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ABSTRACT

This paper describes a new approach for controlling an intelligent machining worksta-
tion. The control system is built in behavior achieving layers, which allows a machine
tool to operate at increasing levels of competence. Each layer focuses on a specific sim-
ple control task for machining processes. Qualitative reasoning is used to augment the
system at the highest layer, giving the system the ability to foresee patterns of behavior
that lead to failure. We discuss how qualitative models can be selected, setup and used
to adjust control parameters.



1.0 INTRODUCTION
One focus of manufacturing research has been the development of integrated, self-ad-
justing manufacturing systems that are capable of machinhg varied parts without
human supervision. Machining process automation has already been achieved for
some routine operator functions such as the loading and unloading of work pieces and
tools, parts scheduling and distributing, and initiating NC programs. The functions
which remain to be developed include monitoring machining operations, ensuring safe
and efficient metal removal rates, and taking corrective actions in the event of process
disturbances or failures.

Traditional manufacturing control systems are based on a serial flow of information
from sensors to actuators (see Figure 1.1). These control systems usually process one
step at a time, which can make a machining system susceptible to unexpected events. In
addition, a "serial controller" is plagued by a reliability bottleneck, i.e., every
processing step has to work reliably in order for the whole system to advance to the
next step [Bourne and Wright 1988 ].

As an alternative to a serial model of control, Brooks has proposed a parallel organiza-
tion that is based on natural behavior [Brooks 19851. This architecture controls complex
amalgamations of simpler behaviors, and has lead to a tractable reformulation of the
problem of combining multiple goals. We considered this control organization by
translating Brooks' parallel mobile robot behaviors into parallel machine tool behaviors
(see Figure 1.2).

Sensors

Perception

Modeling

Planning

Task Execution

Motor Control
SActuator

Figure 1.1: Traditional Flow of Information in a Control System [see Brooks 1985)

The architecture in Figure 1.2 was built up with a conservative view of preserving the
machine first, the tools second and then various aspects of the part being produced.
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Exyerience Based Knowledge

Achieving Optimal Process Condition

Achieving Surface Finish

Achieving Chatter Free

Avoiding Tool Breakage Ato
SensorsActuator

Avoiding Collision

Environment -

Figure 1.2: A Parallel Architecture [modified from Wright and Bourne 1988]

Avoiding Machine Damage:
Machine damage is a serious consequence. The Avoid Machine Damage behavior can
be decomposed into its subbehaviors which focus on simpler task achieving behaviors.
The implementation of these subbehaviors involves predicting possible machine faults
and protecting the machine tool from various events. To avoid conflicts with other be-
haviors, behaviors that protect equipment, tools or parts should have a high priority in
order to respond emergency situations in the machining process.

Avoiding Part Damage:
A damaged work piece can be caused by a worn tool or the processing state of the ma-
chine tool. To achieve the goal of avoiding part damage, the control system must
maintain the following device behaviors:

* Achieving an optimal process condition: Optimal cutting conditions improve sur-
face finish and reduce the risk of tool breakage.

" Achieving a chatter free condition: Maintaining a chatter free condition protects the
surface finish, the part geometry, the tools, fixtures and even the machine itself.

" Avoiding tool breakage: A broken tool almost guarantees that the part has to be
scrapped. In addition, it also poses other dangers to the environment, such as a tool
piece spinning free from the machine, threatening human observers.

Achieving Part Geometry.
The machining control system must be able to achieve the desired part geometry
defined by the technical design. The planning process decomposes the whole
machining task into a well-defined sequence of cutting features (e.g., a hole, a slot, a
chamfer, etc.). Online measurement and compensation behaviors for the changes of
tool size and offset between tool and parts are essential for the goal of Achieving Part
Geometry [Smith 1989].

1.1 Machining Situations
To test the ideas in this paper, we offer a few machining situations that have proven to
be very difficult to automatically control. We believe that the methods in this paper will
begin to make these problems and others like them more manageable.
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Situation 1: A slot is being milled into a part. However, chips begin to become irregu-
lar and broken with uneven serrations and a large collar forms along the slot. As a re-
suit, the machinist believes that there is increasing flank wear and that the tool may
break at any moment.

Situation 2: The rough cutting of a part's surface is normal and the tool has only slight
flank wear. The chip forming appears repetitive with a constant radius of chip
curvature. It seems that current cutting condition is good, but the machinist notices that
the surface finish is much worse than expected.

