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ABSTRACT

When the signal to noise ratio is low, the detection of a track in a lofargram by computer

is difficult. Actually, operators often face this kind of problem when detecting an

acoustic signature in the noisy sea environment. Furthermore, operators must keep on

tracking lofargram to identify a given target. This problem could be handled by the au-

tomation of lofargram processing using filtering or image processing techniques. This

technique will suppress the background and emphasize the spectral lines in the

lofargram. Targets can he tracked by an automatic lofargram processing system up to a

certain point at which the system should alarm the operator. The enhancement proc-

essing of lofargrams using a relaxation method could be one part of the automatic sys-

tem of lofargram processing to provide available target information for good decisions.

The objective of this thesis is to enhance spectral lines of the lofargram by using the re-

laxation method which is an iterative approach to line detection. This technique makes

probabilistic decisions at every point of the lofargrain for each iteration. Decisions are

adjusted at suir'"ssive iterations based on the results of the previous iterations. This
thesis tested algorithms using relaxation method for lofargrams. Some experimental re-

sults of the lofargram processing are presented. Experimental results showed that an

edge relaxation method ca- "'.ield better results than the line relaxation method. How-

ever, a double line detected from an edge is still undesirable and requires future work.
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1. INTRODUCTION

A. WIAT IS A LOFAR

The term "LOFAR" is defined as "search technique using omnidirectional

sonobuoys". It is an acronymin for "LOw Frequency Analysis and Recording." Every

ship including submarine create peculiar noises in the sea. The noise spectrum can be

used to distinguish different types of snips. If we know the noise frequency spectrum
pattern radiated from a certain ship, it is possible to identify this ship by examining the

lofhrgram. This is the basic motive of using lofar.

For determining the characteristic of noise spectra, a frequency-time analyzer can

be used, which is similar to those uscd fbr spccch analysis. It yields a plot of frequency
against time and shows tile intensity of the sound in the bandwidth of the spectrum by

darkening the record paper. This paper plot is called a lofargram.

Before tile appearance of the digital lofhrgram, thermal burning of record paper was

used. But, the conventional paper gram was inconvenient to handle compared to digital
lofargrani. Furthermore, an undesirable smcll was created during operation because of
the burning on the long strip of paper using the old method. Therefore, the old method

is almost replaced by the digital lofiargrani. The digital loffirgrarn is obtained by digitizing

the analog signal and displaying a gray scale on the computer screen or on a paper.

Figure 1 adopted from IRef. 1] is an example of a lofargrarn of the noise of a large
surface ship obtained from a hydrophone. As the ship passed by, tracks are left in the

lofhrgram. The frequency scale .ong the horizontal axis extends from 0 to 150 Hz and

the recording duration of the vertical axis was approximately 1/2 hour. The constantly
spaced vertical line components marked by arrows ate blade-rate lines. The lines marked

X are of unknown origin. Figure 2 adopted from [Ref. 21 indicates the block diagrani of

a passive sonar to get the lofargram.

Generally, the lofargram has characteristics as follows

1. Signal to noise ratio is generally low.

2. A constant frequency tonal produces a darkening over time periods, which would
appear as a vertical line on the lofhrgian display.

3. Multi-lines could be displayed on the lofargram depending on the spectrum band-
width.

4. Slant lines or slightly curved lines are due to the Doppler shift could be shown on
the lofargram.



0 150 Hz
Frequency

Figure 1. Lofargram of a surface ship at a speed-of 11 knots
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Figure 2. Passive sonar system block diagram

B. OBJECTIVE OF LOFARGRA.N PROCESSING

When the SNR is lower than 3db. the interpretation of lofargram is difficult. Actu-

ally, operators often face this kind of situation in the noisy sea enmironment. Further-

more, operators must keep on tracking lofargram to identify target. This problem could

be handled by the automation of lofargram processing using filtering or image process-

ing techniques which can suppiess the background and emphasize the spectral lines in

the lofargram. Target can be tracked by an automatic lofargram processing system up

2



to a certain point then the system alarms the operator. The enhancement processing of
a lofargram using the relaxation method could be one part of tile automatic systel of
lofargram processing to provide target related information for good decisions.

The objective of this thesis is'to enhance the spectral lines of the lofargram by using

the relaxation method which is an iterative approach to line detection. This technique

makes probabilistic decisions at every point of the lofargram for each iteration. Deci-

sions are adjusted at successive iterations based on results of the previous iterations.
This thesis will present some experimental results of the line enhanced lofargrams

using the relaxation method.

C. WHAT IS EDGE AND LINE DETECTION
Edges are defined as the discontinuity of intensity in an image, and are basic parts

of the image information in general. Both the edge and line detection are fundamental
techniquns of image processing which are used to detect boundary of an object. But,
there is an important difference between edge and line detection. Edge detection aims

at finding the local discontinuities in an image. These discontinuities are of interests be-

cause they are likely to occur at the boundaries of objects. The output of an edge de-
tection process will be some local line shown as boundaries of an object. Figure 3 shows

the step edge and output profile of an edge detection proces-.

(a) (b)

Figure 3. Gray leiel profile of a) edge and b) line

In real images, with noise and surface imperfections, gaps between local lines are ex-
pected. Therefore, a process to organize the local edges into aggregates is needed in a
line detection technique. Liiie detection is a process where edges in an image are ag-

gregated to form object boundaries. These boundaries may not be known a priori. But,
in many cases, they can be approximated well by piecewise linear segments. l-loicvcr.
it is not feasible to simply fit linear segments to all the edges in an image and discard the
poor fits. It is first necessary to aggregate the edges lying along a single line or along

3



another known curve. Proximity and the directions of an edge or more detailed de-

scriptions of the edges can be used for such aggregation. Therefore, edge detection and

line detection can be put iii sequence. Basic ideas of edge and line detection are ex-

plained in liRef. 31.

Usually edge and line detection algorithms can be divided into the following cate-

gories. [Ref. 41

1. Detection of element.

Differential-type operator.

Model-fitting method.

2. Enhancement of lines.

Enhancement in image space.

Enhancement in parametric space (1 lough transform).

3. Connection of elements.

Connections using graph search techniques.

Category I refers to the process to detect line or edge elements by applying local oper-

ators such as Roberts [Ref. 5] , Prewitt iRef. 61 and Sobel iRef. 71. An approximation

of the gradient for a digital picture from Roberts's opeator is given by

R(ii) = Vg(ij)

V I (g(i + I + l)-g(i,)}2+ (g(i,J + l)-g(i + I)} 2  (1.1) 

In Figure 4 g(ij) denotee the intensity of the image iof the pixel (ij), which the direction

of the gradient is given by

n +tan,[g(iti + l)-g(i + 1ji)

4 g(i+ lj+ l)-g(ij)

The Prewitt operator defines the magnitude of a gradient from Figure 5 by

s = (1.3)

Sx = (a2+a34 a4)-(a+a7+a6) (1.4)

Sy = (a 6 +a 5+a 4)-(a 0 +a+a 7) (1.5)

and the direction of the edge is given by

4



tan-, S )(1.6)

,,,/Y

iii~ it,j.I

Figure 4. Robert's gradient operator

The Sobel operator defines a gradient from figure 5 by

S = I (ao+2aj+a2)-(a,+2a5+a4 )j

+ I (ao+2a,j+a6)-(a2+2a3 .j*a4 )j (1.7)

Generally, a differential type operator doesn't perform well compared to a model fitting

method. We are going to discuss this problem in the experiment part of this thesis.

Category 2 is a smoothing processes which eliminates noise components and em-

phasize edges. In this category, the iterative method performs edge enhancement by ap-

plying iterative processing based on relationships of its neighbour elements in an image

space. Category 3 is a process which connects small line segments into longer lines.

Knowledge or constraints related to the sequence of elements to be detected are used in

an evaluation function. Then, the connection.of elements is regarded as a graph search

problem. In this case, two techniques are used: one directly proceeds with the line ex-

traction while searching the edge elements for brightness data, and the other applies a

local edge operator to the entire inage before the connection of elements is done.

[Ref.3]

5



ao0  a

Figure 5. Apixel and its eight neighbors

In this chapter, the general ideas or line and edge detection as used in lofargrani

processing arc explained. Chapter 11 introduces the relaxation technique, while a nodi-

fied algorithms using relaxation technique is introduced in Chapter III. Experimental

results of lofargrain processing are given in Chapter IV. Chapter V is the conclusion

of this thesis.

6



11. RELAXATION METHOD

A. GENERAL BACKGROUND

Relaxation techniques were first used by Waltz [1cf. 8] for the description of solids

and were expanded by Zucker [Ref. 9) !or a variety of applications. Relaxation is an it-

erative approach to assign each pixel to categories by assigning the neighboring pixels

in a "compatible" way. This means that each pixel has interaction with its neighboring

pixels, and the degree of interaction is considered in terms of the compatibility of each

pixel to its neighboring pixels. *his method takes a set of probabilities for each pixel to

belong to a possible class, and uses an iteiative technique to update the probabilities.

An important element of the method is a set of compatibility measures c(k,s;I,t) that

gives the compatibility of assigning pixel k to class s and assigning the neighboring pixel

I to class t. It is assumed that c(k,s;I,t) is in the range (-1,+ 1) where -1 implies a strong

incompatibility, + I implies a strong compatibility, and 0 implies neutrality. p°(k,s) is an

initial estimate of the probability that pixel k belongs to class s. Let q'(k,s) is the incre-

ment of the probability and N bt the number of neighbors for each pixel; a neighbor-

hood of 3x3 or 5x5 is usually employed. Then, a sequence of estimates p'(k,s) is

computed iteratively as follows

1. For each pixel k, compute the "neighbor compatibility" between pixel k ,.nd its

neighbor pixel I in class s, which results in the probability of pixel k in class s.

qr(ks) = -j- Z Zc(k,s;I,t)p(,i) (2.1)
I 

t

where the summation is over all possible neighbor pixels I and all classes t. If only

two classes(for example, edge and non-edge) are considered, then there are only

four cases of neighbor compatibility c(k,e;I,e) means the compatibility of an edge

pixel k being a neighbor of an edge pixel I. c(k,e;l,n) means the compatib:lity of an

edge pixel k being a neighbor of a non-edge pixel I . c(k,n;I,e) means the compat-

ibility of a non-edge pixel k being a neighbor of an edge pixel I . c(k,n;I,n) means

the compatibility of a non-edge pixel k being a neighbor of a non-edge pixel I.

Therfore, equation (2.1) can be expanded as follows

7



qr(,e) = 1 (2.2)

qr(k,n) = - Zc(k,n;,e)pr(I,e)+c(k,n;,n)p'(,n) (2.3)

2. Update the probabilities p-'(k,s)

Pr+1 (k,s) pr(k,s)(l+qr(ks)) (2.4)

EPr (k,s)(I+qr(k,s))

For two classes;

pr+l(k,e) pr( +(ke)[ ( +.5
pr (k,e)L e)J+ lr ( k,n)[I +qr (k,n)] (2.5)

EquaLion (2.5) gives the probability that pixel k is an edge. T'hcn the probability

that pixel k is a non-edge is defined by

p +j (k,n) = I -p"+l (k,e) (2.6)

As the process is iterated, these probabilities must stay in the range ftom 0 to 1. The

formulas given above are the basic expression of the relaxation technique. This concept

can be expanded and modified for other applications. This technique has the following

characteristics:

1. ligh compatibility pixels tend to rcinforce each other and the low compatibility
pixels tend to discourage each other.

