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Modeling of Deformation Textures
Evolution in Semi-Crystalline Polymers

S. AHZI , D. M. PARKS and A. S. ARGON
Department of Mechanical Engineering

Massachusetts Institute of Technology
Cambridge, MA 02319

Abstract
A composite model for plastic deformations of semi-crystalline polymers

is used to simulate deformation textures evolution in these two-phase ma-
terials. Three types of textures are simulated: crystallographic texture,

morphological texture, and molecular alignment within the amorphous do-
mains. Predictions of these textures in deformed high density polyethylene

(HDPE) are shown for a uniaxial tension test.

1. INTRODUCTION

The morphology of semi-crystalline polymers (Polyethylene, Polypropy-
lene, Nylon ...) consists of crystalline lamellae and amorphous layers as-
sociated with each other in a plate-like form. In the undeformed state,
these two phases are generally arranged in a spherulitic structure (Figure

1). Under plastic straining, the spherulitic morphology disappears. Due to
the reorientation of the lamellae and their associated amorphous domains, a
morphological texture develops under plastic deformation. The plasticity of

the crystalline phase, which occurs by slip and/or twinning, gives rise to a
crystallographic texture. In addition to morphological and crystallographic
textures, a third type of texturing develops by molecular orientation within
the amorphous phase (molecular alignment).

The aim of this work is to simulate the deformation textures (morpho-
logical, crystallographic, and molecular alignment) evolution in high density
polyethylene (HDPE) by using the viscoplastic composite model of Parks and
Ahzi [1]. We note that HDPE is one of the widely studied semi-crystalline

polymers and its crystallinity is about 70%. In this study, the plasticity of
the crystalline phase is assumed to occur by slip only and the amorphous
phase deformation is characterized by a non linear constitutive law account-
ing for the molecular alignment accompanying plastic straining. Details of
the plasticity mechanisms in semi-crystalline polymers are reviewed by Bow-
den and Young [2].
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The following formulation is based on the viscoplastic composite model
proposed by Parks and Ahzi [1], in which elasticity is neglected and in-
compressibility is assumed in both phases. In this model, we solve for the
kinematics and equilibrium of a two-phase composite inclusion embedded in
an infinite matrix. This composite inclusion is the basic element of semi-
crystalline polymers, it consists of a crystalline lamella and its corresponding
amorphous layer (Figure 1).

2.1 Crystalline phase
Like in metals, plasticity of the crystalline phase of polymers occurs

by slip, twinning and martensitic transformation. However, all of these
mechanisms leave the molecular chains inextensible. In the present work, slip
is assumed to be the only mechanism for plastic deformation in the crystalline
lamella. The possible slip systems within the orthorhombic unit cell of HDPE
crystals are chain slip with Burgers vector in the chain direction c, and
transverse slip with Burgers vector perpendicular to the chain direction.
These slip systems (Table I) comprise only four independent slip systems.
The missing degree of freedom is due to chain inextensibility. We assume a
power law relation between the microscopic strain rate and the resolved shear
stress of each slip system. Let DC and $C denote the strain rate and deviatoric
Cauchy stress respectively, within the crystalline lamella. Following the work
of Parks and Ahzi [31, a constitutive relation for the crystalline lamella can
be written as follows

Dc 0'V S"-N1  n1 R R S11

DC= RE [sgo, (I

where R ' is the symmetric part of the Schmid tensor for slip system a, *o

is a reference strain rate, n represents the inverse rate sensitivity coefficient,
and go is the slip system shear strength for slip system ct.
SC', = S'- ScC' is a reduced stress tensor with C' = c ® c - 11 the
deviatoric part of the dyadic c~c. Here c represents the crystallographic unit
vector in the chain direction (constrained direction), 1 is the second order

identity tensor, and S is the deviatoric stress component in the constrained
direction.

The rate of change of lattice orientation is given by the lattice spin W =
We-WP with Wc and W P representing the lamella spin and the plastic spin,
respectively. The rate of change of the crystallographic axes, for instance
chain axis c, can be expressed as:

S= W'c. (2)



2.2 Amurphous phase
The plastic deformation within the amorphous phase can be dcscribed

by the double kink model of Argon [4). We propose a power law relation
between the local shear rate and its corresponding shear stress. The tex-
tural hardening due to molecular alignment within the amorphous domain
is accounted for by introducing a "back stress" tensor B a in the flow rule
(Boyce et al. (5]). Let D a and S' denote the strain rate and deviatoric
Cauchy stress respectively, in the amorphous layer, The constitutive law
can be written as follows (Parks and Ahzi [1]):

Da = 4o (]S - B i) (S - Ba (3)
ao )' (3

where iO and r0 are the reference strain rate and reference stress respectively,
and n is the rate exponent of the amorphous domain. These material param-
eters can be chosen equal to those of the crystalline lamella, with r0 = goo}
representing the initial shear strength on the easiest slip system (chain slip).
The coefficient a represents the relative softness of the amorphous domain.
The principal components of Ba can be expressed as a function of the princi-
pal components of the plastic stretch tensor (Boyce et al. [5]). We note that
under plastic straining, the macromolecules within the amorphous domains
align in the direction of the maximum plastic stretch.

