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ABSTRACT

When the signal to ncise ratio is low, the detection of a track in a lofargram by computer
is difficult. Actually, operators often face this kind of problem when detecting an
acoustic signature in the ncisy sea environment. Furthermore, operators inust keep on
tracking lofargram to identify a given target. This problem could be handled by the au-
tomation of lofargram processing using filtering or image processing techniques. This
technique will suppress the background and emphasize the spectral lines in the
lofargram. Targets can be tracked by an automatic lofargram processing system up to a
certain point at which the system should alarm the oberator. The enhancement proc-
essing of lofargrams using a relaxation method could be one part of the automatic sys-
tem of lofargram processing to provide available target information for good decisions.
The objective of this thesis is to enhance spcctral lines of the lofargram by using the re-
laxation method which is an iterative approach to line detection. This technique makes
probabilistic decisions at every point of the lofargram for each iteration. Decisions are
adjusted at suvc--ssive iterations based on the results of the previous itcrations. This
thesis tested algorithms using relaxation method for lofargrams. Some expcrimental re-
sults of the lofargram processing are presented. Experimental results showed that an
cdge relaxation mcthod can vield better results than the line relaxation method. How-
ever, a double line detected from an edge is still undesirable and requires future work.
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I. INTRODUCTION

A. WHATIS A LOFAR

The term "LOFAR” is defined as “search technique using omnidirectional
sonobuoys”, It is an acronymn for "LOw Frequency Analysis and Recording,” Every
ship including submarine create peculiar noises in the sea. The noise spectrum ran be
used to distinguish different types of saips. Il we know the noise [requency spectrum
pattern radiated from a certain ship, it is possible to identify this ship by examining the
lofargram. This is the basic motive of using lofar.

For determining the characteristic of noise spectra, a frequency-time analyzer can
be used, which is similar to those uscd for speech analysis. It yields a plot of frequency
against time and shows the intensity of the sound in the bandwidth of the spectrum by
darkening the record paper. This paper plot is called a lofargram.

Before the appearance of the digital tofargram, thermal burning of record paper was
used. But, the conventional paper gram was inconvenient to handle compared to digital
lofargram. Furthermore, an undesirable smell was created during operation because of
the burning on the long strip of paper using the old method. Therefore, the old method
is almost replaced by the digital lofargram. The digital lofargram is obtained by digitizing
the analog signal and displaying a gray scalc on the computer screen or on a paper.

Figure 1 adopted from [Ref. 1] is an example of a lofargram of the noise of a large
surface ship obtained from a hydrophone. As the ship passed by, tracks are left in the
lofargram. The frequency scale clong the horizontal axis extends from 0 to 150 Hz ana
the recording duration of the vertical axis was approximately 1/2 hour. The constantly
spaced vertical line components marked by arrows are blade-rate lines. The lines marked
X are of unknown origin. Figure 2 adopted from [Ref. 2] indicates the block diagram of
a passive sonar to get the lofargram.

Generally, the lofargram has charactcristics as follows

1. Signal to noise ratio is generally low.

2. A constant frequency tonal produces a darkening over time periods, which would
appecar as a vertical line on the lofargiam display.

3. Multi-lines could be displayed on the lofargram depending on the spectrum band-
width.

4. Slant lines or slightly curved lincs are due to the Doppler shift could be shown on
the lofargram.




Frequency
Figure 1.  Lofargram of a surface ship at a speed.of 11 knots
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Figure 2.  Passive sonar system block diagram

B. OBJECTIVE OF LOFARGRAM PROCESSING

When the SNR is lower than 3db, the interpretation of lofargram is difTicult. Actu-
ally, operators often face this kind of situation in the noisy sca environment. Further-
more, operators must keep on tracking lofargram to identify target. This problem could
be handled by the automation of lofargram processing using filtering or image process-
ing techniques which can suppress the background and emphasize the spectral lines in

the lofargram. Target can be tracked by an automatic lofargram processing system up




to a certain point then the system alarms the operator. The enhancement processing of
a lofargram using the rclaxation method could be one part of the automatic system of
lofargram processing to provide target related information for good decisions.

The objective of this thesis is to enhance the spectral lines of the lofargram by using
the relaxation method which is an iterative approach to line detection. This technique
makes probabilistic decisions at every point of the lofargram for each iteration. Deci-
sions are adjusted at successive iterations based on results of the previous iterations.

This thesis will present some experimental results of the line enhanced lofargrams
using the relaxation method.

C. WHAT IS EDGE AND LINE DETECTION

Edges are defined as the discontinuity of intensity in an image, and are basic parts
of the image information in general. Both the edge and line detection are fundamental
techniquss of image processing which are used to detect boundary of an object. But,
there is an important difference between edge and line detection. Edge detection aims
at finding the local discontinuities in an image. These discontinuities are of interests be-
cause they are likely to occur at the boundaries of objects. The output of an edge de-
tection process will be some local line shown as boundaries of an object. Figure 3 shows
the step edge and output profile of an edge detection proces-.

(a) (b)
Figure 3. Gray level profile of a) edge and b} line

In real images, with noise and surface imperfections, gaps between local lines are ex-
pected. Therefore, a process to organize the local edges into aggregates is needed in a
line detection technique. Line detection is a process where edges in an image are ag-
gregated to form object boundaries. These boundaries mav not be known a priori. But,
in many cases, they can be approximated well by piccewise linear segments. Howcver,
it is not feasible to simply fit lincar scgments to all the edges in an image and discard the
poor fits. It is first necessary to aggregate the edges lying along a single line or along




another known curve. Proximity and the directions of an edge or more detailed de-
scriptions of the edges can be used for such aggregation. Therefore, edge detection and
line detection can be put in sequence. Basic ideas of edge and line detection are ex-
plained in [Ref. 3].
Usually edge and line detection algorithins can be divided into the following cate-
gories. [Refl 4]
1. Detection of element.
Diflerential-type operator.
Model-fitting method.
2. Enhancement of lines.
Enhancement in image space.
Enhancement in parametric space (1Hough transform).
3. Connection of elements.

Connections using graph search techniques.

Category ! refers to the process to detect line or edge elements by applying local oper-
ators such as Roberts [Ref. 5] , Prewitt [Ref. 6] and Sobel [Ref. 7). An approximation
of the gradient for a digital picture from Roberts’s operator is given by

R(iy) = Ve(iv)

= gl + 1+ 1)=gli) P48l + D—gli + 1)}’ (L1)

In Figure 4 g(i,/) denotee the intensity of the image iof the pixel (i,j), which the direction
of the gradient is given by

gliy + 1)—gli + 1))

0=—-"24tan™ - : —
L g(i + 1y + 1)—g(iy) L

4

(1.2)

The Prewitt operator defines the magnitude of a gradient from Figure § by
S=/S}+S} (1.3)
Sy = (ay+a;+ ay)~(ag+a; +ag) (1.4)
Sy = (agtas+as)~(ag+a,+a,) (1.5)

and the direction of the edge is given by




S
f =tan™'( (L.€)

Sy
i i jel
isl.j i1, jel

Figure 4. Robert’s gradient operator

The Sobel operator defines a gradient from figure § by
S = | (ay+2a,+ay)—=(a,+2as+a,) |
+ | (ag+2ay+ag)—(ay,+2a;7-a4) | (1.7 -

Generally, a differential type operator doesn’t perform well compared to a model fitting
method. We are going to discuss this problem in the experiment part of this thesis.

Category 2 is a smoothing processes which eliminates noise components and em-
phasize edges. In this category, the iterative method performs edge enhancement by ap-
plying iterative processing based on relationships of its neighbour elements in an image
space. Category 3 is a process which connects small line segments into longer lines.
Knowledge or constraints related to the sequence of elements to be detected are used in
an evaluation function. Then, the connection of elements is regarded as a graph search
problem. In this case, two techniques are used: one directly proceeds with the line ex-
traction while searching the edge elements for brightness data, and the other applies a
local edge operator to the entire image before the connection of elements is done.
[Ref.3]
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Figure 5. Apixel and its eight neighbors

In this chapter, the general ideas of line and ed

ge detcction as used in lofargram

processing arc explained. Chapter [I introduces the relaxation technique, while a modi-

fied algorithms using relaxation technique is introduced in Chapter 111. Experimental

results of lofargram processing are given in Chapter 1V. Chapter V is the conclusion

of this thesis.




II. RELAXATION METHOD

A. GENERAL BACKGROUND

Relaxation techniques were first used by Waltz [Ref. 8] for the description of solids
and were expanded by Zucker [Ref. 9] for a varicty of applications. Relaxation is an it-
erative approach to assign each pixel to categorics by assigning the neighboring pixels
in a "compatible” way. This means that cach pixel has intcraction with its ncighboring
pixels, and the degree of interaction is considered in termis of the compatibility of cach
pixel to its neighboring pixels. This method takes a set of probabilities {or each pixel to
belong to a possible class, and uses an iteiative technique to update the probabilities.

An important element of the method is a set of compatibility measures ¢(k,s;/,#) that
gives the compatibility of assigning pixel & to class s and assigning the neighboring pixel
[ to class t. It is assumed that c(k,s;/,7) is in the range (-1,+ 1) where -1 implics a strong
incompatibility, + 1 implies a strong compatibility, and 0 implics neutrality. p*(k,s) is an
initial estimate of the probability that pixel & belongs to class s. Let g'(k,s) is the incre-
ment of the probability and N be the number of neighbors for each pixel; a neighbor-
hood of 3x3 or 5x§ is usually employed. Then, a sequence of estimates p(k,s) is
computed iteratively as follows

1. For each pixel £, compute the “neighbor compatibility” between pixel 4 and its

ncighbor pixel / in class s, which results in the probability of pixel & in class s.

glhs) == D D clhsilp () 2.1)
! 1

where the summation is over all possible neighbor pixels [ and al! classes . If only
two classes(for example, edge and non-cdge) are considered, then there are only
four cases of neighbor compatibility c(k,e;l,e) means the compatibility of an edge
pixel & being a neighbor of an edge pixel /. ¢(k,e;/,n) means the compatibility of an
cdge pixel £ being a neighbor of a non-cdge pixel { . ¢(k,m;/,e) mcans the compat-
ibility of a non-edge pixel £ being a neighbor of an edge pixel [ . c(k,m;/,1) means
the compatibility of a non-edge pixel & being a neighbor of a non-edge pixel /.

Therfore, equation (2.1) can be expanded as follows




q'(kye) = 71\7 c(kelelp"(e)tcik ety (L) 2.2)
{

g (ko) = —‘1\7- ekl ) (he)telkmlnyp (L) 2.3)
]

2. Update the probabilitics p+!(k,s)

(k) = L)L ) -,
ZP'(k,S)(qu(k.S))
For two classes;
pr+](/(,€) - r (,<!e)[l+q (/c,e)] (2‘5)

T pe)Li4q (ko) 1+ (k) L+ (k)]

Equadion (2.5) gives the probability that pixel &4 is an edge. Then the probability
that pixel £ is 2 non-edge is defined by

P k) = 1=p™(k,e) (2.6)

As the process is iterated, these probabilities must stay in the range from O to 1. The
formulas given above are the basic expression of the relaxation technique. This concept
can be expanded and modified for other applications. This technique has the following
characteristics:

1. High compatibility pixels tend to rcinforce each other and the low compatibility
pixels tend to discourage each other.

