
AD-A237 344
NASA Contractor Report 187562 ELECT

ICASE Report No. 91-38
C

ICASE
HIGH-ORDER ENO SCHEMES APPLIED TO TWO- AND lo,
THREE-DIMENSIONAL COMPRESSIBLE FLOW

Chi-Wang Shu Ao.o.ula Ie"
Gordon Erlebacher N' 1
Thomas A. Zang "t 30
David Whitaker UVAMOI)osd 0

Stanley Osher

Distributlon/

Availabillty Coe

Contract No. NAS1-18605 ail /or
April 1991 Dist speewal

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NAA
National Aeronautics and
Space Administration 27 031
Langley Research Center
Hampton, Virginia 23665-5225

_1fTa-d-]__ 91"03613
Approved for_ ,

r PtTbwi0 tnhinhite



High-Order ENO Schemes Applied to Two- and
Three-Dimensional Compressible Flow

by

Chi-Wang Shul Gordon Erlebacher9
Division of Applied Mathematics I.C.A.S.E.

Brown University NASA Langley Research Center
Providence, RI 02912 Hampton, VA 23665

Thomas A. Zang David Whitaker
Theoretical Flow Physics Branch Computational Aerodynamics Branch
NASA Langley Research Center NASA Langley Research Center

Hampton, VA 23665 Hampton, VA 23665

and

Stanley Osher3

Department of Mathematics
University of California
Los Angeles, CA 90024

Abstract

High-order essentially non-oscillatory (ENO) finite-difference schemes are applied to the
two- and three-dimensional compressible Euler and Navier-Stokes equations. Practical issues,
such as vectorization, efficiency of coding, cost comparison with other numerical methods
and accuracy degeneracy effects, are discussed. Numerical examples are provided which are
representative of computational problems of current interest in transition and turbulence
physics. These require both non-oscillatory shock capturing and high resolution for detailed
structures in the smooth regions and demonstrate the advantage of ENO schemes.
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1 Introduction

In the computation of inviscid, compressible flow, the presence of infinitesimally thin shocks
readily leads to non-linear instability for traditional, unadulterated, linearly stable high-
order methods. Moreover, regions of strong gradients which have finite thickness but are
too thin for the grid to resolve may also produce non-linear instability. This is the case.
for example, for high Reynolds number Navier-Stokes computations in which thc shock
thickness is much smaller than the grid spacing. The standard "cures" are either to add
explicit artificial viscosity to the numerical method or to employ an upwind-biased scheme
(which contains implicit artificial viscosity). Such approaches usually have the undesirable
side effect of loss of resolution, particularly for the small-scale structures in the smooth part
of the solution. The small-scale features are typically strongly and erroneously damped by the
artificial viscosity. This problem even afflicts the formally high-order TVD (total-variation-
diminishing) schemes, since they must degenerate to first order accuracy at smooth critical
points [13]. Certainly, the most difficult feature to capture is the passage of small-scale
features through shock waves.

In many applications, such as typical steady-state aerodynamic CFD, the side effects of
the artificial viscosity are not particularly worrisome since the main target of the computa-
tion is the large-scale flow structure and the details of the flow near the shock are not too
significant. This is decidedly not the case, however, for numerical simulations of transition
and turbulence. Here the interesting physical phenomena occur on scales much smaller than
those of the mean flow. As noted by Hussaini and Zang [9], for incompressible flow spectral
methods have been preferred for these applications since they have the best fidelity for the
small-scale flow features. However, due to their extreme sensitivity to non-linear instability
spectral methods have yet to be used for serious investigations of transition and turbulence
in compressible flow with regions of strong gradients. (They can be used, of course, for
shock-free flows [4] and for low Reynolds number viscous flows [5] in which thick shocks are
actually resolved rather than captured.)

Essentially non-oscillatory (ENO) schemes, first introduced by Harten and Osher [6] and
Harten, Engquist, Osher and Chakravarthy [71, can achieve uniformly high-order accuracy
with sharp, essentially non-oscillatory shock transitions. The key idea is an adaptive sten-
cil interpolation (based on difference tables) which automatically interpolates in a locally
smoothest region. This strategy provides a strong inhibition towards differencing across
discontinuities. In [22, 23], Shu and Osher introduced an efficient implementation of ENO
schemes, using the same adaptive stencil idea but working directly on fluxes and a special
class of TVD high-order Runge-Kutta type time discretizations. It bypasses the reconstruc-
tion and Lax-Wendroff procedures in the original ENO schemes. For multi-dimensions, this
simplification is significant, because the reconstruction in multi-dimensions becomes quite
complicated [8]. Numerical examples in [22] and [23], especially the examples of shock in-
teraction with entropy and vorticity waves, for which a good resolution for the detailed
structures in the smooth region is as important as a sharp, non-oscillatory shock transition,
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indicate a good potent;A for ENO schemes in computing compressible Euler and Navier-
Stokes equations.

In this paper, we discuss the coding of ENO schemes in [22, 23] to two dimensional general
geometry (via transformation) aild to three-dimensional Euler and Navier-Stokes equations
of compressible gas dynamics on Cray X-MP and Y-MP. We address the practical issues such
as vectorization, efficiency of evaluating Newton interpolations, cost comparison with other
numerical methods, and accuracy degvberacy effects. We then present numerical examples
which all require ncn-oscillatory shock capturing and high resolution for rich structures
in the smooth regions, including two-dimensional shear flows, two dimensional and three
dimensional homogeneous turbulence, aid two-dimensional shock interaction with entropy
and vorticity waves.

