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SUMMARYj

Asymmetric vortex flow over circular cones is discussed in the light of
predictions of the single-line-vortex model and of measurements made by Fiddes,
Moir and Lean in the RAE 5m Wind Tunnel. For the case of separation lines speci-
fied as laterally symmetric, the space of conical solutions which contains the
symmetric solutions of Bryson is explored thoroughly. No more than one pair of
asymmetric solutions is found for each combination of a separation position and
a ratio of incidence to cone semi-angle, except in a small region of the para-
meter space. The stability of the solutions to small asymmetric spatial dis-
turbances is calculated. It emerges there is nowhere more than one stable solu-
tion, symmetric at smaller incidences, asymmetric at larger.

In contrast, the experiment, on a 10° semi-angle cone, with laminar separa-
tion, reveals many different levels of local side force, depending on roll angle,
lengthwise station, and unit Reynolds number, as well as incidence. It is shown
that the flow can be highly non-conical. At 350 incidence the flow may be devel-
oping streamwise towards a conical state, but this is not apparent at 300.
Analysis of the pressure distributions is complicated by an apparent turbulent
re-attachment at the larger local Reynolds numbers.
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This is a slightly extended verslon of the paper presented at the AGARD FDP
Conference 'Vortex Flow Aerodynamics', Scheveningen. Ootober. 1990.
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I INTRODUCTION

This Memorandum presents an update on earlier RAE work on the formation of

asymmetric vortices from slender pointed bodies at large angles-of incidence.

The emphasis is on-theoretical and experimental work on flow over circular cones.

The theoretical work began with the generalisation of Bryson's model
! 

for

symmetrical vortex flow over bodies of revolution to flows With lateral asymmetry.

We formulated the model for asymmetric vortex flow over circular cones using

slender-body theory, with arbitrarily chosen, straight separation lines, and the
single line-vortex model of the separated flow. We looked for conical solutions,

in which the line-vortices are straight, and eventually found a family of asym-
2

metrical solutions . When the separation lines are placed symmetrically on

either side of the incidence plane, the symmetric solutions of Bryson occur, and

the asymmetric solutions then bifurcate from this symmetric branch of solutions.

The solutions depend only on the angular position of the separation lines and on

the incidence parameter, defined as the ratio of the angle of incidence to the

semi-angle of the cone. At values of the incidence parameter above that at which

bifurcation occurs, a side force is predicted. This grows rapidly with the inci-

dence parameter, reaching values comparable with the normal force, even though

the separation lines are placed symmetrically. Quite large asymmetries in the

positions of the separation lines, on the other hand, perturb the symmetric flow

relatively little. This work pointed to an inviscid mechanism for the observed

side force on slender pointed bodies.

This early work was followed by calculations using the more realistic vortex-
3 4

sheet model, developed previously for symmetric flow on wings and bodies . This

retains the framework of slender-body theory, separation is still specified along

arbitrarily chosen straight lines, and the restriction to conical flow is retained.

This work confirmed the conclusions reached previously about the primary role

played by bifurcation and the limited importance of asymnmetry in the positions of

the separation lines. It also allowed favourable comparisons to be made with

observations of vortex flow and with measured levels of side force
5
'
6
. The solu-

tions are extended without difficulty to elliptic cones and it was demonstrated

that a reduction in the vertical axis of the elliptic cross-section leads to an

increase in the angle of incidence at which bifurcation from the symmetrical solu-

tion takes place
7
. Further work using this vortex-sheet method for more gereral

8 9shapes has been presented by Fiddes and Williams , and Williams

The theoretical work in the present Memorandum is based on the siwpler line-

vortex model studied initially, so it is relevant at this point to discuss the

relationship between the predictions of the two models. Fig I shows the starboard
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side of a circular cone in symmetric flow at an incidence parameter of 3. A

vortex sheet solution is shown, springing from the separation line SS  at the

end of the horizontal diameter of the circular cross-section, and ending at E
with its core at C joined to E by the usual 'feeding sheet'. This separation
position is typical for laminar separation. The arc identified by the figures

400-490 is the locus of the vortex positions in the line-vortex model for angular

positions of the separation line, Sv , of between 400 and 490 above OSS . The

first point to be made is that this locus passes very close to C , indicating

that the predictions of the simple model have a certain resemblance to those of

the better model. The second point is that this resemblance is found for posi-

tions of the separation line in the simpler model which lie well to leeward of

the position in the better model. The reason for this is brought out by the

difference in the shape of the separating stream surface. For the better model

this is the vortex sheet SSBE . For the simpler model, the separating stream

surface springs from the separation line Sv , which is a typical conical-flow

stagnation point, so that it takes a course similar to that indicated by the

arrow. Because the initial part of the vortex sheet, S5B , lies relatively

close to the surface of the cone, similar flows near C are generated with very

different separation positions in the two models. The position of point B has

been chosen so that the circulation in the sheet model about the core C and

the segment BE is the same as the circulation in the line-vortex model with

separation at Sv .