2. The degree of reinforcing oi discouraging done by a neighbor is proportional to its
own probability of assignment of that class.

3. The probabilities p(k,s) remain in the range from o to I and sum to I over all of
class s.

B. APPLICATIONS OF RELAXATION METHOD

1. Line enhancement

One of the applications in which relaxation techniques have been proven useful

is the detection of long smooth curves in an image. Initially, line detection operators

are applied to the image, and their outputs are used to determine an initial probability



of tile point lying on a curve with a given orientation. These probabilities are then iter-

atively reinforced: the probability of a point lying on a curve is reinforced by the prob-

abilities of the other points lying on curves that smoothly continue it. After iterations

of tile procedure, points that lie on smooth curves tend to have high probabilities of

being curve points, while the other points do not.

An application of the relaxation technique to the detection of major edges in

an image will be presented in the next chapter in detail. Initially, a gradient edge opera-

tor is applied to the image. This provides information about edge strength and orien-

tation at each point. These probabilities are then iteratively reinforced.
The general idea of the edge reinflorcement process is as follows.

a. A lagnitude and direction

First, the magnitude and direction of the image gradient are computed for

each pixel k. The magnitude of pixel k, divided by the maximum of the magnitudes over

the entire image, defines the initial probability p (k,s) of a pixel k being an edge.

b. Reinforceinent ojedges

The reinforcement process defines a new edge probability of a pixel k in

terms of the old probabilities at the pixel k and its neigabor pixels. The computation of

the new edge probability can be broken into steps as follows.

(1) Interactions between edge and non-edge. The interaction between

edge and edge, edge and non-edge, non-edge and edge, non-edge and non-edge depend

on the edge direction at the two positions, on the orientations of the line joining the

points, and on the distance between them.

(2) Conmjutation of the new probability. To compute the new edge prob-

ability obtained firom the iterations, first, compute weighted sums of the edge and non-

edge probability increments, q'(A,e) and q'(l,n). These sums are then normalized to lie

in the range(-l, + 1) according to (2.4). They are used to update the edge and non-edge

probabilities, while the updated values are normalized so that they can sum to 1.

The real issue in this thesis is to search for good line detection tech-

niques applicable to lolargrams,and not to edge detection. Therefore, we are going to

concentrate on the reinforcement of the relaxation method as applied to lofargram.

2. Labeling

There is another application using the relaxation technique, which is called "la-

beling." The objective is to assign labels to objects in an image. [Ref. 10]

9



a. Components of labeling

In a finite set of relations between objects, the objects usually correspond

to entities to be labeled, The objects are often geometrically or topologically related to

each other. An input scene is thus a relational structure of all objects. In the simplest

case, each object is to be assigned with a single label. Labels may be weighted with
"probabilities" indicating the "probability of an object having that label. "Constraints

determine what labels may be assigned to an object. A basic labeling problem is then:

Given a finite input scene (relational structure of objects), a set of labels, and a set of

constraints, find a consistent labeling.

There are several types of labeling using relaxation.

b. Discrete labeling

It is a parallel iterative algorithm adjusting all object labels. All possible

labels to each object are assigned in accordance with constraints. Iterations are per-

Formed until a globally consistent labeling is found. In parallel, from each object's label

set all the labels that are inconsistent with the current labels of the rest of the relational

stiuctuie are clininated.

c. Linear hbeling

The labeling process starts with an initial assignment of weights to all ob-

jects. Weight are reminiscent of probabilities, reflecting the "probability that a label is

correct." ,lere p refers to probability-like weight rather than to the value of a probability

density function. Let a relational structure with n objects be given by a, , k = 1,..n, each

with in discrete labels Aim and let )k(.) denote the weight, or the "probability" that the

label A is correct for the object a, and restricted as Follows

0 < Ik(A) < 1 (2.10)

Zrk()= 1 (2.11l)

The linear labeling operator is based on the compatibilities of the labels,

which serve as the constraints. A compatibility p&, looks like a conditional probability.

Z i() IA).')= 1(2.12)

10



The PAA I A') may be interpreted as the conditional probability that object a, has label

A given that another object a, has label A'. The operator iteratively adjusts label weights

in accordance with other weights and the compatibilities. A new weight p,().) is com-

puted from old weights and compatibilities as follows.

Pk(A) =Cktf'u). I A')pXA')] (2.13)
I

The c,1 are coefficient such that

Zckl = 1(2.14)

d. Nonlinear labeling

11 the compatibilities are allowed to take on both positive and negative

values, we can express strong incompatibility and strong compatibility. Denote the

compatibility of the event "label ). oil a," with event "label ).' on a," by rA,()., A'). If the

two events occur togetler often, r,, should be positive. If they occur togcther rarely, r,1

should be negative. If they are independent, r,, should be 0. The compatibilities are based

on correlations

CoV(,, Y) = (X, ))-p(X)p( 1) (2.15)

o2(X) =,(X,X)-(p(X)) 2  (2.16)

Coy(X, Y) (2.17)

The r, is used to obtain the positive or negative change in weight.

qr(A) = Zck -,(A, A)p (r') (2.18)
I A'

The q,(A) is the increment of the weight. The probability change is as follows

11



A = (2.19)Z (2.)[l+q (A)]

Basically, labeling is diffcrent with the detection problem. Labclii'g is a

process to assign the correct label to the correct position while detection is a process to

take the desired portion of a scene having a mixed feature. Therefore, labeling is a dif-
ferent technique for line detection.

1 he general concept of the relaxation technique and its applications were

discussed in this chapter. In the next chapter, line and edge detection algorithms using

relaxation technique will be discussed in details.

12
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III. RELAXATION ALGORITHMS APPLIED TO LINE DETECTION

There are many algorithms already developed for line detection. In this thesis, the

objective is to select and test some of thcm for the lofargram processing.

A. EDGE ENHANCENIENT(RXEG)

This algorithm is derived from the original idea developed by Schachter, et al to re-

inforce the contini'ous edges detected by a gradient operation. RXEG is an acronymn

for "RelaXation method for EdGe detection".Edges reinforce other edges that interact

with nearby non-edge points in specified ways. I he gradient of the edges are also iter-

atively adjusted. Ref. I1]

I. Initial edge probability

A digital gradient operation is applied to the given imagef. If we denote the x

and y, components of the gradient by Af and A f, then the magnitude and direction of

the gradient are given by

mag = (3.1)

0 = tan-I( - (3.2)

'I he inag of dhe gradient indicates the strength of the edge. The angle 0 of the gradient

is perpendicular to the edge direction. lEdge direction is obtained by adding 90' to the 0

angle of the gradient.

We defined the "probability" of an edge at a given point k by

( )ag(k)p(k,e) nmax(mag(l)) (3.3)

where the max is taken over the entire image. The probability of a nonedge at a pixel k

is defined as p(k,n)= l-p(k,e).

2. Pixel and neighbor interaction

The centered pixel k could have four kinds of interactions with its neighbor pixel

I such as edge/edge, edge/non-edge, nc n-cdge/edge and non-edge/non-edge.
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a. Edgeledge interaction
k is the centered pixel position, and I is one of the neighbor pixel position.

Let a be the edge direction at k, P the edge direction at 1, y be the direction of the line
joining k to 1, D the chessboar,., distance from k to 1, i.e, max( I k'-4" I, I kY-l, I ). Then
the edge/edge reinforcement process betweeu the points k and I has strength given by

c(k,e;le) = cos(a-),) cos(/J-y)/2D (3.4)

To see the significance of this definition, a few simple examples are consid-
ered. In these examples, the arrows indicate the direction along the edge, with the dark
side of the edge on the left. These examples showed that parallel and perpendicular

edges have no efect on one another.

Case a y cos(a - Y) cos(- 7 )/2c

4"! 9 90 0 0
90 270 0 0

14\ 90 90 90 1/2r

90 270 90 -1/ 2L

90 0 0 0

_ 90 180 0 0

Table I. Examples of edge / edge interaction [Ref. 8j

b. Edge/non-edge hiteraction
Besides the edge/edge interaction which occurs between the edge probabili-

ties p(k,e) and p(/,e) there are also interactions involving the non-edge probabilities
p(/,n) . The edge probability at pixel k is weakened by the non-edge probability at pixel
I to the degree c(k,e;I,n) defined by

c(k,e;/,n) = min[O, - cos(2a-2y)/2 n ] (3.5)
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In the examples, non-edge neighboring points collinear with the center edge points

weaken them, whereas non-edge points alongside edge points have no effiect on them.

Case a Y cos(2a - 2y) 2D c(k, e; I, n)

4" 90 0 1/2' 0

4,- 270 0 1/2' 0

90 270 -1/2D -1/2

A 90 90 -1/2 -1/2'

Table 2. Examples of edge / non-edge interaction [Ref. 8]

c. Non-edge/edge interaction

'I he non-edge probability at pixel k is affected by the edge probability at the

neighbor pixel I to the degree c(k,n;l,e) defined by

c(kn;le) = (I- cos(2fl-2))) (3.6)

2

Case a ( - cos(2a - 2y)) / 2D

0 90 0 1/2'

A0 90 90 0

Table 3. Examples of non-edge / edge interaction [Ref. 8]

Yrom the examples, neighbor edge points alongside the center point strengthen them,

While edge points collincar with non-edge points have no effect on them.

d. Non-edge/nion-edge interaction

The non-edge probabilities at centered pixel k and the neighbor pixel 1 re-

inforce each other to the degree c(k,n;1,n) dcfined by

c(k,n;l,n) = (3.7)
2
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Non-edge probabilities are reinforced by the other nearby non-edge probabilities.

c(Ic,n;I,n) is directionally independent.

3. Combined reinforcement process

For each pixel k, the net effect of its neighboring pixel on its edge probability
p(k,e) and non-edge probability p(k,n) = l-p(h,e) is computed as follows

q(ke) Cp (I,c)c(k,e;I,e)

+YC 2pr(I,n)c(k,e;I,n) (3.8)

q' (k,n) = "c~rr ( t,e)c(kLn;I,e)

+ ' C41 ( ln~c(k~n~~n)(3.9)

I

where C1, C2, C3, C, are constants whose sum is equal one." The standald values of

C, = 0.866 , C2= 0.124, C3 =0.005, and C, = 0.005 was used in the paper by Bruce

J.Schachter, et al [Ref. IlQ. The results of the iteration process are somewhat sensitive

to the choice of the C's. For example, if' C, is too large, the edge will thicken and will

be extended into non-edge points; while if (, is too large, gaps will appear at weak spots
in the edges and at sharp angles.

q((3.e)
q' (A,e) = q(k,,) + q"(kn (3.10)

qq (k,n)

qt (k,e) Iq(k I (3.11)

p'(k,e) = pr(ke)[ 1 +q'(k,e)] (3.12)

p'(k,n) = rp(k,n)[ I +q'(k,n)] (3.13)
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,,+i(ke) - p',(k,e) (3.14)
P'(k'e)+P'(k'1?)

