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ABSTRACT

In military operations, radio-frequency communications play an important role in

command and control. Since the breadth of control may be limited by frequency and

channel constraints, research continues to search for better ways to optimize the

frequency allocation. In this thesis, graphs are used to model radio-communications

networks. The problem considered is the detection of maximal cliques, representing

subnets, from the graph model. However, detection of cliques is an NP-complete

problem. Since NP-complete problems are not likely to be solvable in a reasonable

time if the input is large, this paper limits the network input to six stations and fifteen

transmissions. An algorithm is implemented in Pascal to detect all maximal cliques of

a network and is known as the program CLIQUE. The program is designed to accept

V arbitrary connected graphs without being affected by isomorphisms and without

generating duplicates. This thesis describes a limited solution to the clique problem

and solves a subproblem of the communications frequency problem in real-time.
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I. INTRODUCTION

Radio-frequency communication plays a very important role in military

operations. One of the major tasks in radio-communications network design is to

establish the required point-to-point communications within channel capacity

constraints. To tackle such a task, a radio-communications network can be modeled

as a graph G. The network's stations (also known as nodes or sites) are modeled as

the vertices (points) of a graph and the network's communications requirements and

constraints are modeled as the edges (lines) between stations. This thesis does not

model non-transmission requirements which also affect communications planning

(e.g., weather, equipment availability, maintenance). We limit the criteria used to

model the network, as directed by the network manager, to transmission

requirements between stations.

In particular, this thesis will model a subproblem of assigning frequencies in a

radio-communications network. Hintze previously looked at this subproblem in-

depth and designed an algorithm to model it [Ref. l:p. 59]. The input to Hintze's

algorithm is a directed graph D, where the arcs (directed edges) represent

transmissions between stations in a net. Two stations are in conflict with each other

if they are both transmitting to a third station. To capture these conflicts, a conflict

graph C(D) is created in which there is an undirected edge joining two nodes if there

is a conflict between them [Ref. 1:p. 45]. Given the conflict graph, Hintze's algorithm

finds the largest directed graph D' such that C(D') = C(D). Note that the digraph D'

maximizes the network's transmission capability without increasing the number of

frequencies used. By determining the net's maximum capacity, we confirm the



network's "limit" on the number of possible transmissions between stations. If we

exceed the limit, we cause additional conflicts, requiring additional frequencies

beyond our allocation [Ref. l:p. 49].

With this in mind, an integral step in Hintze's algorithm requires finding the sets

of stations in C(D) known as maximal cliques. A station is a member of a clique if it

is adjacent to every other station in the clique. We represent the clique as a graph

Kn on n vertices and call the graph complete since every distinct pair of vertices is

joined by a transmission edge [Ref. 2:p. 57]. The clique is maximal if it is not

contained in a larger clique. If we then find the minimum number of maximal cliques

which cover the edges (every edge must be a member of at least one clique) of C(D),

we have a minimal edge clique covering for the communications network. Hintze's

algorithm uses the minimal edge clique covering of C(D) to determine which venices

in the original network, D, can increase transmissions without creating more conflict

or needing more frequencies f Ref. 1 :p. 63].

We believe that Hintze's algorithm is too constraining for the frequency

assignment problem. Therefore, the program CLIQUE in this thesis detects every

maximal clique in a graph, known as the edge clique covering (ECC(G)). It is

necessary to find all maximal cliques so that, if a station is eliminated from the

network, the network manager may still know where conflicts exist in the resultant

network. See Chapter II, Section D for an example.

Detecting maximal cliques in a conflict graph appears to be an easy problem. For

a small (less than seven) set of vertices, we can usually "see" the maximal cliques.

Unfortunately, a computer does not have our "vision" and most communications nets

of consequence consist of more than seven stations. Additionally, most networks are

built dynamically. The network configuration at any one time or place is dependent
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upon a multitude of factors. Since the "links" between stations can grow or decline

dynamically, a computer program which calculates the changes in network

configuration efficiently would be very useful. However, using an algorithm to detect

cliques is known to be NP-complete and is in general difficult to solve within

reasonable time constraints [Ref. 3:p. 347].

Current research indicates two favored techniques/approaches are used to find the

maximal cliques of an edge clique covering. The first, an algorithm, is "a step-by-

step procedure for solving a problem" and is done "...in a finite number of steps that

frequently involves a repetition of an operation." [Ref. 3:p. 1] However, using an

algorithm to solve an NP-complete problem that has a large input size, such as the

clique problem, is hard. So, we require a different strategy. Artificial intelligence

"search" methods are representative of a second strategy. Heuristics are developed

and, unlike an algorithm, do not necessarily give a "unique recommendation" in every

situation. Instead, the heuristic acts as a "gardener,': "pruning branches" until a

sufficient, possibly optimal, solution is found [Ref. 4:p. 199]. Since the similar

problems of finding a clique, vertex cover, dominating set and independent set are

known to be NP-complete, most research in detectifig cliques has centered on the

development of heuristics.

This thesis solves a small part of the clique problem with an algorithm which

detects cliques by partitioning the problem into number of stations, number of

transmissions per net, and number of transmissions per station. In attempting to

keep the problem manageable, the number of stations is limited to six and the number

of transmissions per station is limited to five. Initially, prior to understanding the

difficulty associated with problems which are NP-complete, we tried solving the

clique problem with a single comprehensive algorithm. Realizing that a

3



comprehensive algorithm is not arrived at easily, this thesis implements the program

CLIQUE using a reduced algorithmic approach.

The chapters which follow delineate problems and solutions associated with the

detection of maximal cliques. Chapter II describes in greater detail the definitions,

terms and research upon which this thesis is based. Chapter III describes the

program CLIQUE in detail. The emphasis is on the interaction of the program's

components and how this program contributes to the research for detecting cliques.

Chapter IV analyzes the solution presented in this thesis and summarizes the

performance of CLIQUE. Chapter V discusses the program's weaknesses and

makes recommendations for further areas of research. At the very minimum, the

reader will get an idea of some techniques that were tried to solve the clique problem

and the success/failure rate associated with each.

4



n. BACKGROUND

The purpose of this chapter is to present background material associated with

cliques and the communications subproblem, to state the specific objectives of

CLIQUE, and to summarize research addressing the detection of cliques.

A. DEFINITIONS

In graph theory, a "picture" can be often more easily understood than the written

definition. Therefore, the definitions in this section will reference Figure 1. A graph,

G, is a collection of points and lines. The points are known as the vertices, v r V(G),

which is the entire collection of vertices in G. The lines are known as the edges, e r

E(G) where E(G) g V(G) x V(G). The graphs in this thesis will not have self-

adjacent vertices (loops) or multiple edges because we assume that a station in a net

would not be in conflict with itself and that a single edge is sufficient to illustrate a

conflict between two stations. As mentioned in the introduction, a complete subgraph

Kn is a maximal clique Ci . The maximal cliques found by the program CLIQUE are

illustrated in Figure 2. In Figure 1, two complete subgraphs are found in the conflict

graph C(D), the net. The first is a K2 subgraph on two vertices, forming the maximal

clique, C1 = (A, B). The second is a K3 subgraph on three vertices, forming the

maximal clique, C2 = (B, C, D). If K has k vertices, it will be known as a clique of

order k or a k-clique. In this example, C2 is a three-clique or a clique of order three.

Notice that edge (B, C) is also a clique, however, it is not maximal since it is

contained in the larger clique C2. Since C2 is not contained in other clique, it is

maximal. For the remainder of this paper, maximal clique and clique will be used

interchangeably. [Ref. 2:p. 57]
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A C

B D

Figure I Conflict Graph C(D): The Net

Figure 2 Maximal Cliques, Kn

If we combine cliques, C1 and C2 then we have a family, C, of cliques. The

number of cliques in the family is represented as ICI and is called the cardinality of C.

C is known as an edge clique covering if every edge of the net is in at least one

member of C. The edge clique covering is said to be minimal if, for all clique coverings

C' of the net, IC'I >= ICI. The minimal edge clique covering problem is to find a

minimum edge clique covering C. [Ref. 2 :p. 57]

As mentioned in the introduction to this thesis, finding a minimal edge clique

covering is not enough to describe a communications network's conflicts. Instead, we

6



want to find the set of all maximal cliques in G. We call this problem the edge clique

covering problem. This covering allows the network manager to supervise the net

despite the elimination of one or more stations from the net. Remember that a

minimal edge clique covering (which eliminates maximal cliques whose vertices are

also members of other maximal cliques) is not sufficient for this thesis. It eliminates

known "redundancy" which might otherwise be useful to the network manager.

With the basic terminology defined, it is beneficial to describe pioneering work in

graph theory which influenced the development of the conflict graph. The conflict

graph is a general case of the competition graph, first introduced by Cohen to model

food webs in the ecosystem. A competition graph is defined mathematically as an

undirected graph, G(D, B, C) in which D is a digraph and B and C are, not necessarily

disjoint, sets of vertices in D. G contains an edge between any two distinct vertices

x and y of B if and only if, for some vertex z in C, there are arcs (x, z) and (y, z) in D.

See Figure 3 for an example of a generalized competition graph. In this paper, the

communications problem requires that the sets B and C be equal because it will be

assumed that any receiving station (set C) is also capable of being a transmitting

station (set B). [Ref. 5:p. 295]

x y x Y

wO-

WW Z W Z

G B ={w,x,y) D
C= {w, z)

Figure 3 A Competition Graph and Its Digraph
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Applications of competition graphs include modeling communications over a noisy

channel (confusion graph), modeling complex systems (row graph), modeling food

webs (niche overlap graph), and modeling radio or television transmitters (conflict

graph) [Ref. 5:p. 296]. Since, as mentioned in the introduction, we are modeling

transmitting stations in a communications net, the conflict graph application best

meets our requirements. As mentioned before, two transmitting stations are in

conflict if and only if a transmission by either could be received by the same third

station [Ref. 5:p. 2961. Hintze gives an example of a conflict graph and its digraph,

shown in Figure 4 [Ref. 1 :p. 54]. In this thesis, the original digraph and the source of

conflict is immaterial. Instead, we will concentrate on the resulting undirected graph

and the discovery of a given arbitrary graph's edge clique covering. We emphasize

arbitrary graphs because we realize that nets are configured dynamically. Any two

nets having the same number of conflicts may have different adjacency matrices. This

paper uses an adjacency matrix as input to represent the nets. The discrete input of

ones and zeros is ideally suited for computer manipulation. An adjacency matrix

represents the connectivity of the net with a one, "1", for a conflict and a zero, "0", if

there is no conflict between two stations. In Figure 5, although the second matrix is

configured with the vertices roiated once counter-clockwise, both matrices represent

the conflict graph of Figure 4. The mathematical term for this phenomenon is

isomorphism.

Although isomorphism contributes to the difficulty of finding cliques within

reasonable time constraints, lack of an efficient algoritl-m is the primary constraint to

finding an optimal solution to the clique problem. To understand the emphasis of

current and past research, it is now necessary to define NP-complete. According to

Manber, an efficient algorithm has a running time of O(P(n)), where P(n) is a

8



polynomial in the size of the input n represented in bits. Polynomial-time algorithms

are known as tractable and usually have practical solutions. However, there are quite

a few problems not yet solvable by polynomial-time algorithms. Existing algorithms

for these problems are too slow for even moderately large input instances. It makes

sense to recognize these problems early, even before the quest for an algorithm

begins, and avoid looking for a non-existent algorithm. These problems are classified

as NP-complete problems. [Ref. 3:pp. 341-2]

z MWv z Lv

C(D) D

Figure 4 A Conflict Graph and Its Digraph

vxyz vxyz

v0001 v0110

x0011 xl011

y0101 yl 101

zlI10 z0100

Figure 5 Adjacency Matrices of the Same Conflict Graph
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According to Manber, Cook first proved the existence of NP-complete problems.

Cook's proof made it easier to prove the existence of other NP-complete problems

since, given any new problem, Z, it is sufficient to prove that Cook's SAT problem, or

any other NP-complete problem, is polynomially reducible to Z. Thus, with the

definition for NP-completeness and the fact that reducibility is a transitive relation, it

may be possible to prove any two problems polynomially reducible. The importance of

polynomially reducibility is clear since many additional problems were subsequently

found to be NP-complete and saved many researchers from wasting time looking for

non-existent efficient algorithms. [Ref. 3:p. 3461

The importance of the class of NP-complete problems is emphasized in Manber's

definition since "...there exists an efficient algorithm for any one NP-complete

problem if and only if there exist efficient algorithms for all NP-complete problems."

[Ref. 3:p. 3421 So, if we can polynomially reduce clique to a problem with an efficient

algorithm, then an efficient algorithm exists for the clique problem also. However,

since an efficient algorithm has not yet been found, the program CLIQUE in this

thesis takes a small subset of the clique problem and automates it. The program is

based on a "brute force" algorithm. The input graph is analyzed first by number of

vertices, then by number of edges, and finally by the degrees of the vertices. An

explanation follows in Chapter III.