2. The degre= of reinforcing o1 discouraging done by a ncighbor is proportional to its
own probability of assignment of that class.

3. The probabilities p(k,s) remain in the range from o to 1 and sum to 1 over all of
class s.
B. APPLICATIONS OF RELAXATION METHOD
1. Line enhancement
One of the applicaiions in which relaxation techniques have been proven useful
is the detection of long smooth curves in an image. Initially, line detection operators
are applicd to the image, and their outputs are used to determine an initial probability




of the point lving on a curve with a given orientation. These probabilitics are then iter-
atively reinforced: the probability of a point lying on a curve is reinforced by the prob-
abilitics of the other points lying on curves that smoothly continue it. After iterations
of the procedure, points that lie on smooth curves tend to have high probabilitics of
being curve points, while the other points do not.

An application of the relaxation technique to the detection of major edges in
an image will be presented in the next chapter in detail. Initially, a gradient edge opera-
tor is applied to the image. This provides information about edge strength and orien-
tation at cach point. These probabilities are then iteratively reinforced.

The general idea of the edge reinforcement process is as follows.

a. Magnitude and direction

First, the magnitude and dircction of the image gradient are computed for
cach pixel k. The magnitude of pixel £, divided by the maximum of the magnitudes over
the entirc image, defines the initial probability p°(k,s) of a pixel & being an edge.

b. Reinforcement of edges

The reinforcement process defincs a new edge probability of a pixel & in
terms of the old probabilitics at the pixel & and its neigabor pixels. The computation of
the new edge probability can be broken into steps as [vllows.

(1) Interactions between edge and non-edge. 'The interaction between
edge and edge, edge and non-edge, non-edge and edge, non-edge and non-cdge depend
on the edge direction at the two positions, on the orientations of the line joining the
points, and on the distance between them.

(2) Computation of the new probability. To compute the new edge prob-
ability obtained from the iterations, first, compute weighted sums of the edge and non-
edge probability increments, g'(k,e) and ¢'(k,7). These sums are then normalized to lie
in the range(-1,+ 1) according to (2.4). They are uscd to update the edge and non-cdge
probabilities, while the updated values are normalized so that they can sum to 1.

The real issue in this thesis is to search for good line detection tech-
niques applicable to lofargrams,and not to edge detection. Thercfore, we are going to
concentrate on the reinforcement of the rclaxation method as applied to lofargram.

2. Labeling
There is another application using the relaxation technique, which is called “la-

beling.” The objective is to assign labels to objects in an image. {Ref. 10]




a. Components of labeling
In a finite sct of relations between objects, the objects usually correspond
to entities to be labeled. The objects are often geometrically or topologically related to
each other. An input scene is thus a rclational structure of all objects. In the simplest
case, each object is to be assigned with a single label. Labels may be weighted with
“probabilities” indicating the “probability of an object having that label. "Constraints
determine what labels may be assigned to an object. A basic labeling problem is then:
Given a finite input scene (relational structure of objects), a set of labels, and a set of
constraints, find a consistent labeling,
‘There are scveral types of labceling using relaxation.
b. Discrete labeling
It is a paralle] iterative algorithm adjusting all object labels. All possible
labels to each object are assigned in accordance with constraints. Iterations are per-
formed until a globally consistent labeling is found. In parallel, from each object’s iabel
set all the labels that are inconsistent with the current labels of the rest of the relational
stiuctute are climinated.
¢. Linear lubcling
The labeling process starts with an initial assignment of weights to all ob-
jects. Weight are reminiscent of probabilitics, reflecting the “probability that a label is
correct.” (lere p refers to probability-like weight rather than to the value of a probability
density function. Let a relational structure with » objects be given by g, , k£ = 1,..n, each
with m discrete labels 2, ,, and let p,(1) denote the weight, or the “"probability” that the
label 4 is correct [or the object a, and restiicted as {ollows

0< )€1 (2.10)

Zf’k()-) =1 (2.11)
A

The linear labeling operator is based on the compatibilitics of the labels,

which serve as the constraints, A compatibility p,, looks like a conditional probability.

DA ¥y =1 (2.12)

A

10




The p,(4]2') may be interpreted as the conditional probability that object a, has label
_A given that another object g, has label 1. The operator itcratively adjusts label weights
in accordance with other weights and the compatibilities. A new weight p,(4) is com-

puted from old weights and compatibilitics as follows.

D) =D culredt 1 2)pfA)] (2.13)
!

The ¢, are coefficient such that

Y eu=1 (2.14)

{

d.  Nonlinear labeling
I1 the compatibilities are allowed to take on both positive and negative
values, we can express strong incompatibility and strong compatibility. Denote the
compatibility of the event “label 2 on a,” with event “label 2’ on a,” by r,(4, 2'). If the
two events occur together often, r,, should be positive. If they occur together rarely, ry,
should be negative. If they are independent, r, should be 0. The compatibilities are based

on correlations

Cov(X, 1) = p(.X, 1)=p(X)p(1) (2.15)

o’ (X) = p(X,.)~(p(X)? (2.16)
(X,

cor(X,1) = %g;(_;_;_ (2.17)

The r,, is used to obtain the positive or negative change in weight.

GD =D ) el VW) (2.18)

{ A

The g;(4) is the increment of the weight. The probability change is as follows
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P AL1+g(A)] (2.19)
Z,,,:(;.)[Hq;(ﬂ.)]

2

rit'(4) =

Basically, labeling is diflerent with the detection problem. Labcling is a
process to assign the correct fabel to the correct position while detection is a process to
take the desired portion of a scene having a mixed feature. Thercfore, labeling is a dif-
ferent techmque for line detection.

The general concept of the relaxation technique and its applications were
discussed in this chapter. In the next chapter, line and edge detection algorithms using

rclaxation technique will be discusscd in details.




IlI. RELAXATION ALGORITHMS APPLIED TO LINE DETECTION

There are many algorithms already devcloped for line detection. In this thesis, the
objective i; to seiect and test some of them for the lofargram processing.

A. EDGE ENHANCEMENT(RXEG)

This algorithm is derived {rom the original idea developed by Schachter, et al to re-
inforce the continuous edges detected by a gradient operation. RXEG is an acronymn
for "RelaXation method for EdGe detection”. Edges reinforce other edges that interact
with nearby non-cdge points in specified ways. The gradient of the edges are also iter-
atively adjusted. [Ref. 11]

1. Initial edge probability

A digital gradient operation is applicd to the given image £, 1f we denote the x
and y components of the gradient by A,/ and A,f, then the magnitude and direction ¢f

the gradient are given by

mag = [(BN+A,)° (.
AS
0 =tan”( -5;7) (3.2)

‘The mag of .he gradient indicates the strength of the edge. The angle 8 of the gradient
is perpendicular to the edge direction. Lidge direction is obtained by adding 90° to the 0
angle of the gradient.

We delined the “probability” of an edge at a given point & by

mag(k)

max(mag({)) (3:3)

plk.e) =
where the max is taken over the entirc image. The probability of a nonedge at a pixel &
is defined as p(k,n) = 1—p(k,e).
2. Pixel and neighbor interaction
The centered pixel k& could have four kinds of interactions with its neighbor pixcl

[ such as cdge/edge, edge/non-edge, ncn-cdge/edge and non-edge/non-edge.
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a. Edgeledge interaction
k is the centcred pixel position, and [ is one of the neighbor pixel position.
Let o be the edge direction at &, f# the edge direction at /, y be the dircction of the line
joining & to I, D the chessboard distance from & to [, i.e, max(| k~l |,| k~{|). Then
the edge/edge reinforcement process between the points & and [ has strength given by

c(k,e;l,¢) = cos(a—y) cos(f—y)/2" (3.4)

To sce the significance of this definition, a few simple examples are consid-
ered. In these examples, the arrows indicate the direction along the edge, with the dark
side of the edge on the left. These examples showed that parallel and perpendicular
edges have no cffect on one anather.

Case o B Y cos(o —y) cos(B-1vy)/,F
/M\ 90 90 0 0
/N/ 80 270 0 0
ﬁ 90 90 90 1/,
$ 90 270 90 -1/ 2t
4\_> 90 0 0 0
4\6- 90 180 0 0

Table 1. Examples of cdge / edge interaction [Ref. 8}

b. Edge[non-edge interaction
Besides the edge/edge interaction which occurs between the cdge probabili-
tics p(k,e) and p(le) there are also interactions involving the non-edge probabilitics
p(l,n) . The edge probability at pixel k is weakened by the non-edge probability at pixel
[ to the degree c(k,e;l,n) defined by

c(k,e;l,n) = min[0, — cos(2a—2y)/2"] (3.5)
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In the examples, non-cdge neighboring points collinear with the center edge points
weaken them, whereas non-edge points alongside edge points have no eflect on them.

Case o v |- cos@a -2y) 12°| ek, e; 1, n)

N 90 0 1/2° 0

V- 270 0 1/2° 0

A 90 270 -1/2° -1/2°

A 90 90 -1/2P -1/2°
Table 2. Examples of edge / non-edge interaction [Ref. 8]

c. Non-edgeledge interaction
I he non-edge probability at pixel 4 is afTected by the cdge probability at the

ncighbor pixel / to the degree c(k,zl,e) defined by

et = L= (36)
Case o B Y (1-cos(2a - 2y)) /2°
A 0 90 0 1/2°
A 0 90 90 0
Table 3. Examples of non-edge / edge interaction [Ref. 8]

Irom the examples, ncighbor edge points alongside the center point strengthen them,
While cdge points collincar with non-cdge points have no eflect on them.

d. Non-edge[non-edge interaction
The non-cdge probabilitics at centered pixel k and the neighbor pixel [ re-

inforce each other to the degree c(k,m;/n) defined by

clkyiln) = —2’7 3.7)
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Non-edge probabilities arc reinforced by the other nearby non-edge probabilities.
c(#m;l,) is directionally independent.
3. Combined reinforcement process
For each pixel &, the net effect of its neighboring pixel on its edge probability
~ plk,e) and non-cdge probability p(k,n) = 1—p(k,e) is computed as follows

¢'(ke) =) Cip'(Lo)elkesl,e)
{

£ Cop (m)elkseslym) (3.9)
q (k) = ZC3p’(l,e)c(k,n;1,e)
{

+ZQp’(1,n)c(k,n;I,n) (3.9)
1

where G, G, C,, C, arc constants whose sum is cqual one. The standaid values of
C,=0.866 , C,;=0.124, C,=0.005, and C,=0.005 was used in the paper by Bruce
J.Schachter, et al [Ref.11]. The results of the iteration process are somewhat sensitive
to the choice of the C's. For example, if C, is too large, the edge will thicken and will
be extended into non-edge points; while if C is too large, gaps will appear at weak spots

in the edges and at sharp angles.

