
AD-A237 193

NAVAL POSTGRADUATE SCHOOL
Monterey, California

JUN 2 11991

THESIS LBS
9t

A FRAMEWORK FOR UNDERSTANDING THE
STRATEGIC DEFENSE INITIATIVES'

SOFTWARE DEBATES

by

Regineld C. Adams

Thesis Advisor: Donald Lacer

Approved for public release; Distribution is unlimited

91-02440

UNCLASSIFIED

SECLRiTY CLASS!P CA7 C'. O TH S PAGE

-REPORT DOCUMENTATION PAGEOMtw 7408

1. E REPORT SECURITY CLASS,FCATION Unlsiid lb RESTRICTIVE MARK NC'S

2a SECURITY CLASSIFICATION AUTHOR'TY 3 DISTRIBUTiON ' AVAILAB.LJTY 0, REPORT

A 2bDECASSIICAiON/DOWGRAING CHEJLEAPPROVED FOR PUBLIC RELEASE,
?b DCLASIFCATON DOWNRADNG CHEULEDISTRIBUTION IS UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NuMBER(S),

6a NAME OF PERFORMNG ORGANIZATION 16b OFFICE SYMBOL 7a NAME OF MONITOR!NG OPC'AN ZATION

Naval Postgraduate School (if applicable) Naval Postgraduate School
_________________ CODE ________________

6c ADDRESS (City State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba NAME OF FUNDING SIPONSOR NO 18b 0 F C SYVPIO, 9 PPROCURE!MEV,4 INSTRUk'ENT IDENTirICALON N-.MB;-
ORGAN:ZATiON J(if applicable)

8, ADDRESS (City State, and ZIP Code) 10 SO-RACE OF FuNID N NMBR

PPC)RAM I PROECT 7 AS .I OR UN
-EVEN7 NO NO NO :,CCESStON NO

11 TITLE (include Security Classification)
A FRAMEWOR K FOR UNDERSTANDI NG THE STRATEG;IC DEFENSE IN ITIATI VES' SOFTWARE

*DEBATES
12 PERSONA. A.Ji-iOR S)

ADAMS. REGINALD C.
13a TYPE OF REPOP [3v TIME COvERED 4 DATE OF REPOP.T It'ear, Month Day) 5A COli. V

* Master's TheS4 iS jFR O To J9E799
16 SPPE'EV~ NA0N The vie~k expfessed in this thesis are those of the author and do not reflect the

official pohey or position of the Department of Defense or the U.S. Government

17 CO)Sth CODES 18 SUBJECT TERMS (Continue on rev'erse if necessary and identify by~ block number)
FIED GROJP SuB8GRO~P STRATEGIC DEFENSE INITIATIVE (SDI), RELIABILITY,

ERROR FREE. BALISTIC MISSILE DEFENSE (BMD)
(BM C3)

19 ABS7PAC-, (continue on reverse if necessary and identfty by block number)
On Mlarch 23. 1983. then-President Ronald Reagan challenged a group of engineers and scientists to
make nuclear weapons -impotent and obsolete." This challenge led to the beginning of a new era in
space technology and strategic defense, thus creating the Strategic Defense Initiative (SDI), better
known as, "Star Wars." B\ 1984. several studies had beg-un to show htsfwr ncnucinwt
Battle Management Command. Control, and Communications techniques would play a major role in
determining the effectiveness, of the SDI. The results from these studies caused numerous
Controversial debates on the reliability. dcpendabilii\. and trust wort hiness of the software. This thesis
provides a framework for understanding the complexities of the SDI software and points out some of

*the major issues involked in the softwkare debates. The structure for this thesis is based on presenting

opiiom nh 1473,, JUN 86L- reiusedintis are soltiLS CC.C~T

S!x (102-LF-0 1V'-660r3 uNCLASIFIED

Approved for public release; Distribution is unlimited

A FRAMEWORK FOR UNDERSTANDING THE
STRATEGIC DEFENSE INITIATIVES'

SOFTWARE DEBATES

by

Reginald C. Adams
Captain, U.S. Air Force

B.S., Mississippi Valley State University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(COMMAND, CONTROL AND COMMUNICATIONS)

from the

NAVAL POSTGRADUATE SCHOOL

JUNE 1990

Author:-
Reginald C. Adams

Approved by: L__ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

Donald Lacer, Thesis Advisor

Prof. Lu t, Second Reader

r s' Chairmanepartu nt of Joint, Command,

Url and Communications

ABSTRACT

On March 23, 1983, then-President Ronald Reagan

challenged a group of engineers and scientists to make nuclear

weapons "impotent and obsolete." This challenge led to the

beginning of a new era in space technology and strategic

defense, thus creating the Strategic Defense Initiative (SDI),

better known as "Star Wars." By 1984, several studies had

begun to show that software in conjunction with Battle

Management/Command, Control, and Communications techniques

would play a major role in determining the effectiveness of

the SDI. The results from these studies caused numerous

controversial debates on the reliability, dependability, and

trustworthiness of the software. This thesis provides a

framework for understanding the complexities of the SDI

software and points out some of the major issues involved in

the software debates. The structure for this thesis is based

on presenting the opinions of various computer scientists and

engineers, indicating the issues that are controversial and

those that have been defined as a necessity for the SDI

program. One of the major highlights is the SDI summary chart

that provides the reader with a very brief narrative of each

individuals' opinion on the software issues discussed in this

thesis.

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

II. MAGNITUDE OF THE SDI SOFTWARE PROBLEM 7

A. INTRODUCTION 7

B. NATURE OF THE BALLISTIC MISSILE DEFENSE
SYSTEM (BMD) 7

C. SIMULATION: DESIGN AND TESTING 9

D. SOFTWARE DEVELOPMENT PHASES 11

E. ROLES OF SOFTWARE IN BMD 13

III. ANALYSIS OF THE SDI SOFTWARE DEBATES;
WHAT THEY DISAGREE ON 17

A. INTRODUCTION 17

B. WHY SDI SOFTWARE MAY BE UNRELIABLE 17

C. DEFINING TRUSTWORTHY: THE PARNAS VIEWPOINT 28

D. VIEWS OF WHY SDI SOFTWARE WILL NOT
BE ERROR-FREE 31

IV. ANALYSIS OF THE SDI SOFTWARE DEBATES;
WHAT THEY AGREE ON 37

A. INTRODUCTION 37

B. THE NEED FOR A SPECIFIC BATTLE MANAGEMENT/C3
ARCHITECTURE PRIOR TO DEVELOPMENT 37

C. THE NEED FOR A DEDICATED NATIONAL TEST BED . . 43

D. THE STRATEGIC DEFENSE SOFTWARE CENTER 48

V. SUMMARY OF THE SDI SOFTWARE DEBATES 51

A. TNTRODTCTTON 51

B. EVALUATION OF THE SDI SUMMARY CHART 51

iv

1. Reliability and Trustworthiness.......53

2. Availability................53

3. BM/C3 Architecture.............54

4. Testability................55

VI. DEVELOPMENTAL CONCERNS AND TRADEOFFS

ASSOCIATED WITH SDI SOFTWARE.............57

A. INTRODUCTION...................57

B. SDIO SOFTWARE CHALLENGES............58

C. THE USE OF SOFTWARE ENGINEERING TOOLS
FOR SDI SOFTWARE DEVELOPMENT..........62

D. THE SIMULATION AND TESTING TOOLS AVAILABLE . . 69

E. SECURITY FOR SDI................76

VII. CONCLUSIONS.....................82

LIST OF REFERENCES....................86

INITIAL DISTRIBUTION LIST.................89

Accession For

DTIC TAB 0
Unannounced 0
Juitlication

By
01 DIstributiop/

Availability Codes
Avail and/or

bist Special

I. INTRODUCTION

Computer technology has advanced very rapidly since the

late 1970s. In particular, computer hardware has allowed

engineers to develop smaller, faster machines for more

advanced computing power. In contrast, computer software has

lagged behind in advanced technology. Software development is

one of the major keys to the success of a Ballistic Missile

Defense (BMD) system. Consequently, the Strategic Defense

Initiative Organization (SDIO) has been tasked with finding

ways to explore new software engineering techniques. These new

developments will enhance U.S. chances of protecting itself

from nuclear destruction.

The purpose of this thesis is to analyze the SDI software

debates that began in 1985 and continue even today. This

thesis will, therefore, provide a framework which will allow

individual readers to understand the complexity of the SDI

software problem. Many computer scientists have put forth a

variety of opinions, but these ideas and opinions have never

been compared so that interested personnel from academia, the

military, and industry would have an understanding of the SDI

software and its complexities.

In the early 1950s nuclear armed ballistic missiles

represented an advance in weapon delivery technology. During

1

that time the United States was vulnerable to missile attack.

To counter these missile attacks, many anti- ballistic

concepts were conceived; in particular, the SAFEGUARD

ballistic missile defense system. It was developed in the mid

1970s to serve as the answer to the Soviet Unions' nuclear

threat. Further analysis showed that (1) multiple, independent

target warheads from a single booster could saturate defenses,

and (2) our ballistic missile inventory proved inadequate

against a superior Soviet force. [Ref. 1]

SAFEGUARD was later disbanded and the Soviet threat is

still ever present. The Strategic Arms Limitation Treaties

(SALT) provided a linited reduction in the arsenals of both

the United States and the Soviet Union.

The concept of ballistic missile defense found a new spark

in the 1980s under the Reagan administration. In March 1983,

President Ronald Reagan tasked scientists to free us from the

fear of nuclear weapons by making them "impotent and

obsolete." This new outlook on strategic defense became known

as the Strategic Defense Initiative (SDI) or "Star Wars." What

is SDI? According to President Reagan, SDI is the development

of an array of satellites carrying sensors, weapons, and

computers to detect ICBMs and intercept them before they can

do much damage [Ref. 2 :p. 21. The purpose of this concept was

made clear in 1985 when the president stated:

[SDI's] purpose is to identify ways to exploit recent
advances in ballistic missile defense technologies that
have potential for strengthening deterrence and therefore

2

increasing our security and that of our allies. [Ref. 2:

p. 23

The Strategic Defense Initiative Organization (SDIO) is

planning a three part phased development for ballistic missile

defense. Each phase builds incrementally on the previous,

capitalizing on the benefits of the preceding phase. The SDIO

and their contractors have studied several options for the

first phase. The basic purpose of this phase would be to

compel Soviet operational adjustments and compromises, thus

reducing the confidence of Soviet planners. The second phase

would enhance deterrence by imposing uncertainty on the Soviet

strategic attack plans. A follow-on section of this phase

would deny the Soviets' the ability to destroy "militarily

significant" targets (e.g., Missile Silos and Command and

Control Centers). The third phase would be aimed at dominating

the threat posed by nuclear ballistic missiles. That phase

would be completed either by the Soviets choosing to rid

themselves of obsolescent missiles by negotiating arms

reduction or by engaging in an offensive-defensive arms race

that could prove costly and leave both the Soviets and the

U.S. financially handicapped. Figure 1.1 gives an overview of

the phase I architecture for SDI. This architecture shows the

different surveillance and tracking systems, radars, and

interceptors that would be used from boost phase to terminal

phase. Table I gives a description of the functions of the

system elements in the phase I architecture. The reader should

3

note that there is no description of the brilliant pebbles

function, which replaces the Space Based Interceptor and is a

very recent innovative, space kinetic energy concept. [Ref.

3:pp. 2-6]

Many supporters of SDI are very optimistic concerning the

technologies used to deter Soviet Aggression. Although many

areas lack confidence, scientists feel the 1990s brings

promise of the reality of an SDI deployment.

4

SDS PHASE I ARCHITECTURE

SPACE-SASED SURVEILLANCE
AND

TRACKING SYSTEM PBLSN

(ST -,i D E C O Y S P P E B E

Figure 1.1

RV V LLAN5

TABLE I.

Elements of Initial System

SYSTEM ELEMENTS PRIMARY FUNCTIONS

Boost 3urvelllance and Trackdng Detection of missile launches
System (BSTS) Acquisition and tracking of boosters

*Booster ki assessment

Space-Based Surv*illance and Acquisition and tracking of post-boost vehicles aid
Tracking System (SSTS) reentry vehicle clusters, ASATs, and satelites

*KMl assessment

Ground- Base.3 Surveillance and Closely spaced obj~ect resokluton
Trac*ing System (GSTS) Tracking of reentry vehicles and penetration aids

*Discrimination of reentry vehicles from penetration aids
*Kil assessment

Ground-Based R~adar (GBR)* Pquljfton and tracking
01Olcrimination of reentry vehicles from penetration aids

Ground-Based (Exoatmospheric) *Deste uction of reentry vehicles In late midcourse

Interceptor (GBI)

Space-Based Intsrcep~or (SBI) Destruction of boosters, post-boost vehicles, and ASATs
*Destruction of reentry vehicles In early midcourse

Command Center (CC) Human dedislonmaking

*Communications

*Battle plan execution
Guidance for system operation and Integration functions
(SO IF)

GBR is currently under consideration for inclusion in Phase 1.

