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EXECUTIVE SUMMARY

This Microwave Landing System (MLS) mathematical model validation study
evaluated the performance of the MLS math model by comparing the results of
the model’s simulation of flight profiles flown at the Federal Aviation
Administration (FAA) Tzchnical Center (Atlantic City International Airport,
NJ) with actual airborne data collected during the test flights. This studv
and the flight profiles flown were designed specifically to address the
effects of shadowing of MLS signals by aircraft directly in front of the MLS
elevation system.

The study found that comparisons of model output with real world data showed
some agreement. Discrepancies between the two were explainable as either the
mndel’s sensitivity to input parameters or the model’s strategy for simulating
a shadowing aircraft silhouette. The study supports the conclusion that the
MLS math model requires further development with respect to modeling of
shadowing aircrall.
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Tl purpose of a validation study is to evaluate the performance of the
Microwave Landing System (MLS) Mathematical Model by comparing the results ot
¢ math model’s simulation of flight test profiles with actual airborne dataz
collected during these test flights. This specific study addresses the

hadowing of MLS elevation <ignals by aircraft located directly and closelw
(approximately 190 feet) in front of the elevation system. The airborne da
were collected during a special series of flight tests designed and conducc
at the Federal Aviation Administration (FAA) Technical Center to study

shadowing aircraft effects.
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BACKGROUND

Tiiz WMLS MATHEMATICAL MODEL.

“he MLS Mathematical Model simulates the operation of an MLS for the purpose
of predicting the effects of the airport environment on the accuracv and
guality of the guidance signal information arriving at the aircraft. The
scenario or airport environment to be modeled is defined by three sets of
input data. One set of data describes the obstacles in the airport
environment (buildiags, aircraft, terrain features) that might have refleccive
{multipath) or diffractive (shadowing) effects on the transmitted signal. The
position and signal characteristics of the MLS antenna systems are defined b
a second set of data, and a third set provides the coordinates of the
flightpath. The model uses these data to predict (1) the effects of the
airport environment on the prcpagated signal, and (2) the receiver output
angle errors caused by these effects.

Originally developed by the Lincoln Laboratory of the Massachusetts Instituce
of Technology (MIT), the MLS Mathematical Model has been extensively revised
and baselined by personnel at the FAA Technical Center. Additional validation
of the model is required to determine whether the model continues to perform
satisfactorily in representing the real world and to investigate the model
sensitivities to input parameters. The approach to validation taken in this
study and the philosophy of interpreting the resulcs are discussed in detail
in the Concepts Analysis Division Report ACD-330-90-04, "Approach to
“alidation of the MLS Mathematical Model" (Linda Pasquale and Jesse D. Jones).

LS ELEVATION SHADOWING_ AIRCRAFT TESTS.

At the request of the Great Lakes Region, the FAA Technical Center conducted
an operational demonstration of an MLS installed temporarily to serve runwav
22L at Chicago's Midway Airport. During one of the approaches, the pilot of
the Technical Center’s demonstration aircraft reported a fly-down Course
Deviation Indicator (CDI) deflection during most of the approach, which took
him well below the desired 3° glidepath and eventually caused him to abandon
the CDI guidance. These effects were later attributed to a DC-9 aircraft
holding on taxiway P between the elevation system and the approaching aivecraf:
indicated by figuie 1. Since this occuiied during one of the demonstration
ilirhts, no tracking or recorded data were available. It should be noted tha:




the elevation system was temporarily sited for the MLS demonstration and.
therefore, no attempt was made to restrict the critical area from moving
traffic. Since the taxiway was located well inside the defined elevation
critical area, a normal MLS installation would have closed the taxiway or
eliminated aircraft from the critical area during an MLS approach, and the
observed effects would not exist. Simulations perlormed later at the
Technical Center confirmed that the observed effects could be attributed :o
the DC-9.

In order to achieve a better understanding of this phenomenon and provide
quantitative data for model validation, a close approximation to this scenario
was created at the Technical Center. This was accomplished by installing the
MLS elevation system near the north end of abandoned runway 17/35 and
positioning the Technical Center Boeing 727-100 (N-40) aircraft (similar in
size and shape to the DC-9) at two locations in front of it. Flight test data
were collected with the B-727 parked at the two locations discussed in this
report. Partial orbit, radial, and approach flight profiles were flown for
each B-727 position (plus a set of control runs with no shadowing aircraft)
with laser tracking to provide accurate positional data. MLS data recorded
during these flight tests provide the desired "real world" data which were
compared with math model predictions, thereby, offering an opportunity to
evaluate the performance of the model in simulating the aircraft shadowing
effects.

DATA COLLECTION AND MODELING METHODOLOGY

MLS EQUIPMENT AND SITING.