2 The Navier-Stokes and Euler equations

For completeness, we document here the three-dimensional, compressible Navier-Stokes equa-
tions as well as the various transformations that are required for the ENO method in curvi-
linear coordinates. In terms of the density p, the velocity fi = (u, -, w)t, the pressure p, and
the internal energy E, the Navier-Stokes equations read

S+ il,)- + g(-)y + h(-) = r() + s), + (1)

where

=(p) pu, p")) f7, f (4) =u4+ p(O,l,, O 1u)Y

A() =Vq+ p(O,O,1,O,v) , h(q) =wq+p(O,O,O,l,w)t  (2)

and

9(q) = A(o,2,r,, 32o-2)',

= (0, r13, r23, 7 3 , U3 )', (3)

with the components of the viscous stress tensor given by

4 2 2

7"21 = 7*12 =UY-+ V2

T31 = T13 = Uz + Jx,

4 2 2T2 = VY - _U - _U,,,
T32 = 723 = Vz + WY)

4 2 2
733 = Y

(4)
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and

1 = UT11 + VT12 + w 13 + (C 2
('y - 1)Pr

1
a2 = U7'21 + V72+ W723 + 11P C2

a3 = UT31+ V7324- W733 +( 1r WC) 5,

(5)

Also, ji is the viscosity, - is the ratio of specific heats, Pr is the Prandtl number, and

Q (y (- 1)(E..-- 1p(u2 + V2 +w 2 )],

C2 = P
P

H- E+p (6)
P

For implementing ENO schemes with characteristic decompositions, we need the expressions

of the eigenvalues and the right and left eigenvectors of the Jacobians f N' A. The

eigenvalues for -are u - c,u,u,u,u + c. Its right eigenvectors are the columns of

1 0 0 1 1
U-c 0 0 u u+c

R v 1 0 v v (7)
w 0 1 w w

H-uc v w (u2 +v 2 +w 2) H+uc

and the left eigenvectors are the rows of

((b2 + 2~) (biu + ~) -biv -blw b,
R 1 -2v 0 2 0 0

= .- 2w 0 0 2 01, (8)
2(1 - b2) 2bju 2blv 2bw -2b,
(b2 - "1) -(b,,t - 1) -bv -bjW b,

with
'y-1

C2

1 2 v2 w2)bl.9)
b2 ,,+v +w2 )b)

The corresponding expressions for Land are apparent.
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The Euler equations can be obtained from the Navier-Stokes equations by setting I = 0.
The equations for two-dimensional problems are equally obvious.

In the two-dimensional case, the transformation

x = x( , 17), y = y (,), (10)

enables us to treat non-uniform grids or mappings into non-rectangular domains. The Navier-
Stokes equations become

4t + f4 + 9= ±+7, (11)

where

= j-1

" = (O,,.r2,Tu,)', (12)

with
4 2

T"I" =- V (XUt/ +Jl 77"Xl1) -- (( y/" + "//y/"P7),

T21 = r12 = ,yu + 77u, + Gv + 77,v,,
4 2

722 = 3 (,,, + ,v,) - . (G,, + 7,),
1

al., = U7,1,. + V7r12 + (-y - 1,)Pr [.(c2 )e + 7.(c 2),7],

1
,,2 = UT2 1 + VT 22 + (-y_ 1)p,.[,,(C2), + ,,(,2),.,] (13)

and

J - .77 - 477-,

U = 6'U+ 4V,

V = 77xu + 7iyv. (14)

The eigenvalues for q are U - c U, U, U + ; the right eigenvectors are

the columns of

R 1 1

H - zc - 11+ 2 H U+ =c
- + ~(u4 +v 2 ) H+Bc
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the left eigenvectors are the rows of

(b2 + & '-bu + a)-(biv+ ~2) bi

R 2( ) -2 (16)
- 2 2(l - b2) 2blu 2b, -2b(

(b2 - /') -bu- -bv- b

where b, and b2 are defined in (2.8); and

B = eu+ iov. (17)
oa

We again forego the explicit prescription for ...

3 Implementing the ENO schemes

This section should be read in conjunction with [22, 23] for notation, terminology and other
details of ENO schemes based on fluxes and for TVD time-discretizations of Runge-Kutta-
type. Here we only summarize several key steps of the algorithms and address practical issues
such as vectorizatia, efficiency, cost comparison and the reduction of round-off errors.

The ENO procedure is applied only to the convection part, i.e., the left-hand-side, of
Eq (1). The diffusion righthand side of Eq. (1) is approximated by the standard centered
differences. It is also possible to use ENO-type adaptive stencil interpolation to approximate
the diffusion terms, but we have not observed any significant differences in our numerical
tests (typically with small physical viscosity Y). Besides simplicity, centered approximations
also seem more natural for diffusion terms.