Before leaving this discussion of the theoretical models it is appropriate

to mention the prediction of asymmetric vortex flow by more complete models. For

inviscid supersonic flow over cones, conical solutions of the Euler equations

governing the flow exist. Such solutions displaying lateral asymmetry have been

obtained by Marconi 
0
, who forced the occurrence of primary separation along sym-

metrically located separation lines. Agreement between these solutions and those

of the vortex-sheet model in slender-body theory was pointed out by Fiddes and

Williams . For laminar viscous flow, as described by the Navier-Stokes equations,

conical flows do not exist. However, a slightly modified equation set does dis-

play conical solutions for supersonic speeds. Asymmetric solutions of these

equations for flows past circular cones have been obtained by Siclari and
11Marconi . These display slight asymmetry in the position of the primary separa-

tion lines. Secondary separation also occurs, but in their overall features the

flows are not markedly different from the Euler solutions of Marconi
10 

and the

vortex-sheet solutions of Fiddes
4.

TM Ae 2211



On the experimental side, it is quite impossible to review the investiga-

tions which have been carried out within the space of this introduction. A com-

prehensive review was providedby Hunt1
2 

in 1982. Since we are particularly

interested in the flow over circular cones, we shall make extensive use of the

measurements made by Fiddes, Lean and Moir
13 

in the 5 metre Tunnel at RAE and

briefly reported in Ref 14. Details of their wind-tunnel model are shown in

Fig 2. The model is large, enabling quite detailed measurements to be made on

the conical portion, which extends 700 mm from the apex, and the tunnel is pres-

surised, enabling Reynolds number to be varied at constant Mach number. The

model mounting allows the roll angle to be set from outside the tunnel. Since

we are interested in the flow over cones, we shall consider the results of pres-

sure measurements made at the first four measuring stations, all of which lie on

the conical portion of the model. Note that the semi-angle of the cone is 100,

so that the incidence parameter takes the values 3.0 and 3.5 at the angles of

incidence 300 and 350 which we shall consider. 'Conical vortex-sheet solutions

exist for these values for a range of separation line positions near those

occurring experimentally, for both symmetric and asymmetric flows. The pressure

holes are spaced at 100 intervals circumferentially round the body at all

measuring stations, which are themselves equally spaced. The interval in the

circumferential direction limits the accuracy with which the local side-force

coefficient can be determined.

Fig 3 shows an example of the results obtained. The local side-force

coefficient, Cy , based on the local diameter of the cone, is plotted against

the angle of roll, , about the axis of the cone. The angle of incidence,o, is

350, the results are for the first station, and the tunnel pressure is only just

above atmospheric, so that the boundary layer growing from the windward generator

is laminar at the separation line. We see that, at about half of the selected

values of roll angle, the side force takes an approximately uniform numerical

value, approaching in magnitude the local normal-force coefficient, CN , shown

on the upper curve. As usual, the sign of Cy changes several times in a com-

plete revolution about the axis. At about half the remaining values of 0 ,

is small enough for us to believe that the flow is essentially syimmetric. All

this is consistent with the predictions of the inviscid model, that symetric

solutions and asymmetric solutions of right- and left-handed forms both olcur.

However, the remaining quarter of the points show values of side force which are

clearly intermediate between zero and the extreme value. These correspond to

neither the symmetric nor the asymmetric solutions. It is these intermediate

values which provoked the work to be described below.

TM Ae 2211
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The theoretical component of this work started with a complete exploration

of the parameter space of the existing synmetric and asymmetric solutions of the

line-vortex model for conical flow, with the intention of finding further solu-

tions which might yield intermediate levels of side force. No further bifurca-

tion locus was found, however, and the small regions of the parameter space in

which multiple solutions do occur turn out to be insignificant. This work is

described in section 2. A formulation of the same model for non-conical flow

made it possible to examine the stability of the conical solutions to small non-

conical spatial disturbances. This examination shows that the significant

asymmetric solutions are stable, but the symmetric solutions are only stable at

values of the incidence parameter below that at which asymmetric solutions occur.

In fact, bifurcation takes place 'with exchange of stabilities', see for instance,

Ref 15. The stability study is described in section 3.

This leaves the explanation of Fig 3 in a worse state than before. No only

are we reasonably sure that no further solutions exist, but the co-existence of

symmetric and asymmetric solutions for the same incidence parameter and separa-

tion position is unlikely. The possibility of unsteadiness in the flow was con-

sidered, the idea being that the pressure instrumentation would record an average

value if the flow state alternated between its right- and left-handed asymmetric

forms, spending a proportion of the total time in each which depended on roll

angle. If this occurred, the pressure distribution at a particular roll angle

could be constructed from an appropriate linear combination of the pressure dis-

tributions at roll angles which correspond to the right- and left-handed asym-

metric forms. Many, though not all, of the measured pressure distributions could

be constructed in this way, as shown in unpublished work by D.E. Lean. Conse-

quently, Earnshaw and Rae undertook a brief, and also unpublished, investigation

in which an unsteady pressure transducer was mounted in the model and its output

monitored visually at a range of roll angles. The frequency response of the

system was sufficient to resolve events on a time scale corresponding to the pas-

sage of a fluid particle from the apex to the measuring station. No significant

variation in amplitude of the observed fluctuations was detected between roll

angles at which the side force took extreme and intermediate values. This expla-

nation of the intermediate levels of side force was therefore abandoned.

It was only at this stage that we considered the possibility that the flows

giving rise to the local side-force distributions in Fig 3 might not be even

approximately conical. Evidence for the non-conicality of some of the flows at

a - 350 is presented in section 4. This leads to a tentative explanation for

the occurrence of intermediate and near-zero levels of side force, supported by

TM Ae 2211
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further features of the stability theory. The outcome is not entirely conclusive,

partly because data were only taken at the first two measuring stations for

= 350

This less than conclusive outcome led us to examine the results at a - 300,

for which data at all six stations are available. At this lower angle of inci-

dence, the side force levels are lower, though still significant, and the inter-

mediate states occur as the rule rather than the exception. Significant effects

of Reynolds number also appear, but the results indicate that the underlying vor-

tex flow structre is markedly non-conical for most of the range of roll angles.