This process is then iterated by using p'"(k,e) in place of p'(k,e), and by using
I-p''(k,e) in place of p'(k,n). We also compute the estimated edge direction A',(k) and

A',(k) at each point
(tx~k) cos(O(O))

cos(0()) (3.15)
I

A').(k) = l sin(0(k))

+ () (0(1) (3.16)

or+I(k) = tan-'(A',(xy)1A'x(xy,)) (3.17)

For large values of the constant W, 0'' is close to 0; while for small values, it is strongly

influenced by the neighboring O's.

B. LINE AND CURVE ENIIANCENIENT(RXLN)

In section A, only two categories arc associated with the image pixel, (i.e, edge and

no.i-cdgc). In this section, more categories arc considered in the RXLN relaxation pro-

ceduies. RXI.N is an acronymn fbr "RelaXation method for LiNe detection."

This algorithm was devlopcd by Zucker, Ilununel and Roscnfild [Ref. 12]. The re-

laxation process i6 applied to the detection of smooth lines and curves in noisy images.

Nine class labels associated with each image point will be considered. Eight classes in-

dicate lines at various orientations and one indicates the no-line case. In the relaxation

process, interaction takes place between the probabilities at neighboring points. This

permits line segment with compatible orientations to strengthen one another. Sitnilarily,

no-line class is reinforced by neighboring no-line class and weakened by the neighboring

oriented line classes.
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1. Initial probabilities

At each point, probabilitko3 are assigned to the nine classes which are lines in
eight possible directions and a no-line class. The initial probability for each class is ob-

tained by evaluatng a nonlinear line detector as shown in Figure 6 at every picture point
along the eight orientations. Eight sets of pixels representing eight orientations are se-
lccted and shown in Figure 6. Each set of pixels are rearranged as the template shown

in Figure 6 (b). When the condition in Figure 6 do not hold, the response is zero. When

they do hold, the response is calculated by

R = (B+E+II)- T (,I+D+G+C+F+I) (3.18)

At each pixel, the detector's response are computed for every orientation. 'I lien only one

orientation which has the maximum detector's response is selected as the orientation of

the pixel. [Ref. 131

m atConditions

A B C A <B>C

D E F D <E> F

6 H I G <H> I

(a)

B B B B H H

E E E HE HEB HE E E

H H H B B B

(1) (2) (3) (4) (5) (6) (7) (8)

(b)
Figure 6. Nonlinear line detector. (a) Nonlinear line detectoi fvr the vertical ori-

entation. When the conditions do not hold, the response is zero; when

they do hold, the response is calculated by (3.18). (b) Eight orientations

of the detector.
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To describe this process, let d(k) denote the output of the nonlinear detector for

orientations s at pixel k . Let p(k,s) denote the probability that a pixel k belongs to class

s. Then the initial probabilities can be obtained by scaling the detector's responses at

each position by the maximum over the entire picture. The probability that pixel k has

class s is expressed as follows

IR
nax(d3,(k)) ()319

p(k,s)- x s (3.19)
max((max)d(k)) 8
3=1 k Zd5 (k)

3='

max(d(k)) means the one selected maximum value over all orientations. max(d,(k))
.t-' A

means the maximunm value of oriented s over all image pixels, and the probability that

pixel k has no-line is defined by

8

p(k,9) = l- .p(k,s) (3.20)
S---1

2. Compatibility coefficients

To update the probabilities, the compatibility relation between a pixel and its

neighbors must be specified., The compatibilities depend only on the relative orientations

of the neighboring point. These compatibilitics can be specified in the Following way. If

two neighboring line segments are oriented in the same direction or close to the same

direction, they add support to one another. If, on the other hand, two neighboring seg-

ments are oriented perpendicularly to one another, they will reduce support to each

other. All other pairs of ineu segments are distributed between these two extremes. In this

algorithm, there are three types of compatibility coefficients.

a. Compatibility coefficients between lines

Figure 7 shows the compatibility coefficients between the lines in five ge-

ometrical relationships. As standard values, fi'om left to right: 1.0, 0.5, 0.05, -0,15, -0.25

are used. When straight line enhancement is desired, 1.0, 0.0, -0.1, -0.17, -0.22 ale used.

[Ref. 13]
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b. Compatibility coeficients between Rine and no-lines

As its standard value, -0.1 is used. Decreasing the value to -0.5 increases the

effect to fill the gap between line segments. [Ref. 13] The standard value is 0.25.

I I I I
1.0 .5 .05 -. 15 -.25

Figure 7. Compatibility weights between line labels

c. Compatibility coefficients between no-lines

Increasing the value up to 0.5 improve the noise effiect but, may cause era-

sure of line labels. [Ref. 12]

For each pixel k, its neighbor pixel has 9x9 cases of interaction with the

center pixel. If neighborhood size is 5x5. 'I hcre are 5x5x9x9 cases of compatibility coef-

ficicnts, c(k,s;!,i).

c(k,1;l,I) . . c(k,l;25,1)

c(Ic,9;1,9) . . c(k,9;25,9)

3. Updating probability

The updating process can be expressed in terms of compatibility functions. Let

q'(k,s) represents the increment applied to 1/(k,s), which is the probability that pixel k

belongs to class s. The probabilities of each pixel in each class are computed as follows

qr(k,) = _c(,,;t)p'(I,) (3.21)

I t

where s repr,'ents nine classes of refrrence pixel and t represents nine classes of neigh-

boring pixels and
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P'(,s (3.22)
Z (ks(I +,r (k,s)]

S

C. LINE AND CURVE ENI-iANCENIENT(RXLAI)

This algorithm is delivered iom the original idea developed by S.Peleg and

A.Rosenfleld [Ref. 141. RXLAI is an acronymn for "RelaXation method For Line And

curve." Basic concept using in this algorithmn is the same as that used in the RXLN(sce

section 1B) except that the method for compatibility coefficient is difrerenit.

1. Compatibility coefficient

One possible interpretation of the compatibilies is in terms of statistical corre-

lation. Coirclation has properties as Follows

a. I f'class s and class I arc compatible for pixel k and pixel 1, c(k,s;I,t) > 0

b. If class s and class t are incompatible for pixel k and pixel 1, c(k,.s;l,z) < 0

c. If neither class is constrained by the other, c(h~s;I,t) = 0

d. Iliec magnitude of c(k,s;l,t) repi esents the strength of the compatibility.

[Estimnates of theC correlation coefficients derived fr-om analyzing the initial

probability are

c(k,s;I,i) (3.23)

1'(k,s) is the initial estimate of the probability of pixel k with class s, T(k,s) is the average

of p(k,s) For all pixels k, u(s) is the standard deviation of p(k,s). If the neighborhood size

is 5 x 5, 5 x 5 x 9 x 9 cases exist for each pixel as below

c(A,l;1,1) .. c(/c,l;25,J)

C(k,9;l1,9) .. c(k,9;25,9)

Then, for every case and for all pixel A wve have the summiation as given by
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c(k,l;l,l) . . c(k,1;25,1) c(k1,l;1,1) . . c(kj,l,25,l)

C(k,9;1,9) c(k,9;25,9) c(kl,9;1,9) c(k,,9;25,9)

c(k2,1;1,1) • c(k2,1;25,1)

+

c(/2,9; 1,9) • . c(k2,9;25,9)

Thcrefbre

c(k,s;1,t) - k G(S)G(t) (3.24)

In this algorithm, there is the ellect of dominance, that is, when one class

dominates the picture, its correlation coeflicients with all other classes are high. Thus in

the relaxation updating, the dominant class gets most of the support, and after a fbw

iterations almost all the pixels have this class. The ef'ect of dominance among classes

can be alleviated by weighting the c(k,s;I,t) by the probabilities that the corresponding

classes do not occur. This greatly reduces the values of the coefficients involving doni-

nant classes, but will only slightly reduce the values of the coefficients involving rare

classes. '1 he compatibility coefficients used in this algoritm are

c(k,s;I,t) = [l-x(k,s)][l-(,)] x c(k,l,s,t) (3.25)

Two line and edge detection algorithms using relaxation technique were dis-

cussed in this chapter. These algorithms will be applied to the lofargram for line de-

tection. Experimental results of these algorithms will be discussed in Chapter IV.
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IV. EXPERIMENTAL RESULTS AND A MODIFIED RELAXATION

APPROACII

In the experiments, four different relaxation algorithms are applied to lofargrams
having different S/N. Both real and artificially treated lofargrams were used as test im-
ages. As discussed previously, two algorithms RXLN and RXLAI are line detection al-
gorithms while the third algorithm RXI3G is an edge detection algorithm. The purpose
ol'the experiment is to test these three algorithms to see how they work for lofargrams.
The secondary purpose of these experiments is to obtain thin lines fbr loflargram inter-

pretation. Because the results of these algorithms were not satisfactory, improvement
of the most suitable algorithms are suggested.

The results of the line detection algorithms RXLN and RXLAI were not encour-
aging when the S,'N is low. The reason will be explained later in this chapter. The results
improve as the S/N increases. One eflct is that the noise was removed very slowly in
iterations of rcinforcement. On the other hand, the edge detection algorithm, RXEG
showed better results than the above two algorithms in the presence of low S/N. But the
results were still not ideal. A double line was shown when the S/N was low because
RXEG was the edge detection algorithm. 'hel efore, some modification is needed for line
detection in the RXEG. This will be discussed in details later.

Two parts in the RXEG algorithm were modified. The first one is the initial magni-
tude of the pixel, since the outputs are greatly influenced by the initial magnitude of the
input image. T-he other is the initial direction of the pixel. Because RXEG uses a diffier-
ential type of edge detection operator, the initial direction in RXEG is not appropriate
for the lofargrazn line detection. In RXIG the edge direction has a dark side which in-
dicates the outside of the object and a [)tight side which indicates the inside of the object
body. But the direction of a line simply indicates the potential direction of' a track in a
lofargram. Detail will be discussed in section C.

In a search for a better initial magnitude and direction, many other algorithms were
tested. It assures that the magnitud and diiection output from EGPR which is another
line detection can be useful. The RXEG was modified and tested accordingly.

A. LINE DETECTION ALGORITIMS (RXLN, RXLAI)
Both RXLN and RXLAI are line detection algorithms which use siilar methods

for initial probability and compatibility coeflicient calculations as explained in Chapter
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111. But the applications of these are very discouraging. Figure 8 shows a real lofargram

as the input image and its initial magnitude calculated in RXLN. Figure 9 shows the
results of two iterations of reinforcement. And Figure 10 shows an artificial lofargram
with S/N of 6 db and its initial magnitude image. Figure 1 I show the results of the four

iterations of reinforcement. And Figure 12 show the results for 3 db and 6 db of S/N.

