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MODELING THE PRESSURE-DILATATION CORRELATION 1

S. Sarkar
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ABSTRACT

It i- gcncraly accepted that the pressure-dilatation, which is an additional compressibility

term in the turbulence transport equations, may be important for high-speed flows. Recent,

direct simulations of homogeneous shear turbulence have given concrete evidence that the

pressure-dilatation is important insofar that it contributes to the reduced growth of turbulent

kinetic energy due to compressibility effects. The present work addresses the problem of

modeling the pressure-dilatation. We first isolate a 7omponent of the pressure-dilatation

which exhibits temporal oscillations and. using direct nnmpr;ral Jimmat;ons of homogen,-cu

shear turbulence and isotropic turbulence, show that it has a negligible contribution to

the evolution of turbulent kinetic energy. Then, an analysis for the case of homogeneous

turbulence is performed to obtain a model for the non-oscillatory pressure-dilatation. This

model algebraically relates the pressure-dilatation to quantities traditionally obtained in

incompressible turbulence closures. The model is validated by direct comparison with the

pressure-dilatation data obtained from the simulations.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1 Introduction

The pressure-dilatation appears as an explicit compressibility term in the equations for mean

temperature and turhulent kinetic energy. It has been generally recognized that this term

may be large in high-speed flows and therefore requires consideration in compressible turbu-

lence closures. In Sarkar, Erlebacher, Hussaini and Kreiss', it was found that the pressure-

dilatation was smaller than the compressible dissipation in direct simulations of isotropic

compressible turbulence which suggested that the presure-dilatation can be absorbed into

the model for the compressible dissipation derived therein. However, subsequent direct sim-

ulations of homogeneous shear flow by Blaisdell et al. 2 and Sarkar, Erlebacher and Hussaini 3

showed that the pressure-dilatation is comparable to the compressible dissipation and con-

tributes to the reduced growth of turbulent kinetic energy induced by compressibility. This

has motivated a revisit to the issue of modeling the pressure-dilatation in the present paper.

Recently, Taulbee and VanOsdol 4 and Zeman' have also considered this problem. Taulbee

and VanOsdol related the sum of the pressure-dilatation and compressible dissipation to a

model involving the density variance and the divergence of the mean velocity. A separate

modeled transport equation was proposed for the density variance. Zeman' equated the

pressure-dilatation to the time rate of change of pressure-variance and then, extending the

work by Sarkar et al.3 on equilibration of the compressible pressure variance on the fast

acoustic time scale, proposed a transport equation for the pressure variance. The objective

of the present work is to deduce a model for the pressure-dilatation which is algebraically

related to quantities obtained by incompressible turbulence closures, in contrast to the pre-

vious models, which require new transport equations.

We consider the behavior of the pressure-dilatation in homogeneous flows. Direct simu-

lation results are presented and compared for two flows - homogeneous shear turbulence and

decaying isotropic turbulence. The DNS results show that the contribution of the pressure-

dilatation to the turbulent kinetic energy evolution is more important in the case of shear

turbulence than in decaying isotropic turbulence. We also find the somewhat surprising re-

sult that the major contributor to the pressure-dilatation is not the compressible pre-s'-7:,
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but is the incompressible pressure associated with the solenoidal velocity. The governing

equations are analyzed for the case of homogeneous flow to obtain a formal expression for

the pressure-dilatation from which a model is deduced using scaling arguments.

2 DNS results

A spectral collocation method along with a th-rd-order accurate Runge-Kutta time advance-

ment was used to solve the compressible Navier-Stokes equations. Details of the calculations

are available in Sarkar, Erlebacher and Hussaini3 for homogeneous shear flow, and in Er-

lebacher, Hussaini, Kreiss and Sarkar6 for decaying isotropic turbulence. A uniform 96'

grid was. used for discretizing the flow domain. Table 1 shows some of the parameters of the

three shear flow cases (S1,S2 and S3), and three decaying isotropic cases (D1,D2, and D3). In

Tables 1 and 2, S and v denote the shear rate and kinematic viscosity used in tb, (nondimen-

sional) compressible Navier-Stokes equations, while R.\,O and Mt,0 denote the initial values

of the Taylor microscale Reynolds number and turbulent Mach number respectively. Note

that ReA = qA/v where q = -uand A =q/ , while Aft = q/ where e = VRT is

the mean speed of sound. In order to minimize the introduction of compressible effects due

to initial conditions, all the cases start with incompressible data, that is, the velocity field

is divergencp-free (d' = V.u' 0), the pressure field satisfies the usual Poisson equation for

incompressible flows, and density fluctuations p' = 0. The initial temperature is calculated

from the equation of state using the known pressure and density fields.