The MLS test bed system wsaed for these tests was a modified Bendix FAR-171 MLs
(models B-21.5-40S and BI1-60S) which met the FAA MLS accuracy tolerances in
FAA-STD-022b and FAA-STD-022c. The azimuth antenna serving runway 13 had a 2°
beamwidth with #40° proportional azimuth guidance. The elevation (EL) antenna
had a 1.5° beamwidth with prcierticnal coverage from +0.9° to +15°. The EL
antenna was moved for these tests to a location 490.92 feet north offset from
the centerline of runway 13/31 and 171.42 feet east offset from the centerline
of runway 17/35 (taxiway for these tests). The field distance measuring
equipment (DME) at Atlantic City was used for ranging since no precision
distance measuring equipment (DME/P) was available for these flight tests.

The FAA Technical Center laser tracking facility provided ground-based
tracking positional data for the aircraft. The shadowing aircraft locations
were marked along a line parallel with the centerline of runway 17-35 and
130.6 feet from the EL phase center in order to approximate the Midway
scenario. A map of the siting and obstacle geometry is shown in figure 2.

The two aircraft locations (defined at the center of the fuselage) used for
this study are identified in figure 2 as SAP4 and SAPS. The aircraft shown is
positioned at SAPS.

ENGINEERING FLIGHT TESTS.

The FAA aircraft used for the flight tests. a Conwvair-S80 (N-91), includ__ a
data collection system designed, built, installed, and tested at the Technic.ul
Center. This system records data from the MLS angle receivers, the DME
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interrogator, and the Radio Telemetering Theodolite (RTT). when used.
profiles included level *40° partial orbits (to observe the shadowing e
over a range of azimuth angles) through the MLS coverage volume for 2.0
3.4° elevation angles at a distance of 7 nautical miles (nmi) from the DMEZ.
Tracked approaches from a range of approximately 10 nmi from threshold at
angles of 3.0° and 3.4° demonstrate the shadowing aircraft effects for
standard approach flightpaths. 1In addition, level centerline approaches ac
2000 feet were flown to investigate the shadowing eflects of the aircraft oo
a large range of vertical angles. All the runs flown were reviewed. and a
typical orbit, approach, and radial selected for analysis from both shadowirnr:
aircraft positions. A complete series of tracked runs without anv shadowing
aircraft was also flown in crder to determine the typical effects of the
airport for baseline data.
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FLIGHTPATH CREATION.

Flightpath data can be entered into the MLS Math Model in either of two waw-
The coordinates of the flightpath segment endpoints can be included in
formatted input file, a method appropriate for theorerical flightpaths
are calculated mathematically. In the alternate method used for this stud..
the model reads flightpath coordinates directly from a second input file.
This method allows the flightpath to be defined in greater detail and is the
appropriate method to use when actual flight data are available. Flightpazi:
are created from the laser data collected during the flight tests by
translating and rotating the X, Y, and Z coordinates provided (relative to th
laser) to the model coordinate system. The software developed to reduce and
analyze airborne data ana create a measured flightpath is documented in ¢
Concepts Analysis Division Report DOT/FAA/CT-ACD33090/08, "Softwzre for ¢
Creation and Analysis of Measured Flightpaths from Laser Tracker Data" (Lindx
Pasquale) .
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MODEL INPUT DATA.

No significant sources of multipath exist for the MLS elevation siting used
during this study. However, parts of the new glide slope shelter, the old
glide slope building 166, a fence around a transformer pad near the glide
slope, and the concrete surfaces of runway 17/35 and taxiway C in front of ine
elevation system, were included in the model input file. It was determined i=
comparative runs that the above obstacles did have a very small effect on the
output data. Therefore, they were included in order that the input file would
represent the scenario as closely as possible. A shadowing aircraft was
included in the input file at either of the two locations used in this studv.
as appropriate.

The antenna systems specified in the model were the MLS Bendix testbed antenn.
patterns which had been added to the model for validation purposes. These
patterus are & direct match for the MLS antenna systems used for the data
collection flights. The measured flightpath option of the model was used to
model the appropriate flightpath for the particular flight test being studied.
Appendix A is a copy of the input file showing all of the sections used and
the specified input parameiers. Secticn 2 shcws the coordinates of shadowiny
aircraft location SAP4. The other shadowing aircraft location (SAPS) is shown
in section 8 of appendix B.

(]




DATA PRESENTATION AND ANALYSIS

ANALYST.. CF PLOTS.