Situation 3: A new tool is working smoothly. Suddenly, serious chatter begins that
causes a dull surface and a higher interface temperature between tool and part.

In the machining process, unexpected events can result in machine tool or work piece
damage. Tool breakage, collision, chatter and other machine behaviors are best
predicted ahead of time. In our approach, the control system watches for early signs of
these key events.

1.2 Previous Research Work
Since 1985, our research has focused on intelligent manufacturing systems. We have
investigated the interactions between complex modules used in manufacturing, e.g., a
planning expert, a cutting expert, a modeling system, a sensing expert and a holding
expert. With these systems, we built the Intelligent Machining Workstation (IMW) to
automate the production of single, 3D, mechanical parts [Bourne 1987,1983; Hayes
1987]. We also performed several experiments to test the usefulness of qualitative rea-
soning in machining control, and proposed how to use appropriate control regimes for
a given task [Boume and Wright 1988]. We now combine these ideas with the Brooks
model [Brooks 19851 of behavioral control.

2.0 A BEHAVIOR ORIENTED CONTROL SYSTEM FOR MACHINING

2.1 Building The System
One useful system has five control layers. Each layer senses tbe machining environment
according to its own control task and implements its own control solution. Generally,
the lower layers have a higher priority and a shorter response time in order to protect
both the machine tool and work pieces. The control commands are executed by
actuators that change rotation speed, feed rate and cutting depth or they can perform an
emergency stop. The priority mechanism is controlled explicitly by allowing the lower
layers to inhibit the output of the higher layers (notated "I" in Figure 2.1). In practice,
the control system in Figure 2.1 would almost certainly have more intricate connections
between the layers.
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Figure 2.1: A Multiple Layer Model for Machining Control

2.2.1 Structure of The System

The First Layer. Avoiding Collisions
The first layer avoids collisions by using computed geometric information from the fifthlayer to protect the machine tool from damage. By sensing the machining force signals
(e.g., machine power consumption) in different machining phases, this control layer can
send HALT commands to actuators in case an accidental collision occurs [Balakrishnan
and MacBain 1985; Smith 1989]. Collision detection requires very short response times
and almost impossible to stop the machine motors in time to avoid damage, so it is criti-
cal to avoid the collisions in the first place.

The Second Layer. Avoiding Tool Breakage
The second layer avoids tool breakage by sensing cutting forces, by monitoring tool fail-

ure and predicting tool breakage [Ramamurthi and Shaver 1990; Smith 1989 1. The re-
sult of monitoring forces provides necessary variables for qualitative reasoning in the
fifth layer. Combining the prediction of process behaviors from the fifth level and the
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real timL prediction on this level, tne second level can usually stop cutting before tool
breakage.

The Third Layer:. Avoidiig Chatter
The third layer focuses on predicting chatter and trying to avoid work piece and tool
damage [Smith 1989; Sturges 19891. The control strategies are executed online to achieve
a chatter free condition when chatter is not serious. If serious chatter does happen, the
layer will first stop the feed and spindle rotation, and then it will implement an offline
strategy to achieve a chatter free condition. This involves changing the tooling and/or
refixturing the part.

The Fourth Layer:. Achieving Geometry and Surface Finish
The fourth layer system implements control strategies for achieving satisfactory surface
quality. As input to this layei, the current surface finish is sensed through one of sever-
al methods: acoustic emissions [Sturges 19891, ultrasonics [Eitzen 19901 or Moire vision
[Bieringer et al 19881.

During a rough cutting process, a high metal removal rate is iiore important than the
resulting surface finish. The surface finish as a performance index of cutting process is
considered on the fifth layer together with other indices to optimize machine utilization.
During finish cutting, the surface finish is more important than the metal removal rate.
The fourth control layer takes control of the fine cutting stage with special control strat-
egies (decreased cutting depth with slower feedrates and increased spindle speed).

The Fifth Layer: Predicting The Unexpected
The fifth layer implements predictive control based on machining expertise. The process
parameters which describe ihe important features of machining process are monitored
first in the lower layers and this layer integrates these quantitative values into
meaningful symbols.

Qualitative simulation with integrated process model and current process states are
used to generate possible upcoming behaviors [Forbus 1985; Kuipers 19891. From these
results the F'anner searches for early signs of problems, and what variables should be
adjusted to steer the machine into behaviors that are consistently safe and productive.
Finally, this information is sent to the lower layers in order to guide their decision mak-
ing.

