-A237 193

AD-
LD

Z

NAVAL POSTGRADUATE SCHOOL

Monterey, California

i

THESIS M

| AV

ELES
JUN 2 11991

o
i

A FRAMEWORK FOR UNDERSTANDING THE
STRATEGIC DEFENSE INITIATIVES'
SOFTWARE DCBATES

by

Regineld C. Adams

Thesis Advisor: Donald Lacer

Approved for public release; Distribution is unlimited

91-0244
Hlﬂllllilf/ll/!ll!!l/.’ll(lils’.’l:’lﬂ":’Hﬂ?

UNCLASSIFIED
SECURITY CLASSIFCAT Cf OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188
ta REPORT SECURITY CLASSIFICATION Lo 1b RESTRICTIVE MARKINGS
Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION i AVAILAB:LITY OF REPORT
APPROVED FOR PUBLIC RELEASE:

2b DECLASSIFICATION / DOWNGRADING SCHEDULE DISTRIBUTION IS UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MON!'TORING ORGANIZATION REPORT NUMBERS)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORPCAN ZATION

(If apphicable)

Naval Postgraduate School Naval Postgraduate School

CODE CC
6c ADDRESS (City. State, and ZiP Code) 7b ADDRESS (City, State, and 2/P Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a NAME GF FUNDING SPONSORING Bb OFF (& SYNMBO, 9 PROCURENEINT INSTRUNENT IDENTIFICATION NCVBER
ORGANIZATION (!f applicable)
8¢ ADDRESS (City State, and 2P Code) 10 SOLR{E OF FUNDING NUMBRERS
PROCRAN PRO.ECT TASH WORe UNT
ELENVENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

A FRAMEWORK FOR UNDERSTANDING THE STRATEGIC DEFENSE INITIATIVES SOFTWARE
DEBATES

12 PERSONA. ALTHOR'S)
ADAMS. REGINALD (.

13a TYPE OF REFORT “3p TIME COVERED 14 DATE QF REFORT (rear, Month Day) S OFATD COUNT
Master’'s Thesis FROMN 10 JUNE 1990 37

16 SUPPLENENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the US. Government

17 COSA™I CODES 18 SUBJECT TERWS (Continue on reverse if necessary and identify by block number)
FED GRO JP SUB-GROUP STRATEGIC DEFENSE INITIATIVE (SDI). RELIABILITY.
ERROR FREE. BALISTIC MISSILE DEFENSE (BMD)
(BM C3;

19 ABSTRACT (Continue on reverse !f necessary and ident.fy by block number)
On March 23. 1983. then-President Ronald Reagan challenged a group of engineers and scientists to
make nuclear weapons “impoteni and obsolete.” This challenge led to the beginning of a new era in
space technology and strategic defense. thus creating the Strategic Defense Initiative (SDI), better
known as "Star Wars." By 1984, several studies had begun to show that software in conjunction with
Batile Management Command. Control. and Communications techniques would plav a major role in
determining the effectiveness of the SDI. The results from these studies caused numerous
controversial debateson the reliability. dependability. and trustworthiness of the software. This thesis
provides a framework for understanding the complexities of the SDI software and points out some of
. the major issuesinvolved in the software debates. The structure for this thesis is based on presenting
the opinions of various computer scientists and engincers. indicating the issucs that are controversial
and those that have been defined as a necessity for the SDI program. Onc of the major highlights is

. the SDI summary churt that provides the reader with a very brief narrative of cach individuale

opinion on the software issucs discussed in this thesis

20 DSTRBLT DN LvA LAB LITY OF ABSTRACT 2T ABSTRACT SECUF v (L 255+ (AT ON

Kuncoasssen oo ied [sanE as e [o7ic usess unclassified

22a NASYE NE oEcars s o o0~ n L 227 e PRONE (Include Area Code) | 22c¢ OFFCE SYW R
"YKOF. DONALD LACER (408) 636-2772 CC La

DD Form 1473, JUN 86 Previous editions are obsolete SEC® T CLASSF (AT ON OF Ty 2L F

N ~ = "
S/ N 0102-LF-014-66073 UNCLASSIFIED

i

Approved for public release; Distribution is unlimited

A FRAMEWORK FOR UNDERSTANDING THE .
STRATEGIC DEFENSE INITIATIVES'
SOFTWARE DEBATES
by
Reginald C. Adams
Captain, U.S. Air Force
B.S., Mississippl Valley State University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(COMMAND, CONTROL AND COMMUNICATIONS)

from the
NAVAL POSTGRADUATE SCHOOL
JUNE 1990

Author: ,/4225%4£2f£€227ééézgég/p

7 Reginald C. Adams

Donald Lacer, Thesis Advisor

Prof. Lu%}) Second Reader

m

Jones, Chairman

nt of Joint, Command,

rol and Communications .

ii

ABSTRACT

On March 23, 1983, then-President Ronald Reagan
challenged a group of engineers and scientists to make nuclear
weapons "impotent and obsolete." This challenge led to the
beginning of a new era in space technology and strategic
defense, thus creating the Strategic Defense Initiative (SDI),
better known as "Star Wars." By 1984, several studies had
begun to show that software in conjunction with Battle
Management /Command, Control, and Communications techniques
would play a major role in determining the effectiveness of
the SDI. The results from these studies caused numerous
controversial debates on the reliability, dependability, and
trustworthiness of the software. This thesis provides a
framework for understanding the complexities of the SDI
software and points out some of the major issues involved in
the software debates. The structure for this thesis is based
on presenting the opinions of various computer scientists and
engineers, indicating the issues that are controversial and
those that have been defined as a necessity for the SDI
program. One of the major highlights is the SCI summary chart
that provides the reader with a very brief narrative of each
individuals’ opinion on the software issues discussed in this

thesics.

iii

TABLE OF CONTENTS

I. INTRODUCTION

II. MAGNITUDE OF THE SDI SOFTWARE PROBLEM

A.

B.

C.

D.

E.

INTRODUCTION . . « + + « « « o« « o

NATURE OF THE BALLISTIC MISSILE DEFENSE
SYSTEM (BMD)

SIMULATION: DESIGN AND TESTING
SOFTWARE DEVELOPMENT PHASES

ROLES OF SOFTWARE IN BMD .

IIT. ANALYSIS OF THE SDI SOFTWARE DEBATES;
WHAT THEY DISAGREE ON

A.

B.

C.

D.

INTRODUCTION « . .
WHY SDI SOFTWARE MAY BE UNRELIABLE
DEFINING TRUSTWORTHY: THE PARNAS VIEWPOINT

VIEWS OF WHY SDI SOFTWARE WILL NOT
BE ERROR-FREE e e e e e .

IVv. ANALYSIS OF THE SDI SOFTWARE DEBATES;
WHAT THEY AGREE ON e e e

A.

B.

cC.

D.

INTRODUCTION

THE NEED FOR A SPECIFIC BATTLE MANAGEMENT/C3

ARCHITECTURE PRIOR TO DEVELOPMENT
THE NEED FOR A DEDICATED NATIONAL TEST BED

THE STRATEGIC DEFENSE SOFTWARE CENTER

V. SUMMARY OF THE SDI SOFTWARE DEBATES

A.

B.

INTRODTTCTION«

EVALUATION OF THE SDI SUMMARY CHART

11

13

17

17

17

28

31

37

37

37

43

48

51

w
A

51

Vi. D
A

A,

B.

VII.

LIST O

INITIA

1. Reliability and Trustworthiness
2. Availability

3. BM/C3 Architecture

4, Testability

EVELOPMENTAL CONCERNS AND TRADEOFFS

SSOCIATED WITH SDI SOFTWARE
INTRODUCTION
SDIO SOFTWARE CHALLENGES
THE USE OF SOFTWARE ENGINEERING TOOLS
FOR SDI SOFTWARE DEVELOPMENT .
THE SIMULATION AND TESTING TOOLS AVAILABLE
SECURITY FOR SDI
CONCLUSIONS+ « « + « «
F REFERENCES

L DISTRIBUTION LIST

53
53

54

57
57
58

62

76
82
86

89

Accession F
R
NTIS GRA&I
DTIC TAB
Unannounced

—

O
a

Justificatlon 1

By _

. K

Availability Codes

" Javail and/or
pist k Special

|
|

I. INTRODUCTION

Computer technology has advanced very rapidly since the
late 1970s. In particular, computer hardware has allowed
engineers to develop smaller, faster machines for more
advanced computing power. In contrast, computer software has
lagged behind in advanced technology. Software development is
one of the major keys to the success of a Ballistic Missile
Defense (BMD) system. Consequently, the Strategic Defense
Initiative Organization (SDIO) has been tasked with finding
ways to explore new software engineering techniques. These new
developments will enhance U.S. chances of protecting itself
from nuclear destruction.

The purpose of this thesis is to analyze the SDI software
debates that began in 1985 and continue even today. This
thesis will, therefore, provide a framework which will allow
individual readers to understand the complexity of the SDI
software problem. Many computer scientists have put forth a
variety of opinions, but these ideas and opinions have never
been compared so that interested personnel from academia, the
military, and industry would have an understanding of the SDI
software and its complexities.

In the early 1950s nuclear armed ballistic missiles

represented an advance in weapon delivery technology. During

that time the United States was vulnerable to missile attack.
To counter these missile attacks, many anti- ballistic
concepts were conceived; in particular, the SAFEGUARD
ballistic missile defense system. It was developed in the mid
1970s to serve as the answer to the Soviet Unions’ nuclear
threat. Further analysis showed that (1) multiple, independent
target warhecads from a single booster could saturate defenses,
and (2) our ballistic missile inventory proved 1inadequate
against a superior Soviet force. [Ref. 1]

SAFEGUARD was later disbanded and the Soviet threat is
still ever present. The Strategic Arms Limitation Treaties
(SALT) provided a linited reduction in the arsenals of both
the United States and the Soviet Union.

The concept of ballistic missile defense found a new spark
in the 1980s under the Reagan administration. In March 1983,
President Ronald Reagan tasked scientists to free us from the
fear of nuclear weapons by making them "impotent and
obsolete." This new outlook on strategic defense became known
as the Strategic Defense Initiative (SDI) or "Star Wars." What
is SDI? According to President Reagan, SDI is the development
of an array of satellites carrying sensors, weapons, and
computers to detect ICBMs and intercept them before they can
do much damage ([Ref. 2:p. 2]. The purpose of this concept was
made clear in 1985 when the president stated:

[SDI's] purpose is to identify ways to exploit recent

advances in ballistic missile defense technologies that
have potential for strengthening deterrence and therefore

increasing our security and that of our allies. [Ref. 2:
p. 2]

The Strategic Defense Initiative Organization (SDIO) is
planning a three part phased development for ballistic missiie
defense. Each phase builds incrementally on the previous,
capitalizing on the benefits of the preceding phase. The SDIO
and their contractors have studied several options for the
first phase. The basic purpose of this phase would be to
compel Soviet operational adjustments and compromises, thus
reducing the confidence of Soviet planners. The second phase
would enhance deterrence by imposing uncertainty on the Soviet
strategic attack plans. A follow-on section of this phase
would deny the Soviets’ the ability to destroy "militarily
significant" targets (e.g., Missile Silos and Command and
Control Centers). The third phase would be aimed at dominating
the threat posed by nuclear ballistic missiles. That phase
would be completed either by the Soviets choosing to rid
themselves o0f obsolescent missiles by negotiating arms
reduction or by engaging in an offensive-defensive arms race
that could prove costly and leave both the Soviets and the
U.S. financially handicapped. Figure 1.1 gives an overview of
the phase I architecture for SDI. This architecture shows the
different surveillance and tracking systems, radars, and
interceptors that would be used from boost phase to terminal
phase. Table I gives a description of the functions of the

system elements in the phase I architecture. The reader should

note that there is no description of the brilliant pebbles
function, which replaces the Space Based Interceptor and is a
very recent innovative, space kinetic energy concept. [Ref.
3:pp. 2-6]

Many supporters of SDI are very optimistic concerning the
technologies used to deter Soviet Aggression. Although many
areas lack confidence, scientists feel the 1990s brings

promise of the reality of an SDI deployment.

SDS PHASE | ARCHITECTURE

i
SPACE-BASED SURVEILLANCE G l
TRACKING SYSTEM 7, BRILLIANT '
PEBB
oecovs 7 / EBBLES
’ ‘ BOOST
SURVEILLANCE

TRACKING SYSTEM

(8STS)

GROUND-8A
SURVEILLAN
AND

Figure 1.1

TABLE I.