Details are given in section 5.

Finally, in section 6, an attempt is made to summarize our present under-

standing of steady vortex flow over circular cones.

2 SOLUTIONS OF THE LINE-VORTEX MODEL FOR CONICAL FLOW OVER CIRCULAR CONES

In an attempt to explain the occurrence of the intermediate levels of side

force shown in Fig 3, the solution space of the line-vortex model of Ref 2 was

explored more thoroughly. The essential features of the model are illustrated in

Fig 4. A pair of line-vortices OV and OV2  lie downstream of the pointed

apex 0 of the body. Their circulations are rI and -r2 . Each is joined by

a feeding vortex-sheet to a separation line OSI or OS2  on the surface of the
body. These feeding sheets are surfaces of discontinuity in the velocity poten-

tial, with the magnitude of the jump depending only on the streamwise variable

x , that is to say, as vortex-sheets in which the vortex-lines are transverse to

the main stream. The velocity field is constructed using slender-body theory

and two conditions are formulated. We require in the first place that each vor-

tex system, c-mprising a line-vortex and its feeding sheet, is free of transverse

forces. This is achieved by balancing the force arising from the pressure differ-

ence across the feeding sheet by a force acting on the line-vortex. The second

condition expresses the occurrence of separation. It forces the velocity vector

at the separation line OS to lie along 05 . Both these conditions are gross

simplifications of the conditions that a vortex-sheet model would satisfy, but

they provide a representation of the principal kinematic and kinetic constraints

on the vortex flow.

Fig 4 is drawn for conical flow over a circular cone, but it is straight-

forward to write the conditions for non-conical flow and a general body of revol-

ution. With the axes as shown, we introduce the complex variable

Z - y + iz

TM Ae 221I



in the cross-flow plane, and define the vortex positions by

Z = ZI(x) and Z - Z2(x)

Then, the condition of zero transverse force on the srarboard vortex system can

be expressed as

-1ie dr, dZl
- i I __ I

(ZI - ae )U d +r - +

+~o~ a + _____ __ Z 0

2 ) Z, a .2) zz 2- a 2  0

........................... (I)

Here r and -r are the circulations of the vortices, a is the local radius

of the body, and the separation line, OS1 , lies along Z - ae
10 1 

. The first

ter represents the force on the feeding sheet, the second term represents the

force on the line-vortex due to its inclination to the free stream, and the

third term represents the force on the line-vortex due to the cross flow.

Equation (I) represents a straightforward generalisation of the corresponding

equations in Ref I, dealing with laterally-symmetric flow, and in Ref 2, dealing

with asymmetric but conical flow. The corresponding equation for the port vortex

system has the suffixes I and 2 interchanged. The generalised Kutta condition

representing the occurrence of separation on the starboard separation line is

r~z - 2 2
r I(Z I Z I ) r2 (Z2z2 - a )

2 " 2aaU cos0 1  , (2)

2flzI - ae 2fI 2 - ae 1 1

provided the angular position, 01 , of the separation line is independent of x .

The corresponding equation for the port side is obtained on replacing 01 by

02

For a slender circular cone of semi-angle 6 , we have

a = 6x , (3)

and we can introduce non-dimensional variables and y by

Z. , .r - 2va6Uy. , j = 1,2 . (4)

TM Ae 2211
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Then (2), and the correspondingequation for the port side,become

eI - --2 2 2acos O
io 2 ic0 2

-i e If k2 e 1

(5)

i vn( - ) v2( 222 - )os
Vi _2 2 io 2 o

,- e 21 14 - e

Introducing a nor,-dimensional streamwise variable F by

x , (6)

where x0 > 0 is a constant to be interpreted in section 3, we find (1) becomes

i [y 1 - e ) YF( I, 2,YIY 2,O1 ,o/6) , (7)
d&

where F(C , 2,y1,y2,01,a/06)

-iO 2+I i Y 2( 2 2 - I)

... (8)

The corresponding equation for the port side becomes

7 - e - 0 2 - y2F( 2'Yv 2,Ye 2,e/6) (9)

For conical flow, the non-dimensional variables C., y. and 0. that
describe the vortex systems are independent of the streamwise coordinate, so the
governing equations reduce to

F(CjC2*YI'Yz)61*n/4) - F( 2, IY2,YV,92,ua/6) - 0 (10)

and the generalised Kutta conditions (5). Equation (10) consists of two complex
equations, equivalent to four real equations, so that we have six equations in

Tm Ae 2211



all to determine the two coordinatesof each vortex and their circulations. The

parameters on which the solutions depend are the incidence parameter a/6 and

the positions O and 02 of the separation lines.