The homogeneous flows considered here have temporally evolving turbulence statistics.

Fig. 1 shows the evolution of the pressure-dilatation p'd' as a function of normalized time

St for the two homogeneous shear cases S1 and S2. Two trends in the behavior of p'd'

are evident from Figs. la-b; first, the pressure-dilatation develops pronounced oscillations

in time and second, it ir more negative than positive. These trends are common to all the

simulations of homogeneous shear flow that we have performed. Such oscillations in stati-ti-

cal quantities are neither expected nor encountered in incompressible flows and complicate

issues in compressible turbulence modeling. By numerical experiments, it was found that
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the nominal time period of the oscillations decreased approximately linearly with the speed

of sound. This suggested that one could isolate the oscillatory part of p'd' by decomposing

the fluctuating pressure p' into the sum of an incompressible part pi' and a compressible

part ps'. The component p t is associated with the incompressible velocity field u' which is

divergence-free (V.u' = 0) and satisfies the usual Poisson equation

v 2pI - -
I /-2pui,,nu ,,, - -luI n,,U n,m(1

and the remainder p' - p' is the compressible pressure pC. Since

I ' C'
p P +p

we have

p'd' = p7d' + pC'd'

Fig. 2a shows the evolution of pC'd' and pI'd' for case S1. The oscillations are substantial

only for pC'd', and furthermore, the peaks and valleys in the evolution of pC'd' in Fig. 2a

seem to be much more symmetric around the origin than those in p'd' in Fig. la.

One of the important effects of p'd' is its influencc on the budget of the turbulent kinetic

energy K. The equation for K in homogeneous turbulence is

-d(K) = pP - ;5 - TEe + pd' (2)

where P = -iiidu-'uj is the production, f, the solenoidal dissipation, E, the compressible

dissipation, and Pd' the pressure-dilatation. The overbar denotes a conventional Reynolds

average, while the overtilde denotes a Favre average. A single superscript 'represents fluctua-

tions with respect to the Reynolds average, while a double superscript " signifies fluctuations

with respect to the Favre average. In order to gauge the relative importance of the two com-

ponents pC'd' and pt'd' of the pressure-dilatation in the evolution of the turbulent kinetic

energy, we plot the integrals fpt'd' dt and f pC'd, dt in Fig. 2b. Fig. 2b shows that the inte-

grated conkribl,t;,n of. p'' i out an ,u,& ', i-;.gni'uJc 1,cdgcr thait t.a . UO2 Vca. Thus,

even though the extrema of pC'd' are larger than p"d', the time-integrated contribution of
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these oscillations in pC'dr is negligible compared to the contribution of p11d'. Fig. 3 and

Fig. 4, which contrast the behavior of pl'd' and pC'd for two other homogeneous shear flow

cases S2 and S3, confirm the aforementioned trends observed in case Si. (See Table 1 for

the initial conditions of cases S2 and S3). It seems that for homogeneous shear flow, p1'd'

dominates p& d' ii, the kinetic energy equation. It is interesting that even though both the

dilatation and the compressible pressure are associated with the same hyperbolic system of

equations governing the compressible mode, the correlation of the dilatation with the com-

pressible pressure plays a smaller overall role than the correlation of the dilatation with the

incompressible pressure.

Figs. 5 and 6 show DNS results on the pressure-dilatation from the decaying isotropic

turbulence cases DI and D2 (see Table 2 for initial conditions). Both p"d' and pC'd" in

Fig. 5a and 6a show sharp transients initially whereby the pressure field is appropriately

redistributed into incompressible and compressible parts. The integrated pId' is much larger

than the integrated pC'd ' in Figs. 5b and 6b just as in the homogeneous shear flow case. In

Figs. 5a and 6a, the term pC'd' becomes approximately zero after a short initial transient.

