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PREFACE

This paper, written as part of an IDA Central Research Project, provides an overview of

the existing state of Ada real-time design methodologies and quantifies the impact on performance

of some of the best known and most widely used Ada real-time design methodologies. The paper

also dscusses the limitations of these methodologies and indicates some alternative principles upon

which a better design methodology might be based. For each meihodology that was analyzed, a

design (by the authors of the methodology) of an example real-time system was chosen and

implemented on a variety of single and multiple processor Ada platforms. Simulation drivers were

implemented that could run these example programs (by providing simulations of the external

events driving these example systems) as well as the alternative designs that were generated in this

study. The results of the methodology designs were compared with our designs, and conclusions

were drawn both from the quantitative measurements obtained and from the experience of

implementing, debugging and transporting a variety of example real-time systems on a variety of

Ada platforms.

The author wishes to thank the many reviewers and others that helped make these studies

possible: Cy Ardoin, Karen Gordon, Dave Hough, Joe Linn, Terry Mayfield, Reg Meeson, Jim

Pennell and Dave Rine. Special thanks go to: Joe Linn, who participated in numerous discussions

of the merits of the various methodologies, of alternative designs for the example problems and of

the difficulties involved with Ada real-time methodologies; Cy Ardoin, who helped isolate

problems in the ENCORE multiprocessor runtime system and in the example systems of other

authors, as well as serving as a reviewer; Dave Hough, who got the original Nielsen and Shumate

example real-time system (the remote temperature sensor system) running as well as writing the

first versions of the simulation driver for this system; and Dave Rine, who suggested and arranged

for the graduate concurrent systems design course the author taught at George Mason University

during the Spring semester of 1990.
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1. INTRODUCTION

A General Accounting Office (GAO) Report, issued in March 1989 on the subject of

Status, Costs, and Issues Associated with Defense's Implementation of Ada [GAO89J, states that

"Ada was designed for use in real-time computer applications and is being used successfully in

some applications. However, Ada has not worked well in critical real-time applications -

applications that have severe time and memory constraints and/or precise timing control." In this

category fall real-time systems proper (with hard deadline scheduling requirements) and others

such as embedded systems, concurrent systems, and distributed systems that have critical

pcrfonnance requirementq. On page 29 of this report, under the heading Promised Benefits ofAda

Not Yet Achieved for Some Critical Real-Time Applications, some of the problems experienced

with what the GAO calls software requiring "very fast or tightly controlled computer processing"

are enumerated.

In the GAO Report, the problems associated with using Ada for real-time applications are

attributed to various factors such as the compilers that translate Ada programs into executable

code, the run-time systems under which Ada programs execute, and the language itself. For the

most part, these problems have to do with efficiency (what the GAO Report calls "very fast

computer processing") or with meeting exact timing requirements (what the Report calls "tightly

controlled computer processing"). While the author is in general agreement with this assessment,

it is his belief that another contributing factor is the lack of a good method for designing real-time

systems in Ada. Many of the existing textbooks and articles on this subject give poor advice on

how to design efficient real-time systems in Ada. Project managers and systems designers often

follow this advice in the literature and produce inefficient systems. This phenomenon will continue

even if compilers, run-time systems, and the language itself are improved.

Most Ada real-time design techniques documented in the literature do not explicitly

address efficiency (throughput). Many of them are primarily oriented toward supporting

transportability, reusability of components, and maintainability. These methods lead to elaborate,



highly complex designs that can be shown to be inefficient. Furthermore, the high level of

complexity 6f these designs makes them difficult to debug, difficult to maintain and not very

transportable. 1

There have been a number of recent Ada oriented design methodology proposals for real-

time systems in the literature. Probably the two most comprehensive are documented in the text

books by R. Buhr [Buhr84] and K. Nielsen and K. Shumate [Nielsen88J. Both of these books

conclude with examples of how these methodologies might be applied in designing real systems.

Buhr's Chapter 6 and Chapter 7 show how a communication system with a layered protocol (e.g.,

the OSI Model) might be designed using Ada tasks to decouple the layers. Nielsen and Shurnate's

book has five appendices, each of which contains a case study of a real-time system. Some of the

Nielsen and Shumate examples may not qualify as real-time systems, depending on what definition

of "real-time" one uses. Their examples range from a system whose deadlines change dynamically

to a system with no hard deadlines. Most of their examples focus more on the aperiodic behavior

of tasks than on periodic behavior. They all have "cyclic" behavior as defined later in this report.

In [Ilowes891, the examples given in [Buhr, 841 were reviewed and shown by means of

computer simulations and mathematical analyses to be less efficient (have lower throughput) than

designs proposed by the authors of [Howes891. In [Howes891, the concepts of reducing mean
service times for cyclic functions and of using physical concurrency were introduced and used as

a basis for developing the alternate designs presented therein. While reducing mean service time

for cyclic functions and using physical concurrency are probably just new names for old concepts,

what new is thc :t!e2' ' * t F"-. how efficient -'e!-time de-;,nF for implementation in the Ada

programming language arise frorn applying these shaple principles.

In a recent review of Nielsen and Shumate's book, A. Mili [Mili89] states: "The core of

the book is part 4, which presents a complete Ada-oriented design methodology for real-time

systems. This methodology is a syndieis of several existing methodologies: the modular approach

to software construction, operation and test (MASCOT), the design approach for real-time systems

(DARTS), Booch's object-oriented design, Yourdon's structured design, and Diikstra's virtual

layered machines methodology." While this assessment is partially correct, it fails to point out that

the Nielsen and Shumate approach relies heavily on a previous work of Nielsen [Nielsen86] that

attempts to extend the structured design concepts of cohesion and coupling to Ada tasks and

packages.

