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ABSTRACT

The well known analysis of the single lap joint by Goland and Reissner
provided important contributions to the literature on stress analysis of adhe-
sive joints by clarifying not only the importance of adhesive peel stresses in
joint failure, but also the role of bending deflections of the joint in control--
ling the level of the stresses in the adhesive layer. Subsequent efforts have
suggested the need for corrections to the Goland and Reissner analysis because
of what have been conceived as deficiencies in the model used to describe bend-
ing deflections of the central part of the joint where a classical homogeneous
beam model without shear or thickness normal deflections were used. The nre-
san+t ngper addresses the issue through the use of a more realistic model 1in
which adhesive layer deflections are allowed to decouple the two halves of the
joint in the overlap region in the bending deflection analysis, as well as in
the analysis of adhesive layer stresses where such a decoupling was allowed by
Goland and Reissner. It is found that many of the predictions of the Goland
and Reissner analysis are recovered in the limit of large adherend-to-adhesive
layer thickness ratios, although substantial differences from the Goland and
Reissner analysis can occur for relatively thin adherends.
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NOMENCLATURE
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-- Adherend Young’s modulus
- " plane strain Young’s modulus
-- Bond Young’s modulus
-- " shear
-- 8 /{E’%,4/2}, factors in coefficients of solution for 8;
-- H;j divided by roots U%8 (j=1) and 8B (j=2) of GR solutions
-- half length of joint (see Fig. 2)
-- reference to lower adherend
-- moments in individual adherends
-- moments in loaded adherend at ends of overlap
-- ratio, U/B
-- ratios of roots y; to UA8)'? (j=1) or 8)"2 B
-- adherend resultants, to,
-- resultants applicd at ends of joint
- (T/D)'? = (122
-- reference to nwpper adherend
-- lateral loads at ernds of joint (see Fig. 2)
-- lateral loads at ends of overlap
-- reference to bond layer
-- §/2 in GR notation
-- height (combined thickness) of overlap region in thickness direction
-- ratio of M, to Tt/2 or of displacement at ends of overlap to 1/2
-- k expression obtained by Hart Smith [3]
-- k-"new",i.e. k obtained from current analysis
-- ratios of displacement solution coefficients to /2
-- axial length of overlap region
-- axial length of outer section of adherends
-- adherend thickness
-- bond layer thickness
-- axial displacement
-- lateral displacement
-- adherend displacements
- (Wy+w 2
-- axial coordinate
-~ thickness-wise coordinate
-- coefficients of solution of 8
= (pGpt)”Z
-- resultant difference Ty,-T;,
-- nominal applied strain, G,/E’
-- bond layer shear strain
-- dimensionless overlap length ¢/t
- " length of outer adhcrend scgment ¢/t
-- exponcential coefficients of differential cquations for w and &
-- Young’s modulus ratio E'/E,
-- modulus ratio E’/G,
-- thickness ration /t,
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INTRODUCTION

One of the most widely quoted papers in the literature on stresses in adhesive joints is that
of Goland and Reissner{1] (subsequently referred to as "GR") on single lap joints. This paper
was particulasly significant in being the first effort to identify the effects of adherend bending
deflections on the peel and shear stresses in the adhesive layer of a single lap join.

The portion of the GR analysis relating to bending deflections treated the actual joint, Figure
1(A), as a stepped homogeneous beam, Figure 1(B), in which the height of the center section
was assumed to be twice the thicknesses of the adherends (thus ignoring the thickness of the
bond layer). The forces due to tensile end-loading, assumed to lie along the line a-a’ in
Figure 1(A), were found to produce varying moment about the neutral axis at any point along
the representative beam which resulted in the bending deflections of interest. The deflection
analysis for this system was treated essentially by "beam column” analysis [2], i.e. as the
analysis of deflections in a beam with combined column (i.e. axial) and lateral loading. (Note
that in the GR analysis the column loading is tensile rather than compressive. The latter
represents the case used in [2] to introduce the concept of Euler column buckling.)

(1) GOLAND, M. and REISSNER, E., Stresses in Cemented Joints, J. Applied Mechanics (ASME), v.11, (1944), p.A17-A27
{2) TIMOSHENKO, S. and GERE, ., Theory of Elastic Stabdiry, 2nd ed., Chapi. 1, McGraw Hill (1961)
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(C) FORCES CONTRIBUTING TO MOMENT IN OVERLAP

Figure 1 Assumed Model
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A question arises with the GR analysis in the manner in which the moment is represented in
the center section. The crux of the matter is the comparison of the classical moment-curvature
relation for a homogeneous beam and the corresponding expression for a layered beam (i.e.
Equation (1) vs. (2) ):

MOMENT-CURVATURE RELATIONSHIPS

3 2
HomogeneousBeam: M, = EW dw 1)
12 4x2
Layered Beam  : My = M, + M, + _;_(TL “Ty) @

In the above equations, My represents the moment about the neutral axis, w is lateral
deflection and h is the height of the homogeneous beam -- ie. approximately twice the
adherend thickness, t, for a thin bond layer. With z as the thickness-wise coordinate having
its origin at the mid plane of the bond layer, the remaining quantities in (1) and (2) are given
by

hi2
My =- [ 20,dz

M= Lm( hl4 -z2)0,dz , M, = —J:;z (z + h/4)o, d:z 3)

Ty=[Vod: . T,= [ o

Equation (1) is the classical moment-curvature relation for a homogeneous beam of height
h which ignores transverse shear and thickness-wise deformations. Equation (2), on the other
hand, is a statement of equilibrium of the components indicated at the right end of the
segment in Figure 1(C) which make up My. Equation (1) happens to be equivalent to (2)
under certain conditions, but these do not apply to the ends of the overlap where significant
shear straining of the bond layer takes place. Because it provides for equilibrium, (2) is a
mandatory relationship which it is desirable to preserve in the formulation.

It is of interest to compare (1) and (2) for the case of a homogeneous beam. Noting the
standard expression for axial stress in the overlap region under combined bending and
stretching (i.e. a linear function of distance from the neutral axis):
r My:z
o, = LM
2t 1

then making use of (1) to represent My in (4) and introducing the latter into (3) leads to

(whereT=T; +Ty, ; I=h%12) @




¢3 1 t ts . 3 t ts 3
Mp=M,=EL w/=Ipmy 51 L7, = T+3M, 620 Ltr,-iT-3M, .3
v=TL=5 19 g g L g°"gwN g Ug" g w

Since t=h/2, Eq(5) lead to

My My + LTy -Ty) = 2E¢3 80 = 1 gpad™w 6)
2 3 dx?2 12 dx?

agreeing with (2) on inserting (1) into the latter. This implies that Eq(5) have to hold in order
for (1) to be applicable. In the single lap joint, however, as noted in Fig 1(A), M and T| are
zero at the left end of the overlap, while My and Ty, are zero at the right end. Furthermore, in
the GR analysis, My, was represented at the left end of the overlap where (sec Figure 2 x=(,
in terms of Tt/2 through a dimensionless parameter k:

Myl =0, =1fzt 3 @

where k was a function of load in the range 0.26<k<1. Table 1 gives a comparison of required
traction conditions at x=0, with the values for these conditions which are implied by (S) when
(7) is taken into account. It is apparent that if k is not equal to unity, the required end conditions
on M, Ty and T\ cannot be realized if (5) apply. Moreover, the fact that My, is negative at x=0_
while My is positive implies the presence of a curvature discontinuity in the upper adherend if
(1) applies. Thus Equation (1) cannot, strictly speaking, be used to represent My over the
length of the overlap. Hart Smith first pointed this out qualitatively in [3], concurring with the
observation that tne use of (1) requires the presence ot nonzero tractions over the left end of the
lower adherend. Rather than attempting to retain (1), it is desirable to use a formulation which
is consistent with (2) regardless of whether or uot conditions apply for which (1) is valid.