7 (ke)
(ko) =— - 3.10
T =+ 1] (3.10)
q'(k.n)
(k) = — : 3.11
T =Tk + 1 g G G310
P(ke) = () 1+q (k)] (3.12)
p'lkn) = p'(/c,n)[l-l-q'(/c,n)] (3.13)
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p’+l(k,(') - p (k'e)

= p(ke)tp k) (3.14)

This process is then iterated by using pr+i(k,e) in place of p'(k,e), and by using
1=pr*Y(k,e) in place of pr(k,n). We also compute the estimated edge direction A’ (k) and
A’ (k) at each point

A’ (k) = 1Vp'(l,¢) cos(0(k))

+Zp'(l,c)c(k,c;l,a) cos(6(D)) (3.15)

!

Ay (k) = W'p'(le) sin(0(k))

+Zp'(1.c)c(/<,e;1,v) sin(0(/)) (3.16)

{
07 (k) = tan™ (&' (x )/ A" (x ) (3.17)

For large values of the constant W, 07! is close to @; while for small values, it is strongly
influenced by the neighboring 0’s.

B. LINE AND CURVE ENHANCEMENT(RXLN)

In section A, only two categorics arc associated with the image pixel, (i.e, edge and
no.1-edge). In this scction, more categories arc considered in the RXLN relaxation pro-
cedures. RXL.N is an acronynm for “RelaXation method for LiNe detection.”

This algorithm was devloped by Zucker, Hummel and Rosenfeld [Ref. 12} The re-
laxation process is applied to the detection of smooth lines and curves in noisy images.
Nine class labels associated with each image point will be considercd. Light classes in-
dicate lines at various orientations and one indicates the no-line case. In the relaxation
process, interaction takes place between the probabilities at neighboring points. This
permits line segment with compatible orientations to strengthen one another. Similarily,
no-line class is reinforced by neighboring no-line class and weakened by the ncighboring

oriented line classes.
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1. Initial probabilities

At cach point, probabilitic, are assigned to the nine classes which are lines in
cight possible directions and a no-linc class. The initial probability for each class is ob-
tained by evaluatng a nonlinear line detector as shown in Figure 6 at every picture point
along the eight orientations. Eight sets of pixels representing eight orientations are se-
lected and shown in Figure 6. Each set of pixels are rearranged as the template shown
in Figure 6 (b). When the condition in FFigure 6 do not hold, the response is zero. When
they do hold, the response is calculated by

R = (B+E+1)- —%— (A+D+G+C+F+1) (3.18)
At each pixel, the detector’s response are computed for every orientation. 7 fien only one

orientation which has the maximum detcctor’s response is selected as the orientation of
the pixel. [Ref. 13]

Jempjate Conditions

A B C A<«<B»>C

D E F D <E> F

G H | G <H> | ’

(a)
B B B B H H
E E E HE HEB HE E E
H H H B B B
(1) (2) (3) (4) (3) (6) (7) (8)
(b)

Figure 6. Nonlinear line detector. (a) Nonlihear line detector for the vertical ori-
entation. When the conditions do not hold, the response is zcro; when

they do lhiold, the response is calculated by (3.18). (b) Eight orientations
of the detector.
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To describe this process, let d,(k) denote the output of the nonlinear detector for
orientations s at pixel £ . Let p(k,s) denote the probability that a pixel £ belongs to class
s. Then the initial probabilities can be obtained by scaling the detector’s responses at
cach position by the maximum over the entire picture. The probability that pixel £ has

class s is expressed as follows

R
max(dy(k)) d,(k)

m?:x((max)d (k) " 5:
5= k : ds(k)
s=1

plk,s) = (3.19)

R . . »
malx(d,(k)) means the one selected maximum value over all orientations. mlf\x(d,(k))
F i
means the maximum valuc of oriented s over all image pixels. and the probability that

pixel & has no-line is delined by

8
pk9) = 1= plkis) (3.20)

s=1

2. Compatibility coefficients

To upd.te the probabilities, the compatibility relation between a pixel and its
neighbors must be specified. The compatibilities depend only on the relative orientations
of the neighboring point. These compatibilitics can be specified in the following way. If
two neighboring line segments are oriented in the same direction or closc to the satne
direction, they add support to one another. If, on the other hand, two neighboring scg-
ments are oriented perpendicularly to onc another, they will reduce support to each
other. All other pairs of linc segments are distributed between thesc two extremes. In this
algorithm, there are three types of compatibility coeflicients.

a. Compatibility coefficients betwecen lines

Figure 7 shows the compatibility coeflicients between the lines in five ge-

ometrical relationships. As standard values, from left to right: 1.0, 0.5, 0.05, -0.15, -0.25
are used, When straight line enhancement is desired, 1.0, 0.0, -0.1, -0.17, -0.22 aie used.
[Ref. 13]
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b. Compatibility cocfficients between %ne and no-lines
As its standard value, -0.1 is used. Decreasing the value to -0.5 increases the
effect to fill the gap between linc segments. [Ref. 13] The standard value is 0.25.

T T
|

1.0 S .05 =15 =25

Figure 7. Compatibility weights between line labels

c.  Compatibility coefficients between no-lines
Jucreasing the value up to 0.5 improve the noise effect but, may cause era-
sure of line labels. [Ref. 12]
For each pixel £, its neighbor pixel has 9x9 cases of interaction with the
center pixel. If neighborhood size is 5x5. There are 5Xx5x9x9 cases of compatibility coel-

ficients, c(k,s;0,0).

ck,;1,1) . . ek 1;25,1)

c(k,9;1,9) . . ¢(k,9;25,9)

3. Updating probability
'The updating process can be expressed in terms of compatibility functions. Let
q'(k,s) represents the increment applied to pr(k,s), which is the probability that pixel &

belongs to class s. The probabilities of each pixel in each class are computed as follows

q'(k,5) = Z Zc(k,s;[,l)p'(l,t) (3.21)
]

where s represents nine classes of reference pixel and ¢ represents nine classes of ncigh-

boring pixels and
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P hys) = ;:’(/(,S)[H-q'(k.s)] (3.22)
D 1+ )]

5
C. LINE AND CURVE ENHANCEMENT(RXLAL1)

This algorithm is delivered from the original idea developed by S.Peleg and
A.Rosenfeld [Ref. 14]. RXLAL is an acronymn for “RelaXation method for Line And
curve.” Basic concept using in this algorithm is the same as that used in the RXLN(sce
scction B) except that the method for compatibility cocflicient is different.

1.  Compatibility coefficient

One possible interpretation of the compatibilies is in terms of statistical corre-
lation. Correlation has properties as [ollows
a. If class 5 and class ¢ arc compatible {or pixel £ and pixel [, c(k,s;0,1) >0
b. If class s and class r arc incompatible for pixel k and pixel /, c(k,s;1,1) <0
c. If neither class is constrained by the other, c(k.5;l,t) =0

d. The magnitude of c(k,s;/,t) repicsents the strength of the compatibility.

Estimates of e correlation coeflicients derived from analyzing the initial

probability are

Lotk,s)=pk,s)ILp(h)—p(hn]

c(k,sl\t) = o(s)a(t)

(3.23)

plk,s) is the initial estimate of the probability of pixel & with class s, fi(k,s) is the average
of p(k,s) for all pixels k, o(s) is the standard deviation of p(k,s). If the ncighborhood size

is 5% §, § x5 %9 x9 cases exist for cach pixel as below

ck,1;1,1) . . c(k,1;25,1)

c(k,9;1,9) . . c(k,9;25,9)

Then, for every case and for all pixel & we have the summation as given by
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ck, ;L1 o oclk 15250 etk i) L. elk,1,25,0)

Ck9;1,9) . . c(k,9;28,9) c(k,9;1,9) . . c(k;,9;25,9)

ek, 1i11) o o ek, 1525,1)

.

(ks 9:1,9) + . c(ky,9;25,9)

+ LY

Therefore

> k) =P A -PU0]
. __k
clk,silt) = EEE]

(3.24)

In this algorithm, there is the cffect of dominance, that is, when one class
dominates the picture, its correlation cocflicients with all other classes are high. Thus in
the relaxation updating, the dominant class gets most of the support, and after a few
itcrations alinost all the pixels have this class. The effect of dominance among classes
can be alleviated by weighting the ¢(4,s;/,1) by the probabilities that the corresponding
classes do not occur. This greatly reduces the values of the coeflicients involving donii-
nant classes, but will only slightly reduce the values of the coeflicients involving rare
classes. The compatibility coeflicients used in this algoritm are

clk,silyt) = [1=plkS)ILT=P ()] X clkidys,1) (3.25)

Two line and edge detection algorithms using relaxation technique were dis-
cussed in this chapter. These algorithms will be applied to the lofargram for line de-
tection. Experimental results of these algorithins will be discussed in Chapter 1V,
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1IV. EXPERIMENTAL RESULTS AND A MODIFIED RELAXATION
APPROACH

In the experiments, four different relaxation algorithuns are applied to lofargrams
having different §/N. Both real and artificially ¢reated lofargrams were used as test im-
ages. As discusscd previously, two algorithms RXLN and RXLA1 are line detection al-
gorithms while the third algorithm RXIG is an edge detection algorithm. The purpose
ol the experiment is to test these three algorithms to sce how they work for lofargrams.
The sccondary purposc of these experiments is to obtain thin lines for lofargram inter-
pretation. Because the results of these algorithms were not satisfactory, improvement
of the most suitable algorithms are suggested.

The results of the line detection algorithms RXLN and RXLAI were not encour-
aging when the §;N is low. The reason will be explained later in this chapter. The results
improve as the S/N increases. One eficet is that the noise was removed very slowly in
iterations of reinforcement. On the other hand, the cdge detection algorithm, RXEG
showed better results than the above two algorithms in the presence of low S/N. But the
results were still not idcal. A double line was shown when the S/N was low because
RXEG was the cdge detection algorithm. Theiefore, some modification is needed for line
detection in the RXEG. This will be discussed in details later.

Two parts in the RXEG algorithm were modified. The first one is the initial magni-
tude of the pixel, since the outputs are greatly influenced by the initial magnitude of the
input image. The other is the initial dircction of the pixel. Because RXEG uses a differ-
ential type of edge detection operator, the initial direction in RXEG is not appropriate
for the lofargram line detection. In RXEG the edge direction has a dark side which in-
dicates the outside of the object and a bright side which indicates the inside of the object
body. But the direction of a line simply indicates the potential direction of a track in a
lofargram. Detail will be discussed in section C.

In a search for a better initial magnitude and direction, many other algorithms were
tested. It assurcs that the magnitude and direction output from EGPR which is another
line detection can be uscful. The RXLEG was modified and tested accordingly.