Some solutions given in Ref 2 for symetrically placed separation lines

illustrate the generation of asymmetric solutions by bifurcation from the sym-

metric branch as the incidence parameter increases above a critical bifurcation

value. This framework is extended in Ref 5, dealing with vortex-sheet solutions,

to embrace solutions with asymmetric separation lines. The symmetric solutions

are extended to a first family of solutions, comprising those solutions which

either are symmetric or become symmetric when asymmetry in the separation line

position is gradually reduced to zero, with a/S held constant. The asyrmmetric

solutions are extended to a second family of solutions in which the asymmetry in

the solution persists when the asymmetry in the positions of the separation lines

is reduced to zero. The level of side force is shown to depend primarily on the

family to which the solution belongs and to a lesser extent on any asymmetry in

the separation line position. Chin and Lan _
6 

reach a similar conclusion for

their line-vortex model. Little asymmetry in separation line position is observed

experimentally by Rainbird et al17 for turbulent separation and by 
Mundell

18

for laminar separation and little is calculated for laminar flow at asymptotically

large Reynolds number by Fiddes and Smith
7
, so we believe that the loss of

generality involved in restricting our attention to symmetrically-placed separa-

tion lines is acceptable.

We therefore set

0 = 0 and 02 - n - 0 (II)

and consider the dependence of the solutions on the two parameters a/6 and 0

only. We note in passing that, when we seek a symmetrical solution with Y2 = Y1

and r2 * - , in addition to (II), equations (5) become identical, while by (8)

F(c2, PY2,Y),02,n/6) - -F (yl 2yiY2,1, a/6)

Hence the four equations (7) and (9) reduce to two, leaving three real equations

for the three unknowns. For this simple, symmetrical problem, Moore
19 

showed

how the governing equations could be reduced to a single algebraic equation of

the 17th degree and in this way all possible solutions could be found. We have

preferred to use a multivariable generalisation of Newton's iterative method to

solve the nonlinear equations, since Moore's reduction cannot be carried through

TM Ae 2211
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for the asymmetric problem. This is based on the simple idea that if x = x0  is

a close enough approximation to a solution of the set of equations

F(2S) = 0

then

- O - J-X )(X (12)

is an even closer approximation, where J(x) is the Jacobian matrix of the

functions F(x) with respect to the arguments x . This method is well suited

to exploring a connected space of solutions, since each solution is accessible

from a neighbouring solution which is a close approximation to it. In fact, as

Moore found, all the solutions to the symmetric problem do form a connected sur-

face lying in a multidimensional space, so they could all be found by the present

Newton method. The range of solutions is illustrated in Fig 5. The Figure

represents the projection of the solution surface onto the plane of the solution

parameters 0 and a/6 . The curve ABD is the projection of the edge of the

surface along which the vortices reach the surface of the cone and their strength

vanishes. The curve is given by

a~ 3
- W cosec e

which is often referred to as the lower bound for solutions. In fact it is only

the lower bound to the right of point B , which lies at 0 0 46.10,
C

where tan 0. . 2IF and = /L3_ 2.08

To the left of point B there are solutions for values of o16 less than

1.5 cosec 0 , lying in the region between the curve BD and the curve BC

The curve BC is simply the edge of the projection of the solution surface.

The corresponding curve on the solution surface is not special: in particular,

there are neighbouring points of the solution surface on both sides of it.

Consequently the projection of the surface is folded along BC and we can call

BC a fold-line of the projection. Two points of the solution surface are pro-

jected onto every point of the (e,a/6) plane between the curves BD and BC

so that two solutions exist for each pair of values of 0 and a/6 in this

region. The significance of the remaining curve AEB appears when we consider

the symmetric solutions as one branch of the set of solutions of the equations (5)

and (10) with (II), which govern the flow when symmetry is not assumed. The

solution surface now lies in a space of even more dimensions, and it now contains

TM Ae 2211
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a double curve, or-curve of double points, along which bifurcation takes place,

so that two branches, of the surface intersect along the double curve. The pro-

jection of this curve onto the (e,a/6) plane is the bifurca.ion locus shown as

AEB in Fig 5. It can be shown that the determinant of the Jacobian matrix used

in the solution process vanishes on the bifurcation locus, so the locus can be

identified by monitoring the sign of this determinant as the symmetric branch of

the solution is explored. The vanishing of IJI on the bifurcation locus makes
the use of the Newton method difficult near it, and various schemes to avoid this

difficulty have been used. It can also be seen that JJI vanishes on the fold

line, but the solution surface can be explored near there by stepplag in one

of the vortex coordinates instead of e or a/6 .

We now turn to the corresponding picture for the asymmetric solutions,

Fig 6. The curve AEB is the bifurcation locus, the same curve as in the

previous Figure. Asymmetric solutions arise when a/6 is increased, at constant

o , from points on the bifurcation locus. Once again, there are edges to the

surface of solutions where one of the vortices reaches the surface of the cone.

The projections of these edges are the curves BJG and ARA . Also, once again,

there is a fold line FG which results from our choosing to project onto the

(O,a/S) space, rather than any intrinsic feature of the solution itself. There

is now an extra boundary of the region of consistent solutions. This is not a

feature of the system of equations, but arises from the simplifications made in

constructing the model. The condition applied at separation, that the velocity

is parallel to the separation line, is also satisfied at an attachment line, so
2that further consideration is necessary , as indicated in the inset in Fig 4, to

distinguish between the two possibilities. In the region labelled 'inconsistent'

in Fig 6 one of the postulated separation lines is, in fact, an attachment line.