6

II. MAGNITUDE OF THE SDI SOFTWARE PROBLEM

A. INTRODUCTION

The focus of this chapter is on some of the major software

issues that directly affect the success of SDI. The main issue

that is unique to SDI is its physical size. According to the

Office of Technology Assessment (OTA), the software required

for the SDI program far exceeds that of any of its

predecessors. Other factors discussed in this chapter are the

use of software development tools and software engineering

practices. Finally, design and testing efforts are discussed

in relation to the simulation methods for SDI.

B. NATURE OF THE BALLISTIC MISSILE DEFENSE SYSTEM (BDM)

In the massive conglomeration of satellites, weapons, and

sensors required for a strategic defense system lies what many

supporters of SDI call the catalyst of the entire system. That

catalyst is the software necessary to integrate the sensors

and weapons. The SDI software problem is difficult because of

the many complexities involved. They include areas such as

simulation and testing, computer architectures, reliability,

maintainability, compatibility and interoperability, to name

a few.

7

One reason for the confusion over software design and

development stemmed from the alternate interpretations of

President Reagans' famous "Star Wars" speech. Based on the

interpretation of Dr. David Parnas, former member of the

Eastport Study Group, the only way to make nuclear weapons

impotent and obsolete will be to eliminate the nuclear

arsenals of both the United States and the U.S.S.R. The

Eastport Study group, chaired by Pr. Danny Cohen, share an

alternate interpretation. Dr. Cohen believes that any goals

reached toward ultimate ballistic missile defense will be a

major accomplishment. Views of Dr. Parnas and Dr. Cohen will

be discussed more in Chapters III and IV.

What makes the software such an integral part of the

ballistic missile defense system? The main reason is that

computer technology hardware and software must be adequate to

control individual weapons and sensors and coordinate their

operation. Battle Management and Command and Control (C2) are

the two most important factors for SDIs' success. The C2

system must receive and act on information pertaining to

thousands of missile launches, tens of thousands of warheads,

and hundreds of thousands of decoys. To complicate matters,

all this coordination must be done within the time it takes

Soviet Intercontinental Ballistic Missiles (ICBM) to travel

from their launch sites to U.S. targets. This time is

estimated to be about 30 minutes. Therefore, any human

intervention to correct errors will be minimal. [Ref. 4:p. 46]

8

Managing an enhanced defense against ballistic missiles

presents problems of unprecedented complexity. In 1983, the

Defense Technology Study Team (DTST) examined the technologies

needed for ballistic defense. The study, better known as the

Fletcher Study, concluded that the development of software for

a battle management system will be a task that exceeds An

complexity and difficulty any that has been accomplished in

the protection of civil or military war systems. The estimate

for written software instruction at that time was 10 million

lines. According to some analyst, that figure has more that

quadrupled, exceeding 40 million lines of executable code.

[Ref. 5:p. 17]

C. SIMULATION: DESIGN AND TESTING

One of the many questions that analysts in the space

program are asking is "How can the system be tested" or "When

is the system operating correctly." Without a doubt SDI

software developers are asking some of the same questions.

Because of its complexity, the BMD system has to be tested

from the research phase to the deployment phase. On a broad

basis, testing should occur at four levels They include

research, component and subsystem testing, system level

testing, and deployed hardware and software testing. Research

is literally nothing more than achieving an understanding of

the process involved. Component and subsystem tests provide

designers with a sense of validation or lack of validity for

9

a given approach to a system or subsystem. System level

testing is done to get rid of operational bugs and measure

system performance against its specifications and its

operational requirements. Finally, deployed hardware and

software testing brings a realistic environment into focus.

[Ref. 6:p. 1605]

The Strategic Defense System (SDS) will contain many

algorithms performing functions for surveillance, tracking,

discrimination, weapons assignment, weapons control and

guidance, network routing and control, security-access

control, system fault tolerance, and fail-safe mechanisms.

These algorithms are crucial to the identification and

assessment of missile threats and the performance of sensors

and weapons. This requires testing to be done on and end-to-

end basis using the actual software code instead of an

emulated version. The algorithms must be tested to find out

how well the chain is functioning (i.e., tracing action from

threat to sensor detection and track association to track

correlation to track prediction. ...). There is obviously no

one solution to the "testing problem, but scientists are

measuring system performance through simulation. But, the

simulation capability must be credible. Credibility is

established when acceptable testing results are provided to

those testing the system. SDIO recognized this need and

organized the National Test Bed (NTB) in 1988. The author will

discuss the NTB in more detail in Chapter IV.

10

According to the Eastport Study Group, simulation

facilities must have the capability of modeling the components

of the SDS, and its potential threats to answer questions like

"Are the battle management strategies embedded in the BM/C3

software adequate to cope with possible/potential attacks?"

The simulation technique utilized to replace simulated

hardware or software functions is known as "In-line" testing.

With this technique engineering developments are accelerated

by allowing the insertion of system components and prototypes

into a realistic environment, thus detecting problems much

earlier that with traditional methods. [Ref. 2:p. 29]

D. SOFTWARE DEVELOPMENT PHASES

The development of a comprehensive defense system depends

very heavily on the software controlling it. If the software

is faulty, it is inevitable that the system will fail. BMD

software has four crucial areas that are critical factors in

attaining the objectives for which the system is designed.

These include: planning, design, implementation, testing and

debugging. It should also be noted that these phases are not

always sequential and some overlap will occur.

The first crucial phase for developing SDI software is

planning. Planning involves stating the necessary

specifications and requirements to accomplish a mission. These

elements must be bounded in some manner to give certain

definition to the problem. The precise specification of what

11

the ballistic missile defense must do is a complicated task.

For instance, if the mission is to shoot down Soviet missiles,

knowing only Soviet missiles exist, then this problem is

relatively simple. Unfortunately SDI will operate in a more

complicated environment. For example, how can Soviet missiles

be distinguished from non-Soviet missiles or what if a Soviet

missile is headed for a target in East Germany? The developer

will therefore try to predict every contingency in order to

decide how the software should respond. A number of

possibilities and circumstances may not be foreseeable, but

the developer must somehow properly plan for these

contingencies [Ref. 4:p. 48].

The design phase for SDI software development is a large

task in its own right. In particular, the developers must

implement the specifications and requirements defined in the

first stage (planning) through the use of computers. This is

where all the algorithms must be incorporated and sequences of

action established.

Based on the experiences of other major military systems,

integration of individual components generates problems when

the entire system must operate near its limit. For instance,

during an exercise using the World Wide Military Comman4 and

Control System (WWMCCS), a communication network used by

military and civilian authorities for message transaction to

and from the field, the message transmission rate was

satisfactory when the system was in routine operation. On the

12

contrary, when additional regional centers were connected to

the WWMCCS, the system performance was degraded tremendously.

[Ref. 4 :p. 48]

Simulation and testing is usually used to solve problems

on a small basis, but they are limited with respect to large,

interconnected systems such as the BMD system. Further

discussion of this issue will occur in Chapter VI.

The final phase involves debugging real time software.

Debugging can account for almost 70 percent of the total life

cycle cost of a software development project. Iwo salient

points that make software maintenance difficult are: 1) Errors

don't reoccur easily, and 2) Errors found after a system

becomes operational must be eliminated. To add even more

complexity to this problem, analysts state that the

probability of introducing an error while eliminating a known

error ranges from 5 to 50 percent. [Ref. 4:p. 50]

These four phases indicate that software development for a

BMD system is critical. The author believes that scientists

and engineers have a lot of ground to make up in terms of

finding viable solutions to make the Reagan administrations'

prophecy a reality.

E. ROLES OF SOFTWARE IN BMD

Ballistic Missile Defenses can't perform without computers,

just as computers can't perform without software. Software is

nothing more that a set of sequential instructions used to

13

direct the actions of computers. The software, because it is

expected to perform continuously with or without failures,

must be reliable and trustworthy.

There are those who support or oppose the easibility of

the development of the software based on their technical

expertise. One unique requirement for SDI is that the software

driving the BMD would have to work reliably the first time

it's used in battle. Dr. David Parnas wrote the following on

software reliability:

People familiar with both software engineering and
older engineering disciplines observe that the state of
the art in software is significantly behind that in other
areas of engineering. When most engineering products have
been completed, tested, and sold, it is reasonable to
expect that product design is correct and that it will
work reliably. With software products, it is usual to
find that the software has major "bugs" and does not work
reliably tor some users. These problems may persist for
several versions and sometimes worsen as the software is
"improved" [Ref. 7:p. 433]

Some computer scientists and engineers believe that

software development is advanced enough to make the SDI task

tractable. Dr. Frederick P. Brooks, for example, stated:

I see no reason why we could not build the kind of
software system that SDI requires with the software
engineering technology that we have today." [Ref. 8: p.
284]

There are several positions on the feasibility of SDI

software development; therefore, it is important to understand

these positions when analyzing the roles of software in BMD.

According to an Office of Technology Assessment (OTA)

report in 1988, software for BMD would be expected to:

14

I. Be the agent of system evaluation, permitting changes
in system operation through reprogramming of existing
computers.

2. Perform most complex tasks in the system, such as
battle management.

3. Be responsible for recovery from failures, whether
they are hardware or software failures.

4. Respond to threats, both anticipated and unanticipated

against the system.

These roles or functions of software are just a few among

many that software technology must contend with. Futhermore,

BMD software would be more complex than any previously built.

A conclusion from the Fletcher Study stated:

Specifying, generating, testing, and maintaining the
software for a battle management system will be a task
that far exceeds in complexity and difficulty any that
has yet been accomplished in the production of civil or
military software systems. [Ref. 9:p. 4]

In this author's opinion, DoD has found that producing C3

and information processing software for weapon systems is not

an easy task. There are many similarities between a BMD and

today's typical C3 systems, such as weapons guidance,

targeting, and real time communication control, but the

differences are enormous. They include very little human

intervention, much larger battle spaces to manage, operating

in a nuclear environment, and many others. BMD software is

critical to successfully defending the U.S. and its allies

against any nuclear threats. Because of complexity and other

software issues, it is very important that requirements be

15

stated specifically before the development of any software

modules.

16

III. ANALYSIS OF THE SDI DEBATES: WHAT THEY DISAGREE ON

A. INTRODUCTION

This chapter describes the different views of some noted

software engineers, professors, analysts, and computer

scientists on the reliability issues concerning SDI software.

The opinions are those of individuals with first hand

knowledge and interest in the SDI program. Among them are:

Dr. Danny Cohen, Chairmen of the former Eastport Study Group;

Dr. Frederick Brooks, Professor of Computer Science at the

University of North Carolina; Dr. David Parnas, Professor of

Computing and Information Systems at the University of

Victoria, B.C.; Dr. Solomon J. Bushbaum, Executive Vice

President for Customer Systems at AT&T Bell Laboratories, and

C.A. Zraket, President and CEO of the Mitre Corporation.

The author will try to provide the reader with a framework

for understanding some of the complexities associated with

designing and developing reliable, trustworthy, error-free

code.

B. WHY SDI SOFTWARE MAY BE UNRELIABLE

Defining reliability as it applies to SDI software is

difficult because of the extreme demands on the system and the

inability to operationally test those demands. The software

17

will be responsible for ensuring that the BM/C3 systems can

bind together a system of worldwide sensors, weapons,

platforms, and communication links. Knowing that a task of

this magnitude must be completed in a matter of minutes,

reliable software is important for a successful strategic

defense. [Ref. 2:p. 1]

In 1985, Dr. David Parnas resigned from the panel on

computing in support of battle management known as the

Eastport Study Group. He felt many of the computer science

problems could not be solved prior to the development of an

Anti-Ballistic Missile (ABM) system. Dr. Parnas later wrote

eight articles that supported his resignation. Among the noted

papers were; "Why software is unreliable," "Why the SDI

Software System will be untrustworthy," and "The Limits of

Software Engineering Methods." [Ref. 7:p. 2]

Dr. Parnas does not apply the term reliability towards a

strategic defense system as he does to other programs. Dr.

Parnas appeared before the U.S. Senate Subcommittee on

Strategic and Theater Nuclear Forces in December 1985. There

he stated that reliable software could indeed be built if all

the requirements are known and the software can be

controllable as well as predictable. These factors can be

determined for a system such as the telephone system, but they

don't apply well to SDI. First, tools such as mathematical

analysis and exhaustive case analysis are useless in some

sense because the requirements for the software functions are

18

controlled by strategies and tactics of the Russians.

Secondly, redundancy, which is considered by some authorities

to be the key to reliability, is very expensive in space.

Redundancy is good for independent component failures, but

design failures pose a bigger problem. For instance, if

redundancy is implemented in a section of code that already

contains a design flaw, we've given ourselves a "double

whammy." These tools are great for m athematical analysis that

work on continuous functions, but software is a discrete state

system that cannot be described by these functions. [Ref. 8:p.

