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Abstract

Visual recognition of objects by a machine involves classifying an input using knowledge about the kinds of ob-

jects expected in the domain. Model-based systems maintain a knowledge of objects in the domain in the form of a

representation which can be compared to the unknown input. Since a given object type may appear in a variety of forms

and under a variety of viewing conditions some efficient yet flexible means of guiding the recognition process to con-

sider and then verify the object identity is necessary.

The utility of low-resolution shape information to constrain object recognition was investigated in the context of

a system which is predicated upon a component description of objects. A computationally intensive prepass using a

syntax for combining components yields a universe of "cons,:ictions" which are coded into a construction relation

feature (CRF) map. Each construction is coded into the N-dimensional map according to a shape parameterization of

its low-resolution image (each di nension codes a shape feature). From a subset of these constructions the object mod-

els are specified in terms of their component structure. The CRF map thus links the low resolution shapes of instances

of an object to its object model.

To recognize an unknown object the input is first converted to low resolution. Then, shape parameters are taken

(for example, in terms of its relative elongation and compactness). The CRF map is examined in the region of these

feature coordinates for possible matches with object models, first on the basis of a component match followed by a

verification of the relations between components. An application to identifying objects in simulated aerial photographs

of military airports is presented.



1. Introduction

1.1 Model-based Vision

Computational systems which emphasize knowledge about objects' in the world as important in the process of

image interpretation (or object recognition) are regarded as "model-based". This influential approach in computational

vision research began in 1965 with Roberts and has continued to receive much attention (e.g., Kanade, 1977; Brooks,

1981; 1984). More recently, Biederman (e.g., 1985; 1987) has been developing a psychological theory of model-based

vj , . cognition predicated upon component analysis (RBC theory). His work has examined the utility of breaking

the recognition process into the stages of: segmenting the object into 3-dimensional primitives called geons 2, deter-

mining their general spatial relations to each other, then matching the resultant to models of objects in the world.

Browse and colleagues have been investigating the computational virtues of this approach along with the usefulness

of considering multiple resolution image analysis (Smit-, & Browse, 1988; Browse and Rodrigues, 1987; Browse,

1982). One of the major difficulties uncovered in this analysis of RBC theory is its difficulty in effectively handling

the important problem of component relations. Although Biederman made suggestions as to how these relations might

be computed, it is apparent that the suggested solutions detract from the simple elegance of the main theory. The prob-

lem may be stated thus: In order to unambiguously recognize an object using a list of its components it is necessary to

also incorporate information about their spatial organization if the object is to be discriminated from others with the

same components. This is particularly an issue in RBC theory where the geons that compose the objects have very gen-

eral descriptions making it likely that in any domain of moderate complexity there will be many objects consisting of

the same components.

Biederman suggested using "general relations". Component spatial relations would be described in terms oi be-

ing "near" to another, or connected by the "end", or "middle" etc.; where the concepts in quotes do not have a specific

numerical value but, in some fashion, encode the approximate relative position of components in an object. The prob-

lem in attempting this, however, is in deriving the general relations initially. It is not apparent how this may be done

other than by first computing an exact measure and then categorizing this using a threshold technique (for example to

decide if a component connects by its "end" or its "near-end" or its "middle" etc.). Exact measures are computationally

expensive however, (see Marr & Nishihara, 1978) and thus detract from the elegance of the theory and would clearly

slow the speed of recognition.

The RBC approach has computational appeal if an efficient means can be found to constrain component rela-

I. An appendix is provided defining common names (italicized) which have a specfic technical meaning in
this document.
2. A term coined by Beiderman. In this document it refers to a simple two-dimensional gcorrn"ic shape such
as a circle, square, triangle etc. which can be used in combination to describe more comp',x shapes.
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tions. This report describes a solution which utilizes low resolution images of an object as an estimate of its geiieral

shape and thus its component relations. To facilitate study of this method a two-dimensional (2-D) domain was select-

ed, thus obviating the complexity of multiple views of an object in a 3-D domain without violating the spirit of basic

principles. A possible 2-D application area of military interest was examined (section 3) with a prototype system.

1.2 Levels of Resolution

Given that a low resolution image is desirable for the purpose of constraining component relations, the question

arises: How low resolution should such an image be? This question may be addressed by considering a possible hier-

archy of component resolutions. The lowest possible resolution is one that permits no discrimination among shapes

for a given method of analysis (fig. 1). The next level of resolution would permit a few shapes to be discriminated. For

example, an ellipse, triangle and rectangle might be selected on the basis of it being possible to define these as having

two, three and four "vertices" respectively'. It will be convenient to refer to this as the "type" level. A simple descrip-

Lion of a wide range of objects would be possible if the size of these rough components were allowed to vary in coarse

steps. At the next higher level of resoiation each of these component types could be resolved into variations, for ex-

ample, in terms of the ratio of major and minor axis for ellipses. This will be referred to as the "instantiation" level.

Again, variation in scale for each instance would allow a variety of components to be defined. Further levels could be

defined similarly, defining ever more precise component descriptions. However, the instance level may be argued to

provide the appropriate level of resolution for the purpose of an RBC system since the variety of components should

be moderate, perhaps ten to twenty in number (Biederman, 1987).

In correspondence with the above reasoning, a low resolution image of an entire object may only be interpreted

at a very general level (e.g., an "aircraft") and high resolution images may be interpreted as specialized versions of the

object (e.g., "F-18" vs. "Cessna 180"). This principle has been utilized since Kelly (1971) and Tanimoto and Pavlidis

(1975), but has been made most explicit in the work of Browse (1982), Neveu et al., (1986) and Browse and Rodrigues

(1987). Thus, low resolution shape information could be used to constrain the class an object belongs to but might not

be expected to resolve specific members of the class.