The small region of intersecting curves in Fig 6 is enlarged in Fig 7. Two

curves from Fig 5 have been added, so that the Figure now indicates the regions

of existence of both symmetric and asymmetric solutions in this small part of the

(0,a/6) plane. Following up the account of the asymmetric solutions, we see them

occurring above the bifurcation locus BFJE . It is easiest to trace the solu-

tion surface by moving downwards and to the left from the edge BJ of the surface

where the vortex lies on the cone. Then we find either that the asymmetr,c solu-

tions disappear when the lower part BF of the bifurcation locus is encountered,
or the solution surface folds back on itself at the fold line FG . The asym-

metric solutions then extend upwards and to the right in the region bounded below

by the portion FJE of the bifurcation locus. Note that there is a narrow region

between the fold line FG , the edge JG' and the portion FJ of the

TM Ae 2211
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bifurcation locus in which there are two pairs of asymmetric solutions for each

choice of e and a/6

Our search for additional solutions has therefore led us into this narrow

region of the parameter space. When the side forces corresponding to the differ-

ent pairs of asymmetric solutions in this region are calculated, they turn out

to be quite similar, so they do not correspond to the flows with the very differ-

ent levels of side force that are illustrated in Fig 3. Monitoring the signs of

3J1 over the solution surface revealed no further changes of sign, so we con-
clude that no further bifurcation occurs at values of a/6 up to 10. There might

be other solutions which are not connected to the solution surface we have

explored, but there is no simple way to search for them.

It seems unlikely that mo. elaborate models of the flow, based on vortex

sheets, the Euler equations, or the Navier-Stokes equations, would display more

significant regions of multiple solutionu of a conical or quasi-conical nature.

3 STABILITY OF CONICAL FLOWS

The situation depicted in Figs 5 to 7 is of a confusing variety of solu-

tions of the model for conical flows over circular cones. We now put forward a

stability argument which indicates which of these solutions is likely to corres-

pond to the flows that actually occur.

The disturbances which we treat in the stability analysis are spatial

rather than temporal. We suppose that a conical flow solution occurs and then,

at some lengthwise station, x - x0 , a small disturbance is introduced into the

flow, taking the form of small changes in the positions and strengths of the

vortices. Since wc are using slender-body theory, no upstream effect of the dis-

turbance is possible. We investigate the initial rate of change of this disturb-

ance in the downstream direction. If all disturbances decay, we say that the

solution is stable, while if any disturbance grows, we say that the solution is

unstable.

The disturbed flow is clearly non-conical, but the body shape is still a

circular cone. For simplicity we assume that the separation lines are not

altered by the disturbance, and that the vortex strengths are still coupled to

the positions through the generalised Kutta conditions. (Some calculations with

the vortex strengths unaffected by the disturbances to their positions showed

stability boundaries very slightly displaced.) Then the governing equations (5)

to (9), together with (11) for the particular solutions with symmetric separation

are considered.

TM Ae 2211
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For convenience, we introduce new variables vlV 2,V3,V4  by

vl + iv 2  7 - e

v. +iv4  = yz 22_eie2) (13)

Since we are concerned with small disturbances about a conical solution we write

each variable as the sum of a term independent of , with suffix c , and a

small quantity, identified by a prime, thus:

YO( - 4 
+  YO() Yjc 

+ Y3' j-1,2;

vj( - V.c + v !Q) , j - 1,2,3,4.

...... (14)

When these are introduced into (5) and (13), and products of small quantities

are neglected, the resulting equations are linear and homogeneous in the small

quantities, so that C, r4, y; and y can be expressed izk terms of vI, v,

v3  and v4 with constant coefficients depending on the conical solution quan-

tities with suffix c . With ', , ' and y' expressed in this way, the

introduction of (14) into (7) and (9) leads to four real equations which can be

written in matrix form as

dv!
1 - 11v!1 5

where the matrix J is the Jacobian matrix of the real and imaginary parts of

the right-hand sides of (7) and (9) with respect to the variables v. . Its1

elements depend on the conical solution, but not on C . JI is almost, but not

quite, the same as the matrix J used to solve the conical flow problem by

Newton's method (12). In fact

- Y 0 0 0 1J . (16)

[0 YJ 0 0

Now (15) is a system of four first-order linear differential equations

with constant coefficients. The standard treatment (theorem 8.11 of Ref 20 for

example) shows that the stability of the system depends only on the real parts of

TM Ae 2211
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the eigenvalues of . We have stability if the real parts are all negative

and instability if any eigenvalue has a positive real part. The complications

arising for eigenvalues with zero real part can be ignored for present purposes.

The consequence of instability is that a disturbance with a component in the

direction of the eigenvector of the appropriate eigenvalue will grow exponentially

in C , as long as it remains small enough for the linearised treatment to apply.

In particular, if the largest real part is X > 0 , the growth is like
r

e~rre r XO ,

by (6). The growth rate in x is therefore algebraic rather than exponential,

and it is the more rapid the nearer to the apex the disturbance is introduced.

i solution surface described in the previous section, both symmetric and

asymmetric branches, was re-explored, evaluating the eigenvalues of JI along

the way. From this evaluation and the preceding discussion the stability or

instability of the solutions can be identified. For the symmetric branch the

outcome is shown in Fig 5. We recall that the disturbances under consideration

are not restricted to being symmetric. The only symmetric solutions stable to

general disturbances are in the region ABEA, the multiple solutions are unstable.

The change in stability takes pla c across the bifurcation locus, since the

matrices J and J are related by (16).