The MLS Math Model utilizes two phases of simulation. First, the prograr
BMLST (and the associated plctting program BPLOTT) simulates the signal in
space for the specified airport environment and produces plots which idenzic
the multipath and shadowing effects from specific obstacles (buiidings.
aircraft, ground reflection surfaces). In the second phase, the system moc
programs BMLSR and BPLOTR simulate the operation of the receiver given the
transmitted signal as output from BMLST. Plots from BPLOTR show the recelver
error ("raw" error) which is defined as the difference between the acrtual
position of the aircraft (as defined by the input flightpath) and the positi.,.
as determined by simulation of the MLS. These raw error data are further
processed with path following error (PFE) and control motion noise (CMXN.
filter algorithms. The PFE algorithm, a low-pass filter which removes
components of the error data that will not have a measurable effect on i
ability of the aircraft to follow the specified flightpath, creates plots tiii
are particularly useful for comparison with actual airborne data becausc therw
emphasize the large-scale shape of the data curve. Therefore. the model
output for purposes of this wvalidation study is judged primarilyv on the basis
of the PFE error plots with support from shadowing plots which identif
specific regions of signal disruption.

Real world data, recorded by the airborne data collection svystem, are
processed by data reduction and graphics software that produce plots desivred
to facilitate comparison with the model PFE error plots previously described,
All flightpaths are described by "differential error" plots which show the
angle error against the appropriate X-axis for the particular flightpath. Tin
angle error is calculated by subtracting the angle determined by the laser
tracker coordinates from the MLS receiver angle and filtering the resulting
value with a PFE algorithm. Similarly, the model receiver error is calculated
by subtracting the angle determined by the flightpath coordinates from the
angle determined by the MLS system simulation. The resulting error is PFE
filtered. Thus, the model error values and the airborne error values are bo:th
PFE filtered and plotted against appropriate X-axis values referenced to the
MLS azimuth antenna for easy comparison and analysis of the location and
magnitude of differences.

Approach and radial flightpaths are described by plots which show the anric
error against the distance from the azimuth antenna. Orbir tlightpaths zre
plotted similarly to the approach flightpaths: however, these values are
plotted against the azimuth angle of the MLS azimuth system.

This study will show that the errors generated by the model are comparable in
magnitude to the measured errors. However, the errors, particularlyv in the
case of orbits, are not in the same location as the measured errors. These
differences result primarily from the methodology of modeling a shadowing
aircraft as two rectangular plates. Figure 3 shows the two rectangular pl.ates
used by the model to represent a B-727 aircraft in comparison to the outline
of the aircraft. This study will conclude that this method of representiis

(or defining) shadowing aircraft needs to he improved.




ORBIT FLIGHTPATHS.

Partial orbit flightpaths were flown to examine the effects of diffraccion
from the tail and fuselage of the B-727 in the horizontal plane. Inicially,
an orbit without any shadowing aircraft was flown to determine the effects of
the Atlantic City Airport without shadowing aircraft. A typical airborne
error plot of an orbit wi~h no shadowing aircraft is shown by figure 4. The
corresponding model PFE error plot for this flightpath is presented in figure
5. Neither plot shows any significant interference to the MLS guidance
signals from the airport. A comparison of the two plots, however, illustrates
the noisiness of flight data in comparison to modeled data and supports the
philosophy of comparing modeled with measured data for large scale features
only.

The {irst shadowing aircraft position investigated (SAP4) situated the B-7:°
with the nose of the aircraft touching the extended boresight of the elevation
svstem. The airborne data collected for this scenaric are presented in

figure 6. This plot shows that significant (and off scale) errors are
generated by the shadowing aircraft between the azimuth angles of 5° and 2:%°
The modeled data for this flightpath, shown in figure 7, also show significan:
errors, but between the azimuth angles of 0° and 16°, and the errors remain on
scale. Therefore, the model shows the same effect but with the error
displaced. The statement that the plots show the same effect is to be
construed to mean that they have the same type of error signature. The model
plot, however, does not show the positive off-scale error observed on the
measured error ploct.

Two possible reasons are offered te explain the differences. First, although
the survev marks used to position the aircraft were precisely known, the
actual aircraft position and orientation were not measured after positioning
nor was the ground elevation of the runway surface at the shadowing aircrafc:
positions determined by the survey. At the close distances involved in this
study, a small difference in the actual aircraft position can cause a large
difference in the observed location of an effect. Second, the model
represents the aircraft silhouette for shadowing purposes as two rectangular
surfaces (see figure 3). This representation of the aircraft shape does not
accurately match the curvature of the aircraft nose and the slope of the
leading and trailing edges of the aircraft tail. This simplification of the
aircraft silhouette in the model can also lead to the displacement of effects
from their true location.

The other shadowing aircraft location (SAP5) tested centered the fuselage on
the MLS elevation system boresight. Figure 8 is the airborne error plot for
this scenario, and figure 9 is the corresponding model plot. Again, these
figures show similar amplitude effects between measured and modeled data but
with the effects in different lccations with respect to azimuth angle.