I. Many real-time systems are not portable because they are designed to run on specific hardware configurations. What
is being referred to here is that portion of code that is not rendered unportable by specific hardware or system depen-
dencies.
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Their idea about decoupling of processes (tasks) is essentially that additional tasks should

be used as the decoupling mechanism. In fact, this reliance is so strong that in all five case studies,

all concurrent processes are decoupled with additional Ada tasks as opposed to conditional entry

calls. No where in the book is any other decoupling mechanism discussed than buffer tasks.

transporter tasks, relay tasks, etc.

Recently, Sanden ISandenS9I has critiqued the design of Nielsen and Shumate's Case

Study No. I and indicated that it might not be suitably efficient. He also proposed an alternative

design that is based on the concept of Entity Life Modeling. The concept of Entity Life Modeling

appears on the surface to be very similar to the concept of using physical concurrency in

[Howes89]. Perhaps the significant differences between the designs presented in later sections of

this paper and the one of Sanden are accounted for by a different understanding of what the entities

or real-world processes are that are being modeled.

This paper deals with the efficiency aspect of the real-time system design problem as

opposed to meeting exact timing requirements. In Section 5, we will indicate how the efficiency

aspect relates to meeting timing requirements, but this is not our focus. There are several

approaches to meeting exact tining requirements in real-time systems currently in use. For a

certain class of problems, this can be done by an appropriate scheduling of the periodic tasks. An

interesting discussion of this topic can be found in [Sha90]. The theory behind scheduling of

periodic tasks begins at the point where the algorithms for accomplishing these tasks have already

been designed, implemented and their timings measured. It is not concerned with how these tasks

are to be designed for maximum performance (minimum execution time). It should be noticed uha.

whatever method is used for meeting exact timing requirements, a collection of tasks with shorter

execution times will be more apt to meet deadlines than the same set of tasks with longer execution

times. Consequently, all real-time systems may benefit from improved efficiency.



2. BACKGROUND

During 1989. a simulation study was undertaken by the Institute for Defense Analyses

(IDA) for the Ada Joint Program Office as part of a task to create a tutorial on using the NATO

APSE (Ada Programming Support Environment). For the tutorial, an exwnple was needed that

could illustrate all of the capabilities of the APSE. including the host/target conuunication

capabilities for the development of embedded systems. The example chosen has a history in the

current literature. It originally appeared in the book titled Real-Time Languages: Design and

Development by S. J. Young [Young82]. Nielsen and Shumatc present an Ada version of it as Case

Sti:!y No. I in the back of their book [Nielsen881.

The Remote Temperature Sensor (RTS) system, as this example is known, is a small, well-

documented example of an embedded system dedicated to the monitoring of a physical system (in

this case, sixteen furnaces). Neither the Nielsen and Shumate nor the Sanden solution for this

system appeared to have been implemented, e.g., errors in the printed version of Nielsen and

Shuniate\s solution indicated that their design had at least not been implemented exactly as

described, and the lack of perfomiance information in Sanden's comparison seemed to indicate

that the comparison was theoretical rather than experimental. Consequently, it seemed that there

existed no experimental quantification of how their solutions performed.

In an effort to quantify the level of performance of the Nielsen and Shumate and the

Sanden designs, a simulation driver was implemented that could exercise implementations of both

of these designs. and of other alternative designs that might come up. Prior to this Central Research

Project, the Nielsen and Shumate design had been implemented and tested with this simulation

driver on both SUN workstations and the VAX 8600. Also, several alternative designs based on

the principles of reducing mean service times and using physical concurrency as suggested in

[Howes89i had been implemented and tested on the SUN workstations and the VAX 8600.

This implementation and testing is a time consuming process. Testing of the

implementations after they have been debugged and optimized often takes hundreds of computer

runs for statistical accuracy and to evaluate the designs in a variety of operational scenarios. Our

cAperiments show that the designs based on the concepts of reducing the mean service times of

cyclic functions and the concept of physical concurrency produce designs that are significantly

45
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niore eficient in terms of storage and throughput than the Nielsen and Shumate designs on

sequential machines. It was thought that these designs would be more efficient on multiprocessing

machines also.

One of the objectives of this Central Research Project was to determine if de solutions

produced using the concepts ,f physical concurrency and the reduction of mean service time of

cyclic functions were significantly better on a multiprocessor Ada implementation. Our new

designs converted easily to the ENCORE Multimax 320, a shared memory multiprocessor

machine, by simply recompiling. We were unable to get the Nielsen and Shumate implementation

to run reliably on the ENCORE. Their design as presented in [Nielsen88] hangs on the ENCORE

machine. This is partially due to errors in their design and partially due to errors in the ENCORE

runtime system. After much debugging, it has run successfully only once. "Successfully" means

it has ni the necessary 20 seconds needed to measure throughput without hanging. Preliiinary

timings indicate that designs based on the principles of reducing, mean service times of cyclic

functions and of using physical concurrency are more efficient on the ENCORE than the Nielsen

and Shumate design. However, the frequent errors encountered with their design has prevented the

extensive experimentation needed to verify this conclusion and to detenmine how much more

efficient the new designs are. Also, the Nielsen and Shumate design could not be made to run on

the MIPS workstation (a 12.5 mip RISC architecture workstation), and the vendors of both the

ENCORE and the MIPS machines are currently studying the software diagnostics that -Vere

produced when attempting to run it on their machines. On the other hand, the alternative designs

based on the principles of physical concurrency and reducing mean service times of cyclic

functions converted easily to the MIPS workstation by simply recornpiling.

6
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3. THE NIELSEN & SHUMATE APPROACH

In this section, we take a look at the Nielsen and Shumate design for the RTS and its

throughput on a single processor machine. A Buhr [Buhr84] diagram of the original Nielsen &

Shumate RTS design is shown in Figure 1. It consists of five packages (Host-Input, HostOutput,
TempReading, RxHandler, and Device _Handlers). Software for the Simulation drivers for the

host (HostSimulator) and for the digital thermometer (DtSimulator) was not included in the

Nielsen & Shumate design and had to be written.