Figure 2-2 shows one result from a simple qualitative model. In this example, the pa-
rameters: surface finish undulation, tool flank wear, chip size, and collar size (i.e., ma-
terial pushed up at the rim of the cut) are used to describe the current state of the ma-
chining process. As the various values approach dangerous levels, the machine at-
tempts to adjust parameters that will lead away from danger.
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Su~facFlnWerCiFomg Collar

TO T1 To TI To T1 TO T1

Safe Cautious Danger

Figure 2.2: Qualitative Reasoning about Cutting Process

By analyzing each behavioral pattern with knowledge from human machining experts,
eliminating some patterns which violate physical constraints among process variables, a
behavioral space can be built up. According to the physical characteristics of every be-
havioral pattern, it is possible to recognize a safe behavioral zo.c, ? dangerous behav-
ioral zone and a cautious behavioral zone fcr which the control variables must be ad-
justed for achieving all the goals of the machining process (see Figure 2.2).

Qualitative reasoning can predict the possible behaviors of an incompletely described
system [Kuipers 1989; 1 arbus 1985]. Wright and Bourne [1988] described a qualitative
control system for manufacturing, Kuipers and Dvorak [19891 also implemented a
qualitative process monitoring system, which highlights the design philosophy for 'his
control level.

3.0 Qualitative Simulation in Machining
We nave employed qualitative simulation using QSIM [Kuipers 19851 to T.,odel
processes, to predict behavior, and to describe behavior. To perform these tasks in
machining, the models have to cover a wide range of topics. We have identified seven
qualitative models that should be built:

(1) Tool Wear (a qualitative version of a physical model)
(2) Cutting (a qualitative version of a physical model)
(3) Sensing (a qualitative version of a physical model)
(4) Fixturing (a qualitative version of a physical model)
(5) Chip Formation
(6) Mediation in Distributed Problem Solving
(7) Strategy Selection (i.e., How conservative should the approach be?)

We have developed rudimentary models for tool wear, cutting and fixturing. Future
work will refine these mnrpe models and provide models that cover the other topics. The
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models tend to partially overlap and so the system as a whole has a rule-based under-
standing oi what issues are being solved at any given time. For example, behaviors of
surface finish in different time intervals describe both surface quality, which is an im-
portant quality index, and a tool wea;" state, which is a key parameter for machinin1 g.

Figure 2.2 is a beh-iavioral description that results fro'.n reasoning about machining lr,
two time intervals. 1, shows that f he state of the machining is goad and that the process
will be working smc othly between TO to TI. It also shows that the stdte of machining
is deteriorating between T1 to T2. The -, alue of each parameter is represented by an or-
dered pair:

[landmark, direction]

where thp 'andmarks are a meaningful ordered-set of symbolic values for the parameter
and the cwrection expresses the time varying tendency of the value (increasing, dec -as-
irg or steady).

A behavioral space is a matrix (see Figure 3.1) that represents all the possible behaxior
patterns in the machining process, which is any legal assignment of va~ues to each pa-
rameter in the model. In a behavioral space, every behavioral pattern represents a
possible process state, which reflects some physical phenomena in machining.
Predicting process behaviors can result from qualitative reasoning by starting with ac-
tual values measured from machining, and then matching the prediction to the behav-
ioral space. Finally, the trends represented by the current behavioral pattern as well as
subsequent behaviors can be used to adjust key control parameters.

B11 B12 B13 B14

B21 B22 B23 B24

B31 1332 B33 834

B41 I 42 I843 I844

P81 B82 B83 B84

Figure 3.1: Behavioral Pattern Space of Process
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X1 X2 X3 X4

L11 L12 L13 L14
Surface - L21 Flank Wear - L22 Chip Forming - L23 Collar - L24

- L31 - L32 - L33 "-L34
- L41 - L42 - A3L44

L51 - .52 - L53 -. 54
L61 L62 L63 L64
L71 L72 L73 L74
L81 L82 L83 L84

TO TITO TI TO T1 TO TI

I I
XI X2 X3 X4

LIl L12 L13 L14 B11 B12 B13 B14
L21 L22 L23 L24 B21 B22 B23 B24
L31 L32 L33 L34 B31 B32 B33 B34
L41 L42 L43 L44 B41 B42 B43 B44
L51 L52 L53 L54 B51 B52 B53 B54
L61 L62 L63 L64 B61 B62 B63 B64
L71 L72 L73 L74 Unc Inc Inc
L81 L82 L83 L84 B81 B82 1383 B84

b. Behaviors from each parameter form
a. All possible values for every parameter a behavioral pattern, which describes

in the behavioral space. a possible behavior in the machining
process.