286]

Dr. C.A. Zraket, in his article on "Uncertainties in

Building a Strategic Defense" stated that the feasibility of

designing and building reliable s-ftware for a BMD system

depended largely on (1) trustworthiness - known, predictable

effectiveness, and freedom from "catastrophic flaw," (2) fault

tolerance - ability to continue functioning coherently when

part of the system is damaged, and (3) information security -

ability to prevent programs from being exploited by using

"trusted" programs and coding and authentication techniques.

To sum up the problem of reliability, Dr. Zraket stated the

following:

Much more research and a lengthy development effort
are needed in dealing with the operational design and
implementation of a specific BMD architecture before a
conclusive judgement can be made about the reliability of
software for this space-based system. [Ref. 6:p. 1605]

19

Everyone realizes that the SDI system is faced with

reliability problems, but how reliable must the software be or

as stated by Dr. Frederick Brooks, "How good is good enough?"

For instance, if 10,000 nuclear missiles were fired at the

United States and our system operated effectively at 99.9

percent, 10 nuclear bombs would still bombard our country. Not

good! Figure 3.1 gives the reader some idea of the number of

errors created and later found and fixed (Rayleigh Curve).

This curve is intended to be a rough representation of a

subsystem for SDI. The curve was projected on the basis o-f a

real-time C2 system consisting of 1 million lines of source

code. The x-axis represents the time in mr,.ths while the y-

axis represents the number of errors per month. There are

several milestones that occur during the development and

operation phases. The sequential stages are represented by the

vertical lines and are defined as follows:

1. Preliminary Design Review (PDR)

2. Critical Design Review (CDR)

3. First Code Complete

4. System Integratiun Test

5. User-operat'onal Capability

6. Initial Operational Capability

7. Full Operational Capability (95 percent reliability
level)

8. 99 percent reliability level, and

9. 99.9 percent reliability level. [Ref. 10:p. 63]

20

Expected Error Rate

Expected error rate
2 3 45 67 8 9

i -200

- 150

Errors/Month , 100

_50

0

0 9 18 27 36 45 54 63 72 8190
Percent reliability: Months
7 * 95
8 • 99

9 •9.9 Figure 3.1

Due to the vast size and complexity of SDI, it would take

approximately 7.5 years to reach the 99.9 percent reliability

level. Figure 3.2 shows the total expected errors. Even at a

99.9 percent reliability level there would still be over 6,000

cumulative errors. (Keep in mind that this is the case for 1

million lines of code.) [Ref. 10:p. 631 At the third annual

IEEE Conference on Strategic Software, the number of lines of

code to operate SDI was up to 20 millions lines, thus

increasing the concern and need for reliable software systems.

[Ref. 11]

21

Total Expected Errors

2 3 4 5 6 7 8 9
8000

- - 6000

Errors
____ __-4000

_2000

0
0 9 18 27 36 45 54 63 72 8190

Percent reliability:

7 - 95 Months
8 - 99

9 • 99.9
Figure 3.2

SDI software may have a reliability problem, but the real

question is how to evaluate the systems' dependability. Other

questions are what are the characteristics of a reliable

system, and how much emphasis should be placed on each

characteristic for evaluating the system? The Office of

Technology Assessment (OTA) addressed these issues and labeled

the following commonly considered characteristics:

1. Correctness - whether or not the software satisfies
its specification

2. trustworthiness - probability that there are no errors
in the software that will cause the system to fail
catastrophically

22

3. Fault tolerance - either in prevention (i.e.,
capability of the software to prevent a failure
despite the occurrence of an abnormal or undesired
event - or failure of recovery

4. Availability - probability that the system will be
available for use

5. Security - resistance of the software to unauthorized
use, theft of data, and modifications of programs

6. Error incidence - number of error in the software,
normalized to some measure of size

7. Safety - prevention of human life and property under

specified operational conditions

These characteristics are critical to system reliability.

The process of instilling reliability into SDI software must

begin at the software development phase. It is very difficult

to "add in" reliability after the software design is complete.

As stated earlier, this can lead to exponential cost increase.

[Ref. 12:p. 288]

Even though there is a lack of ways of quantifying

confidence in software, people trust computerized systems. For

instance, no one thinks about the probability of a disastrous

error occurring in the software of an automated teller

machine. This attitude allows scientists to start the

development of systems without having all of the reliability

issues resolved. The more confidence that is gained in a

system, the less the resistance that will be shown in

accepting that system. There are a few entities that

characterize dependable software systems. They include 1)

extensive use and abuse of the system, 2) predictable

23

environments, 3) low cost of failures, and 4) stable

requirements [Ref. 12:p. 235-236]. A strategic defense system

exhibits none of h these entities.

The extensive use of any system, whether it be an

automobile or a computer system, may be the most important

factor for building confidence in that system. This confidence

comes from extensive use and abuse. Simulations cannot test

extensive use and in many cases real world complications are

expensive and poorly understood. The software for SDI falls

within a similar category because it can only be tested end-

end during an actual battle. [Ref. 12:p. 45] In essence the

first time may be the only time. Dr. Solomon Bushbaum believes

that most, if not all, of the essential attributes of the

BM/C3 systems have been demonstrated in comparable terrestrial

systems, namely, the U.S. Public Telecommunications Network.

[Ref. 8:p. 275] Although the telephone system has been

extensively "used and abused," it is not a weapon system.

Figure 3.3 shows a comparison of the characteristics for

SAFEGUARD, SDI, and the phone system with respect to

dependability. In a letter to Congress from designers and

maintainers at AT&T Bell Labs, they stated:

"Despite rigorous test, the first time new equipment is
incorporated into the telephone network, it rarely
performs reliably. [Ref. 12:p. 243]

If the behavior of the software can be predicted in an

operational environment confidence can be gained because the

environmental factors are known. This is the case with the

24

Characteristics of Dependable Systems
Applied to

SDI, SAFEGUARD, AND THE TELEPHONE SYSTEM
Characteristic SDI SAFEGUARD Telephone

System

Extensively used & abused No No A S

Predictable environment No No Yes

Low cost of a failure No No Yes

Stable requirements No Yes Yes

Well-understood
predecessor No Yes Yes

Simple design UKN ? Yes

Disciplined development UKN Yes Yes

Source: OTA

Figure 3.3

telephone system where mathematical models can be used to

measure the amount of traffic on a switching circuit. On the

contrary, in a BMD environment, nuclear background and

countermeasures will not be predictable prior to the battle.

[Ref. 8:p. 345] Therefore, one's confidence in a system may

be lessened by the unknown factors.

All software systems inevitably experience software

failures. Users lack confidence in these systems if the risk

associated with gaining information is more than that of

losing it. In the case of the phone system, the ability to

recover from a failure at a low cost increases the users

25

willingness to use the system more. Besides, no major war will

be won or lost because a phone call cannot be recovered or

reconnected. On the contrary, software for BMD systems must be

reliable. There will be no time to repair errors during a

battle. If the error is "catastrophic," many thousands of

warheads will reach their targets. According to an OTA report

concerning technology for preventing catastrophic failure, the

following statement was made:

OTA found no evidence that the software engineering
technology foreseeable in the near future would make
large improvements in the dependability of software for
BMD systems. In particular there would be no way to
ensure that BMD software would not fail catastrophically
when first used. [Ref. 12:p. 246]

Finally, defining all the requirements is not feasible,

mainly because the threats, the strategies, countermeasures,

and technologies are in a constant evolution. In preparation

for writing this thesis, most software analysts and engineers

when asked "What is the toughest problem facing SDI software

development," the majority stated: changing requirements. This

is not a new issue. The problem has plagued some of our other

major weapon systems, in particular the B-i bomber program.

Many changes were incorporated during the development stage

which resulted in major deficiencies. According to a report on

the B-i bomber:

Defense officials blame many of the program's problems
on the decision to begin producing the aircraft at the
same time that research and development efforts were
underway, forcing engineers to experiment with some
systems before they were completely developed. [Ref: 13:
p. Al]

26

Stability in software has a special importance because of

the many decisions involved in the design. The earlier a

decision is made, the harder it is to correct later in the

process. The author believes that the key is to have little

change during the development process. This process increases

the confidence in the system and keeps cost at a minimum.

The previous discussion dealt with issues that were deemed

necessary for reliable software systems. Whether or not

technology is able to accomplish this feat is another

question. Supporters of the SDI program lean towards the

answers from the Eastport Study Group and various other

reports that have been submitted to Congress. Dr. Yale J.

Lubkin, director of advance technology for a major EW

manufacturing company, compared reliability of software

systems to that of the human brain. Dr. Lubkin stated that the

brain is a discrete state system that works with continuous

state components to produce complex sensor/logic systems. He

also stated that these systems work well on a scale such as an

"inchworm." For example, as the worm rotates its sensor,

searching to define the safe boundaries of its domain, it can

learn to proceed rapidly on a safe path without reaching a

boundary of discontinuity. Therefore, he concludes that the

implication that software systems will always be unreliable is

not true. It is obvious that these debates have very valid

positions on both sides. The winner may not be determined

until the battle is over. [Ref. 28:p. 12]

27

C. DEFINING TRUSTWORTHY: THE PARNAS VIEWPOINT

In the previous section reliability was discussed as a

measure of system behavior. As discussed earlier, reliability

is traditionally measured as the mean time between failure

(MTBF). Trustworthiness and reliability are generally

considered by most as almost being the same. It is obvious

that reliability has been quantified but not many attempts

have been make to quantify trustworthiness. According to the

OTA, two possible reasons for the lack of interest in

quantifying trustworthiness may be 1) trust is determined

qualitatively as much as quantitatively and 2) most systems in

critical applications are guarded by human operators. Whether

these reason are true or not, the term trustworthy must be

defined. [Ref. 12:p. 232]

As noted earlier Dr. David Parnas resigned from the

Eastport Study Group because of his inability to perceive that

software for the SDI program would be trustworthy. After his

resignation, Dr. Parnas wrote several papers about SDI

software issues. Of particular interest was the article on

"Why the SDI Software System Will Be Untrustworthy." That

article described the characteristics of the proposed battle

management software system and provided implications of the

problem characteristics. Dr. Parnas also stated reasons for

not trusting the software before the U.S. Senate Subcommittee

in 1985. The rest of this section will focus on the "Parnas

Viewpoint" of why software systems are not trustworthy.

28

Common definitions of trust include the belief that

conditions are favorable so that failure does not occur and

the belief in one's ability to maintain confidence. This

definition seems to fit very well with Dr. Parnas' reasons why

the software would not work correctly when really needed. Two

basic reasons are 1) we do not know exactly what the software

is supposed to do, and 2) we must somehow validate the fact

that it operates the way we think it should operate [Ref. 8:p.

290]. These reasons lead Dr. Parnas to believe that the

software could not be trusted because it is not known whether

the software will be correct or not. Scientists and engineers

agree that the software will not be perfect. Everyone involved

with the SDI program is willing to accept that fact. The

problem is how to stop the system from failing

catastrophically. Relating back to Dr. Frederick Brooks'

question of "How good is good enough," Dr. Parnas responded in

a letter to the editor of IEEE Computer magazine. He stated:

I think that the answer is clear. To be good enough we
have to know, with high confidence, how good it is. To be
good enough, we must know that the system will not fail
catastrophically. [Ref. 14:p. 6]

In the previous section, the author described some of the

characteristics that reliable software systems should have.

From this viewpoint requirements of the battle management

software and some of the implications of these characteristics

will be discussed. The following is a brief explanation of

each:

29

1. Identification, tracking and weapon targeting are
required system functions whose ballistic
characteristics cannot be known with certainty prior
to the battle. The implication of this problem is that
fire control software cannot be written without making
assumptions about the enemy's weapons and targets.
Therefore, if the system is developed without
knowledge of these characteristics, there are likely
to be fatal errors in the software.

2. Determining the behavior of computers within the
network cannot be predicted because of countermeasures
by an attacker. This leads to the belief that the
component availability and throughput of the system
will also be inhibited. There are some systems where
the likelihood of failures can be predicted from past
history or component failures are unlikely and
statistically independent, but this does not hold true
for the required battle management software.

3. Real time testing of the software will be impossible.
Although operational software for military aircraft
undergoes rigorous ground and flight testing, "bugs"
can and do show up in battle conditions. With this
inability to test the system under real-time field
conditions, the confidence and faith in the system is
minimal.

4. There will be little possibility of human intervention
during a nuclear war. This means that debugging and
modifications of the program during a short period
are not very likely to occur. Software modifications
have been made in the field during previous wars
(programming notes on the walls of trucks carrying
computers; Vietnam). Some systems have even become
reliable through such techniques, but the likelihood
of these events occurring in a 30 minute war is
extinct.