B. PROBLEM DESCRIPTION

In a large communications network, say fifty or more stations, it is difficult to

determine optimal frequency assignments. The network is often constrained by

distance, equipment, weather and other factors. The need exists, therefore, for a

method to keep track of conflicts and adjust the frequency assignments as required.

Hintze designed an algorithm which handles a subproblem of the frequency

10



assignment problem [Ref. I:pp. 59-60]. In this paper the program CLIQUE detects

the maximal cliques in a arbitrary network. This will lead to identifying the stations

which can add transmitters to their sites without adding conflict to the net.

The largest clique that the program CLIQUE detects is a K6 . This does not mean

the largest network which can be input contains six stations. It does mean, however,

that the largest subnet of a network which can be input is limited to six stations.

Subsequently, multiple subnets may be combined to form the original net and be

analyzed again. On the other hand, "stations" could represent whole networks. Thus,

conflicts between six networks could also be analyzed.

Any communicator desiring to add additional links without increasing network

conflict will want to use CLIQUE. Characteristics of its application are found in

Chapter III.

C. SOLVING THE CLIQUE PROBLEM BY FINDING A MAXIMUM CLIQUE

1. Introduction

Tarjan declares the "obvious" algorithm examines every subset of the vertices

of a graph, determines if the subset is a clique, and then chooses the largest clique

found. Since there are 2n subsets possible, where n is the number of vertices, the

number of searches grows correspondingly. The time bound of the algorithm would be

O(n2n), which is unsuitable for finding cliques in a reasonable time for large graphs.

Intuitively, the problem must be approached differently and Tarjan does this by

examining "a sufficiently large number" of vertices and limiting the quest to a single

maximum clique. Although the single clique is not sufficient for the communications

problem, Tarjan's paper illustrates the difficulty in designing an algorithm to solve an

NP-complete problem. [Ref. 6:p. 1]

11



2. Definitions

G is a graph with vertex set V. GS is the subgraph of G with vertex set S

where S C V. GS and GV _ S are the subgraphs of G induced by the subsets S and

(V - S). Let A(C) be the set of vertices adjacent to one or more vertices in the clique

C. In Figure 6, if C1 = (x, y, z) and C2 = (v, x, y, z) then C2 dominates CI . In other

words, C1 , is a clique but not maximal since it is contained in C2. If every clique in GS

is dominated by at least one clique in a set of cliques C, then the set of cliques C is

dominant. Dominance is transitive. Finally, let 11G11 be the size of a maximal clique in

G. [Ref. 6:pp. 1-21

x y

Figure 6 Example Graph

3. The Solution

In 1972, Tarjan described a recursive algorithm for finding one maximal clique

of maximum size in G. The graphs's set of vertices is subdivided and examined for

cliques. Once a clique C is found, the vertices in A(C) are examined. If possible, the

two sets are combined to form a larger clique until the maximum clique in G is found.

Crucial to the process is the relation between one subset and its adjacent subset of

12



vertices. One subset must be Dominant so that the algorithm will eventually

succeed. The following lemmas are included for reference.

* Lemma 1: Let G = (V, E) be a graph. LetScV.
0 Then 11G11 = maxC a clique in Gs {10 + 11GA(C) - S"1} [Ref. 6 :p. 2]

* Lemma2: LetS V. Let CbeadominantsetofcliquesinG S.

* Then lGl= max c C  {IcI + IIGA(c) - s") [Ref. 6:p. 3]

Tarjan lists possible subproblems which might be encountered in determining

the maximum clique. Ultimately, his approach gives a worst case time analysis of

t(n) < k(1.286)n , where n is number of vertices and k is some constant. This time

analysis is better than 2n and handles 2 3/4 as many vertices as the "obvious"

algorithm can handle [Ref. 6:p. 13). However, you will notice that the smaller

number, 1.286, is possibly still not reasonable for large networks.

4. Observations and Conclusions

To summarize, Tarjan solves a smaller clique problem first in the subset S of

vertices for each clique in a dominant set of cliques for GS. He then applies the

procedure recursively until a maximum clique is found [Ref. 6:pp. 2-3]. Tarjan's

algorithm is not suitable for determining all of the conflicts in a net as is necessary for

the communications problem. It will find the largest clique, however, and this may

suffice in some situations.

D. SOLVING THE CLIQUE PROBLEM USING A MINIMAL EDGE

COVERING

1. Introduction

Kou et al. design a heuristic algorithm to discover the minimal edge clique

covering of a graph [Ref. 7:pp. 137-8]. An objective of their algorithm is to find an

13



optimal covering of edges. This optimal covering would not satisfy the requirements

of finding cliques for a communications network because it eliminates a clique whose

elements are found in other clique sets. In communications, every clique indicates a

possible subnet which might influence frequency assignment and its existence needs

to be known by the network manager.

2. Definitions

The heuristic algorithm uses an incidence matrix as input. An incidence matrix

looks like an adjacency matrix except that the rows represent vertices and the

columns represent edges. An entry in an incidence matrix is "1" if and only if the

vertex is incident to the edge. [Ref. 7:p. 1351

3. The Solution

Kou et al. developed two heuristic algorithms to minimize the number of

cliques found in a graph [Ref. 7:p. 135]. Since they believe that NP-completeness

does not necessarily preclude finding polynomial-time approximation algorithms [Ref.

7: p. 1371. The heuristic uses an incidence matrix, P, and does not allow disconnected

nodes. In Figure 7, their heuristic finds C1 = [1, 3, 5), C2 = (2, 3, 4), C3 = (4, 5, 6),

and C4 = (3, 6) for graph A [Ref. 7:p. 138]. For graph B in Figure 7, the first

algorithm finds all possible maximal cliques [Ref. 7 :p. 1381. These are C1 = {1, 2, 3),

C2 = (1, 2, 4), C3 = (1, 3, 5), and C4 = (2, 3, 6). However, the second "improved"

algorithm produces an optimal (minimal) edge clique cover which eliminates the

redundant a'iangle, C1 = (1, 2, 3). In CLIQUE, the redundant triangle is not

eliminated.

14



4
3 2

6 4 5 3
(A) (B)

Figure 7 Finding a Minimal Edge Clique Covering

4. Observations and Conclusic -s

The program CLIQUE finds the ECC assignment C1 = (1, 3, 5), C2 = (2, 3,

4), and C3 = (3, 4, 5, 6) for Figure 7, graph A and it finds the same ECC as the

original heuristic for graph B. As mentioned in this paper's introduction, although a

minimal covering is sufficient for Hintze's algorithm, all of these cliques may be

necessary for communications frequency management [Ref. 1:p. 59]. For example, if

we eliminated station six from the net in graph B, we might not realize that stations

two and three are still in conflict. The "improvement" made by Kou et al. eliminates

this subset of cliques (assuming he finds the cliques with the heuristic) without

accounting for future planning requirements. Therefore, although it could be useful in

certain situations, this heuristic is not useful for our purposes.

E. SOLVING THE CLIQUE PROBLEM WITH MAXIMAL DEGREE FOUR

1. Introduction

Pullman defines mathematical algorithms for calculating minimal edge clique

coverings on graphs with vertex maximal degree less than five. He claims that the

algorithms proposed can be accomplished in linear time 0(n), where n is the number
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of vertices. This is quite an improvement over the exponential time algorithm which

pursues all possibilities, such as Tarjan's in Section C. [Ref. 2:p. 57]

2. Definitions

Let G be a graph with vertices of degree less than five. Given G, if H is a

subgraph containing some, but not all of the edges and vertices of G, then H is a

proper subgraph. If a proper non-empty subgraph separates the cliques of G, then we

say that G is clique-separable. Otherwise, G is clique-inseparable. B is a clique-

block if B separates the cliques of G and no subclique of B does. B "separates the

cliques" when every clique of G has either all or none of its edges in H. In other

words, B's edges must not be contained in a triangle. If they are contained in a

triangle, the triangle must not share edges with any other triangles of G. The

maximum number of degrees of the vertices in G are denoted by A(G). The

neighborhood of H consists of H and every vertex and edge of G adjacent to the

vertices of H. Deletable subgraphs are defined as isolated vertices, neighborhoods of

A(G)-cliques, triangles not sharing edges with other triangles, and A(G)-cliques.

Examples of clique-inseparable graphs with A(G) < 4 are shown in Figure 8. In the

first algorithm presented by Pullman, the cardinality of the minimal edge clique

covering, cc(G) and the cardinality of the clique partition cp(G) are computed. (We

will not discuss clique-partitioning in this paper.) Let T(G) be the number of

triangles in G. [Ref. 2:pp. 58-63]

16



K2  p1

i~

C4  P4

G7 G8  G9  G1O

Figure 8 Clique-Inseparable Graphs

3. The Solution

Pullman's algorithm depends on the identification of clique blocks that contain

triangles. He identifies 24 possible clique-inseparable graphs in his paper, and

stores their characteristics in a table for quick reference [Ref. 2:p. 62]. The

characteristics stored include the graph's edges and cc(G). In his algorithm, triangles

are located recursively until all of the edges are used and the cliques identified. When

no further triangles remain, the algorithm identifies any remaining edges as K2

cliques. A second algorithm simply takes any edge, identifies the clique block, B, and
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adds the cc(B) and cp(B) number to a running total. It then removes the edges from

consideration and quits when all edges in G have been used. [Ref. 2:p. 58]

4. Observations and Conclusions

Of the research looked at thus far, Pullman's algorithms are the most closely

related to the algorithm used in the program CLIQUE. However, CLIQUE detects all

maximal cliques. Differences between the two algorithms are identified in Table 1.

Because CLIQUE has an input limit of six stations, Table 1 does not contain

Pullman's graphs consisting of more than six stations. The program CLIQUE

removes clique blocks, usually starting with K2 cliques, and proceeds to identify

triangles which can be removed as clique blocks or those that are contained in K4 and

K5 cliques.

F. SOLVING THE CLIQUE PROGBLEM WITH BRANCH-AND-BOUND

1. Introduction

Bron and Kerbosch describe two backtracking algorithms designed to find all

maximal complete subgraphs (cliques). They use a heuristic approach known as

branch-and-bound. This technique eliminates "branches" which will not eventually

lead to a clique. [Ref. 8 :p. 575]

2. Definitions

Three sets are used in their approach. The first set known as compsub is the

set which is expanded or shrunk by a vertex while traveling along the branch of the

backtracking tree. The second set, candidates, are vertices which have not yet been

used to extend the set in compsub. The last set consists of vertices which served

earlier as extensions of the present compsub but are now explicitly excluded from

further consideration and is known as not. To stop the heuristic from looking for more
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cliques, a vertex must exist in the set not and be connected to all the candidates.

This position in the heuristic is called the bound condition. [Ref. 8:p. 575]

TABLE 1
CARDINALITY ASSOCIATED WITH CLIQUE BLOCKS

I P1 P2 P3 GIoP4 C4 G1 G6G2 G7 G4 G8 G9 G5

T(G) 1 2 3 3 4 4 4 4 5 5 6 6 7 8

cc(G) 1 2 3 3 4 4 3 1 4 2 5 3 2 4

ECC(G) 1 2 3 3 4 4 4 tl 5 tl l 6 tl 2 t2 8

E(G) 3 5 7 7 9 8 9 6 10 8 11 10 9 12

t indicates number of K4 cliques

t indicates number of K3 cliques

3. The Solution

Two versions of their heuristic are presented. In the basic version, the cliques

are detected in lexicographic order. A key condition of this algorithm is a reliance on

the set called not. Bron and Kerbosch discovered the necessity for the candidates set

to be empty in order to create a clique, otherwise compsub could still be extended.

The set not must also be empty to meet the condition that the present clique not be

contained in another clique. (A clique is not maximal if contained within another.)

They claim that the branch-and-bound method detects a clique earlier than the "brute

force" algorithm. In the second version, their heuristic reduces the number of

branches traversed. In doing so, it generates cliques arbitrarily. It is based, not on
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the selection of any candidate, but on the selection of a well-chosen candidate. The

emphasis is on reaching the "bound condition" as soon as possible. [Ref. 8:p. 575]

4. Observations and Conclusions

Since this approach uses a branch-and-bound heuristic, it may take

exponential-time to find the ECC. For a communications network, this approach may

or may not be sufficient depending upon the time constraints in which the cliques must

be found.
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III. THE CLIQUE PROGRAM

The program CLIQUE is an algorithm designed to detect all the maximal cliques of

a conflict graph. Although constrained to communications networks consisting of six

stations, we believe that the communications planner will find the program useful for

maximizing the number of transmissions while simultaneously avoiding the addition

of conflict between stations. This chapter is devoted to the program's characteristics

and contributions to communications planning research.

A. INTERACTION OF THE PROGRAM'S COMPONENTS

1. The Components

The program CLIQUE is designed and implemented on an IBM-compatible XT

using Intel's 8088 processor for memory management, 640K bytes of random access

memory (RAM) for storing the program and related files, Microsoft's Disk Operating

System (DOS) for executing the program and managing input/output, and Borland's

Turbo Pascal version 5.0 for editing, compiling, and debugging the program. CLIQUE

requires approximately 42K bytes of RAM to detect the cliques of one graph, 160

bytes to store one input graph, and 500-1000 bytes to print the results of one graph to

an output file. Therefore, the program can be executed on any system which has at

least 64K bytes of RAM. Since no special facilities or devices are required to run

this program and our system is on the lower end of current technology, any user

system advertised as IBM-compatible should be able to execute the program

CLIQUE.