The initial magnitude of input image shows that the result is very noisy. In these

algorithms, there is the eflct of'dominance. When one class dominates the picture, high
value is assigned to the dominating class at each pixel and low values are assigned to the

other classes. Thus, the dominant class gets the most support in the relaxation updating
process. And after a few iterations almost all the pixels have the same class. Figure 8

shows that the noise dominates the picture when the lofargram has low S/N. Figure 10
(b) still shows that the noise dominates the picture. When the S/N is higher, the signal
showed up weakly as shown in Figure 11. But noise still dominates the picture. Gener-
ally noise dominates the lofargram. Noise stiongly dominates the lofargram when the

S,'N is low. Ilence the RXLN and RXLAI algorithms are not suitable for loflargram

processing.

B. THE RESULTS OF TIlE EDGE DETECTION ALGORITHM RXEG
Figure 13 shows the initial magnitude of the RXEG of the input image. Figure 14

shows the results of the reinforcement applied to Figure 13. In this implementation,

neighborhood size is 5x5, then the 24 neighboring pixels influenced the centered pixel.

Figure 15 shows the artificial lofargram input image and its initial magnitude with 6db
of S/N. The iteration scheme has considerable noise removal power as shown in the

example of Figure 14. Figure 16 shows that the results of the artificial lofargram with

higher S/N can yield a stronger response. A double line in Figure 14 (b) and Figure 16

indicate that the edge was detected from the input image. Because RXEG uses the edge
detection operator, double lines are shown at lower iterations, The weaker line of the

double lines disappeared gradually in the iclaxation process with 4 successive iterations

as shown in Figure 14. Figure 17 shows the results for 3db and 6db of S/N. A desirable

example of edge detection is shown in Figure 18.

C. MODIFIED EDGE DETECTION ALGRITIInM RXEG

The results of RXEG shows that this algorithm works as an edge detection algo-
rithm. It can detect the edges in the lofargram, even though the S/N is very low. Double

lines in Figure 15 (b) shows an example of the edge detection.
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Figure 11. Results of four iterations (1,2,3,4) of reinforcement from Fig 10
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(a) (b)

]Figure 12. Results of hio Iofargranhs, (n) 3db (b) 6db. Results of the reinforccinent

with 5 iterations.

Figure 13. Initial magnitude of Fig 8 (a) in RXEG. The Prew~tt operator is used

for initial probability.
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(a)

(b)
Figure 14. Four iterations (1,2,3,4) of RXEG
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(C)

(d)

Figure 14. Four iterations (1,2,3,4) of RXEG (continue)
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(a) (b)
Figure 15. Artificial lofargram -oith 6db S/N and its initial magnitude

(a) (b)

(C) (d)
Figure 16. Results of four iterations(1.2,3,4) of reinforcement from Fig 15
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(a) (b)

Figure 17. Results of tNio lofargrnms, (a) 3db (b) 6db.

Results of the reinforcement with 5 iterations. lowever, the purpose of loffirgrain
processing is to detect the line of the signal fbr the interpretation of the lofargram. The

desirable ideal example of the line detection is Ahown in Figure 19. To accomplish this,

some changes in RXEG are required. Many algorithms were tested to generate the edge

maLnitude and line direction for the initial probability. The new magnitude and direction
obtained from EGPR, were adopted in the modified algorithm.

e d g e F , e d g e

(a) (b)

Figure 18. Example of edge detection process (a) input (b) output

1. Edge magnitude output
The gray level of the edge enhanced magnitude of each pixel are processed by

masks. Nine masks are formed around a pixel in the shape of pentagon, hexagon and
rectangular as shown in Figure 20. The average values and the variances within the
masks around a pixel are calculated. Then. the average value of the mask with minimum
variance is assigned as the gray level of the center pixel.
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(a) (b)

Figure 19. Example of line detection process (a) Input (b) output

I/ V

(4) (2) (3)

(4) ) 6

(7) (8) (9)

Figure 20. Nine masks from EGPR

2. Line direction output
The initial line direction of each pixel is determined from th. direction of the

mask with the minimum variance. Eight line directions can bc associ'ited with each im-
age point. The directions are syrrnetric to the origin. Therefore, only four of them are
considered as 0 = 180' , 45' = 225', 90'= 270' and 135'= 315'. The direction for an edge
is the direction along the edge with the dark side of the edge on :he left and the bright
side on the right side. This means that the edge direction 0' and 180' are diff rent di-
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rections. I lowever, the directions for line detection f'on masks in EGPR do not have

dark side and bright side. The direction in EGPR, simply implies the direction of a line

without dark side and bright side, This means that tile line direction 0' and 180" are the

same direction as shown in Figure 21. The edge direction with bright on the right side

are shown in Figure 22.

Figure 21. An example of line direction

dark bright

uright dark

Figure 22. An example of edge direction

The four directions generated from the EGI'R are shown in Figure 13. But, start with

the second iteration after the first relaxation process, infinite line directions are consid-

ered at each pixel.
3. PLxel and neighbor interaction

Edge detection in RXEG detects double edges of the signal line in the lofargram.

It can detect the edges reliably when the S/N is high. But, the purpose here is to detect

thin line as shown in Figure 19. For the thin line detectio,, it is necessary to construct

a compatibility function with proper compatibility values for the interactions between

different classes. Basically, the same compaiibility function as that of the RXEG can be

used for the interactions between lines. The only difference between the line direction
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90

135 45

0
Figure 23. Four possible line directions

and the edge direction is that the directionality of a line greater than 180' is considered
as the same as its symmetric value through the origin, In other words, the compatibilities
or lines between the center pixel and the neighboring pixels can be handled in the same
way as in RX G,

The center pixel k could have four kinds of interactions with its neighbor pixel
1, i.c, line'line, line/no-line, no-lincline and no-line/no-line.

a. Line/line interaction

Let k be the centered pixel position, and I the neighbor position. Let OC be
the line direction at k, fi the line direction at the neighbor pixel 1, v be the direction of
line joining k to 1, D the chessboard distance f'om k to I, i.e, niax( I k-I, I, I k,-1 )•
lhen the li ie/line reinforcement process between k and I has strength given by

c(k,l;l, = cos(.-),) cos(fl-y)/21 (4.1)

which is similar to eq (3.4). llere I represents the line class and n represents non-line
class. To see the significance of this definition, a few simple examples are considered in

Table 4. Results changed with different compatibility value of parallel lines. In the ex-
perinient, when a higher value of compatibility is chosen for parallel lines, background
noise increases, while a lower value is chosen when the opposite situation takes place.

b. Line/no-line interaction

"1 he line probability at pixel k is weakened by the no-line probability at pixel
I to the degree c(k,I;I,n) defined by

c(k,I;I,n) = mini0, - cos(2c-2y)/2 D  (4.2)

which is similar to eq (3.5). A few examples are shown in Table 5.
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c. No-line/line interaction
The no-line probability at pixel k is affected by the line probability at the

neighbor pixel I to the degree c(k,n;I,O defined by

c(k,n;,O (I- cos(2f-2v)) (4.3)
2D+

which is similar to eq (3.6). A few examples are shown in Tablc 6.

case a1 cos(c - Y) cos(P -1) /2)

90 90 90 1/2

90 0 0

90 90 0

Table 4. Examples of line / line interaction

case a y cos(2z - 2y) / 2 )  c(k, I; I, n)

90 0 1/2 0

90 90 - 1/2 -1/2"

I 90 270 -1/2 , -1/2"

Table 5. Examples of line I no-line interaction

case a 0 Y (1 - cos(20 - 2y)) / 2D

0 90 01/2

i0 90 90 0

Table 6. Examples of no-line / line interaction
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d. No-Iinc/uno-line iheraction

The no-line probabilities at the centered pixel k and that of the neighbor

pixel I reinforce each other to the degree c(k,n;l,n) defined by

21 D(4.4)c(k,n;l,n) - (4.4

which is similar to eq (3.7)

4. Combined reinforcement process

For each pixel k, the net effect of its neighboring pixei. 3n its probability p(k,I)

and no-line probability p(k,n) = l-p(k,I) is computed as follows

qr,(') h)(4.5)

r +Z C~a(p (In) c(k,l;I1,1) (41.6)qkn)= C3t' (l,D)c(k,n;I,t

where C,, C, C3, C are constants whose sum is taken to be one. The standard values

needed here are C, = 0.866, C2 = 0.124, C3 = 0.005 , and C4 = 0.005. The results of the

iteration process are somewhat sensitive to the choice of the C's. For example, if C, is

too large, the line will thicken and will le extended into no-line points; while if C, is too

large, gaps will appear at weak spots in the lines and at sharp angles.,

q'(k~o qr( k.0 (.7
q'(k,!) I + I qr(k,n) [  (4.7)

q'(k =)q"(kn)

q q,(k.l) I + I qr(k,n) (4.8)
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p'(k,O -- p'(k,)[ I +q'(k,)] (4.9)

p'(k,n) = pr(k,,)[ I +q'(k,,)] (4.10)

p +1'(k ,()
t"+I (k,) - p'(k,I)+p'(k,n) (4.11)

This process is then iterated with p' +(k,I) replacing p'(k,o, and 1-p~'(k,I) replacing
j,'(k,n). We also compute the estimated line direction at each point

'.(k) = l*r,, cos(O(k))

+ "p'(,I,)c(k,1;1,/ cos(0()) (4.12)

A'Y(k) - 1p',(k,0) sin(O(k))

+Zpr(l,/)c(k,;,o sin(0(1)) (4.13)

0r+1 (A) = tan -i (A'y(k)/A',(k)) (4.14)

where II is a constant. For large values of the constant W, O' ' is close to 0; while for

small values, it is strongly influenced by the neighboring O's.

5. Experimental results

Figure 24 shows the initial magnitude of the input image of Figure 8 (a). Figure
25 shows the results for 3db and 6db of S/N. Figure 26 shows the results of four iter-

ations of the reinflorcement applied to Figure 24 using the modified RXEG. Figure 27

shows the artificial lofargram with 6db of' SN and its initial magnitude. Figure 28 shows

the results of four iterations of reinforcement with 6db S/N artificial lofargram. Com-

paring Figure 13 and Figure 24 reveals that the initial magnitudes of the modified RXI'C

are improved by using the EGIIR line detection. The initial magnitude of modified

RXEG shows stronger signal line in Figure 24 when compared to Figure 13. However,

the end results of reinforcement do not improve significantly. From I7igure 28, it is ob-

vious that a double line still exists and that the lines are thicker than those of the RXEG
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algorithm. In this experiment, the purpose is to obtain single thin line from the

lofargram. But the result is not fully satisfactory. A few things could be dis "issed with

respcct to the suspected reasons of the double lines and of the thicker line in the result.

The initial magnitude as shown in Figure 27 (b) was caused by the Prewitt operator of

the RXEG. In Figure 15 the result of RXEG .hows strongly the splitting line. Therefore,

the reinforcement process couldn't be the problem of causing double lines. Figure 29

shows the diagram of the modified RXEG. As for the possible cause of the thicker line,

the modified initial magnitude may be the reasot,. Comparison of Fig 15 (b) and Fig 27
(b) reveals the improvement of the initial magnitude. The initial magnitude of the mod-

ified RXEG shows stronger and thicker lines. Consequently, the results of the re-

inforcement at a later stage applied to this initial magnitude sho,:'o thicker lines.