[} BART-SMITH, L. J., Adhesive Bonded Single Lap Joints, NASA Contractor Report 112236 (1973)

TABLE 1. COMPARISON OF CONDITIONS FROM EQ(5) WITH TRACTIONS AT
x={
REQUIRED END VALUES IMPLIED BY
My -(1-K)Ty2 -(1-k)TY2
My, kTy2 kT2
M 0 kTy2
Ty T (5+3K)T/8
T, 0 (11-3K)T/8




As suggested above, the lack of validity of Equation (1) is associated mainly with the
presence of shear strains in the bond layer. More specifically, the equivalent of the following
equation (see Appendix A, Eq(A-6) ) which GR used to obtain the gradient of shear strain
in the bond layer:

dy _ 2

[_;_(TU ~T) +3(My+M)]

gives a value of zero when (5) are allowed for, so that a condition of constant or zero shear
strain in the bond is implied by (5). Lap joints typically have large shear stress and therefore
strain gradients along their length due to adherend deformations, contrary to the latter result.
It should be understood that the impact of shear straining on the performance of the joint is
associated with the fact that organic bond materials are relatively soft compared with typical
adherends. The extreme version of this situation can be visualized in terms of a beam cut
along its neutral axis like a leaf spring. Since bending stiffness is a cubic function of beam
depth, the bending stiffnesses of each of the two halves would be one eighth of that of the
original beam. A simple analysis shows that the combined bending stiffness of the two half-
beams would be the sum of the two components, amounting to 25% of that of the original
beam. Thus, shear straining along the neutral axis can be expected to decrease the bending
stiffness of the composite beam making up the overlap region of the joint.

In general, Equation (1) will overestimate the bending stiffness of the overlapping part of the
joint, preventing correct determination of bending deflections. Since the thrust of the GR
analysis was to demonstrate the influence of bending deflections on the stresses developed
in the bond, an effort to correct the situation appears desirable. It should be expected that
differences between predictions of the original GR approach and those of the present analysis
which provides for effects bond shear straining on decoupling of the two adherends will be
greater in joints containing relatively thin adherends. This is due to the fact that in the case
of thicker adherends, the range of the decoupling effects is shorter and is confined to a region
close to the ends of the overlap. It can be argued from St. Venant’s principle that Eq(1)
should be valid sufficiently far from the overlap ends, and the influence of the load diffusion
process which makes it valid will be less when the effects of interest here are short in range
relative to the adherend thicknesses.

In addition to the discussion of Hart Smith which was previously cited [3], problems with the
GR treatment of the bending analysis have been noted by others{4-5]. Benson[4], as discussed
by Adams[5], described a modification of the analysis which dealt with the situation. In
addition, Hart-Smith[3] did an extensive amount of work on the single lap joint that provided
an alternate method of introducing the appropriate bending deflection corrections which will
be discussed subsequently.

BENSON, N. K. Influence of Stress Distribution on Sirengtl of Bonded Joints in Adhesion,

Fundamentals and Practice , Gordon and Breach, NY (1969) p. 191-205
(51 ADAMS, R.C. and WAKE, W. C. Structural Adhesive Joints in Engineering, Elsevier Applied Science Publishers, NY (1984)
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Figure 2 Joint Geometry
In the present case, the center section of the joint will be treated essentially as a pair of
coupled beams throughout the analysis. Once again it is emphasized that GR did use the[4]
coupled-beam approach to deal with of peel and shear stresses in the adhesive layer, but not
in their deflection analysis.

THE ANALYSIS OF GOLAND AND REISSNER

General Remarks
It is useful here to repeat certain results which were obtained from the GR analysis. Figure

COORDINATES DISPLACEMENTS
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Figure 3 Sign Conventions
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Figure 4 Antisymmetry Conditions

2 gives the basic parameters of interest. Here "U" and "L" denote the "upper” and "lower"
adherends. The length of the adherends beyond the overlap is ¢, while the overlap has a

length ¢ (=2c, in the GR notation). It is assumed that tension loads (i.e. resultants) T are
present at the outer ends. In terms of T it is convenient to define nominal axial stress, 3,(, and

train, €: _ T _ O,
S X ox=_f O 5 E=— 92 : E'=E(1-V) 93)
E
M
3
/‘v -
_Vo
_ 'v
Mo v

Figure 5 End Conditions in Overlap Region
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(E, v = Young’s modulus, Poisson ratio for axial straining.) Along with T, there are assumed
to be transverse shear forces V which produce moment free conditions at the end points,
provided

V=oT ; a=t2L ; L=0+02=0+c (10)

As in Figure 2, the directions of the transverse forces are downward at the right end and
upward at the left end for moment free conditions. Fig 3 recalls standard conventions for the
signs of moments, shear forces and tensions, as well as coordinates and displacements. As
usual, positive moments, shear forces and tensions correspond to those shown for the right
end of segment "1", while at the left end of a given segment the forces and moments are
obviously the reactions to those applying to the right end of the neighboring segment (to the
left of the one under consideration). Thus in Figure 3, the reactions at the left end of Segment
"1" are shown as the negatives of the quantities associated with the right end of Segment "2".

Additional relationships associated with the antisymmetry of the joint are illustrated in Figure
4, where attention is focussed on points located at X, and xg = 2L-x , i.e. points located at
the same distance from each end. Equilibrium of vertical forces requires that the shear forces
at these points be equal, i.e.

V(x;) =V(2L-x;) (11)

In addition, since the generic expression V=-dM/dx holds, the fact that the moment is a
function which is zero at x=L and whose derivative is symmetric about x=L requires that the
moment itself be antisymmetric, i. e.

M(x;) = ~-MQL-x,) (12)

so that as shown in Figure 5, the shear forces at the ends of the overlap are equal while the
moments are equal but opposite in sign. In the specific case of the ends of the overlap, GR
uses the notation M, and V for the moment and shear force, as indicated in Figure 5. In
addition, GR expresses M, in terms of the parameter k introduced in (7) and V, in terms of
an additional dimensionless parameter k”:

- tT . =w!T
Mo=k=T 3 V,=2'T/A a3
where A =10/t

For future reference, the end conditions on the individual adherends may be stated
as in Table 2. The last four rows of Table 2 are used in forming end conditions for
differential equations given in Appendix A.

