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ABSTRACT

We describe an algorithm for finding two-matchings in undirected

graphs. This algorithm is used as a basis for a simple exact

algorithm for determining the hamiltonicity of undirected graphs.

Results are presented for random graphs with up to 30,000 vertices and

for knight's tour problems having up to 10,000 vertices.



I. Introduction

The task of identifying hamiltonian cycles has long been of both theoretical

and practical interest, starting in 1856 with Kirkman [1]. In the general case,

this problem is known to be NP-Complete. Much research has been done on criteria

and algorithms fcr identification of hamiltonian cycie- for special classes of

graphs [2-4]. The case of arbitrary graphs has proven difficult since theoretical

criteria [5-8] are either too vague or computationally expensive to be of use. A

review of theoretical results can be found in [9].

Many heuristic and probabilistic techniques have been proposed. For

undirected and directed random graphs, recent work includes Angluin and Valiant

[10], Perepelica [II], Thompson and Singhal [12, 13], and Thomason [14]. Results

similar to Angluin and Valiant are reported for digraphs by Frieze [15]. Many of

these authors include probabilistic results concerning the asymptotic performance

of their heuristics on random graphs, however, none provide a guarantee for finite

sized graphs or structured graphs. The algorithm presented here is simple, exact,

and remarkably well behaved for the same class of random graphs.

From a computational standpoint, heuristic methods have serious drawbacks.

In particular, heuristic methods use arbitrary criteria for termination.

Typically, heuristics employ stopping rules that are coupled to the amount of

computational effort. In worst case, a heuristic may fail to find a hamiltonian

cycle when in fact the graph contains one. In contrast, the exact algorithm

described in this paper has well defined termination criteria and always correctly

reports the hamiltonicity of an undirected graph. Of course, since the exact

algorithm is enumerative in nature, certain graphs may lead to unacceptably large

execution times, but heuristics also suffer from this problem. Our computational

experience shows that for random graphs the algorithm enumerates only a small

fraction of the possible search space, resulting in acceptable execution times.



For ten 30,000 vertex graphs, we determined hamiltonicity in about 200 seconds on

average using a Sun 4/330 workstation.

Some exact techniques have been proposed for the hamiltonian cycle problem.

Algebraic methods which have been proposed such as [161 become computationally

intractable for graphs having more than a few dozen vertices. Enumerative

methods, such as Roberts and Flores t17] have been successful for small graphs.

Multipath (or multiway) algorithms proposed by Selby [18] and Christofides [16]

are based on enumerative techniques. All the enumerative methods, howeve-.

require backtracking and can lead to combinatorially explosive search.

The remainder of this paper is divided into four sections. In Section 2 we

briefly describe an unweighted two-matching algorithm with worst case complexity

O(nm), where n is the number of vertices and m is the number of edges.

Section 3 describes how the two-matching problem is used as a relaxation in an

enumerative algorithm for determining the hamiltonicity of an undirected graph.

Section 4 and Section 5 present computational results for the two-matching and

hamiltonian cycle algorithms, respectively.

2. An Unweighted Two-Matching Algorithm

The unweighted two-matching problem may be stated as follows: Given a graph

G = (V,E), find a subgraph of G such that each vertex v c V has degree two,

i.e. if possible determine M 9 E such that each vertex appears in two edges of

M. Subset M is known as a two-matching. A two-matching ronsists of a

collection of one or more disjoint cycles, each containing at least three

vertices. If the two-matching has only a single cycle, then it is a hamiltonian

cycle. Because of this relationship, the two-matching problem is a relaxation of

the hamiltonian cycle problem.

We have developed an algorithm for solving the unweighted two-matching

problem based on the work of Anstee (19], rather than the traditional Edmond's

approach [20]. The algorithm involves solving a two-matching problem on a
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bipartite graph Gb = (Vb E b ) that is closely related to G. Vertex set Vb

contains two vertices b and b for every vertex i c V. For each member of11 12

the original edge set (i,j) c E, E contains two members: (b ,b ) andb 11' j2

(b jl,b2 ). The bipartite two-matching problem may be easily solved as a network

flow problem or it may be solved directly using the theory of alternating paths.

We solve bipartite two-matching using an alternating path algorithm with O(nm)

worst case complexity.