For the asymmetric branch, Fig 6 shows the asymmetric solutions are gener-

ally stable. Exceptions arise in the region BFGJB, part of which is shown on a

larger scale in Fig 7. The asymmetric solution branch which arises from bifur-

cation along the arc BF and extends as far as the edge BJG' comprises unstable

solutions only. On the other hand, the asymmetric solution branch which arises

from bifurcation along the arc FJE comprises stable solutions. Consequently,

in the region FGG'J there are two branches of asymmetric solutions, one stable

and one unstable, in addition to the symmetric branch, which is unstable. Stable

solutions only occur above and to the right of the hatched boundary and nowhere

is there more than a single stable symmetric solution or a pair of asymmetric

solutions. Hence the consideration of the stability is enough to resolve the

multiplicity of solutions. This supports the view that the occurrence of asym-

metry in the real flow is due to hydrodynamic instability rather than, say, to

differential transition in the boundary layers on the two sides of the cone.
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Larger values of a/6 are unrealistic, because the theory assumes a is

a small angie and very small values of are of no practical significance. The

figures show-therefore that a value of 0 larger than 300 is required to produce

a realistic, stable solution. This is less restrictive than appears initially,

in view of the earlier conclusion, based on Fig I, that the separation line

position in this model is well to leeward of the separation line in a more rep-

resentative model.

Although the distinction between stable and unstable solutions is of

theoretical importance, in a practical situation the growth rate of disturbances

also plays an important part. Here we are concerned with spatial disturbances

and there is only a finite length of body over which they can grow. It is

therefore interesting to see the actual values of the largest real part, Ar

of the eigenvalues of the matrix Jl " For symmetric separation lines 560 beyond

the mid-plane of the body, these quantities are displayed as functions of the

incidence parameter in Figs 8 and 9. At small values of a/6 there is no

solution. Just above 1.8, a symmetric solution becomes possible. This is

initially stable and the eigenvalue is negative, though numerically very small,

so that disturbances would decay very slowly, and conversely evolution towards

it from a neighbouring non-conical solution would be very slow. At a value of

a/6 of about 2.08, bifurcation occurs and the eigenvalue of the symmetric solu-

tion becomes positive. The eigenvalue of the asymmetric solution is negative

corresponding to its stability. The eigenvalues grow numerically, but remain

small for o/6 < 5 . The kink in the curve for the asymmetric solution at

o16 - 3.8 corresponds to the eigenvalue becoming complex at the larger values.

The small values of Xr suggest that, if we are prepared to admit solu-

tions that are not exactly conical, then approximately symmetrical and highly

asymmetrical solutions may be found for the same value of a/6 , despite the out-

come of the stability analysis for the conical solutions.

4 MEASUREMENTS ON A 100 CONE AT o - 350

The experiment, using the model shown in Fig 2, was designed so as to ensure

that the flow was as nearly conical as possible at the first ring of pressure

holes, at the lowest total pressure available (I0 kPa). The shape of the model

is conical for several local diameters downstream of this station and the

Reynolds number is low enough for the boundary layer to be laminar at the primary

separation line. The direct evidence for the state of the boundary layer is the

visualisation based on the difference in evaporation rate of methylsalicicylate
21held in a film of china-clay, carried out by Moir . Fig 10 is reproduced from
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his paper. Note that his observation is for a = 300 , at a Mach number of 0.2

and a total pressure of 2 atmospheres. The present results are for a = 350 , at

a Mach number of 0.15 and a total pressure of 1.1 atmospheres. We may suppose

that the tunnel temperatures are the same. We cannot allow for the difference

in angle of incidence, but differences in total pressure and Mach number simply

lead to the prediction of a different streamwise location at which transition

begins to affect the separation line. Note also that the streamwise location at

which the separation line first encounters a turbulent wedge depends on where the

wedge originates along the transition front. Even with the wedge on the separa-

tion line, this still leaves separation laminar all along the conical part of the

model for the test conditions of Fig 3.

However, when the local side force coefficients at the first two stations

are compared, it becomes clear that the flow at many roll angles is not conical.

Fig I illustrates this. The peak levels of Cy at the two stations are

slightly different, so the values at each station have been normalised with res-

pect to the peak value of JCyJ at that station. The resulting values at the

two stations are then plotted and the values at station I are joined to those at

station 2 by arrows, so the arrow indicates the direction of the flow development.

There are several short arrows close to the extreme states and two short arrows

near the zero axis: these may well correspond to conical flow conditions. There

are also several longer arrows, which reach, or approach, the extreme values:

these seem to correspond to flows which are evolving towards the extreme states.

Certainly, the extreme values are more comon at station 2. Finally, there are

several arrows which lie away from the extreme values and often also point away

from the extreme values. If these are evolving toward the extreme states, it is

clear that they have a long way to go. Many of these arrows are long, indicating

a marked non-conicality. It is clear that all the intermediate side-force levels

at station I have long arrows leading from them, so they must correspond to non-

conical states. Many of these flows have reached, or are approaching, extreme

states, which are probably conical, by station 2. Unfortunately, measurements

further downstream at this angle of incidence are not available, so their further

evolution cannot be traced. Pressures were measured at all stations at a - 300

and these results are considered in section 5.