2.3 Composite Inclusion
Each crystalline lamella and its corresponding amorphous layer can be

modeled as an infinitely extended composite inclusion with a planar crystalline-
amorphous interface (Figure 1). Let us denote by ni the inclusion normal
and by iI the angle between n' and the crystallographic chain direction
c. If L', LC and L' denote the average velocity gradients of the inclusion,
crystalline lamella and amorphous layer respectively, the inclusion volume-
averaging dictates:

L' = f. L a +( 1 -fa)L (4a)

S = " Sa + (l- f) SC, (4b)

where St is the average deviatoric stress within the composite inclusion, and
f. represents the amorphous volume fraction.

The interface compatibility conditions and incompressibility impose the
continuity, across the lamella-amorphous interface, of some strain rate and
spin components. The equilibrium condition across the interface imposes
continuity of the stress tractions. These conditions, in conjunction with
equations (4), constitute a complete set of equations that is solved for local
kinematics.

I€) ...



2-4 Localization Law
General plastic deformation can be accommodated by the composite in-

clusion when ni and c are not parallel (1I 1 $ 0.). This is the case for initially
spherulitic HDPE (V51 = 17' - 400). Under plastic straining, the angle ;01
may decrease for some inclusions and become close to zero. In this case,
because of both incompressibility and chain inextensibility, the composite
inclusion becomes quasi-constrained and a general deformation cannot be
accommodated in the n' or c directions. The applicability of the Taylor
model then becomes an issue for all inclusions having a small angle between
n 1 and c (quasi-constrained inclusions). In order to solve this problem,
Parks and Ahzi [1] proposed a modification (relaxation) of the Taylor model
to be applied to the quasi-constrained inclusions (0 < ?Pl < ?o ), where ?Po
is a suitably small angle. If we denote by D' and D the strain rate of the
inclusion I and the macroscopic strain rate respectively, the localization law

of Parks and Ahzi [1] can be written as follows:

D I _. P<P > - 1 f for 4 < po,

Dl=1f for ik'> ; (5)

where

P = - 2(I - (¢i/,b0)m)N' ® N'. (6)

I is the fourth order identity tensor and N' = n I ® n' - 11 is a. tensorial

representation of the lamella normal direction. V50 is a critical angle, m is
an arbitrary power exponent and <> designates the volume average over

all quasi-constrained inclusions. In the numerical applications, the values
of ¢'o = 15' and m = 5 have been chosen. To complete the description

of the velocity gradient imposed on the composite inclusion, we equate the
inclusion spin W 1 to the macroscopic spin, VV:

Using the concept of convected material coordinates, Parks and Ahzi [1]

proposed a precise evolution equation for the inclusion normal, n1 .

3. RESULTS AND CONCLUSIONS

We applied the present composite model to an initially isotropic (quasi-
spherulitic) high density polyethylene with f, = 0.3 and n = 9. The initial

distribution of chain axes c is isotropic (244 orientations), and the corre-

sponding distribution of lamellae normals n t is also random. The initial
angle between c and n[ is approximately 30' for all orientations. The slip
systems of the crystalline phase of polyethylene are summarized in Table

1, along with their estimated initial shear resistances normalized to the ref-
erence stress, r0 . No crystallographic strain hardening is considered in the



fol6i-ng application. A uniaxial tension test is simulated for HDPE. The
predicted crystallographic texture is shown by (200) and (002) pole figures
in Figure 2 lor 180% tensile true strain. The predicted fiber texture is in
agreement with experimental observations. The morphological texture is
represented by the distribution of the inclusion normals shown in Figure
3. Figure 4 shows the predicted distribution of the directions of maximum
stretch within the amorphois phase (molecular alignment). Comparison of
our results to experimental data are satisfactory (Parks and Ahzi [6])
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slip system normalized reuistance

(100)[001 "Chain slip (010)[001} )
_ ~ !11o)[0011i

(100)(0101
Transverse slip (010)(1001 14

_ (1101 < io > 1.8

Table 1: Slip systems in polyethylene crystals.



Figure l- Schematic representation of the spherulite (a)
and the composite inclusion (b).

2 (002) 2 (200)

Figure 2: Crystallographic texture after 180% tension ((eq =1.8).
A-xis 3 tensile direction.
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Figure 3: Inclusion normals Figure 4: distribution of the
distreicluion orma, = . directions of maximum stretchdistribution (eq -1.8). within the amorphous phase (e., = 1.5).