Elements of Initial System

SYSTEM ELEMENTS

Boost Surveillance and Tracking
System (BSTS)

PRIMARY FUNCTIONS

* Detection of missile launches
¢ Acquisition end tracking of boosters
* Booster kifl assessment

Space-Based Survelllance and
Tracking System (SSTS)

* Acquisition and tracking of post-boost vehicles and
reentry vehicle clusters, ASATs, and sateliites
¢ Kt assessment

Ground-Base Survelllance and
Tracking System (GSTS)

* Closely spaced object resolution

* Tracking of reentry vehicles and penetration alds

* Discrimination of reentry vehicles from penetration aids
¢ KIl assessment

Ground-Based Radar (GBR)*

¢ ’a quisition and tracking
* Oiscrimination of reentry vehicles from penetration aids

Ground-Based (Exocatmospheric)
Interceptor (GBI)

* Destiuction of reentry vehides in late midcourse

Space-Basad Intercap.or (SBI)

* Destruction of boosters, post-boost vehicles, and ASATs
* Destruction of reentry vehicles in early midcourse

Command Center (CC)

* Human decisionmaking

¢ Communmications

* Battle plan execution

* Guidance lor system operation and integration functions
(SOIF)

* GBR is currently under consideration for inclusion in Phase .

II. MAGNITUDE OF THE SDI SOFTWARE PROBLEM

A. INTRODUCTION

The focus of this chapter is on some of the major software
issues that directly affect the success of SDI. The main issue
that is unique to SDI is its physical size. According to the
Office of Technology Assessment (OTA), the software required
for the SDI program far exceeds that of any of 1its
predecessors. Other factors discussed in this chapter are the
use of software development tools and software engineering
practices. Finally, design and testing efforts are discussed

in relation to the simulation methods for SDI.

B. NATURE OF THE BALLISTIC MISSILE DEFENSE SYSTEM (BDM)

In the massive conglomeration of satellites, weapons, and
sensors required for a strategic defense system lies what many
supporters of SDI call the catalyst of the entire system. That
catalyst is the software necessary to integrate the sensors
and weapons. The SDI software problem is difficult because of
the many complexities involved. They include areas such as
simulation and testing, computer architectures, reliability,
maintainability, compatibility and interoperability, to name

a few.

B

Cne reason for the confusion over software design and
development stemmed from the alternate interpretations of
President Reagans’ famous "Star Wars" speech. Based on the
interpretation of Dr. David Parnas, former member of the
Eastport Study Group, the only way to make nuclear weapons
impotent and obsolete will be to eliminate the nuclear
arsenals of both the United States and the U.S.S.R. The
Eastport Study group, chaired by DIr. Danny Cohen, share an
alternate interpretation. Dr. Cohen believes that any goals
reached toward ultimate ballistic missile defense will be a
major accomplishment. Views of Dr. Parnas and Dr. Cohen will
be discussed more in Chapters III and IV.

What makes the software such an integral part of the
ballistic missile defense system? The main reason is that
computer technology hardware and software must be adequate to
control individual weapons and sensors and coordinate their
operation. Battle Management and Command and Control (C2) are
the two most important factors for SDIs’ success. The C2
system must receive and act on information pertaining to
thousands of missile launches, tens of thousands of warheads,
and hundreds of thousands of decoys. To complicate matters,
all this coordination must be done within the time it takes
Soviet Intercontinental Ballistic Missiles (ICBM) to travel
from their launch sites to U.S. targets. This time 1is
estimated to be about 30 minutes. Therefore, any hnhuman

intervention to correct errors will be minimal. [Ref. 4:p. 46]

Managing an enhanced defense against ballistic missiles
presents problems of unprecedented complexity. In 1983, the
Defense Technology Study Team (DTST) examined the technologies
needed for ballistic defense. The study, better known as the
Fletcher Study, concluded that the development of software feor
a battle management system will be a task that exceeds in
complexity and difficulty any that has been accomplished in
the protection of civil or military war systems. The estimate
for written software instruction at that time was 10 million
lines. According to some analyst, that figure has more that
quadrupled, exceeding 40 million lines of executable code.

[Ref. 5:p. 17]

C. SIMULATION: DESIGN AND TESTING

One of the many questions that analysts in the space
program are asking is "How can the system be tested" or "When
is the system operating correctly." Without & doubt SDI
software developers are asking some of the same questions.
Because of its complexity, the BMD system has to be tested
from the research phase to the deployment phase. On a broad
basis, testing should occur at four levels They include
research, component and subsystem testing, system level
testing, and deployed hardware and software testing. Research
is literally nothing more than achieving an understanding of
the process involved. Component and subsystem tests provide

designers with a sense of validation or lack of validity for

a given approach to a system or subsystem. System level
testing is done to get rid of operational bugs and measure
system performance against its specifications and 1its
operational requirements. Finally, deployed hardware and
software testing brings a realistic environment into focus.
(Ref. 6:p. 1605]

The Strategic Defense System (SDS) will contain many
algorithms performing functions for surveillance, tracking,
discrimination, weapons assignment, weapons control and
guidance, network routing and control, security-access
control, system fault tolerance, and fail-safe mechanisms.
These algorithms are crucial to the identification and
assessment of missile threats and the performance of sensors
and weapons. This requires testing to be done on and end-to-
end basis using the actual software code instead of an
emulated version. The algorithms must be tested to find out
how well the chain is functioning (i.e., tracing action from
threat to sensor detection and track association to track
correlation to track prediction. ...). There is obviously no
one solution to the "“testing problem, but scientists are
measuring system performance through simulation. But, the
simulation capability must be credible. Credibility 1is
established when acceptable testing results are provided to
those testing the system. SDIO recognized this need and
organized the National Test Bed (NTB) in 1988. The author will

discuss the NTB in more detail in Chapter 1V,

10

According to the Eastport Study Group, simulation
facilities must have the capability of modeling the components
of the SDS, and its potential threats to answer questions like
“Are the battle management strategies embedded in the BM/C3
software adequate to cope with possible/potential attacks?"
The simulation technique utilized to replace simulated
hardware or software functions is known as "“In-line" testing.
With this technique engineering developments are accelerated
by allowing the insertion of system components and prototypes
into a realistic environment, thus detecting problems much

earlier that with traditional methods. [Ref. 2:p. 29)

D. SOFTWARE DEVELOPMENT PHASES

The development of a comprehensive defense system depends
very heavily on the software controlling it. If the software
is faulty, it is inevitable that the system will fail. BMD
software has four crucial areas that are critical factors in
attaining the objectives for which the system is designed.
These include: planning, design, implementation, testing and
debugging. It should also be noted that these phases are not
always sequential and some overlap will occur.

The first crucial phase for developing SDI software is
planning. Planning involves stating the necessary
specifications and requirements to accomplish a mission. These
elements must be bounded in some manner to give certain

definition to the problem. The precise specification of what

11

the ballistic missile defense must do is a complicated task.
For instance, if the mission is to shoot down Soviet missiles,
knowing only Soviet missiles exist, then this problem is
relatively simple. Unfortunately SDI will operate in a more
complicated environment. For example, how can Soviet missiles
be distinguished from non-Soviet missiles or what if a Soviet
missile is headed for a target in East Germany? The developer
will therefore try to predict every contingency in order to
decide how the software should respond. A number of
possibilities and circumstances may not be foreseeable, but
the developer must somehow properly plan for these
contingencies [Ref. 4:p. 48].

The design phase for SDI software development is a large
task in its own right. In particular, the developers must
implement the specifications and requirements defined in the
first stage (planning) through the use of computers. This is
where all the algorithms must be incorporated and sequences of
action established.

Based on the experiences of other major military systems,
integration of individual components generates problems when
the entire system must operate near its limit. For instance,
during an exercise using the World Wide Military Command and
Control System (WWMCCS), a communication network used by
military and civilian authorities for message transaction to
and from the field, the message transmission rate was

satisfactory when the system was in routine operation. On the

12

contrary, when additional regional centers were connected to
the WWMCCS, the system performance was degraded tremendously.
[Ref. 4:p. 48]

Simulation and testing is usually used to solve problems
on a small basis, but they are limited with respect to large,
interconnected systems such as the BMD system. Further
discussion of this issue will occur in Chapter VI.

The final phase involves debugging real time software.
Debugging can account for almost 70 percent of the total life
cycle cost of a software development project. lwo salient
points that make software maintenance difficult are: 1) Errors
don‘t reoccur easily, and 2) Errors found after a system
becomes operational must be eliminated. To add even more
complexity to this problem, analysts state that the
probability of introducing an error while eliminating a known
error ranges from 5 to 50 percent. [Ref. 4:p. 50]

These four phases indicate that software development for a
BMD system is critical. The author believes that scientists
and engineers have a lot of ground to make up in terms of
finding viable solutions to make the Reagan administrations’

prophecy a reality.

E. ROLES OF SOFTWARE IN BMD
Ballistic Missile Defenses can’t perform without computers,
just as computers can’t perform without software. Software is

nothing more that a set of sequential instructions used to

13

direct the actions of computers. The software, because it is
expected to perform continuously with or without failures,
must be reliable and trustworthy.

There are those who support or oppose the easibility of
the development of the software based on their technical
expertise. One unique requirement for SDI is that the software
driving the BMD would have to work reliably the first time
it’s used in battle. Dr. David Parnas wrote the following on
software reliability:

People familiar with both software engineering and
older engineering disciplines observe that the state of
the art in software is significantly behind that in other
areas of engineering. When most engineering products have
been completed, tested, and sold, it is reasonable to
expect that product design is correct and that it will
work reliably. With software products, it is usual to
find that the software has major "bugs" and does not work
reliably ror some users. These problems may persist for
several versions and sometimes worsen as the software is
“improved" [Ref. 7:p. 433]

Some computer scientists and engineers believe that
software development is advanced enough to make the SDI task
tractable. Dr. Frederick P. Brooks, for example, stated:

I see no reason why we could not build the kind of
software system that SDI requires with the software
engineering technology that we have today." [Ref. 8: p.
284

There are several positions on the feasibility of SDI
software development; therefore, it is important to understand
these positions when analyzing the roles of software in BMD.

According to an Office of Technology Assessment (OTA)

report in 1988, software for BMD would be expected to:

14

1. Be the agent of system evaluation, permitting changes
in system operation through reprogramming of existing
computers.

2. Perform most complex tasks in the system, such as
battle management.

3. Be responsible for recovery from failures, whether
they are hardware or software failures.

4. Respond to threats, both anticipated and unanticipated
against the system.

These roles or functions of software are just a few among
many that software technology must contend with. Futhermore,
BMD software would be more complex than any previously built.
A conclusion from the Fletcher Study stated:

Specifying, generating, *testing, and maintaining the
software for a battle management system will be a task
that far exceeds in complexity and difficulty any that
has yet been accomplished in the production of civil or
military software systems. [Ref. 9:p. 4]

In this author’s opinion, DoD has found that producing C3
and information processing software for weapon systems is not
an easy task. There are many similarities between a BMD and
today’s typical C3 systems, such as weapons guidance,
targeting, and real time communication control, but the
differences are enormous. They include very little human
intervention, much larger battle spaces to manage, operating
in a nuclear environment, and many others. BMD software is
critical to successfully defending the U.S. and its allies

against any nuclear threats. Because of complexity and other

software issues, it is very important that requirements be

15

stated specifically before the development of any software

modules.

16

III. ANALYSIS OF THE SDI DEBATES: WHAT THEY DISAGREE ON

A. INTRODUCTION

This chapter describes the different views of some noted
software engineers, professors, analysts, and computer
scientists on the reliability issues concerning SDI software.
The opinions are those of individuals with first hand
knowledge and interest in the SDI program. Among them are:
Dr. Danny Cohen, Chairmen of the former Eastport Study Group;
Dr. Frederick Brooks, Professor of Computer Science at the
University of North Carolina; Dr. David Parnas, Professor of

Computing and Information Systems at the University of

Victoria, B.C.; Dr. Solomon J. Bushbaum, Executive Vice

President for Customer Systems at AT&T Bell Laboratories, and
C.A. Zraket, President and CEO of the Mitre Corporation.

The author will try to provide the reader with a framework
for understanding some of the complexities associated with
designing and developing reliable, trustworthy, error-free

code.