Detailed Relationships

The equations encountered in the GR analysis are reviewed in Appendix A. Note that
these exhibit the influence of lateral deflection on the moment distribution due to the
shift in the lever arm, illustrated in Figure 6. Here the horizontal component of end load,

7-




TABLE 2 CONDITIONS ON ADHERENDS AT ENDS OF OVERLAP
x=0, x={,+{
vy -V, = 2K T/A 0
My M, = kiT/2 0
Ty T 0
'] 0 -V, =-2k'T/A
Mg 0 -M, =kiT/2
T, 0 T
My + M, M, -M,
T,-Ty T T
My-M,, M, M,
Vy-vL -V, \A

T, acts through a load line which shifts with respect to the neutral axis of the adherend
segments, as illustrated in Figure 6(A) for the outer adherend and Figure 6(B) and (C) for

the overlapping part of the joint.For subsequent reference it is useful to recall the most crucial
results given for the GR analysis in Appendix A at this point . These include the expressions for
the quantity k:

Expressions for k
Ty /.1
k= (RPTA-16) ; k'=—__J\U (RPTA-1.7)
Ty +/(8)T,, 4Ty,
where T, =tanh(U\)) (RPTA-18) ; T,,=tanh(UM2/8) (RPTA-7.9)
k=—— L . W=lau wera-s
1+/8T,, 4




together with those for the shear and peel stress solutions:

Expression for Shear Stress

= -5, yZp L3R cosh(y8 Bx-Ly1} , 3 (1-0)] (RPT A-10.1)

4 sinhy/8 PA 4A
Maximum Value of 1, (x=L 02 ; 8PM2>1 ; 0.262<k<I)

1+
)

0.631 < abs{l’.)&"ﬁ} =\2B

p

Maximum Value of Peel Stress (x=L+8/2 ; yNM2>1)
Oy = 3x—,fzy—(7+ U) (RPTA-15.3)
or, since U<Yyin practical cases:

-5 K

Note that from the expressions given in (A-6.3) and (A-7.2) with (A-1.5), the following relation
between the maximum peel and shear stress can be stated:

(14)

0b)max =\/§ k _Ei
Tp) max 1+3ky G,

If E,/Gy, is set equal to the expression for isotropic materials of 2(1+v,) where vy, is the Poisson
ratio for the bond material, the max peel-to-shear stress ratio runs from about 2 for the upper
limit of k of unity, to a little less than 1 for the lower limit (k=0.26), for an assumed Poisson
ratio of around 0.5. The specific value of the assumed Poisson ratio is not important, but this
estimate emphasizes that two maximum stresses take on values which are proportional to each
other for various joint geometries and for which the proportionality constant is in the range of
1to2.

3K < 14148 (RPT A-10.2)
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Figure 6 Effect of Deflection on Moment Distribution

A certain amount of controversy has arisen over the results given in Appendix A for the peel
stresses ( Eq(A-15) ) from which (A-15.3) is obtained. Kuenzi and Stevens[6] stated a version
of Eq(A-15) (coefficients of the peel stress equation) with the signs of some terms reversed from
those of the GR version (see discussion following Eq(A-15) ) without commenting on the
justification for differing from GR. Moreover, Ref[3-4,7] claimed to have verified the version
given in [6], while Carpenter{8] found the original version as given above to be valid.

Considerable care has been taken here to identify correct boundary conditions at the ends of the
overlap in order to be sure that the correct expressions for peel stress coefficients were obtained.
As far as can be determined, the original expressions given by GR are the correct ones. In any
event, the terms in question which correspond to the term U in the second factor of (A-15.3)
summarized above do not usually contribute strongly to the peel stress predictions.

[6] KUENZL, E. and STEVENS, G., Determination of Mechanical Properties of Adhesives for Use in the Design of Bonded Joinis, Forest
Products Laboratory Note FPL-011 (1963)

{7TIKUTSCHA, D. and HOFER K., Feasibility of Joining AdvancedComposite Flight Vehicle Structures, Air Force Materials Laboratory Report
AFML-TR-68-391, (1968) p. 56,59

[8] CARPENTER, W. Goland and Reissner were Correct, J. Strain Analysis, v. 24, no. 3 (1989)
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IMPR(_)VED ANALYSIS
Deformations and Shear Stresses

In the following discussion, it will be convenient to represent the individual adherend
displacements and stress resultants in terms of differences and sums, since the bond layer
stresses are more easily represented by differences in the adherend displacements and resultants
than in terms of their individual values. Accordingly, the following notation is introduced:

8,0 =Ty-T, (151) w) = %((wu +wp) (15.2)

S, =wy -wg (15.3)

Note that the individual adherend resultants can be expressed in terms of T and dp(x),

follows: - =
as follows Ty=2T+800) 3 T,=(T-8@]  (16)

In addition, note that the quantity My+M; which appears in Eq(2) as well as (A-6.1) for the
assumed case of identical adherends, is given by

2—
My +M, = ZDU% amn

For increased accuracy in the following, the quantity t/2 appearing in Eq(2) and (A-2.2) will
be replaced by (t+t,)/2 to provide for the effect of bond layer thickness. The replacement of
Eq(1) by (2) modified in this way can then be accommodated by using Eq(A-1.3, .4) to represent
My and M, in terms of displacements (setting Dyy=D}) i.e.:
d*w v d zwL 1+,

+

My =Dy( — 2 ) - 5 (Ty-T,)

or, in terms of the notation just introduced,
d*w
My=D,— _ -_"8,. . (18)
N U o 5T
Then equating the modified form of (A-2.2) with (18) (letting the neutral axis displacement be
represented by w) leads to

2 t+t - t+t, _ —
dw” _“Tbs b.wT  (19)

Note that, as opposed to the original GR analysis, coupling occurs between w and the adherend
resultants, so that w cannot be determined independently of dp in the updated analysis. A second

-11-




equation in w and 8y is obtained by multiplying (A-6.1) by G, to get dt,/dx on the left which,
according to (A-3.1), is equivalent to dZTU/dxz, or equivalently (according to the left member
of (16))to (d28T/dx2)/2. Then again allowing for the assumption of identical adherends, making
use of (15.1) and (17) leads to

d? 2G 2=
Lo W15, @) g
dx* 1, By dx?

We can combine Eq(19) and (20) with (A-5.1) (which there was no need to modify) and obtain
a self-contained system of differential equations for w and 8. After transposing and re-applying

previously developed notation, we get
Displacement in Outer Segment of Adherend (x<l )

- wy = ox 1.1)

Displacement in Overlapping Segment of Joint (x<{,<0, +0)

2= 2
aw U 5=Y (ax-2). 5  (212)
dc? 8% 82 2 2 Dy

d? 2 2
Do B -G, 4 21.3)
de 2 I, dxz

Eq(21.2, .3) can be solved as a 2x2 system. Boundary conditions include the end conditions on
3 in terms of the values of Ty; and T|_ given in Table 2, together with the joining conditions on
the displacements at x=¢_. The homogeneous part of this system can be written

-1 U*- t+y,

-——w, - 3, =0 22.1

¥h TS T o (22.1)
2

57, - 2%&,,,-2[325’ W) =0 (22.2)

where U and  which are key parameters in the GR analysis (EQ(A-8, A-9) are defined by

U=t\’f/DU =128, B=ypg/p, where p,=GJE' ; p =1t

These represent exponential decay factors in the functions describing bending and bond shear
stress distribution along the overlap region in the GR analysis. Solutions to (22) can be
expressed as exponential functions:

Wken substituted into (22), these lead to a 2x2 system of algebraic equations with Ay,
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w, =W, e I WL N )

Wy and p as unknowns:
@2 -UHEW, -6(1+p)A, =0  (24.1)

2B2E'W, + 2 -2BD)A, =0 (242)

The following notation in terms of U and B, will be useful:
R=UB (@5.1) v,j=1,2)=pj/B? (25.2)
Ri=/8p,/U (253) R,=p,/(y85 B} (25.4)

where 1; are the roots of the polynomial

2
i -(8+8y+ 52_132;12 +R2B*=0 (26)

t

obtained from setting the determinant of (24.1, .2) to zero.