A. LINE DETECTION ALGORITHMS (RXLN, RXLA1)
Both RXLN and RXLA1 are line detection algorithms which use similar methods
for initial probability and compatibility cocflicient calculations as explained in Chapter
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HI1. But the applications of these are very discouraging. Figure 8 shows a real lofargram
as the input image and its initial magnitude calculated in RXLN. Figure 9 shows the
results of two itcrations of reinforcement. And Figure 10 shows an artificial lofargram
with §/N of 6 db and its initial magnitude image. Figure 11 show the results of the four
iterations of reinforcement. And Figure 12 show the results for 3 db and 6 db of S/N.

The initial magnitude of input image shows that the result is very noisy. In these
algorithms, there is the effect of dominance. When one class dominates the picture, high
value is assigned to the dominating class at cach pixel and low values are assigned to the
other classes. Thus, the dominant class gets the most support in the relaxation updating
process. And after a few iterations alimost all the pixcls have the same class. Figure 8
shows that the noise dominates the picture when the lofargram has low S/N. Figure 10
(b) still shows that the noise dominates the picture. When the S§/N is higher, the signal
showed up weakly as shown in Figure 11. But noisc still dominates the picture. Gener-
ally noise dominates the lofargram. Noisc stiongly dominates the lofargram when the
S/N is low. Ilence the RXLN and RXLAI algorithms are not suitable for lofargram
processing.

B. THE RESULTS OF THE EDGE DETECTION ALGORITHM RXEG

Figure 13 shows the initial magnitude of the RXEG of the input image. Figure 14
shows the results of the reinforcement applied to Figure 13. In this implementation,
neighborhood size is 5x5, then the 24 neighboring pixels influenced the centered pixel.
Figure 15 shows the artificial lofargram input image and its initial magnitude with 6db
of §/N. The iteration scheme has considerable noise removal power as shown in the
example of Figure 14. Figure 16 shows that the results of the artificial lofargram with
higher §/N can yield a stronger response. A double line in Figure 14 (b) and FFigure 16
indicate that the edge was detected from the input image. Because RXEG uses the edge
detection operator, double lines are shown at lower iterations, The weaker line of the
double lines disappeared gradually in the 1¢claxation process with 4 successive itcrations
as shown in Figure 14, Figure 17 shows the results for 3db and 6db of §/N. A desirable
example of edge detection is shown in Figure 18.

C. MODIFIED EDGE DETECTION ALGORITHM RXEG

The results of RXLEG shows that this algorithm works as an edge detection algo-
rithm. It can detect the edges in the lofargram, even though the S/N is very low. Double
lines in Figure 15 (b) shows an example of the edge detection.
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Results of four iterations (1,2,3,4) of reinforcement from Fig 10
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(d)
Figure 14.  Four iterations (1,2,3,4) of RXEG (continue)
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(d)

(b)
Results of four iterations(1.2,3,4) of reinforcement from Fig 15

b)

(

ficial lofargram with 6db S/N and its initial magnitude

a)

(
Arti

(a)

Figure 15,
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Figure 17. Results of two lofargrams, (a) 3db (b) 6db.

Results of the reinforcement with 5 itcrations. [lowever, the purposc of lofargram
processing is to detect the line of the signal for the interpretation of the lofargram. The
desirable ideal example of the line detection is shown in Figure 19. To accomplish this,
some changes in RXEG are required. Many algorithms were tested to generate the edge
magnitude and line direction for the initial probability. The new magnitude and direction
obtained from EGPR were adopted in the modified algorithm.

edge edge

\ 4

U

(a) (b)
Figure 18. Example of edge detection process (a) input (b) output

1. Edge magnitude output
The gray level of the edge enhanced magnitude of each pixel are processed by
masks. Nine masks are formed around a pixel in the shape of pentagon, hexagon and
rectangular as shown in Figure 20. The average values and the variances within the
masks around a pixel are calculated. Then, the average value of the mask with minimum
variance is assigned as the gray level of the center pixel.
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(a) (b)

Figure 19. Example of line detection process (a) input (b) output

(1 (2) (3)
(4) (3) (6)
(7) (8) (9) ‘

Figure 20. Nine masks from EGPR

2. Line direction output
The initial line direction of cach pixel is determined from the direction of the
mask with the minimum variance. Eight linc directions can be associtted with each im-
age point. The directions are symunetric to the origin. Therelore, only four of them are
considered as 0" = 180" , 45" = 225", 90" = 270" and 135" = 315". The direction for an edge
is the direction along the edge with the dark side of the edge on the left and the bright
side on the right side. This means that the edge direction 0" and 180" arc different di-
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rections. However, the directions for line detection from masks in EGPR do not have
dark side and bright side. The direction in EGPR simply implies the direction of a line
without dark side and bright side, This mcans that the line direction 0" and 180" are the
same dircction as shown in Figure 21. The edge direction with bright on the right side
are shown in Figure 22.

A

\4

Figure 21.  An example of line direction

dark bright

uright dark

Figure 22. An example of edge direction

The four directions generated from the EGPR are shown in Figure 13. But, start with
the second iteration after the first relaxation process, infinite line directions are consid-
ered at each pixel.
3. Pixel and neighbor interaction
[:dge detection in RXEG detects double edges of the signal line in the lofargram.
t can detect the edges reliably when the S/N is high. But, the purpose here is to detect
thin line as shown in Figure 19. For the thin linc detectiouy, it is nccessary to construct
a compatibility function with proper compatibility values for the interactions between
different classes. Basically, the same compaiibility function as that of the RXEG can be
used for the interactions between lines. The only diflerence between the line direction
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Figure 23.  Four possible line directions

and the edge direction is that the directionality of a line greater than 180" is considered
as the same as its syimetric value through the origin. In other words, the compatibilitics
of lines between the center pixel and the ncighboring pixels can be handled in the same
way as in RXEG,

The center pixel & could have four kinds of interactions with its neighbor pixel
{, i.e, line/line, line/no-line, no-line/line and no-line/no-line.

a. Linefline interaction

Let & be the centered pixel position, and / the neighbor position. Let o be

the line direction at £, f the line dircction at the ncighbor pixel /, y be the direction of
line joining & to [, D the chessboard distance {rom £ to /, i.e, max(|k,—L1,| k—={,1) .

Then the lie/line reinforcement process between & and [ has strength given by
c(k, bl = cos(o—y) cos(f—y)[2” 4.1)

which is similar to eq (3.4). Here ! represents the line class and n represents non-line
class. To sce the significance of this definition, a few simple examples are considered in
Table 4. Results changed with different compatibility value of parallel lines. In the ex-
periment, when a higher value of compatibility is chosen for paraliel lines, background
noise increascs, while a lower value is chosen when the opposite situation takes place.
b. Line/no-line interaction

The line probability at pixel & is weakened by the no-line probability at pixel

[ to the degree c(k,/;/,n) defined by

c(k,b5,m) = minf0, — cos(2a—2y)/2°] (4.2)

which is similar to eq (3.5). A {ew cxamples are shown in Table 5.
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¢. No-line[line interaction

The no-line probability at pixel & is affected by the line probability at the
neighbor pixel / to the degree c(k,m;l,{) defined by

(1 cos(2f-2y))
Py

clkmll) = 4.3)

which is similar to eq (3.6). A few examples are shown in Table 6.

case o B Y cos(a - ¥) cos(p ~y) /2°
: 90 90 90 1/2°
|— 90 0 0 0

|| 90 90 0 —

Table 4. Examples of linc / line interaction

case o Y - cos(20. - 2y) / 2P clk, I; 1, n)
|- 90 0 1/2° 0
i 90 90 -1/2° -1/2"
[ % | 270 a1/2” 21720

Table 5. Examples of line / no-line intcraction

case o B Y (1 - cos(2p - 2y)) /2P
. b

I 0 90 0 1/2

| 0 90 90 0

Table 6. Examples of no-line / linc interaction

36




d. No-line[no-line interaction
The no-linc probabilitics at the centered pixel & and that of the neighbor
pixel ! reinforce each other to the degree c(k,m;l,n) delined by

clhln) = (4.4)

L
2D
which is similar to eq (3.7)
4. Combined reinforcement process
For each pixel 4, the net effect of its neighboring pixer. >n its probability p(k,/)
and no-linc probability p(k,n) = 1—p(k,]) is computed as [ollows

gk = ) o (et i
{

£ Gl ) (@.5)
!
(k) = ¢ P (LDe(k,ml,])
q 743
{

£ Cap Ukl (4.6)
!

where C,, G,, G, C, are constants whose sum is taken to be one. The standard values
needed here are C, =0.866, C,=0.124, C,=0.005 , and C, = 0.005. The results of the
iteration process are somewhat sensitive to the choice of the C’s. For example, if C, is
too large, the line will thicken and will be extended into no-line points; while if C, is too

large, gaps will appear at weak spots in the lines and at sharp angles.

q'(kd)
(k) = —— _ 4.7
PR PTY o
q (ko) = q (k) | 4.8)

IR D)




p'kD) = p (k14" (k1)) (4.9)

(o) = )1 4+' )] @10
ity KD
v D= TR b o @

This process is then iterated with pri(k,)) replacing pr(k,)), and 1—p'(k,)) replacing
r'(k,n). We also compute the estimated line direction at each point

A (k) = TTp ey cos(B(k))

+Zp'(1,l)c(k,l;1,l) cos(8()) 4.12)

{

A’ (k) = TVp"(k,0) sin(0(k))

+Zp'(z,1)c(k.1;1,/) sin(0(0) (4.13)

1
0™ (k) = tan™ (A", (K)/ A () (4.14)

where iV is a constant. For large values of the constant W, 6+ is close to 0; while for
small values, it is strongly influenced by the neighboring 6's.
5. Experimental results

Figure 24 shows the initial magnitudc of the input image of I'igure 8 (a). Figure
25 shows the results for 3db and 6db of S/N. FFigure 26 shows the results of four iter-
ations of the reinforcement applied to Figure 24 using the modified RXEG. Figure 27
shows the artificial lofargram with 6db of /N and its initial magnitude. Figure 28 shows
the results of four iterations of reinforcement with 6db §/N artificial lofargram, Com-
paring Figure 13 and I'igure 24 reveals that the initial magnitudes of the modified RXEG
arc improved by using the EGPR line detection. The initial magnitude of modified
RXEG shows stronger signal line in Figure 24 when compared to Iigure 13. However,
the end results of reinforcement do not improve significantly. From [Figure 28, it is ob-
vious that a double line still exists and that the lines are thicker than thosc of the RXEG
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algorithm. In this experiment, the purposc is to obtain single thin linc from the
lofargram. But the result is not fully satislactory. A few things could be dis -1ssed with
respect to the suspected reasons of the double lines and of the thicker line in the result.
The initial magnitude as shown in Figurc 27 (b) was caused by the Prewitt operator of
the RXEG. In Figure 15 the result of RXL:G thows strongly the splitting line. Therefore,
the reinforcement process couldn’t be the problem of causing double lines. Iigurc 29
shows the diagram of the modificd RXEG. As for the possible cause of the thicker line,
the modified initial magnitude may be the reasor.. Comparison of Fig 15 (b) and Fig 27
(b) reveals the improvement of the initial magnitude. The initial magnitude of the mod-
ificd RXEG shows stronger and thicker lines. Consequently, the results of the re-
inforcement at a later stage applied to this initial magnitude sho.:e thicker lines.