In summary, RBC appears to provide a useful framework for developing a computer-based recognition system.

However the following difficult and unsolved problem first requires a solution: What kind of information can be eco-

nomically extracted from a coarse level image which will naturally constrain component relations at higher resolu-

tions? Without a systematic handling of the relational aspects of object models there could only be unambiguous rec-

ognition of those simple objects which require only a single geon for their description. It has been argued that Bieder-

man's concept of "general relations" such as "near to" would still involve extensive computation. It is apparent that

an appropriate low resolution image of an object may constrain the relations of its components. In the next section the

1. In the case of an ellipse the vertices might be defined to be the end points of the major axis.
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development of an algorithm to utilize this low resolution information is described. The effectiveness of using low

resolution shape information in the context of an RBC theory is tested in section 3.

2. A 2-D Solution for Constraining Component Relations

This section describes, iii general terms, an algorithm for using low resolution shape information to help interpret

the identity of an unknown object. This paper is based on Cutmore (1989) and a formal computational description is

in preparation by Browse and Cutmore. Biederman's RBC system did not include the concept of multiple resolutions,

thus the system described below is referred to as an extended RBC system. To expedite the presentation definitions of

the major system elements are provided. Feature space is introduced -ince it forms the basiN for the primary data struc-

lures. This is followed by the solution algorithm.

2.1 Extending RBC Theory

An idea of the overall system within which a relation-constraining subsytem could contribute is as follows: The

method of extension of RBC theory to ii.clude multiple resolution is relatively straightforward. A separate system

which determines the identity of the components of an unknown imaged object in high resoiution (but not their spatial

relations) could operate in parallel with the system to be described in this report (see Smith and Browse, 1987). This

system may be referred to as an RBC-C system. A smaller set of "low-resolution" geons could then be defined, and

simpler image features could be utilized to determine their identity in the same way the fine-level geons are detected,

plus a method which constrains their spatial relations. A mapping would then be required between these lower reso-

lution geons and the high resolution geons identified by RBC-C (see, Browse, 1982). The RBC system which explicitly

includes a method for constraining component relations using low resolution shape will be referred to as RBC-R. It

was also of interest to determine to what degree, simply considering low resolution shape constraints could provide an

interpretation. The RBC-R system is described below and tested in section 3 in isolation of the other programs with

which it could be coordinated.

2.2 Basic Definitions

Five kinds of entities will be referred to: geon types, geon instantiations (or components), component relations,

constructions and object models. Geon types as discussed above are primitives analogous to Biederman's RBC theory.

The set of geon types G is defined as:

G = { 1, 92 .. gi . .g }(1)

From arguments presented above, a component is an instantiation of some geon type. The set of components is defined
as:
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C = (CII, C1 2 , ... C2 1, C2 2 , ..- Ci.. ,Cmn) (2a)

Thus, each gi is a geon type under which are nested a set of cij. For example, g, may be an ellipse type, and cl3 various

specific ellipses. Since a component may appear more than once in a list some means of distinguishing them is neces-

sa-y. The actual use of a set of components to specify an object is referred to as a c-list:

c-list = <c1 , c2 ..- ci, .. ,c,> (2b)

Thus, replications of a cii are permitted but distinguished and s is the number of components in an object. A c-

list is distinguished from C by having only a single subscript for its members.

A spatial relation between components is designated by: R(ci,cj); one of which is considered fixed with the other's

position defined relative to it. Two-dimensional objects defined in a Cartesian plane consist of 2-D components which

bear spatial relations defined in terms of three parameters which describe the relative displacement of a "movable"

component relative to a fixed one. Each component has a coordinate frame and the relative location of components are

represented as the transformations necessary to take one component coordinate frame into another. The parameters in

2-D are: displacement in x (Ax), displacement in y (Ay) and rotation about some point in the plane, AO. In the methods

described below, this rotation will be about a "connection point" between two components 1 . The displacements are

defined relative to standard initial positions of dhe components. For example, the initial position of the two compo-.ents

may have their centroids at a common point. A relation between components ci and cj is given by R(ci,cj), which con-

sists in a triplet of two translation operations and a rotation. A construction is defied in terms of a list of relations

between component pairs:

Ki = <R(c,,cb), .. R(ci,cj), .. > (3)

A construction may be conveniently described when successive elements are appended one at a time to the list

much as a real object might be assembled, (fig. 2). Connection points can be specified on each component as offsets

with respect to the centroid. This ensures that relations between components are restricted such that all components

will be a part of a single whole. Rotation of one component (designated the movable component) occurs about the co-

incident connection points of two components. For Ki with n components, n-I relations are required to define the con-

struction.

1. The use of defined connection points ensures that a construction will be a conncc4zd whole. Thus, a single
silhouette shape will always be produced.
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A Ki is thus a set of connected components with the spatial relations between them specified as in eqn. 3. An

object model is defined by a non-empty list of constructions with replications permitted:

Mr = <Ka, Kb, .. Ki,.. K,> (4)

A set of object models can be specified for an application domain of RBC-R. This would be in the form of:

M = (MI , M2 ... Mr , -- MJ} (5)

where Mi are defined as in eqn. 4, plus a label for each. As a matter of convenience, an object model may be represented

as a list of components along with ranges of articulation of components defined for each list. More than one list may

be necessary since some models may have instances composed of different lists of components.