The program's data structures require a high-level language capable of

representing arrays, both single-dimensional and multi-dimensional. These simple
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data structures are easily implemented in Pascal. Single-dimensional arrays are

used to store the stations' names and number of transmissions (degrees), the

stations currently being considered in the search for a clique, and the maximal clique

sets. A multi-dimensional array is used to store and manipulate the adjacency matrix

of the conflict graph.

The input of the program is supplied by the user. The output of the program is

printed to the screen or to a file as desired by the user. Details of these two

operations may be found in the User's Guide in Appendix B.

A model of the program's interaction is found in Figure 9. As part of finding

the clique, we first determine the vertex degrees of each station from the adjacency

matrix input by summing the rows. Once the number of degrees has been determined,

the total number of edges in the graph is known and, with the number of stations, we

can determine the cliques. First, we fill an array with the stations being considered in

the search for a clique. The appropriate subprocedures are then called recursively

based on the number of stations and transmissions in the net.

The subprocedures in CLIQUE represent subproblems of detecting a

network's cliques. A short introduction to these subprocedures follows. Findpair

finds a pair of vertices, one of which has degree one, that form a K2 . Oneedgelessthan

determines the K2 cliques for a graph consisting of one less edge than its total

number of vertices. Circlekaytwo determines the K2 cliques for a graph in which the

number of edges equals the number of vertices. Findtriwithlegs finds the K2 cliques

which are pendants from a triangle and the triangle itself. Findatri will find a triangle

given two vertices or indicate its failure to find one. Findadjnode finds a node

adjacent to a given node and is used as a preliminary to eliminating the edge as a K2
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or recognizing it as part of a three-order or greater clique. As maximal cliques are

detected, writeclique outputs the sets to the screen or a file as directed by the user.

Appendix A has a more detailed explanation of the program CLIQUE and its

procedures.

2. Response Time

The network manager expects a response to input in a "reasonable" amount of

time, especially if he is using an automated tool such as CLIQUE. Inherent in the

clique problem, however, is that response is measured in exponential-time for even

moderately sized graphs. It is important, therefore, to illustrate CLIQUE's response

is measurable in seconds.

Because the possible combinations of vertices and edge is so numerous,

exhaustive testing is not conducted. Verifying all possible cases is extremely

difficult. For example, isomorphism contributes to the difficulty since each graph on

six vertices has six possible adjacency matrices. So we tested CLIQUE's efficiency

with a representative eighty graphs on six vertices, twenty-one graphs on five

vertices, six graphs on four vertices, two graphs on three vertices and one graph on

two vertices.

Using Borland's Turbo Profiler on an IBM-compatible AT, we tested seven

files [Ref. 9:pp. 47-49]. This profiler measures execution time and "profiles" the time

spent in each module of the program. A description of the seven separate test files

follows. File number one contains three graphs on two and three vertices. File

number two contains six graphs on four vertices. File number three contains twenty-

one graphs on five vertices. File number four contains fifty graphs on six vertices.

File number five contains thirty different graphs on six vertices. File number six

contains a K2 graph representing one of the smallest graphs and file number seven
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contains a graph on six vertices representing one of the largest graphs. Smallest and

largest are based on number of procedure calls during program execution. (A test was

run separately on all of the graphs to determine how many times each graph called

CLIQUE's different procedures.) These files contain valid input only.

Three tests were run on each file and the average time spent in executing

each file is shown in Table 2. The files are read from and written to the same drive.

Interestingly, the bulk of the execution time (80-90%) is spent reading and writing

data for the nets. The time spent in procedure findclique (the main procedure which

initiates clique detection) was less than one percent of the execution time. Therefore

execution time in finding the graphs is minimal compared with processing the matrix.

Manipulation of the input access would speed up the program execution but not

significantly at this constrained level of input. These statistics are significant in that

real-time results are achievable in solving the frequency problem using CLIQUE.

TABLE 2
CLIQUE EXECUTION TIMES

File 1 2 3 4 5 6 7

"A" Drive Execution Time 3.52 5.20 9.20 19.90 14.94 5.00 4.89

"C" Drive Execution Time 0.50 0.63 1.89 4.88 3.07 0.39 0.48

f time is in seconds

3. Error Checking and User Friendliness

Although the program performs error checking, it could use some fine tuning.

Errors detected by the program are described in Appendix B. In particular there are
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two errors CLIQUE does not detect. It does not check that the adjacency matrix is

symmetrical with respect to its rows and columns, nor does it determine whether the

graph is composed of more than one component. Currently, the user is responsible for

inputting correct data, however, the computer's speed and parsing ability is ideally

suited to these tasks. So, if the computer inserted the (j, i) entry (when the user

entered the (i, j) entry) and/or detected a disconnected graph, the user would save

time and avoid deceptive runs.

Findclique

I I

Number of

TransmissionsI
Number of

Stations

E Findpair I Oneedgelessthan I Circlekaytwo I Findtriwithlegs

E Fndari Fijnoe

Figure 9 Components of the Program CLIQUE
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The program has "friendly" characteristics as follows. The command to invoke

CLIQUE is immediately followed by the user's input filename and output filename,

saving the user from answering "prompts." If the input filename is not given or cannot

be found, an error message reminds the user to include the input filename on the

command line. CLIQUE also prints (to the screen or output file) the name of the input

file, the number of stations in a net, the adjacency matrix of the net's conflict graph,

the names of the stations, the maximal cliques of the net, and the appropriate error

messages.

B. CONTRIBUTIONS TO RESEARCH

The program CLIQUE is a minor contribution to the NP-complete problem of

detecting cliques. The plentiful amount of research published, some of which was

described in Chapter II, is a testament to the difficulty involved in solving NP-

complete problems. However, for researchers desiring an understanding of the clique

problem on a smaller scale, CLIQUE is extremely valuable. Our deliberation,

culminating in CLIQUE's procedures, reveals the existence of (or absence of)

common characteristics in cliques with maximal degree less than or equal to five. The

difficulty in finding the ECC of a net stresses the obstacles faced in designing a

network with minimal conflict. For communications network managers, CLIQUE is a

tool which can be used to maximize the limited frequency assets of a network or

networks. However, we emphasize that CLIQUE is a "limited" solution in the NP-

complete scenario of the clique problem.

C. SUMMARY

The "goal" is to find the complete subgraphs of a network and correspondingly

improve frequency management. CLIQUE provides a sufficient number of error

messages and feedback messages to keep the user informed while meeting the

26



"goal." It is significant as a working implementation of the solution to the clique

problem, available to the user now. To improve upon CLIQUE's solution, however,

we need to correct user interface problems and expand the program past the current

constraint of six stations.
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IV. ANALYSIS OF THE CLIQUE PROGRAM

As mentioned in the introduction to this paper, detecting the maximal cliques of a

conflict graph appears to be an easy problem. In devising the program CLIQUE,

therefore, we started with simple conflict graphs (i.e., those with four vertices) and

progressed to graphs with more vertices and edges. We tried many different ap-

proaches to solving the problem. This chapter explains our methods of attack and

why we decided to implement CLIQUE as we did. Realize that throughout the imple-

mentation process, the graph is represented as an adjacency matrix. We assume that

the adjacency matrix represents a valid conflict graph of a communications network

(e.g., is not disconnected, contain loops or multiple edges). Hopefully, the reader will

get a feel for the difficulty involved in solving an NP-complete problem.

A. INITIAL APPROACH TO THE PROBLEM

1. The Approach

Initially, we started programming an algorithm for graphs of less than four

vertices. By definition, a complete subgraph, Kn, has (n - 1) degrees per vertex. As

used by Pullman, we designate the maximum of the degree of G, A(G), equal to (n -1)

[Ref. 2:p. 591. With this fact in mind, we create a function to read in the number of

edges per vertex from the adjacency matrix. This number is known as the degree of a

vertex. Once the degree of each vertex is calculated, we search for the vertex with

degree equal to A(G) = (n - 1). If such a vertex is found, we continue to search for

more vertices of the same degree. We must have n vertices with degree equal to

A(G) = (n -1) before Kn can be the largest possible clique in the graph. If such a
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vertex is not found, the search decrements n after each unsuccessful pass of all

vertices until a vertex with degree equal to A(G') is found (where G' is a subgraph of

G). Once again we search for n vertices of degree (n - 1).

Once the largest possible size of a clique is determined in which G itself is not

a complete graph, we must find the vertices which form the clique. Using one of the

vertices with degree equal to A(G') and its adjacent vertices (as determined from the

original adjacency matrix), we construct a temporary adjacency matrix, A'. A' is

formed with the edges corresponding to the entries from the original matrix using the

vertices above. We then use a procedure to determine whether A' forms a maximal

clique. This procedure calculates the degrees of each vertex of A', compares the

degrees of each vertex to A(G'), and decides whether the clique is maximal. If the

clique is maximal, it is output in set notation and A(G') is subtracted from the degrees

of each vertex. (This subtraction eliminates the clique's edges from further

consideration in the clique problem. Remember that a clique is not maximal if it is a

complete subset of another clique.) If A' does not produce a maximal clique, then

another vertex with degree equal to A(G') is picked from the remaining vertices and

the preceding process is repeated. Figure 10 contains examples of graphs in which

the cliques can and cannot be found using the initial approach. In the program

CLIQUE, (a) is in the class known as one-edge-less-than-number-of-vertices and

(b) is in the class known as a-triangle-with-legs. These classes can be found in

graphs of all sizes (see Appendix A).

2. Observations and Conclusions

Our initial approach did not consider that an edge can be a component of more

than one clique (see edge {x, y) in Figure 10(c)). Therefore, it was invalid to delete

an edge from further consideration based solely upon membership in one clique.
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Additionally, since a linear search is performed within the adjacency matrix for

adjacent vertices, multiple valid and invalid temporary matrices were often

calculated. A technique is needed to eliminate these "extra" cliques and decrement n

at the end of a pass to form a new A(G'). Thus, a clique which is a component of a

larger clique may be erroneously output as maximal. These linear search problems

indicate that an additional discriminator, in addition to vertex degrees, is needed to

determine cliques.

x Y

(a) yes (b) yes (c) no

Figure 10 Graphs Used in Initial Programming

B. INTERMEDIATE APPROACH TO THE PROBLEM

1. The Approach

At this point, the most pressing problem is to determine which edges are

components of multiple cliques. We proceed beyond arbitrary graphs less than or

equal to four vertices, to graphs with up to nine vertices. As mentioned previously,

we can look at a drawing of most graphs of less than ten vertices and separate the

graph's maximal cliques fairly easily. In the program CLIQUE, however, any

approach is affected by the computer's limitation of reading and interpreting the ones
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and zeros of an adjacency matrix in order to glean the graph's configuration.

Therefore, we create some data structures to act as "flags" when an edge is used in a

clique. Flags are delineators when an edge is a member of more than one maximal

clique. The flags distinguish between the two cliques of different type Kn (see

Figure 10(b)) and the four cliques of the same Kn type (see Figure 11(a) and (b))

which are sharing edges. However, flags do not delineate the multiple cliques, of

either the same or different type Kn, which are sharing edges in Figure 11(c). This

failure is due to the fact that an edge, e = (x, y), may belong to one, two, three, or

more cliques (see Figure 11(d)). An exhaustive search may be the only method of

determining this, as flags cannot be manipulated to give the correct result every time.

2. Observations and Conclusions

It is apparent that flags have limited usefulness. In an arbitrary graph, every

edge must be searched from every vertex for every possible clique. This "technique"

is Tarjan's "obvious" algorithm and is not solvable in linear time [Ref. 6:p. 1]. Once

the graph has more than five vertices, the patterns disappear since there is 'n

increasing number of possible edge combinations among six or more vertices.

Isomorphism also affects the detection of cliques. Since it is difficult to cover every

possible case, the "algorithm" becomes more like an "heuristic." It finds the cliques

of certain adjacency matrices but does not find the cliques of the same graph

represented in a different adjacency matrix.

31



(a) yes (b) yes
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vx
(c) no (d) no

Figure 11 Graphs Used in Intermediate Programming

We need a method to distinguish those vertices which are on the outside of a

graph and members of a single clique from those vertices which are components of

more than one clique. Figure 11(c) illustrates this problem where (q, r, t} are

members of a single clique, and the other vertices belong to multiple cliques. The K4

cliques C1 = ( q, r, s, x ) and C2 = (s, t, u, w ) are easily identified by the current

algorithm. The K3 cliques C3 = ( u, v, w ) and C4 = ( v, w, x ) are found with the flag

modification and adjustment to the method of subtraction of degrees from the vertices'

total. The K3 clique C5 = ( s, x, w ) cannot be found with this approach because its

components have been found in the other cliques and there is no pattern which
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distinguishes these edges and keeps the algorithm from eliminating them from further

clique consideration. Therefore, we must limit the scope of the problem and minimize

the number of vertices and possible graphs.