We now summarize the key steps of the algorithm:

(1) The time marching is implemented by a class of TVD Runge-Kutta type methods [221.
For example, the third order case is

401) =4) + Atf(-¢)
-(2) 3_- 1'1-(3) 1 _co)+ 24(2) + 2 At '(-(2))

q(o) = 4,

4"+1 = -(3), (18)



where L, is the numerical spatial operator approximating the spatial derivatives in Eq. (2).
This class of Runge-Kutta methods is labeled TVD because it has been shown [22] that it
does not increase the total variation of the spatial part under a suitable CFL restriction.
Also notice that for tbe third order case, Eq. (18), only three storage levels (two for 4, one
for L) are needed, since 4(2) can overwrite 4(1) and q(3) can again overwrite q(1).

(2) We thus only need to consider the spatial operator

() f (4)q - - ()+ X + ()v + t(). (19)

The last three terms are approximated by standard second-order or fourth-order centered
differences. We use an ENO scheme based on fluxes; hence the first three terms can be
approximated dimencion-by-dimension: for example, when approximating -f(-),, y and z
are fixed. The core of the algorithm is then a one-dimensional ENO approximation to, e.g.

(3) Since f (q) is a vector, we can approximate -f(q-),, either component by component,
or in (local) characteristic directions. In the former case, to obtain non-linear stability by
upwinding, we write

i'(4) =f+(4)±f-(4), (20)

with
= (?() ± a4), (21)

where a = max(IuI + c) is the largest eigenvalue in absolute value of the Jacobian d

along the relevant x-line. The decomposition in Eq. (20) guarantees that - has posi-

tive/negative eigenvalues; hence upwinding (to be discussed later in this section) is the same
for all components. For characteristic decompositions, we take Aj+1/2 to be some average
Jacobian at xj+1 1 2 , e.g. the arithmetic mean

A +i = (22)

or
orI °f (23)

..Roe'
, q=qj+i

' .(Roe)
where q(+o is the Roe average of q% and q-j+l [17]. We then use the left eigenvectors

-1/2 in Eq. (8) or Eq. (16) of Aj+112 to project all relevant quantities (differences around
Xj+ 112) to the local characteristic fields. A scalar ENO algorithm can then be applied, and
the result projected back to component space by Rj+112 in Eq. (7) or Eq. (15).
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(4) We finaslly describe the implementation of the scalar ENO approximation of -f(q):.
It is written as a conserved flux difference

where the numerical flux fj+/ 2 approximates h(Xj+1 2) to a high order with h(x) defined by

i J+
f(UM) = h() d (25)

It is pointed out in [231 that we do not need to construct .(x) explicitly: we simply use the
difference tables of f(u(x)). If the (undivided) differences c f f(u(x)) are defined by

f[j,O] = f(Auj),

fUi,k] = f[j+1,k-1]-f[j,k-1], k = 1,...,r (26)

where r is the spatial order, then

M=O

with i being the left-most point in the stencil used to approximate fj+li2, and c(s, m) being
defined by

c(sm) = 1 +m (+m
, + )! E H -P).(28)

p--3

p#l

The small, constant matrix c is computed once and stored.

The adaptive stencil determined by the choice ( + 2. the left-most point in the stencil used
to approximate !j+1/2. We start with i = j or i -- j -±1 according to the (local) wind
direction (upwinding), and then apply the following

if (abs(f~i,k]).gt.abs(f[i-1,k])) i-i-1 (29)

for/= 1,...,r.

Remalk 3.1 The code is written in such a way that all the major ioops are vectorized by

default of Cray Fortran. To vectorize Eqs. (27)-(29) we can either repeat (29) r times (for
fixed r only) or introduce a temporary one dimensional storage for ito put the short ioop (29)
outside te long loop (27)-(29) for j. To vectorize the characteristic decompositions we have
to introduc oe dimensional temporary storage for the local projection on characteristic

fields at each xi. Since we only vectorize the innermost one-dimensional loop, we need just

17 three dimensional units (10 for two components of q, 5 for L, and 2 work units) for three

dimensional problems using third order schemes.



Remark 3.2 For our current implementation, the componentwise ENO scheme takes
around 4.5 times as mach CPU time as a centered finite-difference scheme with the same
order of accuracy. A fdctoi of two is due to the flux splitting, Eq. (20), Instead of just
computing f(). we are computing ' (q), + f-(q').; hence the work is doubled. This is
the price to pay for implementing upwinding techniques to achieve stability. Another factor
of two is due to the adaptive stencil procedure, Eq. (29): when these "if" statements are
removed, the code runs twice as fast. It seems odd that these "if" statements account for so
much CPU time since they are all vectorized. The main reason is that since the pattern is not
uniform from point to point, gathering and scattering are activated by Cray Fortran. These
procedures are very slow on the Cray. A similar slow-down also exists for TVD schemes.
ENO schemes using characteristic decompositions take more CPU time: ENO-LF and ENO-
Roe with entropy fix (see [23] for definitions) take about 3 and 1.7 times, respectively, as
much CPU time as componentwise ENO schemes. Notice that ENO-Roe is faster than
ENO-LF because it does not use a flux splitting. See [23] for more details.

Remark 3.3 We use undivided differences, Eq. (26), and prestored local matrix c, Eq.
(28), to reduce cost and to reduce the effect of round-off errors.