Figure 24. Initial magnitude of Fig 15 (a) in modified RXEG

To solve the double line problem, it is necessary to find a method to yield the

initial magnitude in single lines. Two diflient method were tested for this purpose. In

the first method each pixel was divided by the maximum value over the entire picture

as follow.
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r(k,I,)
mag m p(k,) (4.15)max p(k,ln)

k

This method removed noise very quickly. The initial magnitudes at each pixel are cal-

culated by dividing each pixel by the maximum values over the entire picture. Therefore,

very small values are assigned to noise and the high values are assigned to the signal line

when the S/N was high. On the other hand, when S/N is low, the high values are as-

signed to both the noise and the signal because the difference of gray level between the

noise and the signal is small. As a result, this method is still not suitable to lofargram

processing. In the second method, each pixel was divided by the maximum value of the

local neighborhood as follow

p(k,1n)
nag -- maxp(IIn) (4.16)

I

Initial magnitude in this method depends on the local maximum value. In the exper-

imnents it is realized the initial magnitude could be white or dark entirely depending on

the characteristic of the noise of the lofargram. This second method was not appropriate
for the calculation of the initial magnitude before the relaxation process.

In this chapter various results of the algorithm studied were discussed. Thick
line problem were discovered. Several attempts has been made to solve this problem.

(a), (b)

Figure 25. Results of two lofargram in modified RXEG. (a) 3db (b) 6db
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(a)

(b)
Figure 26. Four iterations (1,2,3,4) of modified RXEG
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(C)

(d)

Figure 26. Four iterations (1,2,3,4) of modified RXEG (continue)
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(a) (b)
Figure 27. Artificial iofargrarn -Aith 6db S/N and Its initial magnitude

(a) (b)

(c) (d)

Figure 28. Results of four iterations (1,2,3,4) fronm Fig 27 in modified RXEG
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Figure 29. The procedure of modified RXEG
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V. CONCLUSIONS AND RECOMMENDATION

The fact that each algorithm has its own peculiar characteristics in the lofargram
processing was found in this study. These characteristics are very much dependent on the
S/N of the input lofargran. Algorithms RXLN and RXLAI using similar ideas can de-
tect lines in the lofargram when the S/N is relatively high. But, the result were very dis-
couraging when the S/N was low and noise smoothing was done slowly in the iterations
of the rcinforccmcnt. Our main concern of the lofargram processing is to detect a thin
line when S/N is low. "1 herefore, these algorithms are not suitable for lofargram process.
On the other hand, the RXEG algorithm results in good lofargram processing. The only
short coming is that it is all edge detection algorithm. It smoothcs the noise and en-
hances the line components in the lofaigram even at low S/N. The last algorithm
studied in this thesis is the modified RXIzI, algorithm. Several method were tested to
solve the double line problem. But, double line problem still exists in the modified algo-
rithm. "1 o solve this problem, it is necessary to search for an algorithm that can yield thin
single line in the image of the initial magnitude.
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APPENDIX. THE PROGRAM OF MODIFIED RXEG
INTEGER*4 ISX/256/, ISY/256/, ITER/4/, ISNX/5/, ISNY/5/, 15W/l/
INTE)GER*4 IP(256,256),IPRB(256,256) ,JP(256,256)
DIMENSION C(4),CTYPE(4,2),THETO(256,256)
DIMENSION PRBE1(256,256),PRBE2(256,256),Q(8)
DIMENSION THET1(256,256),TIIET2(256,256)
BYTE G(256)
REAL LENGTH, W/3.O/,MAX,MIN
OPEN(UNIT-1,NAME- 'BEAMOO.BIN' ,TYPE 'OLD',ACCESS-'DIRECT',
2 RECORDSIZE-64 ,MAXREC-256)
OPEN (UN IT- 2,NAME- ITWFAR 20- 4X5. DAT' TYPE-'NEW', ACCESS -'DIRECT' ,
2 RECORDSIZE-64 ,MAXREC"'256)

DO 10 1-1,256
READ(11I)G
DO 20 J-1,256

IP( I,J)-G(J)
IF(IP(I,J).LT.0) IP(I,J)-IP(I,J)+256

20 CONTINUE
10 CONTINUE

CALL R)EG(IP,THET1,THET2,PRBE1,PRBE2,ISX,ISY,ISNX,ISNY,ITER,
& ISW,Ti24P,JP,THETO)

MAX-PRBE2(1,1)
MIN-PRBE2(1,1)

DO 30 1-1,256
DO 40 J-1,256

IF(MAX.LT.PRBE2(I,J)) MAX-PRBE2(I,J)
IF(MIN.GT.PRBE2(1,J)) MIN-PRBE2(I,J)

40 CONTINUE
30 CONTINUE

LENGTH- (MAX-MIN)
DO 50 1-1,256

DO 60 J-1,256
IPRB(I,J)-JNINT(((PRrE2(I,J)-MIN)/LENGTH)*243.)

60 CONTINUE
50 CONTINUE

DO 70 1-1,256
DO 80 J-1, 256

IF(IPRB(I,J).GT.127) THEN
G(J)-IPRB( I,J)-25C

ELSE
G(J)-IPRB( I,J)

ENDI F
80 CONTINUE

WRITE(2'I)G
70 CONTINUE

END
SUBROUTINE RXEG(IP,THET1,THET2,PRBE1,PRBE2,ISX,ISY

& ,ISNX,ISNY,ITER,ISW,TEMP,JP,THETO)
C
C
CP Edge reinforcement by relaxation method.
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C
CS CALL RXEG(IP,THETl,THET2,PRBE1,PRBE2,ISX,ISY
CS - ,ISNX,ISNY,ITER,ISW,TEMP)
C
CK RELAXATION, EDGE
C
CA IP(ISXISY) : Input image (I)
CA THET1(ISX, ISY): Gradient direction after ITER-l
CA iterations (W)
CA THx.T2(ISX,ISY): Gradient direction after ITER iterations (0)
CA PRBEI(ISX,ISY): Edge probability for each pixel after
CA ITER-1 iterations (W)
CA PRBE2(ISX,ISY): Edge probability for each pixel after
CA ITER-1 iterations (0)
CA ISNX,ISNY . Size of neighborhood being considered
CA (odd number, for example: 5,5) (I)
CA ITER Number of iterations (I)
CA ISW : Switch (I - standard, 2 - noise reduction
CA type (I)
C
CN Reference
CN @1! B. J. Schachter, A. Lev, S W. Zucker, and A. Rosenfeld, "An
CN application of relaxation methods to edge reinforcement,"
CN IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 813-816,
CN Nov. 1977.
C
CD JULY 1979. PROGRAMMED BY K.SAKAUE
C
CM (1) When computing the initial values for edge probabifty and
CM edge direction using an operator other than the Prewitt
CM operator, rewrite lower-level subroutine RXEP. Any operators
CM that ca obtain a differential (Dx,Dy) can be used.
CM (2) The processing characteristic largely depends upon selection
CM of coefficients Cl, through C4 (See the reference.) The twoCM standard kings of values have already been set in array CTYPE
CM us!.ng data statements, and values can be changed with ISW.
CM V- n using other values or changing values depending upon
CM t;. numnier of iteration times, rewrite the program so a proper
CM value is set to the argument C in lower-level subroutine RXEI.
CM The following condition however, must be met.
CM C(1)+C(2)+C(3)+C(4)-I
CM (3) The coefficient W used when updating (THETl) is set in data
CM statement to 3.0. The same value was also used in the reffernc
CM This value may be changed as neccessary.
C

DIMENSION IP(ISX,ISY),JP(ISX,ISY)
DIMENSION THET1( ISX, ISY) ,THET0( ISX, ISY)
DIMENSION THET2(ISX, ISY)
DIMENSION PRBEI(ISX, ISY)
DIMENSION PRBE2(ISX,ISY),TEMP(256,256)
DIMENSION CTYPE(4,2)
DIMENSION C(4)
DATA CTYPE/.866, .124, .005,.005

& ,.706,.176,.059,.059/
DATA W/3.0/

C
CF INITIAL EDGE VALUES AND INITIAL PROBABILITIES
C
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CALL EGPR(IP,JP,ISX,ISY,THET,TIETO)
CALL RX!'(IP,THET1,PRE,ISX,ISY,TEKP)

C
CF RELAXATION UPDATING PROCESS
C

AMN'0.
AMX-O.

DO 9 1-1,4
C(I)-CTYPE( I, ISW)

9 CONTINUE
DO 10 I-lITER

IF(I.EQ.1)GO TO 11
DO 12 IY-1,ISY
DO 12 IX-1,ISX

THET1( IX, IY)-THET2( IX, IY)
PRBEl( IX, IY)-PRBE2( IX, IY)

12 CONTINUE
11 CONTINUE

CALL RXEI(THET1,THET2,PRBE1,PRBE2,ISXISY,ISNX,ISNY,C,W)
10 CONTINUE

RETURN
END

SUBROUTINE E)GPR( IP,JP, ISX, ISY,THET1,THETO)
C Copyright (c) 1983 by AIST MITI(JAPAN)
C
CS CALL EGPR(IP,JP,ISX,ISY)
C
CP Edge preserving smoothing operation.
C
CX EDGE PRESERVING SMOOTHING, SMOOTHING
C
CA IP(ISXISY) Input image array (I)
CA JP(ISXISY) Output image array (0)

H The program is considerably long , but the main part consists
C4 of about 120 lines in the first half and the remainder is used
04 as routines for edge processing.
C

DIMENSION IP(ISX,ISY),THET1(ISX,ISY),THETO(ISX,ISY)
DIMENSION JP(IOX,ISY)
DIMENSION A(9), V(9),O(9)
DIMENSION K(5,5), L(5,5)

C
EQUIVALENCE (A(1),Al), (A(2),A2), (A(3),A3),
& (A(4),A4), (A(5),A5), (A(6),A6),
& (A(7),A7), (A(8),A8), (A(9),A9)
EQUIVALENCE (V(1),V1), (V(2),V2), (V(3),V3),
& (V(4),V4), (V(5),V5), (V(6),V6),
& (V(7),V7), (V(8),V8), (V(9),V9)

C
EQUIVALENCE

& (Kll,K(l,1)), (K21,K(2,1)), (K31,K(3l)),(K41,K(4,1)),(K51,K(5,1)),
& (K12,K(1,2)),(K22,R(2,2)),(X32,R(3,2)), (K42,K(4,2)),(K52,K(5,2)),
& (Kl3,X(1,3)),(K23,K(2,3)), (X33,K(3,3)),(K43,X(4,3)).,(K53,X(5,3)),
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I(K14,X(1,4)),(K24,K(2,4)),(K34,K(3,4)), (K44,K(4,4))' (KS4,K(5,4)),
£(Kl5,K(l,5)),(K25,K(2,5)),(K35,K(3,!5)),(K45,K(4,5))s (K5K(515))
EQUIVALENCE