C. FINAL APPROACH TO THE PROBLEM

1. The Approach

We decide to constrain and limit the solution to the communications problem in

order to represent most (if not all) graphs up to six vertices. We start with the

graphs in Figure 12 and add one edge to each graph progressively until we have a

collection of graphs. Many of the graphs we obtain are isomorphic to others, resulting

in "redundant" graphs. Eliminating the redundant graphs is very tedious. To

alleviate the tedium and possible error, we calculate the degrees of the vertices on

each graph and use that, along with the number of edges, as an indicator of

isomorphism. However, the number of degrees and edges are not the sole indicators

of equality. As can be seen in Figure 13, two graphs can have the same degrees and

edges but the first has a maximal clique K2 and the second has a maximal clique K3 .

Once the graphs are drawn, we categorize each by the maximum size clique in the

graph. The idea behind the categories is to ensure that redundant graphs have been

eliminated and to emphasize similarities between graphs. This organization of

graphs makes it easier to program the clique problem.

In implementing the detection of cliques, we start with the vertices of degree

one because this edge is easily eliminated from further consideration and can be

printed as a set K2 . Eliminating the vertices and edges which are members of a

single clique is beneficial for finding the graph's remaining cliques as it reduces the

network. However, if the smallest degree of a graph's vertices is two and there are

33



no triangles or there is a mixture of K2 and K3 cliques, a check must first be

performed to determine which Ki you have. Thus, to ensure that the user can input

arbitrary graphs, we consider the graphs separately and program individual graphs.

The program CLIQUE is composed as discussed in Chapter III and the complete

program is found in Appendix A.

Figure 12 Graphs on Four Vertices

c d

a - e eic

d a b

Figure 13 Non-Isomorphic Graphs with the Same Degrees Per Vertex

2. Observations and Conclusions

Finally, we understand why in this research, graphs have been limited to

degree of four or less and why the heuristic approach is so popular. It is far easier to

find a representative number of cliques which cover the edges. Although it is not
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guaranteed that all possible graphs up to and including six vertices have been found,

the process of drawing the graphs helps to delineate patterns, to understand

isomorphism, and to comprehend the magnitude of NP-complete problems.

CLIQUE performs well for arbitrary graphs up to six vertices. Because each

graph is coded for specific characteristics, cliques are located quickly. CLIQUE

eliminates the problems of isomorphism and duplication of cliques, which saves on the

calculating time expended in backtracking heuristics.

D. SUMMARY

The process of developing the program CLIQUE is representative of the

complexity involved in solving an NP-complete problem. The exponential number of

edge and vertex combinations, for even one additional vertex beyond the six

programmed here, is potentially "mind boggling" for a single programmer. To get an

idea of just how overwhelming the process is, take any graph on six vertices defined

in CLIQUE, add a seventh vertex to the graph, and add an edge between it and a

distinct vertex. Then add an edge between the seventh vertex and any other distinct

vertex in the graph which results in a different graph from the one formed by adding

the first edge. You will form from one to six different graphs. Now repeat this

procedure for every graph on six vertices. Since there are 121 graphs identified on six

vertices in this thesis, you will have at least that many new graphs on seven vertices

and you haven't even added a second edge from the seventh vertex! Of course you

will draw more than 121 graphs initially and must determine which are isomorphic and

must be eliminated.

This chapter attempts to illustrate the difficulty which arises in finding the

identical ECC for a graph, despite dissimilar graphical representation. Hopefully the

steps used to arrive at the final version of CLIQUE clarify the difficulty in finding the

maximal cliques for any one graph at any one time when that graph is arbitrary. We

believe that the more patterns and similarities which are found between graphs of
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different sizes, the closer we will be able to come to solving the clique problem.

Computers are useful for implementing "patterns." Patterns are usually implemented

in a "recursive" or " iterative" style, particularly suited to automation. Thus, part of

the solution to solving the clique problem may lie in finding a pattern among arbitrary

graphs which can then be programmed through an algorithm or heuristic.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. IMPROVEMENTS AND FUTURE RESEARCH

The program CLIQUE may be improved or expanded by anyone interested in the

clique problem or the communications problem. Some suggestions follow.

As mentioned in Chapter III, there are some error detection measures which can

be added to CLIQUE. Currently, CLIQUE does not find the graphs illustrated in

Appendix C. The graphs can be coded and integrated into the existing program.

The number of non-isomorphic graphs on six or fewer vertices should be

explored. Any graph which is not already included in CLIQUE should be added. A

proof of completeness will then be necessary.

If the requirement that one program be able to handle any arbitrary graph is

changed, then programs can be implemented to handle "classes" of graphs. Graphs

will then be entered into a program for a particular class, which may have specific

characteristics that reduce the overall computation time. However, if the user must

classify the graphs manually, the purpose of automating the detection of cliques may

be defeated. Therefore, it is desirable to automate the classification process itself.

Further research should analyze CLIQUE and modularize it more completely.

Although CLIQUE does call some subsets of a graph recursively when detecting a

clique, there is room for improvement. Particularly in the latter part of the program

during the coding of graphs which have both K2 and K3 cliques (but not K4 cliques).

Because a vertex with degree two may be in either two K2 cliques or one K3 clique,

we must test for triangularity. Testing for a triangle helps to "classify" the graph and

determine which edges and degrees to eliminate from consideration as candidates for
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future cliques. This specific test is not currently implemented in a module (procedure)

which can be called as a case requires.

It is tedious work to dissect graphs. Automating this process would enable a

researcher to analyze graphs greater than six vertices and further identify and

categorize graphical patterns which can possibly contribute to the solution of the

clique problem.

B. CONCLUSIONS AND OBSERVATIONS

The program CLIQUE finds a constrained set of maximal cliques efficiently.

Although we have not analyzed CLIQUE's time complexity, its performance is

measurable in real-time, as done on Borland's Turbo Profiler. Therefore, efficiency is

claimed in the speed at which the program detects the maximal cliques for a net.

CLIQUE can be very useful in communications planning. With an input of six

stations or less, it finds all possible maximum subnets of the network (known as

maximal cliques in this thesis) and analyzes them for conflict. Conflict analysis

contributes to the frequency management subproblem by identifying stations which

can increase transmissions without new frequency allocation. This is important to the

military communications planner, in particular, since frequency constraints are world-

wide.

Since CLIQUE analyzes the nets using the number of stations, number of

transmissions per station, and number of transmissions per net, the calculation of

duplicate valid and invalid cliques within the net is avoided. Avoiding repetitive

searches saves time in detecting cliques and gets the correct answer to the planner

faster. Additionally, CLIQUE is not sensitive to the nuances of the adjacency matrix

so the detection of cliques is not affected by isomorphism. Therefore, we will find the

same clique sets of a graph despite a different matrix representation. Used in
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conjunction with another researcher's algorithm or by itself, CLIQUE is an effective

tool within its limitations.

In general, this paper emphasizes the extreme difficulty inherent in implementing

an NP-complete problem such as the clique problem. Since CLIQUE's input is

limited to six stations, this thesis has limited the scope of the problem to a finite set

of possible graphs. CLIQUE is able to solve the edge clique covering problem

because of the finiteness of the problem space. Other research, on the other hand,

indicates that heuristics, which may or may not give the "best" answer, suffice in

some applications. However, whether the researcher uses an algorithm or an

heuristic, the fact remains that there are many possible "nets" for a large number of

stations. There are currently no time-efficient algorithms to use which categorize or

classify the characteristics of each.
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APPENDIX A

CLIQUE : THE PROGRAM

(FILE NAME: CLIQUE.PAS}

AUTHOR : Kristi J. Bell
CREATED : 25 September 1989
REVISED : 18 May 1990
MACHINE/COMPILER : IBM compatible XT/ Borland's Turbo Pascal
PURPOSE

This Program will determine the complete set of maximal cliques in any graph
consisting of one to six vertices. The graph should represent a communications net-
work with the vertices representing nodes. A complete set will include all cliques of
maximum size to which the vertices belongs. Therefore, a vertex may belong to
more than one clique. This program does not include those graphs consisting of six
vertices and either twelve, thirteen , or fourteen edges. Programming of these three
cases will be left for future projects.

INPUT
A file representing the communications nodes as vertices which includes : total

number of nodes, names of the nodes, and an adjacency matrix representation of the
communications network.

OUTPUT
The names of each communication's node in its associated maximum clique set.

Also printed is the input filename and the graph's adjacency matrix representation.

PROCEDURES
findclique: Finds a maximal clique using the following nested procedures.

NESTED IN : findclique
detdegrees : Determines the degrees of each vertex.
filltmpnum : Fills an array with vertices being considered in search for

a clique.
findnode : Finds the vertex of a specific degree.
findpair : Finds a pair of vertices, one of which has degree one.
oneedgelessthan: Determines the K2 cliques for a graph with one less

edge than total number of vertices.
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circlekaytwo : Determines the K2 cliques for a graph in which the

number of edges equals the number of vertices.
findtriwithlegs : Finds the K2 cliques that dangle from a triangle.

findatri : Given two vertices, will find a triangle or return a failure
boolean.

findadjnode : Given a node, finds an adjacent node.
twovert : Calculates the maximal cliques for a graph of two

vertices.
threevert : Calculates the maximal cliques for a graph of three

vertices.
fourvert : Calculates the maximal cliques for a graph of four

vertices.
fivevert : Calculates the maximal cliques for a graph of five

vertices.
sixvert : Calculates the maximal cliques for a graph of six vertices.

INCLUDE FILES
FILE NAME : MATRINC.PAS

FUNCTIONS
leftalign . Left-justifies a string.
spaces : Adds spaces to the end of a string.

PROCEDURE
makematrix Makes an adjacency matrix from an input

string.
FILE NAME . WRITINC.PAS

PROCEDURE
writeclique : Writes each maximal clique to an output file.
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PROGRAM: clique

CALLS : makematrix
findclique

PURPOSE : This program will determine the complete set of maximal cliques
from any input graph.

program clique (input, output);

( Compiler Directive for the inclusion of files}

($1 matrinc} ( Reads in file and makes adjacency matrix }
($1 writinc) ( Writes the node names in max clique sets }

( To the given output file }

var
matrixfile, ( Input file
cliquefile: text; (Output file I
nextparam: string; (Output file parameter entered by user }
totnumvertices : string[l]; (Number of vertices in a graph I
i, Incremental counter }
notvertex, (If zero, then vertice number is an integer
graphnumber, (Sequential number of graph in input file }
edgenum, (Counts number of edges in current matrix }
vertex : integer, { Number of total vertices in adj matrix }
notvalid : boolean; (Entered invalid edge number )
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PROCEDURE : findclique

CALLED BY : clique

CALLS : detdegrees
twovert
threevert
fourvert
fivevert
sixvert

PURPOSE : Analyzes the vertex input and determines the maximal cliques
based on number of vertices, number of edges and number of
degrees for each vertex.

procedure fmdclique (avertex, numedges: integer;, matrix: matrixtype;
var cliquefile: text);

const
degone = 1; { Number of degrees per vertex
degtwo = 2;
degthree = 3;
degfour = 4;
degfive = 5;
degsix = 6;

var
outcdique, (Number of completed max cliques )
node, (Node of degree being searched for }
i, j, k : integer; {Increment counters )
maxclique : nametype; (Holds one maximum clique }
match : boolean; (Matches current node being looked for )
tmpnum, (List of vertices being manipulated }
outdeglist : column; (List of vertex degrees )
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PROCEDURE: detdegrees

CALLED BY :findclique

PURPOSE :To determine the number of degrees of each vertex.

procedure detdegrees ( somematrix: matrixtype; var deglist, nodenum:
column; numvertex: integer);

var
deg, (Degrees of each vertex
j, k : integer; (Incremental counters

begin ( detdegrees)
k: 1;
while (k <= numvertex) do {Searches every vertex and totals up the

begin (Degrees by counting ones (equal to edges)
deg :=0; {In the graph's adjacency matrix
for j I ito numvertex do
deg: deg + somematrix[nodenum[k], nodenumU TI;

deglistik] := deg;
k:= k+ 1;

end;
end; ( detdegrees
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PROCEDURE: filltmpnum

CALLED BY :circiekaytwo
findtriwithlegs
fourvert
fivevert
sixvert

PURPOSE :To fill an array with the verticesof the next possible
maximal clique. Done prior to writing out a complete
graph.

procedure filltmnpnum ( deglist: column; var tmpnum: column)

var
i, j : integer; ( Incremental counters

begin {filltmpnum)
j := 1
for i :=1 to avertex do { Searches current array of vertex}

begin {Degrees and compacts those not}
if deglist[i] <> 0 {Equal to zero (still have edges))

then begin
tmpnumU] := 1;

j :=j + 1;
end;

end;
end; (filltmpnum
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PROCEDURE: findnode

CALLED BY oneedgelessthan
findtriwithlegs
fourvert
fivevert
sixvert

PURPOSE : Finds a node of a particular degree, else returns false.