2.3 Feature Space

The utility of fcature space for pattern classification has been investigated (see Horn 1986; Ballard and Brown

1984 for overviews of basic methods). In brief, this approach takes a set of N measurements on a sample from the do-

main of patterns. In visual doma ins these measurements may be shape measures, number of vertices, number of con-

cavities etc. An N-dimensional feature space may then be used to code a pattern as a vector in that space. Typically

some form of cluster analysis is then done to identify boundaries between sets of points in the space which allows dis-

crimination of the input patterns into their appropriate categories. To classify (or recognize) an unknown input, its

membership to a region in feature space is computed. This technique will work well if one can find features which

result in boundaries in feature space. However, this is no simple task and the types of features that prove useful in one

domain may be inappropriate in another. However, it may be possible to identify (in the present case) shape features

that are useful in partially classifying or discriminating between images of different types of objects.

The question of interest here is: "What kinds of shape measures would be useful in coding gross spatial relation

properties of components?" Some considerations are (a) the shape parameters need not extract information such that

the original image could be reconstructed such as are described in Ballard and Brown (1982). Partial information about

the shape will suffice (b) It would be desirable for the shape measures to be invariant over the affine transformations

of: translation, rotation and scale. This would allow the imaged object to be less constrained in its presentation. (c)

1Finally, the constraint of no object occlusion may be assumed

1. Occiusion is a technical term in computer vision. It refers to the overlap in the images of objects in a scene.
The nearer object k vziiri to occlude the more dift2"r "'e rne. If a 2-D domain is being analyzed the.= this is
a reasonable assumption.
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Ballard and Brown list a variety of shape measures which satisfy the above conditions. In addition, other recent

work has extended this range (e.g., Goshtasby, 1985; Bhanu 1984: Bhanu & Faugeras (1984): Tsai and Yu 1985).

Wang, Magee and Aggarwal (1984) describe a method which illustrates the value of taking shape measures on 2-D

silhouette images. This is of interest since silhouettes would be expected to be sensitive to component relations and

offers a simple image type for processing and may thereby improve processing speed.

Ma, Wu & Lu (1986) summarize the following desirable properties of shape descriptors:

(1) The features should be independent of translation, rotation, scale and cyclic shift of the starting point for com-

putation.

(2) The distinction between the features of two objects which have different shapes should be as large as possible.

(3) The number of features used in classification and recognition should be as small as possible.

(4) Computational time and storage capacity required are short and small respectively.

To this list it would also seem important to add that the shape features should tap essentially independent kinds

of information, unless redundancy is explicitly desirable (which may be the case in inherently "noisy" domains). Two

shape descriptors which meet these criteria are presented in section 3.

2.4 Algorithm

The following algorithm could be used in isolation for providing coarse discriminations and object labels, such

as: airplane vs. cruise missile vs. tank. It is properly a subsystem of a complete extended RBC system. Biederman's

RBC theory describes how to identify the geons individually. For example, from an image of an airplane, two rectan-

gular geons (the main and tail wings) and an ellipse (;he fuselage) may be identified. The RBC-R algorithm does not

include this capability; it is described elsewhere (Smith & Browse, 1988). The RBC-R algorithm could work in concert

with such a geon idertifying program, but it need not. Together, the two systems would embody the main principles

of the extended RBC theory.

An introductory overview of RBC-R is as follows: In the first phase a data structure is created. A universe of all

legal combinations of geon instantiations is constructed. This is the set of all possible Ki which could be defined for

some domain o1 interest. Many Ki will belong to an initial set of object models as in eqn. 4. Many may belong to no

model initially, but would provide elements for new models which could be added to the domain at some later point

in time. This universe of Ki is then systematically organized into a feature space. This is accomplished by extracting

features from each Ki, using these as coordinates into the feature space, and locating at this point the components and

relations of the Ki. In this way a data structure for encoding Ki configurations is created. This structure is computed

once for the domain. In the object recognition phase, an image of an unknown object is presented. It is converted to a

lower resolution and features extracted. This provides an index into the feature space to retrieve a set of Ki. One of

these Ki should be an element of an object model which is the correct interpretation of the image. Methods for resolv-



7

ing component and relation consistency are applied to this set in order to achieve the interpretation.

2.4.1 Data Structures for Models and Constructions: The definition of most objects includes some variation in

the relations among components. For example, the rotor of a helicopter may rotate through 2n. For Mr, this variation

is described in terms of an extended list of Ki.Since the low resolution analysis will not distinguish fine variations in

component relations, model relations need not be specified in fine detail and thus, the M i list may be kept to a man-

ageable length. A data representation for the description of M, component relations is a set of n-matrices (Kron, 1939)

where n is the number of degrees of freedom of component relations (fig 2). The cardinality of this set equals the num-

ber of distinct component sets for M i.A 2-D object with two components will have three degrees of freedom (two trans-

lational, one rotational) for its various configurations, If a third component is added, three more degrees of freedom

are needed to describe the relations of this component relative to one of the other two. For example, a 3-component Ki

could be specified in terms of any two of R(cl,c2), R(c 2,c3 ) and R(c 1 ,c3) A six-matrix would be required to store the

relational quantities. If a different set of components were also needed for that same M, a second n-matrix would be

needed for storing these component relations; thus the cardinality of the n-matrix set would be two.

Each dimension of an n-matrix has a metric defined on it appropriate to the relational quantity which that dimen-

sion encodes. In the case of translations this could be coordinates of connection points (relative to the component ref-

erence frame) and for rotation, increments of angle. If a relatively coarse description of the parameter space is as-

sumed, then the n-matrix will have discrete dimensions each with a reasonably small number of levels. For example,

the rotor connections in the "x" direction with respect to the fuselage in fig. 3, could be defined to have three connec-

tion points. I ius, ,he dlm:nsion of the n-matrix which encodes this parameter would require only three levels.