4 Transition in a Free Shear Layer

The numerical examples were chosen to illustrate the ENO method for problems in transition
and turbulence. We consider flows with gradients which are readily resolved by the grid -
shocks are either absent altogether or else sufficiently broad (due to low Reynolds number)
that the usual spectral method gives stable results. Comparisons of the intrinsic resolution
can therefore be made between the spectral and ENO methods., We then take strong shock
cases to illustrate the advantage of non-oscillatory high-order methods.

Unless otherwise indicated, third-order ENO with the third-order Runge-Kutta time dis-
cretization (18) and fourth-order centered differences for t.ae viscous terms are used. Notice
that the third-order ENO [23] is actually fourth order in smooth, monotone regions; hence
for problems with isolated critical points it is fourth-order in L1 norm sense. We use, as
in [23], the notations ENO-LF (Lax-Friedrichs), ENO-Roe and ENO-Com (componentwise).

There has been considerable recent interest in the physics of the compressible free shear
layer and numerical simulations have furnished several interesting results. The numerical
methods employed have typically been second-order TVD [24, 12], fourth-order MacCor-
niack [25, 16], or fourth- or even sixth-order compact [10, 19, 2]. Atkins [1] and Sandham
and Yee [20] have made detailed studies of the performance of TVD schemes on this prob-
lem. The latter also made comparisions with sccond-ordcr MacCormack results. Carpenter,
et al. [2] have compared third-order upwind, fourth-order MacCormack and fourth-order
compact methods.

For the particular 2-D examples studied in the present paper, the mean flow is given by
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the hyperbolic tangent profile uo = tanh(y), vo = 0, and p0 = , where M.. is the ratio
in the limit y -- ±00, of the free stream velocity to the sound speed, and periodic boundary

conditions are enforced in the streamwise (x) direction. The velocity is non-dimensionalized
by the freestream velocity, uo,, lengths by half the vorticity thickness bS = 2u 0/- , the

a the

density by the freestream density, po,, the temperature by the freestream temperature, T.,
and the pressure by pouoo. The Reynolds number Re = uo6,po,,Ipo. The viscosity A is
prescribed through Sutherland's law with a reference temperature of 520'K and the Prandtl
number is taken to be 0.7. This example is for the temporally evolving free shear layer. A
forcing term is added to the Navier-Stokes equations in order to make the assumed mean
flow a steady solution. The computational domain is (0, 27r/a) x (-oo, oo), where a is a
specified wavelength.

For this problem we present comparisons of ENO with both explicit and compact centered
difference schemes and with spectral methods. The explicit central difference methods use
3 points for a second-order approximation and 5 points for fourth-order. The compact
difference scheme uses a Pad6 approximation with 5 explicit points and 3 implicit points
(see [10]). It is formally sixth-order accurate at all interior points, and at points adjacent to
the boundary, but reduces to fourth-order accuracy at the boundary itself. (The sixth-order
compact scheme used by Lele [10] reduces to fourth-order accuracy at points adjacent to
the boundary and third-order accuracy at the boundary itself.) For the spectral calculation
a Fourier expansion is applied in x and the Cain transformation [3]

y = -L cot(7) (30)

is used in the y direction; L is a stretching parameter which is taken between 4 and 10.
This permits the use of cosine (for p, u, and e) and sine (for v) expansions of the dependent
variables in the 7 direction.

4.1 Linear Instability

For the smooth problem we consider first the evolution of a small perturbation, with stream-
wise wavenumber a = 0.4, from the mean flow at M, = 0.5 with a Reynolds number of
100, and the usual -y = 1 4. The shape of the perturbation is given by the fastest-growing
eigenfunction of the linearized Navier-Stokes equations at the specified wavelength. The
amplitude of the perturbation was chosen so that its transverse velocity at - = 0 was 0.1%
of the freestream velocity. The growth rate for this particular case was 0.127454941. (This
eigenvalue problem was solved by a spectral linear stability code [11].) For such small am-
plitudes the non-linear code should produce linear growth of the perturbations for small
times. Table 1 shows the growth rates produced by central difference methods and compact
methods after 10 time-steps with a time-step of 0.01. (The measured growth rate was taken
to be o = [log E(t) - log E(0)]/(2t) where E(t) = Ju- u011,2 + 11v112,.) In these examples a

highly-resolved discretization (with 128 points) was employed in y and the specified method
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method N, = 8 N = 16 N, = 32
2nd-order central -4.26 (-2) -6.26 (-3) -1.24 (-3)
4th-order central -4.92 (-3) -1.83 (-4) -1.35 (-5)
4th-order compact 2.15 (-4) 1.25 (-5) 5.00 (-7)
6th-order compact 1.12 (-5) 1.90 (-8) -2 (-8)

Table 1: Linear Growth Rate Errors for Central-Difference and Compact Schemes at t = 0.1

method N. = 8 N. = 16 N = 32 N. = 64
2nd-order ENO -4.30(-2) -6.30(-3) -1.14(-3) -4.90(-4)

2nd-order ENO-2 -3.83(-2) -2.01(-3) -8.28(-4) -5.58(-4)
3rd-order ENO -1.62(-2) -1.05(-3) -1.48(-4) -9.85(-5)

3rd-order ENO-2 -8.77(-3) -3.38(-5) -2.20(-6) -2.51(-6)
4th-order ENO -4.96(-3) -1.88(-4) -1.54(-5) -9.88(-6)

4th-order ENO-2 -4.21(-3) -1.28(-5) -1.39(-5) -1.78(-5)

Table 2: Linear Growth Rate Errors for ENO Schcmes at t = 0.1

was applied in x with the streamwise resolution as noted in the table. The table thus pro-
vides the accuracy achieved as a function of the method and the number of grid-points per
wavelength. (Even for N. = 4, the error from a spectral discretization in x is already smaller
than 10-7.)