The appearance of conical flows with extreme or zero values only is con-

sistent with the solutions of the simple flow model and the predominance of

extreme values is consistent with the stability analysis. To obtain a more

complete explanation, we need to consider what happens close to the apex of the

tunnel model. We note first that, since the model imperfections are finite, their
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size relative to the local diameter increases without limit as the notional apex

is approached. Secondly, we note that such understanding of the flow as we have

is based on concepts relevant at high-Reynolds numbers, while the local Reynolds

number tends to zero as the apex is approached. Our flow model can therefore

only apply downstream of some station whose distance from the notional apex

depends on the scale of the imperfections due to manufacture and handling of the

tunnel model and on the unit Reynolds number*of the test. At this station we

must suppose that the initial conditions for the system of ordinary differential

equations(7) and (9) may be quite unrelated to the symmetric or asymmetric solu-

tions with which we are familiar. We should, therefore, not be surprised if non-

conical flows are sometimes observed. It is the preponderance of approximately

conical flows that requires explanation. The outcome of the stability analysis,

that disturbances to stable conical solutions decay like (X/Xo) Xr and disturb-

ances to unstable conical solutions grow in the same way, with X - X illustra-

ted in Figs 8 and 9, does show that the evolution either towards or away from

conical solutions may be slow, even when the flow is close to being conical.

It is natural to ask what additional light the actual pressure distributions

throw on this discussion. Let us start, for simplicity, with * 3300 , at

which the side force is nearly zero at both stations, as seen in Fig II. The

pressure levels are slightly different at the two stations, so the pressure

coefficients have been adjusted to agree on the windward generator in preparing

Fig 12. Here the crosses reprrsent Cy at station I, and the circles the

adjusted values at station 2. We see, with some relief, that both the distribu-

* tions are almost symetrical, but they are clearly very different. The interpre-

tation must be doubtful in the absence of further evidence; however it appears

that laminar separation is occurring at much the same angular positions, indicated

by the arrows, at each station, and that some degree of turbulent reattachment

occurs at station 2, allowing a further rise in surface pressure to occur. Fig 13

is the comparable plot for 6 - 1800 , for which the two stations again give

almost the same side force, but now at a maximum value. We again see a laminar

separation on both sides at station I and probably laminar separation with a

degree of turbulent reattachment at station 2. However, the initial separation

on the left of the Figure seems some 20 further to leeward at station 2. We now

turn to a roll angle, Fig 14, for which Fig II shows a substantial reduction in

side force between stations I and 2. The pressure distributionat station I

(crosses) now shows two well-marked suction peaks under separation vortices. This

' Reynolds number per unit length, U/v , a dimensional quantity.
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suggests that the flow structure is quite different from that in the extreme

state shown in Fig 13, for which only one pronounced suction peak arises, under

the vortex that is nearer to the surface. At station 2, the separation seems

to take place further to leeward on both sides. The reduction in side force

does not seem to be associated with any approach to symmetry in the pressure

distribution.

In view of the decision to confine attention to separation lines which are

symmetrically placed, it is appropriate to present the limited evidence for the

location of separation provided by the measured pressure distributions. On the

assumption that separation is followed by a pressure plateau, we can estimate

the position of separation to 50 in azimuthal angle, ie half the spacing of the

pressure holes., For station I at a - 350 the pressure distributions at 21

values of the roll angle were examined in this way. It emerges that the mean of

the separation angles on the two sides is 102.50, to within 2.50, and the dis-

placement of each line from this mean correlates with side-force coefficient,

rising 'to a maximum of 100 for the extreme values of side force.

5 MEASUREMENTS ON A 100 CONE AT a - 300

At smaller angles of incidence, the variation of side force with roll angle

is not dominated by the occurrence of extreme states. Fig 15 shows the variation

of the local side-force coefficient at station I for a = 300 and the same

Mach and Reynolds numbers as Fig 3. The local normal-force coefficient is also

shown for comparison. At this lower incidence, the side force is smaller,

absolutely and in relation to the normal force, but it is still significant.

There is no obvious correlation between the side and normal force.

At this angle of incidence we have local side-force values at all six

measuring stations, of which the first four lie on the conical part of the model,

as shown in Fig 2. We shall use values at these four stations to assess the

degree of conicality of the flow. We also have values measured at three differ-

ent levels of total pressure in the wind tunnel, 110 kPa, 200 kPa and 300 kPa,

providing three unit Reynolds numbers at the same Mach number, M = 0.15.

Fig 16 shows the variation of the local side-force coefficient with roll

angle at the first three measuring stations at atmospheric pressure. At nearly

all the roll attitudes there is a significant variation in force coefficient

along the length of the cone, so that conical flow concepts are not likely to be

helpful.

Fig 17 shows the same quantity at the first station for the three different

total pressures. Separation should be laminar for all three conditions, in
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accordance with the previous discussion. It is clear that Reynolds number

effects are present and we can tentatively identify two of them. As the Reynolds

number increases, an extra change of sign appears in the side-force variation.

We can associate this with an additional feature of the nose shape becoming

effective as the thickness of the boundary layer decreases. Also as the Reynolds

number increases, the peak value of the side force increases. This point is pur-

sued in Fig 18, where the numerically largest value of Cy measured in a com-

plete revolution in roll is plotted against Rex , the Reynolds number based on

the distance from the apex to the measuring station. Results are shown for all

three unit Reynolds numbers and for all four measuring stations which lie on the

conical part of the body. The increase in peak value shown in the previous

Figure now appears at the left-hand side of the picture, followed by a sharp fall

and a levelling off. An attempt is made to define a band within which the

measurements lie. The range of values of Reynolds number over which transition

might occur at the separation line is indicated. We might guess that the reduc-

tion in peak side force is associated with the turbulent reattachment phenomenon

described in the previous section, since this progresses gradually in the three-

dimensional flow, and obviously ends when the boundary layer is turbulent at

separation.