To summarize, the foregoing has described how 2-D object components and relations may be represented. A par-

ticular Ki is encoded as an element of an n-matrix. Relations between a particular set of components are encoded as a

single n-matrix and if more than one component set is required, more n-matrices are used. What next needs to be de-

termined is a method by which RBC-R model knowledge may be accessed using information derived from analysis of

the low resolution shape of an object. It is also desirable that the capability to add new models to RBC-R be considered

in the solution.

2.4.2 Using Shape Information:To satisfy these requirements, an exhaustive prepass is performed which analyzes

the full range of component configurations. This universe of Ki is defined by specifying the set of component instan-

tiations from a set of types. These two levels of the component hierarchy need to be carefu!!y conzidered for the domain

of application. The main criterion is that the component set be rich enough to model all known objects of interest within

the domain .nd furlhermore, anticip'te the addition of new modcls. The manipulations of these components to form

K, is described by a component relational grammar which generates the full set of "legal" component configurations

for the domain. Each Kiso created yields an image which is converted to a lower resolution and is analyzed in the form



of a single silhouette with Euler number I one. n shape measures are applied to acquire an n-tuplc coordinate in) an n-

dimensional feature space. This space is quantized to a degree appropriate for the discrimination task at hand. This

quantization may best be determined by considering the range of shapes to be discriminated relative to the fineness of

discrimination. The minimum and maximum shape parameters computed for a given domain could be used to define

the the limits of the space, and the number of resolvable levels on any dimension could be decided empirically in a

calibration of the system. This approach was followed in the test environment in section 3.

The K, components and relations which yielded these features are stored at the feature-indexed n-tuple coordi-

nate of the feature space. The resulting structure is referred to as a construction-relation feature map (CRF map). This

process will be computationally intensive, even for a relatively simple domain since the variety of component combi-

nations and c, figurations grows geometrically with number of components and permissible relations. However, it

need only be computed once and thereafter remain a static structure to be used in the process of object recognition.

2.4.3 Image Interpretation: After creation of the static CRF map an unknown object is presented to RBC-R in

the form of a silhouette image. The major steps in the recognition phase are:

I. An input image is provided in a form which allows for conversion to a lower level of resolution.

2. Shape parameters are extracted from this second image and used to index the feature space.

3. The feature space n-tuple is examined for an associated set of construction (Ki) lists. If this list is non-empty

then,

4. Each K,'s c-list is compared against the object model c-lists to determine whether models have been defined

which have the same components. If this step produces an intersection list which is non-empty then,

5. The relational n-matrices of each K i surviving the previous step is compared against the c-list matched models.

If a non-empty intersection for one or more of K i is found then,

6. The process stops and yields models which have satisfied the two necessary criteria of component matching

with input elicited K i and component spatial relation similarity.

If any of the steps (3-5) fail to maintain a non-empty set of interpretations then RBC-R can search the local region

of feature space (go back to step 2 and choose a nearby N-tuple) until some interpretation is resolved or a threshold is

passed which indicates that RBC-R is unable to make an interpretation.

The reason why this technique works in permitting partial consideration of relational information without actual

analysis of the metrics involved in the relations, is that the coarse level shape information cncode.s iut only information

about the finer-level elements but it also encodes information about their relations.

1. A technical term in computer science defined as: the difference between thc number of di,,tin.t shapes in
an image and de total number of holes in these shapes.



3. An Application

3.1 Input

The domain for the application was aerial "photographs" of military airport scenes. This domain is suitable for

2-D analysis and provides a ivprse set of objects for discrimination. The input images processed by RBC-R were not,

in fact, real photographs, but rather, bit arrays which encode silhouette images of objects with no occlusions. All im-

ages were, therefore, simulated and the names given to object models are for illustrative purposes only. Figure 4 shows

a low-resolution silhouette of an "airplane". Conversion of a high-resolution image to low-resolution was simulated

by making relatively coarse images to begin with and smoothing the perimeter with a simple mask. Thus, in what fol-

lows the input image for recognition is assumed to be low resolution. The Ki were constructed to yield the same" type

of image for shape analysis during preprocessing. The implementation was written in Common Lisp (Steele. 19S-4 i.

3.2 Geon Types and Instantiations

The set of high resolution geon types used in generating the Ki were: an ellipse, a rectangle and a triangle. These

were selected since they can be used to produce a range of different instantiations to yield a variety of objects that have

the appearance of the kinds of things expected in an air field. For example, in fig. 4 the airplane fuselage is an ellipse,

the main wings are a single rectangle as are the tail wings. All objects and constructions were defined in terms of c-

lists of instantiations of these three geon types and each was configured from three components, (fig. 5).

3.3 Models and Constructions

The models in this implementation consisted of a small subset of the total construction set. There were, therefore,

many K i which belonged to no model. For illustrative purposes, some models were deliberately constructed out of the

same components but with different spatial relations, for example, the "airport" and the "airplane" models. One model

(the "tank") also consisted of two separate lists of components. Four models, "airport", "tank", "fuel truck" and "he-

licopter" had articulating components. A model was stored in RBC-R as a list of: components, relations and name.

The construction universe was created using a program to draw and transform polygons tc form composite sil-

houette shapes. This was followed by the application of a low pass filter to "smooth" the perimeter of the shape to

simulate a low resolution image.