Similar results for ENO methods of second-, third-, and fourth-order are given in Table
2. In these cases the ENO method was also applied in y, again with 128 points used in
this direction. Again, the intent was to isolate the discretization errors in x. Except for
the N, = 64 cases, the results are as one would expect: the accuracy increases with the
number of grid-points and with the order of the scheme. (The unexpected deterioration of
the convergence rate for the finest grid is addressed below.) A comparison of the fourth-
order central-difference results from Table 1 with those of the 3rd-order ENO from Table 2
indicates that the ENO results are slightly less accurate. This is to be expected since one
anticipates that in most of the flow this ENO stencil reduces to the fourth-order central one,
and where it is switched to one-sided it will lose one order in accuracy.

Notice that the improvement in accuracy obtained from going from 32 to 64 streamwise
grid-points is less than expected. For the central-difference schemes this occurs on the 10 -

level, whereas ;t occurs an order of magnitude or more earlier for the ENO schcmes. (This is
even more apparent in the ENO results at later times, as evidenced by the data in Table 3.)
This is due to time-differencing and linearization errors for the central difference methods,
whereas it is caused by the loss of accuracy when the stencil switches for the ENO method.

The results labelled by "ENO-2" in the tables are computed by using a factor of 2 to multiply
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method N. = 8 NX = 16 N. = 32 N, = 64
2nd-order ENO -4.26(-2) -6.37(-3) -1.26(-3) -6.20(-4)

2nd-order ENO-2 -3.86(-2) -1.43(-3) -8.33(-4) -5.72(-4)
3rd-order centered -4.22(-2) -6.21(-3) -1.23(-3) -5.89(-4)

3rd-order ENO -1.59(-2) -1.16(-3) -2.41(-4) -1.89(-4)
3rd-order ENO-2 -7.31(-3) 1.55(-5) -2.52(-5) -3.49(-5)
4th-order centered 1.04(-3) 3.55(-5) -3.14(-5) -3.56(-5)

4th-order ENO -4.95(-3) -2.53(-4) -9.35(-5) -7.79(-5)
4th-order ENO-2 -4.19(-3) -5.03(-5) -3.12(-5) -2.92(-5)
5th-order centered -4.92(-3) -2.14(-4) -4.63(-5) -4.09(-5)

Table 3: Linear Growth Rate Errors at t = 1.0

either the first or the second abs term in Eq. (29), depending upon whether i is greater
than the left-most point in the centered stencil or not. The effect is to bias the scheme
towards a centered stencil in smooth regions. This modification of ENO is discussed in
detail in [21], accompanied by numerical tests on smooth and shocked cases, in response to a
recent discovery by Rogerson and Meiberg [18] about some accuracy degeneracy phenomena
of ENO schemes. From the table we can see that "ENO-2" is in most cases comparable in
accuracy with the corresponding centered schemes, while ENO is usually one order lower, as
expected from the (unnecessary) switching of stencils in smooth regions.

4.2 Mach 0.5 evolution

Next, we present a comparison of these methods for a fully nonlinear problem. The previous
results were just basic calibration tests (for all the methods). The real purpose of numerical
simulation codes is to explore nonlinear fluid dynamics. The next example, therefore, is
a simulation of vortex roll-up and pairing at M = 0.5. The initial conditions consist of
the mean flow plus two linear eigenfunctions: the fundamental with wavenumber a1 = 0.4
and amplitude ef = 0.01 and its subharmonic with wavenumber a, = 0.2 and amplitude
6, = 0.0001. (In this case the computational domain in x is doubled from that of the
previous example in order to accommodate the subharmonic.) The initial phases (judged by
the location of the maximum of the normal velocity perturbation at y = 0) were exactly out
of phase, a choice which ensures that vortex pairing will occur.

Figure 1 presents the evolution of the vorticity thickness for third-order ENO on grids of
size 322, 642, and 1282 and compares these results with those of a 1282 spectral calculation.
(An analysis of the spectral coefficients of the latter coefficients, along the lines discussed
in [26], indicates that the spectral result is accurate to better than 4 significant digits until
about t -= 125, but that thereafter its accuracy deteriorates rapidly as the vortex roll-up
produces scales, particularly in the streamwise direction, that are too small for the grid.)
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The ENO result is clearly converging to the proper answer. A similar comparison is presented
for the sixth-order compact scheme in Figure 2. The convergence here is more impressive
than for the ENO scheme, but that is to be exp-cted for this smooth flow. Curiously, the
spectral coefficients for the compact scheme suggests that it is the transverse resolution which
is most stressed by the roll-up.

