6E-2 (4) 19 (2) 4.7E-1 (3)
Kmn 6.E-2 (3) 22 (1) 7.OE-1 (2)

pb 3.8 (2) 4.1 (3) 97 (1)
pla 122 (1) 5.OE-2 (7) 7.OE-2 (6)
pra 1 SE-3 (7) 5.1E-2 (6) 6.8E-2 (8)
psa 1.IE-2 (5) 4.8E-1 (5) 3.4E-1 (4)
pfa l.7E-3 (8) 4.OE-2 (9) 6.9E-2 (2)

VolumesC 1 .5E-3 (9) 1.7 (4) 6.1E-2 (9)

dAc < IE-3 (6) 46E-2 (8) 8.1E-2 (5)

Presented are values of Ri*100 (see text for definition) and, in
parentheses, a rank for the parameter. A rank of 1 indicates largest Ri.
These are for the human PERC model with a 50 ppm, 8 hour/day, 5 day/week
e :.:;, -,,ire sr.oer tri

The dose surrogates are average daily area under the liver concentration
curve (AUCL), average daily amount metabolized per liver volume (virtual
concentration of metabolite), and average daily area under the arterial
blood concentration curve (AUCA).
The volumes are correlated (they vary together according to a Dirichlet
di'sqtrib,:t ion) ord so their ,,tr 'tion to (,::-put uncertainty constitutes
one entry.
The parareter defining the relationship between resting and active cardiac
output rates. See Part 1 of this volume.
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Table VI-2-2

Contributions of Individual Parameters
to Uncertainty in Risk Estimates'

Surrogateb
Virtual Concentration

Pirameter AU(L of Metabolite AUCA

Human Vma xc 2.OE-1 (10) 1.3E-3 (3) 1.3E-1 (7)
H man Km 2.6E-i (9) 6.OE-4 (5) 1.9E-l (6)

Human pb 13 (2) 4.6E-5 (6) 32 (1)

Human pla 88 (1) 3.3E-7 (12) 2.OE-2 (15)
Human pra 7.5E-3 (16) 3.2E-7 (13) 1.9E-2 (17)
Human psa 4.6E-2 (14) 3.8E-6 (10) 9.7E-2 (13)
Human pfa 7.4E-3 (17) 2.5E-7 (16) 1 9E-2 (16)

Human volumec 6.1E-3 (18) 1.5E-5 (7) 1.7E-2 (18)

Human dqcd i.OE-2 (15) 2.9E-7 (14) 2.3E-2 (14)

Mouse Vmnaxc 8.8 (5) 7.7E-4 (4) 9.1 (4)
Mouse Km 1.0 (7) 1.7E-2 (2) 2.3 (5)

Mouse pb 13 (3) 5.2E-6 (8) 26 (2)
Mouse pla 13 (4) 1.4E-8 (18) l.OE-l (10)

Mouse pra 7.6E-2 (13) 1.9E-8 (17) I.OE-1 (10)
Mouse psa 9.9E-1 (8) 2.8E-7 (15) 1.2E-1 (8)
Mouse pfa I.OE-I (11) 6.9E-7 (11) 1.IE-1 (9)

Mouse volumes' 8.OE-2 (12) 3.9E-6 (9) I.OE-l (10)

Response rates' 3.0 (6) 5.0 (1) 11 (3)

Presented are values of R,*100 (see text for definition) and, in

parentheses, a rank for the parameter. A rank of 1 indicates the largest

R,. Risks were derived for a 50 ppm, 8 hour/day, 5 day/week human exposure

scenario using the female mouse results discussed in Appendix VI-l-A.
The dose surrogates are average daily area -n4er the liver corcentration

curve (AUCL), average daily amount metabolized per liver volume (virtual

concentration of metabolite), and average daily area under the arterial

blood concentration curve (AUCA).
C The volumes are correlated (they vary together according to a Dirichlet

distribution) and so their contribution to output uncertainty constitutes

one entry.

d The parameter defining the relationship between resting and active cardiac

output rates. See Part 1 of this volume.

The bioassay response rats were allowed to vary according to a binomial

distribution with probability of response defined by the multistage model

fit to observed response rates with doses defined by preferred values of

PBPK model parameters.
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