B. WHY SDI SOFTWARE MAY BE UNRELIABLE
Defining reliability as it applies to SDI software is
difficult because of the extreme demands on the system and the

inability to operationally test those demands. The software

17

will be responsible for ensuring that the BM/C3 systems can
bind together a system of worldwide sensors, weapons,
platforms, and communication links. Knowing that a task of
this magnitude must be completed in a matter of minutes,
reliable software is important for a successful strategic
defense. [Ref. 2:p. 1]

In 1985, Dr. David Parnas resigned from the panel on
computing in support of battle management known as the
Eastport Study Group. He felt many of the computer science
problems could not be solved prior to the development of an
Anti-Ballistic Missile (ABM) system. Dr. Parnas later wrote
eight articles that supported his resignation. Among the noted
papers were; "Why software 1is unreliable," “Why the SDI
Software System will be untrustworthy," and "The Limits of
Software Engineering Methods." [Ref. 7:p. 2]

Dr. Parnas does not apply the term reliability towards a
strategic defense system as he does to other programs. Dr.
Parnas appeared before the U.S. Senate Subcommittee on
Strategic and Theater Nuclear Forces in December 1985. There
he stated that reliable software could indeed be built if all
the requirements are known and the software can be
controllable as well as predictable. These factors can be
determined for a system such as the telephone system, but they
don’t apply well to SDI. First, tools such as mathematical
analysis and exhaustive case analysis are useless in some

sense because the requirements for the software functions are

18

controlled by strategies and tactics of the Russians.
Secondly, redundancy, which is considered by some authorities
to be the key to reliability, is very expensive in space.
Redundancy is good for independent component failures, but
design failures pose a bigger problem. For instance, if
redundancy is implemented in a section of code that already
contains a design flaw, we’ve given ourselves a "double
whammy." These tools are great for mathematical analysis that
work on continuous functions, but software is a discrete state
system that cannot be described by these functions. [Ref. 8:p.
286)

Dr. C.A. Zraket, in his article on *"Uncertainties 1in
Building a Strategic Defense" stated that the feasibility of
designing and building reliable s:ftware for a BMD system
depended largely on (1) trustworthiness - known, predictable
effectiveness, and freedom from "catastrophic flaw," (2) fault
tolerance - ability to continue functioning coherently when
part of the system is damaged, and (3) information security -
ability to prevent programs from being exploited by using
“trusted" programs and coding and authentication techniques.
To sum up the problem of reliability, Dr. Zraket stated the
fcllowing:

Much more research and a lengthy development effort
are needed in dealing with the operational design and
implementation of a specific BMD architecture before a

conclusive judgement can be made about the reiiability of
software for this space-based system. [Ref. 6:p. 1605)

19

Everyone realizes that the SDI system is faced with
reliability problems, but how reliable must the software be or
as stated by Dr. Frederick Brooks, "How good is good enough?”
For instance, if 10,000 nuclear missiles were fired at the
United States and our system operated effectively at 99.9
percent, 10 nuclear bombs would still bombard our country. Not
good! Figure 3.1 gives the reader some idea of the number of
errors created and later found and fixed (Rayleigh Curve).
This curve 1is intended to be a rough representation of a
subsystem for SDI. The curve was projected on the basis ol a
real-time C2 system consisting of 1 million lines of source
code. The x-axis represents the time in mr~ths while the y-
axis represents the number of errors per month. There are
several milestones that occur during +the develcopment and
operation phases. The sequential stages are represented by the
vertical lines and are defined as follows:

1. Preliminary Design Review (PDR)
2. Critical Design Review (CDR)

3. First Code Complete

4., System Integration Test

5. User-operat.onal Capability

6. Initial Operational Capability

7. Full Operational Capability (95 perceat reliability
level)

8. 99 percent reliability level, and

9. 99.9 percent reliability level. [Ref. 10:p. 63]

Expected Error Rate

Expected error rate

1 2 3 45 67 8 9
™ 200
— 150
'\~ .
Errors/Month - 100
T
50
. - 0
0 9 18 27 36 45 54 63 72 8190
Percent reliability: Months
7 « @5
8 » 99
999 Figure 3.1

Due to the vast size and complexity of SDI, it would take
approximately 7.5 years to reach the 99.9 percent reliability
level. Figure 3.2 shows the total expected errors. Even at a
99.9 percent reliability level there would still be over 6,000
cumulative errors. (Keep in mind that this is the case for 1
million lines of code.) [Ref. 10:p. 63] At the third annual
IEEE Conference on Strategic Software, the number of lines of
code to operate SDI was up to 20 millions lines, thus
increasing the concern and need for reliable software systems.

[Ref. 11)

21

Total Expected Errors

1 2 3 45 67 8 9

8000

—— 6000

Errors A
i 4000
/
/

-
/ 2000
o}
0

9 18 27 36 45 54 63 72 8190

Percent reliability:

7 » 95 Months
8 = 39
9 « 99.9)
Figure 3.2

SDI software may have a reliability problem, but the real
question is how to evaluate the systems’ dependability. Other
questions are what are the characteristics of a reliable
system, and how much emphasis should be placed on each
characteristic for evaluating the system? The Office of
Technology Assessment (OTA) addressed these issues and labeled

the following commonly considered characteristics:

1. Correctness - whether or not the software satisfies
its specification

2. trustworthiness - probability that there are no errors

in the software that will cause the system to fail
catastrophically

22

3. Fault tolerance - either in prevention (i.e.,
capability of the software to prevent a failure
despite the occurrence of an abnormal or undesired
event - or failure of recovery

4. Avallability - probability that the system will be
available for use

5. Security - resistance of the software to unauthorized
use, theft of data, and modifications of programs

6. Error incidence - number of error in the software,
normalized to some measure of size

7. Safety - prevention of human life and property under
specified operational conditions

These characteristics are critical to system reliability.
The process of instilling reliability into SDI software must
begin at the software development phase. It is very difficult
to "add in" reliability after the software design is complete.
As stated earlier, this can lead to exponential cost increase.
(Ref. 12:p. 288)

Even though there 1is a 1lack of ways of quantifying
confidence in software, people trust computerized systems. For
instance, no one thinks about the probability of a disastrous
error occurring in the software of an automated teller
machine. This attitude allows scientists to start the
development of systems without having all of the reliability
issues resolved. The more confidence that is gained in a
system, the less the resistance that will be shown in
accepting that system. There are a few entities that
characterize dependable software systems. They include 1)

extensive use and abuse of the system, 2) predictable

23

environments, 3) low cost of failures, and 4) stable
requirements [Ref. 12:p. 235-236]. A strategic defense system
exhibits none of h these entities.

The extensive use of any system, whether it be an
automobile or a computer system, may be the most important
factor for building confidence in that system. This confidence
comes from extensive use and abuse. Simulations cannot test
extensive use and in many cases real world complications are
expensive and poorly understood. The software for SDI falls
within a similar category because it can only be tested end-
end during an actual battle. [Ref. 12:p. 45] 1In essence the
first time may be the only time. Dr. Solomon Bushbaum believes
that most, if not all, of the essential attributes of the
BM/C3 systems have been demonstrated in comparable terrestrial
systems, namely, the U.S. Public Telecommunications Network.
[Ref. 8:p. 275] Although the telephone system has been
extensively "used and abused," it is not a weapon system.
Figure 3.3 shows a comparison of the characteristics for
SAFEGUARD, SDI, and the phone system with respect to
dependability. In a letter to Congress from designers and
maintainers at AT&T Bell Labs, they stated:

"Despite rigorous test, the first time new equipment is

incorporated into the telephone network, it rarely
performs reliably. [Ref. 12:p. 243]

If the behavior of the software can be predicted in an

operational environment confidence can be gained because the

environmental factors are known. This is the case with the

24

Characteristics of Dependable Systems

Applied to
SDI, SAFEGUARD, AND THE TELEPHONE SYSTEM

Characteristic _ SDI SAFEGUARD Teslit‘s)?eo:\e
Extensively used & abused.... NO No Yes
Predictable environment......... No No Yes
Low cost of a failure................ No No Yes
Stable requirements................ No Yes Yes
Well-understood

Predecessor. ... No Yes Yes
Simple design.......ocoveeeeneennnn.. UKN ? Yes
Disciplined development..... UKN Yes Yes

Source: OTA

Figure 3.3

telephone system where mathematical models can be used to
measure the amount of traffic on a switching circuit. On the
contrary, in a BMD environment, nuclear background and
countermeasures will not be predictable prior to the battle.
[Ref. 8:p. 345] Therefore, one’s confidence in a system may
be lessened by the unknown factors.

All <csoftware systems inevitably experience software
failures. Users lack confidence in these systems if the risk
associated with gaining information is more than that of
losing it. In the case of the phone system, the ability to

recover from a failure at a low cost increases the users

25

willingness to use the system more. Besides, no major war will
be won or lost because a phone call cannot be recovered or
reconnected. On the contrary, software for BMD systems must be
reliable. There will be no time to revair errors during a
battle. If the error is "catastrophic," many thousands of
warheads will reach their targets. According to an OTA report
concerning technology for preventing catastrophic failure, the
following statement was made:

OTA found no evidence that the software engineering
technology foreseeable in the near future would make
large improvements in the dependability of software for
BMD systems. In particular there would be no way to
ensure that BMD software would not fail catastrophically
when first used. [Ref. 12:p. 246]

Finally, defining all the requirements is not feasible,
mainly because the threats, the strategies, countermeasures,
and technologies are in a constant evolution. In preparation
for writing this thesis, most software analysts and engineers
when asked "What is the toughest problem facing SDI software
development, " the majority stated: changing requirements. This
is not a new issue. The problem has plagued some of cur other
major weapon systems, in particular the B-1 bomber program.
Many changes were incorporated during the development stage
which resulted in major deficiencies. According to a report on
the B-1 bomber:

Defense officials blame many of the program’s problems
on the decision to begin producing the aircraft at the
same time that research and development efforts were
underway, forcing engineers to experiment with some

systems before they were completely developed. [Ref: 13:
p. Al]

26

Stability in software has a special importance because of
the many decisions involved in the design. The earlier a
decision is made, the harder it is to correct later in the
process. The author believes that the key is to have little
change during the development process. This process increases
the confidence in the system and keeps cost at a minimum.

The previous discussion dealt with issues that were deemed
necessary for reliable software systems. Whether or not
technology 1is able to accomplish this feat is another
question. Supporters of the SDI program lean towards the
answers from the Eastport Study Group and various other
reports that have been submitted to Congress. Dr. Yale J.
Lubkin, director of advance technology for a major EW
manufacturing company, compared reliability of software
systems to that of the human brain. Dr. Lubkin stated that the
brain is a discrete state system that works with continuous
state components to produce complex sensor/logic systems. He
also stated that these systems work well on a scale such as an
"inchworm." For example, as the worm rotates its sensor,
searching to define the safe boundaries of its domain, it can
learn to proceed rapidly on a safe path without reaching a
boundary of discontinuity. Therefore, he concludes that the
implication that software systems will always be unreliable is
not true. It is obvious that these debates have very valid
positions on both sides. The winner may not be determined

until the battle is over. [Ref. 28:p. 12]

27

C. DEFINING TRUSTWORTHY: THE PARNAS VIEWPOINT

In the previous section reliability was discussed as a
measure of system behavior. As discussed earlier, reliability
is traditionally measured as the mean time between failure
(MTBF). Trustworthiness and reliability are generally
considered by most as almost being the same. It is obvious
that reliability has been quantified but not many attempts
have been make to quantify trustworthiness. According to the
OTA, two possible reasons for the lack of interest in
quantifying trustworthiness may be 1) trust is determined
qualitatively as much as quantitatively and 2) most systems in
critical applications are guarded by human operators. Whether
these reason are true or not, the term trustworthy must be
defined. [Ref. 12:p. 232)

As noted earlier Dr. David Parnas resigned from the
Eastport Study Group because of his inability to perceive that
software for the SDI program would be trustworthy. After his
resignation, Dr. Parnas wrote several papers about SDI
software issues. Of particular interest was the article on
"“Why the SDI Software System Will Be Untrustworthy." That
article described the characteristics of the proposed battle
management software system and provided implications of the
problem characteristics. Dr. Parnas also stated reasons for
not trusting the software before the U.S. Senate Subcommittee
in 1985. The rest of this section will focus on the "Parnas

Viewpoint" of why software systems are not trustworthy.

28

Common definitions of trust include the belief that
conditions are favorable so that failure does not occur and
the belief in one’s ability to maintain confidence. This
definition seems to fit very well with Dr. Parnas' reasons why
the software would not work correctly when really needed. Two
basic reasons are 1) we do not know exactly what the software
is supposed to do, and 2) we must somehow validate the fact
that it operates the way we think it should operate [Ref. 8:p.
290). These reasons lead Dr. Parnas to believe that the
software could not be trusted because it is not known whether
the software will be correct or not. Scientists and engineers
agree that the software will not be perfect. Everyone involved
with the SDI program is willing to accept that fact. The
. problem is how to stop the system from failing
catastrophically. Relating back to Dr. Frederick Brooks’
question of "How good is good enough," Dr. Parnas responded in
a letter to the editor of IEEE Computer magazine. He stated:

I think that the answer is clear. To be good enough we
have to know, with high confidence, how good it is. To be
good enough, we must know that the system will not fail
catastrophically. [Ref. 14:p. 6]

In the previous section, the author described some of the
characteristics that reliable software systems should have.
From this viewpoint requirements of the battle management
software and some of the implications of these characteristics

will be discussed. The following is a brief explanation of

each:

29

Identification, tracking and weapon targeting are
required system functions whose ballistic
characteristics cannot be known with certainty prior
to the battle. The implication of this problem is that
fire control software cannot be written without making
assumptions about the enemy’s weapons and targets.
Therefore, if the system is developed without
knowledge of these characteristics, there are likely
to be fatal errors in the software.

Determining the behavior of computers within the
network cannot be predicted because of countermeasures
by an attacker. This leads to the belief that the
component availability and throughput of the system
will also be inhibited. There are some systems where
the likelihood of failures can be predicted from past
history or component failures are unlikely and
statistically independent, but this does not hold true
for the required battle management software.

Real time testing of the software will be impossible.
Although operational software for military aircraft
undergoes rigorous ground and flight testing, "bugs"
can and do show up in battle conditions. With this
inability to test the system under real-time field
conditions, the confidence and faith in the system is
minimal.