Two-matching solutions on graph G may be interpreted as follows. Let Hb

be a set of edges and directed arcs which is initially empty: if both of the

edges (b 1,b J) and (b j,b 12) appear in the bipartite two-matching solution on

Gb, place edge (i,j) c E in set M; if edge (b i,b J) appears but edge

(b ,b 2) does not, place directed arc (i,j) in the set M. If graph G does

not posses a two-matching, then neither does graph G.

If set M contains no directed arcs, the edges of M represent a two-

matching solution. If M contains directed arcs, then they form a collection of

directed cycles on graph G. Using transforms proposed by Anstee [191, directed

cycles of even length and non-disjoint pairs of directed cycles of odd length may

be replaced by half the number of edges. Residual odd disjoint cycles may be

eliminated by finding alternating walks connecting pairs of these cycles. Here we

use the term alternating in the usual sense, the edges in the walk are

alternatively in and out of M. Each alternating walk is used to replace the arcs

of a pair of directed cycles bv half the number of edges. We denote this act of

replacement a transfer because of the analogy with ordinary matching theory. When

(and it) all directed cycles are replaced, set M represents a two-matching. If

an alternating walk cannot be found between one or more pairs of odd directed

cycles of set M, then graph G does not possess a two-matching.

Alternating walks are located by growing alternating trees rooted at directed

cycles. Because graph G is not necessarily bipartite, the alternating trees may
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form pseudovertices (blossoms) whenever addition of an edge produces a cycle. We

have developed data structures for efficient tree growth and a recursive procedure

for carrying out the transfer along an identified alternating walk. The worst

case complexity for eliminating directed arcs is O(nm), yielding a two-matching

algorithm that is O(nm) in the worst case. Naturally, if graph G is

bipartite, M cannot contain odd directed cycles.

3. Unweighted Hamiltonian Cycle Algorithm

Given the unweighted two-matching algorithm described in the previous

section, the hamiltonian cycle algorithm is a standard application of partial

enumeration techniques. At each vertex of the search tree the two-matching

algorithm is applied to a graph. The graph at the root vertex of the search tree

consists of the original graph. If the graph at any vertex of the search tree

does not contain a two-matching, that vertex is fathomed. If the graph contains a

two-matching, one child is created for each non-fixed edge incident to a vertex of

the graph having minimum degree. Each child uniquely differs from the parent by

having fixed one of these edges. Fixed edges must appear in subsequent

two-matchings. We improved the effectiveness of the enumeration algorithm by

using a heuristic that attempts to patch the cycles of the two-matching into a

single cycle. This heuristic is a modification of Karp's asymmetric patching

algorithm [211.

The enumeration algorithm can be improved by using other relaxations to

complement two-matching. For example the graphs at each "'ertex of the search tree

could be checked to see that they contain spanning trees, or that they are

biconnected. Either of these checks would guard against searching for hamiltonian

cycles in graphs that consist of dense but disconnected components. The

biconnectivity condition is superior because it also guards against the case of

two dense components connected by a single edge. No such refinements are required

to handle random problems.
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4. Unweighted Two-Matching Algorithm Computational Results

Table 1 presents results for the unweighted two-matching algorithm for random

graphs at two densities, collected on a Sun 4/330 workstation. The tables

indicates the total number of trials for each size and density. The "success/

fail" column indicates the number of trials that did or did not possess a two-

matching. Phase one symmetrization refers to the process of eliminating

nondisjoint odd directed cycles and even directed cycles of arcs in set M. Phase

two symmetrization refers to the process of finding alternating walks connecting

two disjoint odd directed cycles. The table indicates the number of graphs

possessing odd cycles after phase one symmetrization ("cases w/odd cycles

column"). The "avg. odd cycles" column reports the average number of disjoint odd

cycles for cases in which symmetrization was not complete after phase one.

Finally, the table lists the execution times of various phases of the algorithm.

Table I - Unweighted Two-Matching Algorithm Performance on Random Graphs

n cases success/fail cases w/ avg. odd bipartite phase phase total
~o-ti~i. o cytles cycles ;naLcI1g ufle sym. two sym. Lime

time(sec) time(sec) (sec) (sec!