5. The number of targets detected and identified will
determine the computational requirements of each
process. The problem here, as in other cases, is that
the number of targets or decoys cannot be predicted.
Theoretically, this can be done using runtime/pre-
runtime scheduling techniques. This scenario would
work only if a worse case real-time schedule could be
worked out in advance.

6. Each weapon system will include its own weapons and
sensors which will require complex software systems to
run them. To make matters worse, these systems will be

30

dynamic during and after development. With a large
number of contractors involved, the components will be
subject to independent system modification. It is a
known fact that as the size of software projects
increase, the level of difficulty involved in terms of
integration increases. When interfaces are changed,
the problem is worsened. [Ref. 15]

The views shared by Dr. Parnas do not indicate that

software cannot function effectively. They only point to the

issues that engineers must consider before launching into a

massive space project like SDI. In an article in Technology

Review entitled "The Software for Star Wars: An Achilles

Heel?" Herbert Lin discussed the "can do" spirit of Americans

to overcome any so-called impossible feat. He stated that it

is fashionable for proponents of SDI to dismiss claims of

impossibility by citing lessons from history. The fact that

someone said something is impossible does not make it

possible. In his closing argument he states:

No one can know with certainty how the BMD software
would work during a large scale attack. How much
confidence should the American public have in a BMD
system so complex that no one person can understand it?
That cannot be certified as error-free? That it is
operationally untestable? The lessons learned from the
performance of other large software systems suggest that
the answer might be "very little" confidence indeed."
(Ref. 5:p. 18]

D. VIEWS OF WHY SDI SOFTWARE WILL NOT BE ERROR-FREE

The hazards of error-prone software has become common a

part of life on a daily basis. Whether it be a miscalculation

on our phone bills, lost airline reservations, or an

additional deposit to our checking account, errors are found

31

that may or may not alter our life styles. In many situations,

the magnitude of the error is small and the recovery process

is trivial. Unfortunately this is not always the case,

especially with the SDI software. In the previous sections of

this thesis the requirements for a BMD software system were

stated. Errors will inevitably occur, but they must be kept to

a minimum. [Ref. 10:p. 62]

Ware Myers discussed the problems of errors in large,

complicated software systems. He stated that they are created

in the process of formulating requirements, writing

specifications, designing software, and writing code. Most

analysts try to "spot check" the code by using techniques such

as design reviews, module testing, and integration testing.

Many errors occur when reprogramming is done to remove the

errors found earlier. The fact is, there is no certainty that

all errors in large complex software systems can be found and

fixed. [Ref. 10:p. 62]

Dr. Solomon Bushbaum tried to silence many critics on the

issue of error-free software by rephrasing the question to ask

whether or not the total BM/C3 system could be designed to be

robust and resilient in an error-prone environment. As alluded

to earlier, Dr. Bushbaum is referring to the U.S. Public

Telecommunications Network. [Ref. 8:p. 274] The author

believes that the phone system is reliable, available, and

adaptable because it has been "used and abused" continuously

32

for years. These are not exactly the characteristics tha-

relate to the BMD software systems.

There are no technological breakthroughs that will make it

possible to write error free software. It has not happened in

the past and the state-of-the-art tools and techniques for the

future are not promising. According to the Eastport Study

Group, the focus should be on developing software that will

function dependably despite the presence of errors. [Ref. 2:p.

2] This means placing more emphasis on the software research

that the SDIO supports and finding ways to reduce errors.

About 80 percent of errors found in large real-time systems

are said to be caused by faulty requirements and design flaws.

Some software professionals think that by using proper

development methodologies, intensive testing, formal

validation techniques and fault tolerant designs, we can

reduce the incidence of errors. The process involves using

computer aids and analysis procedures to test smaller

components of large systems. This results is trying to

narrowly predict and reduce the number of errors in a program.

Fault tolerant design techniques employ methods such as

multiversion development. In this process, two separate teams

of programmers are given the same set of requirements to

develop programs. The programs are then compared to each other

to reduce common mode errors. [Ref. 10:p. 65]

Although the ultimate goal is to design and develop a

software system that operates effectively with some known

33

errors, some scientists and engineers believe that the process

of counting errors is not well understood. [Ref. 10:p. 65] It

is quite obvious that, in most cases, quantitative arguments

are more convincing than qualitative ones. People are more

comfortable with numbers that support an argument. In a letter

to the editor of Computer magazine, Dr Parnas stated:

Error statistics make excellent diversions but they do
not matter. A low error rate does not matter. A low error
rate does not mean that the system will be effective. All
that does matter is whether the software works acceptably
when first used by the customers; the sad answer is that,
even -n cases much simpler that SDI, it does not. What
also matters is whether we can find all the "serious"
errors before we put the software into use. The sad
answer is that we cannot." [Ref. 14:pp. 6-7]

One cannot totally believe that the debate on whether SDI

software can be error free hinges only on assumptions about

error incidence. The number of errors found per thousand lines

of code cannot measure program correctness. The fact remains

that all of today's large computer systems contain

undiscovered flaws that are revealed only after the systems

are put to use. [Ref. 24:p. 94] Even during program

development, the "bugs" (errors) began to appear. The simplest

type of error, such as typographical slips, sometimes cause

the largest conseql ences. One of the most infamous examples is

the failure of the Mariner I Probe to Venus in 1962. In this

case, a period was substituted for a comma in the FORTRAN

language, consequently, the probe had to be destroyed shortly

after launch [Ref. 24 :p. 94]. Most fourth generation

languages check for notation errors automatically but logic

34

errors are more difficult to prevent. Even with small

programming projects done at the Navel Postgraduate School,

logic errors cost valuable computer resource time.

Other errors are caused by a programmer's lack of knowledge

of certain types of contingencies. These errors cause major

problems. There is no "physical" mistake to be found. The

error is caused because the program branches are not

available. Noted author, Alan Boring, gave an explanation that

in large-scale programs there is usually nobody who

understands the entire system completely. Humans play a major

role in manufacturing errors. Programming errors are

especially insidious because there is no way of indicating

there is a problem prior to testing. Another problem is that

if the section of code where the error lies is never executed,

the error is never found. Unfortunately, one day that "special

contingency" may occur and that section of software needs to

execute properly, but does not. As stated earlier, redesigning

software is expensive. The Department of Defense (DoD) will

spend about 10 percent of the budget or $30 billion on

software in FY90. With the recent lessening of the Soviet

threat, it is not likely that Congress will dispense more

money for redesigning systems that do not operate properly.

[Ref. 16:p. 26]

Zraket feels that because of the discontinuous and highly

discrete nature of software, generating millions of lines of

software code may cause small errors with a large operational

35

impact on the BMD system. The solution: rigorous design and

testing. This solution will be discussed more in the next

chapter. Zraket also stated that the most important and

prevalent uncertainties and flaws occur in the operational

design and structure of the software. His approach is similar

to that of Myers; build the operational design and software

in increments, evaluating each sequence.

36

IV. ANALYSIS OF THE SDI SOFTWARE DEBATE: WHAT THEY AGREE ON

A. INTRODUCTION

This chapter focuses on a few of the SDI software issues of

which both supporters and critics have agreed. This is by no

means an exhaustive list of requirements, rather it typifies

issues that are less debatable. The reader should be informed

that contrary to the style of the previous chapter, the views

shared in the debates addressed in this chapter are those of

a composite group and not necessarily those of individuals.

Anyone who has studied the SDI software issues can testify

tha- there are several other problems that have been heavily

debated. The author will attempt to discuss the relative "show

stoppers"; What would happen if these issues were not

resolved?

The major software issues that have survived the debates

are 1) the need for a specific battle management\C3

architecture, 2) the need for a dedicated national test

facility, and 3) the need for a SDS software center.

B. THE NEED FOR A SPECIFIC BATTLE MANAGEMENT/C3 ARCHITECTURE

PRIOR TO DEVELOPMENT

One can easily categorize the SDI as a vast system

consisting only of thousands of sensors, weapons and

37

platforms. More than likely, it is often overlooked or taken

for granted that software, computers, and communications drive

the entire system. The Eastport Study Group suggested that too

much emphasis was being placed on weapons and sensors and not

nearly enough on the software complexities concerned with the

design and development. The Eastport study concluded that the

choice of system architecture depends on the feasibility of

the battle management software that can be simulated, tested,

and maintained. Given these facts, one must consider the

factors that serve as criteria to evaluate the architectures.

Fundamentally, performance, testability, and cost are a few of

the criteria considered. For each of these criteria, measures

of performances (MOPs) must be defined. For performance, the

measures of performance are linked to the survivability or the

robustness of the system. These factors go hand-in-hand with

reliability and durability, necessities for real world

performance. An MOP for testability must be structured from

the results of small-scale tests. Reasoning for that approach

is based on the mere fact that full-scale tests are

impossible. The cost of building, deploying, and maintaining

a strategic defense system will be inherently high. [Ref. 2:p.

22]

The SDIO realized that battle management software and its

supporting C3 elements must be given the highest technical

priority. The task set before them was to find an architecture

that implements human control, lowers cost, and reduces the

38

magnitude of required coordination and communication control.

Although these factors were heavily debated, the SDIO

considered them a necessity. What type of system architecture

would best satisfy these issues - centralized, decentralized,

or layered. Viewing the software as a battle manager, there

were many questions about the type of structure needed.

A centralized architecture required the software to provide

information to every element (sensors and weapons) in the

network instantaneously and simultaneously. This process would

make fault tolerance and error recovery virtually impossible.

Also, human control would have no intercession within the

process. Computing resources for a centralized system are

focused in one location and may consist of several processors

that share common memory devices. These systems are called

multi-processors. The processors have a high rate of

communication because of high data rates, resulting in a

tightly coupled system. Figure 4.1 shows a "centralized"

representation of the architecture. Additionally, the

centralized architecture would not allow simulated full-scale

testing, a major criteria for SDI's acceptance. [Ref. 2:p. 23)

A decentralized architecture does not rely on tight

coordination. It is basically organized as a hierarchy similar

to the military chain of command (i.e., tasks are delegated at

lower levels). As noted in the Eastport Study:

No system part within such a hierarchy needs to
depend on millisecond-by-millisecond detailed
instructions from a higher authority. " [Ref. 2:p. 23]

39

CENTRALIZED BATTLE MANAGEMENT

ARCHITECTURE

Sensors

Weapons Weapons

Battle

Manager

Sensors Sensors

Figure 4.1

In the decentralized system, processors are separated

(physically), individual memory spaces are allocated and data

communication rates are decreased. These characteristics are

also known as important parts of a distributed system. The

system follows the loosely coupled concept. Each battle

manager reports (when necessary) to the battle manager at the

next higher level. For instance, given three levels, the

lowest level would be considered the local battle manager

performing fighting functions. The next level would be the

regional battle managers. They would be responsible for

targets passing between battle spaces and resolving

40

contentions for resources among local battle managers. The top

level manager would be the global battle manager. The primary

job would be to establish strategies for the regional and

local battle managers. They would also provide the man-machine

interface for the system. Figure 4.2 depicts a typical

decentralized architecture. (Ref. 2:p. 45]

DECENTRALIZED BATTLE MANAGEMENT
ARCHITECTURE

GBM - Global Battle Manager

RBM - Regional Battle Manager
LBM - Local Battle Manager GBM
W - Weapons

S - Sensors

RBM RBM

1
[m17rnr

LBM LBM LBM LBM

w i S W S w S
S Figure 4.2

The following elements are critical advantages attributed

to a decentralized architecture capable of independent action.

This list was taken from a report prepared for the 100th

Congress by the SDIO in June 1987. The advantages are as

follows:

41

1. Simplicity: A simpler architecture can be produced by
eliminating "perfect" coordination. This approach
requires less bandwidth, less latency requirements,
and reduces scheduling demands that have a profound
impact on software.

2. Testability: Elements in a decentralized architecture
act independently. In this regard, each element can be
tested separately allowing the developer to see how
the whole system functions in reference to its
individual parts.

3. Evolvability: Since decentralized architectures use
relatively simple interfaces, addition of similar
elements is far less tedious. Existing computing
requirements will not be affected by additional
changes. Scalability in deployment must be supported.
With every asset that is deployed, the performance of
the system is improved incrementally.

4. Robustness: Error and fault tolerance levels in one
platform are controlled under that particular battle
manager. Thus, when failures occur at one level, other
levels are not affected.

5. Diversity: Robustness is reinforced through diversity.
Plans for strategic defense must employ the services
of vendors as well as implement new technologies as
they evolve. The major driver behind a battle
management system being diverse is its ability to add
competition to the procurement market. The result is
lower system costs.

6. Durability/Survivability: A decentralized architecture
is more survivable against countermeasures, and fault
tolerances are much lower. This results from the
unlikelihood of errors to propagate throughout the
entire system.