In creating the construction universe two possible extremes are (a) to create only model constructions, in which

case a pre-pass will be needed each time a new model is added or redefined or an existing model extended; or (b) the

opposite extreme is to compute all possihin combinations and relations of components in the set (witf.in some resolu-

tion), in which case adding new models would not require another pre-pass. Given that extreme (a) violates the spirit

of RBC as a concept of a general and flexible object recognition scheme and that extreme (b) would create a vast data

bac, an intermediate strategy was adopted. A subset of the full range of possible K, were used. Figure 6 shows the

domain hierarchy and the set of nine models used in this implementation. The models were composed from 48 mrcm-
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bers out of a total set of 323 Ki in the construction universe which was derived from eight c-lists.

3.4 Relations

The relational n-matrix explicitly encodes in separate dimensions each degree of freedom of component rela-

tions. For simplicity of construction, one component was always the reference with the other two specified in relation

to it. In other words, one component was held fixed (cI) and the other two (c2 and c3) attached to it. A 6-matrix was

therefore required to encode the relations of these K1 : two translational and one rotational degrees of freedom for each

of the two pairs of components.

The 6-matrix was implemented as a bit array and a relation was stored by setting the appropriate bits in this data

structure. The size of the dimensions permitted up to three connection points per component and ten levels of rotation.

The size of the relation space is therefore the product of the dimensions: 34 * 102 (8100 bits), or approximately 1 ki-

lobyte. This results from specifying 3 connection points on 4 displacement degrees of freedom and 10 angles of rota-

tion on two rotational degrees of freedom. The relation space did not contain any information about the identity of the

connected components, this was specified separately.

3.5 Shape Parameterization and Feature Space

Two shape features were selected on the basis of considerations outlined in section 2.3. "Compactness" may be

roughly defined as the relative efficiency with which a perimeter bounds a closed 2-D figure. In the present context

this measure is defined as:

A
Cp = (6a)

p2

where A is the area of a silhouette image and P is the length of the perimeter. Cp is minimal for a circle (1/4t). The

computation of this measure is straightforward from a silhouette image. The boundary is traced in either clockwise or

counterclockwise direction to measure the perimeter and the area can be measured in number of pixels. A normalized

measure can be computed as:
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A
C* 4 H (6b)

p2

The normalized compactness is derived by multiplying by the inverse of the compactness of a circle.

"Aspect ratio" defines the relative elongation of a shape. A simplistic approach is to consider the ratio of the sides

of a rectangle fitted around the perimeter of the shape such that the opposite sides of the rectangle intersect the most

distant points of the image. The steps in the computation are thus: Find the points on the perimeter most distant (length

= RI) from each other and construct a line through them. Then, compute the minima and maxima (in y) of the perimeter

points (difference = R,) in the image after it has been rotated and translated to place the constructed line on the x-axis.

The normalized aspect-ratio is:

Arn = Rw <= RI (7)

RI

Eqn. 7 has a maximum value of 1 when the sides are equal. A more precise measure of aspect ratio based on

moments is given in Ballard and Brown (1982).

These two shape measures were computed for each K, after it was constructed and converted to a lower resolu-

tion. This pre-pass data was stored in a file, recording components, connection points and angles.

The feature space (CRF) map was computed by reading the data file and determining the maximum and mini-

mum for each feature. These were then used as the extreme quantized values with all other feature values scaled ac-

cordingly. The dimensions of the space was 10 X 10. This relatively conservative size for the CRF map was found to

be satisfactory for discriminating the shapes in this small domain. If the results of the (computationally intensive) shape

analysis of Ki in the prepass are stored in intermediate form, then calibration of the coarseness of the CRF map may

be done separately. An overview of the steps involved in the recognition of an "airplane" is illustrated in fig. 6. The

Ligh resolution "photograph" is converted to a lower resolution and features extracted which index the CRF map. This

produces a set of Ki which are then compared against model representations for component and relation compatibility.
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3.6 Some Example Images for Recognition

With the CRF map loaded and the model-list defined, test images were given to RBC-R for recognition. These

were in the same format as those previously analyzed during creation of the Ki (i.e., bit images of low resolution sil-

houettes).

Fig. 7 (a) shows an image of a "jet" which was presented. This image was constructed using the same program

functions as used in creating the Ki universe. Several points are of interest in this test: (1) The correct model is found

(2) The interpretation is partially ambiguous in the sense that the "airplane" model was also found. This is interesting

since these two objects intuitively have similar shapes. (3) The component list elicited by the image also matched the

"airport" model, but was rejected on the basis of non-matching component relations. (4) Since component matching is

performed at the level of geon instantiations as opposed to the basic geon types, RBC-R does not evoke a match with

the "rocket" or "cruise missile" models which share the same geon type and relational configuration as the "jet" model.

(5) More importantly, the models for the "fuel tanker", "helicopter" and "conveyor" are not evoked as they would be

if geon types were used as components in RBC-R. To see how this would occur, first note that the "airplane" Ki maps

to the same point in the CRF map as the "jet", (this is why it's model is considered during the recognition process). If

geon types were components the component list would evoke the three other models since each is composed of an el-

lipse and two rectangles, just like the "airplane". These models would be considered as candidates for which the rela-

tion space should be checked. Although subsequent rejection would occur on the basis of a failure of relation match,

this extra computation was avoided by using geon instantiations instead of geon types. Points (4) and (5) underscore

the importance of choosing the appropriate component resolution and illustrate the power of using the shape informa-

tion inherent in the different geon instantiations. If geon types were used it would impossible to discriminate the "fuel

tanker", "helicopter" and "conveyor" since these models were each composed of the same geon types and relations.