Figure 3 summarizes, for the third-order ENO method, the evolution of the lowest 4
Fourier harmonics as represented by the quantity

Ek= L k2 + Ijkl)W(y)dY (31)

where

dk(Y,t) = 2.1o q(x'yt)e-'ka'mdx (32)

is the kth streamwise Fourier coefficient of the variable q and

W(y) = { - 1Yl : Y. (33)

1 e OVI-Y1Y > Y.
is a weight function used to confine the region ot integration to a finite size. (We used

yc = 50.) Once again, the numerical results are indicative of convergence. On a 322 grid
the ENO results are perceptibly different from the highly resolved results even for the k = 1
mode. On a 642 grid the worst relative results occur for k = 3. This mode happens to be
the most sensitive of the 4 to nonlinear interactions. At the start of the calculation only the
k = 1 and k = 2 modes had non-zero amplitudes. The k = 2 mode is initially forced by
the self-interaction of the k = 2 mode, which is the dominant mode for the first part of the
calculation. The k = 3 mode is initially forced by the interaction between the k = 1 and
k = 2 modes and it is here that the largest errors occur. One heartening result is that the
k = 1 mode - the subharmonic - is tracked reasonably well. Atkins [1] observed that there
could be appreciable spurious generation of this mode by a second-order TVD method.

Similar data are provided in Figure 4 for the compact scheme. The results for these
low-order modes are already graphically indistinguishable from the 1282 spectral results on
a 642 grid for the compact scheme. This, too, is understandable since the compact scheme
was shown in Table 1 to have an accuracy of better than 1 part in 104 with 8 points per
wavelength, and even the mode k = 4 has 8 points per wave.

We close the Mach 0.5 results with a plot, in Figure 5, of the pressure contours at
t = 150 for the ENO method on various grids and for the high-resolution spectral method.
The similarity of all the results is apparent.

4.3 Mach 0.9 evolution

The rationale for the ENO method rests primarily on its behavior in the presence of shocks.
Indeed, typical central-difference and spectral methods have substantial difficulty for this
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compressible free layer problem at freestream Mach numbers above 0.70. For this example
we choose M. = 0.9 and initial conditions consisting of the mean flow plus two linear
eigenfunctions: the fundamental with wavenumber a1 = 0.3 and amplitude ef = 0.01 and
its subharmonic with wavenumber ao = 0.15 and amplitude e, = 0.001. Furthermore, the
stretching parameter for the ENO method is here chosen to be L = 10 to provide better
resolution near the shock waves which eventually develop.

The evolution of the pressure field for this case is depicted in Figure 6. These plots
are taken from a computation based on the sixth-order compact scheme. (A 1282 grid was
used from t = 0 to t = 75, a 256 grid from t = 75 to t = 100, a 512 x 192 grid from
t = 100 to t = 106.25, a 768 x 192 grid from t = 106.25 to t = 112.5, and a 1024 x 192
grid from t = 112.5 to t = 137.5. Spectral interpolation was employed for the requisite grid
refinements.) By t = 100 vortex pairing has already occurred. The vortex is centered in the
plotting frame and stagnation points are located on the vertical mid-plane at the streamwise
edges of the plot. As discussed, for example, by Lele [10], the flow expands away from the
stagnation points as it goes around the vortex and compresses as it returns to the stagnation
point. At sufficiently high Mach numbers and for sufficiently 6trong vortices the compression
occurs via a shock wave. Shortly after t = 100 in this case a pair of shocks develop - these
are the so-called "eddy shocklets" [24, 10] - and they grow steadily stronger as the flow
evolves. These shocks are not the only small-scale feature of the flow, however. As noted
by Sandham and Yee [201, the flow also develops a very thin region of high strain near the
stagnation points.

Although there is a physical viscosity in the flow (in this case the Reynolds number
Re = 100), the thicknesses of the shock and/or high strain regions may eventually become
too small for a central difference scheme to handle. Such is the case here even on a 1024 x 192
mesh. In the presence of unresolved gradients central-difference schemes develop oscillations
which lead to negative temperatures and an abrupt halt to the calculation.

Indeed, computations with both the spectral and the sixth-order schemes on 322, 642

and 1282 grids develop severe oscillations and come to a crashing halt between t = 105
and t = 110. Somewhat curiously, as noted by Sandharn (1990, private communication),
for both methods the oscillations develop first not in the vicinity of the shock but in the
region of high strain. This is particularly apparent in Figure 7, which shows the evolution of
the pressure for the spectral method calculation (in which a 1282 grid was used from t = 0
to t = 75, a 256 x 128 grid from t = 75 to t = 100, a 384 x 128 grid from t = 100 to
t = 106.25, a 768 x 144 grid from t = 106.25 to t = 109.375, and a 1024 x 162 grid from
t = 109.375 to t = 112.0). The computation halted shortly after t = 112 due to negative
temperatures caused by severe oscillations. Figure 8 is a blow-up of the central region at
t = 112. Note that there are no oscillations apparent in the vicinity of the shocks. Note also
that the oscillations are predominantly in the x direction. Indeed, an examination of the
spectral coefficients reveals that the y direction is quite well-resolved. The price of resolving
these regions with a non-dissipative central difference scheme can easily be excessive, as the
present case indicates.
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The vorticity thickness of the ENO and sixth-order compact methods are provided in
Figures 9 and 10, respectively. The results for ENO method demonstrate convergence - the
vorticity thickness on the 1282 grid is virtually coincident with the compact method result.
The errors for the ENO method for this Mach 0.9 case are substantially larger than for
the Mach 0.5 case (see Figure 1). However, this is due primarily to the difference in the
stretching parameter. For the Mach 0.9 ENO calculations, a weaker transverse stretching
was used to afford finer resolution in the vicinity of the shock.