Behavior=- (B71=Inc.), (B72=Inc.), (B73=nc.), (B74=Inc.)}
in which

B71 is a behavior of the first parameter, surface finish, which is an increasing value from landmark Smooth towards
landmark Dull.
B72 is a behavior of the second parameter, tool wear, which is an increasing value from landmark Running-in to-
wards landmark Steady.
B73 is a behavior of the third parameter, chip forming, which is an increasing value from landmark Even towards
landmark Uneven.
B74 is a behavior of the fourth parameter, collar, which is a still increasing value from landmark None towards

Inchoate.

Figure 3.2: Generating the Behavior Space

The four values of the process parameters form a behavior pattern and describe a physi-
cal state of the machining process as: the tool is basically new, the surface finish is not
bad, the chip and collar is normal, the state of machining is good and it is not necessary
to adjust process control variables.

As a sample, a model was derived from Paul Wright's knowledge engineering
experiments [19881 on tool wear (see Figure 3.3). One conclusion drawn from these
experiment-, was that the machinist divides tool wear into three stages: (a) running-in
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wear; (b) steady state wear; and (c) rapid, fatal wear. To differentiate the three stages, the
machinist employs visuai, aural, ai Ld tactile clues. Figure 3.3 is a listing of the model as
it was input into QSIM in order to perform a qualitative simulation. Qualitative models
have three main elements:

Quantity-Spaces is a list of the parameters that pertain to the model. Also,
associated with each parameter is a list of the possible values for that parameter. The
parameter values are to be viewed as ordinal values. For example, the values
associated with the parameter collar-formation signify the amount of collar that has
formed ahead of the cutting tool. We have none equaling no collar formation,
inchoate meaning that the collar has just begun to form, and large signifying large
collar formation.

Constraints is a list of constraints that defines how the parameters interact. The
constraint "((-DEC flank-wear) )", for example, states that the value of the parame-
ter flank-wear may never decrease. That is, if flank-wear is equal to steady it may never
again be equal to running-in. The constraint "( (D/DT db db-fluctuation) )", says that
db-fluctuation is the rate of change of db. The "M+" constraints are slightly more
complicated. As an example, the semantics of the constraint, "( (M+ surface-finish
flank-wear) (smooth running-in) (dull steady) (unacceptable rapid) )" declare that
surface-finish is positively correlated with flank-wear. The lists, "(smooth running-
in)", "(dull steady)", and "(unacceptable rapid)" are referred to as corresponding
values and state that when surface-finish is equal to smooth, flank-wear is equal to
running-in; when surface-finish is equal to dull, flank-wear is equal to steady; and so on.

* Dependent is a list of parameters that can fluctuate in the simulation process. The
constraints determine the legal fluctuations.

The choice of parameters in the models is critical. Some of them are easily observable
and should be almost always included, if they can be related to important control pa-
rameters. Some of the parameters are inherently unobservable, but are quite significant
in explaining the fundamentals of the situation. These variables should also be includ-
ed, when they can be partially guessed from other more easily observable parameters.
If there is no connection with observable parameters, then it is pointless to even men-
tion these parameters. Perhaps, the most important parameters are the ones that can be
adjusted, since the strategy for qualitative control is to predict "safe" regions of opera-
tions and to use the adjustable parameters to stay within these bounds.

9



;* Notation: Keywords recognized by QSIM are in capitals and comments are

preceded by ";*"

(DEFINE-QDE toolwear ;*Define a qualitative equation by the name of "toolwear"

(QUANTITY-SPACE ;* Parameters and their possible values
(chip (even uneven very-uneven inf)) ;* Chip Type
(collar-formation (none inchoate large inf)) ;* Part Anomoly
(flank-wear (running-in steady rapid inf)) ;* Tool Wear
(surface-finish (smooth dull unacceptable inf)) ;* Part Smoothness
(db (0 background machining inf)) ;* Acoustic Signal
(db-fluctuation (0 very-little some wildly inf)) ;* Changes in
(trickle (even uneven very-uneven inf)) )

(CONSTRAINTS ;* Manner in which parameters may interact
( (-DEC flank-wear) )
( (D/DT db db-fluctuation)

( (M+ chip flank-wear)

(even running-in)
(uneven steady)
(very-uneven rapid)

( (M+ collar-formation flank-wear)
(none running-in)