Images of a "rocket" and "cruise missile" were presented [fig. 7 (b), (c)] and were correctly discriminated from

each other. Each mapped to a different point in feature space. For the rocket image RBC-R rejected "airplane" and

"airport" models on the basis of a failure of relation matching. In the latter case, a Ki consisting of the list <LONG-

ELL LONG-RECT SHORT-RECT> mapped to the same feature coordinates as the "cruise missile". This illustrates

RBC-R's capability of correctly rejecting non-object constructions during recognition, an important capability if such

a system is to operate in a general context where much of the CRF map contains such constructions.

Scale and rotation invariance is illustrated in the next set of examples. Fig. 8 shows the results of testing "air-

plane" images at various scales and rotations relative to the Ki which was originally used to create the airplane shape

for the CRF map. In other words, these images were never shown to RBC-R during the pre-pass. These tests, therefore,

differ from the previous ones in which a sample image from the Ki set was submitted for recognition. As the figuie

illustrates, the system recognized the scaled-only images after a single n-tuple index to the CRF map. Consistent with
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the testing of the "jet" image noted above, both the "airplane" and "jet" models were evoked. This was because the Ki

shape features for the plane and jet both mapped to the same place in feature space. The "airport" model was evoked

because the component list of: <LONG-ELL LONG-RECT SHORT-RECT> has a Ki at the computed coordinates and

all models with these components were examined. It was rejected on the basis of a failure to match relations.

Of greater interest is the test result from the scaled and rotated image. This test result is typical of many others

in which combinations of scale and rotation transforms were used. Appendix 2 contains an actual run on this image.

The initial feature coordinates were not directly on target to find the "airplane" model. RBC-R searched the surround-

ing CRF map region by way of off-set values from the initial coordinates. To be fair, all eight surrounding points were

examined in the map (since the starting point is arbitrary). The models evoked were the expected ones: "airplane" and
"jet".

The "tank" model was defined here to suggest how this 2-D system might be extended to a 3-D world. Fig. 5

shows the tank model composed of two c-lists: each has the same body and turret components but differ in the gun

component (two gun elevations were used: 0 degrees and 45 degrees). Two-D images of 3-D scenes contain informa-

tion about the 3-D components through projective transformations. Of course, some information will usually be lost in

such a transform. However, there may be ways of making use of what information is retained using knowledge of pro-

jective geometry. In this simple example the change in 2-D component length was used encode a change in 3-D com-

ponent orientation. In general, an RBC-R system could store a list of shapes that would be expected in images of 3-D

objects in some domain. If a low resolution image filter were used this would limit the range of the images that would

need to be stored and thus may be a practical extension of the, essentially, 2-D system described here to 3-D domains.

The complete set of K, used to defime the "tank" model are shown in terms of the n-tuples of the CRF map in fig.

9, with the two "gun" angles and ten "turret" angles. This figure shows that the CRF map (at this quantization of the

features) had a good separation of the Ki and these results show the smooth albeit non-linear changes in shape param-

eters. During recognition RBC-R can not only identify that the image is of a "tank", but also the orientation of the "tur-

ret" and "gun" with respect to the "tank body".

It was also of interest to submit an image with an intermediate "gun elevation" of 25 degrees. In this test the fea-

ture coordinates mapped to a point between those for the 0 and 45 degree "gun elevations" (fig. 9, bolded square).

RBC-R could find no model at the initially computed feature coordinates but following a local search of the CRF map,

the system finds both the 0 degree and 45 degree "gun elevation" models: an illustration of interpolation.

Finally, to examine the hypothesis that the two shape measures are essentially independent, the correlation be-

tween the two parameters was computed. The data was obtained from the pre-pass analysis of the 323 members of the

K, universe. The correlation was found to be 0.26. This indicates that only about 7% of the variance in the two shape



14

measures is shared and would appear to justify the initial assumption of independence.

4. Conclusions

A few straightforward conclusions ensue from these investigations.

(1) The use of shape information severely constrains interpretation of the way that a set of components may be

assembled. Even small variations in the spatial relations between a set of components can produce sets of feature co-

ordinates that discriminate them, see for example fig. 9.

(2) How these discriminations are used is another issue. Depending on the definition of object models the dis-

criminated feature sets may be integrated into a single model, as they were for the "tank" model, for example; or, con-

versely the sets may be segmented to match different models, as in the case of the "cruise missile" and "rocket".

(3) The implemented system revealed the robustness of these shape-based methods in dealing with new images

consisting of scaled and rotated transformations of images of objects, (the "airplane" examples). In addition, the sys-

tem was found to provide reasonable interpolation behavior (due to smooth parameter variations).

(4) The system produced ambiguous interpretations for cases that might seem to be intuitively difficult to dis-

criminate (for example, a "jet" verses an "airplane").

(5) Some parameters for the implementation were chosen intuitively with little investigation as to their general

applicability. However, some preliminary conclusions can be suggested: (a) the two selected shape parameters appear

to be independent, (b) the relatively coarse images (approx. 50 pixels square) appear adequate in terms of the shape

information that they contain, (c) a relatively coarse feature space quantization (10 x 10) appeared adequate to permit

good discrimination (see figure 9). However, in a domain with many more models, a finer quantization may be neces-

sary.

Future research could investigate how to optimize the recognition process by a systematic study of the effects of

changing a number of variables, which in the present case were instantiated intuitively. For example, the effects of

altering the quantization of the relational n-matrix and CRF map would likely reveal more efficient use of these spaces.

The features selected for illustrative purposes here (compactness and aspect ratio) are only two among a range of pos-

sible alternatives. Finally, as suggested in the previous section, RBC-R appears amenable to extension to a 3-D world

by extending the Ki which define models.

