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Modeling of Deformation Textures
Evolution in Semi-Crystalline Polymers

S. AHzi , D. M. PARKS and A. S. ARGON
Department of Mechanical Engineering
Massachusetts Institute of Technology ‘l\‘\

Cambridge, MA 02319 '

Abstract

A composite model for plastic deformations of semi-crystalline polymers
is used to simulate deformation textures evolution in these two-phase ma-
terials. Three types of textures are simulated: crystallographic texture,
morphological texture, and molecular alignment within the amorphous do-
mains. Predictions of these textures in deformed high density polyethylene
(HDPE) are shown for a uniaxial tension test.

1. INTRODUCTION

The morphology of semi-crystalline polymers (Polyethylene, Polypropy-
lene, Nylon ...) consists of crystalline lamellae and amorphous layers as-
sociated with each other in a plate-like form. In the undeformed state,
these two phases are generally arranged in a spherulitic structure (Figure
1). Under plastic straining, the spherulitic morphology disappears. Due to
the reorientation of the lamellae and their associated amorphous domains, a
morphological texture develops under plastic deformation. The plasticity of
the crystalline phase, which occurs by slip and/or twinning, gives rise to a
crystallographic texture. In addition to morphological and crystallographic
textures, a third type of texturing develops by molecular orientation within
the amorphous phase (molecular alignment).

The aim of this work is to simulate the deformation textures (morpho-
logical, crystallographic, and molecular alignment) evolution in high density
polyethylene (HDPE) by using the viscoplastic composite model of Parks and
Ahzi [1]. We note that HDPE is one of the widely studied semi-crystalline
polymers and its crystallinity is about 70%. In this study, the plasticity of
the crystalline phase is assumed to occur by slip only and the amorphous
phase deformation is characterized by a nen linear constitutive law account-
ing for the molecular alignment accompanying plastic straining. Details of
the plasticity mechanisms in semi-crystalline polymers are reviewed by Bow-
den and Young [2].
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2. FORMULATION
The following formulation is based on the viscoplastic composite model
proposed by Parks and Ahzi {1}, in which elasticity is neglected and in-
compressibility is assumed in both phases. In this model, we solve for the
kinematics and equilibrium of a two-phase composite inclusion embedded in
an infinite matrix. This composite inclusion is the basic element of semi-

crystalline polymers, it consists of a crystalline lamella and its corresponding
amorphous layer (Figure 1).

2.1 Crystalline phase

Like in metals, plasticity of the crystalline phase of polymers occurs
by slip, twinning and martensitic transformation. However, all of these
mechanisms leave the molecular chains inextensible. In the present work, slip
is assumed to be the only mechanism for plastic deformation in the crystalline
lamella. The possible slip systems within the orthorhombic unit cell of HDPE
crystals are chain slip with Burgers vector in the chain direction ¢, and
transverse slip with Burgers vector perpendicular to the chain direction.
These slip systems (Table 1) comprise only four independent slip systems.
The missing degree of {reedom is due to chain inextensibility. We assume a
power law relation between the microscopic strain rate and the resolved shear
stress of each slip system. Let D¢ and $°¢ denote the strain rate and deviatoric
Cauchy stress respectively, within the crystalline lamella. Following the work
of Parks and Ahzi (3], a constitutive relation for the crystalline lamella can
be written as follows

AV n-1
. 1 /S . R* o e
D¢ = {70 Y= <l—~,,———l) R°3R } (s=°l, (1)
a::lg g

where R“ is the symmetric part of the Schmid tensor for slip system a, 9o
is a reference strain rate, n represents the inverse rate seunsitivity coefficient,
and ¢® is the slip system shear strength for slip system a.

S¢* = 8¢ - S5C' is a reduced stress tensor with C' = ¢ ® ¢ ~ 31 the
deviatoric part of the dyadic c®c. Here c represents the crystallographic unit
vector in the chain direction (constrained direction), 1 is the second order
identity tensor, and S¢ is the deviatoric stress component in the constrained
direction.

The rate of change of lattice orientation is given by the lattice spin W* =
W<¢—W? with W*¢ and WP representing the lamella spin and the plastic spin,
respectively. The rate of change of the crystallographic axes, for instance
chain axis ¢, can be expressed as:

¢ = W< (2)




2.2 Amorphous phase

The plastic deformation within the amorphous phase can be dcscribed
by the double kink model of Argon {4]. We propose a power law relation
between the local shear rate and its corresponding shear stress. The tex-
tural hardening due to molecular alignment within the amorphous domain
is accounted for by introducing a “back stress” tenser B? in the flow rule
(Boyce et al. [5]). Let D® and S® denote the strain rate and deviatoric
Cauchy stress respectively, in the amorphous layer. The constitutive law
can be written as follows (Parks and Ahzi [1]):

Se Ba n-—-1 Se - B@
a _
D =1 (I aty I) ( ato ) ’ ®

where 9o and 7y are the reference strain rate and reference stress respectively,
and n is the rate exponent of the amorphous domain. These material param-
eters can be chosen equal to those of the crystalline lamella, with 7, = ¢{®
representing the initial shear strength cn the easiest slip system (chain slip).
The coefficient a represents the relative softness of the amorphous domain.
The principal components of B® can be expressed as a function of the princi-
pal components of the plastic stretch tensor (Boyce et al. [5]). We note that
under plastic straining, the macromolecules within the amorphous domains
align in the direction of the maximum plastic stretch.