(inchoate steady)
(large rapid) )

( (M+ surface-finish flank-wear)

(smooth running-in)
(dull steady)

(unacceptable rapid)

( (M+ db-fluctuation flank-wear)
(very-little running-in)

(some steady)

(wildly rapid)

( (M+ trickle flank-wear)

(even running-in)
(uneven steady)
(very-uneven rapid) ))

(DEPENDENT chip collar-formation db db-fluctuation flank-wear

surface-finish trickle))

Figure 3.3: Tool Wear Model Segment
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Figure 3.4 illustrates some results from running the model in Figure 3.3. One weakness
of this example is that there are not control variables that are easy to manipulate. As a
result, the decisions have to be inferred by a rule.

Surface Finish Flank Wear Chip Forming Collar
lnf Inf Inf lnf

Unacceptable Rapid V-Unever Large

Dull Steady Uneven Inchoate

Smooth Running-in Even None

0 0 0 0
Ti T2 T1 T2 TI T2 T1 T2

The behaviors from four process parameters make up of a specific behavioral pattern.
According to this pattern, the deterioration of a machining process occurs from T1 to T2.

Surface Finish Flank Wear Chip Forming Collar
Inf Inf lnf Inf

Unacceptable Rapid V-Unever Large

Dull Steady Uneven Inchoate

Smooth Running -in Even None

0 0 o L 0
TO T1 TO Ti TO Ti TO Ti

Another behavioral pattern of the machining process works smoothly from TO to T1.

Figure 3.4: Qualitative Reasoning with Integrated Process Parameters

3.1 Selecting and Running Qualitative Models
Having a set of models t.iat describe a complex process like machining is only the first
step of making them useful. Perhaps more difficult than making the model in the first
place is setting the model up with appropriate initial values so that it can generate a
behavior space suitable for the current situation.

In order to select and suitably execute a QSIM model, we have interfaced it to a rule-
based system (OPS5). In the rule system, we have described when a particular model is
useful and how it can be setup for the current machining situation. Figure 3.5 outlines
the rather elaborate approach to select a simulation model and then acquiring values
that will allow it to run and provide useful information.

11



Model

Model ;ComponentsM

Selection with
-110. Rules Quantity Spaces

:Constraints

Initial .,Dependent Vars.
Phrasing for h Independent
Simulation ] Vars.

Set Independent
Variable Values Initial Values

Convergence Loop - -- - - - - -- -.... .... .... .... .... .', Adjust [

Rtat One .~Qualitative

tactOe iQualatio :: Successful Simulation and
:The Behavior Tree

Sense Value for
Simulation

Underdetermited

S- -- -- -- -------------------- -- -- -- ---

OPS in 4 ... ..... . QSIM in
White I Gray

Figure 3.5: Algorithm for Automatic Model Selection and Setup

Three of the boxes in Figure 3.5 (Model Selection with Rules, Initial Phrasing for Simulation,
and Set Independent Variable Values) automatically build a model to be simulated. The
initialization of a model is strongly influenced by the purpose of the simulation; that is,
whether it is for prediction, diagnosis or mediation. The Convergence Loop manages the
two causes for failing to complete a new simulation state: (1) underdetermined
parameter values and (2) conflicting parameter values.

When a request is received by lower layers of the controller, and a qualitative
simulation of a model needs to be performed, there is no guarantee that values will be
available for all of the model's parameters. However, this gives the lower layers of the
controller a clear objective: obtain from sensing the values necessary to run the model.

One of the features of QSIM is the existence of rules that assign values to parameters
that have no current values. So even though a model has underdetermined parameters,
an attempt to make a valid simulation may go forward. Even with this feature, the
simulation may fail. A failure in this circumstances is known as "underdetermined" and
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is to be handled by Sense Valut for Simulation. This involves querying the rest of the
controller for a possible initial value for the parameter. If Sense Value for Simulation gets
one of the underdetermined parameters, QSIM may be able to determine the rest.
However, even then the system should confirm these values, if possible.