R

Figure 24, Initial magnitude of Fig 15 (a) in modified RXEG

To solve the double line problem, it is necessary to [ind a method to yield the
initial magnitude in single lincs. Two diflerent method were tested for this purpose. In
the first method each pixel was divided by the maximum value over the entire picture

as follow,
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r(k,in) :
Y Ja il bt A5
mag ml':i,\‘ p(k,in) (@.13)

This method removed noise very quickly. The initial magnitud-es at each pixel are cal-
culated by dividing each pixel by the maximum values over the entire picture. Therefore,
very small values are assigned to noise and the high values are assigned to the signal line
when the S/N was high. On the other hand, when S/N is low, the high values are as-
signed to both the noise and the signal because the difference of gray level between the
noise and the signal is small. As a result, this method is still not suitable to lofargram
processing. In the second method, each pixel was divided by the maximum value of the
local neighborhood as follow

pk,in)

m?xp(l,ln) (4.16)

mag =

Initial magnitude in this method depends on the local maximum value. In the exper-
iments it is realized the initial magnitude could be white or dark entirely depending on
the characteristic of the noise of the lofargram. This second method was not appropriate
for the calculation of the initial magnitude before the relaxation process.

In this chapter various results of the algorithm studied were discussed. Thick
line problem were discovered. Several attempts has been made to solve this problem.
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Figure 25. Results of two lofargram in modified RXEG. (a) 3db (b) 6db

40




Figure 26,

(b)
Four iterations (1,2,3,4) of modified RXEG
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Figure 26.

(d)
Four iterations (1,2,3,4) of modified RXEG (continue)




Artificial lofargram with 6db S/N and its initial magnitude

Figure 27.
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V. CONCLUSIONS AND RECOMMENDATION

The fact that each algorithm has its own peculiar characteristics in the lofargram
processing was found in this study. These characteristics are very much dependent on the
S/N of the input lofargram. Algorithms RXLN and RXLAI using similar idcas can de-
tect lines in the lofargram when the S/N is relatively high. But, the result were very dis-
couraging when the §/N was low and noisc smoothing was done slowly in the iterations
of the reinforcement. Our main concern of the lofargram processing is to detect a thin
line when §/N is low. Therefore, these algorithms are not suitable for lofargram process.
On the other hand, the RXEG algorithm results in good lofargram processing. The only
shott coming is that it is an edge detection algorithm. It smoothes the noisc and en-
hances the line components in the lofaugram even at low S§/N. The last algorithin
studicd in this thesis is the modified RXLG algorithm. Scveral method were tested to
solve the double line problem. But, double line problem still exists in the modificd algo-
rithm. 1o solve this problem, it is necessary to scarch for an algorithm that can yicld thin
single line in the image of the initial magnitude.
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APPENDIX. THE PROGRAM OF MODIFIED RXEG

INTEGER*4 1SX/256/,1SY/256/,1TER/4/,1SNX/S/,1SNY/S/,1SW/1/
INTEGER*4 IP(256,256), IPRB(256,256),JP(256,256)

DIMENSION C(4),CTYPE(4,2),THET0(256,256)

DIMENSION PRBE1(256,256),PRBE2(256,256),0(8)

DIMENSION THET1(256,256),THET2(256,256)

BYTE G(256)

REAL LENGTH, W/3.0/,MAX,MIN
OPEN(UNIT=1,NAME='BEAM0O.BIN',TYPE='OLD',ACCESS='DIRECT',

2 RECORDSIZE=64 ,MAXREC=256)
OPEN(UNIT=2, NAME='TLOFAR20-4X5.DAT', TYPE='NEW' ,ACCESS~'DIRECT',
2 RECORDSIZE=64 ,MAXREC=256)

DO 10 I=1,256
READ(1'I)G
DO 20 J=1,256

IP(1,J)=G(J)
IF(IP(I,J).LT.0) IP(I,J)=IP(I,J)+256
CONTINUE
CONTINUE
CALL RXEG(IP,THET1,THET2,PRBE1,PRBE2,1SX,ISY, ISNX, ISNY, ITER,
ISW, TEMP, JP, THETO)
MAX=-PRBE2(1,1)
MIN-PRBE2(1,1)
DO 30 I=1,256
DO 40 J=1,256
IF(MAX.LT.PRBE2(I,J)) MAX=PRBE2(I,J)
IF(MIN.GT.PRBE2(1,J)) MIN=PRBE2(I,J)
CONTINUE
CONTINUE
LENGTH= (MAX-MIN)
DO 50 I=1,256
DO 60 J=1,256
IPRB(1,J)=JNINT( ( (PR3F2(I,J)~MIN)/LENGTH)*243.)
CONTINUE
CONTINUE
DO 70 I=1,256
DO 80 J=1,256
IF(IPRB(I,J).GT.127) THEN
G(J)~IPRB(I,J)-25€
ELSE
G(J)~1PRB(I,J)
ENDIF
CONTINUE
WRITE(2'I)G
CONTINUE
END

SUBROUTINE RXEG(IP,THET1,THET2,PRBEl,PRBE2,ISX,ISY

» ISNX, ISNY, ITER, I1SW, TEMP,JP, THETO)

Edge reinforcement by relaxation method.
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0

o] CALL RXEG(IP,THET), THET2,PRBEl,PRBEZ2, ISX, ISY
(o - » ISNX, ISNY, ITER, ISW, TEMP)
Cc

. CK RELAXATION, EDGE
Cc
ca IP(1SX,1SY) : Input image (I)
CA THET1(1SX,1SY): Gradient direction after ITER-1

. CA iterations (W)
CA THuT2(1SX,ISY): Gradient direction after ITER iterations (O)
Ca PRBE1(ISX,ISY): Edge probability for each pixel after
Ca ITER-]1 iterations (W)
CcA PRBE2(1SX,1SY): Edge probability for each pixel after
CA ITER-1 iterations (0)
CA ISNX, ISNY : Size of neighborhood being considered
CA (odd number, for example: 5,5) (1)
CA I1TER : Number of iterations (1)
CA Isw : Switch (1 = standard, 2 = noise reduction
CA type (1)
C
CN Reference
CN @1! B. J, Schachter, A. Lev, S W. Zucker, and A, Rosenfeld, "An
CN application of relaxation methods to edge reinforcement,"
CN IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 813-816,
CN Nov. 1977.
C

cD JULY 1979. PROGRAMMED BY K.SAKAUE
c
M (1) When computing the initial values for edge probabifty and
. ™ edge direction using an operator other than the Prewitt

™ operator, rewrite lower-level subroutine RXEP. Any operators
™ that ca obtain a differential (Dx,Dy) can be used.
™ (2) The processing characteristic largely depends upon selection
™ of coefficients C1, throuch C4 (See the reference.) The two
™ standard kings of values have already been set in array CTYPE
™ using data statements, and values can be changed with ISW.
™ ¥: n using other values or changing values depending upon
™ tic pumber of jteration times, rewrite the program so a proper
™ value is set to the argument C in lower—level subroutine RXEI.
™ The following condition however, must be met.
o C(1)+C(2)+C(3)+C(4)=1
™ (3) The coefficient W used when updating (THET1l) is set in data
M statement to 3.0. The same value was also used in the reffernc
™ This value may be changed as neccessary.
c

DIMENSION IP(1SX,ISY),JP(1SX,ISY)

DIMENSION THET1(ISX,1SY),THETO(ISX,ISY)

DIMENSION THET2(1SX, ISY)

DIMENSION PRBE1(1SX,ISY)

DIMENSION PRBE2(I1SX,1SY),TEMP(256,256)

DIMENSION CTYPE(4,2)

DIMENSION C(4)

: DATA CTYPE/.866,.124,.005,.005

& ,.706,.176,.059,.059/

DATA W/3.0/
c

gF INITIAL EDGE VALUES AND INITIAL PROBABILITIES




OQQZ ggngngngno

(9]

CALL EGPR(IP,JP,1SX,ISY,THET1, THETO)
CALL RXT°(IP,THET1,PRBE1,ISX,1SY,TEMP)

RELAXATION UPDATING PROCESS

AMN=0.

AMX=0.

DO 9 I=1,4
C(1)=CTYPE(I,ISW)

9 CONTINUE

DO 10 I=-1,ITER
IF(1.BEQ.1)GO T0 11
DO 12 IY~1,1SY
DO 12 IX=1,ISX
THET1(1X,IY)=THET2(IX, 1Y)
PRBE1(IX,1Y)=PRBE2(1X,IY)

12  CONTINUE

11
10

CONTINUE

CALL RXEI(THET1,THET2,PRBEl,PRBE2,1SX, ISY,ISNX,ISNY,C,W)
CONTINUE ’

RETURN

END

SUBROUTINE EGPR(IP,JP,I1SX,1SY,THET1,THETO)
Copyright (c) 1983 by AIST MITI(JAPAN)

CALL EGPR(1P,JP,I1SX,1SY)
Edge preserving smoothing operation.
EDGE PRESERVING SMOOTHING, SMOOTHING

IP(ISX,1SY) : Input image array (1)
JP(ISX,ISY) : Output image array (0)

The program is considerably long, but the main part consists
of about 120 lines in the first half and the remainder is used
as routines for edge processing.