Density = 0.02

500 25 20/5 14 2.429 0.086 0.012 0.002 0.122

1000 25 25/0 3 3.304 0.20Q 0.036 n n18 0.30.1

2000 25 25/0 24 3.333 0.618 0.079 0.023 0.7SS

Density = 0.25

500 25 25/0 11 2.000 0.074 0.020 0.003 0.113

1000 25 25/0 7 2.000 0.284 0.041 0.002 0.357

2000 25 25/0 2 2.000 1.042 0.085 0.001 1.1S2

5. Hamiltonian Cycle Algorithm Computational Results for Random Graphs

In this section we consider the performance of our exact algorithm for

determining hamiltonicity on random graphs. Our test problems were generated as
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follows; Each edge- e c E in a complete undirected graph G = (V,E ) was ran-
C C C

domly assigned a number p between zero and one. For any value of C

graph G(c) = (V,E) may be derived from G by letting E = {e c E p < c}
C C e

Obviously G(0) is not hamiltonian and G(1) is. Furthermore, there is some c

at which the graph becomes hamiltonian. In graphs with c v c it is easy tVt

find hamiltonian cycles and graphs with c < c are easily shown to be ncn-t

hamiltonian. We used our algorithm to determine the value of c to an accurac,t

of one part in ten million. This requires not onl that the algorithx, fir.

hamiltonian cycles in graphs with c just above c , but also L:at graphs wicICh a--'t

just short of the threshold be proved to be non-hamiltonian. This cannot be

by using heuristics.

The following table presents computational results from the collected Dn a

Sun 5/330 workstation. The "cases" column indicates the number of trials at eacn

size. Each line in the table summarizes performance according to graph hi-

tonicity during the binary search. The execution times reported in the table

the average times necessary to determine the hamiltonicity of a single graph, I.e.

the average him'r to determine the hamiltonicity of G(c) for fixed C.

Table 2 - Undirected Hamiltonian Circuit Algorithm

execution time ksec)
ncases threshold

hamiltonian non-hamiltonian

1000 10 0.009235 0.447 0.277

5000 10 0.002385 6.777 3.643

10000 10 0.001320 20.284 13.898

20000 10 0.000646 143.509 51.414

30000 10 0.000471 226.031 90.945

We also applied the algorithm to the problem of finding a knight's tour on an

nxn chessboard. This corresponds to finding a hamiltonlan cycle in a graph of

n2 nodes In which the degree of each node is between two and eight. Knight's tour
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graphs are also bip7,*.ce so that phase two symmetrization is not needed. Tale

shows the time required for the algorithm to fird knight's tours on chesstU. .-

ranging f:om 8 xS to lOOxIO0. Performance is shown with and without the :

the .-.tching algorithm. Patching provides an excellent heuristic for the knight's

tour problem, solving ten of the twelve test problems using only the initial t..-

matching. Solution of the other two problems occurred at the second and t-.rC

search tree nodes. Without patching, the number of nodes in the search tree an-.

the execution times grow dramatically, however the algorithm is sti! able

solve problems with thousands of nodes in reasonable time.

Table 3 - Knight's Tour Problem

with patch without patch

nodes execution nodes executicn
board size solved time solved time

8x8 1 0.08 5 .05

lOxlO 1 0.05 7 r S

12x12 1 0.10 11 .16

14x14 1 0.12 8 .1S

16x16 1 0.16 27 .52

18x18 1 0.23 13 .44

20x20 1 0.34 31 SS

30x30 1 1.28 57 3.37

40x40 2 3.11 256 26.1

50x50 1 6.26 876 160.2

70x70 3 17.0 - -

10Ox100 1 46.8 -

6. Conclusions

We have described an exact algorithm for unweighted two-matching and used

Lldt algorithm as a basis for an exact hamiltonian cycle algorithm for undirected

graphs. Computational results on random graphs indicate that two-matching is a

good relaxation for hamiltonicity; there is a strong correlation between the
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probability that a random graph possesses a two-matching the probability that the

graph is hamiltonian. The reasonable computational times required to solve large

random problems indicate that such random problems are not difficult, and this is

in agreement with predictions of asymptotic behavior for probabilistic algorith =i

[10,141. Clearly this algorithm can fail on problems with certain structure, for

example graphs consisting of dense unconnected components. The addition of a

simple connectivity check, or better a check for biconnectivity would improve

algorithmic performance on non-random problems. The performance on knight's tcur

problems with up to 10,000 nodes is surprisingly good because this problem las

been considered difficult for some heuristics [22]. A case may be made that this

algorithm is superior to currently known heuristic,, although this is difficult t:

establish given the shortage of computational results for heuristic methods. The

results also suggest that the combination of two-matching followed by patching may

well be competitive with tour construction heuristics.
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