Host Simulator RxHandler Host Input

CID 0-- CIDufe

DPACK ;IC C

ever

BufferIC

FgcreP.AcK Device Handlers 7 DP

Dt-Simulator I DeterminulHost Output [

TempReading IDP

DtHandler Create-IDP f  
Manage Temp

0f

Therm et.

T 

I

Figure 1. Original RTS Design by Nielsen and Shumate



In a nutshell, what the RTS system does is receive messages from a host system in the form

of Control Packets (CPs) and sends messages back to the host in the form of Data Packets (DPs).

The DPs contain a furnace number and temperature. These temperature readings are obtained by

sending a furnace number to the digital thermometer which in turn returns the temperature. The

CPs from the host are used to change the periodicity at which the various furnaces are read. They

contain a furnace number and a time expressed in seconds that tells how often to read the

temperature with the corresponding furnace number.

The code for the Nielsen & Shumate design (not including the code for the host or the

digital thermometer) is given in their book. In implementing this code, we encountered several

small errors that indicate that their design had not been implemented as described in their book.

One problem was that the interface protocols were unsafe, relying on relative process speeds to

perform correctly. This caused errors on output from the RTS. The same potential problem existed

in the Input_Ciannel and DtInterrupt rendezvous (for input and reading furnace temperatures),

but the timing of the system was such that problems were not encountered there.

While considering this problem, we concluded that their method of employing interrupt

entries for input, output and furnace reading was unrealistic in that it took seven interrupt 6

rendezvous to receive a seven character input message and nine rendezvous to transmit an eight

character message. It was observed that for a real system, there were a number of methods that

could be employed to transfer a seven or eight character message that would require only one

interrupt rendezvous. As a result, we changed the simulator code and the RTS system code to pass 0

messages via an ordinary rendezvous for purposes of this simulation.

It was also observed that for reading furnace temperatures, for a real system, the RTS

would probably need to signal the digital thermometer when it was ready to read a given furnace,

and the digital thermometer would need to signal the RTS when it had the temperature. The

Nielsen & Shumate design does not explicitly signal the digital thermometer via accepting an

interrupt entry like they do when sending a DP to the host. They assume that the RTS places the

fumace number in a given memory location and then waits for an interrupt call from the digital

thermometer signaling that a temperature has been provided, at which time the temperature resides

in another predefined memory location. This would require the digital thermometer to have

knowledge about when the furnace number memory location changed in the RTS. Although such

an interface device could be built, it was thought improbable that a real system would work this

way. Nonetheless, since their approach did not involve an unreasonable number of rendezvous (as

in the case of the host input and output), and since it did not produce errors in the simulation, their

method was ictained and also employed in our designs to make all of the solutions uniform in their

interface with the simulation driver.

8



Both the Nielsen and Shtumate design and the Sanden design have what might be

considered a severe design limitation. In the Nielsen and Shumate design, the task Rx_HostMsg

in package RxHandler both accepts interrupt entries to receive messages from the host and makes

calls (1) to a buffer task in package Host-input to buffer control packets and (2) to a relay task in

the same package to get rid of data packet acknowledgments it has received from the host. Either

of these two tasks could be busy at the time of the call resulting in the interrupt handler task

(RxHostMsg) being blocked.

The consequences of having an interrupt handler task blocked awaiting the acceptance of

a call to another task depend to some extent on the particular implementation of interrupt entries

one is using. The Ada Language Reference Manual says very little about the behavior of inter-rupt

entries, other than that the run-time system can either queue interrupts or not and that depending

on whether or not they are queued, they can be considered as either non-conditional or conditional

entry calls. According to the requirements specification given by Nielsen and Shumate, the

consequence of "loosing an interrupt" and its associated message (i.e., having another message

arrive before the previous one is serviced) would not be disastrous. If the interrupt signified a DP

acknowledgment and the interrupt was lost, the RTS system would simply have to retransmit the

DP after a delay of two seconds. Similarly, if the interrupt corresponded to a CP, the host would

have to retransmit after a similar timeout delay.

But still, frequent loss of interrupts will significantly degrade performance, and the loss of

a CP interrupt might be especially unfortunate. One can imagine that in a real world system, the

sending of a CP may be in response to the evaluation of a previous DP. For instance, a DP may

contain a temperature value that is out of range for a particular furnace. In response, the host wants

to immediately increase the reading rate of this furnace to more closely monitor the situation. Or,

one could imagine the situation where the CP might contain a periodicity of zero which would be

a signal to the RTS to shut the furnace down.

One can significantly reduce the probability of losing an interrupt by employing a different

task interface structure. If the three entries in task Rx in package Input in Figure 2 are labeled A,

B and C respectively, then the following entry acceptance structure can be used:

while not Finished loop

select
accept A
- service interrupt

end A;

- buffer incoming message

or

9



Input

0-* Rx

DP ACK CP

Host Simulator Monitor D_ Simulator

Digital Thermometer

/ Receiver/ DPAck Tansport 4_ 7/

Output

D P

4d - 0 Tx

CP ACK

Figure 2. Redesigned RTS Using 3 Tasks

accept B
- give DP ACK to task Tx;

end B;
or

accept C

- give CP to task Transpoiter;
end C;

end select;

end loop;
This structure has the advantage that by doing the buffering of input messages from the

host in the task Rx, the overhead of a rendezvous is avoided. Whereas, it takes at most a few

microseconds to buffer the message in task Rx, it would take several hundred microseconds to

rendezvous with a separate buffer task and risk waiting for the rendezvous even longer if the buffer

task was busy at the time. Similar considerations hold for outgoing messages, but it is of far less

consequence that interrupts for outgoing messages are lost.