&(Ll1,L(1,1)), (L21,L(2,1)),(L31,L(3,2)), (L4l1L(4,2)), (L52,L(5,2)),

I(L13,L(1,3)), (L23,L(2,3)),(L33,L(3,3)), (L43,L(4,3)),(L53,L(513)),
&(L14,L(1,4)), (L24,L(2,4)),(L34,L(3,4)), (L44,L(4,4)),(L54,L(5,4)),
6(L15,L(1,5)), (L25,L(2,5)),(L35,L(3,5)), (L45,L(4,5)), (L55,L(5.'5))

C
AVE1(K11K2,K3,K4,K5,K6,K7,K8,K,9)

FLOAT(Kl+K2+X3+K4+K54K6+K7+K8+K99)/9.0
AVE2(Kl,K2,K3,K4,K5,K6,K7) -

I FLOAT( Kl+JK2+K3+K4+K5+K6+K7 )/7 .0
VAR1(A,L,L2,L3,L4,L5,IA,L7,LB,L9) -
I 7.0*(FLOAT(Ll+L2+L3+L4+L5+L6+L7+L8+L9)-Al*Al*9.0)/9.O

VAR2(A,L,L2,L3,L4,L5,L6,L7) -
& FLOAT(Ll+L2+L3+L4+L5+L6+L7 )-Al*Al*7 .0

C
CF ** Initialization

Isx0 - ISX
ISY0 - ISY
Isxl - IsxO-1
Isfl - IsY0-l
ISX2 - ISXO-2
ISY2 - ISYO-2
ISX3 - ISXO-3
ISY3 - ISYO-3

C
CF ***** Smoothing process for the region (3,3)-(ISX-2,ISY-2)

DO 60 IY-3,ISY2
IYM2 - IY-2
IYP2 - IY+2
DO 60 IX-3,ISX2
IM4(2 - IX-2
IXP2 - IX+2

C
KY - 0
DO 20 JY-IYM2,IYP2
KY - KY+i
UX - 0

DO 20 JX-IXM2,IXP2
"X - KX+1
IPD - IP(JXJY)
K(K",KY) -IPD
L(KX,KY) - IPD*IPD

20 CONTINUE
C
CF Calculation of mean values and variances for nine masks

Al -AVEl(K22,K32,K42,K23,R33,K43,K24,K34,K44)
A2 - AVE2(K21,K31,K41,K22,K32,K42,K33)
A3 - AVE2(K41,K51,K32,K42,K52,K33,K43)
A4 - AVE2(K42,K52,K33,K43,K53,K44,K54)
A5 - AVE2(K33,K43,K34,K44,K54,K45,K55)
A6 - AVE2(K33,1C24,K34,K44,K25,K35,K45)
A7 - AVE2(K23,K33,Kl4,K24,K34,Kl5,K25)
A8 - AVE2(K2,K22,K13,K23,K33,Kl4,K24)
A9 - AVE2(Kll,K21,K12,K22,K32,K23,K33)
Vl - VAR(Al,L22,L32,L42,L23,L33,L43,L24,L34,L44)
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V2 - VAR2 (A2, L2 1,L31, LA1, L2 2,L32,L4A2,L3 3)
V3 - VAR2 (A3, L , L51, L3 2,LA2, L52, L33, LA3 )
V4 - VAR2 (A4, L42, L52, L33,IA 3,L5 3,LA4, L54 )
V5 - VAR2(A5,L33,1A3,L34,L44,L54,L45,L55)
V6 - VAR2(A6,L33,L24,L34,IA4,L25,L35,L4S)
V7 - VAR2(A7,L23,L33,L14,L24,L34,Ll5,L25)
V8 - VAR2(A8,Ll2,L22,Ll3,L23,L33,Ll4,L24)
V9 - VAR2(A9,Lll,L21,L12,L22,L32,L23,L33)

CF **SET THE DIRECTION FOR NINE MASKS
(Q(2)-3.14
0(3)-3.925
0(4 )-4. 71
0(5)-5.495
0(6)-0.0
Q(7 )-0. 785
Q(8)-1.57
0(9)-2. 355

CF * Mean gray value of the mask with minimum variance ->JP(IX,IY)
RMIN - V1
MI - 1
DO 40 1-2,9
IF (RHIN .LE. V(I)) GO TO 40
RMIN - V(I)
MI - I

40 CONTINUE

IF(MI .EQ. 6)THEN
THETO(IX, IY)-0.0
GO TO 45

ELSE IF(MI.EQ.7)THEN
THETO(IX, IY)-0.785
GO TO 45

ELSE IF(MI.EQ.8)THEN
THETO(IX,IY)-l.57
GO TO 45

ELSE IF(MI.EQ.9)THEN
THETO(IX, IY)-2.355
GO TO 45

ELSE IF(MI.EQ.2)THEN
THETO(IX,IY)-3.14
GO TO 45

ELSE IF(MI.EQ.3)THiEN
THETO(IX,IY)-3.925
GO TO 45

ELSE IF(MI.EO.4)THEN
THETO( IX, IY)-4 .71
GO TO 45

ELSE IF(MI.EQ.5)THEV
THETO(IX,IY)-5.495
GO TO 45

ELSE IF(MI.EQ.1)THEN
GO TO 41

END IF

41 CONTINUE
SMALL-V(2)
ASMALL-Q(2)
DO 42 1-3,9
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IF(SMALL.GT.V(I) )THEN
SMALL-V(I)

ASMALL-Q( I)
* ENDIF

42 CONTINUE
THETO( IX, IY)-ASMALL

45 CONTINUE
JP(IX,IY) - A(MI)+0.5

60 CONTINUE
C
CF *** Operation for the four corners
C
C ----------------------------------------------------------------
C

DO 80 IY-l.4
DO 80 IX-1,4
IPD - IP(IX,IY)
K(IX,IY) - IPD
L(IX,IY) - IPD*IPD

80 CONTINUE
C
CF***** JP(l,1) **

JP(1,l) - AVE2(K1,K2,K2,K22,K32,K23,K33)+o.5
C
CF***** JP(2,1) **

Al - AVE2(K21,K31,K22,K32,K42,K33,K43)
A2 - AVE2(K21,K12,K22,K32,K13,K23,K33)
Vi - VAR2(A,L21,L31,L22,L32,L42,L33,L43)
V2 - VAR2(A2,L21,L2,L22,L32,L13,L23,L33)

C
RMIN - Al
IF (Vi .GT. V2) RMIN - A2
JP(2,l) - RMIN+0.5

C
CF***** JP(1,2) **

Al - AVE2(K2,K3,K2,K22,K32,K23,K33)
A2 - AVE2(K2,K22,K13,K23,K33,K24,K34)
VI - VAR2(A1,L21,L31,L12,L22,L32,L23,L33)
V2 - VAR2(A2,L2,L22,L3,L23,L33,L24,L34)

C
RHIN - Al
IF (Vi .GT. V2) RMIN - A2
JP(l,2) - RMIN+0.5

C
CF***** JP(2,2) **

Al - AVEi(Kll,K21,K31,Kl2,K22,K32,K13,K23, R33)
A2 - AVE2(K31,K41,K22,K32,K42,K33,K43)
A3 - AVE2(22,K32,K23,K33,K43,K34,K44)
A4 - AVE2(K22,K3,K23,K33,K14,K24,K34)
Vi - VARl(Al,Lli,L21,L31,L12,L22,L32,L13,L23,L33)
V2 - VAR2(A2,L31,L41,L22,L32,L42,L33,L43)
V3 - VAR2(A3,L22,L32,L23,L33,L43,L34,L44)
V4 - VAR2(A4,L22,L13,L23,L33,L14 ,L24,L34)

C
RMIN - Vi
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MI - 1
Do 100 1-2,4
IF (RMIN .LE. V(I)) GO TO 100
RMIN 1 V(I)
MI I

100 CONTINUE
C

JP(2,2) - A(MI)+0.5

c----------------------------------------------------

DO 120 IY-1,4

DO 120 IX-ISX3,ISXO
UX - Kxx+1
IPD - 1P(IX,IY)
K(KX,IY) - IPD
L(KXIY) - IPD*IPD

120 CONTINUE
C
CF***** JP(ISX-1,1)

Al - AVE2(K3l,K22,K32,X42,K23,K
33,K43 )

A2 - AVE2(K21,K31,K12,K22,K32,K
1 3 ,K23)

Vl - VAR?(A1,L3l,L22,L32eL42,L23,L
33 ,IA3 )

V2 - VAR2(A2,L21,L31,L12,L22,L32,Ll
3 ,L23)

C
RMIN - Al
IF (Vi .GT. V2) RH4IN - A2
JP(ISX1,1) - 1RMIN+0.5

C
CF***** JP(ISX,1)

JP(ISXO,1) - AVE2(K3l,X4l,K22,K32,K42,K23K33)+0.5
C
CF***** JP(ISX-1,2)

Al - AVEI(K21,K31,K41,K22,K32,K42,K23,K
3 3 ,K43 )

A2 - AVE2(K32,K23,K33,K43,K2
4 ,K34 ,K44)

A3 - AVE2(K22,K32,Xl3,K,23,K33,Kl
4 ,K2 4 )

A4 - AVE2(K11,K21,K12,122,K32,XK
131 23 )

Vi - VARl(A1,L21,L31,L41,L22,L32,IA2,L23,L
33 ,L43 )

V2 - VAR2(A2,L32,L23,L33,L43,L24,L
34 ,I44 )

V3 - VAR2(A3,L22,L32,Ll3,L23,L33,Ll
4 ,L24 )

V4 - VAR2(A4,Ll1,L21,L12 ,L22,1,32,1,1
3 1,23 )

C
RMIN - VI
MI - 1
DO 140 1-2,4
IF (RMIN .LE. V(I)) GO To 140
RMIN -V(I)
MI - 1

140 CONTINUE
C

JP(ISX1,2) -A(MI)+0.5
C
CF***** JP(ISX,2)

Al -AV-E2(K32,K42,K23e1K33,K43,K
2 4 ,K34ij

A2 -AVE2(K21,K31,K22,K32,K42,K
2 3,K33)

Vl VAR2(Al,L32,L42,L23,L33,L43,L
24 ,L34 )

V2 -VAR2(A2,L21,L31,L22,L32,L42,L
23 ,L33 )



C
RMIN - Al
IF (Vi -GT. V2) RMIN - A2
JP(ISXO,2) - RMIN+0.5

KY - 0
DO 160 IY-ISY3,ISYO
KY - KY+1
DO 160 IX-1,4
IPD - IP(IX,IY)
K(IX,KY) - IPD
L(IX,KY) - IPD*IPD

160 CONTINUE
C
CF***** JP(1,ISY-l) ** -

Al - AVE2(K21,K31,K12,K22,K32,K13,K23)
A2 - AVE2(K22,K32,K13,K23,K33,K24,K34).
V1 - VAR2(A1,L21,L31,Ll2,L22,L32,Ll3,L23)

C V2 - VAR2(A2,L22,L32,Ll3,L23,L33,L24,L34)