Note that we can express R given in (25.1), in terms of U and B, as

C. !
R=|12_*2% (@1
Gb t

from which we observe that as the adherend thickness, t, grows, R approaches zero. In addition,
Eq(25) give us, for R and R,

R
m=—RB (8.1 ;  p,=VER,B (282)
V8

which, taking note of (25.2), leads to

,/8 v
R =Y (283 R, = ‘_2 (28.4)
R 8

In terms of v (suppressing the j subscript), Eq(26) can be expressed as
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v -[8(1 +_) +___]v +R%2=0 (29)
4p,

The roots of (29) are of the form

2
v,V,=ath (30.1)  where a=[4(1+%p,)+RT] (302) ; b=ya*-R? (30.3)

It is useful to observe here that the standard identity between the constant tcrm of a quadratic
expression and the product of its roots, when applied to (29), implies that v, =R?*/v,. When this
relationship is applied to (28.3, .4), the following relationship:
1
R,=_ 31
2= % €2))
is obtained. For most practical situations, the value of R obtained from (27) will be on the order
of 1 orless. On the other hand, the quantity "a" given in (30.2) can not be less than 4, so that in
general we have R%<<a?. Accordingly, a binomial expansion of (30.3) gives the approximation

R
b=a-— 32
a 5o (32)

from which (30) lead to

vlzg_ 331) ; v,=2a (332)

a

or, making use of (28.3, .4) followed by (28.1, .2):

R =2 @an ; R=YL @ay
= 2

i.e. for large t, for whick (p,, R) =0 and a—4:

R =R,=1 (343)

m=rP=U .y -FB 3
g »/§
which are the roots of the differential equations in the original GR analysis for deflection of the
center part of the joint and the bond shear stresses. In the updated analysis, the solution given
in (A-7.1) for the outer part of the adherend is still applicable, while for the overlapping part of
the joint, the complete solution corresponding to Eq(21.2, .3) is acombination of the exponential
functions appearing in (23) containing the coefficients tp; and #p, (arranged terms of
hyperbolic functions to accommodate the anti-symmetry of the problem) plus a linear term
representing the particular solution of (21.2). In the following it is convenient to express the
coefficients of terms describing w as multiples of /2, as was done earlier. Thus the coefficients
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Whj (j=1,2), where j corresponds to which root of (26) is referenced, can be conveniently
expressed in terms of t/2 by

W, G=12) = kzjé (36)

The complete solution for w and 8y is then given by

t,<x<t, +¢
= t 1 Sml:l[pl (x=-L)/t] ot ky sinl.l[pz(x -L)t] o wx 371
2 sinh(p, A/2) 2 sinh(u,A/2) 2
8T -4, sinh[p, (x-L)/1] T A sinh[p,(x - L)/1] 372)

Sinh (u,A/2) 2 Sinh (u,A12)

Itis convenient to express the coefficients of Eq(37.2) as well as (37.1) in terms of k,;. For this
purpose note that (24.2) together with (36) imply that Ahj and k2j are related by

2
ZBZP_,'

. t
A,,j(/= 1,2) =HjE/k2’7 38.1) where Hj. == -
B; -2

(38.2)

From Eq(9) together with the definition of U following (22), we can substitute

Er=12_L
3

U

into (38.1) to eliminate E’t. In addition, it is useful to express the Hj’s in terms of the roots
U/(8)'7 and (8)12 B of the GR deflection and bond shear stress analysis, as follows:

2 2
H,=—Jl(_%_)s-11 (Rg) 39.1) ;  Hy=1,8B) (39.2)

where the Jj’s are constants to be determined. Substituting (39) into (38.1) together with the
expression for E’t just given then leads to

A,,,=%11k21f @.n Ahz=4&r2i§f (40.2)
R

In addition, substitution of (38.2) into (39), representing the p;’s in terms of (28.1, .2), and
allowing for (31), leads to
I
@1y Ly=——2% (412)
R? 4RZ -1
Rz T cv— 2
16

1
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In the following, the deflection equation, (A-7.1), for x< ¢,, will be expressed in terms of
revised notation in which "k " ( the subscript "n" designating "new") will be substituted for the
"k" of the original GR analysis, ie. (A-7.1) is expressed as

x<{,

sinh(Ux/t) _

"sinh(UA ) ox @
Continuity conditions at x=, can now be established to obtain equations for determining k,,
together with the k,:’s. Note hene that for practical purposes, the displacements of the neutral
axis in the region oil overlap may be taken as equivalent to that of either adherend, since the
actual difference is on the order of the adhesive peel strain times the adhesive layer thickness,
a much smaller quantity than wy, wy_or w can be expected to amount to. Thus the displacement
of the outer adherend can be considered equal to that of the neutral axis at x=¢, and similarly
with the slopes. Continuity requirements then amount to equating the value and derivative of w
given by (37.1) with those of w given by (42) for x={_ [i.e. (x-L)/t =-A/2] as well as setting 8
given by (37.2) to T at that location. After canceling out common factors of T and t/2, three
equations relating k , k,; and k,, are obtained:

3 kg + 48k = -1 43.1)
3 1721 F 22 :
kyy +hyy k=1 (43.2)
RRk21+8R2 k22 VB8R M1 "2’ k,=0  (43.3)

1

where T, ;= tanh(pj A2) (43.4)

A straightforward elimination approach can be used, here in which (43.1) is first transposed to
get ky, in terms of ky;:

kyp =R¥Ciky - C)) (44.1)
where
=81 el L k<31 Keay, w2
K, K, 3
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which may be substituted into (43.2) to eliminate k,,:
(1+R2C)ky ~R2Cy +k, =1
or, after transposing :

1+R2C, -k,
kyy = ———— 45)
1+R2C,

Back-substituting this into (44.1) to eliminate k,, gives

R2C,-k

ky, = R%(C I "_C)  (46)
2 - ) - — 2
1+R2C,

Finally, substituting (45) and (46) into (43.3) provides an expression for k of the

form 2 2
1+R2C, Thaz 1+R2C, Tyao "
which transposes to give :
T
R/(1+R%C) + 8R2#R(Cl -C,)
k, = . h22 - @7)
R, +8R,2LRC, + B +R*C)2A
Ty22 Ty

As noted previously [ Eq(27) ], R tends toward zero for large t, so that all the terms
in (47) containing R as a factor will disappear, while R, and R, approach unity. We
then have:
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t>>t, (R,p,—0)
1

1 *\/S_Tth
Thl

k,—

48)

i.e. k; approaches the value given in the GR analysis for their "k" given by (A-7.6). (It can
easily be shown that T, of the present analysis approaches Ty, of the GR analysis.) In
addition, substituting (30.2) into (49.2) and the latter into (54) gives

t>>t, (R,p,—0)
. 3 1,2
17l

1
Jl- ; J -
3 3 1
1+20, 1+(p, +ﬁR2)

From (49) it is apparent that we can set
51=1, 1,=1/3 (>, (50)
and making use of the notation of (44.2) as well as (45, 46) leads to
t>>t, (R,p,—0)

2
by =1-k, © ky = %[%(l-k,‘)-l] e

49)

which is again consistent with GR. Applying (50, (51)) to (41) then leads to
t>>t, (R,p,—0)

Ahla-%(l—kﬂ)c_r,t ; Aual%(l-k,‘)-l]&xt 1)

At this point we focus attention on the bond layer shear stress distribution. Noting the relation
between Ty; and 8y given in (15) and applying (A-3.1) to (36.2) with Ty expressed in terms
of 8; leads to the following for Ty

B, . cosh(p,(x-L)/1] mw,  cosh{p,(x-L)/i]
= o B — * o B —

2t M7 sinh(uA/2) X sinh (p,A/2)

T

(52)

For the case of t>>t,, substituting (51) into (52) and allowing for (49) results in
t>>t, (R,p—0)
t,=0, V8B (1+3k) cosh[y8 B(x-L)f) , 3 U -k) cosh{U(x-L)//8 1] L 63)
8 sinh(Y8BA/2)  8/8 sinh(4A/2y8)

from which the maximum value of shear stress in the bond layer is approximately
t>>tb (R,pl—')())

Tomax _ {8 B 1 3 1
——2 (143 + UQ-k)—o (54)
o, 8 ‘ Thaa 88 Y Ty

Note that as in the case of k;, given by {46), Eq(54) is in essential agreement with Eq(A-10)
obtained by GR, except that the second term in the latter disappears for sufficiently large A
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(i.e. dimensionless overlap length), whereas here the second term persists no matter how long
the joint is.