Results for the lowest 4 Fourier harmonics for the two methods are given in Figures 11
and 12. The performance of the two methods for this diagnostic mimic that for the vorticity
thickness.

All of the results reported thus far have been for the ENO method using the characteristic
decomposition. As noted at the end of Section 3, componentwise ENO is simpler to program
and is less expensive. Figures 13 and 14 compare the two versions at t = 125 and t = 150,
respectively. The componentwise results suifer in two respects. First, the shock is more
diffuse. In fact, at t = 125 the shock is barely visible. Second, there are appreciable spurious
oscillations. Their character is quite different from the oscillations which afflict the compact
and spectral results. They are far less regular but are held in check by the nonlinearly
stable adaptive stencil. Nevertheless, the small-scale flow features of the componentwise
ENO results are quite unreliable. One must hesitate to use this method for applications
in which the small scale features are of particular interest, such as transition to turbulence
problems.

A comparison of the characteristicwise ENO results at t = 125 with those of the compact
scheme (Figure 6) reveals that even on a 1282 grid the ENO method produces a numerical
shock thickness which is much larger than the actual thickness for this viscous problem.
Moreover, the absence of a shock on the 642 grid appears due to the delayed flow evolution
(presumably caused by the inherent viscosity of the ENO method) that is apparent in Figure
9.

We conclude the results for this problem with Figure 15, which shows the long time
evolution of a 642 characteristicwise ENO calculation based on the Euler equations (but
starting with the same initial conditions as the Navier-Stokes calculation above). Even on
this coarse grid, and without the aid of any physical viscosity, the ENO method exhibits
solid shock-capturing behavior. The numerical solution shows no sign of nonlinear instability
and spurious small-scale oscillations are absent.

5 Isotropic Turbulence

In [15], Passot and Pouquet simulated two-dimensional, compressible, isotropic flows in the
turbulence regime using a Fourier spectral collocation method. They identified three basic
regimes: shock-free, weak shocks, and strong shocks. Subsequently, Erlebacher, et al. [5]
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developed a theory of compressible turbulence that contained a more refined characterization
of the different regimes of compressible turbulence and contained a useful parametrization of
initial conditions that permitted precise predictions of the asymptotic turbulence state. The
direct simulations performed in these studies were limited to quite low Reynolds numbers,
particularly in the shock regimes. Gibbs oscillations arose whenever the shocks were too thin
for the grid to resolve.

Here we perform simulations of compressible isotropic turbulence using both spectral
and ENO methods. The boundary conditions are periodic in all directions, the velocity
is normalized by its initial root-mean-square value, the density and the temperature are
normalized by their mean values, the pressure as for the free shear layer problem, and
the viscosity is taken to be constant A = 1/150. We compute a low Mach number case
where the shocks are weak and the spectral method can resolve the full structure with 2562

points. Comparisons between different ENO schemes and between ENO schemes and spectral
methods are furnished for both large-scale and small-scale flow features

In Figure 16, we show the density and vorticity contours at t = 1 computed with the
spectral method using 2562 points. This can be considered to be a resolved solution. Still,
the vorticity, which involves derivatives for the numerical solution, shows some oscillations.
In Figures 17 and 18, we show the density and vorticity contours at t = 1 for the spectral
method and the third order characteristic ENO-LF, respectively, using 642 and 1282 points.
We can see that the ENO scheme produces non-oscillatory results but the spectral method
gives noticeable oscillations. For this example, the component ENO-com produces results
similar to those of ENO-LF.

In Figures 19, 20 and 21, we show the time history of the average Mach number, the
maximum Mach number, and the mininum divergence, for the spectral schemes and the third
order ENO-LF. We can see the convergence of ENO schmes for the former two but not the
latter.

In fact minimum divergence is achieved exactly inside the transition regions: to resolve
it, one has to resolve the full transition regions. The idea of using high order shock capturing

methods is to resolve essential features in the smooth part of the flow without fully resolving
the transition regions or shocks. An important topic of numerical tests is to verify whether
this is achieved. For this example we indeed achieve this as indicated by Figures 19 and 20.