We might hope that the consistent behaviour shown by the first five points

on the left of Fig 18 would be reflected in a consistent behaviour at specific

roll angles. Choosing * - 2700 , which is near a peak in Cy , we obtain Fig 19,

where values at all six measuring stations have bean included to establish trends

with more certainty. Concentrating on the left-hand edge of the plot, we see

that an increase in Re , brought about by an increase in unit Reynolds numberx

at station I, produces an increase in side force, while the same increase in

Rex brought about by an increase in x produces a marked decrease in side-

force coefficient.

The results at many other roll angles behave in a similar way, so we con-

clude that althoubh the local Reynolds number has some value in correlating the

maximum value of side-force coefficient, it does not determine the flow at

particular roll angles.

In Fig 20 we present the variation of local side force coefficient with

lengthwise station for four roll angles. These have been chosen, not because

they are typical, but because they include the variations which are most nearly

constant, and so might correspond to conical flows. In Fig 20a we might think a

conical flow is emerging as the unit Reynolds number increases, but in Fig 20b

the nearest approach to a constant value comes at the intermediate Reynolds
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number. In Fig 20c, all the variations are small, but two distinct near-constant

levels appear, a near-zero value at the two higher Reynolds numbers and a non-

zero value, about the same as Lhat in Fig 20b, at the lowest Reynolds number. In

Fig 20d we see a change from a rising to a falling side force coefficient as the

Reynolds number varies, with a near constant level in between.

6 CONCLUSIONS

(I) For the single line-vortex model of asymmetric conical flow over circular

cones with symmetric separation lines, a thorough exploration of parameter space

has revealed only insignificant regions of multiple solutions and no further

bifurcation locus from which asymmetric solutions could arise.

(2) An examination of the stability of solutions of this model to small spatial

disturbances has shown that stable symmetric solutions are confined to a narrow

band of values of the incidence parameter, but that, with insignificant excep-

tions, the asymmetric solutions are stable. There is no combination of symmetric

separation line position and incidence parameter for which stable symmetric and

stable asymmetric solutions are both possible. The growth of disturbances

to symmetric solutions is algebraic rather than exponential and the growth rates

are not large.

(3) An examination of low-speed experimental data shows that asymmetric flow

over a circular cone can be significantly non-conical with large variations in

local side-force coefficient along the length of the cone. For a 10
° 
cone, at

an angle of incidence of 350 the approximately conical flows appear to predomi-

nate, but at 300 they occur only exceptionally.

(4) This behaviour may be described using ideas from the theory of systems of

ordinary differential equations. Very near the apex, any real body departs

significantly from an ideal circular cone, so the flow there defies rational des-

cription and provides initial values for the system which are essentially arbi-

trary. At the larger angles of incidence, for which stable conical solutions

exist, the flow evolves towards a conical solution in the downstream direction,

the solution acting as an attractor. This conical solution will be asymmetric at

larger incidences and symmetric at smaller incidences.
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LIST OF SYMBOLS

a local radius of body cross-section

CN  coefficient of local normal force

coefficienZ of local side force

F a particular complex function, see equation (8)

F(x) a vector function of a real vector x

J the Jacobian matrix of F with respect to x

the Jacobian matrix of the stability analysis

Re Reynolds number based on distance from apex, Ux/v

U free-stream speed

Vl,... v4  dependent variables in stability analysis, see equation (13)

vl,...v4c values of v. in conical solution

,v small variations in v. from conical solution, equation (14)

xpypz right-handed rectangular Cartesian axes, see Fig 4

x 0  streamwise reference length in stability analysis

2 unknown real vector

0 approximation to solution of F(x) - 0

Z complex variable, y + iz

ZIZ 2  complex coordinate of right-, left-hand vortex

a angle of incidence

Y1,Y2  non-dimensional circulation of left-, right-hand vortex

yIc',2c values of yly 2 in conical solution

small variations in from conical solution, equation (14)

rl,r 2  circulation of right-, left-hand vortex

6 semi-angle of circular cone

41,42 non-dimensional complex coordinates of right-, left-hand vortex

Cic'C2c values of yi,42 in conical solution

i,4 small variations in CI,42 from conical solution

81,02 angular positions of right-, left-hand separation lines, see
Fig 4

O angular position of right-hand separation line when separation
is symmetric

0 critical value of 0 for symmetric flowc
X r largest real part of an eigenvalue of JI

v kinematic viscosity

non-dimensional streamwise variable, see equation (6)

angle of roll about cone axis

angular position on cone from windward generator
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dicios o te snge-inev t~xmqeland of mesrmnsmade by Fiddes, Moir
and ear-intheRAE5m indTunel.Forthe case of separation lines specified as

solutions is found for each combination-of a separation position and a ratio of
incidence to cone semi-angle, except in a small'region of the parameter space. The
stability of the'solutions to small asymmetric spatial disturbances is calculated.
it emserges there is nowhere more than one stable solution, symmetric at smaller
incidences, asymmetric at larger.

In contrast, the experiment, on a 100 semi-angle cone, with laminar separa-
Stion, reveals many different levels of local side force, depending on roll angle,
Vlengthwise station, and unit Reynolds number, as well as incidence. It is shown
iZthat the flow can be highly non-conical. At 350 incidence the flow may be develop
_ng streamwise towards a conical state, but this is not apparent at 30o,
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