Peel Stresses in the Modified Analysis

Note that (see Eq(A-2.2), Appendix A) the same expression ( Eq(2) ) for My, the moment
about the neutral axis, applies for the present analysis as that used by GR. However, for the
individual adherends, this needs to be examined further to insure a correct version of the
formulation for the peel stresses. In particular, the influence of bond shear and peel stresses
on the moments in the individual adherends has to be re-examined. In the following, it will
turn out that the influence of peel stresses on the adherend moment distribution will be
unchanged from what it was in the GR analysis. However, the contribution of the shear
stresses on acherend moments is influenced by adherend deflections through the same
mechanism as that which applied to the moments generated by the horizontal components of
the end loads. A particular point which should be understood has to do with the way that
these horizontal loads generate moments at various points in the adherends. These are not
large deflection effects corresponding to large values of either lateral deflection or slope.
Rather, they should be thought of as long range effects, since they correspond to relatively
large horizontal offsets between the point where the load is generated and the point under
consideration where moments are being calculated. Figure 7(A) denotes the incremental loads,
dF,(X) and dF4(X) generated on the upper adherend by the shear and peel stresses at a generic
axial position X, where

dF (X) = 1, dX dF4(x) = opdXx

As stated previously, the theory developed here is a small strain, small deflection theory.
Thus, for example, rotation will produce a vertical component of dF, given approximately by
w’dF, at X which will produce a moment contribution at x given by (%-x)w’dF,. The fact that
w’ is assumed to be a negligible quantity does not rule out the possibility that (x-X)w’ may
not be if x-X is large enough.

On the other hand, a similar horizontal component of dF; given approximately by w'dF,
produces a moment at x given by [w(x)-w(i)]w’dFo; but since w(x)-w(X) is equivalent to
(x-X)W"),,. Where '), is the average slope in the interval between X and x, the contribution
of the rotation of dF is of the order of (x-)‘()w’zdFo, i.e. proportional to the square of the
slope, and can be ignored in comparison with w’(x-X)dF, Thus, while the rotation of dF can
be ignored in a small-slope analysis, that of dF_ cannot necessarily be similarly ignored.
Accumulation of dF, and dF; by integration along the adhesive-aaherend interface will then
produce a moment at the point of observation, x, which is determined by the offset of the
load lines of incremental loads dF; and dF, applied at X, from the point of observation, ie.
by ¢; and ¢ shown in Figure 7(B). The adherend moments can thus be written as
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(A)

‘-_\l '(t.+t)/2 t [y (x) - 9(X)]
I
w(x) - (%)

(C)

_ (bt £) 72 + D) - (%)

—7 - (x- R wlf) ]

(x %) v{,(i)

(D)

Figure 7 Effects of Adherend Deflections on Moments in Overlap Region

Myx) = Vx + Twy@ + [*CdF ) - [GaDdFH 1 M = ["Caddr,+ ["LeDdF,

where L =x-%

(+]

for both adherends, while expressions for 0111 and ?l; ar= obtained as follows: for the upper

adherend, as illustrated in Figure 7(C) and (D), the load produced by dF, at X is offset from
the neutral axis at x by 0';’ given by




UpperAdherend
Q_I‘J 2%(’”1) +[wy () -wy(X) -(x -i)wllj(i)] (55)

This is obtained from considering various contributions to ¢, shown in Figure 7. It is clear,
first of all, that a moment is generated by dF, from the difference in wy; at X and x, as shown
in Figure 7(C). In addition, as in Figure 7(D) (lower expression at right end of adherend
segment), the tilt of the tangent vector at X has the effect of counteracting the latter
displacement difference by an amount (x-X)w’, resulting in Eq(55)). As apparent in Figure
7(B),however, the deflection of the lower adherend tends to move its neutral axis toward the
load line of dF, rather than away from it as in the case of the upper adherend. As a result,
the terms in Eq(55) which are in square brackets are subtracted for the lower adherend
rather than added, resulting in

€= (1) 0, ) -w, (-G -Dw[D]  (56)

inserting Eq(55) and (56) into the integral expressions just given for the moments in the
adherends at a generic observation point x, ( x2{,) leads to:

My=V+Twy(x) + j‘:,,(;z) {%(: 1) + [wy (1) ~wy, () - (x =D wi, ()] }di + f‘(x -§)c,(Hdi  (57.1)
and
ML=£‘rb(f){_'f(:+:b) - [w, () -w () -(x-HwL (D)} )i - [*(x-D)o, (D (57.2)
Derivatives of Eq(57) are needed for the subsequent development. These are obtained by use
of the following identities which apply to arbitrary functions F(x), G(x) and H(x):
d (%0 e
= I H(®)d3 = H(x)
from which
d (xp . N . d (x.,. Al Xmron g2 .
= j FOGWIE=FEGW : j F®Gdi =G'(x) j F(®)d +G(x)F(x)
leading to
4 Lx[G(x) -G IF(Rdi = G'(x) f‘F(i)di (58)
dx (-2 L
Applying this to (57) leads to
dMm

7 T 1 x A A\ g X Ay g
TU =V +Twj,(x) * 1T - j [widx) - wdR) 1T, (B dik - I o, (di  (59.1)
M, _ e, () -f[w’(x)-w’(i)]x (F)di ¢£‘o (®)dx (59.2)
dx '7 b , L L b 3 b *

while differentiating (59) to get second derivatives of My, and M; results in
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d’M,,

fwl/,l(x) + .;.(‘ +,)T,(x) + w{,’(x) Ixtb (Ndi-o,(x) (60.1)

i et -w'w '[‘r (#)di + 0, (x) (60.2)
dxz 7 b L , b b

Making use of (16.2, .5) and (30) to eliminate the integral expressions in (60) then
leads to

d*M 1
dx2U =T, ()wp(x) * +1)T®) -6, (6L1)
M,

T, w} (x) +%(¢ s1)TE v, (612)

and subtracting (61.2) from (61.1) results in
200 -
'm:‘:_zw =(Tywy -T,wh-20, (62)

Note the identity

1 1
Tywy - T, wy = 5 Tu+T) Wy -wp) + T(TU-T,)(W,’,’ +wp)

or, making use of (16.7) together with the notation of (30),
Tywey -Towi =T +8,w"  (63)
On allowing for (14.3, .4) and (17.2, .4), the second derivative of the difference between
adherend moments can be expressed as :
d*M,-M) D d*s, d'e, t, d*c,

dx? v ~Pub EDUE—b i

while from the same relationships, the right hand side of (63) can be expressed as

2
7ol o 8 =70 4%
" Ey, dx?