RADIAL FLIGHTPATHS.

Level centerline approach flightpaths were flown to examine the effects ot
diffraction from the B-727 in the vertical plane. 1Initially, a level approact
without any shadowing aircraft was flown to determine the typical effects cf
the Atlantic City Airport. A typical airborne orror plot for a level




approach with no shadowing aircraft is shown in figure 10. The corresponding
model PFE error plot for this flightpath is indicated in figure 11. DNeither
plot shows any significant interference with the MLS guidance signals from the
airport.

At this point in the analysis, it is appropriate to digress briefly from the
main objective to discuss an experiment conducted in conjuction with this
study to validate the implementation of the ELBl5 (elevation test bed) antenn:
pattern in the model. During the analysis and comparison of the two plots
above (figures 10 and 11), an attempt was made to see how closely the small
scale effects between measured and modeled data could be matched. This
analysis concentrated on the nonlinearity of the error trace in the modeled
data since the primary error mechanism for this scenario is ground
reflections. Although the ground for this run includes the separate concrete
surfaces of runway 17/35 and taxiway C, a model run with flat homogeneous
ground yielded almost identical results. This suggests that the elevation
antenna vertical radiation pattern (ELB15) alone is causing the observed
effects rather than any obstacles in the environment.

The same scenario was rerun with a different antenna pattern (ELBN, the Basic
Narrow pattern from Lincoln Laboratory) to investigate this assumption.

Figure 12, the ELBN antenna model plot, shows that, as expected, there is a
significant difference between the two model runs (figures 11 and 12). The
model error plot (figure 12) for the ELBN antenna pattern, shown in figure 13.
has significant errors beyond 6 nmi that are not apparent on the measured
data. Figure 14 is a plot of the ELB15 antenna pattern used to genarate the
error data of figure 11. The effect of the antenna patterns is obvious when
one compares these plots (figures 11 and 14) with the corresponding ELBN plots
of figures 12 and 13. This experiment shows that the elevation antenna
pattern (sidelobe reflections from the ground) is the primary error mechanism
in the model for a relatively clean airport environment such as the Technical
Center. The ELB1l5 antenna pattern was obtained from Bendix and installed in
the model by Technical Center personnel. The similarity between the measured
and modeled data (figures 10 and 11) confirms the implementation of this
antenna pattern in the model.

Returning to the primary objective of this study, figure 15 presents the
airborne data for a level approach with a shadowing aircraft positioned (SAP&4)
so that the nose of the aircraft touches the elevation boresight extended. No
significant errors are evident on this plot or in the model error plot of
figure 16. It is reasonable for this geometry to have no effect on the
guidance signal since, as the direct signal does not traverse the shadowing
aircraf*, only diffraction from the nose or sloped edge of the tailfin would
cause errors, and any diffraction from the sloped tailfin would be deflected
well above the flightpath.

At aircraft located airectly in front of the elevation boresight (SAP5) does,
as expected, cause significant errors on a level flightpath, as shown by the
measured data of figure 17. The modeled data for this flightpath, presented
in figure 18, also show significant errors. A comparison of the two plots
shiows a displacement between the observed and modeled errors similar to that
observed on the plots of orbit data. 1In addition, the peak errors between 6
and 7 nmi are of opposite signs in the two plots. This is a common occurrence
when comparing measured and modeled data and is attributed to phasing




differences between the real world and the precision of the computer
calculations. As with the orbit flightpath data, the displacement of errors
can be explained as a function of the imprecision of the actual shadowing
aircratftt location and the simplicity with which the model represents an
aircraft silhouette.

APPROACH FLIGHTPATHS.

Standard 3.0° and 3.4° approaches were flown to observe the shadowing aircratfc
effects on a typical approach path. Since there were no significant
differences between the results from the two approach angles, only the 3.0°
approaches were selected for presentation. An approach without any shadowing
aircraft was flown to determine the Technical Center airport effects on the
MLS guidance signal. Neither the measured data, figure 19, nor the modeled
data, figure 20, for this approach show any significant errors.

The measured results of an approach with the shadowing aircraft positioned so
that the elevation boresight extended touches the nose of the aircraft are
shown by figure 21. Neither this plot nor the modeled data of figure 22 show
any significant shadowing effects. Although there appears to be a somewhat
prominent error peak at approximately 4 nmi, the peak-to-peak error is typical
of this scenario with no aircraft (see figure 19).