There will be little possibility of human intervention
during a nuclear war. This means that debugging and
modifications of the program during a short period
are not very likely to occur. Software modifications
have been made in the field during previous wars
(programming notes on the walls of trucks carrying
computers; Vietnam). Some systems have even become
reliable through such techniques, but the likelihood
of these events occurring in a 30 minute war is
extinct.

The number of targets detected and identified will
determine the computational requirements of each
process. The problem here, as in other cases, is that
the number of targets or decoys cannot be predicted.
Theoretically, this can be done using runtime/pre-
runtime scheduling techniques. This scenario would
work only if a worse case real-time schedule could be
worked out in advance.

Each weapon system will include its own weapons and

sensors which will require complex software systems to
run them. To make matters worse, these systems will be

30

dynamic during and after development. With a large

number of contractors involved, the components will be

subject to independent system modification. It is a

known fact that as the size of software projects

increase, the level of difficulty involved in terms of
integration increases. When interfaces are changed,

the problem is worsened. [Ref. 15]

The views shared by Dr. Parnas do not indicate that
software cannot function effectively. They only point to the
issues that engineers must consider before launching into a
massive space project like SDI. In an article in Technology
Review entitled "The Software for Star Wars: An Achilles
Heel?" Herbert Lin discussed the "can do" spirit of Americans
to overcome any so-called impossible feat. He stated that it
is fashionable for proponents of SDI to dismiss claims of
impossibility by citing lessons from history. The fact that
someone said something is impossible does not make it
possible. In his closing argument he states:

No one can know with certainty how the BMD software
would work during a large scale attack. How much
confidence should the American public have in a BMD
system so complex that no one person can understand it?
That cannot be certified as error-free? That 1it is
operationally untestable? The lessons learned from the
performance of other large software systems suggest that

the answer might be "very little" confidence indeed."
(Ref. 5:p. 18]

D. VIEWS OF WHY SDI SOFTWARE WILL NOT BE ERROR-FREE

The hazards of error-prone software has become common &
part of life on a daily basis. Whether it be a miscalculation
on our phone bills, lost airline reservations, or an

additional deposit to our checking account, errors are found

31

that may or may not alter our life styles. In many situations,
the magnitude of the error is small and the recovery process
is trivial. Unfortunately this is not always the case,
especially with the SDI software. In the previous sections of
this thesis the requirements for a BMD software system were
stated. Errors will inevitably occur, but they must be kept to
a minimum. [Ref. 10:p. 62]

Ware Myers discussed the problems of errors in large,
complicated software systems. He stated that they are created
in the ©process of formulating requirements, writing
specifications, designing software, and writing code. Most
analysts try to "spot check" the code by using techniques such
as design reviews, module testing, and integration testing.
Many errors occur when reprogramming is done to remove the
errors found earlier. The fact is, there is no certainty that
all errors in large complex software systems can be found and
fixed. [Ref. 10:p. 62]

Dr. Solomon Bushbaum tried to silence many critics on the
issue of error-free software by rephrasing the question to ask
whether or not the total BM/C3 system could be designed to be
robust and resilient in an error-prone environment. As alluded
to earlier, Dr. Bushbaum is referring to the U.S. Public
Telecommunications Network. [Ref. 8:p. 274] The author
believes that the phone system is reliable, available, and

adaptable because it has been "used and abused" continuously

32

for years. These are not exactly the characteristics thav
relate to the BMD software systems.

There are no technological breakthroughs that will make it
possible to write error free software. It has not happened in
the past and the state-of-the-art tools and techniques for the
future are not promising. According to the Eastport Study
Group, the focus should be on developing software that will
function dependably despite the presence of errors. [Ref. 2:p.
2] This means placing more emphasis on the software research
that the SDIO supports and finding ways to reduce errors.
About 80 percent of errors found in large real-time systems
are said to be caused by faulty requirements and design flaws.
Some software professionals think that by using proper
development methodologies, intensive testing, formal
validation techniques and fault tolerant designs, we can
reduce the incidence of errors. The process involves using
computer aids and analysis procedures to test smaller
components of large systems. This results is trying to
narrowly predict and reduce the number of errors in a program.
Fault tolerant design techniques employ methods such as
multiversion development. In this process, two separate teams
of programmers are given the same set of requirements to
develop programs. The programs are then compared to each other
to reduce common mode errors. [Ref. 10:p. 65)

Although the ultimate goal is to design and develop a

software system that operates effectively with some known

33

errors, some scientists and engineers believe that the process
of counting errors is not well understood. [Ref. 10:p. 65] It
is quite obvious that, in most cases, quantitative arguments
-are more convincirg than qualitative ones. People are more
comfortable with numbers that support an argument. In a letter
to the editor of Computer magazine, Dr Parnas stated:

Error statistics make excellent diversions but they do
not matter. A low eorror rate does not matter. A low error
rate does not mean that the system will be effective. All
that does matter is whether the software works acceptably
when first used by the customers; the sad answer is that,
even in cases much simpler that SDI, it does not. What
also matters is whether we can find all the "serious"
errors before we put the software into use. The sad
answer is that we cannot." [Ref. l4:pp. 6-7]

One cannot totally believe that the debate on whether SDI
software can be error free hinges only on assumptions about
error incidence. The number of errors found per thousand lines
of code cannot measure program correctness. The fact remains
that all of today'’s large computer systems contain
undiscovered flaws that are revealed only after the systems
are put to wuse. [Ref. 24:p. 94] Even during program
development, the "bugs" (errors) began to appear. The simplest
type of error, such as typographical slips, sometimes cause
the largest conseqgrences. One of the most infamous examples is
the falilure of the Mariner I Probe to Venus in 1962. In this
case, a period was substituted for a comma in the FORTRAN
language, consequently, the probe had to be destroyed shortly
after launch ([Ref. 24:p. 94]}. Most fourth generation

languages check for notation errors automatically but logic

34

-

errors are more difficult to prevent. Even with emalil
programming projects done at the Navel Postgraduate School,
logic errors cost valuable computer resource time.

Other errors are caused by a programmer’s lack of knowledge
of certain types of contingencies. These errors cause major
problems. There is no "physical" mistake to be found. The
error 1is caused because the program branches are not
available. Noted author, Alan Boring, gave an explanation that
in large-scale programs there is wusually nobody who
understands the entire system completely. Humans play a major
role 1in manufacturing errors. Programming errors are
especially insidious because there is no way of indicating
there is a problem prior to testing. Another problem is that
if the section of code where the error lies is never executed,
the error is never found. Unfortunately, one day that "“special
contingency" may occur and that section of software needs to
execute properly, but does not. As stated earlier, redesigning
software is expensive. The Department of Defense (DoD) will
spend about 10 percent of the budget or $30 billion on
software in FY90. With the recent lessening of the Soviet
threat, it is not likely that Congress will dispense more
money for redesigning systems that do not operate properly.
[Ref. 16:p. 26]

Zraket feels that because of the discontinuous and highly
discrete nature of software, generating millions of lines of

software code may cause small errors with a large operational

35

impact on the BMD system. The solution: rigorous design and
testing. This solution will be discussed more in the next
chapter. Zraket also stated that the most important and
prevalent uncertainties and flaws occur in the operational
design and structure of the software. His approach is similar
to that of Myers; build the operational design and software

in increments, evaluating each sequence.

36

IV. ANALYSIS OF THE SDI SOFTWARE DEBATE: WHAT THEY AGREE ON

A. INTRODUCTION

This chapter focuses on a few of the SDI software issues of
which both supporters and critics have agreed. This is by no
means an exhaustive list of requirements, rather it typifies
issues that are less debatable. The reader should be informed
that contrary to the style of the previous chapter, the views
shared in the debates addressed in this chapter are those of
a composite group and not necessarily those of individuals.
Anyone who has studied the SDI software issues can testify
that there are several other problems that have been heavily
debated. The author will attempt to discuss the relative "show
stoppers”; What would happen if these issues were not
resolved?

The major software issues that have survived the debates
are 1) the need for a specific battle management\C3
architecture, 2) the need for a dedicated national test

facility, and 3) the need for a SDS software center.

B. THE NEED FOR A SPECIFIC BATTLE MANAGEMENT/C3 ARCHITECTURE
PRIOR TO DEVELOPMENT
One can easily categorize the SDI as a vast system

consisting only of thousands of sensors, weapons and

37

platforms. More than likely, it is often overlooked or taken
for granted that software, computers, and communications drive
the entire system. The Eastport Study Group suggested that too
much emphasis was being placed on weapons and sensors and not
nearly enough on the software complexities concerned with the
design and development. The Eastport study concluded that the
choice of system architecture depends on the feasibility of
the battle management software that can be simulated, tested,
and maintained. Given these facts, one must consider the
factors that serve as criteria to evaluate the architectures.
Fundamentally, performance, testability, and cost are a few of
the criteria considered. For each of these criteria, measures
of performances (MOPs) must be defined. For performance, the
measures of performance are linked to the survivability or the
robustness of the system. These factors go hand-in-hand with
reliability and durability, necessities for real world
performance. An MOP for testability must be structured from
the results of small-scale tests. Reasoning for that approach
is based on the mere fact that full-scale tests are
impossible. The cost of building, deploying, and maintaining
a strategic defense system will be inherently high. [Ref. 2:p.
22]

The SDIO realized that battle management software and its
supporting C3 elements must be given the highest technical
priority. The task set before them was to find an architecture

that implements human control, lowers cost, and reduces the

38

magnitude of required coordination and communication control.
Although these factors were heavily debated, the SDIO
considered them a necessity. What type of system architecture
would best satisfy these issues - centralized, decentralized,
or layered. Viewing the software as a battle manager, there
were many questions about the type of structure needed.

A centralized architecture required the software to provide
information to every element (sensors and weapons) in the
network instantaneously and simultaneously. This process would
make fault tolerance and error recovery virtually impossible.
Also, human control would have no intercession within the
process. Computing resources for a centralized system are
focused in one location and may consist of several processors
that share common memory devices. These systems are called
multi-processors. The processors have a high rate of
communication because of high data rates, resulting in a
tightly coupled system. Figure 4.1 shows a "centralized"
representation of the architecture. Additionally, the
centralized architecture would not allow simulated full-scale
testing, a major criteria for SDI’'s acceptance. [Ref. 2:p. 23]

A decentralized architecture does not rely on tight
coordination. It is basically organized as a hierarchy similar
to the military chain of command (i.e., tasks are delegated at
lower levels). As noted in the Eastport Study:

No system part within such a hierarchy needs to

depend on millisecond-by-millisecond detailed
instructions from a higher authority. " [Ref. 2:p. 23]

39

CENTRALIZED BATTLE MANAGEMENT
ARCHITECTURE

Sensors

Weapons Weapons

Global
Battle

Manager

/ AN

Sensors Sensors

Figure 4.1

In the decentralized system, processors are separated
(physically), individual memory spaces are allocated and data
communication rates are decreased. These characteristics are
also known as important parts of a distributed system. The
system follows the loosely coupled concept. Each battle
manager reports (when necessary) to the battle manager at the
next higher level. For instance, given three levels, the
lowest level would be considered the local battle manager
performing fighting functions. The next level would be the
regional battle managers. They would be responsible for

targets passing between battle spaces and resolving

40

contentions for resources among local battle managers. The top
level manager would be the global battle manager. The primary
job would be to establish strategies for the regional and
local battle managers. They would also provide the man-machine
interface for the system. Figure 4.2 depicts a typical

decentralized architecture. [Ref. 2:p. 453]

DECENTRALIZED BATTLE MANAGEMENT
ARCHITECTURE

e

G8M - Global Battlie Manager

RBM - Regional Battie Manager
LBM - Local Battle Manager

W - Weapons

S - Sensors /

Ay /‘LBM' LBM
- / — N . . .
" ST S \W S j\; W/J \s

The following elements are critical advantages attributed
to a decentralized architecture capable of independent action.
This list was taken from a report prepared for the 100th
Congress by the SDIO in June 1987. The advantages are as

follows:

41

1. Simplicity: A simpler architecture can be produced by
eliminating ‘"perfect" coordination. This approach
requires less bandwidth, less latency requirements,
and reduces scheduling demands that have a profound
impact on software.

2. Testability: Elements in a decentralized architecture
act independently. In this regard, each element can be
tested separately allowing the developer to see how
the whole system functions in reference to its
individual parts.

3. Evolvability: Since decentralized architectures use
relatively simple interfaces, addition of similar
elements is far less tedious. Existing computing
requirements will not be affected by additional
changes. Scalability in deployment must be supported.
With every asset that is deployed, the performance of
the system is improved incrementally.

4. Robustness: Error and fault tolerance levels in one
platform are controlled under that particular battle
manager. Thus, when failures occur at one level, other
levels are not affected.

5. Diversity: Robustness is reinforced through diversity.
Plans for strategic defense must employ the services
of vendors as well as implement new technologies as
they evolve. The major driver behind a battle
management system being diverse is its ability to add
competition to the procurement market. The result is
lower system costs.

6. Durability/Survivability: A decentralized architecture
is more survivable against countermeasures, and fault
tolerances are much lower. This results from the
unlikelihood of errors to propagate throughout the
entire system.