+8,w"”  (65)

Inserting (65) into (63) and the result of that substitution, together with (64), into (62) then
results in

d4 2 d2
2% Ud0 Mo D55 (66
de* 2% & 1

The last equation is comparable to (20.1) obtained by GR for the peel stresses, with the
addition of the second order term on the left and the forcing function on the right. The
homogeneous solution for (66) will be of a form similar to (26) for the GR peel stress
analysis, except for minor changes having to do with the fact that the coefficients for the
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trigonometric factors in (24) will be slightly different from those for the factors involving
hyperbolic functions. In practice, the changes are so small as to be of no practical
significance, so that (26), with an appropriate modification of k, can be used for the
homogeneous solution for all intents and purposes.

The presence of a non-zero function on the right side of (66) requires the addition of a
particular solution to the homogeneous solution. Obviously, the factors from which the right
hand side is formed are obtained from the solutions for w and 8y given in (51). The details
of this part of the solution will be provided in Appendix B. Again it will be found that in
practical situations, the differences introduced by these terms from those of the GR peel stress
expression (except for the replacement of k by k) are essentially negligible.

COMMENTS ON THE HART-SMITH ANALYSIS

To date, the only serious attempt to correct the deficiencies of the GR deflection analysis,
other than the present one, appears to have been that of Hart-Smith[3] which was developed
on a NASA contract in the early 70’s. Those results have been frequently quoted in reports
and publications which have appeared since then, and a comparison with the present results
is in order. The most crucial part of the Hart-Smith analysis is the expression given for
adherend bending, which we may compare with Eq(21.2) of the present analysis. This is
repeated here for comparison:

2= 2 2 t+t L+t
dw U sV x-—t+_2t 15 ®rr212
e 82 8 2 2 Dy

The comparable equation in [4] is equivalent to a twice differentiated version of
Eq(35.2)

dw _ U*d*w _ 1 1
@ e 1
but lacking the second order term which is needed to allow for the influence of

deflection on moments, ie.

1 1

= (t,+0)—=—T1,
2 D, *

¥

d4

&

The absence of the second derivative term here completely changes the character of the
solution. As a result, the influence predicted by this approach gives much longer range effects
than those of the present analysis. In effect, this prevents St. Venant’s principle from being
satisfied in the sense of not allowing Eq(1) to be applicable at any point in the system. of
either GR or the present analysis is in the variation of k which is obtained. Table 3 compares
the expression for k vs. overlap length obtained from the three approaches.

Considering k as a function of UA/2 E(l2€x)1/20/21, i.e. dimensionless overlap length together
with square root of the loading strain, the GR analysis has the well known asymptotic limit
k=0.262 for large UA/2. The present theory will likewise be found to produce an asymptotic
limit but one which may vary to some extent from 0.262, especially for thin adherends. In
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TABLE 3 COMPARISON OF EXPRESSIONS FOR k vs. UM2

{ case of tanh(UX )=1 }

1
Goland & 77}
Reissner(1] 1 +\/8_ tanh(—.)
(kgr) 2J§_
Hart-Smith[3] - 1 s
(kys) 1+U% + (U
HS + 5 + 6( 2)
R,(1+R%C,) + 8R T"“R(c -C,)
Present Analysis 1 2 2T22 17 %2
T
(ky) R, +8R2_T"21RC1 + V8(1+R%C)T,,,

h22

where { Eq(27,28,30,41,44) }

o, ! 1/8v v
2% ; p=X1,; R,=|2
G,t R 8

2
with v,,v,=atb ; a=[4(l+%p,)+_§_] ; b=ya%-R?

R

2

J R

and C1=L_l : C =_1.. ; -’1’—-!——2-;12= 22
64.’2 48.’2 R22— R 4R2_1

contrast, the Hart-Smith expression has lower limit of zero for increasing UA. Note that he
latter result corresponds to zero shear and peel stresses. This type of behavior is not
consistent with what is found in most problems of load diffusion which is what we are
dealing with near the end of the overlap, and a lower limit on the stresses which persists even
for indefinitely long overlaps and large loads seems to be more in line with practical
expectations.

NUMERICAL RESULTS

The degree to which the results of the original Goland and Reissner analysis differ from those
of the updated analysis of the present paper depends primarily on the R, the ratio of U to j,
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GOLAND & REISSNER (1)

HART-SMITH [3]

-

0 2 4 6 8 10 12 14

Figure 8 Comparison of Goland Reissner[1] and Hart-Smith Prediction of k vs. UL

which is equivalent to (12(‘)',‘tb/th)”2 according to Eq(27). Results which illustrate the
situation are given in Figure 8-10.

— Goland & R
T N — HipSlh @?339‘
A )

T ————
e e e ———— e ———— e e

-

Figure 9 Comparison of k vs. U\ Prediction for Goland Reissner vs. Present Theories
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Figure 10 Comparison of Stress Predictions -- Goland Reissner vs. Present Theories

Figure 8 gives a comparison of the GR and Hart-Smith predictions for k vs. UA, while Figure
9 shows a similar comparison between GR and the results of the present analysis for k vs.
UA.

The effect of R on the curve of k vs. UA/2 is effectively brought out in these results. It is
clear that the largest difference between GR and the present analysis occurs for small

adherend thicknesses.

Figure 10 shows the effect of adherend thickness on the shear and peel stress predictions
obtained from the present analysis for large enough UA so that effects of joint length have
settled out, i.e. with k having reached its lower limit. For the case considered here,

E’ = 20x104 psi, G,=150 ksi, Ey=500 ksi, t, = 0.008 in, G, = 20 ksi.

It is interesting to note that the ratio of maximum peeling to shear stresses predicted in
Eq(15) for the GR analysis is close to unity, so that the GR curves lie nearly on top of each
other. Considerable deviation from the GR curves is noted in those of the present analysis.
In particular, the shear stresses obtained from the present analysis are greater than those
predicted by GR, while the peel stresses are somewhat less than those obtained by GR.




CONCLUSIONS

In the context of the use of beam theory for modelling adherend response, the approach
employed in this paper appears to provide the first completely consistent model for the
analysis of single lap joints. It is emphasized that the original Goland-Reissner model, in
analyzing the deflections of the joint, used a classical homogeneous beam model for
calculating deflections which was not consistent with the bi-layer model used by them to
predict bond shear and peel stresses. Due to the long-range nature of the effect of bond shear
strains on the bending stiffness of the joint when the adherends are thin, the largest
differences between the present approach and the GR approach occur the case of thin
adherends. On the other hand, the numerical results which have been obtained demonstrate
that the original GR approach produces numerical results which do not substantially differ
from those of the present analysis. It is clear that for large adherend thicknesses, the effects
which are ignored in the original GR approach are so concentrated near the ends of the
overlap that their consequences are not significant. Thus for thicker adherends, the GR
approach can be considered to have been satisfactory from the stand-point of sound
engineering. The insight that Goland and Reissner brought to bear on the effects of adherend
bending deflections together with the role of peel stresses on the strength of adhesive joints
still stand as a major advance in the understanding of factors important to successful adhesive
joint design.
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APPENDIX A EQUATIONS OF GOLAND REISSNER ANALYSIS

BASIC RELATIONSHIPS
Adherend Constitutive Relations

duy duy, . d*wy _ d*w,,
TU:BU_dx— (A-l.l) ; TLzBL_dx_ (A-l.2) . MU=Du—d?- (A-1.3) . MLSDL d‘z (A'l.4)