10



Our performance simulations ran for 20 seconds. The numbe, of DPs sent plus the number

of CPs sent was divided by 20 to determine the number of readings per second (it was reasoned

that a CP message took about as long to process as a DP and therefore should be counted in the DP

readings). Each CP and each DP had associated acknowledgment messages, so the total number

of messages being passed between the host and tie RTS was exactly double the number of

observed furnace readings. All the simulations ran with all furnaces being read, but with different

periodicities. Furthermore, the various furnaces were started up at different times during the

simulation (i.e., they did not all have the same start time). They were started by sending CPs to the

RTS.

Originally, the Nielsen and Shumate design, running on a SUN model 3/50 (68020

processor) workstation using the Verdix Ada compilation system version 5.7 was only capable of

making about eight or nine furnace readings per second. One of the reasons was that the delay

parameters they chose for various time-outs were not optimal for maximum throughput. After,

considerable tuning, which involved some minor code changes as well as adjusting parameters, we

were able to obtain 30 furnace readings per second from the Nielsen and Shumate solution.

0
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4. AN ALTERNATIVE APPROACH

An attempt has not been made to explain how one progresses from the specification to the

design shown in Figure 1 using the Nielsen and Shumate methodology. The interested reader is

referred to their text for their own explanation. Their path leads through a variety of diagrams from

which one makes various decisions that allows one to piogress to the next diagram. The path

embraces many steps that are derived from other (primarily sequential) design methodologies. In

this section, we give a brief intuitive explanation of how one progresses from the specification to

the design using the concepts of physical concurrency and of reducing the mean service times of

cyclic functions.

In [Howes89] some terminology was introduced for discussing the ways in which

concurrency is introduced into a design. These three terms were maximal concurrency, conceptual

concurrency and physical concurrency. By maximal concurrency we mean that concurrency is a

goal in itself. For example, the best way of introducing concurrency into a compute-bound

40 algorithm on a parallel architecture machine may be to introduce as much concurrency as possible.

Here, other design goals such as simplicity of the algorithm or efficient usage of the processors

may be sacrificed in order to bring the maximal number of processors to bear on the problem with

the hope that this will achieve the minimal total execution time for the given architecture. By

conceptual concurrency, we mean that concurrency is introduced to conceptually simplify a design

that would be more complex otherwise. For instance, a priority messaging system might be

expressed in a conceptually simple fashion by using concurrent tasks to model different priority

message streams even though it might be more efficient to process the messages in a "pipeline"

with some provision for higher priority messages to "overtake" lower priority messages in the

pipeline. The algorithms and data structures for "overtaking" may be conceptually more

complicated than the concept of multiple message streams.

By physical concurrency we mean that concurrency is only introduced to model physically

concurrent objects or processes in the problem domain. The concept of physical concurrency is the

basic structuring concept for our approach. To illustrate how the RTS was structured from this

principle (as shown in Figures 2 and 3), we reasoned as follows: the problem, as described in

Nielsen and Shumate's book, involves three "real-world" processes. The first is the handling of the

incoming message stream from the host machine. The second is the handling of the outgoing

13
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message strean from the RTS. The third is the management of the temperature reading cycles of

the furnaces. Using the concept of physical concurrency, we model each of these processes with

an Ada task. This is why the alternate designs of this section all have three tasks.

To these three concepts, we could add a fourth, namely, minimal concurrency. By minimal

concurrency we mean that avoiding concurrency is a design goal. In experimenting with alternate

designs we also investigated solutions that almost completely eliminated concurrency, and a brief

mention of the results with these designs is included in a later section. With the current state of Ada

runtime technology for parallel architectures, it is possible that minimal concurrency designs will

still give better throughput on parallel architecture machines. It is certainly true that they currently

do for single processor machines. However, with a view toward the time that more efficient Ada

runtime systems might become available for parallel architecture machines, we did not av, 1d

concurrency in the alternate designs. Instead we adopted the physical concurrency philosophy and

only used concurrency to model real world concurrency in the problem domain.

The next design decision with which we had to deal was how these three tasks shou!!

interface with one another. This is where we used the concept of reducing the mean service times

for cyclic functions. By a cyclic function, we mean something the system has to do repeatedly that

involves some form of coordination with another task or the external environment. One measure

of throughput in a real-time system is how many times these cyclic functions are performed in a

given period of time. If we measure throughput in this manner, the only way to increase throughput

is for the time it takes to perform the cyclic function(s) to decrease. We call this time the mean

service time of the cyclic function. This is analogous to the usage of the term in queueing theory.

From queueing theory we know the formula (for Poisson arrivals) for the time spent in the queue

as a function of how long it takes to service each element in the queue (the mean service time). If

we think of each process we are modeling as a queue that is being serviced by the performance of

some cyclic function, then the mean service time of the cyclic function corresponds to the mean

service time for the queue, and we can think of our system as a collection of inter-related queues.

We see that the only way for the throughput to increase is for the mean service times for the queue

elements to decrease.

Consequently, we try not to introduce any decoupling tasks (buffer tasks, transporter tasks

or relay tasks) between the three tasks we already have to model the three real-world processes,

because in general, this will substantially increase the mean service time of the function. There are

times when this is not possible, e.g., when two of these real-world processes need to share a single

resource. But frequently we find someone mistakenly advocating the protection of a resource by a

buffer task when a single task puts elements in the buffer and a single task takes elements out.

Fortunately, there is no need for buffer (decoupling) tasks in the RTS.
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But even if we verify that no decoupling tasks are needed, there are still several ways a

pair of tasks may communicate with each other in Ada, and it may not be intuitively obviou" which

method is most efficient. Furthermore, rince there may be many pairs of communicating tasks, the

number of possibilities can be very large. For a given task pair, there are several issues such as:

. Do they need to be decoupled?

. If they need to be decoupled, what decoupling strategy should be employed?

* Which task should be the caller?