Research on this recognition system is continuing to extend its application to actual photographs. As noted at the

beginning of section 3, RBC-R is a system which operates on simulated images. In actual photographs, segmentation

of the image into separate regions which might contain an object is necessary. There are many techniques already

available to achieve this end. A more difficult problem is that real photographs in 3-D domains are, of course, suscep-
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tible to all the imperfections inherent in the imaging process, such as, shadowing and other effects of lighting, occlu-

sion of objects by one another and incomplete silhouettes of the objects. Methods will need to be developd to permit

RBC-R to deal with these "noisy" imaging problems. Since RBC-R is designed to operate on low resolution images it

should be relatively robust, especially in response to noise effects which do not grossly affect overall silhouette shape.

Finally, there are many aspects of this system which could be described with a parallel algorithm and further research

to study the computational advantages of this should lead to significantly faster recognition.
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Complex
Shape

Level

Single Generic Shape

Types

n1

Instantiations

52

Figure 1: How to represent an arbitrary shape. A Hierarchy of resolutions of geons may be considered. At the lowest level of
resolution (level 0) no discriminations between primitive shapes are possible. At level 1, basic shapes (types) may be distin-

guished. At higher levels, these primitive shapes resolve into finer sets of shapes (instantiations) which may be discriminated
from one another. In a shape recognition system, a decision must be made as to what level of resolution is desired for adequate
or optimal system performance. A complex shape as shown above will generally require two or more geons for an adequate

representation.
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AX1

movable

C2  fixed initial positions

AO

......... ......... ........ ......

Alr:ae 
<j;i.,t

legal connection
point.

Figure 2a: Example showing how to define a construction {R(c,c 2), R(c 2,c3)}. In the upper left, two geons

and their legal attachment points are shown. Two components are assembled by R(c l,c2) = (Ax, Ay, AO). The
two translation operations bring connection points into correspondence. The moveable component is then ori-
ented by a rotation about this point.

II

AY

add another Component

Figure 2b: The two-component construction is extended by R(c 2 ,c3) = (0, AY,0). In this example the third

component is added to the previously moved one (square) with AY as the only displacement. Centroids are
used to define initial positions in both figures. A final silhouette shape is yeilded by a filling operation.
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Ax
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(a)

Relation Space a "volume" of points in the space
which represent component relations

Ay0

Ax

(b)

Figure 3: This example illustrates articulation of components in a simple model of a "helicopter" viewed from

the top. (a) The "rotor" component is permitted a small variation in displacement with respect to the defined
"x" axis of the fuselage, but virtually no displacement in the "y" axis. However, the rotor is permitted all an-
gular displacements about its centroid. (b) These relations may be described by a "volume" in relation space;
in this case by a thin wafer. To accommodate the tail component, the relation ,,pace could be expanded by
another three dimensions to show its relations with respect to the fuselage.
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Figure 4: An example of an input image (low-resolution) for RBC-R to recognize. The geon types are in-
dicated with their instantiations in parentheses.
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Geon types: G ellipse, rectangle, triangle

geon lists 4 -

ell, rect, rect ell, tri, tri rect, rect

Ar _ geon in ntia&Qus: C
ln-u small-eli long-eli long-ell long-ell txikbody-rect

long-rect long-thin-rect mid-ell long-tn wide-tri short-tri tankturr-rect rect

short-rect short-thin-rect short-rect short-'i short-tri short-tri gun-rect- rct

() Nfat -rect W un-rect-45
(C) (d) (e) (f) (h)

airplane helicopter fuel truck jet rockeL cruise missile tank Models
airport conveyor

Figure 5: Domain hierarchy for the implementation. The geon types comprise the set of high resolution geons that
a (hypothetical) component recognition system might discriminate. The geon lists are groupings of three geons.
Geon instantiations are particular instances of the geons from a list. These are used to create the construction uni-
verse and define the models of the domain. The letters refer to distinct construction sets.
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Figure 6: Shape features evoke-lists in a feature space. These are compared against model c-lists. Shaded models on the

left are found to have c-listl. No models have c-list2. For c-listl, the component relations are compared between the can-

didates and the two models. Only one match is confirmed: the "airplane".
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Figure 7: Some test images submitted for recognition. For these images the same construction operator was used
as for creaung the construction universe. In other words these images were among the Ki set used to establish the
CRF map. Their correct identification illustrates that RBC-R can reliably recognize K, that it was "trained" on.
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(a) Scale 150%

a a (c) Rotate 40 degrees Scale 30%

(b) Scale 70%

Figure 8: Example input images at different scales and rotation. Scaling is expressed as a percentage of the size of the
K, used to create the CRF ap. None of these images was used in establishing the CRF map, but are each novel input
images. Images (a) and (b) resulted in shape features with identical coordinates to the "airplane" Ki in the CRF map
and recognition was confirmed by comparing this against model knowledge. Image (c) resulted in feature coordinates
in the neigborhood of the "airplane" Ki and after a local search of the CRF map RBC-R found the appropriate K, and
confirmed the match against model knowledge.
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Figure 9: This is a summary of the mapping of shapes into the CRF map for all "tank" Ki used to define the
"tank" model. The two c-lists, one for each "gun elevation", are differentiated by shading. The angle between
the "tank body" and "turret" are given numerically. It can be Fen that the parameters vary smoothly, albeit
non-linearly. The choice of the two "gun" angles happens to be nearly optimal for this quantization of the
CRF map as a clean but neighboring border separates the two c-list image sets. It can also be seen that as the
angle increases, aspect ratio tends to increase and compactness shows variance but no simple linear change.
A novel "tank" image with "turret" angle 70 degrees and intermediate "gun" elevation of 25 degrees is indi-
cated by the bold box.
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Appendix 1: Definitions