DIMENSION IP(ISX,ISY),THET1(ISX,1SY),THETO(ISX, ISY)
DIMENSION JP(I3X,ISY)

DIMENSION A(9), V(9),0(9)

DIMENSION K(5,5), L(5,5)

EQUIVALENCE (A(1),Al), (A(2),A2), (A(3),A3),
& (A(4),a4), (A(S),AS5), (A(6),A6),
& (A(7),A7), (A(8),A8), (A(9),A9)
EQUIVALENCE (V(1),V1), (V(2),V2), (V(3),V3),
& (V(4),V4), (V(5),V5), (V(6),V6),
& (V(7),V7), (V(8),V8), (V(9),V9)

EQUIVALENCE
& (K11,K(1,1)),(X21,K(2,1)),(K31,K(3,1)),(K41,K(4,1)),(K51,K(5,1)),

& (K12,K(1,2)),(K22,K(2,2)),(K32,K(3,2)),(K42,K(4,2)),(K52,K(5,2)),
& (K13,K(1,3)),(K23,K(2,3)),(K33,K(3,3)),(K43,K(4,3)),(K53,K(5,3)),
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& (K14,K(1,4)),(K24,K(2,4 K34,K(3,4)),(K44,K(4,4)),(KS4,K(5,4)),
& (KIS,K(l,S)):txzs.xgz s;; fxas xfa 5;) (K45,K(4,5)), (K55,K(5,5))
EQUIVALENCE
¢ (L11,L(1,1)),(L21,L{2,1)),(L31,L(3,1)), (141,L(4,1)),(L51,L(5,1)),
. & (L12,L(1,2)),(L22,L(2,2)),(L32,L(3,2)),(142,L(4,2)),(L52,1L(5/2)),
& (L13,L(1,3)),(L23,L(2,3)),(L33,L(3,3)),(143,L(4,3)),(L53,1(5,3)).
3 (LlG,L(l,Q)),(L24,L(2,4)),(L34,L(3.4)),(L44,L(4,4)):(L54'L(5:4))r
& (L15,L(1,5)),(L25,L(2,5)),(L35,L(3,5)), (145,L(4,5)),(L55,L(5,5))
: c
AVE1(K1,K2,K3,K4,K5,K6,K7,K8,K9) =
¢ FLOAT(Kl+K2+K3+K4+KS+K6+K7+K8+K9)/9 0
AVE2(K1,K2 K3,K4,K5,K6,K7) =
FLOAT(Kl+K2+K3+K4+KS+K6+K7)/7 0
VARl(Al Ll L2,L3,14,1L5,16,L7,L8,L9) =
7.0% (FLOAT(L1+L2+L3+L4 +L5+L6+L7+L8+L9)~A1*A1%9.0) /9.0
VAR2(A1 L1,L2,L3,14,L5,16,L7) =
& FI.OAT(L1+L2+L3+IA +LS+LE+L7)-A1#*A147.0
c
CF *+2+* Injitialization
ISX0 = ISX
ISY0 = ISY
1SX1 = I1SX0-1
ISY1 = 1SY0-1
ISX2 = 1SX0-2
1SY2 = 1SY0-2
1SX3 = ISX0-3
1SY3 = ISY0-3
c

CF *#*#*#** Smoothing process for the region (3,3)——(1SX-2,ISY-2)
. DO 60 IY=3,ISY2
IYM2 =~ IY-2
IYP2 = IY+2
DO 60 IX=3,1SX2
IXM2 - 1X-2
IXP2 = IX+2

KY = 0

DO 20 JY=-IYM2,IYP2

KY = KY+1

KX -0

DO 20 JX=-IXM2,IXP2

KX = KX+1

IPD = IP(JX,JY)

K(KX,KY) = IPD

L(KX,KY) = IPD*IPD
20 CONTINUE

c

CF *** Calculation of mean values and variances for nine masks
Al = AVE1(K22,K32,K42,K23,K33,K43,K24 K34 ,K44)

A2 =~ AVE2(K21,K31,K41,K22,K32,K42,K33)
A3 = AVE2(K41,6K51,K32,K42,K52,K33,K43)
A4 = AVE2(K42,K52,K33,K43,K53,K44,K54)
. A5 = AVE2(K33,K43,K34,K44,K54,K45,K55)
A6 = AVE2(K33,K24,K34,K44,K25,K35,K45)
A7 = AVE2(K23,K33,K14,K24,K34,K15,K25)
A8 = AVE2(K12,K22,K13,K23,K33,K14,K24)
: A9 = AVE2(K11,6K21,K12,K22,K32,K23,K33)
V1l = VAR1(Al,L22,L32,142,L23,L33,143,124,1.34,144)
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CF #** SET

CF *** Mean gray value of the mask with minimum variance --> JP(IX,IY) |

40

41

AL
v3
V4
VS
V6
vi
V8

VAR2(A2,L21,L31,141,L22,L32,142,L33)
VAR2(A3,141,L51,L32,142,1L52,L33,143)
VAR2(A4,142,1L52,133,143,L53,144,L54)
VAR2(AS,L33,143,L34,144,L54,145,155)
VAR2(A6,L33,L24,L34,144,L25,L35,145)
VAR2(A7,L23,L33,L14,L24,L34,L15,L25)
VAR2(AS8,L12,L22,L13,L23,L33,L14,L24)

V9 = VAR2(A9,L11,L21,L12,L22,L32,L23,L33)

Q(2)=3.14
Q(3)=3.925
Q(4)=4.71
Q(5)=5.495
Q(6)=0.0
Q(7)=0.785
Q(8)=1.57
Q(9)=2.355

RMIN = V1
MI = 1
DO 40 I=-2,9

THE DIRECTION FOR NINE MASKS

IF (RMIN .LE. V(I}) GO TO 40

RMIN = V(I)
MI = I
CONTINUE

IF(MI.EQ.6)THEN
THETO(1X,IY)=0.0
GO TO 45

ELSE IF(MI.EQ.7)THEN
THETO(IX,IY)=0.785
GO TO 45

ELSE IF(MI.EQ.8)THEN
THETO(IX,IY)~1.57
GO TO 45

ELSE IF(MI.EQ.9)THEN
THETO(IX,IY)~2.355
GO TO 45

ELSE IF(MI.EQ.2)THEN
THETO(IX,IY)=3.14
GO TO 45

ELSE IF(MI.EQ.3)THEN
THETO(IX,1Y)=3,925
GO TO 45

ELSE IF(MI.EQ.4)THEN
THETO( IX,1Y)=4.71
GO TO 45

ELSE IF(MI.EQ.5)THEN
THETO(IX,IY)=5.495
GO TO 45

ELSE IF(MI.EQ.1)THEN
GO TO 41

END IF

CONTINUE
SMALL=V(2)
ASMALL=Q(2)
DO 42 I=3,9
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IF(SMALL.GT.V(1))THEN
SMALL=V( 1)

ASMALL=Q(1I)
ENDIF
42 CONTINUE
THETO(IX,IY)=ASMALL
45 CONTINUE
JP(IX, 1Y) = A(MI)+0.5

60 CONTINUE
C -
CF ***#+ Qperation for the four corners
C
C ________________ - . e e e P i Y e i S e . e . . o T o o Sl o S0 Sy B A P A i S e o e
C
DO 80 IY=1,4
DO 80 IX=1,4
IPD = IP(IX,1Y)
K(IX,IY) = IPD
L(IX, 1Y) = IPD*IPD
80 CONTINUE
C

CRraaas  Jp(1,1) *rens
JP(1,1) =~ AVE2(K11,K21,K12,K22,K32,K23,K33)+0.5

CRa*a*s  JP(2,1) #asns

Al = AVE2(K21,K31,K22,K32,K42,K33,K43)

A2 = AVE2(K21,K12,K22,K32,K13,K23,K33)

V1 = VAR2(Al,L21,L31,L22,L32,142,L33,143)

V2 = VAR2(A2,L21,L12,L22,132,L13,L23,L33)
C

RMIN = Al

IF (V1 .GT. V2) RMIN = A2

JP(2,1) = RMIN+0.5
C

CP**%%x  JP(1,2) #aars

Al = AVE2(K21,K31,K12,X22,K32,K23,K33)

A2 = AVE2(K12,K22,K13,K23,K33,K24,K34)

V1 = VAR2(Al,L21,L31,L12,L22,L32,L23,L33)

V2 = VAR2(A2,L12,L22,L13,L23,L33,L24,L34)
o

RMIN = Al

IF (V1 .GT. V2) RMIN = A2

JP(1,2) = RMIN+0.5
C

CERrax %% JP(2,2) Ak ko

Al = AVE1(K11,K21,K31,K12,K22,K32,K13,K23,K33)

A2 = AVE2(K31,K41,K22,K32,K42,K33,K43)
AVE2(K22,K32,K23,K33,K43,K34,K44)
AVE2(K22,K13,K23,K33,K14,K24,K34)
VAR1(Al,L11,L21,131,L12,L22,L32,L13,L23,L33)
VAR2(A2,L31,141,L22,L32,142,L33,L43)
VAR2(A3,122,L32,L23,L33,1L43,L34,L44)
VAR2(A4,L22,L13,L23,L33,L14,L24,L34)

>
w
]
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RMIN = V1
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MI =1
DO 100 I=2,4
1IF (RMIN .LE. V(I)) GO TO 100
RMIN = V(I)
MI = 1
100 CONTINUE

JP(2,2) = A(MI)*+0.5

DO 120 1Y~-1,4
KX = 0
DO 120 IX=I1SX3,ISX0
KX = KX+1
IPD = IP({IX,1Y)
K(KX,1Y) = IPD
L(KX,1Y) = IPD*IPD

c 120 CONTINUE

CP****% JP(ISX-1,1) ARk RE

Al - AVE?(K31,K22,K32,K42,K23.K33,K43)
A2 = AVEZ(K21,K31,K12,K22,K32,K13,K23)
V1 = VAR?(AI,L31,L22,L32,L42,L23,L33,L43)
V2 = VAR2(A2,L21,L31,L12,L22,L32,L13:L23)
C
RMIN = Al
IF (V1 .GT. V2) RMIN = A2
JP(ISX1,1) = RMIN+O0.5
C

CFrexxx  JP(ISX,1) x*r**
Jp(1S8X0,1) = AVEZ(K31,K41,K22,R32,K42,K23,K33)+0.§
C
CF***%%  JP(ISX-1,2) A#rr*
al AVEI(K21,K31,K41,K22,K32,K42,K23,K33,K43)
A2 = AVEZ(K32,K23,K33,K43,K24,R34,K44)
A3 AVEZ(K22,K32,K13,K23,K33:K14,K24)
A4 AVEZ(Kll,K2l,K12,K22,K32,K13,R23)
Vi VARl(Al,L21,L31,L41,L22,L32,L42,L23,L33,L43)
Ve VARZ(A2,L32.L23,L33,L43,L24,L34,L44)
V3 VARZ(A3,L22,L32,Ll3,L23,L33,Ll&,LZ()
V4 VAR2(A4,Lll,L21,L12,L22,L32,L13,L23)

RMIN = V1
MI = 1
DO 140 1~2,4
IF (RMIN .LE. V(I)) GO TO 140
RMIN = V(1)
MI = 1
140 CONTINUE

JP(ISX1,2) = A(MI)+0.5

c
CFtﬁ*i* JP(ISX'z) Axkkhk
Al - AVE2(K32,K42,K23,K33,K43,K24,K34)
A2 = AVEZ(K211K31,K22,K32,K42,K23,K33)
vl = VARZ(Al,L32,L42,L23,L33,L43,L24,L34)
V2 - VAR2(A2,L21,L31,L22,L32'L42,L23,L33)
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RMIN = Al
IF (V1 .GT. V2) RMIN = A2
JP(1SX0,2) = RMIN+0.5

. c oo Tmm e
C _____________________________________________________
c
. KY = 0
DO 160 IY=ISY3,ISYO
KY = KY+1
DO 160 IX=1,4
IPD = IP(IX,1Y)
K(IX,KY) = IPD
L(IX,KY) = IPD*IPD
. 160 CONTINUE