The decentralized architecture has been recommended by the
Eastport Study Group for the design and development of battle
management software. [Ref. 17:pp. 6-8)

A third type of architecture is known as a layered

architecture. This architecture is very similar to the

decentralized version (i.e., Global and Local battle

42

managers). The layered model can have fewer or more layers
depending on the particular system architecture or the tactics
employed to counter the ballistic missile attack. For example,
requirements and strategies may differ from layer to layer by
using specific weapons, sensors, and operating in different
conditions. [Ref. 9:pg. 12-20]

The basic functions for the decentralized and layer models
are the same. Local battle management functions include
tracking and classifying targets and allocating proper
resources. Global battle management functions provide real
time surveillance, establish rules of engagement, delegate
resources, provide mutual defense, and perform situation
assessment. Figure 4.3 provides a view of the layered model of

battle management. [Ref. 9:p. 12-20)

C. THE NEED FOR A DEDICATED NATIONAL TEST BED

Testing and Evaluation (T&E) of any major weapon system
development is critical to its success or failure. T&E of
software for strategic defense systems is no exception. It is
expected to be both difficult and critical. Authorities agree
that in order to support design and development efforts, a
national test bed had to be developed. In 1986, Danny Cohen,
Chairman of the Eastport Study Group, wrote a memo on the
National Test Bed (NTB). Dr. Cohen stated that the single
central component of the NTB should be simulation. The

simulation requirements are numerous and diverse but the two

43

LAYERED MODEL BATTLE MANAGEMENT
ARCHITECTURE

| Sensors tonsors I Sensors

Handover Handover
Boost-phase comemem—————p Midcourse Terminal
B8M 8M BM
1 L 1 [) L | l Weapons 1 W‘ l
Weapons
P J J Weapons
) 4 y
Knowledge
of Current Gues——— Gilobal Global Functions
Situation BM
Surviellance
Rules of Engagement
Local Functions Situation Assessment
————————— . Delegation
Track Mutual Defense
Classify
Allocate
Figure 4.3

main areas for the application of the simulation are design
and testing. Simulation’s role is paramount because it is
impossible to do real time testing on all weapons and sensors.
Two basic technical questions that simulation should provide
the answer to are: 1) Can BM/C3 software provide an adequate
level of reliability and 2) Can the BM/C3 software strategies
handle the diversity of attacks. These questions can not be
answered without the extensive use of a National Test Facility
(NTF).

Concept definition and preliminary design study of the NTB

started in March 1986. Martin Marietta and Rockwell

44

International were selected to complete the preliminary design
concept. Martin Marietta subsequently won the contract for
development for the NTB. Completion of the National Test
Facility (NTF) is scheduled for FY90. [Ref. 3:p. 5.2-15]
Figure 4.4 shows the proposed version of the NTB. The
purpose of the NTB is to evaluate systems and new technologies
for SDI. Its mission includes demonstrating the feasibility of
SDSs through computer simulations, evaluation of the
applicability and feasibility of new technologies, and

conducting experiments on SDS systems.

45

SDI National Test Bed

Archateoture
S bt

fraiceernirg

SPACTD-BASED SROUND -BASED

SENSOR ARy ' SENSOR

SPACED-RAnNT [L : SR U -RASED

WEAPO! WL APCHN

AN
Suftware

Center

Figure 4.4

This test facility will not only be used for software

testing, but for testing communication assets also. [Ref. 2:p.

29]

According to the DoD Software Master Plan (Preliminary

Draft):

“The NTB will inter-connect Army, Navy, Air Force,
National Laboratories, and Test/Demonstrations facilities
into a distributed network. The NTB may be thought of as
a network of resources with the National Test Facility
(NTF) as its harbor central facility. This composite
provides the principal resources dedicated to develop
and/or support experimentations and provide analysis
support. The NTB is a Natural Resource which draws
together contractors, the military, government agencies,

academia and others studying SDS issues. (Ref. 18:p. A-
13)

46

The National Test Facility will serve as the hub for the
NTB and will be located at the Falcon Air Station, 20 miles
east of Colorado Springs, Colorado.

The National Test Facility, NTB, consists of a set of
software and hardware tools that support design and
development, and execution/analysis of simulation experiments
related to SDI and other associated DoD programs. These tools
provide support for end-to-end simulation of weapons, sensors,
communication systems, and C2 systems. Testing facilities will
also be operated at different locations and will be connected
to the NTF via communication/computer 1links. Facilities
connected to the NTF will include, Vandenburg Air Force Base
(VAFB), Kirtland Air Force Base (KAFB), and White Sands
' National Laboratory (WSNL). [Ref. 3:p. 5.2-14]

Additionally, in 1988 a Software Center (S() was developed
in order to provide scientists and engineers with efficient
development tools. This center will establish software policy
as well as invest in development. The major purpose of the
center is to provide trusted software tools that reduce risk
by allowing each component to capitalize on the investment in
the total software environment. The next section will give the
reader a fresh understanding of the mission of the Strategic

Defense System Software Center. [Ref. 3:p. 5.2-15)

47

D. THE STRATEGIC DEFENSE SYSTEM SOFTWARE CENTER

Hardware/software integration and testing will Dbe
expensive. Current technology may not be reliable and fast
enough to handle SDS functions. As stated earlier, the SDS
Software Center was proposed as a much needed operation with
the National Test Facility. Its primary mission will be to
ensure that development, production, integration and
validation of +trusted SDS software through Full Scale
Development (FSD) is done efficiently. The National
Aeronautics and Space Adminstration (NASA), Ada Joint
Programming Office (AJPO), and other SDIO directorates will
coordinate software efforts to avoid duplication and keep cost
at a minimum. The Software center will provide help in
addressing critical software development areas such as
trustworthiness, configuration management, reusability,
interoperabllity, training, technology, and many others. [Ref.
18:p. al4)

Listed below are six basic functions of the software
center:

1. Programmatic support for government and contractor
developers. This team of experts will assist program
managers and government/contractor developers with
problems unique to their projects.

2. Produce and integrate high quality, reliable software
tor SDS systems. This process is critical to the
success of the SDS mission.

3. Provide state-of-the-art technology for software

engineering environments (SEE) and configuratior
management system components.

48

4. Establish and maintain a library of reusable Ada
components. Ada will be the language of choice for the
NTB-developed software. The NTF also has an Ada
software development facility.

5. Ensure consistency of acquisition, design,
development, integration, and testing efforts through
software education and training. Training will be
provided in all phases of software development. The
goal will be to produce an Ada competent development
ccmmunity.

6. Assist in the development and tailoring of new and
existing standards. Support will be provided to
organizations such as IEEE, ANSI, and Adadx. [Ref.
18:p. Al14-15]

SDIO is providing every necessary means to reduce risk in
all BM/C3 systems that are software driven. Everyone realizes
that exhaustive testing of software tools is not practical,
therefore more emphasis must be placed on the development of
sound tools for the SDI program. The Software Center will
provide that development environment.

If the functions and procedures of the SDS software center
are properly executed, research and development for strategic
defense software will be able to reach the majority of its
goals. [Ref. 18:p. al5] During the 1990 IEEE Conference for
Strategic Software Systems held in Huntsville, Alabama, Lt.
Col. Chuck Lillie discussed the short and long term goals for

the software center. The goals are as follows:

1. Supportability, compatibility and interoperability of
SDS mission critical software

2. Evaluate and demonstrate tools, capabilities, and

procedures required to implement SDIO policies
governing SDS software development

49

3. Reduction of the time Dbetween SDS research,
development, production, deployment and operation

4. Efficient production of trusted, high confidence
software throughout the SDS life cycle

5. Effective dissemination of Multi-service research
results through program technology insertion

6. Compatibility between services and SDS software
engineering and Ada policies [Ref. 11].

There is no question concerning the necessity for the SDS
software center. In order for SDIO to gain the necessary
confidence to deploy reliable, trustworthy systems, one must
first develop those tools to help accomplish this wvital

mission.

50

V. SUMMARY OF THE SDI SOFTWARE DEBATES

A. INTRODUCTION

In the previous chapters, several views of whether it is
feasible to produce reliable and trustworthy software for a
BM\C3 battle management system were addressed. Along with
determining the reliability of the software, opinions are also
expressed on the type of BM/C3 architecture necessary for
further development of battle management schemes. Finally, the
gquestion of how we test our development was also addressed
with several feasible approaches, including the development of
the National Test Bed (NTB). From these debates, the following
summary chart, Figure 5.1, was developed to highlight the
position of each proponent and opponent of the software
debates. Figure 5.1 provides the reader with a brief narrative

of the positions of each individual discussed in this thesis.

B. EVALUATION OF THE SD1I SUMMARY CHART

As stated in the introduction of this thesis, the purpose
was to provide the reader with a framework for understanding
the software debates. The framework included understanding the
software complexities (i.e., reliability, availability, and
testability of numerous weapons and sensors simultaneously)

and understanding how to apply the corporate knowledge of all

51

SDI SOFTWARE

SUMMARY

CHART

RELIABILITY/ITRUST AVAILABRILITY BMIC3 ARCHITECTURE TESTARIUTY I
SDI software can be roMable |We ocan't ezpecs any ®ejor Decoatralized eorchitecture The seftvers eoa aever be
Dr. |and wustwerihy oaly f oM |breskihroagh e seive ihis |rupperts the SDI projoct, tested fully prier is asclesr
the accessary reguiremenis |prodleam. Seftwere uchao- |but 4 eam't be expecied (o Jwar. Simuladeas saly provide
David oare mel: . togy lege far bedisd herd- solve oll of the bastle “sear reel-time” resnlis. Teons-
PROBLEM: W don't know were schaology aad sofi- |memagement probicms. ing must be domr wsing the
Parnas whe! the gyvem is swppese ware eaginseriag tools may “actmal™ cods.
to do...Casastrephic failnre aet be the omswer.
There s ae reliabls wey to AveilaMlity fignres are Baule masagemeni archi- Confidence ia ihe dependabil-
Office deaensirate that BMD sofi- lusaful whea ithe sonditlons |sccures o3 yei propessd arefity of o BMD psem bas i by
ware opsrate properly whea |uader which they were 8ol specific emough for ihelrfderived [from simsieted bei-
of first wsed. msasared are well knowsn. |lclaimed advantage: aad tles ond wst during pescedims.
Techuology | The concept of MTRP has Katrapelatien ide these {dirady. g o b offect
Mstorically Mad MNmited wse |condittons s risky. tvely evalnated.
Assessmont by, orisiear software systems.
Overell SDS should be con- | Tost sompenents i asctus!

The anmber of orvors created|
dopends on ths iype of sofi-

eermad wiih the seeds of @

PP

with

ware, the size the sbe Righly distridased sysiem data. Use o doconiralised
Ware sad other [otu: Tl::v :l’ll ”“':““ arehisecimre. Sof re- | arehi Moke the sefl-
Myers b¢ srrvers, ot hov do we :::"'::: uiremsnts, algorithms, ssd|ware partionsdie 10 sllew
prevent catasivephic follure? * |destgas seed s0 Do worked |therough lesting.
oa (logather.
There will bo arrers, bt for | $OI seftware san be Sy Mo hould lMoke il wow of SDI otmuier
Dr. programe thet ere system doveioped uasing leday’s b0 joess, coupling on vork lod seftware whi the euppert
eriticel, ressurees are alle- | wchnoiogy withewt any ous osystem ecomponents. ol the Netienal Teet Bed.
Danny catod to ansure thek quelity | majer breshthroughs.
{Le. orrece « 0.1 por 1000
Coken lines)
Asking whether there'l be ANNough SDi ls » ceomplex | The Distributed srchitec-
arrors is the wveng question.| snd difticull task, R be- re appresch compart-
Dr. The right question '~ wheth-| heoves the UL 18 do re- mentsiizes ecrucis! tunc-
Soleman | Me tetal BICI systom | sesrch to determine whoth-| Hens in medules se weil se
con bo rebust and resiien! | er or net wo can op n I oy
Burhbanm | in an changirg, errer prene | the technoiegy. -
envirenment. Angwer...Yes
Te oassese the Nasibiify of | Much mere recoarch and Deceniralized architocture | Leveis of softwere Mesting
Dr. ereating and meiniaining longthy epment offertd must bo dosigned 1o eperele] sheuld Inciide:
- relisbie seftware, ene must | are nesded o delermine the| v time periede that inciide| 1. Resssrch
Charles distinguioh between the wn- | ‘tuture of ihe 90! sofware | systom dopleyments, pesce-| 2.8ystem/subsysiom tosging
cortaintios and Nawe. (lao. time and wortime opere- 3. Systom-javel simulstios
Zreakat Trustwerthinese of epers- tions. 4. Depleyed Mardware and
tional design and lelersnce. Software Wsting
The panel recommendad thet |Cresting an apprepriote Use legical bettle Proposed the doveispment of
The mere emphasic be pleced en |seftware develnp ! onvk o the! | & reslistic simulation
o dovelep to and ¢ will bo 2 ENticuRt | weuld cansist of a single onvirenment .
Fletcher leuNt-tolerant designe Mat |task. The envienment must| bettie maneger repiiceted
wikl ensure rolisbite speve- |bo in place and understeed | several times en different
Study tien. before starting to bulid & platiorme
BMD BN system.
Two successtul lechniques The US. shouid coasider Global bettie management | Testing real tme seltware
for sssessing retladility and| ;asee quesiions systom would sseese the eften introduces more soll-
Hebars frustworthinese ere analytl-| spis sefivere development: eztent and nelure of an st |ware errers when 8 “iz” is
col (mathemaotics! prosls) Whai & the namm of the tack in progroce and apecityl implomenied
Lia and empericsl! lesting. BMD rysum, What are the |th0 ruide ol engagement fer
obstacis, and sen ihe ooch Ner. (Lo Boeest, post-
s 1, be 1ed | Dosst, midcouse, terminal)
{ sse ne ressen why | o any
Dr. slhor competont, osxperionc-
od, betier seftwere mansger
Mow good is geod "y hen L. couid met wnderishe sssscveccs ereveteey
Frederick L4 onsuy 1o bule such o systoem. ceesecense
Breeks vsoseceane

Figure 5.1

52

individuals involved with the software aspect of SDI. The
summary chart is divided into two sections; those who oppose
and those who support the SDI software efforts. The general
consensus is that software for SDI is possible, but there are
a number of problem areas that are plaguing the system now,
and other problem areas that cannot be eliminated. Because the
so called impossible has been made possible many times before,
no one is willing to say that software for SDI cannot be
developed.
1. Reliability and Trustworthiness

Dr. David Parnas, Ware Myers, and the Office of
Technology Assessment all support the fact that the software
cannot be assured of not failing catastrophically and that a
lack of specific requirements for software operations alters
the development process. It should be noted that even though
Dr. Parnas has had many negative things to say about SDI's
success, he did not state that the software could not ever
work reliably. He simply stated that the software requirements
must be understood. Scientists and engineers may not know all
the necessary requirements for an effective battle management
system, but the author believes that extensive use of the
National Test Facility, and other related agencies may prove
to be the focal point in understanding the requirements.