The decentralized architecture has been recommended by the

Eastport Study Group for the design and development of battle

management software. [Ref. 17:pp. 6-8]

A third type of architecture is known as a layered

architecture. This architecture is very similar to the

decentralized version (i.e., Global and Local battle

42

managers). The layered model can have fewer or more layers

depending on the particular system architecture or the tactics

employed to counter the ballistic missile attack. For example,

requirements and strategies may differ from layer to layer by

using specific weapons, sensors, and operating in different

conditions. (Ref. 9:pg. 12-20]

The basic functions for the decentralized and layer models

are the same. Local battle management functions include

tracking and classifying targets and allocating proper

resources. Global battle management functions provide real

time surveillance, establish rules of engagement, delegate

resources, provide mutual defense, and perform situation

assessment. Figure 4.3 provides a view of the layered model of

battle management. [Ref. 9:p. 12-20]

C. THE NEED FOR A DEDICATED NATIONAL TEST BED

Testing and Evaluation (T&E) of any major weapon system

development is critical to its success or failure. T&E of

software for strategic defense systems is no exception. It is

expected to be both difficult and critical. Authorities agree

that in order to support design and development efforts, a

national test bed had to be developed. In 1986, Danny Cohen,

Chairman of the Eastport Study Group, wrote a memo on the

National Test Bed (NTB). Dr. Cohen stated that the single

central component of the NTB should be simulation. The

simulation requirements are numerous and diverse but the two

43

LAYERED MODEL BATTLE MANAGEMENT

ARCHITECTURE

Sensors ensors Sensors

Handover Handover
Boost-phase Midcourse Terminal

BM SM am

Weapons
Wea pons

Knowledge
of Current I Global Global Functions
Situation BM

Surviellance
Rules of Engagement

Local Functions Situation Assessment
,_ Delegation

Track Mutual Defense
Classify
Allocate

Figure 4.3

main areas for the application of the simulation are design

and testing. Simulation's role is paramount because it is

impossible to do real time testing on all weapons and sensors.

Two basic technical questions that simulation should provide

the answer to are: 1) Can BM/C3 software provide an adequate

level of reliability and 2) Can the BM/C3 software strategies

handle the diversity of attacks. These questions can not be

answered without the extensive use of a National Test Facility

(NTF).

Concept definition and preliminary design study of the NTB

started in March 1986. Martin Marietta and Rockwell

44

International were selected to complete the preliminary design

concept. Martin Marietta subsequently won the contract for

development for the NTB. Completion of the National Test

Facility (NTF) is scheduled for FY90. [Ref. 3:p. 5.2-15]

Figure 4.4 shows the proposed version of the NTB. The

purpose of the NTB is to evaluate systems and new technologies

for SDI. Its mission includes demonstrating the feasibility of

SDSs through computer simulations, evaluation of the

applicability and feasibility of new technologies, and

conducting experiments on SDS systems.

45

SDI National Test Bed

This test facility will not only be used for software

testing, but for testing communication assets also. [Ref. 2:p.

29] According to the DoD Software Master Plan (Preliminary

Draft):

"The NTB will inter-connect Army, Navy, Air Force,
National Laboratories, and Test/Demonstrations facilities
into a distributed network. The NTB may be thought of as
a network of resources with the National Test Facility
(NTF) as its harbor central facility. This composite
provides the principal resources dedicated to develop
and/or support experimentations and provide analysis
support. The NTB is a Natural Resource which draws
together contractors, the military, government agencies,
academia and others studying SDS issues. [Ref. l8:p. A-
13]

46

The National Test Facility will serve as the hub for the

NTB and will be located at the Falcon Air Station, 20 miles

east of Colorado Springs, Colorado.

The National Test Facility, NTB, consists of a set of

software and hardware tools that support design and

development, and execution/analysis of simulation experiments

related to SDI and other associated DoD programs. These tools

provide support for end-to-end simulation of weapons, sensors,

communication systems, and C2 systems. Testing facilities will

also be operated at different locations and will be connected

to the NTF via communication/computer links. Facilities

connected to the NTF will include, Vandenburg Air Force Base

(VAFB), Kirtland Air Force Base (KAFB), and White Sands

National Laboratory (WSNL). [Ref. 3:p. 5.2-14]

Additionally, in 1988 a Software Center (SC) was developed

in order to provide scientists and engineers with efficient

development tools. This center will establish software policy

as well as invest in developwent. The major purpose of the

center is to provide trusted software tools that reduce risk

by allowing each component to capitalize on the investment in

the total software environment. The next section will give the

reader a fresh understanding of the mission of the Strategic

Defense System Software Center. [Ref. 3:p. 5.2-15]

47

D. THE STRATEGIC DEFENSE SYSTEM SOFTWARE CENTER

Hardware/software integration and testing will be

expensive. Current technology may not be reliable and fast

enough to handle SDS functions. As stated earlier, the SDS

Software Center was proposed as a much needed operation with

the National Test Facility. Its primary mission will be to

ensure that development, production, integration and

validation of trusted SDS software through Full Scale

Development (FSD) is done efficiently. The National

Aeronautics and Space Adminstration (NASA), Ada Joint

Programming Office (AJPO), and other SDIO directorates will

coordinate software efforts to avoid duplication and keep cost

at a minimum. The Software center will provide help in

addressing critical software development areas such as

trustworthiness, configuration management, reusability,

interoperabIlity, training, technology, and many others. [Ref.

18:p. a14]

Listed below are six basic functions of the software

center:

1. Programmatic support for government and contractor
developers. This team of experts will assist program
managers and government/contractor developers with
problems unique to their projects.

2. Produce and integrate high quality, reliable software
for SDS systems. This process is critical to the
success of the SDS mission.

3. Provide state-of-the-art technology for software
engineering environments (SEE) and configuratior
management system components.

48

4. Establish and maintain a library of reusable Ada
components. Ada will be the language of choice for the
NTB-developed software. The NTF also has an Ada
software development facility.

5. Ensure consistency of acquisition, design,
development, integration, and testing efforts through
software education and training. Training will be
provided in all phases of software development. The
goal will be to produce an Ada competent development
ccmmunity.

6. Assist in the development and tailoring of new and
existing standards. Support will be provided to
organizations such as IEEE, ANSI, and Ada9x. [Ref.
18:p. A14-15]

SDIO is providing every necessary means to reduce risk in

all BM/C3 systems that are software driven. Everyone realizes

that exhaustive testing of software tools is not practical,

therefore more emphasis must be placed on the development of

sound tools for the SDI program. The Software Center will

provide that development environment.

If the functions and procedures of the SDS software center

are properly executed, research and development for strategic

defense software will be able to reach the majority of its

goals. [Ref. 18:p. a15] During the 1990 IEEE Conference for

Strategic Software Systems held in Huntsville, Alabama, Lt.

Col. Chuck Lillie discussed the short and long term goals for

the software center. The goals are as follows:

1. Supportability, compatibility and interoperability of
SDS mission critical software

2. Evaluate and demonstrate tools, capabilities, and
procedures required to implement SDIO policies
governing SDS software development

49

|- --------

3. Reduction of the time between SDS research,
development, production, deployment and operation

4. Efficient production of trusted, high confidence
software throughout the SDS life cycle

5. Effective dissemination of Multi-service research
results through program technology insertion

6. Compatibility between services and SDS software

engineering and Ada policies [Ref. 11].

There is no question concerning the necessity for the SDS

software center. In order for SDIO to gain the necessary

confidence to deploy reliable, trustworthy systems, one must

first develop those tools to help accomplish this vital

mission.

50

V. SUMMARY OF THE SDI SOFTWARE DEBATES

A. INTRODUCTION

In the previous chapters, several views of whether it is

feasible to produce reliable and trustworthy software for a

BM\C3 battle management system were addressed. Along with

determining the reliability of the software, opinions are also

expressed on the type of BM/C3 architecture necessary for

further development of battle management schemes. Finally, the

question of how we test our development was also addressed

with several feasible approaches, including the development of

the National Test Bed (NTB). From these debates, the following

summary chart, Figure 5.1, was developed to highlight the

position of each proponent and opponent of the software

debates. Figure 5.1 provides the reader with a brief narrative

of the positions of each individual discussed in this thesis.

B. EVALUATION OF THE SDI SUMMARY CHART

As stated in the introduction of this thesis, the purpose

was to provide the reader with a framework for understanding

the software debates. The framework included understanding the

software complexities (i.e., reliability, availability, and

testability of numerous weapons and sensors simultaneously)

and understanding how to apply the corporate knowledge of all

51

SDI SOFTWARE
SUMMARY CHART

REUIANlUryITDusr AVAILADILITr DM10 ARCHITECTURE rESTABILJM

S f1 -5 " ea. a he -ftbiae e -** maepe any essje. D...acrous-d architecure TAe.ses... s war be

D. aai Ir..eerahp et, I a &r.&AsAaEgl As, sob hsepeo he SDIg~pe~I. 0 poject 8.8.d fol, prier 1e "'1"e,
D. ,be neesary 69st'sneass preblem. Solt.0e sdram e W l ifse5 be espeseed oe a,. Singleness only pre.

Davrid de mal uep be# /W, 1.11.1 lard- rates an1 of the 1.1. sear r4alom. muds.. ai..

PROBLEM: we dea# to.. vare othasiogy sad so/#- esaaagoss.as problems. des mat be de. suoa# As

Pard heal . mt-e ias "PP. ap . "... 1.1 8"18 in'I ae a r.
so d....Cse.aaplk flite. .* A. &A. move,

There to a. "AlAA& we, a A.ealebdlifty jtgares are &&at# 04"8. 8 Ae rhI- C.aitde.. is &le dto.eadi.

Offlt dw.ani~a. sse &D .41. *sefa h.. thoedlda esae a. y.a prepesed we my 4f a AWD om.. .8 it As

Of a"Of ePore, Property -be* oad., hish they Note aM spolsV e*askg 1dw As&1 derleed from .lwelaed lad.
flo ~sedac. w.aaarvd w, eN .#a wAn . stained ad.asoe sad i.. sad mot der"# peaeedma..

Tecitnotegy rA. eansqe of mrs, lA. zftap.apelae cu oid hsa etadae.0 to be effeed.
A,,.P6411 6" Niesea a med Nor ...ad..ea Is rskyt. OlyI 0.alaaed.
Assessent JO epidla selsat System.

rho awembor of @es rosseeed Deese& SOS should be *em- Toew compenate ft esciust
ispee. as, age op. of /I. agreed w"l S. sedo 4 a enweemnt WON eampuldb

WdI Nor , &A. aft of the system- highly eeate. stefle 0,2. efesd, e U aA e he a
&-do asks, faes*. TIbr. ir

go

U perl be -- owa. but be. de we wement. elerltlP. ad were pertie ato Me sol..

proeedea~5~ep~l Jaler Pdevices Need m, be Worked thorough &belte.
so segfiber.

Theme WIN he wrere. but far so cempare an 6. BYeb 0 64110811000 al6Sed Wake SeN am el SUEehtet.

Dr. 0preerema "I -,w Oegon daelemod watip 1dey. be loem. seupte do ye. o .sofwar wt a et
wriftel. resoure m w eve. 1teho"g ultoedi my yal yM edfl s. of me Natina Traw a".

De ayvoed to ansue of* quefty moaer bossaktbeesba.
Dmp (La. were e 5. per IW

Atkinlp wohte thereT 6*h Atheqh SDI As a ampte. TA. Oiatrawted went#".c

D ere lo e Istoo wong Bosteden anid diffiult te. a a. %we Moprocco comeport.
The 101#0 question wheN. heewee Ia. U.&. to of m. menfotame awal sup.

Soleoman er Ite loald RM4 yeloe sarchl so determine whetl- Nows AN wedetee so wm a
can he reatd ad mofgle or se, e Noaem *ewofp lslviduol systems......

axihboam A an ehenhie wr imee. fie bechnolegy.......
enwefmat. AnAmar... Te

Ta~. ""so the *Wt 01401 of&Wh* awe ,eeeri sod DoeseatlsAllad ae Allotlre Lovelso e twrel. @sei

Dr ereatbeg endf ameigsihi am gI b developmeent off.,, mest be deavned to eperae chompsd bhi:
rellabl ellwoe No must 410 needd IA Iedrabi the ft 0110 periade that &,c~mE. 1. nomornk

Charles dlltbgise 6*lweenMe a- yte.el of it I got .soi a yso doplogsmnte. peace. elubyla begi
pA fes-a worth"e epera. 2.SyaferebWof siaseleb

Erael Treutwerthisomee of epere. tioe. 4. Deployed Eanwer. end
wtap dv*e1 end toeraem. gefwee NAssaw

rhe panel em mended thel CrelhW en appi Fete use moiceel bartl prepaeed of A. e ipm. or

The melre emphasibe A.pheed so software development Nr- aneemel dreeber that a meellatw .eslatlaa
preinaeser develpentamod etimte WIN be a dU~leut wmM msaw or a oII nvo-onmeat

Fltcher Iaentoktieant desins a lt tal. The enw&Vbmmt musd hettla masae replIcated
WE ensure reflablit oera. A. IA phim end mtgdarded severel taeg en dllterent

Sledy lion. bele sitr" to boed a, platforms,
BD env$ NY~ie.