RMIN - Al
IF (VI .GT. V2) RMIN - A2
JP(l,ISY1) - RMIN+0.5

C
CF***** JP(2,ISY-l)

Al - AVEl(K12,K22,K32,K13,K23,K33,K14,K24,K34)
A2 - AVE2(Kll,K21,K31,K12,IK22,K32,K23)
A3 - AVE2(K3l,K41,K22,K32,K42,K23,K33)
A4 - AVE2(K32,K42,K23,K33,K43,K34,K44)
Vi - VARl(Al,L12,L22,L32,L3,L23,L33,L4.L24,L34).
V2 - VAR2(A2,Lll,L21,L31,L12,L22,L32,L23)
V3 - VAR2(A3,L31,L41,L22,L32,L42,L23,L33)
V4 - VAR2(A4,L32,L42,L23,L33,L43,L34,L44)

C
RMIN - Vi
MI - 1
DO 180 1-2,4
IF (RMIN .LE. V(I)) GO TO 180
RMIN - V(I)
MI - I

180 CONTINUE
C

JP(2,ISYl) - A(MI)+O.5
C
CF***** JP(l,ISY)

JP(l,ISY) - AVE2(K22,K32,K13,K23,K33,K14,K24)+O.5
C
CF***** JP(2,ISY)

Al - AVE2(K12,K22,K32,K13,K23,K33,K24)
A2 - AVE2(K32,K42,K23,K33,K43,K24,K34)

*VI - VAR2(Al,L12,L22,L32,L13,L23,L33,L24)
V2 - VAR2(A2,L32,L42,L23,L33,L43,L24,L34)

* C
RMIN - Al
IF (Vi .GT. V2) RMIN - A2
JP(2,ISYO) - RMIN+0.5

53



KY - 0
DO 200 IY-ISY3,ISYO
KY - KY+l
KX - 0
DO 200 IX-ISX3,.ISXO
KX - KX+l
IPD - IP(IX,IY)
K(KX,KY) - IPD
L(KX,KY) - IPD*IPD

200 CONTINUE
C
CF***** JP(ISX-l,ISY-l)

Al - AVEl(K22,K32,K42,K23,K33,K43,K24,K34,K44)
A2 - AVE2(K21,K31,K41,K22,K32K42,K33)
A3 - AVE2(K12,K22,K13,K23,K33,K14,K24)
A4 - AVE2(KllK21,K12,K22,K32,K23,K33)
Vi - VARl(Al,L22,L32,L42,L23,L33,L43,L24,L34,L44)
V2 - VAR2(A2,L21,L3l,L41,L22,L32,LA2,L33)
V3 - VAR2(A3,L12,L22,L13,L23,L33,L14,L24)
V4 - VAR2(A4,Lll,L21,Ll2,L22,L32,L23,L33)

C
RMIN - VI
MI - I
DO 220 1-2,4
IF (MIN .LE. V(I)) GO TO 220
RMIN - V(I)
MI - I

220 CONTINUE
C

JP(ISXl,ISYl) - A(MI)+0.5
C
CF***** JP(ISX,ISY-l)

Al - AVE2(K22,K32,K23,K33,K43,K24 ,i34)
A2 - AVE2(K21,K31,K22,K32,K42,K33,K43)
Vi - VAR2(Al,L22,L32,L23,L33,L43,L24,L34)
V2 - VAR2(A2,L21,L31,L22,L32,L42,L33,L43)

C
RMIN -Al
IF (VI .GT. V2) RMIN - A2
JP(ISXO,ISYl) - RMIN+0.5

C
CF***** JP(ISX-l,ISY)

Al - AVE2(K22,K32,K42,K23,K33,K43,K34)
A2 - AVE2(K12,K22,K13,K23,K33,K24,K34)
VI - VAR2(Al,L22,L32,L42,L23,L33,L43,L34)
V2 - VAR2(A2,L12,L22,L13,L23,L33,L24,L34)

C
RMIN -Al
IF (Vl .GT. V2) RMIN - A2
JP(ISXl,ISYO) - RMIN+0.5

C
CF***** JP(ISX,ISY)

JP(ISXO,ISYO) - AVE2(K22,K32,K23,K33,K43,K34,K44)+O. 5
C

* CF ***** Marginal operation
C
C ---------------------------------------------------------------
C
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DO 360 IX-3,ISX2
IXM2 - IX-2
IXP2 - IX+2

C
C-------------- -------------------
C

DO 240 JY-l,4
KX - 0
DO 240 JX-IXM2,IXP2
KX- KX+l

IPD - IP(JX,JY)
K(KXJY) w IPD
L(KX,JY) - IPD'IPD

240 CONTINUE
C
CF***** JP(IX,1)

Al - AVE2(K31,K41,K32,K42,K52,K43,K 53)
A2 - AVE2(K31,K22,K32,K42,K23,K33,( 43)
A3 - AVE2(K21,K31,K12,K22,K32,K3,( 23).
Vi - VAR2(Al,L31,L41,L32,L42,L52,1A3,L53)
V2 -VAR2(A2,L31,L22,L32,LA2,L23,L33,IA3)
V3 - VAR2(A3,L2l,L31,Ll2,L22,L32,Ll3,L23)

C
RMIN - Vi
MI - 1
DO 260 1-2,3
IF (JtMIN .LE. V(I)) GO TO 260
RMIN - V(I)
MI -I

260 CONTINUE
C

JP(IXl) -A(MI)+0.5
C
CF***** JP(IX,2)

Al - AVEl(K21,K3l,K41,K22,K32,K42,K23,K33,K43)
A2 - AVE2(K41,K51,K32,X42,K52,K43,K53)
A3 - AVE2(K32,K42,K33,K43,K53,K44,K54)
A4 - AVE2(K32,K23,K33,K43,K24,K34,K44)
A5 - AVE2(K22,K32,K13,K23,K33,K14,K24)
A6 - AVE2(Kll,K21,K12,K22,K32,K13,K23)
Vi - VAR1(Al,L21,L31,L41,L22,L32,L42,L23,L33,L43)
V2 - VAR2(A2,L41,L51,L32,1A2,L52,1A3,L53)
V3 - VAR2(A3,L32,L42,L33,1A3,L53,L44,L54)
V4 - VAR2(A4,L32,L23,L33,L43,L24,L34,L44)
V5 - VAR2(A5,L22,L32,L13,L23,L33,L14,L24)
V6 - VAR2(A6,Lll,L21,L12,L22,L32,L13,L23)

C
RMIN - VI
MI - 1
DO 280 1-2,6
IF (MIN .LE. V(I)) GO TO 280
RMIN - V(I)
MI - I

280 CONTINUE
C

JP(IX,2) -A(MI)+O.5
C
C -------------------------------------------------------------
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C
KY - 0
DO 300 Jf-ISY3,ISYO
KY - KY+1
KX - 0
.DO 300 JX-I1GM2,IXP2-
KX - KX+1
IPD - IP(JX,JY)
K(KX,KY) - IPD
L(KX,KY) - IPD*IPD

300 CONTINUE
C
CF***** JP(IX,ISY-l)

Al - AVEl(K22,K32,K42,K23#K33PK43,K24,K34,K44)
A2 - AVE2(K42,K52,K33,K43,K53,K44,K54)
A3 - AVE2(K41,K51,K32,K42,K52,K33,K43)
A4 - AVE2(K21,K31,K41,K22,K32,K42,K33)
A5 - AVE2(Kll,K21,K12,K22,K32,K23,K33)
A6 - AVE2(K12,K22,K13,K23,K33,K14,K24)
Vl - VARl(Al,L22,L32,L42,L23,L33,1A3,L24,L34,L44)
V2 - VAR2(A2,L42,L52,L33,L43,L53,L44,L54)
V3 - VAR2(A3,L41,L51,L32,L42,L52,L33,1A3)
V4 - VAR2(A4,L21,L31,L41,L22,L32,L42,L33)
V5 - VAR2(A5,Lll,L21,L12,L22,L32,L23,L33)
V6 - VAR2(A6,L12,L22,L13,L23,L33,Ll4,L24)

C
RMIN - Vi
MI - 1
DO 320 1-2,6
IF (RMIN .LE. V(I)) GO TO 320
RMIN -V(I)
MI - I

320 CONTINUE
C

JP(IXISYl) - A(HI)+0.5
C
CF***** JP(IX,ISY)

Al - AVE2(K42,K52,K33,K43,K53,K34,K44)
A2 - AVE2(K22,K32,K42,K23,K33,K43,K34)
A3 - AVE2(Kl2,K22,K13,K23,K33,K24,K34)
Vi - VAR2(Al,L42,L52,L33,L43,L53,L34,L44)
V2 - VAR2(A2,L22,L32,1A2,L23,L33,L43,L34)
V3 - VAR2(A3,L12,L22,L13,L23,L33,L24,L34)

C
RMIN - Vi
MI - 1
DO 340 1-2,3
IF (RMIN .LE. V(I)) GO TO 340
RMIN - V(I)
MI - I

340 CONTINUE
C

JP(IX,ISYO) - A(MI)+0.5
C

360 CONTINUE
C
C -----------------------------------------------------------
C
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DO 500 IY-3,ISY2
IYM2 - IY-2
IYP2 - IY+2

C
C............................................................
C

KY - 0
DO 380 JY-IYM2,IYP2
KY - KY+l
DO 380 JX-1,4
IPD - IP(JX,JY)
K(JX,KY) - IPD
L(JX,KY) - IPD*IPD

380 CONTINUE
C
CF****t JP(1,IY)

Al - AVE2(K21,K31,Kl2,K22,K32,Kl3,K23)
A2 - AVE2(K22,K32,Kl3,K23,K33,K24,K34)
A3 - AVE2(K13,K23,K14,K24,K34,K25,K35)
Vl - VAR2(Al,L21,L31,L12,L22,L32,L13,L23)
V2 - VAR2(A2,L22,L32,L13,L23,L33,L24,L34)
V3 - VAR2(A3,L13,L23,L14,L24,L34,L25,L35)

C
RMIN - Vi
MI - 1
DO 400 1-2,3
IF (RMIN .LiU. V(I)) GO TO 400
RMIN - V(I)
MI - I

400 CONTINUE
C

JP(1,IY) - A(MI)+0.5
C
CF***** JP(2,IY)

Al - AVEl(Kl2,K22,K32,K13,K23,K33,K14,K24,K34)
A2 - AVE2(Kll,K21,K31,K12,K22,K32,K23)
A3 - AVE2(K3l,K41,K22,K32,K42,K23,K33)
A4 - AVE2(K32,K42,K23,K33,K43,K34,K44)
A5 - AVE2(K23,K33,K24,K34,K44,K35,K45)
A6 - AVE2(K23,K14,K24,K34,K15,K25,K35)
Vi - VAR1(Ai,L12,L22,L32,L13,L23,L33,L14,L24,L34)
V2 - VAR2(A2,Li1,L21,L31,Ll2,L22,L32,L23)
V3 - VAR2(A3,L3i,L41,L22,L32,L42,L23,L33)
V4 - VAR2(A4,L32,L42,L23,L33,L43,L34,1A4)
V5 - VAR2(A5,L23,L33,L24,L34,L44,L35,1A5)
V6 - VAR2(A6,L23,L14,L24,L34,L15,L25,L35)