3
DUaDL-E’_;_z. (A-15); By=B,=E't (A-16)

E'=E[1-v*») ; v=Poisson’sratio
Moment Distribution (Figure 6)

OuterEndofUpperAdherend(0<x<(,) |
My, = T(ox +w) (A-2.1)

Moment about Neutral Axis in Overlap Region(8,<x<{,+0)
M, = fou-(_;. -wT  (A-22)

Equilibrium Relations
Upper Adherend Forces (Fig.A-1(A))

dT, _ av
—L =1, (A31) e Ty=T+ [rad @3 —Z=0, (A-33) ie. Vy=V,+ [Foux’ a-34

am,, oML
Slesn-Vy @39 i dlean-V, @939)

Global Eguilibrium in Overlap Region (Fig A-1(B))

Ty+T, =T (A-37) ; V,+V, =-V, (A-38)
Bond Lavyer Constitutive and Kinematic Relations

Bond Layer Strains (Fig.A-2)

1 t . _Yutw
Y= —ly-u)+ Lwyxsw 0] (A1) ;  g,= (A-42)
L, 2 L,
BondLayerStresses
,=G,Y, (A-43) ; o,=Eg, (A-44)

Note that Eq(A-2) exhibit the influence of lateral deflection on the moment distribution due
to the shift the lever arm through which the end load, T, acts with respect to the neutral axis
of the adherend segnments under consideration (see Figure 6(A) for the outer adherend
and Figure 6(B) and (C) for the overlapping part of the joint.
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- Ty dx
- - dx -
'Vul 0) lvu
oo
> (A O—ai)
My ~Tpk MJ

S
]
i e

Figure A-1 Equilibrium Relationships

(A) Differential Relationships

. i dT,
EFXETU+(-TU)-dex=O R -_=tb
dx
. - vy
Y FEVy+ (V) -oydc=0 o —Z=0

Y M, (about p) =My, -M +V , dx —%‘tbdx

Y M, (aboutp’y=M, -M] +V, dx - %‘tbdx

am,
ik KA
(B) Global Relationships

Y F =T +T +(-T)=0 .~ Ty +T, =T

Y F,=V, +Vy+V=0 o Vy+V, =-V
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Figure A-2 Bond Layer Shear Strain Components
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DIFFERENTIAL EQUATIONS
In the following, the relationships on which the diferential equation under consideration is
based are given preceeding the DE’s.

Adherend Deflections

Outer Segment of Adherend {Eq(A-1.3),(A-2.1})

d? 2 2
Yo _Uwy= Yo @a-sny
d? 2 2

Overlapping Segment of Joint {Eq(1),(A-2.2))

2 2 2
aw U, U (-t (4-5.2)
de? 82 8 2
where U=t|-1 =%, (A-5.3)
DU

Bond Layer Shear Stress & Strain

Shear Strain {Eq(A-4.1),(A-1.1) 10 (A-14)differentiated, (A-1.5)-(A-1.6) }

Shear Stress {Eq(A-4.3),(A-1)&(A-6.1) twice differentiated,(A~3.5,.6), (A-3.8) differentiated )

d*t, _gB s _

0 (A-6.2)
& &

G t
where B =\lpc/p, pa=—E§ DT (463)

Bond Lavyer Peel Stress

{Eq(A -13, 4), (A -3.3),(A-3.5,.6), (A4.1,.3)}

4
ﬁ‘i"’.mi‘;o,, =0 (A-7.1)
dx t

E,
where y=(2—_) (A-1.2)
D u,
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SOLUTIONS

Adherend Deflections

In the following, the outer adherend deflection is represented as a multiple of kt/2,
corresponding to the notation for M, given in Eq(A-1). The parameter k is determined by
satisfaction of joining conditions between the outer adherend and overlapping part of the joint
at x=0,.

Generic Expressions

_ ke sinb(Uxft) _ ) - w. SInh[(UNB)x-L)1) | ¢ _ ]
w 73Tnf1W ox (A-7.1) L<x<@, +l w=W, sinh[U},/‘/s_] 3 ax (A-7.2)

x<t,

Continuity Conditions atx=14,

. t t
Displ, 1: k=-W,+—_-od, (A-73 ; Slope: = A-74
isplacemen 5 2% , ) ope T \/§ TS ( )
Resulting Expressions
{ Th / 1
W,=_(1-k) (A-1.5) ; k=0—__ _____ (A-7.6) ; k'=—__kAU (A-1.7)
2 T, +V(8)T), 4Ty,
where T, =unh(UL) (A-7.8) ; T,,=tanh(UNM2/8) (A-7.9)

Note that GR assume the outboard part of the adheiend io Lo l0ig Cuvugin w riake US>,
leading to Ty, =1, as a result of which they use the contracted expressions

k=—L . w=lnv @-s
1+/8T), 4
for k and k”.
Bond Layer Shear Stress
Generic Solution of Eq(A -6.2)
IRl et
T,=Ce Y oec,e t +const. (A-9)
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Bond Layer Shear Stress (cont)

Boundary Conditions

(1) Using Eq(A-6.1) multiplied by G, to generate dt,/dx,end conditions determined by M ;,,M , T, and T,

inserted on RHS of (A-6.1).

(2) Determine const. in (A-9) by integrating t, x then inserting into (A -3.2) t0 satisfy T ;=0 condition at x=L +1

Final Faorm of Solution

4, = -5,1yZp Lt 30 coshlVBRG-LY | 3 )
b 4 sinh/8pr  4h

Maximum Value of 1, (x=L£ 02 ; y/i?BNZ)l 7 0.262<k<1)

06318 < abs{"‘l'”“}fa,/z‘g(“f") < 14148

P 4

Peel Stresses

Functional Notation

(A-10.1)

(A-10.2)

Celx) =cosh(7x_:l.’.)cos(y_x+l’_) A-111)  Ss(x) =sinh(yf:_l’)sin(yx_;l’) (A-112)

Sc(x)=sinh('yx_;l’)cos(yx_;l‘) A-113) Cs(x)=cosh(yx_:l')sin(yx_;l'.) (A-11.4)

Derivative Relationships

(CC)/=%(Sc-CS) A-12.1) (Ss)/-—-l:(Squ) (A-122)

(Cc)”=-2i255 (A-12.3) (Ss)”=2i2cc (A-12.4)
{ 4

Generic Solution(s_ , 0, --constants determined by boundary conditions )

0,0 =a,Cc +0,Ss (A-13)
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Boundary Conditions
(1) Eq(A-4.2) combined with (A -4.1) differentiated twice (making use of (A-1.3, ,4)):
d’c, _E, My-M,
a* & Dy
(2) Differentiation of (A-14.1), making use of (A-3.5,.6):

(A-14.1)

d’c, E,V,-V,

—_— — (A-14.2)
dx? t, Dy

(For x=¢, and ¢+, differenced quantities appearing on the RHS of Eq(A-14) are taken from
the last two rows of Table 2.)