Two successfutl ftehnlquee TA. v.S. sh .m.dder Ga"*/ batlte management Tetg, realthe aesotwae
to, oaeataln reliability and ehr.* pe.sdiea8a.. aerdo, sysem Gould "eme" the often Introducse more &all.

Huet tru ltwerlhins' are analytI- SDI softwae development, eatan and othe *I an a06 we sere fhen a lds IAs
He t coa (msathematical pree) what Jr At noo of of te-* In preee and 4"ced implemen ted

Lin and eneperkal Neorate~. SAFlo .,.en, What we. doe tOf euhef ad en1aenant far
eb.Ieks, aad "a the ech MW. (L&. geese. pee-.
ebeAle* e A. ~t .dom.,d Ael ldceeae. 00er11n00)

I s me rotteen why I or a"

Drehe &#a, cmpetent. asparteame.
ad. heoter sofftwadv manaer

Fptderll ie& M oa od IA geed enegh? than L ceuld eel andertae,e ...

Figure 5. 1

52

individuals involved with the software aspect of SDI. The

summary chart is divided into two sections; those who oppose

and those who support the SDI software efforts. The general

consensus is that software for SDI is possible, but there are

a number of problem areas that are plaguing the system now,

and other problem areas that cannot be eliminated. Because the

so called impossible has been made possible many times before,

no one is willing to say that software for SDI cannot be

developed.

1. Reliability and Trustworthiness

Dr. David Parnas, Ware Myers, and the Office of

Technology Assessment all support the fact that the software

cannot be assured of not failing catastrophically and that a

lack of specific requirements for software operations alters

the development process. It should be noted that even though

Dr. Parnas has had many negative things to say about SDI's

success, he did not state that the software could not ever

work reliably. He simply stated that the software requirements

must be understood. Scientists and engineers may not know all

the necessary requirements for an effective battle management

system, but the author believes that extensive use of the

National Test Facility, and other related agencies may prove

to be the focal point in understanding the requirements.

2. Availability

The availability of most systems is determined by the

amount of time the system operates between failures. In basic

53

engineering, this is known as the mean time between failures

(MTBF). The big question in this area is whether the software

can be developed with present technology with minimal

failures. Dr. Danny Cohen took a firm stand on the advancement

of software technology. Dr. Cohen feels that no major

breakthroughs are necessary and that today's software

technology can be used to create a system with high MTBFs. Dr.

Parnas stated that the dependence on new technological

breakthroughs should not be expected to solve the availability

problem, mainly because of the fact that hardware technology

is years ahead of the state-of-the-art of software technology.

In analyzing the debates, it was interesting to find that Dr.

Frederick Brooks once supported the ideas of Dr. Parnas, but

later joined sides with Dr. Cohen after testifying at a

subcommittee meeting on Strategic and Theater Nuclear Forces.

In essence, the proponents suggested that required

software availability was achievable, but that more research

and development efforts were needed. Although not in full

support of the way availability is assessed, the Office of

Technology Assessment (OTA) stated that the conditions for

using availability figures must be well known to be useful.

3. BM/C3 Architecture

In Chapter IV, one of the issues that both proponents

and opponents of SDI Agreed upon was the need for a specific

battle management architecture. It should be noted that no one

particular architecture was chosen but the structure for the

54

architecture must be in place prior to development. Most

reports submitted to congress for review recommend that a

decentralized architecture be used in support of command and

control of the battle management system. The decentralized

structure includes loose coupling on various system

components. In contrast, OTA stated that all BM/C3

architectures as proposed were not specific enough for their

clairted advantages and disadvantages. Again, the consensus is

that structure must be in place prior to development.

4. Testability

Everyone agreed that the software for SDI will not be

perfect. There are numerous ways to simulate the actual

operation of the software, but full-scale testing cannot be

accomplished prior to nuclear war. Dr. C. A. Zraket stated

that testing efforts must proceed from research to deployment

using systematic methods at each level. Simulation is the key

factor that will determine the effectiveness of the software

during the actual battle. The testing issue was given the most

recognition by both the critics and supporters. Comments on

how the testing efforts should be conducted did Pnot have the

negative air that other subject areas had faced. One of the

most weighted concerns came from Herbert Lin. His concern was

implementing more errors while trying to "fix" old ones.

Again, this was not a statement saying that testing efforts

would be useless, rather a caution to those correcting errors

during the testing phase.

55

The summary chart provides the reader with an overview

of the major issues that both parties were analyzing. The

intent of this chart was not to draw conclusions, but rather

to highlight some of the pros and cons of software development

for a dependable ballistic missile defense system.

56

VI. DEVELOPMENTAL CONCERNS AND TRADEOFFS
ASSOCIATED WITH SDI SOFTWARE

A. INTRODUCTION

The purpose of this chapter is to focus on some of the

vital developmental concerns and tradeoffs that may alter or

hinder the progress of developing an effective BMD system. In

Chapter II, the role of software for a BMD system was

discussed. From that discussion important areas that either

need more research, or solutions that are available that need

to be implemented were identified. Some of these concerns were

addressed at the third International IEEE Software Conference

for Strategic Systems in Huntsville, Alabama, February 27-28,

1990. Other concerns and tradeoffs have been discussed among

the proponents and critics over the past five years.

Among the issues addressed are: 1) The software challenges

from the SDIO perspective, 2) the use of software engineering

tools for SDI development, 3) the simulation and testing

methods available, and 4) the security of SDI software.

This list of issues and concerns is not exclusive. Because

of the dynamic nature of the SDI program, it may be that an

exhaustive list of concerns can never be attained.

57

B. SDIO SOFTWARE CHALLENGES

The SDIO views the current problems associated with

development of quality military software to be both real and

urgent. The plan is to adopt a strategy to promote a change of

attitudes, policies, and practices concerning software

acquisition. The strategy has to begin early within the

acquisition phase in order to control the resources associated

with software development for strategic defense. Software for

strategic defense, in particular SDI, faces some monumental

challenges that must be overcome prior to the development of

the last phase. At the third International Conference on

Software for Strategic Systems, Lt. Col. Chuck Lillie

discussed some of the challenges that SDIO is dealing with. He

listed them as:

1. Large Amount of Code

2. Integration of Software Development by Many
Contractors

3. Evaluation and Configuration Management

4. Coordination of Distributed Assets

5. Complex Data Fusion, Discrimination, and Tracking
Algorithms

6. Parallel and Distributed Architectures for Real-Time
Performance

7. Secure, Fault Tolerance Performance

8. Testing and Simulations [Ref. 11]

The list of challenges does not include other important

software issues such as software engineering environments, and

58

unambiguous, testable, and traceable specifications. As if it

has not been stated enough, software development for SDI is

the most complex task ever faced by DoD. According to a

computer resource working group, size estimates for phase one

are huge. Figure 6.1 shows a breakdown of the number of lines

of source code per system element for the phase I

architecture. These figures are based on the 1988

architecture sent to the Defense Acquisition Board (DAB) by

General Electric. [Ref. 11]

The size of the software is not the only challenge that

SDIO is facing. For example, there are 12 prime contractors

involved in the phase I development process. There are even

more subcontractors. Therefore, integration of these elements

to operate successfully in one environment will be a

monumental task. As one author stated they should build

software like they build cathedrals; build them, then pray a

lot. The more integrated elements that are involved, the

stronger the emphasis that should be placed on building good

prototypes. These prototypes should assist in the development

of requirements, validate size estimates, provide early

demonstration of the software's performance, and address the

critical elements involved. Dr. Frederick Brooks said it best,

"Build a little, test a little, and learn a lot."

The Aerospace Corporation did a study on the "military

software problem" during the early 1980s. In that study they

explained some of the "causes" of software problems. Two

59

SDI Phase I Software Estimates

Elements KSLOC
fBoost Surveillance and Tracking System BSTS 1,208

Space Surveillance and Tracking System SSTS 771

Space Based Interceptor SBI 2,830

,Ground Based Radar GBR 600

round Surveillance and Tracking System GST4 266

Ground Based Interceptor GBI 309

Command Center CC 14,522

Total 20,506

KSLOC - Thousands of Lines of Code

Figure 6.1

60

problems in particular that apply directly to SDI's software

are management and personnel. The study showed that managers

lack some necessary skills to "manage" the software process on

an end-to-end basis. For instance, software managers (program

managers) had a poor understanding of the technical

complexities involved (i.e., hardware selected prior to

allocation of resources required, lack of communication and

organization, and lack of life cycle perspective). Brigadier

General John Varrboise, in his keynote address at the software

conference, stated that their biggest problems are managerial

not technical. This issue was also a concern to both the

Defense Science Board and the Eastport Study Group. General

Vamboise used a familiar proverb to identify a peculiar

criteria that all program managers must have a vision. For

where there is no vision, the people perish. (Ref. 11]

The second part of the software problem involves people.

The Aerospace Study pointed out that DoD does not take the

systems approach to the availability of human resources. There

is a shortage of skilled programmers. Inevitably this leads to

using inexperienced personnel. Since the average duty

assignment for military personnel is about two years, the

turnover is very rapid. This lack f continuity eventually

leads to stripping ongoing projects to staff new ones.

In order to fix this personnel problem, more emphasis

should be placed on personnel receiving a competent education

in software design and development. For example, Ada is the

61

standard DoD language for software development, but only 15%

of the colleges in the U.S. teach Ada as a programming

language. Future resources must come through the formal

education process.

In addition to defining some of the challenges for SDI, Lt.

Col. Lillie also defined their software policy. The purpose of

this policy will be to require and promote the use of software

engineering approaches for the development and support of all

SDS Full Scale Development (FSD) software. Also, the policy

should be implemented through the various military services

using individual implementation plans. The key to the concept

will be consistency factor. Figure 6.2 shows the application

and scope of the SDS software policy. The Office of the

Secretary of Defense (OSD) has directed that the SDIO will

comply with DoD directives 3405.1, 3405.2, and 5000.3 along

with MIL-STD-1815A. The directives basically inform the SDIO

of the requirements for software development. Since Ada has

become the standard programming language for DoD, MIL-STD-

1815A is the standard Ada specification.

C. THE USE OF SOFTWARE ENGINEERING TOOLS

FOR SDI SOFTWARE DEVELOPMENT

The acquisition process for major weapon system normally

consists of four phases which are separated by decision

milestones. The phases are the Concept Definition Phase,

Demonstration and Validation Phase, Full Scale Development

62

SDI Software Policy

Ada

Testing Prototyping

Oesign ot
And Software

Development
Environmenta Data Rights

Risk

Reuse SDIO Reduction

SOFTWARE

POLICY

Conguration Supportability

management

Portability Documentation

Security

Figure 6.2

Phase, and Production Deployment Phase. This process is

initiated when a need is perceived in a particular mission

area. Basically, the need may arise from a change in threat,

technology advancements, cost reduction opportunities, or a

projected obsolescence of existing systems. [Ref. 19:p. 1-13]

The software development life cycle follows a similar

procedure. First, a feasibility analysis is completed, then

the requirements and specifications are completed. Continuing,

the software analyst begins to draw up the design from the

specifications and actual coding of the software is done.

63

Finally, to see if reliable, dependable results are available,

extensive testing is begun. After this phase, the initial

development life cycle is complete. Fig. 6.3 shows

similarities between the acquisition phases for a weapon

system anG the development life cycle concept for software.

This whole process for software development has evolved

around a relatively new technology called software

engineering. According to an OTA report, the term "software

engineering" arrived on the scene in 1968. It was the result

of computer scientists focusing on the difficulties in

developing complicated software systems. How is software

engineering defined? Ask any five software engineers this

question and you're bound to get at least three, related, but

different answers. Author Richard Fairley, in his book,

"Software Engineering Concepts," stated:

Software engineering is the technological and
managerial discipline concerned with systematic
production and maintenance of software products that are
developed and modified on time and within cost estimates.
[Ref. 20:p. 2]

The Institute of Electrical and Electronic Engineers (IEEE)

expanded this definition to include maintenance and retirement

of the software. Referring to Figure 6.3, one can see that the

software life cycle does not stop when the development phase

is complete.

Many proponents of SDI tend to think that software

engineering tools will enhance the software in terms of

reliability, maintainability, and availability. Th e "tools"

64

Similarities between Weapon Acquisition
and

ChangingSoftware Development Life Cycle
Thr eat_ 0ngoifg Mission Need

- mission Statement
',F-Iee ExpP MSN Mission Need Sim

Prodution ep N OR Oper. RequirmentPhaseu4tCapabilit *ROC Required Oper.