Placing the shadowing aircraft directly in front of the elevation antenna
boresight does cause significant errors on an approach as seen in the measured
data plot of figure 23. The model error plot of figure 24 also shows
significant errors. These errors are of similar magnitude but opposite sign
between about 3 to 7 nmi. Between 1.5 and 3 nmi, however, the model does noc
correctly depict the measured data. 1In this region the errors would be
generated by diffraction from the shadowing plate representing the fuselage,
whereas, any diffraction from the actual aircraft would be moving down the
sloped surface of the B-727 from the tail towards the nose. 1In order to
approximate the effects of the sloped surface, an additional modeling
simulation was performed with the B-727 vertical position 1 foot lower than it
was for figure 24. The results of this simulation, figure 25, were much
closer to the measured data between 1.5 and 2.5 nmi, and the errors decreased
in the 3 to 7 nmi range as compared to those shown in figure 24. These plots
show that, for this scenario, the model does not correctly represent the
shadowing aircraft effects with respect to location and is sensitive to the
vertical location of the aircraft. The model is inaccurate because of the
inability of the fuselage plate to represent the sloped surface of the
fuselage silhouette and because the top of the plate is located below the
actual top of the fuselage. Another source of differences (although
considered small) is the vertical position of the aircraft input to the model.
This value (within 0.2 foot) was estimated from survey data since the actual
aircraft position was not surveyed after positioning.

THEORETICAL FLIGHTPATHS.

Analysis of airborne data and model simulations using measured flightpaths
indicates that the model’s method of representing shadowing aircraft needs
improvement. However, for completeness, the possibility that the
discrepancies between airborne and modeled data are a side effect of the
measured flightpath itself must be investigated. 1In order to test this




hvpothesis, every scenario was also modeled with a calculated segmented
flightpath approximating the original measured flightpath. Orbits were
simulated by a constant radius and altitude using 35 segments. Radials were
represented by one segment at a constant altitude. Approaches were simulated
by two segments defining both the level portion of the initial approach and a
constant descent along the glidepath. In most cases, the results from the
measured and calculated flightpaths were equivalent. 1In particular, any out-
of-tolerance conditions observed using the measured flightpath were also
apparent with the calculated flightpath.

The results of this experiment can be illustrated by one of the orbit
flightpaths for shadowing aircraft position 4. The measured flightpath for
run 3 on December 16th, logged as a 2000-foot orbit, never exceeded an
altitude of 1927 feet above ground level (AGL) and averaged 1858 feet. The
results of a model run with this measured flightpath were presented in
figure 7. This scenario was repeated with the calculated orbits at 2000 and
1858 feet AGL. The model error plots from these simulations, figures 26 and
27, respectively, compare very well to the measured flightpath data of
figure 7. This shows that the flightpath used for modeling this orbit can
vary in altitude (over a range of 150 feet) without introducing any
appreciable errors.

CONCLUSIONS

Comparisons of model output with real world data collected during the
shadowing aircraft flight tests at the Federal Aviation Administration (FAA)
Technical Center show mixed agreement. Discrepancies between measured data
and model results are explained primarily by the method (two rectangular
plates) used by the model to simulate shadowing aircraft and, secondarily, by
the model’s sensitivity to input parameters. More detailed surface
definitions for shadowing aircraft and more precise location measurements will
improve model performance in this area.

It is concluded, therefore, that the Microwave Landing System (MLS)
mathematical model inadequately simulates the behavior of an MLS with respect
to the effects of shadowing aircraft on the signals arriving at the receiver.
Theoretical or calculated straight line (segmented) approximations to the
measured flightpaths yield equivalent results and are valid for making model
predictions. The results of this validation study support the conclusion that
the MLS mathematical model requires improvement to the method used to
represent a shadowing aircraft silhouette. The results also show the
importance of accurate location measurements for the definition of a shadowing
aircraft position.

In addition, this study also provided data to confirm the implementation of
the ELB15 Bendix Elevation Test Bed antenna pattern in the model.




RECOMMENDATIONS

It is recommended that further study be performed of the methods used by the
model to represent shadowing aircraft and that improvements be developed to
minimize the displacement of errors observed in the modeled data. It is
further recommended that the location of the aircraft be surveyed after
positioning for any future validation studies related to aircraft.
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APPENDIX A

INPUT FILE FOR SHADOWING AIRCRAFT POSITION SAP4




$4

tit*i'.ﬁ*'i'iiﬁt*"”t—s MATHEHAT]CAL "wEL INPUT DATA FILEﬁ'ii..'t‘ti'iti!it'i'tt

SECTION O

SECTION 1

SECTION 2

= SCENARIO DATA

RUN 1D# :1610

TITLE :2000 FT CENTERLINE RADIAL SAP 4 2=12.15 FT.
AIRPORT :FAATC

RUNWAY :13

LENGTH :10000

WIDTH 1180

ARDH :55

MGPA :3.0

UNITS :FEET  (feet, meter) FOR ENTRIES IN FILE

= TRANSMITTER DATA

PHASE CENTER: X Y z FREQ(mhz) LSL USL TYPE

AZIMUTH : -1184.27 -0.24 10.28 5061.0 -40.0 40.0 AZBR2040
ELEVATION: 7370.04 -490.92 9.04 5061.0 0.0 20.0 ELB1S
DME/P o 4902.36 T749.25 14.45 997.0 0.0 360.0 DMBN
DME/P PUL: cos/cos2 cos/cos2 (gaussian for IA; cos/cos2 for FA mode)
DME/P TYP: cos/cos?