To avoid potential confusion, terms which have a specific technical meaning in the text are given in italics and

defined below. These should be distinguished from general dictionary usage. All technical terms are also defined in

the text but are given here for reference.

component - In general usage, this is an elementary constituent of an object. As defined for RBC-R, this term means
a unit or part of a construction as defined by an instantiated geon type (sect 1.1)

construction - This is a special term defined for RBC-R which refers to any arbitrary assembly of connected compo-
nents (sect 2.2).

instantiation - As used for RBC-R this refers to a specific instance of a geon type to which a metric has been applied
(sect 1.2).

interpretation - For RBC-R this term refers to the process of determining the identity of an object. It is synonymous
with recognition. It amounts to finding a model for an unknown input image (sect 1.1).

map - This refers to the construction relation feature map, the CRF map (sect 2.4.2).

object - An entity in the domain for which a description is possible in terms of a configuration of components and there-
fore which may have a model defined in terms of these components and their relations (sect 1.1).

relation - The spatial, two dimensional position and orientation of one object component relative to another. It is de-
fined by an affine transformation of translation and/or rotation with respect to component centroids.

resolution - This term is used as an adjective to describe the silhouette image of a single geon or object. This image
property is implied, therefore, in cases where "low resolution geon" is mentioned. Lower resolution images contain
less information in terms of features which could be used to distinguish between differet images.

type - This refers specifically to geons as defined by Biederman (1987). The term is used in contradistinction to instan-
tiations in RBC-R (sect 1.2).
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Appendix 2: Example Recognition

The input image was created using the program drawing functions to produce an image like that shown in fig. 4.
The silhouette in this image was then rotated 40 degrees and scaled to 30 percent. The following is a record from a
printout of RBC-R during the interpretation process.

Searching feature space at features: 3,9
offset : (0 0)

Candidate component lists found in CRF map: none
offset: (-1 0)

Candidate component lists found in CRF map:
(LONG-ELL LONG-RECT SHORT-RECT)
(LONG-ELL LONG-TRI SHORT-TRI)

trying to match components elicited by input to models

Model with components matched: AIR-PORT
Model with components matched: AIRPLANE

Check for relation matches

>>> MATCH FOUND <<<

Name: AIRPLANE
Components:
LONG-ELL (geon 1) off-center connects to LONG-RECT (geon 2) middle 0 degrees
LONG-ELL (geon 1) end connects to SHORT-RECT (geon 3) middle 0 degrees
---------------.----------------------

trying to match components elicited by input to models

Model with components matched : FIGHTER
Check for relation matches
---------------------------------------

>>> MATCH FOUND <<<

Name: FIGHTER
Components:
LONG-ELL (geon 1) middle connects to LONG-TRI (geon 2) middle 90 degrees
LONG-ELL (geon 1) end connects to SHORT-TRI (geon 3) middle 90 degrees
---------------------------------------

offset: (-1 1)
Candidate component lists found in CRF map:
(LONG-ELL LONG-RECT SHORT-RECT)

trying to match components elicited by input to models

Model with components matched: AIR-PORT
Model with components matched: AIRPLANE



27

Check for relation matches

>>> NO MATCH <<<

offset : (0 1)

Candidate component lists found in CRF map: none
offset: (1 1)

Candidate component lists found in CRF map: none
offset : (1 0)

Candidate component lists found in CRF map: none
offset: (1 -1)

Candidate component lists found in CRF map: none
offset: (0 -1)

Candidate component lists found in CRF map: none
offset: (-1 -1)

Candidate component lists found in CRF map:
(LONG-ELL LONG-RECT SHORT-RECT)

trying to match components elicited by input to models

Model with components matched: AIR-PORT
Model with components matched: AIRPLANE

Check for relation matches

>>> NO MATCH <<<

Thus, the airplane and jet models only are resolved as interpretations of the input image. This required searching the
feature space coordinates adjacent to the initial coordinates which failed to locate any Ki for a possible match to mod-
els. All eight surrounding coordinates are examined with an arbitrary starting point. At coordinates (2,9) Ki are found
which have models. No other coordinates were found to produce a model match on the basis of both components and
relations.
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Visual recognition of objects by a machine involves classifying an input using knowledge about the
kinds of objects expected in the domain. Model-based systems maintain a knowledge of objects in the do-
main in the form of a representation which can be compared to the unknown input. Since a given object type
may appear in a variety of forms anid under a variety of viewing conditions some efficient yet flexible means
of guiding the recognition process to consider and then verify the object identity is necessary.

The utility of low-resolution shape information to constrain object recognition was investigated in the
cor-,:cx" -f a system which is predicated upon a component description of objects. A computationally in-
tensive prcpass using a syntax for combining components yields a universe of "constructions" which are
coded into a construction relation feature (CRF) map. Each construction is coded into the N-dimensional
map according to a shape parameterization of its low-resolution image (each dimension codes a shape fea-
ture). From a subset of these constructions the object models are specified in terms of their component struc-
ture. The CRF map thus links the low resolution shapes of instances of an object to its object model.

To recognize an unknown object the input is first converted to low resolution. Then, shape parameters
arc Liken (for example, in terms of its relative elongation and compactness). The CRF map is examined in
the region of these feature coordinates for possible matches with object models, first on the basis of a com-
ponent match followed by a verification of the relations between components. An application to identifying
objects in simulated aerial photographs of military airports is presented.
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