2. Availability
The availability of most systems is determined by the

amount of time the system operates between failures. In basic

53

engineering, this is known as the mean time between failures
(MTBF). The big question in this area is whether the software
can be developed with present technology with minimal
failures. Dr. Danny Cohen took a firm stand on the advancement
of software technology. Dr. Cohen feels that no major
breakthroughs are necessary and that today’'s software
technology can be used to create a system with high MTBFs. Dr.
Parnas stated that the dependence on new technological
breakthroughs should not be expected to solve the availability
problem, mainly because of the fact that hardware technology
is years ahead of the state-of-the-art of software technology.
In analyzing the debates, it was interesting to find that Dr.
Frederick Brooks once supported the ideas of Dr. Parnas, but
later joined sides with Dr. Cohen after testifying at a
subcommittee meeting on Strategic and Theater Nuclear Forces.

In essence, the proponents suggested that required
software availability was achievable, but that more research
and development efforts were needed. Although not in full
support of the way availability is assessed, the Office of
Technology Assessment (OTA) stated that the conditions for
using availability figures must be well known to be useful.

3. BM/C3 Architecture

In Chapter IV, one of the issues that both proponents
and opponents of SDI agreed upon was the need for a specific
battle management architecture. It should be noted that no one

particular architecture was chosen but the structure for the

54

architecture must be in place prior to development. Most
reports submitted to congress for review recommend that a
decentralized architecture be used in support of command and
control of the battle management system. The decentralized
structure includes loose <coupling on various system
components. In contrast, OTA stated that all BM/C3
architectures as proposed were not specific enough for their
clairied advantages and disadvantages. Again, the consensus is
that structure must be in place prior to development.
4. Testability

Everyone agreed that the software for SDI will not be
perfect. There are numerous ways to simulate the actual
operation of the software, but full-scale testing cannot be
accomplished prior to nuclear war. Dr. C. A. Zraket stated
that testing efforts must proceed from research to deployment
using systematic methods at each level. Simulation is the key
factor that will determine the effectiveness of the software
during the actual battle. The testing issue was given the most
recognition by both the critics and supporters. Comments on
how the testing efforts should be conducted did aot have the
negative air that other subject areas had faced. One of the
most weighted concerns came from Herbert Lin. His concern was
implementing more errors while trying to "fix" old ones.
Again, this was not a statement saying that testing efforts
would be useless, rather a caution to those correcting errors

during the testing phase.

55

The summary chart provides the reader with an overview
of the major issues that both parties were analyzing. The
intent of this chart was not to draw conclusions, but rather
to highlight some of the pros and cons of software development

for a dependable ballistic missile defense system.

56

VI. DEVELOPMENTAL CONCERNS AND TRADEOFFS
ASSOCIATED WITH SDI SOFTWARE
A. INTRODUCTION

The purpose of this chapter is to focus on some of the
vital developmental concerns and tradeoffs that may alter or
hinder the progress of developing an effective BMD system. In
Chapter 1I, the role of software for a BMD system was
discussed. From that discussion important areas that either
need more research, or solutions that are available that need
to be implemented were identified. Some of these concerns were
addressed at the third International IEEE Software Conference
for Strategic Systems in Huntsville, Alabama, February 27-28,
1990. Other concerns and tradeoffs have been discussed among
the proponents and critics over the past five years.

Among the issues addressed are: 1) The software challenges
from the SDIO perspective, 2) the use of software engineering
tools for SDI development, 3) the simulation and testing
methods available, and 4) the security of SDI software.

This list of issues and concerns is not exclusive. Because
of the dynamic nature of the SDI program, it may be that an

exhaustive list of concerns can never be attained.

57

B. SDIO SOFTWARE CHALLENGES

The SDIO views the current problems associated with
development of quality military software to be both real and
urgent. The plan is to adopt a strategy to promote a change of
attitudes, ©policies, and practices concerning software
acquisition. The strategy has to begin early within the
acquisition phase in order to control the resources associated
with software development for strategic defense. Software for
strategic defense, in particular SDI, faces some monumental
challenges that must be overcome prior to the development of
the last phase. At the third International Conference on
Software for Strategic Systems, Lt. Col. Chuck Lillie
discussed some of the challenges that SDIO is dealing with. He
listed them as:

1. Large Amount of Code

2. Integration of Software Development by Many
Contractors

3. Evaluation and Configuration Management
4. Coordination of Distributed Assets

5. Complex Data Fusion, Discrimination, and Tracking
Algorithms

6. Parallel and Distributed Architectures for Real-Time
Performance

7. Secure, Fault Tolerance Performance
8. Testing and Simulations [Ref. 11]
The list of challenges does not include other important

software issues such as software engineering environments, and

58

unambiguous, testable, and traceable specifications. As if it
has not been stated enough, software development for SDI is
the most complex task ever faced by DoD. According to a
computer resource working group, size estimates for phase one
are huge. Figure 6.1 shows a breakdown of the number of lines
of source code per system element for the phase I
architecture. These figures are based on the 1988
architecture sent to the Defense Acquisition Board (DAB) by
General Electric. [Ref. 11]

The size of the software is not the only challenge that
SDIO is facing. For example, there are 12 prime contractors
involved in the phase I development process. There are even
more subcontractors. Therefore, integration of these elements
to operate successfully in one environment will be a
' monumental task. As one author stated they should build
software like they build cathedrals; build them, then pray a
lot. The more integrated elements that are involved, the
stronger the emphasis that should be placed on building good
prototypes. These prototypes should assist in the development
of requirements, validate size estimates, provide early
demonstration of the software’'s performance, and address the
critical elements involved. Dr. Frederick Brooks said it best,
“Build a little, test a little, and learn a lot."

The Aerospace Corporation did a study on the "military
software problem" during the early 1980s. In that study they

explained some of the "causes" of software problems. Two

59

SDI Phase | Software Estimates

Elements KSLOC
Boost Surveillance and Tracking System BSTS 1,208]
Space Surveillance and Tracking System SSTS 771
Space Based Interceptor SBI 2,830
.Ground Based Radar GBR 600
Ground Surveillance and Tracking System GSTS 266
Ground Based Interceptor GBI 309
Command Center CC 14,5622
i
Total 20,506 |

KSLOC - Thousands of Lines of Code
Figure 6.1

60

problems in particular that apply directly to SDI’'s software
are management and personnel. The study showed that managers
lack some necessary skills to “"manage" the software process on
an end-to-end basis. For instance, software managers (program
managers) had a poor wunderstanding of the technical
complexities involved (i.e., hardware selected prior to
allocation of resources required, lack of communication and
organization, and lack of life cycle perspective). Brigadier
General John Vanboise, in his keynote address at the software
conference, stated that their biggest problems are managerial
not technical. This issue was also a concern to both the
Defense Science Board and the Eastport Study Group. General
Vamboise used a familiar proverb to identify a peculiar
criteria that all program managers must have a vision. For
where there is no vision, the people perish. [Ref. 11]

The second part of the software problem involves people.
The Aerospace Study pointed out that DoD does not take the
systems approach to the availability of human resources. There
is a shortage of skilled programmers. Inevitably this leads to
using inexperienced personnel. Since the average duty
assignment for military personnel is about two years, the
turnover is very rapid. This lack f continuity eventually
leads to stripping ongoing projects to staff new ones.

In order to iix this personnel problem, more emphasis
should be placed on personnel receiving a competent education

in software design and development. For example, Ada 1is the

61

standard DoD language for software development, but only 15%
of the colleges in the U.S. teach Ada as a programming
language. Future resources must come through the formal
education process.

In addition to defining some of the challenges for SDI, Lt.
Col. Lillie also defined their software policy. The purpose of
this policy will be to require and promote the use of software
engineering approaches for the development and support of all
SDS Full Scale Development (FSD) software. Also, the policy
should be implemented through the various military services
using individual implementation plans. The key to the concept
will be consistency factor. Figure 6.2 shows the application
and scope of the SDS software policy. The Office of the
Secretary of Defense (OSD) has directed that the SDIO will
comply with DoD directives 3405.1, 3405.2, and 5000.3 along
with MIL-STD-1815A. The directives basically inform the SDIO
of the requirements for software development. Since Ada has
become the standard programming language for DoD, MIL-STD-

1815A is the standard Ada specification.

C. THE USE OF SOFTWARE ENGINEERING TOOLS

FOR SDI SOFTWARE DEVELOPMENT

The acquisition process for major weapon system normally
consists of four phases which are separated by decision
milestones. The phases are the Concept Definition Phase,

Demonstration and Validation Phase, Full Scale Development

62

SDi Softw\are Policy

Ada
Teisting Prototyping
Cesign T -) T
And e T Software
ED n.vv-:?npnﬁgnr;: Data Rights

— —
T o / Risk
Reuse SDIO Reduction

SOFTWARE

Contiguration
Management

——

- / CoLICY \ P
\ Supportability

Portability Documentation

Security

Figure 6.2

Phase, and Production Deployment Phase. This process 1is
initiated when a need is perceived in a particular mission
area. Basically, the need may arise from a change in threat,
technology advancements, cost reduction opportunities, or a
projected obsolescence of existing systems. [Ref. 19:p. 1-13]
The software development life cycle follows a similar
procedure. First, a feasibility analysis is completed, then
the requirements and specifications are completed. Continuing,
the software analyst begins to draw up the design from the

specifications and actual coding of the software is done.

63

Finally, to see if reliable, dependable results are available,
extensive testing is begqun. After this phase, the initial
development 1life <cycle 1is complete. Fig. 6.3 shows
similarities between the acquisition phases for a weapon
system ana the development life cycle concept for software.

This whole process for software development has evolved
around a relatively new technology <called software
engineering. According to an OTA report, the term "software
engineering" arrived on the scene in 1968. It was the result
of computer scientists focusing on the difficulties in
developing complicated software systems. How 1s software
engineering defined? Ask any five software engineers this
question and you’re bound to get at least three, related, but
different answers. Author Richard Fairley, in his book,
"Software Engineering Concepts," stated:

Software engineering is the technological and
managerial discipline concerned with systematic
production and maintenance of software products that are
developed and modified on time and within cost estimates.
(Ref. 20:p. 2]

The Institute of Electrical and Electronic Engineers (IEEE)
expanded this definition to include maintenance and retirement
of the software. Referring to Figure 6.3, one can see that the
software life cycle does not stop when the development phase
is complete.

Many proponents of SDI tend to think that software

engineering tools will enhance the software in terms of

reliability, maintainability, and availability. Th e "tools"

64

Similarities between Weapon Acquisition
S and
Software Development Life Cycle -

Changing A
 Threat T~ Ongoing Tyission Need
e ““mission Statement
Fleet Exp =\ MSN Mission Need Stm
! Y OR Oper. Requirment
Production Dep ROC Required Oper.
Phase e ~- Capability
Technology
Advancement
.'__,/
Concept Exp
Phase
Mitestone
1
Tl erals Dav Milestone
Full Scale Dev |
Phase
- Milestone
\ H
| Demo/Val
- T Phase

7 77

- “Changing"
N Threat

Maintenance . co.dinility Study

\ Concept of
o —— co Operations
~"Technology

=
Advancement .
Writing \‘ o) OR Operational
Revision — -

Test

Requirement

?ouom-up
/ op-down
JE S S - -B_‘ _v,v. L L .
Code Reqr .A'naly.sas
Specification
] I

Structuring K

Hardware/Software
Criteria ‘ Definition
Description ~

Functions
Of Interfaces

. Subtunctions
. Described
) Design -
‘ - Milestones 0
- Phases
. Figure 6.3

65

are in the form of automated support that may consist of one
or more programs. On the other hand, critics believe that
software engineering tools for SDI provide no greater support
or advantages than any of the previous software tools. [Ref.
21) The following discussion will focus on "additional"
paradigms within the software life cycle. Some of these
techniques are associated with risk assessment and incremental
development while others make an attempt to eliminate or
reduce the number of steps within the software life cycle.
Specifically, we will discuss the possible wuses and
limitations of object oriented programming, automatic
programming, and artificial intelligence.