YES - DO ANY GROUND REFLECTION PROCESSING (CALL GREFC) (yes,no)
YES - DO FULL INTEGRATION FOR SPECULAR GROUND SCATTERING (yes, no)
= DEFAULT DIELECTRIC CONSTANT AND ROUGHNESS HEIGHT

DIELECTRIC CONSTANT : 1.2 0.0

ROUGHNESS HEIGHT : 0.06

* FOR MULTIPLE SCATTERING PATHS FROM AIRCRAFT AND BUILDINGS

SECTION &

SECTION 5

02

03

SECTION 8

DIELECTRIC CONSTANT : 1.2 0.0
ROUGHNESS HEIGHT : 0.06

= SCATTERING FROM BUILDINGS (MAXIMUM OF 10)

yes - RUN SCATTERING BUILDINGS (yes,no)

X-LEFT  Y-LEFT  X-RGHT  Y-RGHT ELV  HGT TLT GRCORR CMP

XXXXXXXX YYYYYYYY XXXXXXXX YyyyyYyy eeeee hhhhh ttttt ccccccec mmmmm
9130.0 760.0 9190.0 760.0 10.4 10.0 0.0 0.0 METAL

= SPECULAR SCATTERING FROM RECTANGULAR GROUND SURFACES (MAX OF 10)
yes - RUN RECTANGULAR GROUND (yes,no)

THIS SECTION MAY BE SKIPPED DEPENDING ON ANSWERS IN SECTION 2
X-VALU  Y-VALU Z-VALU DCREAL DCIMAG ROUGHN SF

x2x2x2x2 y2y2yly2 22222222
x3x3x3x3 y3y3y3y3 23232323
7254.99 -239.26 3.24 10.0 -9.0 0.00 01
7308.48 -186.08 3.84

7999.28 -134.85
8000.89 -134.85

7943.41 -814.14 4.57
7308.48 -186.08 3.84 10.0 -9.0 0.00 01
7361.97 -132.90 3.64
7994.16 -763.24 1.54
7931.17 -135.04 3.44 10.0 -9.0 0.00 01
2.84
2.84

= SHADOWING BY AIRCRAFT
YES - RUN SHADOWING AIRCRAFT (yes,no)
X-VALU Y-VALU 2-VALU VEL ANG AT
saxisaxl saylsayl sazisazl vvvvv aamaa tt
sax2sax2 saylsay2 saz2sazl
7641.7 -581.0 12.15 0.0 0.0 03
7639.7 -579.0 12.15

A-1




SECTION 9
= SHADOWING BY BUILDINGS
yes - RUN SHADOWING BUILDINGS (yes,no)
## X-LEFT  Y-LEFT  X-RGHT  Y-RGHT ELV  HGT
NN XXXXXXXX YYYYYYYY XXXXXXXX YYYYYYYy eeeee hhhhh
01 8857.0 -400.0 8857.0 -412.0 4.4 8.0
02 8572.0 -445.0 8572.0 -463.0 4.4 6.0

SECTION 12
= FLIGHT PATH
FAF : 6.262 NAUTICAL MILES
DATUM : 7370.04 0.0 6.28
TYPE : MEASURED (distance,measured,segmented,straight,
* radial,orbit)
VELOCITY : 200.0
INCREMENT : 40.0
DATA RATE: 0.2

* IF "straight® SUFFICIENT DATA IS AVAILABLE TO COMPUTE FLIGHT PATH
IF “radial™ ENTER ANGLE,ELEVATION & STARTING AND ENDING DISTANCES
* (nm from dme/p)

ANGLE: aaaaaaaa

SDIST: dddddddd

EDIST: dddddddd

ELEV : eeeeecee
* IF Yorbit" ENTER RADIUS (nm from dme/p) & ELEVATION

RADIUS: rrrrrrrr

ELEV : eeeeeeee (m.s.l.) :
* IF “measured" X,Y,Z COORDINATES AND TIME WILL BE READ FROM UNIT 15
* WITH VELOCITY AND DATA INCREMENT COMPUTED FROM INPUT
* IF “segmented" or "distance"™ ENTER SEGMENT #,X,Y,Z,VELOCITY AND
hd INCREMENT
h XS YS 4 VEL INC

