Α [–]	D-A2	237 22	3 IRT DOCU	MENTATION	PAGE				
<u> </u>			NONE						
.			3 DISTRBUTION AVAILABILITY OF REPORT Approved for public release.						
DECLASSI	FRATON/DOW	INGRADING SCHED	Distribution unlimited.						
PERFORME	NG ORGAN ZAT	ON REPORT NUMB	5 MONITORING ORGANIZATION REPORT NUMBER(S)						
Techn	ical Repor	t No.	34						
Massa	chusetts I chusetts I	ORCANIZATION nstitute	24 NAME OF MONITORING OF SANIZATION ONR						
X: ADDRESS (City, State, and ZIP Code) 77 Massachusetts Avenue, Room 1-306 Cambridge, MA 02139				76 ADDRESS (City, State, and ZIP Code) 800 North Quincy Street Arlington, VA 22217					
NAME OF FUNDING SPONSORING ORGANIZATION DARPA				9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-86-K-0768					
ADDRESS	(City, State, and	ZIP Code)	10 SOURCE OF FUNDING NUMBERS						
	Wilson Bou gton, VA		PROGRAM ELEMENT NO R & T Code	PROJECT NO A 400005	task NO		WORK UNIT ACCESSION NO		
TITLE (Inc Simula	tion of La	lasification) irge Deformat	ion in Glassy A	tactic Polypr	opylene	<u></u>			
persona Peter	LAUTHOR(S) H. Mott, A	ali S.Argon,	and Ulrich W. S						
Abstract FROM 195				14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 1991 May 31			COUNT		
Abstra	ENTARY NOTAT ct of oral elaxation	. presentatio	n at Materials Aging of Glass	Research Soci y Polymers	ety Symposi	um on	Struct	ure,	
COSAT: CODES			18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)						
FEUD	GROUP	SUB-GROUP	Plastic defor	astic deformation, polypropylene, simulation					
			1						

A static, atomistic model has been used to study the stress-strain behavior of glassy, atactic polypropylene well beyond the yield point. The polymer is modelled as a single chain of carbon atoms with pendant hydrogen atoms and methyl groups, packed using a periodic parallelepiped continuation condition (initially an 18.5 Åcube) at a potential energy minimum. Deformation is simulated by imposing small strain steps on the periodic box, minimizing the system energy at the end of each step, which causes the polymer to seek a new conformation. Molecular movement can occur only by rotation around the skeletal C-C bonds: all bond lengths and angles are fixed.

	- Continue	1 -			
20 DISTRIBUTION / AVAILABILITY OF /					
228 NAME OF RESPONSALE NO 2 DU Dr. Kenneth Wynne	. Δι	220 TELEPHONE "- 100 703/696-4100	Area JULY 220 OFFICE SYMBOL		
DD FORM 1473, 84 MAR	83 APR edition may be used un All other editions are o		SECURITY CLASSIFICATION OF THIS PAGE		

Pure shear and uniaxial extension strain increments were imposed on an ensemble of nine systems, to a total strain of 0.2. The system stress-strain curves for individual structures show a flat, reversible stress response at the initial stages of deformation, followed by a series of sawtoothpatterned elastic regimes separated by sharp stress drops due to major plastic relaxations. The elastic regions are reversible, while the plastic collapses are irreversible. Averaging the stress-strain curves for the ensemble smooths the information, showing an initial, elastic response, with a clear transition to plastic behavior. The yield point was at ≈ 0.05 strain, Von Mises stress ≈ 100 MPa. The average system pressure steadily increased, indicating a dilatant plastic response under the constant volume condition.

Atomic strains showed little relative motion in the chain during the reversible regions, and large relative motions over the entire system volume during the plastic collapse. From examinations of many stereo pairs of the changing polymer conformations during a plastic collapse, it is found that the whole chain moves in a complex way, the atomic rearrangement felt nearly uniformly throughout the length of the chain. The distribution of unit shear relaxations from the plastic strain collapses for the ensemble was found. The average plastic strain was 0.037 (\pm 0.035). If this transformation shear strain is taken to be typical for most vinyl glassy polymers, and this is compared with the results of strain rate change experiments, it is possible to estimate the sizes of the local volumes undergoing a unit plastic relaxation. From this we conclude that the local volumes undergoing a unit plastic relaxation must be much larger than previously conceived in earlier deformation models, and must be on the order of 40 to 60 Åon the side.

SIMULATION OF LARGE DEFORMATION IN GLASSY ATACTIC POLYPROPYLENE. <u>Peter H. Mott</u>, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; All S. Argon, Department of Mechanical Engineering, MIT (too whom correspondence should be addressed); and Ulrich W. Suter, Institut für Polymere, ETH-Zentrum, CH-8092, Zürich, Switzerland.

A static, atomistic model has been used to study the stress-strain behavior of glassy, atactic polypropylene well beyond the yield point. The polymer is modelled as a single chain of carbon atoms with pendant hydrogen atoms and methyl groups, packed using a periodic parallelepiped continuation condition (initially an 18.15 Å cube) at a potential energy minimum. Deformation is simulated by imposing small strain steps on the periodic box, minimizing the system energy at the end of each step, which causes the polymer to seek a new conformation. Molecular movement can occur only by rotation around the skeletal C-C bonds; all bond lengths and angles are fixed.

Pure shear and uniaxial extension strain increments were Imposed on an ensemble of nine systems, to a total strain of 0.2. The system stress-strain curves for individual structures show a flat, reversible stress responce at the initial stages of deformation, followed by a series of sawtooth-patterned elastic regimes separated by sharp stress drops due to major plastic relaxations. The elastic regions are reversible, while the plastic collapses are irreversible. Averaging the stress-strain curves for the ensemble smooths the information, showing an initial, elastic response, with a clear transition to plastic behavior. The yield point was at =0.05 strain, Von Mises stress =100 MPa. The average system pressure steadily increased, indicating a dilatant plastic response under the constant volume condition.

Atomic strains showed little relative motion in the chain during the reversible regions, and large relative motions over the entire system volume during the plastic collapse. From examinations of many stereo pairs of the changing polymer conformations during a plastic collapse, it is found that the whole chain moves in a complex way, the atomic rearrangement feit nearly uniformly throughout the length of the chain. The distribution of unit shear relaxations from the plastic strain collapses for the ensemble was found. The average plastic strain was $0.037(\pm 0.035)$. If this transformation shear strain is taken to be typical for most vinvil glassy polymers, and this is compared with the results of strain rate change experiments, it is possible to estimate the sizes of the the local volumes undergoing a unit plastic relaxation. From this we conclude that the local volumes undergoing a unit plastic relaxation must be much larger than previously conceived in earlier deformation models, and must be on the order of 40 to 60 Å on the side.

91-03223

061

91 6 24