Conflicting values are an other cause of simulation failure, which is not the result of
underdetermined parameters, but rather parameters whose values are deemed to
conflict according to the constraints. The easiest explanation is via an example. Take the
following two constraints [slightly modified from our toolwear model]:

(a) ( (M+ collar-formation flank-wear) (none running-in) (small steady))
(b) ( (M+ surface-finish flank-wear) (smooth running-in) (dull steady) )

The first clause of both expressions describes the listed parameters (e.g., collar-forma-
tion and flank-wear) as positively increasing and correlated. The second and third
clause in both expressions list values that must simultaneously correspond. In the
initial state, the parameters could have the following values:

collar-formation=none
surface-finish =dull

In this situation, the system was unable to assign a value to flank-wear that did not cause
a conflict between two constraints. That is, collar-formation equal to none dictates that
flank-wear be assigned the value running-in, and surface-finish equal to dull constrains the
value of flank-wear to steady. Flank-wear cannot be equal to running-in and steady at the
same time. A simulation failure due to conflicting parameter values is handled by the
box labeled Retract One Qualitative Value. It must determine which of the parameters is
invalid or it must consider the fact that the model may not be complete.

QSIM has been modified to provide information about underdetermined and
conflicting values when an error in simulation is encountered.

3.2 Using The Results of Qualitative Simulation in Behavioral Control
The result of qualitative simulation is a behavior space that corresponds to the con-
straints of the model. To make effective use out of this behavior space, we must search
for favorable behaviors and then adjust machine parameters to steer the process into
those behaviors, while avoiding the less favorable outcomes.

3.3 Behavioral Control and Machining Situations
The three machining situations introduced earlier in the paper are now reconsidered
with this machining architecture: a series of behavior achieving control layers and a
qualitative approach to predict machine behaviors before they occur.

Situation 1: A chip model can be built to relate the shape, size and evenness of a chip to

tool wear. However, it is quite difficult to sense the quality of the chips inprocess.
Therefore, the system would probably have to rely on rapidly increasing cutting forces
and the existence of chatter to make the prediction. These conditions are mostly han-
dled by the real time layers of the control system and do not require advanced predic-
tion beyond this. However, the qualitative simulation could provide an explanation for
an action in a later diagnosis phase.

13



Situation 2: This situation describes a normal machining state. However, since it has
been recognized that the surface finish is not measuring up to the specification, it is nec-
essary to adjust the key process parameters. The models required to accomplish this
must describe the basic cutting process. For example, a high feedrate is often accompa-
nied with some tool deflection that can adversely affect the surface finish. In addition,
the rotational speed of the tool can be under increased load from taking too deep a cut.
Therefore, thcse simple relationships can determine that the feedrate should be de-
creased and possibly that the speed should be increased.

Situation 3: Again this situation can rely on the built in control layers, which suggests
that the qualitative reasoning comes into play when unobservables play dominate roles
in the machining process.

4,0 DJSCTJSSION

4.1 Behavioral Control
We have proposed combining two diverse methods to achieve a sound method of con-
trol for machining (and other manufacturing processes): building a behavior oriented
structure coupled with a high level method (Qualitative Simulation) of predicting up-
coming behaviors. Controllers that are sold in the marketplace inevitably implement
some aspects of behavioral control with an awkward mix of hardware and special pur-
pose low-level software. However, this approach is only implemented at very low lev-
els (e.g., machine stalls) and it is not followed through as successively more sophisticat-
ed layers are added. We believe that by systematically applying this approach that
there will be many spinoff benefits:

* Robustness - If one layer in the system fails, there is a backup response.

• Flexibility - Related to robustness, the system can adapt to the environment by
sensing the actual situation and pursuing a behavior that is both safe and produc-
tive.

* Appropriate Speed - The behaviors are ordered by their required response time so
that situations can be handled ontime.

Quality - The quality of the part production is factored into the behavior of the sys-
tem so that the part can be produced within specification, so long as it is possible for
the machine to do it safely.

4.2 Prediction with Qualitative Simulation
Within a behavior oriented control system, it is necessary to have a module that "thinks
ahead." We believe that there are some elements of qualitative simulation that are
promising in this area:

Explicitly Represented Physical Process - Some understanding of the physical pro-
cesses is built into the control, so that it can use results from scientific study as a
crystal ball.
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Enumerated Behaviors - Built into the idea of qualitative simulation is the idea that
all possible behaviors, within the constraints of the equations, will be enumerated.
This is both qualitative simulations greatest strength and weakness. Designers can
miss a behavior in their design, which can result in a machine rrash. On the other
hand, enumerating all of the possible behaviors can be time csuming and once
they are generated, it can be difficult to navigate to truly useful (or likely) behaviors.

There is much more work to be done on predicting the likely behavior of a manufactur-
ing process, but we believe that by combining a fundamental approach to prediction,
with a behavior oriented control system can achieve the desired manufacturing
objectives.
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