»

NN XXXXXXXX YYYYYYYY 22222222 vwyvvvwy iiiiiiii
SECTION 13
= PLOT SCALE LIMITS
* FLIGHT PATH PLOTS:

X/Y PLOT X/Z PLOT D/Z PLOT
-2000.0 ft  -2000.0 ft 0.0 ft

6000.0 ft 6000.0 ft 6000.0 ft
-3000.0 ft -500.0 ft -500.0 ft

1000.0 ft 500.0 ft 500.0 ft

MINIMUM X VALUE :
UNITS PER INCH :
MINIMUM Y VALUE :
UNITS PER INCH :
* AIRPORT LAYOUT PLOT:
X/Y PLOT
MINIMUM X VALUE : -2000.0 ft
UNITS PER INCH : 2000.0 ft
MINIMUM Y VALUE : -6000.0 ft
UNITS PER INCH : 2000.0 ft
* MULTIPATH DIAGNOSTIC PLOTS:
M/D SEP ANG TIM DELAY  SHADOWING

MINIMUM X VALUE : 1.0 nm 1.0 rm 1.0 nm 1.0 nm
UNITS PER INCH : 1.5 nm 1.5 nm 1.5 nm 1.5 nm
MINIMUM Y VALUE : -25.0 db -15.0 deg 0.0 ns -25.0 db
UNITS PER INCH : 5.0 db 5.0 deg 200.0 ns 5.0 db
* RECEIVER OUTPUT ERROR & FILTERED ERROR PLOTS:
RAW PFE CMN
MINIMUM X VALUE : 1.0 rm 1.0 rm 1.0 nm
UNITS PER INCH : 1.0 rm 1.0 nm 1.0 nm

MINIMUM Y VALUE : -0.30 deg -0.30 deg -0.30 deg
UNITS PER INCH : 0.10 deg 0.10 deg 0.10 deg
END DATA

A-2




APPENDIX B

LNPUT FILE FOR SHADOWING AIRCRAFT POSITION SAPS




tt*'ﬁ*l‘ﬁ'i*lt'ﬁtﬁ't"l_s MATHEMAT!CAL HmEL INPUT DATA FILEttﬁ.ii**ﬁﬁ.i.i*ttﬁ'*ﬁtt

SECTIUN O

SECTION 1

SECTION 2

= SCENARIO DATA

RUN ID# :159

TITLE :2000 FT CENTERLINE RADIAL SAP 5 2=12.31 FT.
AIRPORT :FAATC
RUNWAY :13
wenGlH 210000
WIDTH :180
ARDH :55
MGPA :3.0
UNITS <FEET (feet, meter) FOR ENTRIES IN FILE
= TRANSMITTER DATA

PHASE CENTER: X Y Z FREQ(mhz) LSL USL

-1184.27 -0.24 10.28 5061.0 -40.0 40.0 AZBR2040
ELEVATION: 7370.04 -490.92 9.04 5061.0 0.0 20.0 ELB1S
DME/P s 4902.36 749.25 14.45 997.0 0.0 360.0 DMBN
DME/P PUL: cos/cos2 cos/cos2 (gaussian for IA; cos/cos2 for FA mode)
DME/P TYP: cos/cos?

AZIMUTH

YES - DO ANY GROUND REFLECTION PROCESSING (CALL GREFC) (yes,no)
YES - DO FULL INTEGRATION FOR SPECULAR GROUND SCATTERING (yes,no)
= DEFAULT DIELECTRIC CONSTANT AND ROUGHNESS HEIGHT

DIELECTRIC CONSTANT : 1.2 0.0

ROUGHNESS HEIGHT : 0.06

* FOR MULTIPLE SCATTERING PATHS FROM AIRCRAFT AND BUILDINGS

SECTION &

SECTION S

02

03

SECTION

05

DIELECTRIC CONSTANT : 1.2
ROUGHNESS HEIGHT : 0.06

0.0

= SCATTERING FROM BUILDINGS (MAXIMUM OF 10)

yes - RUN SCATTERING BUILDINGS (yes,no)

X-LEFT Y-LEFT X-RGHT Y-RGHT ELV TLY GRCORR CMP

XXXXXXXX YYYYYYYY XXXXXXXX YYYYYYyYy eeeee hhhhh ttttt ccccccce mmmmm
$130.0 760.0 9190.0 760.0 10.4 10.0 0.0 0.0 METAL

= SPECULAR SCATTERING FROM RECTANGULAR GROUND SURFACES (MAX OF 10)

yes - RUN RECTANGULAR GROUND (yes,no) .