CFatass  JP(1,ISY-1) et
Al = AVE2(K21,K31,K12,K22,K32,K13,K23)
A2 = AVE2(K22,K32,K13,K23,K33,K24,K34)
V1 = VAR2(Al1,L21,L31,L12,122,L32,L13,L23)
V2 = VAR2(A2,1L22,L32,L13,L23,L33,L24,L34)

C
RMIN = Al
IF (V1 .GT. V2) RMIN = A2
JP(1,1ISYl) = RMIN+(Q.5

C

CFrraa*  JP(2,ISY-1) #renx

Al = AVE1(K12,X22,K32,K13,K23,K33,K14,K24,K34)
A2 AVE2(X11,KX21,K31,K12,K22,K32,K23)

- A3 AVE2(K31,K41,K22,K32,K42,K23,K33)
A4 AVE2(K32,K42,K23,K33,K43,K34,K44)
vl VAR1(Al,L12,522,L32,L13,123,133,L14,L24,1L34).
V2 VAR2(A2,L11,L21,L31,L12,122,L32,L23)

- V3 VAR2(A3,L31,141,122,L32,142,L23,L33)
V4 VAR2(A4,1.32,142,123,L33,143,1L34,144)

RMIN = V1
MI = 1
DO 180 I~2,4
IF (RMIN .LE. V(1)) GO TO 180
RMIN = V(I)
MI =1
180 CONTINUE
C
c JP(2,1ISY1l) = A(MI)+0.5
CP#asa%x  JP(1,ISY) atns
c JP(1,1SY) = AVE2(K22,K32,K13,K23,K33,K14,K24)+0.5

CR**#%%x JP(2,I8Y) t#*#xs
Al = AVE2(K12,K22,K32,K13,K23,K33,K24)
A2 AVE2(K32,K42,K23,K33,K43,K24,K34)

» V1l = VAR2(Al1l,L12,L22,L32,L13,L23,L33,L24)
V2 = VAR2(A2,L32,142,L23,L33,143,L24,L34)

RMIN = Al
IF (V1 .GT. V2) RMIN = A2
JP(2,1SY0) = RMIN+0.5




KY = 0

DO 200 IY=ISY3,1SYO

KY = KY+1

KX = 0

DO 200 IX=ISX3, ISX0

KX = KX+1

IPD = IP(IX,IY)

K(KX,KY) = IPD

L(KX,KY) = IPD*IPD
200 CONTINUE

C

CFatkxt  JP(ISX-1,ISY-1) #exxx

Al = AVE1(K22,K32,K42,K23,K33,K43,K24,K34,K44)

A2 = AVE2(K21,K31,K41,X22,K32,K42,K33)

A3 = AVE2(K12,K22,K13,K23,K33,K14,K24)

A4 = AVE2(K11,K21,K12,K22,K32,K23,K33)

V1l = VAR1(A1l,L22,L32,142,L23,L33,143,L24,L34,L44)
VAR2(A2,L21,L31,141,L22,L32,142,L33)
VAR2(A3,L12,L22,1L13,L23,L33,L14,124)
VAR2(A4,L11,L21,L12,L22,L32,L23,L33)

<
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RMIN = V1
MI = I
DO 220 I=-2,4
IF (RMIN .LE. V(I)) GO TO 220
RMIN = V(I)
MI =1

220 CONTINUE

c

C

CFxrxxx  JP(ISX,ISY~1) *axxx
Al = AVE2(K22,K32,K23,K33,K43,K24,K34)
A2 ~ AVE2(K21,K31,K22,K32,K42,K33,K43)
V2 = VAR2(A2,L21,L31,0L22,L32,142,L33,143)

JP(ISX1,ISY1l) = A(MI)+0.5

C
RMIN = Al
IF (V1 .GT. V2) RMIN = A2
JP(ISX0,ISY1l) = RMIN+0.5
C

CFrraxxy  JP(ISX~1,ISY) #*t2ax
Al = AVE2(K22,K32,K42,K23,K33,K43,K34)
A2 = AVE2(K12,K22,K13,K23,K33,K24,K34)
V1l = VAR2(Al,L22,L32,142,L23,L33,143,L34)
V2 = VAR2(A2,L12,L22,L13,L23,L33,L24,L34)

RMIN =~ Al
IF (V1 .GT. V2) RMIN = A2
JP(ISX1,1SY0) = RMIN+0.5
C
CE*axss  JP(ISX,ISY) rrans
JP(1ISX0,ISY0) = AVE2(K22,K32,K23,K33,K43,K34,K44)+0.5
C
CF »*x+x Marginal operation
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DO 360 1X=3,1SX2
IXM2 = IX-2
IXP2 = IX+2

DO 240 JY-1,4
KX = 0
DO 240 JX=I1XM2,IXP2
KX = KX+1
IPD = IP(JX,JY)
K(KX,JY) = IPD
L(KX,JY) = IPD*IPD

240 CONTINUE

c

CFrrrax  JP(IX,1) #ranz
Al = AVE2(K31,K41,K32,K42,K52,K43,K53)
A2 = AVE2(K31,K22,K32,K42,K23,K33,K43)
A3 = AVE2(K21,K31,K12,K22,K32,K13,K23).
V1 = VAR2(A1,L31,141,L32,142,152,143,L53)
V2 = VAR2(A2,L31,L22,L32,142,L23,133,143)
V3 = VAR2(A3,L21,L31,L12,L22,L32,L13,L23)

RMIN = V1

MI =1

DO 260 I=2,3

IF (RMIN .LE. V(I)) GO TO 260

RMIN = V(I)

MI = I

260 CONTINUE

o

JP(IX,1) = A(MI)+0.5
o
CF!**** JP(IX,2) 'EXE RS

Al = AVE1(X21,K31,K41,K22,K32,K42,K23,K33,K43)

A2 = AVE2(K41,X51,K32,K42,K52,K43,K53)
AVE2(K32,K42,K33,K43,K53,K44 ,K54)
AVE2(K32,K23,K33,K43,K24,K34,K44)
AVE2(K22,K32,K13,K23,K33,K14,K24)
AVE2(K11,K21,K12,K22,K32,K13,K23)
VAR1(Al,L21,L31,141,L22,L32,142,L23,L33,143)
VAR2(A2,141,151,132,142,L52,143,L53)
VAR2(A3,L32,L42,L33,143,1L53,L44,L54)
VAR2(A4,L32,123,133,L43,L24,L34,144)
VAR2(AS,L22,L32,013,L23,L33,L14,L24)
VAR2(A6,L11,L21,112,L22,L32,L13,L23)

<
-
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RMIN = Vi1
MI =1
DO 280 1=2,6
IF (RMIN .LE. V(I)) GO TO 280
RMIN = V(I)
MI =1
280 CONTINUE

JP(IX,2) = A(MI)+0.5
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KY

KY
KX

KX

-0
DO 300 JY=ISY3, ISYO

= KY+1

-0
D0 300 JX=IXM2,1XP2 -

= KX+1
IPD = IP(JX,JY)
K(KX,KY) = IPD

L(KX,KY) = IPD*IPD
300 CONTINUE

C

CFtt a2
Al
A2
A3
A4
AS
A6
vl
v2
v3
V4
vS
vé

JP(IX,18Y-1)

RMIN
MI = 1

DO 320 I=2,6
IF (RMIN .LE. V(I)) GO TO 320
RMIN = V(I)

ARARR

AVE1(K22,K32,K42,K23,K33,K43,K24,K34,K44)
AVE2(K42,K52,K33,K43,K53,K44,K54)
AVE2(K41,K51,K32,K42,K52,K33,K43)
AVE2(K21,K31,K41,K22,K32,K42,K33)
AVE2(K11,K21,K12,K22,K32,K23,K33)
AVE2(K12,K22,K13,K23,K33,K14,K24)
VAR1(Al,L22,L32,142,L23,L33,143,124,L34,144)
VAR2(A2,142,L52,L33,143,L53,144,L54)
VAR2(A3,141,L51,L32,142,L52,L33,143)
VAR2(A4,L21,L31,141,L22,L32,142,L33)
VAR2(AS,L11,121,L12,L22,L32,L23,L33)
VAR2(A6,L12,L22,L13,L23,L33,L14,L24)

= Vi1

MI = I
320 CONTINUE

C

JP(IX,ISY1l) = A(MI)+0.5

C
CF*ras4h

v2
V3

JP(IX,ISY)

RMIN
MI =1

DO 340 I=-2,3

hhhth

AVE2(K42,K52,K33,K43,K53,K34,K44)
AVE2(K22,K32,K42,K23,K33,K43,K34)
AVE2(X12,K22,K13,K23,K33,K24,K34)
VAR2(Al,142,L52,L33,143,L53,L34,144)
VAR2(A2,L22,L32,142,1L23,L33,143,L34)
VAR2(A3,1L12,L22,L13,L23,L33,L24,L34)

= V1

IF (RMIN .LE. V(I)) GO TO 340

RMIN = V(I)

MI = I
340 CONTINUE

JP(IX,1SY0) = A(MI)+0.5 N

360 CONTINUE
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DO 500 IY=3,1SY2
IYM2 = IY-2
IYP2 = IY+2

KY = 0
DO 380 JY=IYM2,IYP2
KY = KY+1
DO 380 JX=1,4
IPD = IP(JX,JY)
K(JX,KY) = IPD
L(JX,KY) = IPD*IPD
c 380 CONTINUE
Chraxne JP(I,IY) *RRRN
Al = AVE2(K21,K31,K12,K22,K32,K13,K23)
A2 = AVE2(K22,K32,K13,K23,K33,K24,K34)
A3 = AVE2(K13,K23,K14,K24,K34,K25,K35)
V1 = VAR2(Al,121,131,L12,L22,L32,L13,L23)
V2 = VAR2(A2,L22,132,L13,L23,L33,L24,L34)
V3 = VAR2(A3,L13,1L23,L14,L24,L34,L25,L35)

RMIN = V1
MI =1
DO 400 1-2,3
IF (RMIN .Lr. V(I)) GO TO 400
RMIN = V(I)
MI = 1
400 CONTINUE

JP(1,1Y) = A(MI)+0.5

CEh*%xxsx JP(2,IY) AkRAR

Al = AVE1(K12,K22,K32,K13,K23,K33,K14,K24,K34)

A2 = AVE2(K1l,K21,K31,K12,K22,K32,K23)

A3 = AVE2(K31,K41,K22,K32,K42,K23,K33)
AVE2(K32,K42,K23,K33,K43,K34,K44)
AVE2(K23,K33,K24 ,K34,K44,K35,K45)
AVE2(K23,K14,K24,K34 ,K15,K25,K35)
VAR1(Al,L12,122,L32,L13,L23,L33,L14,L24,L34)
VAR2(A2,L11,L21,L31,L12,L22,L32,L23)
VAR2(A3,L31,1L41,L22,L32,142,123,1L33)
VAR2(A4,132,142,1L23,L33,143,L34,144)
VAR2(AS5,L23,L33,L24,L34,144,135,145)
VAR2(A6,L23,114,L24,L34,L15,L25,L35)