Technology
Advancement_ _ _

concept Exp

m MilestonePhs

Full Scale Dev Mileston
Phase I

Milestone

Demo/Val

Chaning Maintenance -Feasibility Stu~dy
Threat _____

Test Concept of

Technology A o Oeain

Writing Advancement O R Operational
Revision Bto-p Requirement

Top-down

Code Reqr Analysis
____ ______Specification

Structuring IHardware/ Software
Criteria Dfnto

Description " 'D.Functions

Of Interfaces -~__Subfunctions

DesignDescribed

--Milestones

- Phases
Figure 6. 3

65

are in the form of automated support that may consist of one

or more programs. On the other hand, critics believe that

software engineering tools for SDI provide no greater support

or advantages than any of the previous software tools. [Ref.

21] The following discussion will focus on "additional"

paradigms within the software life cycle. Some of these

techniques are associated with risk assessment and incremental

development while others make an attempt to eliminate or

reduce the number of steps within the software life cycle.

Specifically, we will discuss the possible uses and

limitations of object oriented programming, automatic

programming, and artificial intelligence.

Object-Oriented Programming will allow the properties of

procedures and data to be combined together. Unlike other data

structures, an object data structure contains the properties

of reusability and encapsulation. In essence, the variables of

the objects are contained within themselves. This process

allows data transferring of vast quantities of information on

a function to function basis. Although this is just one

vaiiation of the term object programming, it is the most

relevant to SDI; mainly because formal requirements and design

specifications are used. These were just two of the techniques

suggested by Dr. Parnas after spending several years on the

Navy's Software Cost Reduction (SCR) project. The one downfall

associated with this technique was that using the above

66

stated methods had not lead to reliable code that met the

space and time constraints. [Ref. 21)

It was stated earlier that one of the purposes of using

software engineering tools was to eliminate or reduce some of

the requirements and design phases. One method developed to

employ those techniques is automatic programming. With this

technique the programmer is literally taken away and becomes

a "specification writer". In other words, the programmers

would write the specification for the software and the

computer would generate the program. Dr. Parnas stated that

the automatic programming concept was not more than a

"euphemism" for programming with a higher level language, but

even the use of improved languages has led to some improvement

in reliability. In essence, if one can write "trusted"

software specifications, automatic programming techniques are

a definite plus. [Ref. 21]

Finally, how does artificial intelligence (AI) help or will

it help us to build better BM/C3 software? There has

certainly been a lot of progress in the AI field recently. In

March 1989, the American Association for Artificial

Intelligence (AAAI) held its first annual conference on

innovative applications of AI. There were about 30 different

creative applications ranging from expert systems for

investing to music composition. These applications were using

computers to solve problems by applying some form of human

intelligence. [Ref. 22:p. 13]

67

Dr. Parnas stated that there are two very different

definitions of AI in use today. He referred to them as A-i and

A-2. By definition, they are as follows:

AI-i: The use of computers to solve problems that
previously could only be solved by applying human
intelligence.

AI-2: The use of specific set of programming
techniques known as heuristic or rule-based programming.
In this approach human experts are studied to determine
what heuristics or rules of thumb they use in solving
problems. Usually they are asked for their rules. These
rules are then encoded as input to a program that
attempts to behave in accordance with them. In other
words, the program is designed to solve a problem the way
that humans seem to solve it. LRef. 23]

Even though there has been tremendous work done in AI, most

potential applications of AI should be handled on a problem-

by-problem basis. Unfortunately, the SDI battle management

problem is not an attractive situation at present. According

to the OTA, AI-i and AI-2 should not be applied to SDI battle

management problems until a specific set of battle management

problems and their solutions are specified. In his ccnclusion

of AI and SDI, Dr. Parnas stated:

Artificial Intelligence has the same relation to
intelligence as artificial flowers have to flowers. From
a distance they may appear alike, but when closely
examined they are quite different. I don't think that we
can learn much about one by studying the other. AI offers
no magic technology to solve our problems. Heuristic
techniques do not yield systems that one can trust [Ref.
23]

The author believes that software engineering tools have a

lot to offer the programming world, but one must be mindful of

tools and techniques that appear to be immediate problem

solvers. Many software tools may work perfectly on smaller-

68

scale systems, but may lack the same efficiency and

productivity when applied to larger systems.

There are many software engineering tools available. The

key is finding the correct tools that apply specifically to

the needs of the SDI software efforts. Further improvements in

Object-Oriented Programming will continue to strengthen our

confidence in software reuse, thus the development of

reliable, trusted software to meet space and time requirements

can become a reality. Any technique that can improve the

reliability of the software must, at least, be considered

before it is rejected. As stated earlier, the Strategic

Defense Software Center will be the hub for testing and

validating trusted software and must be used to the fullest

extent. Before Automatic Programming is rejected based on its

similarities with other high level languages, the technique

for using this tool must be evaluated. Finally, even though

Artificial Intelligence has made tremendous advances in the

last two to three years, one must first find ways to

incorporate AI into SDI. Specifically, the problems that AI

must solve must be understood.

D. THE SIMULATION AND TESTING METHODS AVAILABLE

Throughout this thesis our focus has been on some of the

concerns for SDI software. Questions such as will the software

be reliable, what are the roles of software, and can the

software be developed free of catastrophic errors, have

69

already been addressed. These are questions that cannot,

technically, be answered prior to some type of evaluation of

the software. Two of the primary means of carrying out this

evaluation is through simulation and testing.

There are several tradeoffs and concerns that greatly

affect SDI in these areas. Both the Eastport Study and the

1988 Office of Technology Assessment report on simulation and

testing, identify numerous areas for additional research and

the need to find alternative testing methods. Other recently

published literature provides further insight on improving

simulation and testing techniques. Although these methods do

not apply specifically to SDI, they do provide the latest

technology changes and advancements. This section will give

the reader a brief overview of what simulation and testing

entails in addition to providing possible insights into areas

that need further development.

It is the author's opinion that evolving technology has

been a major driver behind the need for increased simulation.

In the simplest terms, simulation is a system that duplicates

the behavior of another. The problem occurs when the simulator

cannot reproduce all the behavioral characteristics of the

target or the system being duplicated. In the early 1970s

simulations were primarily based on single engagement models.

In case of a ballistic missile dcfense, that meant trying to

simulate one missile attacking one target. In the late 1980s,

the simulation models had to simulate thousands of missiles on

70

multiple targets. The simulation process included anticipating

the threat, developing a realistic environment to operate

within, and testing the functions of the model that was

developed. These same problems plague the environment for an

effective BM/C3 system for SDI. [Ref. 4:p. 51]

The simulation efforts are presently geographically

distributed among several facilities (e.g., The Air Force

Electronics Systems Division (ESD) at Hanscom Air Force Base,

Massachusetts, the Army Strategic Defense Command (ASDC) in

Alabama, and the National Test Facility (NTF) in Colorado).

One major concern hindering the simulation and testing efforts

is a lack of interfacing between facilities. In essence, the

simulation efforts should employ the work of several

facilities. Specifically, the Eastport report stated:

"Simulation efforts should cooperate closely with
activities at the National Test Bed (NTB). But for
several reasons, NTB should not be the only simulation
facility. First, simulation is too vital to the strategic
defense effort to permit a "monopoly" that would be
implied by such a single implementation. Second,
comparison of results from different simulation
facilities, for purposes of cross-verification and
validation is essential. Third, a centralized
implementation at NTB would likely lead to
classification, very limited access, and narrow focus,
which would curtail the simulators' effectiveness and
prevent it from producing confidence in the system's
functional ability and reliability. [Ref. 2:p. 31]

The more simulators interface with other systems, the more

trust one may be able to put in the system. The Eastport

Study referred to three classes of levels for simulation

operations. Low level simulations would be used for sensor and

71

weapon development, mid-level simulations for interfacing with

other on-line systems, and high-level simulators for studying

and evaluating BM/C3 strategies. With this concept working

effectively, testing efforts may show considerable

improvement.

Simulating the functions of an SDS is a phenomenal task.

This is especially true when algorithms for tracking,

discrimination, weapons control and guidance are involved. Dr.

Zraket stated that the designs of these algorithms must be

tested on an end-to-end basis. He also stated that testing

should be done using actual code rather than emulating their

behavior through the use of simulators. The problem here is

unequivocal; no one knows what the performance of the

algorithms will be. This leads to the conclusion that credible

simulations are needed. For example, simulations are needed to

predict the position of a track based on the details of the

estimated present position. This need led SDIO to initiate the

National Test Bed. Zraket further stated that two capabilities

must be developed: 1) a model-evaluation process to establish

the credibility of models and simulations and 2) an

experiment-design process to foster systematic and informative

experiments. The capabilities are greatly needed because most

current SDS simulations lack fidelity, high resolution, and

the actual code for SDS algorithms and BM/C3. The formulation

of a systems-oriented software engineering environment is

72

needed to integrate the development and evaluation of SDS on

an end-to-end basis. [Ref. 25:p. 96]

In order to simulate a target and formulate some type of

model, one must first make an assessment of the environment

and the equipment involved. When simulations are done without

known qualities of the environment and other factors, the

accuracy of the simulation lacks quality. This may very well

be the major or the most treacherous concern facing simulation

experts. How does one model a Soviet decoy or missile if there

is no physical access to them? According to an OTA report,

simulation experts from the Naval Research Laboratory stated

that building simulations without prior access to "real"

equipment caused many unexpected surprises. Even if there was

access to performance characteristics, the problems would not

be solved. Simulators may not be able to reproduce the

parameters and different signatures of events such as nuclear

explosions. This means that accuracy and realism involved in

the simulations would be further diminished. [Ref. 12:p. 206]

The Department of Defense (DoD) is constantly looking for

new ways to combat the complex challenges of modelling and

simulating the performance of major weapon systems. According

to Mr. James H. Atkinson, Test and Evaluation (T&E)

specialist, modelling and simulation (M&S) can offer the

potential for overcoming the existing testing limitations of

weapon systems. He stated that a generic baseline methodology

could be used by different developers of weapon systems to

73

tailor a performance evaluation program to the specific

weapon. [Ref. 25:pp. 143-146] This author believes that this

is a concept that can be applied to the development of battle

management software. The concept involves initiating four

basic characteristics that must occur throughout the software

development cycle. The ch -acteristics are 1) Degree of

Representation - defining the limits of M&S process; 2)

Practicality - obtaining useful output from the M&S process;

3) Validation - establishing acceptance and credibility with

the M&S process and 4) Configuration Control - tracking of

updates/modifications in the M&S process. Using these four

characteristics could possibly help establish a good "working"

baseline for understanding and modelling software for SDI.

Figure 6.4 shows three domains of test and evaluation that can

be applied to the software development life cycles. This

figure is a mock up version used for the weapons systems

development life cycle. The basic functions and relative

application are the same. The process does not eliminate the

need for thorough testing of the system, but could help to

produce better testing results. [Ref. 25:p. 143-146]

One of the issues not discussed in the modelling process

was cost. There is no doubt that money could be a driving

force for this project. One possible tradeoff is that more

money could be placed up front to institute the modelling and

simulation process. This would possibly result in reduced

costs for validation testing. With emphasis being placed on

74

-T&E Domains, Simulators and Testing

Doai 1r Doai 2n DeIa Fr(oan 3

Modelling ciaultoon

SmlTon Prtoyp Testing f5 je

Deelpm nt tit , 1,1l fN

Testllng

Operational/ Maintenance

Feasibilit Design Development Coding Deployment
Stage Stage

Figure 6.4

75

accelerating the development process, the models and

simulators are needed to increase the effectiveness of the

software.

E. SECURITY FOR SDI

Security is an issue that plagues many "sensitive" projects

whether it's DoD related or exclusive to the private sector.

Over the last 10 years there has been a growing increase in

the number of attack, on computers and communication networks.

The attackers are not choosy and they don't have "respect of

network or computer." [Ref. 26] Because of the critical

functions of the BM/C3 networks and computers, greater

emphasis should be placed on securing the assets for SDI. The

sad part is that the means of security go far beyond locking

the door at night. Therefore, in this section the author will

focus on some of the failures of security that are applicable

to BM/C3 computers.

In 1987, the SDIO submitted an interim assessment of SDI's

computing requirements to the 100th Congress. In that report,

the SDIO stated that minimizing the complexity in the concept

design of SDS was the key to fault tolerance and security with

respect to software. This is true especially when the end

product results in a slow, expensive system. In other words,

security and fault tolerance need to be integrated during the

design phase. By now, the results of "adding" requirements to

a system are well known. The study also indicated that the

76

security policies for the SDS must reflect the highly

decentralized nature of the system. Decentralization does not

solve all of our architecture problems, but in this case it

provides us with consistency. [Ref. 17:p. 10]

One of the glaring tradeoffs that needs further research is

the performance of the system. A more secure system also means

a more complex system. It has been stated in some reports to

Congress that there is not a need for another study on

computing requirements. The author disagrees for a number of

reasons. Mainly, because we have not scratched the surface on

items such as security mechanisms for strategic defense

systems.