ResultingExpressions
1 Iy 1 2 1 2
0,0 = L X[ (P ka + kP )CeR) + (Pry "IY gk PSS0) A1)
where

P, =(Sc +Cs)(x_L>/,_)J2 P,= (Sc —Cs)(x_,‘)/,_;‘,2 Py= Ss(x_,i),,_m pd= Cc(x_L),,_m

A=(PPy - PiPy) pyyern (A-15.2)

Maximum Value of Peel Stress (x =L0/2 ; YA2>1)

2%’ kU
Note that (Eq(A-8 =27
(Eq(A-8)) - >
2,2
P,P,+P. P Ps+P
~Forx=Lt¥2 ; Gb=57{ky( P4 +P\Py) . kU (P4 +P3)
2 A 74
PP, +P P, P2:+pl
Alsa,foryN2>1 ; 24 VP73 44
A A
Gb)m.fa,—kzl(Y*U) (A-15.3)
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APPENDIX B
PEEL STRESS SOLUTION IN UPDATED ANALYSIS

Notation pertinent to this section are given in Table B.1. Eq(66) which defines the peel stresses
is repeated here for reference:

d‘c 2 d%, 4

where

0(x) =8, (x)w”(x) (B-1.2)
It is noted that the factors included in the function Q(x), on the right side of (B-1.1), involve
only the homogeneous parts of the solutions for 8; and w(x), so that (B-1.2) can be written

sinh(p, (x-L)/1} oA sinh{p, (x -L)/1}

Q) = {4,, Sk (1 W2) 2 sinh(p,A/2)

)

pfk ¢ sinh[p, (x-L)/1] p; ¢ sinhlp,(x-L)/1]
Y2 sinh(pA/Z 2 227 sinh(pA/2)

{ } B-2)
Defining M together with the g;’s (i,j = 1,2) as in Table B-1 and noting that from the definition
of M and U, we have that

1772
MU" . 355 -3
82 4

then using appropriate identities for the hyperbolic functions in (B-2) together with the
functional notation in Table B-1 leads to

Fu(é)-l + Fn(§)°l + F2l(§)'F|2(§)

B-4
wFomT Brom T Mremrm &Y

o) = .j.c'r.E,l q

Equation (B-1.1) can then be expressed as a sum of terms for each of which the RHS of (B-
1.1) is an exponential function, giving a differential equation of the type
4 2
4o, Uvdo, &, Wpen (g
dx‘ lz dx’ ‘4 14
where a and F are constants. Eq(B-5) has the particular solution
1
- F oo/t B-6
% o -Ua? +ay .2 ¢ -0
—
Decomposing the right side of (B-1.1) into exponential terms and repeatedly applying (B-6)
gives the particular solution that is needed here. The homogeneous solution of (B-1.1) consists
of terms of the form

¥/

g, = o, " cos(y,x/1) + 6, sin(y,x/1)

+a,,e Yeos(yx/1) +o,,e Y sin(yx/t)  (B-T)
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TABLE B-1 NOTATION FOR PEEL STRESS EXPRESSIONS

PARAMETRIC NOTATION

General
- T _p (x-L)
M ={ =g ’ =
7% b=
Definition of g;’s
2
M t
Ak, — _..k
_ hltz 212 _U pf t . h) 2-22 . -'(j2
9 = ———3 Le an_z‘ Au—zkzx— ’ qlzs_z— Ie an— = "’—kn_
Iy; U 2 ﬁ U
8¢2 8
2 2
B t B2 t
Aquzx?*Au—‘-;kui - 2 T
= ie. M_ = A, = k
q12 A; Uz qlz kII 2 A1 ‘2 2~ 2
2

q;s IN TERMS OF NOTATION OF EQ(39.3, .4), (52.2), (54)

2

3 i 4R; 3 J 3
= -Z"lk’llelz 3 qu"'—:;Tz(Tlnku'l)z ’ qll=(-j_;R22 +Rl2)(7"lk21 -Dk,
Definition of D;s
4_U22 4_Uzz 4_Uz + 2 —u Yo I2 —n )2
L DO i DO Du=(u.+uz) @) L, D,,=("’ m)* - U, -
Y 2y 2 2y

FUNCTIONAL NOTATION
F,, (&) =cosh2p, & ; F(8) =cosh2p,& ; F,,(§) =cosh(p, -p)§ : F, (&) =cosh(y, +p)€
G, =sinh2p & ; G ) =sinh2p,& ; G, (€) =sinh(p, +p)& ; G, (&) =sinh(p, +p)§
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in which +(yiy,) [i=(-1)"?] are complex roots of the quartic polynomial
*-U%*z22+4y =0 (B-8)
associated with (B-1.1). The solution to (B-8) is

2= (s =4 L i l(‘w‘-%w) 1 ©-9)

Because of the second derivative appearing in (B-1.1), it is found that ¥, 7, in contrast with the
original GR solution. However, the contribution of terms involving U in (B-9) compared with
those involving 7y is miniscule, and can be ignored with no risk of significant inaccuracy. Thus
the homogeneous part of the peel stress solution is essentially in agreement with that of the GR
solution will now be
0,=0C, +0, (B-10)
where the homogeneous term, G,,, is now assumed to have the same form as that of Eq(A-14)
of the GR analysis of Appendix A
6,=06.Ss+0,Cc (B-11)

but with ¢, and o, appropriately modified:
2 2y, 2 2
Psz.(Mo-MP) *P“_f\V,-V’) Pll_f(M,—MP) +P3‘_f(V°—VP)
o = ;o= (B-12)
‘ A 4 A
in which M, and V, are as before given in (A-13) which may be re-expressed here for
convenience, using notation which has been introduced in Appendis A (assuming Ty;=1 in (A-

13.2) ) as

2
Mo = kual% ; V° = kllax‘ 3Ex (8_13)
while Mp and V, are obtained from derivatives of Oyp» 1.€.:
M-t B Ao g
Y d? P d

The in the notation of Table B-1, the particular solution to Eq(B-1) is

I U
—F -—F
p =_3_6=E[ 9, F,©-1 I F®)-1 . D, 2® D, a®
2 x

— = B-15
"' *D,,F,ND)-1 D, F,(N)-1 ~ F, (N)-F,(A2) b6

Derivatives of 0,, required to evaluat (B-15) are then given by

At this point we wish to concentrate on evaluating quantities of interest at (x-L)/t = A/2 where
the boundary conditions are applied. We also assume the case of long overlap for which p,A, p,A
>>1. In such cases all functionaL ratios in (B-16) can be replaced by unity. The defining
allows M, and V, to be expressed as
cJUEP K g
M, = -T6_Gt’o,e, VY, -_tho;e_ B-19)
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p qu Fu(é) "4]12 qn Fn(é)
DL FaD -1 Dy Fid-1

(*m s "“F ® - - uy Fao®

Du B-16
O 7D ) @19

o Szl _H® g0 Ful®
& 2 D, F,0D-1 Dy, FWD-1

G+ S 6~y L ®

D, D, B-1
F i) -F ;0 70) b G-

TH %, Pz 9n , 9o (a- B (u,*u,)2

={2___
Y D, Y‘D 44 Dy, D,

caP A g G Gn) e
¥D

I} (B-18)
11 Y‘Dzz 4'Y‘ Dzl Dn

and comparing (B-13) with (B-18) gives M, and V, as the following ratios with respect to M,
and V,

M 36s . VLoV, g
M Bk * ' V. "X

The values of these ratios give a yardstick for judging how significant are the effects of the
particular solution on the peel stresses. Numerical evaluation indicates that G and H are on the
order of 1 to 2. Assuming the Goland Reissner limit for k (=0.262) applied to k, (considering the
long overlap case) and a value of 1 for G and H thus indicates that

M, _ v
SE=OIE, ¢ Z=02@)"

The adherend strain level will certainly not be greater than 0.01, so that the effect of the
particluar solution on the peel stresses is essentially negligible.
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