C
RMIN - Vi
MI - 1
DO 420 1-2,6
IF (RMIN .LE. V(I)) GO TO 420
RMIN - V(I)
MI -I

420 CONTINUE
C

JP(2,IY) - A(MI)+0.5
C
C------------------------------------------------------------
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C
KY - 0
DO 440 JY-IYM2,IYP2
KY - KY+l
KX - 0
DO 440 JX-ISX3,ISX0
KX - 1(1+1
IPD - IP(JX,JY)
K(KXKY) - IPD
L(KX,KY) - IPD*IPD

440 CONTINUE
C
CF***** JP(ISX-l,IY)

Al - AVEl(K22,K32,K42,K23,K33,K43,K,24,K34,K44)
A2 - AVE2(K2leK3l,K41,K22,K(32,K42,K33)
A3 - AVE2(Kll,K21,K12,K22,R32,K23,K33)
A4 - AVE2(Kl2,X22,K13,X23,K33,K14,X24)
A5 - AVE2(K23,x33,K14,K24,R34,Kl15,K25)
A6 - AVE2(K33,K24,K34,K44,K25,K35,X45)
Vl - VARl(Al,L22,L32,L42,L23,L33,L43,L24,L34,L44)
V2 - VAR2(A2,L21,L31,L41,L22,L32,1A2,L33)
V3 - VAR2(A3,Lll,L21,L12,L22,L32,L23,L33)
V4 - VAR2(A4,L12,L22,L13,L23,L33,L14,L24)
V5 - VAR2(A5,L23,L33',L14,L24,L34,L15,L25)
V6 - VAR2(A6,L33,L24,L34,L44,L25,L35,L45)

C
RMIN - Vi
MI - 1
DO 460 1-2,6
IF (RMIN .LE. V(I)) GO TO 460
RMIN -V(I)
MI -I

460 CONTINUE
C

JP(ISXl,IY) - A(MI)+0.5
C
CF***** JP(ISX,IY)

Al - AVE2(K2l,K31,K22,K32,K42,K33,K43)
A2 - AVE2(K22,K32,K23,K33,K43,K24,K34)
A3 - AVE2(K33,K43,K24,K34,K44,K25,K35)
Vi - VAR2(Al,L23.,L31,L22,L32,L42,L33,L43)
V2 - VAR2(A2,L22,L32,L23,L33,1A3,L24,L34)
V3 - VAR2(A3,L33,L43,L24,L34,L44,L25,L35)

C
RMIN - Vi
MI - 1
DO 480 1-2,3
IF (RMIN .LE. V(I)) GO TO 480
RMIN -V(I)
MI -I

480 CONTINUE
C

JP(ISXO,IY) - A(MI)+0.5
C

500 CONTINUE
DO 600 1-1,256
DO 600 J-1,256

IP(I,J)-JP(I,J)
600 CONTINUE
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DO 601 IX-1,2
DO 601 IY-1,256

THETO(IX,IY)-O.0
601 CONTINUE

DO 602 IX-1,256
DO 602 IY-1,2

THETO(IX,IY)-0.O
602 CONTINUE

DO 603 IX-255,256
DO 603 IY-1,256

THETO(IXIY)-0.0
603 CONTINUE

DO 604 IX-1,256
DO 604 IY-255,256

THETO(IX,IY)-0.0
604 CONTINUE

DO 605 IX-1,256
DO 605 IY-1,256

THET1(IX,IY)-THETO(IX,IY)
605 CONTINUE

DO 606 IX-1,256
DO 606 IY-1,256

IF(THET1(IX, IY).GE.3.14)THEN
THETl(IX,IY)-THET1(IX,IY)-3.14

ELSE
THET1(IX,IY)-THET1(IX,IY)

ENDIF
606 CONTINUE

C
CF ***** RETURN

RETURN
END
SUBROUTINE RXEP(IP,THET1,PRBEI,ISX, ISY,TEP)

C
C Copyright (c) 1983 by AIST MITI(JAPAN)
C
CP Computes initial parameter and initial probability for edge
CP reinforcement by relaxation method (Lower-level routine
CP for subroutine RXEG).
C
CS CALL RXEP(IPTHET1,PRBE1,ISX,ISY)
C
CK RELAXATION, EDGE
C
CA IP(ISX,ISY) : Input image
CA THET1(ISX,ISY): Initial value of gradient direction for
CA each pixel
CA PRBEI(ISX,ISY): Initial value of edge probability for
CA each pixel
C
CN Reference
CN @1! B. J. Schachter, A. Lev, S. W. Zucker, and A. Rosenfeld, "An
CN application of relaxation methods to edge reinforcement,"
CN TEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 813-816,
CN Nov. 1977.
C
CD JULY 1979. PROGRAMMED BY K.SAKAUE
C
CM A small real number -1E30 is set in variable AMX as an initial
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CH value. When using a comiputer with different word lengths, care
04 should be taken.
C

DIMENSION Ip(ISX,ISY),TEKP(ISX,ISY)
DIMENSION THETI( ISX, ISY)
DIMENSION PRBEl(ISX, ISY)
DIMENSION NE(3,3)

C
CF INITIAL EDGE VALUES
CF BY PREWITT OPERATOR (DIFFERENTIAL TYPE)
C

AMX-- 1E30
DO 10 IY-l,ISY
DO 10 IX-l,ISX

DO 11 J-1,3
DO 11 1-1,3

Jim IY+J-2
l1-IX+1-2
IF(Jl.LT.1.OR.J1.GT.ISY)GO TO 12
IF(I1.LT.1.OR.Il.GT.ISX)GO TO 12
NE(I,J)-IP(11,Jl)

11 CONTINUE

DY-FLOAT(NE(1, 3)+NE(2,3)+NE(3,3)-NE(l, l)-NE(2,1l)-NE(3,l1))
AMG-SQRT(DX* *2+DY**2)
IF(AMG .GT.AMX)AMX-AMG
PRBE1(IX,IY)-AMG
IF(DX.LE.OEO.AND.DY.LE.OEO)DX-0.0001

GO TO 10
12 CONTINUE

PRBE1(IX, IY)-0.001

10 CONTINUE
DO 20 IY-1,ISY
DO 20 IX-l,ISX

PR.BE1 (IX, IY)-PRBEl( IX, IY)/AMX
PRBE1(IXIY)-AMAX(.01,AMIN1( .9,PR.BEl(IX,IY)))

20 CONTINUE
RETURN
END
SUBROUTINE RXEI(THET1,THET2,PRBE1,PRBE2,ISX,ISY,ISNX,ISNY,C,W)

C
C Copyright (c) 1983 by AIST MITI(JAPAN)
C
CS CALL RXEI(THET1,THET2,PRBE,PRBE2,ISX,ISY,ISNX,ISNY,C,W)
C
CP Updates edge parameter and edge probability for edge
CP reinforcement by relaxation method.
CP (Lower-level routine for subroutine RXEG)
C
CI( RELAXATION, EDGE
C
CA THET(ISX,ISY): Gradient direction (before updating)
CA THET2(ISX,ISY): Gradient direction (after updating)
CA PRBE1(ISX,ISY): Edge probabilities (before updating)
CA PRBE2(ISX,ISY): Edge probabilities (after updating)
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CA ISNXISNY Size of neighborhood being considered
CA (limited to odd num'er three or higher)
CA C(4) Paramter Cl through C4 (See the
CA reference.)
CA .866,.124,.005,.005 (standard)
CA .706,.176,0(9,059 (noise cleaning)
CA w. Parameter W (See the reference.)
CA 3.0 for standard use.
C

DIMENS ION THET ( ISX, ISY)
DIMENSION THET2(ISX; ISY)
DIMENSION PRBE1(ISX,ISY)
DIMENSION PRBE2( ISX, ISY)
DIMENSION C(4)

C
DATA HPAI/1.570796327/

C
C

I SFTX- ISNX/2+ 1
ISFTY-ISNY/2+1
DO 10 IY-l,ISY
DO 10 IX-l,ISX
ALPHA-THETl (IX, IY)
PXY-PRBEl( IX, IY)
01-0.0
Q2-0.0
DHX-W* PXY*COS (ALPHA)
DHY-W*PXY*SIN(ALPJ1A)
DO 11 J-l,ISNy
DO 11 I-l,ISNX

IU-IX+I-ISFTX
IV'-IY+J- ISFTY
IF(IV.EQ.IY.AND.IU.EQ.IX)GO To 11
IF(IJ.LT..OR.IV.GT.ISY)GO TO 11
IF(IU.LT.l.OR.IU.GT.ISX)GO TO 11
IDY-IV'-IY
IDX-IU-IX
JD-IABS( IDY)
ID-IABS( IDX)
LD-MAXO( ID,JTD)

C
CF LD :CHESSBOARD DISTANCE FROM (IX, IY) TO (IU, IN)
C

ALD-FLOAT (LD)
D2-1.0/2.0**ALD)
BETA-THETl( IU, IV)
DY-FLOAT( IDY)
DX-FLOAT( IDX)
IF(IDX.EQ.0.AND. IDY.EQ.0)DX-.0000l
GAMMA-ATAN2(DY,DX)
PtJV-PRBE1(IU, IV)

C
CF COMPATIBILITY COEFFICIENTS
CF EDGE/EDGE INTERACTION
C

IF(ALPHA.EQ.BETA.AND.BETA.EQ.GA}IyA)THEN
REE-1.0

ELSE IF(ALPHA.EQ.BETA.AND.GA.4JA.NE.BETA)THEN
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REE-O. 5
ELSE
REEinCOS(ALPHA-GAMMA) 'COS(BETA-GAMMA) *D2

END I
C
CF INTERACTION WITH NONEDGES
C

AG2-2.0* (ALPHA-GAMM4A)
AG2---COS(AG2) *D2
REN-AMINI(O.O,AG2)
BG2-2.O' (BETA-GAMMA)
RNE-(1.0-COS(DG2) )*D2*O. 5
RNN-D2

C
CF COM4BINED REINF'ORCEMENT PROCESS
C

01-Q1+C(1) *PUV*REE+C(2) *(1. O-PUV)*REN
02-02+C(3) *PUV~*PN+C(4)*(1O-PtV)*RNN
PREE-PUV*REE
DHX-DHX+PREE*COS (BETA)
DHY-DI{Y+PREE*SIN( BETA)

11 CONTINUE
Q0-ABS(Q1)+ABS(02)
01-01/00
02-02/Q,0
P1D-PXY* (1. 0+01)
P21?- ( 1. 0-PXY ) * (1. 0+)2 )
PNEW-P1D/( P1D+P2D)
IF(DHX.LE.OEO.ANqD.DHiY.LE. OEO)DHY-0.00001
THNEW-ATAN2(DHY,DHX)
PRBE2(IX, IY)-Pt;EW
THET2( IX, IY)-THNEW

10 CONTINUE
RETURN
END
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