procedure findnode ( outdeglist: column; var node: integer;
subclique: integer; var match: boolean);

begin I findnode )
if (node < avertex) {Searches the degree list of each }

then begin (Vertex
repeat
node := node + 1;
if outdeglist[node] = subclique

then match := true;
until ((match = true) or (node = avertex));

end;
end; { findnode }
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PROCEDURE: twovert

CALLED BY : findclique
oneedgelessthan
circlekaytwo
findtriwithlegs
fourvert
fivevert
sixvert

CALLS : writeclique

PURPOSE : Determines the vertex names, calls a procedure to
write the K2 maximal clique, and increments the

maximal clique counter.

procedure twovert (var outclique: integer, var maxclique: nametype;
tmpnum: column; var maxcliquefile: text);

const

vertices = 2; [Number of vertices in K2 clique

var
i : integer; (Incremental counter

begin ( twovert}

ECC(G) = 1

for i := I to vertices do
maxclique[i] := vertexname[tmpnum[i]];

writeclique (maxclique, vertices, outclique, maxcliquefile);
outclique := outclique + 1;

end; (twovert}
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PROCEDURE : findpair

CALLED BY : oneedgelessthan
circlekaytwo
findtriwithlegs
fourvert
fivevert
sixvert

PURPOSE Finds a pair of vertices. One is a vertex of degree one
and the other vertex is adjacent to it.

procedure findpair (var outdeglist, tmpnum: column; matrix: matrixtype;
node: integer);

var
j,k : integer; (Incremental counter
done: boolean; (True when found the adjacent vertex }

begin ( findpair }
j :=0;
k :=2;

done := false;
repeat
j :=j + 1;

(Finds an adjacent node that can still }
(Be considered in the clique because
(The vertex still has edges

if (matrix[nodej] 1) and (outdeglist[j] >= 1)
then begin
tmpnum[k] := j;
done := true;

end;
until (done = true);

( Subtract an edge from the overall
( Degrees for the vertex just used,
( So the pair won't be used again }

outdeglist[node] := outdeglist[node] - 1;
outdeglist[j] := outdeglist[j] - 1;

end; {findpair }
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PROCEDURE :oneedgelessthan

CALLED BY :threevert
circiekaytwo
fourvert
fivevert
sixvert

CALLS findnode
findpair
twovert

PURPOSE Finds and outputs the K2 cliques which result

from a graph which has one less edge than number
of vertices.

procedure oneedgelessthan (var outclique: integer, var maxclique:
nametype; tmpnumn, outdeglist: column;
matrix: matrixtype; var maxcliquefile:
text)

var
matched: boolean: (Found a K2 clique

node: integer (Any vertice in graph

begin ( oneedgelessthan)
repeat

matched := false;
node := 0;
flndnode (outdeglist, node, degone, matched);
tnpnum[lI] := node;
if matched =true {Loops until it finds all the K2 's

then begin
flndpair (outdeglist, tmpnumn, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliqueflle);

end
until (matched = false);

end; (oneedgelessthan)
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PROCEDURE: threevert

CALLED BY : findclique
findtriwithlegs
fourvert
fivevert
sixvert

CALLS : oneedgelessthan
writeclique

PURPOSE Finds all max cliques consisting of three vertices.
Uses number of edges and degrees as discriminators.

procedure threevert (var outclique: integer, var maxclique: nametype;
tmpnum: column; numedges: integer, var maxcliquefile:
text);

var
i, vertices : integer;

begin ( threevert J

ECC(G) = 2

case numedges of
2 : oneedgelessthan (outclique, maxclique, tmpnum, outdeglist,

matrix, maxcliquefile);

ECC(G) = 1

3 :begin
vertices := 3;
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for i 1= to vertices do
maxclique[i] :=vertexnamelbnpnum[i]];

writeclique (niaxclique, vertices, outclique, niaxcliqueflle);
outclique :=outclique + 1;

end;
end;

end; f trevert
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PROCEDURE: circiekaytwo

CALLED BY : findtriwithlegs
fourvert
fivevert
sixvert

CALLS : findpair
twovert
filltmpnumn
oneedgelessthan

PURPOSE :Finds the K2 cliques indicative of graphs which have

the same number of edges and vertices. The graphs
appear circular.

procedure circiekaytwo ( outdeglist, tmpnum: column; var matrix:
matrixtype; outclique: integer;
var maxcliquefile: text)

var
node: integer,

begin ( circlekaytwo)
node := tmnpnum[11;

(Finds a pair of vertices and removes the edges)
(From the adj matrix after printing out the clique

findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmnpnum, maxcliquefile);
matrix[tmnpnum[ 1] ,tmpnum[2]] : matrix[tmpnumf I 1,tmpnumll2ll - 1;
rmtrix(tmpnum[21,tmnpnum[ 11] matrix~tmpnum[21,trnpnumf 111 - 1;

( Finds the remaining K2 cliques

oneedgelessthan (outclique, maxclique, tmpnum, outdeglist, matrix,
maxcliquefile);

end; ( circiekaytwo)
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PROCEDURE: findtriwithlegs

CALLED BY : fivevert
sixvert

CALLS : findpair
twovert
findnode
filltmpnum
threvert
circiekaytwo

PURPOSE :Finds the triangles with K2 pendants or

determines that a triangle does not exist and that
the rest of the graph is K2 cliques.

procedure findtriwithlegs (outdeglist, tmpnum: column; node,
currentvertices, newnumedges: integer;
maxclique: nanietype; matrix: matrixtype;
var maxcliquefile: text)

const
triangle = 3;

var
matched: boolean;

begin ( findtriwithlegs
repeat (Loops until all vertices with degree)

(One are found and written out
tnipnum[1 I:= node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
newnumedges := newnumedges - 1;
node := 0;
matched := false;
findnode (outdeglist, node, degone, matched);

until (matched = false);
(Puts the remaining vertices in an)
(Array and either prints out the
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(Triangle or finds the circular clique
fllltmpnum (outdeglist, tmpnum);
if (newnurnedges = triangle)
then threevert (outclique, maxclique, tmpnumn, newnumedges,

niaxcliquefile)
else circiekaytwo (outdeglist, tmpnum, matrix, outclique, mnxcliquefile);

end; (findtriwithiegs)
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PROCEDURE : fourvert

CALLED BY : findclique
fivevert
sixvert

CALLS : oneedgelessthan
findnode
findpair
filltmpnum
twovert
threevert
circlekaytwo
writeclique

PURPOSE Finds all maximal cliques in graphs of four vertices.
Uses number of edges and degrees as discriminators.

procedure fourvert ( var outclique: integer, var maxclique: nametype;
tmpnum: column; numedges: integer,
var maxcliquefile: text);

var
i, j, (Incremental counters
curvertices, (Number of vertices in current graph
newnumedges : integer, (Reduced number of edges after

(Certain cliques removed
matched : boolean; (True if node is found of that degree

begin ( fourvert}
curvertices := 4;
matched := false;
node := 0;
case numedges of

ECC(G)=3 ECC(G)=3
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3 :oneedgelessthan (outclique, maxclique, tmpnum, outdeglist, matrix,
maxcliqueffle);

4: begin
findnode (outdeglist, node, degone, matched);
if matched = true

then begin

ECC(G) =2

tinpnum[I :=node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
newnumedges := 3;
filltmpnum (outdeglist, tmpnum);
threevert (outclique, maxclique, tmpnum, newnumedges, maxcliquefile);

end

ECC(G) = 4

else circiekaytwo (outdeglist, tmpnum, matrix, outclique,
maxcliquefile);

end;

5 : begin

U
ECC(G) = 2

findnode (outdeglist, node, degtwo, matched);
tmpnumf I] := node;
node := 0;
matched := false;
findnode (outdeglist, node, degthree, matched);
tmpnum[2] := node;
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matched: false;
flndnode (outdeglist, node, degthree, matched);
tmpnum[31 :=node;
newnumedges := 3;
threevert (outclique, maxclique, tmnpnum, newnumedges, maxcliquefile);
node := tmpnum[11;
matched: false;
findnode (outdeglist, node, degtwo, matched);
tmpnum[lI] := node;
ihrevert (outclique, niaxclique, tmpnum, newnumedges, maxcliquefile);

end;

6: begin

ECC(G) = I

for i := 1 to curvertices do
maxclique[i] := vertexnanieltmpnum[i]J;

writeclique (niaxclique, curvertices, outclique, maxcliquefile);
outclique := outclique + 1;

end;
end; ( case)

end; (fourvert)
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PROCEDURE: fmndatri

CALLED BY : fivevert
sixvert

CALLS : threevert

PURPOSE :Takes two given nodes and finds a third

adjacent node which forms a triangle.

procedure findatri ( var trnpnum: column; matrix:
matrixtype; var outelique: integer, var
maxclique: nametype; var done: boolean;
var maxcliquefile: text);

var
i,(Incremental counter

numedges : integer; (Number of edges in a triangle)

begin (findatri

done := false;
repeat (Loop until find a node in the matrix

(Which is adjacent to both given
(Vertices, else return a false

if (matrix[tmpnumlJ,i] = 1) and
(matrixltrnpnum[2],i] = 1)

then begin
txnpnum[31 := i
done := true;

end;
1 + 1+

until ((done = true) or (i > avertex));
(If find a triangle, print it out

if (done = true)
then begin

numedges :=3;
threevert (outclique, maxclique, tmpnum, numedges, maxcliquefile);

end;
end; (findatri)
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PROCEDURE: findadjnode

CALLED BY : fivevert
sixvert

PURPOSE : Finds a separate node adjacent to the current node.

procedure findadjnode (node: integer, matrix: matrixtype; var
tmpnum: column);

var
done : boolean;
i, j : integer;

begin ( findadjnode)
tmpnum[1] := node;
j:=1;
done := false;
repeat ( Loops until an adjacency is located, }

(Then both nodes are passed back
{ And as part of a larger clique }

if matrix[nodej] = 1
then begin

tmpnum[2] :=j;
done := true;

end;
j:=j +;

until (done = true);
end; { findadjnode)
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PROCEDURE: fivevert

CALLED BY : findclique
sixvert

CALLS :oneedgelessthan
findnode
findtriwithlegs
circiekaytwo
findpair
twovert
filltinpnumn
fourvert
findadj node
threevert
findati
writeclique

PURPOSE Finds all maximal cliques in graphs of five vertices.
Uses number of edges and degrees as discriminators.

procedure fivevert ( var outclique: integer, var maxclique: nametype;
tmnpnum: column; numedges: integer; matrix:
matrixtype; var maxcliquefile: text)

var
matched, success: boolean;
i, j, temp,
counter,
node, curvertices :integer;

begin I fivevert
curvertices :=5;
node := 0;
matched :=false;
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case numedges of

ECC(G) = 4

4: oneedgelessthan (outclique, maxclique, tmpnum, outdeglist,
matrix, maxcliquefile);

5: begin

ECC(G) = 3 ECC(G) 5

findnode (outdeglist, node, degone, matched);
if matched = true

then findtriwithlegs (outdeglist, tmpnurn, node, curvertices,
numedges, maxclique, matrix,
maxcliquefile)

ECC(G) = 5

else circiekaytwo (outdeglist, tmpnum, matrix, outclique,
maxcliquefile);

end;
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6: begin

ECC(G) = 3

flndnode (outdeglist, node, degone, matched);
if matched = true
then begin
tmpnunit I= node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
filltmpnum (outdeglist, tmnpnum);
numedges := numedges - 1;
fourvert (outclique, maxclique, tmpnum, numedges, maxcliquefile);

end
else begin

ECC(G) = 2

node := 0;
matched := false;
findnode (outdeglist, node, degfour, matched);
if matched = true

then begin
findadjnode (node, matrix, tmpnum);
findatri (tmnpnum, matrix, outclique, maxclique, success,

maxcliquefile);
for i := 1 to 3 do

outdeglist[tmpnumlli]] := outdeglist[tmpnum[i]] - 2;
filltmpnum(outdeglist, tmpnum);
numedges : = 3;
threevert (outclique, maxclique, tmpnum, numedges,

maxcliquefile);
end (then)

else begin
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node :=0;
matched: false;
findnode (outdeglist, node, degthre, matched);
tmpnum[1I] : node;
matched: false;
findnode (outdeglist, node, degthree, matched);
tmpnum[21 :=node;
if (matrix[tmnpnum[lI,trnpnum[21 = 1)

then begin

ECC(G) =4

findatri (tmpnum, matrix, outclique, maxclique,
success, maxcliquefile);

for i 1= to 3do
outdeglist[tmpnum[i]]I: outdeglist[tmpnum[i]] - 2;

for i 1= to 2do
forj := I to 3 do

niatrix[tmnpnumjli], tmpnumUll := 0;
filltnipnum (outdeglist, tmpnum);
oneedgelessthan (outclique, maxclique, tmpnum,

outdeghist, matrix, maxcliquefile);
end

else begin
temnp:= tmpnumll2l;
node := tmpnum[1I;