Computer security for SDI should be based on two separate

aspects; technological and applicational. By technological,

we can address security from logical and physical points of

view. Logically, security is the protection of data and access

or gateways between programs. Physical security is the action

that can be taken to prevent physical harm to the resources.

[Ref. 26:p. 433]

Applicational computer security addresses the development

of new applications and the maintenance of those applications.

Both the technological and applicational approach to computer

security can be applied tc the SDI security policy. In the

previous section we looked at how to do modelling and

simulation with the software development life cycle. Computer

security specialists, K.P. Badenhorst and Jan H.P. Eloff,

77

developed an "ideal methodology" for computer security in view

of the typical structured approach to the software development

life cycle. They structured the major phases as introduction,

implementation, and maintenance. Figure 6.5 shows the layout

of each phase within the methodology and description of each

phase is listed below:

High Level View of a Methodology
for

Computer Security

initiation establish risk maintenance
computer - analysis installation on-going
security & project

policy definition

phase 1 phase 2 phase 31 phase 4 phase 5

Figure 6.5

1. Phase 1: Initiation - Requires management to establish
awareness and support. Also a special group of people
should focus on securing the assets by introducing new
techniques.

2. Phase 2: Establish Computer Security Policy - Again,
top management (Program managers) must establish a

78

"corporate" policy for security in order to develop
good management controls.

3. Phase 3: Risk Analysis and Project Definition - This
is where cost factors can be decreased by ensuring
that proper security measures have been selected.

4. Phase 4: Installation - Covers technological aspects
such as logical access, physical access, encryption,
and other methods.

5. Phase 5: Maintenance/Ongoing - Full development of
controls for applicational systems. [Ref. 26:pp. 443-
435]

These phases or a model similar to this should be considered

when employing security tactics.

Security is important because the bulk of SDI's resources

rely on communication networks and computers. Whenever a

computer system or a communication network is violated there

are a variety of losses involved. Those losses include the

loss of goods and services, the loss of assets, and the denial

of computer services. [Ref. 29] These services are critical

because of the time factor that would be involved in a nuclear

war. The probability of bringing an entire network of

computers back on-line after a failure during a nuclear war is

almost impossible. It does not matter whether the method of

destruction was accidental or deliberate, the consequences are

the same. Much consideration should be given to finding ways

of avoiding situations like the "worm" created by computer

hacker, Robert T. Morris. A worm is a type of instruction that

is placed in computer program causing incorrect results when

the program is run. No physical access is required since these

"worms" can be placed in the programs through the use of

79

floppy diskettes, internal/external file transfers, and by

having unauthorized access to computer networks. According to

an article in Computer World, Morris gained access to

computers at the National Aeronautics and Space

Administration's Ames Research Center in California, the U.S.

Air Force Logistics Command in Ohio, the University of

California at Berkeley, and Purdue University in Indiana.

These were just a few of the facilities where Morris was able

to get in and cause considerable damage. [Ref. 27:p. 1]

Computer security fails often because people have a narrow

minded view of security as being only physical in nature. To

eliminate some of the failures one must understand the

targeting concepts, the motives for attacking computer

systems, and how to uncover the penetrator. It's not always

the "enemy" that's plaguing our systems. [Ref. 29] Morris and

other computer hackers proved that point. In a previous

research report on computer security, the author stated that

there were three basic approaches to a system's defense. They

include: 1) dispersion, 2) duplication, and 3) defense in

depth. In the event of accidental or deliberate threats,

dispersion is a tactic used to minimize the losses. Since

total destruction of a computer system would require multiple

attacks, dispersed systems are less susceptible to a total

system shutdown. SDI's decentralized architecture would employ

the use of the dispersion technique with its BM/C3 operations.

Secondly, duplication or redundancy must be maintained in

80

order to enhance the life of the system. Duplication is the

method of providing back-up components for enhancing fault

tolerance. Finally, defense in depth would include the use of

an alarm system, a response system and a recovery system. The

alarm system's function will be to detect a threat in time to

either avert it or minimize the damage. The response system

must apprehend the villain and neutralize the effect of the

error or accident. The recovery system must repair the damage

and restore system operation. Obviously these functions alone

do not merit full protection against "hackers", but

collectively they help form a defensive ring. [Ref. 29]

The Computer Security Act of 1987 and the Computer Fraud

and Abuse Act of 1986 are pieces of legislature for punishing

individuals who willfully attack government resources. This is

not the real problem. Today, there is no quantitative way to

measure the amount of security in a system, but DoD has

developed a standard for evaluating the security for computer

systems. DoD Standard 5200.28 is the Department of Defense

Trusted Computer System Evaluation Criteria. The concept used

in this standard consists of matching the features of a system

against those known to be necessary to provide security.

81

VII. CONCLUSIONS

Software development for the Strategic Defense Initiative

(SDI) is one of the most complex tasks that both government

and defense contractors have ever faced. Why is this

development effort so hard? Mainly because of the changing

requirements associated with the SDI program. Even in the

midst of writing this thesis, information that was once a "hot

item" is just another passing term in the huge SDI vocabulary.

To some extent, this constant change in requirements is good

because it shows that technology is rapidly progressing. On

the contrary, the analysts and computer scientists that are

trying to develop reliable, dependable, and trustworthy

software for these systems are facing a "programmer's

nightmare." Another problem is that state-of-the-art software

technology is still lagging far behind hardware technology.

Although there has been vast improvements in software

technology, one may still ponder the question of whether or

not these improvements can support the operational task of

SDI.

The software debates held at Stanford University and the

University of California at Los Angeles were not just "another

conference" for scientists and engineers to argue over ideas.

The debates brought out important issues, some of which are

82

discussed in this thesis, that were necessary for the

successful design and development of the SDI software and

battle management/C3 system. It is obvious that all the issues

from the debates are not yet resolved, but research and

development efforts should continue until acceptable solutions

are found.

The software for SDI will be responsible for coordinating

a conglomeration of weapons and sensors. It will take over 20

million lines of code to complete this task. Will the software

make the Ballistic Missile Defense (BMD) system and the Battle

Management/C3 system reliable? This is the question that

engineers and computer scientists alike are pondering on a

daily basis. The research and development programs must remain

in high gear in order to allow an answer to this question with

any confidence. It's a known fact that one will not know the

answer to this question until war is started. It is the

consensus of all involved with SDI that the point of war

remains distant. Much consideration must be given to the wise

words of Dr. Frederick Brooks, "Build a little, test a little

and learn a lot." This is exactly the route that software

development for SDI must take. The establishment of the

National Test Bed (NTB), National Test Facility (NTF) and the

Strategic Defense Software Center in Colorado Springs,

Colorado is very timely in support of testing and evaluation

efforts for SDI. This certainly should not be the only

facility testing SDI components. Other agencies should be

83

involved, therefore, providing a comparative analysis of the

system's operational capabilities under several conditions.

Obviously, there are many other factors that software

developers must consider. For example, the choice of Battle

management architecture effects the structure and development

of the software. The decentralized battle management

architecture has been the choice of most agencies that have

completed studies for the SDIO. Decentralization does not

resolve all of the SDI related issues, but it best suits the

needs for the current software development efforts.

Advanced software engineering tools have made very

impressive improvements in the areas of "expert systems" and

"decision-support" systems. These tools are certain to have an

impact on SDI in future development efforts. Special caution

must be taken if proponents of SDI plan to depend on these

tools for the development of SDI software. Tools thdt do not

allow the software to remain in "discrete" states must be

avoided. Dr. David Parnas says that they should avoid using

artificial intelligence and automatic programming techniques

for program verification. On the contrary, one should not

eliminate any possible development tools and techniques until

they can be proven "unreliable." Full scale tests are

impossible and every one is willing to accept that fact, but

improvements in the simulation efforts may shed new light on

some of the once unresolvable problems.

84

Finally, the software is pivotal for strategic defense. It

is possible to develop the software, but the following issues

must be understood: 1) understand the complete function of

the software at all levels and 2) accept the fact that it will

not be error-free. The job of the engineers and computer

scientists is huge; keeping the system from failing

"catastrophically."

85

LIST OF REFERENCES

1. Lamberth, Benjamin S. Selective Nuclear Operations and
Soviet Strategy, The Rand Corporation, September 1975

2. Eastport Study Group, "A Report to the Director,"
Strategic Defense Initiative Organization, December
1985

3. U.S. Department of Defense, Report to the Congress on
the Strategic Defense Initiative, March 13, 1989

4. Lin, Herbert, "The Development of Software for
Ballistic-Missile Defense", Scientific American, Volume
253, Number 6, December, 1985

5. Lin, Herbert, "The Software for Starwars An Achilles
Heel?" Technology Review, July 1985

6. Zracket, Charles A., "Uncertainties in Building A
Strategic Defense," Science, Volume 235, Number 4796,
March 1987

7. Parnas, David L., "Software Aspects of Strategic
Defense Systems," American Scientist, Volume 73, Number
5, September-October, 1985

8. U.S. Senate, Subcommittee on Strategic and Theater
Nuclear Forces (Hearings), Committee of Armed Services,
December 1985

9. Fletcher, James C., A Report of the Study on
Eliminating the Threat Posed by Nuclear Ballistic
Missiles, Volume V, February 1984

10. Myers, Ware, "Can Software for the Strategic Defense
Initiative Ever Be Error-free?" Computer, Volume 19,
Number 11 November 1986

11. Notes on Third International Software Conference for
Strategic Systems, 27 February 1990

12. U.S. Congress, Office of Technology Assessment, "SDI:
Technology, Survivability, and Software", OTA-ISC-353,
May 1988

86

13. "New Weapon Suffers From Major Defects," Washington
Post, January 7, 1987

14. Parnas, David L., "Parnas:SDI "red herrings" Miss the
Boat," Computer, Volume 20, Number 2, February, 1987

15. Parnas, David L., "Why the SDI Software System Will Be
Untrustworthy," Software Aspects of Strategic Defense,
June 1985

16. Jacky, Johnathan, "The Star Wars Defense Won't
Computer," Atlantic, Volume 255, Number 6, June]585

17. Strategic Defense Initiative Organization, "An Interim
Assessment of SDI Computing Requirements (Draft)," June
1987

18. U.S. Department of Defense, "Software Master Plan
(Preliminary Draft)," February 9, 1990

19. Navy Program Manager's Guide, 1988

20. Fairley, Richard, Software Engineering Concepts, (New
York: McGraw-Hill, 1985)

21. Parnas, David L. "The Limits of Software Engineering
Methods," Software Aspects of Strategic Defense, June
1985

22. Moore, Brad, "You Mean It Really Works? or Innovative,
Deployed, AI Applications," AI Magazine, Volume 10,
Number 3, Fall 1989

23. Parnas, David L., "Artificial Intelligence and the
Strategic Defense Initiative," Software Aspects of
Strategic Defense, June 1985

24. Myers, Ware, "Software Pivotal to Strategic Defense,"
Volume 22, Number 1, January 1989

25. Atkinson, James H. Sr., "Modeling and Simulation in the
Test and Evaluation Process," Simulation, Volume 54,
Number 3, March 1990

26. Badenhorst, K.P., and Eloff, Jan H.P., "Framework of a
Methodology for the Life Cycle of Computer Security in
an Organization," Computers and Security, Volume 8,
1990

27. Alexander, Michael, "Morris Verdict Stirs Debates,"
Computer World, Vol.XXIV, Number 5, January 1990

87

28. Lubkin, Yale, "SDI: Soft? Where?" Defense Science and
Electronics, Volume 53, Number 4, 1986

29. Adams, Reginald C., "Computer Insecurity," Research
Paper, March 1990.

88

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5000

3. Director for Command, Control and 1
Communications Systems, Joint Staff
Washington, D.C. 20318-6000

4. C3 Academic Group, Code CC 1
Naval Postgraduate School
Monterey, CA 93943-5000

5. AFIT/NR 1
Wright-Patterson AFB, OH 45433-6583

6. AFIT/CIRK 1
Wright-Patterson AFB, OH 45433-6583

7. CAPT Reginald Adams 1
108 Beale St.
Belzoni, MS 39038

8. Prof. Luqi 1
Associate Professor
Computer Science Dept.
Naval Postgraduate School
Monterey, C 93943-5000

9. Prof. Donald Lacer, Code CC/La 1
Naval Postgraduate School
Monterey, CA93943-5000

10. Dr. Marvin J. Hamilton 1
The Aerospace Corporation
Mail Station M8/107
P.O. Box 92957
Los Angeles, CA 90009-2957

89

11. Mr. Wesley Mann, Jr.
Vice President, Defense ansd Surveillance Operations
The Aerospace Corporation
Mail Station M5/702
P.O. Box 92957
Los Angeles, CA 90009-2957

90

AU 7IA AM