Object-Oriented Programming will allow the properties of
procedures and data to be combined together. Unlike other data
structures, an object data structure contains the properties
of reusability and encapsulation. In essence, the variables of
the objects are contained within themselves. This process
allows data transferring of vast quantities of information on
a function to function basis. Although this 1is just one
variation of the term object programming, it is the most
relevant to SDI; mainly because formal requirements and design
specifications are used. These were just two of the techniques
suggested by Dr. Parnas after spending several years on the
Navy's Software Cost Reduction (SCR) project. The one downfall

associated with this technique was that using the above

66

stated methods had not lead to reliable code that met the
space and time constraints. [Ref. 21]

It was stated earlier that one of the purposes of using
software engineering tools was to eliminate or reduce some of
the requirements and design phases. One method developed to
employ those techniques is automatic programming. With this
technique the programmer is literally taken away and becomes
a "specification writer". In other words, the programmers
would write the specification for the software and the
computer would generate the program. Dr. Parnas stated that
the automatic programming concept was not more than a
"euphemism" for programming with a higher level language, but
even the use of improved languages has led to some improvement
in reliability. In essence, 1if one can write "trusted"
software specifications, automatic programming techniques are
a definite plus. [Ref. 21]

Finally, how does artificial intelligence (AI) help or will
it help us to build better BM/C3 software? There has
certainly been a lot of progress in the AI field recently. In
March 1989, the American Association for Artificial
Intelligence (AAAI) held its first annual conference on
innovative applications of AI. There were about 30 different
creative applications ranging from expert systems for
investing to music composition. These applications were using
computers to solve problems by applying some form of human

intelligence. [Ref. 22:p. 13]

67

Dr. Parnas stated that there are two very different
definitions of AI in use today. He referred to them as A-1 and
A-2. By definition, they are as follows:

AI-1: The use of computers to solve problems that
previously could only be solved by applying human
intelligence.

AI-2: The use of specific set of programming
techniques known as heuristic or rule-based programming.
In this approach human experts are studied to determine
what heuristics or rules of thumb they use in solving
problems. Usually they are asked for their rules. These
rules are then encoded as input to a program that
attempts to behave in accordance with them. In other
words, the program is designed to solve a problem the way
that humans seem to solve it. [Ref. 23]

Even though there has been tremendous work done in AI, most
potential applications of AI should be handled on a problem-
by-problem basis. Unfortunately, the SDI battle management
problem is not an attractive situation at present. According
to the OTA, AI-1 and AI-2 should not be applied to SDI battle
management problems until a specific set of battle management
problems and their solutions are specified. In his ccnclusion
of AI and SDI, Dr. Parnas stated:

Artificial 1Intelligence has the same relation to
intelligence as artificial flowers have to flowers. From
a distance they may appear alike, but when closely
examined they are quite different. I don’t think that we
can learn much about one by studying the other. AI offers
no magic technology to solve our problems. Heuristic
techniques do not yield systems that one can trust [Ref.
23]

The author believes that software engineering tools have a
lot to offer the programming world, but one must be mindful of

tools and techniques that appear to be immediate problem

solvers. Many software tools may work perfectly on smaller-

68

scale systems, but may lack the same efficiency and
productivity when applied to larger systems.

There are many software engineering tools available. The
key is finding the correct tools that apply specifically to
the needs of the SDI software efforts. Further improvements in
Object-Oriented Programming will continue to strengthen our
confidence in software reuse, thus the development of
reliable, trusted software to meet space and time requirements
can become a reality. Any technique that can improve the
reliability of the software must, at least, be considered
before it 1is rejected. As stated earlier, the Strategic
Defense Software Center will be the hub for testing and
validating trusted software and must be used to the fullest
extent. Before Automatic Programming is rejected based on its
similarities with other high level languages, the technique
for using this tool must be evaluated. Finally, even though
Artificial Intelligence has made tremendous advances in the
last two to three years, one must first £find ways to
incorporate AI into SDI. Specifically, the problems that AI

must solve must be understood.

D. THE SIMULATION AND TESTING METHODS AVAILABLE

Throughout this thesis our focus has been on some of the
concerns for SDI software. Questions such as will the software
be reliable, what are the roles of software, and can the

software be developed free of catastrophic errors, have

69

already been addressed. These are questions that cannot,
technically, be answered prior to some type of evaluation of
the software. Two of the primary means of carrying out this
evaluation is through simulation and testing.

There are several tradeoffs and concerns that greatly
affect SDI in these areas. Both the Eastport Study and the
1988 Office of Technology Assessment report on simulation and
testing, identify numerous areas for additional research and
the need to find alternative testing methods. Other recently
published literature provides further insight on improving
simulation and testing techniques. Although these methods do
not apply specifically to SDI, they do provide the latest
technology changes and advancements. This section will give
the reader a brief overview of what simulation and testing
entails in addition to providing possible insights into areas
that need further development.

It is the author’s opinion that evolving technology has
been a major driver behind the need for increased simulation.
In the simplest terms, simulation is a system that duplicates
the behavior of another. The problem occurs when the simulator
cannot reproduce all the behavioral characteristics of the
target or the system being duplicated. In the early 1970s
simulations were primarily based on single engagement models.
In case of a ballistic missile defense, that meant trying to
simulate one missile attacking one target. In the late 1980s,

the simulation models had to simulate thousands of missiles on

70

multiple targets. The simulation process included anticipating
the threat, developing a realistic environment to operate
within, and testing the functions of the model that was
developed. These same problems plague the environment for an
effective BM/C3 system for SDI. [Ref. 4:p. 51)

The simulation efforts are presently geographically
distributed among several facilities (e.g., The Air Force
Electronics Systems Division (ESD) at Hanscom Air Force Base,
Massachusetts, the Army Strategic Defense Command (ASDC) in
Alabama, and the National Test Facility (NTF) in Colorado).
One major concern hindering the simulation and testing efforts
is a lack of interfacing between facilities. In essence, the
simulation efforts should employ the work of several
facilities. Specifically, the Eastport report stated:

“Simulation efforts should cooperate closely with
activities at the National Test Bed (NTB). But for
several reasons, NTB should not be the only simulation
facility. First, simulation is too vital to the strategic
defense effort to permit a "monopoly" that would be
implied by such a single implementation. Second,
comparison of results from different simulation
facilities, for purposes of cross-verification and
validation is essential. Third, a centralized
implementation at NTB would likely lead to
classification, very limited access, and narrow focus,
which would curtail the simulators’ erfectiveness and
prevent it from producing confidence in the system’s
functional ability and reliability. [Ref. 2:p. 31]

The more simulators interface with other systems, the more
trust one may be able to put in the system. The Eastport

Study referred to three classes of levels for simulation

operations. Low level simulations would be used for sensor and

71

weapon development, mid-level simulations for interfacing with
other on-line systems, and high-level simulators for studying
and evaluating BM/C3 strategies. With this concept working
effectively, testing efforts may show considerable
improvement.

Simulating the functions of an SDS is a phenomenal task.
This is especially true when algorithms for tracking,
discrimination, weapons control and guidance are involved. Dr.
Zraket stated that the designs of these algorithms must be
tested on an end-to-end basis. He also stated that testing
should be done using actual code rather than emulating their
behavior through the use of simulators. The problem here is
unequivocal; no one knows what the performance of the
algorithms will be. This leads to the conclusion that credible
simulations are needed. For example, simulations are needed to
predict the position of a track based on the details of the
estimated present position. This need led SDIO to initiate the
National Test Bed. Zraket further stated that two capabilities
must be developed: 1) a model-evaluation process to establish
the credibility of models and simulations and 2) an
experiment-design process to foster systematic and informative
experiments. The capabilities are greatly needed because most
current SDS simulations lack fidelity, high resolution, and
the actual code for SDS algorithms and BM/C3. The formulation

of a systems-oriented software engineering environment is

72

needed to integrate the development and evaluation of SDS on
an end-to-end basis. [Ref. 25:p. 96]

In order to simulate a target and formulate some type of
model, one must first make an assessment of the environment
and the equipment involved. When simulations are done without
known qualities of the environment and other factors, the
accuracy of the simulation lacks quality. This may very well
be the major or the most treacherous concern facing simulation
experts. How does one model a Soviet decoy or missile if there
is no physical access to them? According to an OTA report,
simulation experts from the Naval Research Laboratory stated
that building simulations without prior access to “real”
equipment caused many unexpected surprises. Even if there was
access to performance characteristics, the problems would not
be solved. Simulators may not be able to reproduce the
parameters and different signatures of events such as nuclear
explosions. This means that accuracy and realism involved in
the simulations would be further diminished. [Ref. 12:p. 206]

The Department of Defense (DoD) is constantly looking for
new ways to combat the complex challenges of modelling and
simulating the performance of major weapon systems. According
to Mr. James H. Atkinson, Test and Evaluation (T&E)
specialist, modelling and simulation (M&S) can offer the
potential for overcoming the existing testing limitations of
weapon systems. He stated that a generic baseline methodology

could be used by different developers of weapon systems to

73

tailor a performance evaluation program to the specific
weapon. [Ref. 25:pp. 143-146] This author believes that this
is a concept that can be applied to the development of battle
management software. The concept involves initiating four
basic characteristics that must occur throughout the software
development cycle. The cl:¢ ._acteristics are 1) Degree of
Representation - defining the 1limits of M&S process; 2)
Practicality - obtaining useful output from the M&S process;
3) Validation - establishing acceptance and credibility with
the M&S process and 4) Configuration Control - tracking of
updates/modifications in the M&S process. Using these four
characteristics could possibly help establish a good "working"
baseline for understanding and modelling software for SDI.
Figure 6.4 shows three domains of test and evaluation that can
be applied to the software development life cycles. This
figure is a mock up version used for the weapons systems
development life cycle. The basic functions and relative
application are the same. The process does not eliminate the
need for thorough testing of the system, but could help to
produce better testing results. [Ref. 25:p. 143-146]

One of the issues not discussed in the modelling process
was cost. There is no doubt that money could be a driving
force for this project. One possible tradeoff is that more
money could be placed up front to institute the modelling and
simulation process. This would possibly result in reduced

costs for validation testing. With emphasis being placed on

74

T&E Domains, Simulators and Testing

T8E Domain Relative

Apphication

MES - BO™
Test -

20N

furctions

Establish metredatogy ard formolate approa b

Spevity regueremer ty and destgr specrticsts o

Tdertity Larits of simuiatiors (Proctic bty

Update ard oo v s

Pator capata ity

S T

Pr toot

! g b oan o
o Y ate

surtiato s

Compare to himytiod Boold oot

Mot

d Lt
s ulatoor s theo ool

T&E

T&E T&E

Domain 1 Domain 2 Domain 3
— Mod:lling//
Modelling Simulations

3 ‘ §
Simulations Prototype Testing ,/
~ \ o ”‘//
) X S
Development - — \~»\
Testing ~ -
Operational/b;;'intenance
Feasibility| pegi Development
gn P .
Stage Stage Coding Deployment

Figure 6.4

75

accelerating the development process, the models and
simulators are needed to increase the effectiveness of the

software.

E. SECURITY FOR SDI

Security is an issue that plagues many "sensitive" projects
whether it’s DoD related or exclusive to the private sector.
Over the last 10 years there has been a growing increase in
the number of attack. on computers and communication networks.
The attackers are not choosy and they don’t have "“respect of
network or computer." [Ref. 26] Because of the critical
functions of the BM/C3 networks and computers, greater
emphasis should be placed on securing the assets for SDI. The
sad part is that the means of security go far beyond locking
the door at night. Therefore, in this section the author will
focus on some of the failures of security that are applicable
to BM/C3 computers.

In 1987, the SDIO submitted an interim assessment of SDI’s
computing requirements to the 100th Congress. In that report,
the SDIO stated that minimizing the complexity in the concept
design of SDS was the key to fault tolerance and security with
respect to software. This 1is true especially when the end
product results in a slow, expensive system. In other words,
security and fault tolerance need to be integrated during the
design phase. By now, the results of "adding"” requirements to

a system are well known. The study also indicated that the

76

security policies for the SDS must reflect the highly
decentralized nature of the system. Decentralization does not
solve all of our architecture problems, but in this case it
provides us with consistency. [Ref. 17:p. 10]

One of the glaring tradeoffs that needs further research is
the performance of the system. A more secure system also means
a more complex system. It has been stated in some reports to
Congress that there 1is not a need for another study on
computing requirements. The author disagrees for a number of
reasons. Mainly, because we have not scratched the surface on
items such as security mechanisms for strategic defense
systems.