2.3 Composite Inclusion

Each crystalline lamella and its corresponding amorphous layer can be
modeled as ar infinitely extended composite inclusion with a planar crystalline-
amorphous interface (Figure 1). Let us denote by n’ the inclusion normal
and by %’ the angle between n’/ and the crystallographic chain direction
c. If L’ L¢ and L® denote the average velocity gradients of the inclusion,
crystalline lamella and amorphous layer respectively, the inclusion volume-
averaging dictates:

Li=f,L*+(1- fa)Le (4a)
S'=f,8*+(1-f,) S5, (4b)

where S/ is the average deviatoric stress within the composite inclusion, and
fa represents the amorphous volume fraction.

The interface compatibility conditions and incompressibility impose the
continuity, across the lamella-amorphous interface, of some strain rate and
spin components. The equilibrium condition across the interface imposes
continuity of the stress tractions. These conditions, in conjunction with
equations (4), constitute a complete set of equations that is solved for local
kinematics.

)




General plastic deformation can be accommodated by the composite in-
clusion when n! and ¢ are not parallel (! # 0.). This is the case for initially
spherulitic HDPE (y/ = 17° - 40°). Under plastic straining, the angle ¥’
may decrease for some inclusions and become close to zero. In this case,
because of both incompressibility and chain inextensibility, the composite
inclusion becomes quasi-constrained and a general deformation cannot be
accommodated in the n! or ¢ directions. The applicabiliiy of the Taylor
model then becomes an issue for all inclusions having a small angle between
n! and ¢ (quasi-constrained inclusions). In order to solve this problem,
Parks and Ahzi [1] proposed a modification (relaxation) of the Taylor model
to be applied to the quasi-constrained inclusions (0 < ¢! < g ), where ¥
is a suitably small angle. If we denote bv D/ and D the strain rate of the
inclusion I and the macroscopic strain rate respectively, the localization law
of Parks and Ahzi [1] can be written as follows:

DIl=P<P>1D for v < vy,
DI=D for v > i (5)

where 3
P=1-3(1- (/)" IN'@N" (6)

T is the fourth order identity tensor and N’ = n/ @ n/ — %1 is a tensorial
representation of the lamella normal direction. g is a critical angle, m is
an arbitrary power exponent and <> designates the volume average over
all quasi-constrained inclusions. In the numerical applications, the values
of Yo = 15° and m = 5 have been chosen. To complete the description
of the velocity gradient imposed on the composite inclusion, we equate the
inclusion spin W/ to the macroscopic spin, W:

Using the concept of convected material coordinates, Parks and Ahzi [1]
proposed a precise evolution equation for the inclusion normal, n’.

3. RESULTS AND CONCLUSIONS

We applied the present composite model to an initially isotropic (quasi-
spherulitic) high density polyethylene with f, = 0.3 and n = 9. The initial
distribution of chain axes ¢ is isotropic (244 orientations), and the corre-
sponding distribution of lamellae normals n! is also random. The initial
angle between ¢ and n/ is approximately 30° for all orientations. The slip
systems of the crystalline phase of polyethylene are summarized in Table
1, along with their estimated initial shear resistances normalized to the ref-
erence stress, 79. No crystallographic strain hardening is considered in the




following application. A uniaxial tension test is simulated for HDPE. The
predicted crystallographic texture is shown by {200) and (002) pole figures
in Figure 2 {or 180% tensile true strain. The predicted fiber texture is in
agreement with experimental observations. The morphological texture is
represented by the distribution of the inclusion normals shown in Figure
3. Figure 4 shows the predicted distribution of the directions of maximum
stretch within the amorphous phase (molecular alignment). Comparison of
our results to experimental data are satisfactory (Parks and Ahzi [6])
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slip system | normalized resistance

(100)]001] L.

Chain slip (010){001) 1.
{110}[001] 1.
(100){010]

Transverse slip (010){100}
{110} < 1i0 >

— e e
o & —

Table 1: Slip systems in polyethylene crystals.




Figure 1: Schematic representation of the spherulite (a)
and the composite inclusion (b).

2 (002) 2 (200)

Figure 2: Crystallographic texture after 180% tension (€eq = 1.8).
Axis 3 = tensile direction.

Figure 4: distribution of the
directions of maximum stretch
within the amorphous phase (¢, = 1.5).

Figure 3: Inclusion normals
distribution (e, = 1.8).