ECC(G) = 6

repeat
repeat

findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnumn, maxcliquefile);
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niatrix[tmpnum[ I],tmpnun42]] : 0;
inatrix[tmpnum[2J,tmpnun[ljj: 0;

until (outdeglist[nodel = 0);
node: temp;
tmpnum[I]: node;

until (outdeglistlnode] 0);
end;

end;
end; [else)

end; (6)

7: begin

ECC(G) =2

findnode (outdeglist, node, degone, matched);
if (matched = true)

then begin
tmpnum[ 1] := node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
filltnipnum (outdeglist, tmpnum);
numedges :=6;
fourvert (outclique, maxclique, tmpnum, numedges, maxcliquefile);

end
else begin

node := 0;
matched: false;
findnode (outdeglist, node, degtwo, matched);
tmpnum[ I I := node;
matched: false;
findnode (outdeglist, node, degtwo, matched);
if (matched = true)
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then begin

ECC(G) = 3

temp :=node;
node: tmpnum[1I;
findadjnode (node, matrix, tmpnum);
findatri (tmpnunz, matrix, outclique, maxclique, success,

rnaxcliquefile);
for i := 2to 3do

m'atrix[tnipnum[l],tmpnum[i]] := 0;
outdeglist[trnpnum[ I]]: 0;
for i :=2 to 3 do
outdeglist[tmpnum[iII : outdeglist[tmpnum[iII - 1;

filltmpnum (outdeglist, tmpnum);
numedges :=5;
fourvert (outclique, maxclique, tmpnum, numedges, maxcliquefile);

end
else begin

ECC(G) = 4

node tmpnum[l]I
repeat

findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, unpnum, maxcliquefile);
matrix[tmpnum[1I],tmpnumll2]I : 0;

until (outdeglistlltmpnum[lI] = 0);
filltmpnum (outdeglist, tmpnum);
numedges : = 5;
fourvert (outclique, maxclique, tmpnum, numedges, maxcliquefile);

end;
end; (else)
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end; (7)

8: begin

ECC(G) = 2

findnode (outdeglist, node, degfour, matched);
temp := node;
matched :=false;
findnode (outdeglist, node, degfour, matched);
if (matched = true)
then begin

tmpnum[1 I= temp;
tmpnumul2] :=node;
node: 0;
matched := false;
findnode (outdeglist, node, degtwo, matched);
tnipnum[3] := node;
numedges := 3;
threevert (outclique, maxclique, tmpnum, numedges, maxcliquefile);
outdeglist[tmnpnumll311 := 0;
for i :=I to 2do

outdeglist[tmpnumllill := outdeglist[trnpnum[i]I - 1;
filltmpnum (outdeglist, trnpnum);
numedges: 6;
fourvert (outclique, maxclique, tmpnum, numedges, maxcliquefile);

end
else begin

ECC(G) =4

counter: degfour,
node := temp;
findadjnode (node, matrix, tmnpnum);
repeat
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findatri (tmpnum, matrix, outclique, maxclique, success,
maxcliquefile);

if (success = true)
then begin

niatrix[tmpnum[2], tmpnum[3]] 0;
matrix[tnipnum[3], tmpnumll2]] 0;
if (counter < degfour)

then begin
matrix[tmpnui[lI], tmpnum[2]] 0;
umpnum[21 : tmpnum[3];

end;
counter: counter - 1;

end;
until (counter = 0);

end;
end; (8)

9: begin

ECC(G) = 2

findnode (outdeglist, node, degfour, matched);
tinpnum[l] :=node;
matched :=false;
findnode (outdeglist, node, degfour, matched);
tmpnum[2] := node;
matched :=false;
findnode (outdeglist, node, degfour, matched);
tmnpnum[31 : node;
node := 0;
matched :=false;
findnode (outdeglist, node, degthree, matched);
tmnpnum[41 :=node;
numedges :=6;
fourvert (outclique, maxclique, tmpnum, numedges, maxcliquefile);
outdeglist[tmpnum[4]] :=0;
for i:= Ilto 3do
outdeglist[tmpnum[i]] :=outdeglistlltmpnum[i]] - 1;
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filltmpnum (outdcglist, umpn);
fourvert (outclique, niaxchique, tmpnum, numedges, inaxciquefile);

end; (9)

10 :begin

ECC(G) =1I

for i :=1 to curvertices do
niaxclique[iI : vertexnaniettmpnum[i]];

writeclique (maxclique, curvertices, outclique, maxcliquefile);
outclique :=outclique + 1;

end; (10)
end; (case)

end; (fivevert)
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PROCEDURE: sixvert

CALLED BY : findclique

CALLS : oneedgelessthan
findnode
findtriwithlegs
circlekaytwo
findpair
twovert
filltmpnum
fourvert
findadjnode
threevert
findatri
fivevert
writeclique

PURPOSE : Finds all maximal cliques in graphs of six vertices.
Uses number of edges and degrees as discriminators.

************************************* : ,,t * , I:

procedure sixvert ( var outclique: integer; var maxclique: nametype;
tmpnum: column; numedges: integer, matrix:
matrixtype; var maxcliquefile: text);

var
matched, (Returns true if node is found
success, { Returns true if triangle found
adjacent : boolean; (Returns true if two vertices are adj
i, j, counter, (Incremental counters
node, (Node found in findnode search
temp, temp1, temp2, ( Temporary storage for nodes
curvertices : integer; ( Current vertice number of graph

begin ( sixvert)
curvertices := 6;
node := 0;
matched := false;
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case numedges of

>22Z-fl2
ECC(G) = 5

ECC(G) = 5

5 :oneedgelessthan (outclique, maxclique, tmpnum, outdeglist,
matrix, maxcliquefile);

6: begin

ECC(G) =6

ECC(G) =6

ECC(G) = 4
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Z2VP
ECC(G) = 4 ECC(G) = 4 ECC(G) =4

findnode (outdeglist, node, degone, matched);
if (matched = true)

then begin
tmpnum[ I] := node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnuni, maxcliquefile);
matrix[txnpnum[2],tmpnum[1]Jl :=0;
numedges := 5;
filltmpnum (outdeglist, tmpnum);
fivevert (outclique, maxclique, tmpnum, numedges, matrix,

maxcliquefile);

end

ECC(G) = 6

else circiekaytwo (outdeglist, tmpnum, matrix, outclique,
maxcliquefile);

end; ( 6)

7: begin

ECC(G) = 4
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ECC(G) = 4 ECC(G) =4 ECC(G) 4 ECC(G) 5

ECC(G) =3 ECC(G) 5

ECC(G) = 7

findnode (outdeglist, node, degone, matched);
if (matched = true)

then begin
tmpnum[ 1I: node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
matrix[tmpnum[2], tmpnum[I]]: =0;
matched := false;
findnode (outdeglist, node, degone, matched);
if (matched = true)

then begin
tmpnum Il I:= node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum maxcliquefile);
matrixftmpnum[21, tmpnum[1I]]:= 0;
filltmpnum (outdeglist, tmpnum);
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numnedges :=5;
fourvert (outclique, maxclique, tmnpnum, numedges,

rnaxcliquefile);
end

else begin
numedges :=6;
fivevert (outclique, maxclique, tmpnum, numedges, matrix,

maxcliquefile);
end;

end
else begin

ECC(G) = 5

node: 0,
matched := false;
findnode (outdeglist, node, degfour, matched);
if (matched = true)

then begin
findadjnode (node, matrix, tmpnum);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxcliquefile);
if (success = true)

then begin
for i: 1 to 3do

outdeglist~tmpnumjli]] :=outdeglistlltmpnumfi] - 2;
filltmpnum (outdeglist, tmpnum);
numedges :=4;
fourvert (outclique, maxclique, tnipnum, numedges,

maxcliquefile);
end

else begin
twovert (outclique, maxclique, tmpnum, maxcliquefile);
for i :=I to 2do

outdeglistltmpnumli]] :=outdeglist[tmpnuml] - 1;
filltmpnum (outdeglist, tmpnum);
findnode (outdeglist, node, degone, matched);
numedges :=6;
findtriwithlegs ( outdeglist, tmpnum, node,

curvertices, numedges, maxclique,
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matrix, maxcliquefile);
end,

end
else begin

node :=O0;
matched: false;
findnode (outdeglist, node, degthree, matched);
tmpnumllIlI: node;
matched -=false;
findnode (outdeglist, node, degthree, matched);
tmpnumll2] :=node;
if (matrix[tmpnum[I1,tmpnum[2]1 = 1)

then begin
findatri (tmpnum, matrix, outchique, maxchique,

success, maxcliquefile);
if (success = true)

then begin

ECC(G) = 5

for i 1= to 3 do
outdeglist[tmpnum~iII : outdeglistftmpnum[iJI - 2;

for i := 1 to 2 do
for j :=Ito 3 do

matrix[tmpnum[iI, tmpnumUl: 0;
fillttnpnum (outdeglist, tmpnum);
oneedgelessthan (outclique, maxclique, tmnpnum,

outdeglist, matrix, maxcliquefile);
end

else begin
twovert (outclique, maxclique, tmpnum, maxcliquefile);
matrix[tnpnum[ I ,tmpnumll2ll 0;
ffat-ixlltrapnum[2],tmnpnum[1I] 0;
for i 1= to 2 do
outdegfistlhnpnum[iI]]: outdeglistlltmpnumlil] - 1,

temp tnmpnum[21;
node tmpnum[ Il];
findadjnode (node, matrix, trnpnum);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxcliquefile);
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if (success = true)
then begin

ECC(G) = 3

node := temp;
findadjnode (node, matrix, hnpnum);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxciquefile);

end

112
ECC(G) = 7

else circiekaytwo (outdeglist, tmpnum, matrix,
outclique, maxcliquefile);

end;
end
else begin

ECC(G) = 7

temp :=trpnurn[2];
node :=tmpnurrn! I];
repeat

repeat
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, niaxclique, tnlpnum, niaxcliquefile);
rnatrix[tmpnum[1IJ,nnpnum[21] :=0;
matrix[tmpnurn[21,tinpnum[1] := 0;

until (outdeglist[nodel = 0);
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node := temp;
tmpnum[l] := node;

until (outdeglist[node] = 0);
filltmpnumn (outdeglist, tnlpnum);
twovert (outclique, maxclique, tmpnum, maxcliquefile);

end;
end;

end; (else)
end; (7)

8: begin
findnode (outdeglist, node, degone, matched);
if (matched = true)
then begin

tmnpnum[1] := node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
matrix[tmpnumji2],tmnpnum[ II := 0;
matched := false;
findnode (outdeglist, node, degone, matched);
if (matched = true)

then begin

ECC(G) = 3

tmpnumlll I] node;

findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
filltmpnum (outdeglist, tmpnum);
numedges : = 6;
fourvert (outclique, maxclique, trnpnum, numnedges,

maxcliquefile);
end

else begin
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ECC(G) = 5 ECC(G) = 4 ECC(G) = 4 ECC(G) =5

ECC(G) = 5 ECC(G) =4 ECC(G) = 4

ECC(G) = 5

numedges := 7;
fivevert (outclique, maxclique, tmpnum, numedges, matrix,

maxcliquefile);
end;

end
else begin

node := 0;
matched := false;
findnode (outdeglist, node, degfour, matched);
if (matched = true)

then begin
tmpnum[ 1] := node;
matched := false;
findnode (outdeglist, node, degfour, matched);
if (matched = true)
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then begin