This is in agreement with the exact solution derived in Sarkar et al. 1 for the linearized

equations for the compressible mode which predicted that pC'd' --+ 0 after a transient on

the acoustic time scale. The DNS reveal an important difference in the behavior of p'd'

in isotropic turbulence with respect to homogeneous shear. The term p'd' is predominantly

positive in the case of decaying isotropic turbulence, in contrast to its predominantly negative

behavior in homogeneous shear turbulence. The different signs of the pressure-dilatation have

been explained by a theoretical consideration of the equations of the pressure variance and

density variance by Sarkar, Erlebacher and Hussaini3 .

To summarize, the DNS results show that the pressure-dilatation is predominantly neg-

ative and has pronounced oscillations in homogeneous shear flow, while it is predominantly

positive in decaying isotropic turbulence. We find that the oscillations in p'd' are confined

to the component pC'd' of the pressure-dilatation associated with the compressible pressure,
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and furthermore that, because of self-cancellation, the contribution of this oscillatory com-

ponent to the development of the kinetic energy is negligible. Therefore, it seems that only

the component pI'd' of the pressure-dilatation requires modeling, which we proceed to do in

the next section.

3 Modeling the pressure-dilatation

Consider the Poisson equation Eq. (1) for the incompressible pressure. As is often done for

pressure-strain modeling (see Lumley', Reynolds8 ) for incompressible flows, the incompress-

ible pressure can be split into a rapid part pR' which reacts instantaneously to a change in

the mean velocity gradient and a slow part pS'. Thus

p' =p' + P' (3)

where
72R'  -- I I'

V2 R' Pmnnm= -2jpum,'nu ,,m (4)

and
72pS' - I' I'

=-Pu m,n (3)

Eq. (4) can be exactly solved by Fourier transforms for homogeneous turbulence to give

RI= 2i' ,i 1i, II (6)
P V m~n n

Note that denotes the Fourier transform of €. From Eq. (6) it follows that

PRV = J, , kin, Edk (7)

Here E 7 denotes the spectrum of the mixed Reynolds stress tensor __'u_'. Eq. (7) is an

exact expression for the rapid pressure-dilatation pR'd' and, though cumbersome, can be

used for obtaining a simple model. By inspection of Eq. (7), it is clear that because of

the dependence on the local energy spectrum tensors, a transport equation is required for

a general representation of pd'. However, we will attempt to obtain an algebraic rather
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than a differential model for compressibility terms. This is possible if there are equilibrium

scalings in the flow, and the ensuing model will be useful if the additional compressibility

correlations do not dominate the incompressible terms in a given transport equation.

Define the tensor Am, by

A kink3 E' 9 dk-- -k2 Ej d (8)

which enables the following compact representation of Eq. (7) of the rapid pressure-dilatation

pR'dI = (9)

The simplest dimensionally consistent form for Am,, which has the correct dependence

on u, and u91 is
C1 i

Amn = a2Ur Un (10)

where a2 is a dimensionless parameter which in general is a function of the actual shape

of the encrgy spectrum tensors for the incompressible and compressible velocity. We have

found through analysis and DNS that for homogeneous shear turbulence

- O(=Mt)u I  (11)

where uc and ut respectively denote the L2 norms of the compressible and incompressible

velocity fields. In Sarkar et al.1, we had shown that the dilatational velocity has a fast time

scale which is O(Mt) times the solenoidal velocity's time scale, and therefore the correlation

between um' and u " should be prorated by a factor of Mt. Using Eq. (11) and prorating

the mixed correlation, we obtain from Eq. (10),

Amn t M 'U (12)

Substituting Eq. (12) into Eq. (9) gives

pR'd' = -ca2MP (13)

where P is the production - ti4 u'u-. Eq. (13) may be used as a model for the rapid-

pressure dilatation when using a conventional Reynolds-averaged system of equations. We
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preier using a combination of Favre and Reynolds averages (eg. see Sarkar and Balakrishnan9

for .ompressible flow calculations, and for such a sysiem of equations we propose using

Eq. (13) with the production being P Um,nUmu,. Since p'/- = O(MAt), changing from the

Reynolds-averaged definition to the Favre-averaged definition of the production P introduces

terms of higher order in Alt which may be neglected.