We then compute a three-dimensional version of this problem. We present in Figure
22,23,24 the time history of average Mach number, maximum Mach number and minimum
divergence of velocity. These have characteristics similar to their two-dimensional coun-
terparts. The minimum divergence time history strongly suggests the presence of three-
dimensional shocks. However, the grid resolution is not sufficient to clearly bring them out
by simple flow visualization.
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6 Shock Interaction With Entropy Waves

For shock interaction with weak entropy and vorticity waves, some qualitative pictures have
already been presented in [23, 14], which are similar to those obtained by shock-fitting
methods [27]. Here we want to do some quantitative studies of wave amplification factors.
This is relevant to the issue raised in Example 1: if the shock or the rapid transition region is
not completely resolved, can we still resolve smooth information passing through the shock,
such as the amplification factor when waves pass through a shock. For this purpose we take

an entropy wave with a small amplitude so that the linear effects dominate and a comparison
with linear amplification factor can be made. For third-order ENO with 150 x 20 grid points

(about 20 points per wavelength), we can already resolve the amplitude amplification factor

to within 5%. This compares very well against second order MUSCL type TVD scheme with
the same number of grid points which can only resolve the amplitude amplification factor
with an error six to ten times as big. Similar comparisons in the one-dimensional case were

also made (via graphs) in [23]. We remark that this quantitative comparison is important in
this case, since a major difference between ENO and TVD schemes is that the latter "clips"
the critical points. If we only compare contours we will not see such sharp differences.

The details of this problem are as follows. For a pure shock with Mach number M moving
to the right, we add an entropy wave

p = p,.e r (34)

where/p,. = k,.(x cos a,. + y sin a,), to the density field at the right of the shock. Here ai, is
the angle of the vortici y wave with the shock, k,. controls the number of waves, and C,. is
the scaled amplitude. _n order to enforce periodic boundary conditions in the y direction,
we take the computational domain to be [0,1] x [0, k2wfinp'*

The first phase of this computation is aimed at reducing the transients that arise from
the discrete ENO approximation to the moving shock wave. We run the scheme until the
shock moves from x = 0.2 to x = 0.8, then shift the data leftwards so that the shock is again
located at x = 0.2, and repeat this process six times., Then for each fixed x to the left of
the shock, we perform a Fourier analysis on the entropy to find the amplitude e, where (34)
with the the subscripts "r" replaced by " denotes the entropy wave to the left of the shock.
The resulting amplitude el is then averaged over an x-interval between the wave front and
the shock, with a length at least one full wavelength.

The computed amplification factors 1, together with the linear prediction results, for
Mach 3, a, = 30', e, = 0.02, k, = 15, are listed in Table 4. The 6th-order ENO method
refers to a scheme which is sixth-order in space, and third-order (Runge-Kutta) in time,
with a reduced CFL number of 0.2. We can observe from Table 4 that, especially for coarse
grids, higher-order methods indeed produce much more accurate amplification factors than
low-order methods, It seems, however, that we cannot reduce the error below a certain
threshhold around 2%. Again, round-of effects might be playing a role since the amplitude
of the wave is far smaller than the shock strength.
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method N. = 50 N: = 100 N: = 150
2nd-order MUSCL -86% -66% -42%

3rd-order ENO -47% -14.5% -6.86%
6th-order ENO -21% -8.63% -4.74%

3rd-order ENO-2 -47% -5.98% -1.82%
6th-order ENO-2 -8.43% -6.96% -2.38%

Table 4: Relative Errors in Amplification Factors

7 Concluding remarks

ENO schemes based on fluxes and Runge-Kutta type TVD time discretizations, introduced
in [22, 23] are implemented on Cray 2 supercomputers. Vectorization is realized for all
inner loops. Currently the code runs 4.5 times slower than the classical centered difference
schemes of the same order: a factor of 2 is due to the upwind flux splitting f = f - + f-,
another factor of 2 is due to the adaptive stencil process. If characteristic decompositions are
used, the CPU time is increased by another factor of 1.7 to 3. General geometry is handled
by transformations. Numerical examples include 2D and 3D homogeneous turbulence, shear
flows, and shock interaction with vorticity waves. ENO schemes show their advantage when
the solution contains both strong shocks and detailed structures: with a relatively coarse
grid, where shocks or rapid transition regions are not fully resolved, quantities like mini-
mum divergence cannot be resolved, but the numerical result is still stable and large-scale
quantities such as Mach number and amplification factors can be well resolved.
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Figure 1. Evolution of the vorticity thickness for the Mach 0.5 free shear layer problem using
the 3rd-order ENO scheme.
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Figure 2. Evolution of the vorticity thickness for the Mach 0.5 free shear layer problem using
the 6th-order compact scheme.
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Figure 3. Evolution of the 4 lowest Fourier harmonics for the Mach 0.5 free shear layer
problem using the 3rd-order ENO scheme.
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Figure 4. Evolution of the 4 lowest Fourier harmonics for the Mach 0.5 free shear layer

problem using the 6th-order compact scheme.
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Figure 9. Evolution of the vorticity thickness for the Mach 0.9 free shear layer problem using

the 3rd-order ENO scheme.
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Figure 10. Evolution of the vorticity thickness for the Mach 0.9 free shear layer problem
using the 6th-order compact scheme.
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Figure 11. Evolution of the 4 lowest Fourier harmonics for the Mach 0.9 free shear layer
problem using the 3rd-order ENO scheme.
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Figures 16: density (left) and vorticity (right) contours for the spectral scheme with 2562

grid points.
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Figures 17: Density (left) and vorticity (right) contours for the spectral scheme with 642
(top) and 1282 (bottom) points.
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Figure 18: Density (left) and vorticity (right) contours for the third order ENO-LF with 642
(top) and 1282 (bottom) points.
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Figure 22: Time history of average Mach number, 3D.
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Figure 23: Time history of maximum Mach number, 3D.
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