. Where should flow control reside for these communications?

Unfortunately, at this time we do not know a rule or set of rules that will decide these

issues in general. But we do know that however we do it, it should somehow collectively minimize

the mean service times of all the cyclic functions. Therefore we proceed as follows: we first choose

the way that looks best intuitively, and then we experiment using the principle of minimizing mean

service times of cyclic functions as our guide to experimentation.

In what follows, we will show how this was done for the RTS by showing an initial guess
(Figure 2) of how it might be done, implementing this design and measuring its performance,

analyzing the mean service times for the individual cyclic functions, and hypothesizing changes

that will minimize these mean service times. One of the major strengths of the Ada language is that

it is easy to analyze a number of alternate structures in a short time since the concurrency

management facility is part of the language. Figure 3 shows a solution that was arrived at after a
4P number of iterations. The performance of each iteration was measured and used as a basis for the

next iteration.

In practise, the initial guess may be the first guess that actually runs (without deadlock,

livelock, etc.). Once a running solution exists, it is easy to experiment with other task-to-task

communication structures. The author was able to try over a dozen variations of the RIS system

in less than a month. Each variation experimented with needs to have its throughput carefully

measured and compared with previous experiments to determine trends of which kind of variation

enhances performance. The design shown in Figure 3 had higher throughput than the one in Figure
2 on all implementations it was tested on. We say that such a solution is fundamentally better than

the one it is being compared with. A design that is better on a given implementation, but not on all
implementations will be said to be implementationally better. Of course, one can never know for

certain that one solution is fundamentally better than another solution since a given solution can

not practically be tested on every possible configuration, but we can talk about one solution

appearing to be fundamentally better than another.

The design shown in Figure 3 appears to be fundamentally better than the design shown

in Figure 2, which in turn appears to be fundamentally better than the Nielsen and Shumate design.

We have not discussed the logic inside any of the tasks shown in Figure 2 or 3 and we will not go
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into that kind of detail here. However, it needs to be pointed out that the structuring principle of
using physical concurrency determines the performance envelope. Both the designs in Figures 2
and 3 have significantly better throughput than the Nielsen and Shumate design. But within this
performance envelope there is still significant room for improvement using the tuning principle of

reducing the mean service times of the cyclic functions.
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5. RESULTS ON SINGLE PROCESSOR MACHINES

The design shown in Figure 2 was capable of 73 furnace readings per second on the SUN

3/50 workstation using the Verdix version 5.7 Ada compilation system. The design shown in

Figure 3 is capable of 82 per second. This represents improvements in throughput of 243% and

273% respectively over the corresponding Nielsen and Shumate design. The design shown in
Figure 3 differs from the design shown in Figure 2 in that flow control for outgoing messages is

done in package Monitor in the task Transporter. The design shown in Figure 2 leads to a more

even distribution of code between the packages Monitor and Output. Message buffering in task Tx
in package Output is not needed in the design shown in Figure 3 while using the Nielsen and

Shumate acknowledgment protocol that calls for a DP to be acknowledged before another one is

sent. The reason the Tx task is retained in this design is so the Transporter task will not have to

service interrupts. This design leads to a nice symmetry with respect to 1/0.

It should be noted that the alternative designs have a disadvantage with respect to the
Nielsen and Shumate design in that the Nielsen and Shumate design allows the task RxHostMsg

to make calls to other tasks. It has previously been explained why this might be very unac :eptable

in certain circumstances. In fact, our testing revealed that the incoming message interrupt handler

could be blocked for up to 1 full second at a time during our testing. If it can be determined that

this is not a problem, and the incoming interrupt handler can be blocked for durations of this

magnitude, then yet more efficient 3 tasks designs can be achieved. Such designs were observed

to operate at over 110 furnace readings per second (a 367% enhancement).

Another interesting observation is that if one knows in advance that the target architecture

is a single processor machine, the most efficient design appears to be a single task version. In this

case, a single task is retained to allow for interrupt entries. All processing of incoming and

outgoing messages and of temperature readings is done within this single task. This design runs
hr,)ve 180 furnace readings per second (a 600% enhancement). Moreover, the time it is away from

a state in which it can process an interrupt is only slightly greater than the designs shown in Figures
0 2 and 3. It also has a source code size only 1/4th the size of the Nielsen and Shumate design.

The design shown in figure 3 was rehosted on a MIPS workstation (12.5 MIPS) by simply

recompiling. The throughput was significantly better, averaging 260 temperature readings per

second on a large number of runs. However, the statistical variation between runs was quite large
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with the highest throughput recorded being 357 furnace readings per second and the lowest being

156 furnace readings per second. The Nielsen and Shumate design deadlocked on the MIPS

machine, and the Verdix debugger was almost useless on the MIPS machine, because it would

frequently hang without any indication of what was causing the problem.

10 days of manual debugging was not enough to get the Nielsen and Shumate program

running on the MIPS machine. When the vendor (who was good enough to lend us the machine

for the tests) learned of the nature of the difficulties we were having (due to our inquiries regarding

the strange behavior of the Verdix compilation system on the MIPS), they withdrew the machine.

The malfunctioning Nielsen and Shumate program and the working alternate solutions were given

to the vendor's technical support staff for analysis.