Let us now consider the remaining part of the pressure-dilatation, the slow pressure-

dilatation pS'd'. After using Fourier transforms to solve Eq. (5) for the slow pressure, we

obtain the following expression for the slow pressure-dilatation,

k, k kj ( ., t U tC i, t.i u ftc )(
pS" d'Pk2(u)dk (1)

Hlere o' denotes the complex conjugate of the Fourier transform 0. An order of magnitude

analysis of the r.h.s. of Eq. (14) gives

tt 13 (3pS'd' 0 -O - ) 0( U-[- ) !,I t (1.5)

In Eq. (15), 1 denotes the integral length scale of the turbulence, and the last factor Af, arises

from the disparity between the scales of the incompressible and compressible fields. Using

Eq. (11) for the scaling of u , and noting that fs = O(u'3 /1), we obtain the model

pS'd' = a 3ik 3 2  (16)

Combining Eqs.(13) and (16), we have the following model for the incompressible pressure-

dilatation

pt' = -a 2PPAI2 + a3 _3,EAIt2 (17)

We will now use the DNS data to verify the functional dependence stated in Eq. (17) and

also to calibrate the model coefficients a 2 and a 3.

Because the production P = 0 in decaying isotropic turbulence, the variation of the

incompressible pressure-dilatation with C, can be verified using DNS of isotropic turbulence.

The ratio p,'d'/(-fM2) is shown as a function of non-dimensional time in Fig. 7a. This

ratio reaches an equilibrium value by a time of 0.25, substantiating the validity of the second
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term in Eq. (17). Based on the DNS value of the equilibrium ratio, the model coefficient a3

in Eq. (17) is taken to be 0.2. The remaining part of the model for the pressure-dilatation

is calibrated against simulations of homogeneous shear flow. Fig. 7b shows that, in accord

with our model. the rapid part of the pressure-dilatation scales as pM/. The ratio (p'd' -

0.2(,.11)/("p-T'A!,) reaches ai a)proximate equilibrium value of -0.4, suggesting that the

Mo1del coefficient al = 0.1.

Finally, after using the arguments of section 2 to neglect ("d' areltive to pd''. the mo'll

for the pressure-,ilat at in becomcs

-()2 [P-'I, + ()3p(JA2 (IS)

where 'P -uiIt u, is the production of kinetic energy, .lt = \/2K '"Hf the turb:,ulent

NIcli nmnh):r. _, the solenoidal dissipation, and the model coefficients are n2 = 0.1. (1, = 0.2.

We are now in t hc process of applying the pressure-dilatat ion model to the compressible shear

laver anmd the flat plate boundary layer.

4 Conclusions

\Ve have obtained a model for the pressure-dilatation after applying scaling arguments ap-

plied to a formal solution for homogeneous turbulence. This model has been validated

)y direct comparison with DNS results for pressure-dilatation in homogeneous shear flow

arid isotropic turbulence. Eq. (18) is a reasonable approximation for inhomogeneous flows

without walls. However, future refinements may be necessary to capture different physical

processes of importance in other flows. For example, a process of importance in shock-

turbulence interaction and engine flows is a compressive mean velocity field. In such flows,

the pressure-dilatation mzdel Eq. (18) will have a contribution which is linear in the mean

compression. Inspection of the dilatation equation for homogeneous compression, obtained

by taking the divergence of the momentum equation, shows that there should be such a

term in the pressure-dilatation. Of course, even though the form of the dependence on mean

coinpression is already present in our model, in order to get the coefficient of the dependence
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Table 1: Parameters for the DNS cases of homogeneous shear flow

Case S , I v t ,A R\,o p' d'
Si 10 1/150 0.3 24 0 0
52 15 1/150 0.3 2-1 0 0
$3 15 1/125 0.t 1 20 0 0

Table 2: Parameters for the I)NS ca.;cs of decaying isotropic turbule-ce

Case v If t,o, R\,o P' d
m) 1/200 0.A 131 0 0

1)2 1/175 0.5 27 0 0
)3 1/175 0.6 27 0 0
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