Computer security for SDI should be based on two separate
aspects; technological and applicational. By technological,
we can address security from logical and physical points of
view. Logically, security is the protection of data and access
or gateways between programs. Physical security is the action
that can be taken to prevent physical harm to the resources.
[Ref. 26:p. 433]

Applicational computer security addresses the development
of new applications and the maintenance of those applications.
Both the technological and applicational approach to computer
security can be applied tc the SDI security policy. In the
previous section we looked at how to do modelling and
simulation with the software development life cycle. Computer

security specialists, K.P. Badenhorst and Jan H.P. Eloff,

77

developed an "ideal methodology" for computer security in view
of the typical structured approach to the software development
life cycle. They structured the major phases as introduction,
implementation, and maintenance. Figure 6.5 shows the layout
of each phase within the methodology and description of each

phase is listed below:

High Level View of a Methodology
for
Computer Security

o establish risk . X maintenance
initiation — omputer —— analysis —— installation — o g5ing
- security & project _— -
policy definition
I E |
phase 1 phase 2 phase 3 { phase 4 phase §
,,,,,,, e B TR PR
! ! :
| | |
| ! |
Figure 6.5

1. Phase 1: Initiation - Requires management to establish
awareness and support. Also a special group of people
should focus on securing the assets by introducing new
techniques.

2. Phase 2: Establish Computer Security Policy - Again,
top management (Program managers) must establish a

78

"corporate" policy for security in order to develop
good management controls.

3. Phase 3: Risk Analysis and Project Definition - This
is where cost factors can be decreased by ensuring
that proper security measures have been selected.

4. Phase 4: Installation - Covers technological aspects
such as logical access, physical access, encryption,
and other methods.

5. Phase 5: Maintenance/Ongoing - Full development of
controls for applicational systems. [Ref. 26:pp. 443-
435)

These phases or a model similar to this should be considered
when employing security tactics.

Security is important because the bulk of SDI’'s resources
rely on communication networks and computers. Whenever a
computer system or a communication network is violated there
are a variety of losses involved. Those losses include the
loss of goods and services, the loss of assets, and the denial
of computer services. [Ref. 29] These services are critical
because of the time factor that would be involved in a nuclear
war. The probability of bringing an entire network of
computers back on-line after a failure during a nuclear war is
almost impossible. It does not matter whether the method of
destruction was accidental or deliberate, the consequences are
the same. Much consideration should be given to finding ways
of avoiding situations like the “worm" created by computer
hacker, Robert T. Morris. A worm is a type of instruction that
is placed in computer program causing incorrect results when
the program is run. No physical access is required since these

"worms" can be placed in the programs through the use of

79

floppy diskettes, internal/external file transfers, and by
having unauthorized access to computer networks. According to
an article in Computer World, Morris gained access to
computers at the National Aeronautics and Space
Administration’s Ames Research Center in California, the U.S.
Air Force Logistics Command in Ohio, the University of
California at Berkeley, and Purdue University in Indiana.
These were just a few of the facilities where Morris was able
to get in and cause considerable damage. [Ref. 27:p. 1]
Computer security fails often because people have a narrow
minded view of security as being only physical in nature. To
eliminate some of the failures one must understand the
targeting concepts, the motives for attacking computer
systems, and how to uncover the penetrator. It’s not always
the "enemy" that’s plaguing our systems. [Ref. 29] Morris and
other computer hackers proved that point. In a previous
research report on computer security, the author stated that
there were three basic approaches to a system’s defense. They
include: 1) dispersion, 2) duplication, and 3) defense in
depth. In the event of accidental or deliberate threats,
dispersion is a tactic used to minimize the losses. Since
total destruction of a computer system would require multiple
attacks, dispersed systems are less susceptible to a total
system shutdown. SDI’s decentralized architecture would employ
the use of the dispersion technique with its BM/C3 operations.

Secondly, duplication or redundancy must be maintained in

80

order to enhance the life of the system. Duplication is the
method of providing back-up components for enhancing fault
tolerance. Finally, defense in depth would include the use of
an alarm system, a response system and a recovery system. The
alarm system’s function will be to detect a threat in time to
either avert it or minimize the damage. The response system
must apprehend the villain and neutralize the effect of the
error or accident. The recovery system must repair the damage
and restore system operation. Obviously these functions alone
do not merit full protection against “hackers", but
collectively they help form a defensive ring. [Ref. 29]

The Computer Security Act of 1987 and the Computer Fraud
and Abuse Act of 1986 are pieces of legislature for punishing
individuals who willfully attack government resources. This is
not the real problem. Today, there is no quantitative way to
measure the amount of security in a system, but DoD has
developed a standard for evaluating the security for computer
systems. DoD Standard 5200.28 is the Department of Defense
Trusted Computer System Evaluation Criteria. The concept used
in this standard consists of matching the features of a system

against those known to be necessary to provide security.

81

VII. CONCLUSIONS

Software development for the Strategic Defense Initiative
(SDI) is one of the most complex tasks that both government
and def ‘nse contractors have ever faced. Why 1is this
development effort so hard? Mainly because of the changing
requirements associated with the SDI program. Even in the
midst of writing this thesis, information that was once a "hot
item" is just another passing term in the huge SDI vocabulary.
To some extent, this constant change in requirements is good
because it shows that technology is rapidly progressing. On
the contrary, the analysts and computer scientists that are
trying to develop reliable, dependable, and trustworthy
software for these systems are facing a “programmer'’'s
nightmare." Another problem is that state-of-the-art software
technology is still lagging far behind hardware technology.
Although there has been vast improvements in software
technology, one may still ponder the question of whether or
not these improvements can support the operational task of
SDI.

The software debates held at Stanford University and the
University of California at Los Angeles were not just “"another
conference" for scientists and engineers to argue over ideas.

The debates brought out important issues, some of which are

82

discussed in this thesis, that were necessary for the
successful design and development of the SDI software and
battle management/C3 system. It is obvious that all the issues
from the debates are not yet resolved, but research and
development efforts should continue until acceptable solutions
are found.

The software for SDI will be responsible for coordinating
a conglomeration of weapons and sensors. It will take over 20
million lines of code to complete this task. Will the software
make the Ballistic Missile Defense (BMD) system and the Battle
Management/C3 system reliable? This is the question that
engineers and computer scientists alike are pondering on a
daily basis. The research and development programs must remain
. in high gear in order to allow an answer to this question with
any confidence. It’'s a known fact that one will not know the
answer to this question until war is started. It is the
consensus of all involved with SDI that the point of war
remains distant. Much consideration must be given to the wise
words of Dr. Frederick Brooks, "Build a little, test a little
and learn a lot." This is exactly the route that software
development for SDI must take. The establishment of the
National Test Bed (NTB), National Test Facility (NTF) and the
Strategic Defense Software Center in Colorado Springs,
Colorado is very timely in support of testing and evaluation
efforts for SDI. This certainly should not be the only

facility testing SDI components. Other agencies should be

83

involved, therefore, providing a comparative analysis of the
system’s operational capabilities under several conditions.

Obviously, there are many other factors that software
developers must consider. For example, the choice of Battle
management architecture effects the structure and development
of the software. The decentralized battle management
architecture has been the choice of most agerncies that have
completed studies for the SDIO. Decentralization does not
resolve all of the SDI related issues, but it best suits the
needs for the current software development efforts.

Advanced software engineering tools have made very
impressive improvements in the areas of "expert systems" and
"decision-support" systems. These tools are certain to have an
impact on SDI in future development efforts. Special caution
must be taken if proponents of SDI plan to depend on these
tools for the development of SDI software. Tools that do not
allow the software to remain in "discrete" states must be
avoided. Dr. David Parnas says that they should avoid using
artificial intelligence and automatic programming techniques
for program verification. On the contrary, one should not
eliminate any possible development tools and techniques until
they can be proven "unreliable." Full scale tests are
impossible and every one is willing to accept that fact, but
improvements in the simulation efforts may shed new light on

some of the once unresolvable problems.

84

Finally, the software is pivotal for strategic defense. It
is possible to develop the software, but the following issues
must be understood: 1) understand the complete function of
the software at all levels and 2) accept the fact that it will
not be error-free. The job of the engineers and computer
scientists is huge; keeping the system from failing

"catastrophically."

85

10,

11.

12,

LIST OF REFERENCES

Lamberth, Benjamin S. Selective Nuclear Operations and
Soviet Strategy, The Rand Corporation, September 1975

Eastport Study Group, "A Report to the Director,"”
Strategic Defense Initiative Organization, December
1985

U.S. Department of Defense, Report to the Congress on
the Strategic Defense Initiative, March 13, 1989

Lin, Herbert, "The Development of Software for
Ballistic-Missile Defense", Scientific American, Volume
253, Number 6, December, 1985

Lin, Herbert, "The Software for Starwars An Achilles
Heel?" Technology Review, July 1985

Zracket, Charles A., “Uncertainties in Building A
Strategic Defense," Science, Volume 235, Number 4796,
March 1987

Parnas, David L., "Software Aspects of Strategic
Defense Systems," American Scientist, Volume 73, Number
5, September-October, 1985

U.S. Senate, Subcommittee on Strategic and Theater
Nuclear Forces (Hearings), Committee of Armed Services,
December 1985

Fletcher, James C., A Report of the Study on
Eliminating the Threat Posed by Nuclear Ballistic
Missiles, Volume V, February 1984

Myers, Ware, "Can Software for the Strategic Defense
Initiative Ever Be Error-free?" Computer, Volume 19,
Number 11 November 1986

Notes on Third International Software Conference for
Strategic Systems, 27 February 1990

U.S. Congress, Office of Technology Assessment, "SDI:

Technology, Survivability, and Software", OTA-ISC-353,
May 1988

86

13.

14.

15.

16.

17.

18.

19,

20.

21.

22.

23.

24.

25.

26.

27.

"New Weapon Suffers From Major Defects," Washington
Post, January 7, 1987

Parnas, David L., "Parnas:SDI "red herrings" Miss the
Boat," Computer, Volume 20, Number 2, February, 1987

Parnas, David L., "Why the SDI Software System Will Be
Untrustworthy, " Software Aspects of Strategic Defense,
June 1985

Jacky, Johnathan, "The Star Wars Defense Wor’t
Computer, " Atlantic, Volume 255, Number 6, June 1585

Strategic Defense Initiative Organization, “An Interim
Assessment of SDI Computing Requirements (Draft)," June
1987

U.S. Department of Defense, "Software Master Plan
(Preliminary Draft)," February 9, 1990

Navy Program Manager’s Guide, 1988

Fairley, Richard, Software Engineering Concepts, (New
York: McGraw-Hill, 1985)

Parnas, David L. "The Limits of Software Engineering
Methods, " Software Aspects of Strategic Defense, June
1985

Moore, Brad, "You Mean 1t Really Works? or Innovative,
Deployed, AI Applications," AI Magazine, Volume 10,
Number 3, Fall 1989

Parnas, David L., "Artificial Intelligence and the
Strategic Defense 1Initiative," Software Aspects of
Strategic Defense, June 1985

Myers, Ware, "Software Pivotal to Strategic Defense,"
Volume 22, Number 1, January 1989

Atkinson, James H. Sr., "Modeling and Simulation in the
Test and Evaluation Process," Simulation, Volume 54,
Number 3, March 1990

Badenhorst, K.P., and Eloff, Jan H.P., "Framework of a
Methodology for the Life Cycle of Computer Security in
an Organization,” Computers and Security, Volume 8,
1990

Alexander, Michael, "Morris Verdict Stirs Debates,"
Computer World, Vol.XXIV, Number 5, January 1990

87

28.

290

Lubkin, Yale, "SDI:
Electronics, Volume

Adams, Reginald C.,
Paper, March 1990.

Soft? Where?" Defense Science and

53, Number 4, 1986

"Computer Insecurity,"

88

Research

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5000

Director for Command, Control and
Communications Systems, Joint Staff
Washington, D.C. 20318-6000

C3 Academic Group, Code CC
Naval Postgraduate School
Monterey, CA 93943-5000

AFIT/NR
Wright-Patterson AFB, OH 45433-6583

AFIT/CIRK
Wright-Patterson AFB, OH 45433-6583

CAPT Reginald Adams
108 Beale St.
Belzoni, MS 39038

Prof. Lugi

Associate Professor
Computer Science Dept.
Naval Postgraduate School
Monterey, C 93943-5000

Prof. Donald Lacer, Code CC/La
Naval Postgraduate School
Monterey, CA93943-5000

Dr. Marvin J. Hamilton

The Aerospace Corporation
Mail Station M8/107

P.0. Box 92957

Los Angeles, CA 90009-2857

89

No. Copies
2

END

Mr. Wesley Mann, Jr.

Vice President, Defense ansd Surveillance Operations
The Aerospace Corporation

Mail Station M5/702

P.0. Box 92957

Los Angeles, CA 90009-2957