ECC(G) =S

tmpnum[2] :=node;
if (niatrix[tmpnum[l], tmpnum[211 = 1)

then begin
findatri (tnipnum, matrix, outcdique, maxclique,

success, niaxcliquefile);

matrix[tmpnumllI], tmpnum[311: 0;
matrix JtmpnumII2I, tmpnumt3)I : 0;
for i := I to 2 do

outdeglistltinpnumli]I
outdeglist[tmpnumlhll - 1;

outdeglist[tnpnum[31 := 0;
nuniedges :=6;
fivevert (outclique, maxchque, tmpnum, numedges,

matrix, maxcliquefile);
end

else begin

ECC(G) = 8

node := tmpnum[1I];
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum,

maxcliquefile);
matrix[tmpnum[ 1], tmpnum[2ll : 0;
matrix[txnpnum[ 2 j. tnipnum[ 111 : 0;
numedges := 7;
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sixvert (outclique, maxclique, tmpnum, numedges,
matrix, maxcliquefile);

end;
end

else begin
temp := tmpnum[1];
node:= 0;
matched:= false;
findnode (outdeglist, node, degtwo, matched);
tmpnum[1] := node;
matched := false;
findnode (outdeglist, node, degtwo, matched);
tmpnum[2] := node;
matched := false;
findnode (outdeglist, node, degtwo, matched);
tmpnum[31 := node;
adjacent := false;
for i := 1 to 2 do
forj := 2 to 3 do

begin
if (matrix[tmpnum[i], tmpnumU] = 1)

then begin
adjacent := true;
templ := tmpnum[i];
temp2 := tmpnumU];

end;
end;

if (adjacent = true)
then begin

ECC(G) =3

tmpnum[1] := temp 1;
tmpnum[2] := temp2;
findatri (tmpnum, matrix, outclique, maxclique,

success, maxcliquefile);
if (success = true)

then begin
for i := I to 3 do
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begin
outdegfistltmpnumjli]

outdeglist[tinpnum[ill - 2;
niatrix[tmpnumjl3l, tnpnuxn[i]I : 0;

end;
numecdges :=5;
fourvert (outclique, niaxclique, tnipnum,

numedges, maxcliquefile);
end

else begin

ECC(G) = 5

twovert (outelique, maxclique, tmpnum,
maxcliquefile),

for i: 1 to 2do
outdeglistlltmpnum[i]]

outdeglist[tmpnum[il - 1;
matrix[tmpnurn[I], trnpnumll2ll :=0;
matrixlltmpnum[2], tmpnum[11I: 0;
nurnedges := 7;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end;

end
else begin
node: temp;
findadjnode (node, matrix, tnipnum);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxcliquefile);
if (success = true)

then begin

ECC() =4
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for i :=1 to 3do
begin

outdeglist[tmpnum[i]1
outdeglist[tmpnumlli]] - 2;

for j :=Ito 3 do
matrix[tmpnum[i], tnipnumUl: 0;

end;
filltmpnumn (outdeglist, tmpnum);
numedges :=5;
fivevert (outclique, maxclique, tmpnuni, numnedges,

matrix, maxcliquefile);
end

else begin

ECC(G) = 6

twovert (outclique, maxclique, tmpnum, maxcliquefile);
for i := 1 to 2 do
outdeglist[tnipnum[i]l

outdeglist[tmf, aili] - 1;
matrix[tmpnumn[I], tmpnum[2]I :=0;
matrix [tmpnum[2], tmpnum[11] := 0;
nurnedges := 7;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end;

end;
end;

end
else begin
node: 0;
matched: false;
findnode (outdeglist, node, degfive, matched);
if (matched = true)

81



then begin

ECC(G) = 3

tmpnum[11: node;
node :=0-
matched := false;
findnode (outdeglist, node, degthre, matched);
tmpnum[21 : node;
findatri (tmpnum, matrix, outclique, maxchique, success,

maxcliquefile);
outdeglist[tmpnumI3II: 0;
for i :=I to 2do

outdeglist[tinpnum[il
outdeglist[tmpnum[i]] - 1;

matrix[tmpnum[l,tmpnum[311 : 0;
matrix[tmpnum[2],tmpnum[31] : 0;
findatri (tnlpnum, matrix, outclique, rnaxclique, success,

niaxcliquefile);
for i :=2 to 3 do

outdeglist~tmpnumtill := 0;
filltmpnum (outdeglist, tmpnum);
nuniedges :=3;
threevert (outclique, maxclique, tmpnumn, numedges,

maxcliquefile);
end

else begin
node: 0;
matched := false;
findnode (outdeglist, node, degtwo, matched);
findadjnode (node, matrix, tmpnurm);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxcliquefile);
if (success = true)
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then begin

for i := I to 3 do EC()=
begin

outdeglistttmpnumfi]]
outdeglist[tmpnum[i]] - 2;

forj := I to 3 do
matrix[trnpnuin[i], tilpnumU]1 : 0;

end;
numedges := 5;
fivevert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end

else begin

ECC(G) = 5 ECC(G) = 6 ECC(G) = 6 ECC(G) =8

findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tnipnum, maxcliquefile);
matrix[tmpnum[i1], tmpnum[2]] := 0;
matrix[tmpnum[2], tnipnum[I]:= 0;
numedges : = 7;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end;

end;
end;

end; (else)
end; (8)

9: begin
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findnode (outdeglist, node, degone, matched);

ECC(G) 3

ECC(G) 5

if (matched = true)
then begin

tmnpnum[ II := node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
mnatrix[tmpnum[ 2 1, tmpnumli1]] :=0;
numnedges := 8;
fivevert (outclique, maxclique, tmnpnum, numnedges,

matrix, maxcliquefile);
end

else begin
node: 0;
matched := false;
findnode (outdeglist, node, degtwo, matched);
if (matched = true)

then begin
findadjnode (node, matrix, tmpnum);
findatri ( trpnum, matrix, outclique, maxclique,

success, maxcliquefile);
if (success = true)

then begin

ECC(G) = 2

if (outdeglist[tmpnun[21] = degtwo) or
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(outdeglist[tnpnum[3]J = degtwo)
then begin

outdeglist[tmpnum[ I]]: 0;
if (outdeglistltmpnum[2]] degtwo)

then begin
outdeglist[tmpnum[2]] 0;
niatrix[tmpnuxn[3], tinpnum[2]] : 0;
matrix[tMpnum[31, tnipnun41J := 0;
outdeglist[tnipnuni(3]] :

outdeglist~tinpnum[31] - 2;
end

else begin
outdeglistltmpnum[3]J : 0;
mnati-ixlltrpnum[2], tnipnum[3]] 0;
matrix Ftmpnum[2], tnipnum[1]Jl 0;
outdeglistftmpnum[2]] :

outdeglistftmpnum[2]] - 2;
end;
filhnipnum (outdeglist, tmpnum);
nuniedges :=6;
fourvert (outclique, maxclique, tmpnum,

numedges, maxcliquefile);
end

else begin

ECC(G) =4 ECC(G) = 5 ECC(G) = 5 ECC(G) 5

ECC(G) = 4 ECC(G) = 4 ECC(G) = 4
matched :=false;
findnode (outdeglist, node, degtwo, matchdJ);
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if (matched = true)
then begin

outdeglistjtmpnumlj 1]] := 0;
for i=2 to 3 do

outdeglist[tmnpnumfifl
outdeglist[tmpnumtli]] - 1;

matrix[tmpnum[21, tinpnum[ Il]: 0;
matrix[tnipnun[31, tmpnum[If 0;
numedges := 7;
fivevert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end

else begin

ECC(G) = 4
for i 1= to 3 do

begin
outdeghistltmpnumlli]]

outdeglist[tmpnum[iI] - 2;
for j i=1to 3 do

mnatrix [tmpnumfil,tmpn umUll: 0;
end;

numedges := 6;
fivevert. (outclique, maxelique, tmpnum, numedges,

matrix, maxcliquefile);
end;

end;
end
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else begin

ECC(G) = 4 ECC (G) = 5 ECC(G) = 6 ECC(G) =6

twovert (outclique, maxclique, tmpnun, maxcliquefile);
for i := 1 to 2 do

outdeglist[tmpnum[i]]
outdeglist[tmpnum[i]I - 1;

matrix[tmpnum[I, tmpnum[21]]: 0;
matrix[tmpnum[2], tmpnum[llll: 0;
numedges : = 8;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end;

end
else begin

ECC(G) = 5

node := 1;
findadjnode (node, matrix, tmpnum);
findatri (tmpnum, matrix, outclique, maxelique, success,

maxcliquefile);
if (success = true)

then begin
for i := 1 to 3 do

begin
outdegiist[tmpnum[i]I

outdeglist[tmpnumfilI - 2;
for j := I to 3 do
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niatrix[tnipnum[i], zrnpnurnojJ := 0;
end;

numedges :=6;
sixvert (outclique, maxclique, tmpnuni, numedges,

matrix, maxcliquefile);
end

else begin
twovert (outclique, maxclique, unpnum, maxcdiquefile);
for i := 1 to 2 do
outdeglist[tmpnum[iJ]

outdeglistltmpnum[i]] - 1;
matrix[tmpnum[ 1], tmpnura[2]] 0;
matrixltmpnum[2], tmnpnum(l]) : 0;
numnedges := 8;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, niaxcliquefile);
end;

end;
end;

end; (9)

10: begin

ECC(G) = 3

findnode (outdeglist, node, degone, matched);
if (matched = true)

then begin
tmpnum[1 I= node;
findpair ( outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
matrix[tmpnum[2), tmpnum[ I]I := 0;
numedges := 9;
fivevert (outclique, maxclique, tnipnum, numedges,

matrix, maxcliquefile);
end

else begin
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node: 0;
matched :=false;
findnode (outdeglist, node, degtwo, matched);
if (matched = true)

then begin
findadjnode (node, matrix, tmpnum);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxciquefile);
if (success = true)

then begin

ECC(G) = 5 ECC(G) =S ECC(G) =3

ECC(G) = 3 ECC(G) = 3 ECC(G) =3

outdeglist[tmpnum[l]]l :=0;
for i := 2 to 3 do

outdeglist[tmpnum[iI]
outdeglist[tmpnum[iII - 1;

matrix[tmnpnum[2], tmpnum[ III : 0;
matrix[tmpnum[3], tmpnum[ If: 0;
numedges := 8;
fivevert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end
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else begin

ECC(G) = 4 ECC(G) = 4 ECC(G) =4

ECC(G) = 5 ECC(G) = 6

twovert (outclique, maxclique, tmpnum, maxcliquefile);
fori: I1 to 2do

outdeglistlltnpnum[i]
outdeglist[tmpnumlli]] - 1;

matrix[tmpnum[ 1], tmpnum[211 : 0;
matrix[tmpnumll2], tmpnum 1J] =0;
nuniedges := 9;
sixvert (outclique, maxclique, tnipnum, numedges,

matrix, maxcliquefile);
end; (success)

end
else begin

node := 0;
matched := false;
findnode (outdeglist, node, degfive, matched);
if (matched = true)
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then begin

ECC(G) = 5

counter: degfive;
findadjnode (node, matrix, tmpnum);
repeat

findatri (tmpnum, matrix, outclique, maxclique,
success, maxcliquefile);

if (success = true)
then begin
matrixftmpnum[2J, tmpnum[31] 0;
matrix[tmpnum[3], tmnpnum[2]] 0;
if (counter < degfive)

then begin
matrixitmnpnum[IL tmpnum[2]] : 0;
tnipnum[2) : tmpnum[3];

end;
counter := counter - 1;

end;
until (counter =0);

end
else begin
node: 0;
matched :=false;
findnode (outdeglist, node, degthree, matched);
tmpnum[ I : node;
adjacent :=false;
repeat
matched: false;
findnode (outdeglist, node, dtgthree, matched);
if (matched = true)

then begin
if (matrixtmpnum[lI, node] = 1)

then begin
adjacent :=true;
tmnpnum[2] : node;

end;
end;
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until (adjacent = true);
findatri (tmpnuxn, matrix, outdique, maxclique,

success, niaxcliquefile);
if (success = true)

then begin

ECC(G) = 4

outdeglist[tmpnuinl31I := outdeglistttmpnum[311 - 2;
for i :=I to 2do

outdeglist[unpniumfi]] := outdeglistltmpnurnfifl - 1;
niatrix[tmpnum[3], tnipnum[1I]] := 0;
matnix[tmpnum[3], tmpnum[2]] :=0;
matrix[tnipnum[ 11, trnpnuml3]I =0;
matrix[tmpnum[2], trnpnuml3]: 0;
numedges := 8;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, niaxcliquefile);
end

else begin

ECC(G) = 6

twovert (outclique, niaxclique, tmpnuni, maxcliquefile);
matrix[uninui[1I], tmpnum[2ll =0;
matrixlltnpnum[2), tnipnum[1] := 0;
for i := I to 2 do

outdeglistltmpnum[iII := outdeglisttltmpnum[iII - 1;
numedges :=9;
sixvert (outclique, niaxclique, tmpnum, numnedges,

matrix, maxcliquefile);
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end;
end;

end;
end;

end; 110)

I I.begin

if.
ECC(G) 2

findnode (outdeglist, node, degone, matched);
if (matched true)
then begin

unpnum[1 node;
findpair (outdeglist, tmpnum, matrix, node);
twovert (outclique, maxclique, tmpnum, maxcliquefile);
matrixlltmpnum[2], tmpnum[ I]]: 0;
filltmpnurn (outdeglist, tmpnum);
numedges: 10;
fivevert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end

else begin
node: 0;
matched :=false;
findnode (outdeglist, node, degtwo, matched);
if (matched = true)

then begin
findadjnode (node, matrix, tmpnum);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxcliquefile);
if (success = true)
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then begin

ECC(G) = 3 ECC(G) =3 ECC(G) =3

ECC(G) = 3 ECC(G) = 3

outdeglistlltmpnum[l]] :=0;
for i := 2 to 3 do

outdeglist[tmpnumfil
outdeglist[tmpnum[i]] - 1;

niatrixltmpnum[2], tmpnum[I := 0;
matrixlltmpnum[3], trnpnum[ll =0;
numedges :=9;
fivevert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end

else begin

ECC(G) = 4

twovert (outclique, maxclique, tmpnum, maxcliquefile);
fori :=1I to 2do

outdeglistftmpnum[ill
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outdeglistlltmpnuin[i]] - 1;
marix[tmpnum[ I], tmpnuzn[2]] 0;
matrix[hnipnum[21, trnpnum[l]Il 0;
numedges: 10;
sixvert (outclique, maxclique, tmPnum, numedges,

matrix, maxciquefile);
end; ( success)

end
else begin
node: 0;
matched: false;
findnode (outdeglist, node, degfive, matched);
if (matched = true)

then begin
trnpnum[l] :=node;
node: 0;
matched :=false;
findnode (outdeglist, node, degfour, matched);
if (matched = true)
then begin