THIS SECTION MAY 8E SKIPPED DEPENDING ON ANSWERS IN SECTION 2
X-VALU  Y-VALU Z-VALU DCREAL DCIMAG ROUGHN SF

x2x2x2x2 y2y2y2y2 22222222
x3x3x3x3 y3y3y3y3 23232323

7254.99 -239.26 3.24 10.0 -9.0 0.00 01
7308.48 -186.08 3.84
7943.41 -814.14 4.57
7308.48 -186.08 3.84 10.0 -9.0 0.00 01
7361.97 -132.90 3.64
7994.16 -763.24 1.54
7931.17 -135.04 3.44 10.0 -9.0 0.00 01
7999.28 -134.85 2.84
8000.89 -134.85 2.84
= SHADOWING BY AIRCRAFT
YES - RUN SHADOWING AIRCRAFT (yes,no)
X-VALU Y-VALU 2-VALU VEL ANG AT
saxisax1 saylsayl sazlsazl vvvvv aaaaa tt
sax2sax2 say2say2 sazlsaz?
7601.7  -541.0 12.31 0.0 0.003
7599.7 -539.0 12.31




SECTION 9
= SHADOWING BY BUILDINGS
yes - RUN SHADOWING BUILDINGS (yes,no)
W# X-LEFT Y-LEFT X-RGHT Y-RGHT ELV  HGT
AN XXXXXXXX YVVVYVYV XXXXXXXX WVWAWAWWY eeere hhhkh
01 w®8>/.0 -400.0 8857.0 -412.0 4.4 8.0
02 8572.0 -445.0 8572.0 -463.0 4.4 6.0

SECTION 12
= FLIGHT PATH
FAF s 6.242 NAUTICAL MILES
DATUM : 7370.04 0.0 6.28
TYPE : MEASURED (distance,measured,segmented,straight,
* radial,orbit)
VELOCITY : 200.0
INCREMENT: 40.0
DATA RATE: 0.2

* IF “straight® SUFFICIENT DATA IS AVAILABLE TO COMPUTE FLIGHT PATH

IF "“radial™ ENTER ANGLE,ELEVATION & STARTING AND ENDING DISTANCES

* (nm from dme/p)
ANGLE: aaaaaaaa
SDIST: dddddddd
EDIST: dddddddd
ELEV : eeceeeece

* IF "orbit" ENTER RADIUS (rm from dme/p) & ELEVATION
RADIUS: rrrerrrr
ELEV : eceeeeeee (m.s.l.)

* IF “"measured" X,Y,Z COORDINATES AND TIME WILL BE READ FROM UNIT 15

* WITH VELOCITY AND DATA INCREMENT COMPUTED FROM INPUT

* IF “"segmented" or “distance" ENTER SEGMENT #,6X,Y,Z,VELOCITY AND

* INCREMENT

W XS Ys 4 VEL INC

*

NN XXXXXXXX YYYYYYYY 22Z22222Z VWWwwvvy iiiiiiii
SECTION 1

(V]

= PLOT SCALE LIMITS

* FLIGHT PATH PLOTS:

X/Y PLOT X/Z PLOT D/Z PLOT
-2000.0 ft  -2000.0 ft 0.0 ft
6000.0 ft 6000.0 ft 6000.0 ft
-3000.0 ft -500.0 ft -500.0 ft
1000.0 ft 500.0 ft 500.0 ft

MINIMUM X VALUE :
UNITS PER INCH :
MINIMUM Y VALUE :
UNITS PER INCH :
* AIRPORT LAYOUT PLOT:
X/Y pLOT
MINIMUM X VALUE : -2000.0 ft
UNITS PER INCH : 2000.0 ft
MINIMUM Y VALUE : -6000.0 ft
UNITS PER INCH : 2000.0 ft
* MULTIPATH DIAGNOSTIC PLOTS:

M/0 SEP ANG TIM DELAY SHADOWING
MINIMUM X VALUE : 1.0 nm 1.0 nm 1.0 nm 1.0 nm
UNITS PER INCH : 1.0 nm 1.0 nm 1.0 nm 1.0 nm
MINIMUM Y VALUE : -25.0 db -15.0 deg 0.0 ns -25.0 db
UNITS PER INCH : 5.0 db 5.0 deg 200.0 ns 5.0 db

* RECEIVER OUTPUT ERROR & FILTERED ERROR PLOTS:
RAW PFE CMN

MINIMUM X VALUE : 1.0 nm 1.0 nm 1.0 nm
UNITS PER INCH : 1.0 nm 1.0 nm 1.0 nm
MINIMUM Y VALUE : -0.30 deg -0.30 deg -0.30 deg
UNITS PER INCH : 0.10 deg 0.10 deg 0.10 deg

END DATA

B-2