Before discussing performance results in a multiprocessor environment, we relate how

these measurements can be used to determine certain things about this system's ability to meet its

timing requirements. The requirements for the RTS system as stated in [Neilsen88] do not specify

how critical it is for the RTS system to meet its timing requirements, but it is clear from the

requirements specification that the system has exact timing requirements to meet since the purpose

of the CPs is to set the periodicities for the reading of the furnaces. In order to facilitate our

discussion, we will hypothesize a scenario that makes the timing requirements explicit and

indicates the criticality of meeting these requirements. Notice first that the RTS system does not

lend itself very well to the type of analysis conducted in [Sha90] since the periodicities of the

readings can change dynamically. If the requirements specifications were changed a little so that

the 16 furnaces were 16 different sensors, for instance, then it might require 16 distinct tasks to

make the readings. The rate monotonic algorithm discussed in [Sha90] deals with scheduling

periodic tasks whose periods are fixed. Since we know that the Nielsen and Shumate design can

make 30 furnace readings a second on the SUN 3/50, and that an alternate design is capable of 80

furnace readings a second, we hypothesize a scenario that the Nielsen and Shumate design can just

handle within a small margin of resource utilization. Suppose the RTS system needed to read each

of the furnaces once a second under ordinary circumstances, but if one of the readings were "out

of range", the frequency of reading that furnace would immediately be changed to 10 readings per

second.

Since the Nielsen and Shumate design can make 30 readings a second, it can handle one

out or range condition (one furnace requiring 10 readings per second and 15 furnaces requiring one

reading per second) plus have enough spare capacity to handle the arrival of a few new CPs. If a

second out of range condition occurs, it will start missing its deadlines. This degradation of

performance will occur in a "graceful" manner in the following sense. When a deadline is missed,

the processing to meet this deadline will occur as soon thereafter as possible. If the system gets so

far behind that two consecutive deadlines are missed for a particular furnace, the system will not
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try to "catch up" in the sense that it will handle only the most recently missed deadline as soon as

possible. For instance, if two out or range conditions should occur at the same time, all of the

40 furnaces that are in range will still get read once per second, but the two out of range furnaces will

only be read 8 times per second rather than the specified 10 readings per second for an out of range

furnace. Similarly, if there are three simultaneous out of range conditions, the out of range furnaces

will only be read 5 times per second.

On the other hand, Our alternative design can handle six out of range conditions

simultaneously with no missed deadlines (6 furnaces with 10 readings per second and 9 furnaces

with one reading per second). Other scenarios could also be considered such as the ability to read

more than 16 furnaces, or for the nominal reading frequency to be higher. In any of these cases, we

see that the more efficient design is less likely to miss its deadlines. For this particular system. this

measurement of throughput gives us a way of reasoning about the ability of the system to meet its

deadlines. In general, complex real-time systems may not only have dynamically varying

perixlicities, but various different nominal periodicities. Furthermore, the "real" priorities (i.e.,

the intrinsic criticality of a task) may not be the same as the nominal (scheduling) priorities that

are assigned to insure that a system noniinally meet its deadlines.

If the rate monotonic scheduling algorithm is used, it insures that as the computing

resources are consumed, the tasks with the lowest "scheduling priorities" begin missing their

deadlines before those with higher scheduling priorities. The problem here is that the scheduling
priorities are not necessarily the same as the real priorities. As pointed out in JSha90j, it is

sometimes possible to "fool" the rate monotonic scheduling algorithm in such a way that for

certain tasks, the real priority and the scheduling priority are the same. This of course requires

more scheduling overhead, but it may be acceptable to insure predictable operation of the system.

In general cases where the rate monotonic scheduling algorithm is not applicable, simulating

performance of the system (or of a representative model of the system) as we have done here for

the purpose of measuring efficiency can also be used to settle questions regarding whether a system

will be able to meet its deadlines under certain conditions, or how the system will respond as the

load placed on the system excecdq ;ts processing capacity.
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6. RESULTS ON A MULTIPROCESSOR MACHINE

The design shown in Figure 3 was converted to the ENCORE Multimax 320 by

reconipiling. lTie Ada compilation system used on the ENCORE was Verdix version 5.5 1 with a

parallel nintime system written by the hardw,,rc vendor. The spin scheduling runtime option was

used as it provided the best throughput. althouh it has some peculiarities when there are more

tasks than processors. The ENCORE Ada runtinie system allows the user to specify the number of

processors to be used for a particular program. The table in Figure 4 shows the throughput for the

design from Figure 3 as a function of the number of processors utilized.

The table in Figure 4 was constructed as follows. First the ENCORE was configured with

one processor and the thrcughput of the Figure 3 design was measured. Then it was configured

with two processots, then with three and so on, measuring the throughput of #he Figure 3 design

at each step. Throughput was measured as follows. The simulation driver together with the RTS

program was run for 20 seconds and the number of data packets sent during that period was

measured. This was repeated 10 times for each configuration and the results averaged to get the
throughput for a given number of processors. So for 5 processors, 1670 data packets were

transmitted in a 20 second period. As the number of processors was increased beyond 11 (end of

table), the throughput declined to 1530 data packets in the 20 second running interval for all 14

processors.

It should be noted that even with all these processors, the best throughput on the ENCORE

was essentially the same as the single processor SUN 3/50 workstation (83.5 readings per

second). 2 This is consistent with the ENCORE performance measured in [Howes89l. The

irregularities at the left hand side of the table are caused by the spin scheduling algorithn's

implementation. With spin scheduling, each task is assigned to a processor until it blocks (e.g., at

a call or a delay, etc.) at which time the processor is assigned to another task if one is waiting. If

there are as many processors as tasks, a context switch never needs to be made for a rendezvous

because every task will remain on the processor to which it was originally assigned. But when

there are not enough processors to go around, context switches may take place. In this situation,

the ENCORE runtime system perforns unpredictably, with certain combinations of tasks and

numbers of processors working better than others.

2. Although both the SUN workstation and ENCORE 320 experiments uiili/ed the Verd,' V Al)S system, the %ersions
of the compilers, code gentraiors and runtimc syslems were different
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To date, the Nielsen and Shumate design still does not run reliably on the ENCORE as

previously noted. One time, it ran for the full 20 seconds configured with all the processors and we

obtained a single measurement of 1300 data packets sent, but this measurement may be high since

not all the control packets in the simulation made it through. One of the tasks involved with the

servicing of CPs died during this 20 second interval and the exception handlers of the other tasks

were set to allow them to continue running in this state. Also, not all the functions involved with

ge:.ng the DP,1 transmitted were being performed for the same reason. Consequently, not all the

furnaces were being read and the DP processing was faster than if the program were executing

correctly.