RMIN = V1
MI = 1
DO 420 1-2,6
IF (RMIN .LE. V(I)) GO TO 420
RMIN = V(I)
MI = 1
420 CONTINUE

<
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JP(2,1Y) = A(MI)+0.5




4
4

JY=IYM2, IYP2
Y+l

OXOO

40 JX=1SX3,1SX0

KX = XX+l

IPD = IP(JX,JY)

K(KX,XY) = IPD

L(XX,KY) = IPD*IPD
440 CONTINUE

C

CFetuant
Al
A2
A3
A4
AS
A6
vl
V2
V3
V4
V5
vé

JP(ISX-1,1Y) #wanwr

RMIN
MI = 1
DO 460 I=2,6
IF (RMIN .LE. V(I)) GO TO 460
RMIN = V(I)
Ml » 1

460 CONTINUE

C

AVE1(K22,K32,K42,K23,K33,K43,K24,K34,K44)
AVE2(K21,K31,K41,K22,K32,K42,K33)
AVE2(K11,K21,K12,K22,K32,K23,K33)
AVE2(K12,K22,K13,K23,K33,K14,K24)
AVE2(X23,K33,K14,K24,K34,K15,K25)
AVE2(K33,K24,K34,K44,K25,K35,K45)
VAR1(Al,L22,L32,142,123,L33,143,L24,L34,L44)
VAR2(A2,L21,L31,141,L22,L32,142,L33)
VAR2(A3,L11,L21,L12,L22,L32,L23,L33)
VAR2(A4,L12,L22,L13,L23,L33,L14,L24)
VAR2(A5,L23,L33,L14,L24,L34,L15,L25)

=Vl

JP(ISX1,1Y) = A(MI)+0.5

Cc

CF*x 2%
Al
A2
A3
vVl
V2
V3

JP(ISX,IY) #ssss

RMIN
MI = 1
DO 480 I=2,3
IF (RMIN .LE. V(I)) GO TO 480
RMIN = V(I)
MI = I

480 CONTINUE

AVE2(K21,K31,K22,K32,K42,K33,K43)
AVE2(K22,K32,K23,K33,K43,K24,K34)
AVE2(K33,K43,K24,K34,K44,K25,K35)
VAR2(Al,L21,L31,L22,L32,142,L33,143)
VAR2(A2,122,L32,L23,L33,143,L24,L34)
VAR2(A3,L33,1L43,L24,L34,144,L25,L35)

= V1

JP(ISX0,IY) = A(MI)+0.5

500 CONTINUE

DO 600 I-1,256

DO 600 J=1,256
IP(1,J)=JP(I,J)
600 CONTINUE
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DO 601 1X=1,2
DO 601 IY=1,256
THETO(IX,IY)=0.0
601 CONTINUE
DO 602 IX=1,256
DO 602 IY=1,2
THETO(IX,1Y)=0.0
602 CONTINUE
DO 603 IX=255,256
DO 603 IY=1,256
THETO(IX,IY)=0.0
603 CONTINUE
DO 604 IX=1,256
DO 604 1Y=255,256
THETO(IX,1Y)=0.0
604 CONTINUE
DO 605 1X=1,256
DO 605 1Y=1,256
THET1(IX,1Y)=THETO(1X,6 1Y)
605 CONTINUE
DO 606 IX=1,256
DO 606 IY=1,256
IF(THET1(IX,1Y).GE.3.14)THEN
THET1(IX,IY)=THET1(IX,1Y)-3.14
ELSE
THET1(IX,1Y)=THET1(1X, 1Y)
ENDIF
606 CONTINUE

o
CF #*#**+ RETURN

[2XeXe]

cp
Cp
Ccp

(@]

cs

0

CK

0eeeepe

CN
CN
CN
CN
CN

(@}

CD
C
™

RETURN
END
SUBROUTINE RXEP(IP,THET1,PRBE]1, I1SX,1SY,TEMP)

Copyright (c) 1983 by AIST MITI(JAPAN)
Computes initial parameter and initial probability for edge

reinforcement by relaxation method (Lower-level routine
for subroutine RXEG).

CALL RXEP(IP,THET1,PRBE1l,ISX,ISY)
RELAXATION, EDGE
IP(ISX,18Y) : Input image
THET1(1SX,18Y): Initial value of gradient direction for
each pixel
PRBE1(1SX,18Y): Initial value of edge probability for
each pixel
Reference

@1! B. J. Schachter, A. Lev, S. W. Zucker, and A. Rosenfeld, "An
application of relaxation methods to edge reinforcement,"
IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 813-816,
Nov. 1877.

JULY 1979, PROGRAMMED BY K.SAKAUE
A small real number -1E30 is set in variable AMX as an initial
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°g9

eXoleXeXe!

cp
Ccp
Ccp

0

CK

LeeLO

11

12

10

20

value. When using a computer with different word lengths, care

should be taken.

DIMENSION IP(ISX,1SY),TEMP(ISX,1SY)
DIMENSION THET1(I1SX,ISY)
DIMENSION PRBE1(ISX,1SY)

DIMENSION NE(3,3)

INITIAL EDGE VALUES

BY PREWITT OPERATOR (DIFFERENTIAL TYPE)

AMX=~-1E30
DO 10 IY=],ISY
DO 10 IX=1,ISX
DO 11 J=-1,3
DO 11 I=-1,3
Jl=1Y+J-2
Il=IX+I-2

IF(J1.LT.1.0R.J1.GT.ISY)GO TO 12
IF(I1.LT.1.0R.I1.GT.ISX)GO TO 12

NE(1,J)=IP(I1,J1)

CONTINUE

DX~FLOAT(NE(3,1)+NE(3,2)+NE(3,3)-NE(1,1)-NE(1,2)-NE(1,3))
DY=FLOAT(NE(1,3)+NE(2,3)+NE(3,3)-NE(1,1)~NE(2,1)-NE(3,1))
AMG=SQRT(DX**2+DY**2)
IF (AMG.GT.AMX ) AMX=AMG

PRBE1(IX,IY)=AMG

IF(DX.LE.OEO.AND.DY.LE.OEO)DX~=0.0001

GO TO 10
CONTINUE

PRBE1 (IX,IY)=0.001

CONTINUE
DO 20 IY=-1,1SY
DO 20 IX=-1,1SX

PRBE1 (1X,IY)=PRBE1(IX,IY)/AMX
PRBE1(IX,IY)=AMAX1(.01,AMIN1(.9,PRBE1(IX,IY)))
TEMP( IX, 1Y)=PRBE1(1X,IY)

CONTINUE
RETURN
END

SUBROUTINE RXEI(THET1,THET2,PRBE1l, PRBE2, ISX, ISY, ISNX,ISNY,C,W)

Copyright (c) 1983 by AIST MITI(JAPAN)

CALL RXEI(THET1,THET2,PRBE1l,PRBE2,1SX,ISY,ISNX, ISNY,C,W)

Updates edge parameter and edge probability for edge
reinforcement by relaxation method.
{Lower-level routine for subroutine RXEG)

RELAXATION, EDGE

THET1(ISX,ISY):
THET2(ISX, ISY):
PRBE1(1SX,1SY):
PRBE2( ISX,ISY):

Gradient direction
Gradient direction
Edge probabilities
Edge probabilities
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CA ISNX, ISNY 1 Size of neighborhood being considered
CA (limited to odd num-er three or higher)
CA C(4) : pParameter Cl through C4 (See the
CA reference.)
¢ CA .866,.124,.005,.005 (standard)
CA .706,.176,.(59,.059 (noise cleaning)
CAa W : Parameter W (See the reference.)
CA 3.0 for standard use.
[
C
DIMENSION THET1(ISX,1SY)
DIMENSION THET2(ISX.ISY)
DIMENSION PRBE1(1SX, ISY)
DIMENSION PRBE2(ISX, ISY)
DIMENSION C(4)
C
DATA HPAI/1.570796327/
C
c
ISFTX=1ISNX/2+1
ISFTY=ISNY/2+1
DO 10 1Y=1,1ISY
DO 10 IX=1,ISX
ALPHA=THET1(1X,1Y)
PXY=PRBE1(IX, 1Y)
Q1~0.0
02=0.0
DHX=W*PXY*COS ( ALPHA)
DHY=W*PXY*SIN(ALPHA)
DO 11 J=1,ISNY
- DO 11 I=1,ISNX
IU=IX+I-1ISFTX
IV=1Y+J-ISFTY
IF(IV.EQ.IY.AND.IU.EQ.IX)GO TO 11
. IF(IV.LT.1.0R.IV.GT.ISY)GO TO 11
IF(IU.LT.1.0R.IU.GT.ISX)GO TO 11
IDY=IV-1Y
IDX=1U-1IX
JD=IABS(IDY)
ID=1ABS(1DX)
LO~MAXO(ID,JD)
o
CF LD : CHESSBOARD DISTANCE FROM (IX,IY) TO (1IU,IV)
C
ALD=FLOAT(LD)
D2=1.0/2.0**A1D
BETA=THET1(1U, IV)
DY=FLOAT(1DY)
DX=FLOAT( IDX)
IF(IDX.EQ.O0.AND, IDY.EQ.0)DX=, 00001
GAMMA=ATAN2 (DY, DX)
PUV=PRBE1(1U, IV)
o
r Cr COMPATIBILITY COEFFICIENTS
CF EDGE/EDGE INTERACTION
C

IF(ALPHA.EQ.BETA.AND.BETA.EQ.GAMMA ) THEN
REE=1.0

ELSE IF(ALPHA.EQ.BETA.AND.GAMMA.NE.BETA)THEN
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REE=0.5
ELSE

REE=COS (ALPHA~GAMMA) *COS ( BETA-GAMMA ) *D2
ENDIF .

INTERACTION WITH NONEDGES

AG2=2.0* (ALPHA-GAMMA)
AG2=-COS(AG2)*D2
REN=AMIN1(0.0,AG2)
BG2=2.0* (BETA-GAMMA)
RNE=(1.0-COS(BG2))*D2*0.5
RNN=D2

COMBINED REINFORCEMENT PROCESS

Q1=Q1+C(1)*PUV*REE+C(2)*(1.0-PUV)*REN
02=0Q2+C(3) *PUV*RNE+C(4)* (1.0-PUV)*RNN
PREE=PUV*REE
DHX=DHX+PREE*COS (BETA)
DHY=DHY+PREE*SIN(BETA)
11  CONTINUE
QQ=ABS(Q1)+ABS(Q2)
Q1=Q1/0Q
Q2=02/0
P1D=PXY*(1.0+Q1)
P2D~(1,0-PXY)*(1.0+Q2)
PNEW=P1D/(P1D+P2D)
IF(DHX.LE.OEO.AND.DHY.LE. OEO ) DHY=0.00001
THNEW=ATAN2 ( DHY , DHX)
PRBE2(IX,1Y)=PNEW
THET2(IX,1Y)=THNEW
10 CONTINUE
RETURN .
END
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