In fairness to the Nielsen and Shumate solution, it should be pointed out that we think the

programming errors have been corrected in their design or th, ENCORE and what we are now

witnessing are problems with the run-time system. One problem we have been able to isolate in

the ENCORE run time system is that the runtime system will often awaken an accepting task

before the calling task is entered in the entry queue. Thereafter, whenever an entry call is made to

the abnormally awakened task, an exception is raised. Why this problem happens so often with the

Nielsen and Shumate design and never with our alternate design probably has to do with the

processing time, for placing the calling task in the accepting task's entry queue, increasing as the

number of tasks increases.
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There appear to be yet other run-time system problems with the ENCORE. We have sent

copies of the malfunctioning Nielsen and Shumate programs to ENCORE for their analysis and

are awaiting a resolution. While the inability to rehost the Nielsen and Shumate solution on either

the MIPS or ENCORE machines (both of which employ Vertex Ada compilation systems) now

remains a run-time system problem, it still shows the additional strain that this type of design puts

on a run-time system. Considerations such as these reflect on the transportability and

maintainability of such designs.

This one data point suggests that the Nielsen and Shumate design's throughput could be

considerably better in a multiple processor environment that can eliminate context switches for

rendezvous (thouqh still not as good as the three task designs). However, it would still have the big

disadvantage of the large number of distinct threads of control. Such a design is very difficult to

debug since there is such a variety of things it can do and it is difficult to get the errors to repeat

frequently.

Fortunately, the design shown in Figure 3 converted to the ENCORE without debugging,

so no experience was gained in debugging such a design on the ENCORE. However, it is felt that

the relatively few distinct threads of control in the Figure 3 design (as compared with the Nielsen

and Shumate design) would make debugging much easier. It is felt that the fewer threads of control

will result in fewer initial timing problems when debugging commences.

Finally, no attempt has been made to date to tune the design of Figure 3 on the ENCORE.

It is possible that some improvement could be made by experimenting with the task interfacing

structures on the ENCORE as was done on the SUN workstation. There is no reason to believe that

the ones used for the SUN design will prove to be best for the ENCORE.
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7. THE DARTS APPROACH

Nielsen and Shumate's original version of the DARTS robot controller is shown in Figure

5. The specification for the robot controller is a bit more complex than the specification for the

RTS. The robot controller, as the name implies, controls a robot. It does this by sending

Axis-Output conunands to the robot. AxisInput messages are received from the robot that tell the

current position of an axis. Task RobotHandler in package Axis coordinates the sending and

receiving of conuands and axis messages to and from the robot. The robot motion commands

come from task AxisManager in the form of motion blocks.

Axis-Manager gets these motion blocks from task ProgramInterpreter in package

Motion. Task ProgramInterpreter interprets stored programs. These programs have both motion

commands and sensor commands. When a program completes, the operator is notified via a

message being sent to the control panel which lights up a button on the panel. The operator can

then select another program that will cause the robot to perform some other job, or the same

program can be selected again. The operator can stop and resume or abort the robot controller in

the middle of a job (stored program). All of these options are communicated to the robot controller

via the control panel. Finally, it should be mentioned that the sensor commands can retrieve

information about the external environment or send information about out of bounds conditions

for the robot movements.

Nielsen and Shwnate follow the DARTS design methodology [Gomaa84] very closely in

developing the design for Case Study 5. This methodology is somewhat different than the one they

use for the design of the RTS system. In what follows, a concise overview of the DARTS method

will be given and compared with the approach discussed above based on the principles of using

physical concurrency and minimizing the mean service times of cyclic functions.

Gomaa [Gomaa84] starts with a brief survey of several design methods used for designing

real-time systems and summarizes by stating:

"The above survey of design methods shows that each method has some limita-
tions in terms of real-time systems design. The two methods that come closest to
satisfying the needs of real-time systems design are Structured Design and Mas-
cot."
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Gomaa goes on to say that:

"The data flow approach to software design is particularly appropriate for the
design of real-time systems because the data in these systems may be consideredto flow from input to output and in between to be transformed by software tasks.
The data-flow-oriented methods are best exemplified by Structured Analysis and

Structured Design which are frequently used together...

Structured Design [Yourdon781, also known as Composite Design [Myers76],
consists of two main components: ( 1) two sets of criteria, cohesion and coupling,
which are used for evaluating the quality of a design; and (2) a design method for
guiding designers in a top-down decomposition of a system into modules ....

Ile Structured Design method consists of two design approaches. Transform
Centered Design and Transaction Centered Design. With Transform Centered
Design, the major streams of data are identified as they flow and are transformed
from external input to external output...

Because real-time systems are usually data flow oriented, the DARTS method
starts with a data flow analysis of the system."
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From the original data flow, Gomaa jumps right in to decomposing the system into tasks.

He states:

"Having identified all the functions in the system and the data flows between
them, we are now in a position to identify concurrency. The next stage of the
DARTS method therefore involves determining how concurrent tasks will be
identified on the data flow diagram.'

Gomma then gives six heuristics for grouping the transformations in the data flow diagram

into tasks. The problems with this approach are many. First, although data flow diagrams have

been successfully used in decomposing programs with a single thread of control into modules, it

is not clear that they will be as useful in decomposing programs into multiple threads of control.

Second, the data flow diagrams contain no timing information about the problem space and

therefore do not contain all the infomation necessary to make decisions about groupings into

tasks. Third, data flow diagrams for a given problem are not unique. Virtually any two designers

will produce a different data flow diagram for a given problem. Gomaa's heuristics applied to

different data flow diagrams for the same problem give different groupings into tasks.

By using the principle of physical concurrency, one avoids these problems to a large

extent. Since the structuring of the solution to the problem comes from considering the real-world

objects and processes to be modeled, one does not have to be so careful in considering the timing

relationships between tasks, because all the transforms related to subfunctions of a real-world

process are going to naturally be grouped together. The principle of using physical concurrency

does not solve the timing problems, rather it attempts to avoid them during the task structuring

phase of the design. Then, within a task structuring, it attempts to optimize the throughput

(minimize timing problems) by experimentation with the various task interfacing structures using

the principle of reducing the mean service times for the cyclic functions. Gomaa also avoids the

timing problems during the task structuring phase of the design, but in his method they are not only

avoided, they are virtually ignored.

On the other hand, decomposing the system into transformations (via the data flow

diagram) and then building back up to the level of tasks by grouping the transformations into tasks

without any information about timing seems to be very dangerous from an efficiency point of view.

It is not surprising that the design shown in Figure 6, due to one of the author's students at George

Mason University, is significantly more efficient than the Nielsen and Shumate/Gomaa solution of

Figure 5. We let the reader judge for himself whether designs produced with the physical

concurrency structuring principle or the Gomaa heuristics applied to a data flow diagram produce

a more natural decomposition into tasks. However, it cannot be argued that Gomaa's heuristics

produce a more economical structuring.
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Both the Nielsen and Shumate/Gomaa design and the student design were implemented
on a VAX 8620 using VMS Version 5.2 and DEC Ada Version 1.5. The throughput for each design

was measured as the number of commands per second that could be interpreted and executed by

the system, while maintaining a flow of commands from the control panel corresponding to I

control panel command from the operator for every 3600 programa commands executed. The

throughput varied as a function of the mix of motion commands and sensor commands, as the
sensor commands take less time to execute in the Nielsen and Shunate/Gomaa design.

The result for the Nielsen and Shumate/Gomaa design for a mix consisting of 100%

motion comands was 794 comands per second while the student design of Figure 6 measured
2,179 commands per second (274% better). With a 100% sensor command mix, the Figure 5

design measured 1,341 commands per second while the student design measured 2,242 per second
(167% better). Notice that the student design executes both motion commands and sensor
commands at about the same speed, whereas the Figure 5 design executes sensor commnands

almost twice as fast as motion commnands.

With a mix of 75% motion commands and 25% sensor commands, the Figure 5 design

measured 886 commands per second while the student design measured 2,179. A 50/50 mix

measured 900 commands per econd for the design of Figure 5 and 2,162 for the student design.
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The student design, it will be noticed, is very tightly coupled in that all task-to-task calls

are blocking calls. While this design may be unnecessarily tightly coupled, it is still indicative of

the performance improvement that can be obtained using the approach documented herein. This

possibly undesirable feature could be removed at a fraction of the performance penalty paid by the

Nielsen and Shumate/Gomaa solution.
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8. CONCLUSIONS

To date, the principles of using physical concurrency and of reducing the mean service

times of cyclic functions have been applied to three different types of real-time systems that have

previously been discussed in the literature. They have been pioven to produce significantly more

efficient designs than the three other methods originally used to design these three systems.

These two principles do not suffice to decide all the questions one generally encounters

when designing real-time systems. However, as far as they go, they seem to provide better

solutions than other methods they have been compared against. Currently, the author is not aware

of a good Ada real-time design methodology. The existing Ada real-time design methods have not

been tested sufficiently to confirm their value, if any. This is an unfortunate situation within the

Ada software engineering discipline. Methods are being hypothesized and documented with

apparently little or no testing to determine if these methods produce efficient designs, which often

is an important goal of real-time systems. It is somewhat like a physicist who advances a new

theory to explain some phenomenon, but does not check to see if the theory is supported by

experiment.

It is of some interest that issues of transportability, maintainability and reuse are being

considered with respect to real-time systems (as in [Nielsen88]), but solutions to these problems

should not come at the expense of efficiency and simplicity of the design, and further, solutions for

say, maintainability, should not come at the expense of ease of debugging, testing or of

transportability. If we cannot design efficient systems, what good is it to worry about reuse and

transportability of inefficient designs?

The advantage of using the two design principles advanced in this paper is that they lead

to designs with fewer concurrent threads of control, which are inherently more efficient, more

easily debugged, more easily tested, more easily maintained, and more easily transported. Much

more experimentation with these two principles is needed. Perhaps it is impossible to find another

principle that can decide the questions of the optimum task-to-task interfacing structures to use in

each individual case, but this should be a goal. Currently, there is no way to decide among the

many possible designs (caused by the many task-to-task interfacing structures) within a given task
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structuring without extensive experimentation. For instance, it is not possible to decide between

the design of Figure 2 and the design of Figure 3 without implementing them both and measuring

their performance. The ability to eliminate or reduce this effort is highly desirable.

It is likely that the task structuring principle of using physical concurrency can be refined

somewhat. The principle as it stands is easy to apply once one understands what the real-world

objects and processes are that need to be modeled. What is needed is a better approach for deciding

the objects and the processes. Naive answers to this question have been put forward in the past,

but the problem i7 -s-entially unsolved.

Finally, it should be mentioned that if the proposals for asynchronous task-to-task

communication are adopted in Ada 9X, most of the decoupling tasks (i.e., the buffer and

transporter tasks) of Buhr and Nielsen and Shumate could be replaced by asynchronous task

communications. In this case, the Nielsen and Shumate designs might begin to resemble our

alternate designs. In this light, their decoupling tasks might be viewed as an artifact of not having

asynchronous task communications in the Ada language. However, as shown in this paper, it is not

necessary to have asynchronous task communications in order to avoid these decoupling tasks.

Consequently, the unnecessary use of decoupling tasks is more of a design method shortcoming

than a deficiency of the language.
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