ECC(G) = 4

trnpnum[2] : node;
matched := false;
findnode (outdeglist, node, degfour, matched);
tinpnumll3] := node;
counter := 1;
adjacent := false;
repeat
if (matrix[tmpnum[l], counter] = 1) and

(matrixlltmpnum[2], counter] = 1) and
(matrixltmpnum[3], counter] = 1)

then begin
adjacent := true;
tmpnuni[4] := counter;
numedges := 6;
fourvert (outclique, maxclique, tmpnum,
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numedges, maxcliquefile);
outdeglist[tmpnumlj41] 0;
outdeglist[tmpnum[ I]]

outdeglist[tmpnumlll]] - 1;
forj :=2 to 3 do

outdeglist[umpnum]
outdeglist[tmpnumUj~l - 2;

for i := 2to 3do
forj := 2to 4do

matrix[tmpnum[iI,tmpnum[j]] : 0;
matrix[tmpnum[ 1],tmnpnum[4]J : 0;
numedges, :=7;
fivevert (outclique, maxclique, tmpnum,

numedges, matrix, maxcliquefile);
end;

counter: counter + 1;
until (adjacent = true);

end
else begin

ECC(G) = 2

node: tmnpnum[ I];
matched: false;
findnode (outdeglist, node, degfive, matched);
tmnpnum[1 := node;
node := 0;
matched :=false;
findnode (outdeglist, node, degthree, matched);
tmpnum[3l : node;
counter:1;
adjacent := false;
repeat

if (matrixltrnpnumnlll, counter] = 1) and
(matrixlltipnum 12, counter] = 1) and
(matrixlltmpnum[3], counter] = 1)

then begin
adjacent :=true;
tmnpnumll4] :=counter;
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numnedges 6
fourvert (outclique, maxclique, tlnpnum,

numedges, niaxcliquefile);
for i 1= to 2do

outdeglist[trnpnum[i]]
outdeglist[tmpnum[i]] - 2;

for i := 3to 4do
outdeglist[tmpnum[iI]]: 0;

end;
counter: counter + 1;

until (adjacent = true);
filltmpnumn (outdeglist, tnpun);
numedges: 6;
fourvert (outclique, maxclique, tmpnum, numedges,

maxcliquefile);
end;

end
else begin

node: 0;
matched := false;
findnode (outdeglist, node, degthree, matched);
tmpnum[ I] :=node;
matched: false;
findnode (outdeglist, node, degthree, matched);
tmpnum[2] :=node;
if (matrix [tmpnum[1I]. tmpnum[2]] = 1)

then begin

ECC(G) = 4

twovert (outclique, maxclique, tmpnum, maxcliquefile);
matrixlltmpnum[ I], trnpnum[2]] : 0;
matrixftmpnum[21, trnpnum[I]]:= 0;
for i := 1 to 2 do
outdeglist[tmpnum[i]I := outdeglist[tmpnum[i]] - 1;

numedges: 10;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end
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else begin

ECC(G) = 6

temp: tmpnum[l];
findadjnode (node, matrix, tmpnuxn);
findatri (tmpnum, matrix, outclique, maxclique,

success, maxcliquefile);
if (matrixltrnpnum[2],tmpnum[templl = 1)

then begin
for i := 1 to 2do

outdeglistlltmpnum[iII
outdeglist[tmpnum~i]l - 1;

matrixtmpnum[ 1], tmpnuml21] 0;
matrixlitmpnum[2], tmpnum[ 1]] 0;

end
else begin

outdeglistftmpnuml 1]]
outdeglist[tmpnuml]] - 1;

outdeglistjtmpnum[31]]:
outdeglist[tmpnumnt311 - 1;

matrix[tmnpnum[ I], tmpnum[311 := 0;
matrixlltinpnum[31, tmpnum[l11]: 0;

end;
numedges := 10;
sixvert (outclique, maxclique, tmpnum, numedges,

matrix, maxcliquefile);
end;

end;
end;

end;
end; (11)

12: begin
writein (cliquefile);
write (cliquefile, ' This program cannot detect the maximal')
writein (cliquefile, 'clique covering for a net')
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writeln (cliquefile, ' of six stations with twelve edges.');
end; (12)

13 begin
writeln (cliquefile);
write (cliquefile, ' This program cannot detect the maximal ');
writeln (cliquefile, 'clique covering for a net ');
writeln (cliquefile, 'of six stations with thirteen edges.');

end; ( 13)

14: begin
writeln (cfiquefile);
write (cliquefile, ' This program cannot detect the maximal ');
writeln (cliquefile, 'clique covering for a net ');
writeln (cliquefile, ' of six stations with fourteen edges.');

end; ( 14

15 : begin

ECC(G) = 1

for i := 1 to curvertices do
maxclique[i] := vertexname[tmpnum[i]];

writeclique (maxclique, curvertices, outclique, maxcliquefile);
outclique := outclique + 1;

end; (15)
end; (case)

end; ( sixvert)

begin (findclique)
for i := 1 to avertex do (puts node numbers in an array

tmpnum[i] := i;
detdegrees (matrix, outdeglist, tmpnum, avertex);
outcique := 1; (row number to hold found cliques
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(The following will initialize the list that will hold the maxcliques)
Ifound in the program by first filling the array with blanks.

for i := 1 to avertex do
maxcliquel := blank;

case avertex of
1 : begin

maxclique[ I vertexname[umpnum[ I f;
writeclique (maxclique, avertex, outclique, cliquefile);

end;

2: twovert (outclique, maxclique, trnpnum. cliquefile);

3: threevert (outelique, maxclique, tmpnium, numedges, ciquefle);

4 : fourvei-t (outclique, maxclique, tmpnum, numedges, cliquefile);

5 : fivevert (outclique, maxclique, tmpnum, numedges, matrix,
cliquefile);

6 : sixvert (outclique, maxclique, trnpnum, numedges, matrix, cliquefile);
end;

end; (findclique

begin (main body clique)
i := 0(Initialize the parameter counter

(The following for loop reads in the user's
(Input and output file names

for i := 1 to paramcount do
nextparam := paramstr(i);

if (i = 0)
then writein ('Must enter an input filename to execute CLIQUE.')

else begin
(Assigns the output file to a variable name
(And opens the file for output

assign (cliquefile, paramstr(2));
rewrite (cliquefile);

I(Assigns the input file to a variable name
assign (matrixfile, paramstr(1));
($1-)
reset (matrixfile); (Opens the file for reading from
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{$I+)

( Checks to make sure the input file exists )
if (ioresult = 0)

then begin
notvalid := false;
graphnumber:= 1; ( Numbers graphs from input file sequentially )
writeln (cliquefile);
writeln (cliquefile, blank:20, 'The input filename is: ',paramstr(1), '.');
writeln (cliquefile);

{Loop until all the matrices in the input )
(File have been calculated or an invalid )
(Input character exists in the file

while not eof (matrixfile) and (notvalid = false) do
begin

vertex := 0;
readin (matrixfile, totnumvertices);
readIn (matrixfile);
val (totnumvertices, vertex, notvertex); { Must be an integer
if (vertex <= matrixsize) and (vertex > 0) (Vertices must be 1-6

then begin
if (notvertex = 0) and (vertex <= matrixsize)
then begin

for i := 1 to vertex do
begin

readIn (matrixfile, namestring); (Read in vertex names
vertexname[i] := namestring;

end;
end;

readln (matrixfile);
makematrix (vertex, matrix, notvalid, edgenum, cliquefile, matrixfile);
graphnumber := graphnumber + 1;
if (notvalid = false)

then begin
readln (matrixfile); (So can start at next matrix
writeln (cliquefile, 'The maximal cliq-'es, K, are: ');
findclique (vertex, edgenum, matrix, cliquefile);

end
end

else begin
notvalid := true;
writeln (cliquefile);
writeln (cliquefile);
write (cliquefile, 'Must enter a valid integer ');
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writein (cliquefile, 'less than or equal to 'matrixsize,'.)
end;

end; (while)
close (matrixflle);
close (cliquefile);
end

else begin
assign (cliquefile, paramstr(2));
rewrite (cliquefile);
writein (cliquefile, 'Cannot find the input file ,paramstr(1),'.)
close (cliquefile);

end;
end; (else)

end. ( main body clique)
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INCLUDE FILE NAME: matrinc.pas

REFERENCED BY : clique

PURPOSE : To read in the adjacency matrix of a particular
graph and output the matrix to a file.

[The following are the global structures referenced }
(In PROGRAM CLIQUE }

const
blank ='';
matrixsize = 6; ( Maximum vertices graph may have }
namelength = 10; ( Maximum chars for nodal names }

type
subscript = 1 .. matrixsize;
column = array [subscript] of integer;
matrixtype = array [subscript] of column; (Data structure holds matrix
nametype = array [subscript] of string; (Data structure holds names }

var
vertexname : nametype; (All vertices names for a graph }
matrix : matrixtype; (The adjacency matrix }
namestring : string[namelength]; (References one node's name }
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FUNCTION : spaces

CALLED BY : leftalign

PURPOSE Adds spaces to the string name given by the user in order
to square off the output matrix.

REFERENCE: [Ref. 10:p. 223]

function spaces ( spacestoadd: integer): string;

var
i : integer;
tempspace : string;

begin { spaces )
tempspace := blank;
for i := 1 to spacestoadd do

tempspace := tempspace + blank;
spaces := tempspace;

end; [ spaces)
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FUNCTION : leftalign

CALLED BY : makematrix

PURPOSE : Left justifies a string. In this program the strings are
node names from the input file.

REFERENCE : [Ref. 10:p. 223]

************************************************************* }

function leftalign ( namestring: string ): string;

var
spacestoadd : integer,

begin ( leftalign )
spacestoadd := namelength - length (namestring);
leftalign := namestring + spaces (spacestoadd);

end; { leftalign }
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PROCEDURE : makenatrix

CALLED BY : clique main program

CALLS : leftalign

PURPOSE Reads an input file matrix and outputs the results to a
file. Done prior to maximal clique calculations, with
valid input. Checks for isolated vertices and vertex loops.

procedure makematrix (var vertex: integer, var matrix: matrixtype;
var notvalid: boolean; var edgectr integer;
var cliquefile: text; var matrixfile: text;
var matrixnumber: integer);

var
isdigit boolean; (Ensures entry of "1" or "0" in matrix }
inedge char, (Edge read in from input matrix }
row, (Row of the matrix from input file }
column, (Column of the matrix from input file )
edge, (Edge - either a zero or a one }
zeroctr, ( Checks for a row of all zeros -a

(A disconnected vertex }
i, j : integer; (Incremental counters }

begin J makematrix)
row:= 1; (First vertex... }
edgectr := 0; (Initialize edge counter for # of vertices }
inedge :=''; (Initialize input edge character to blank }
edge := 0; (Initalize edge input }
while (row <= vertex) and (notvalid = false) do

(Loops until every vertice and its corresponding edges )
(Are read in. Checks for illegal characters (not a 0 orl)

begin
zeroctr := 0; (Initialize disconnected vertex counter
for column := 1 to vertex do

begin
isdigit := false; (Initialize character check boolean
repeat
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read (nmatrixfile, edge); ( Loops while reading blanks spaces)
until (inedge <> ' ');
if (inedge in ['0'.. '1']) ( Valid matrix entry)

then isdigit :=true;
if (isdigit =false) ( NOT avalid entry -in input file

then begin
notvalid :=true;
writein (cliquefile);
writein (cliquefile);
write (cliquefile, 'In net 'matrimcumber);
writein (cliquefile, ', to represent an edge:
write (cliquefile, ' Enter a "I" ');
writeln (cliquefile, 'or a "0" followed by a blank space.');
writeln (ciquefile);
write (cliquefile, 'Tere is an illegal character at')
write (cliquefile, 'matrix position row 'row,'')
writein (cliquefile, 'column ', column,'')
writein (cliquefile);

end
else begin
edge: ord (inedge) - ord ('0');
matrix[row, column] :=edge; ( Reads in an input edge )
if (edge = 1) ( Counts node connections

then zeroctr := zeroctr + 1;
end;

end;
for i :=row to vertex do
edgectr := edgectr + matrix[row,iI; (Counts edges in graph

if (zeroctr = 0) (Node is not connected
then begin

notvalid := true;
writeln (cliquefile);
writeln (cliquefile);
write (cliquefile, 'in net ', matrixnumber);
write (cliquefile, ', station ', vertexname[rowj, ' must be')
writeln (cliquefile, 'connected to at least one other station.');
write (cliquefile, 'Such an edge must be indicated by a ');
writeln (cliqueflle, "'" in the input matrix.');

end;
row := row + 1; (Goes to next vertice
readin (matrixfile);

end;
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if (notvalid = false) (If valid graph input)
then begin (Check the diagonal for a )
j :=0; (Vertice with an edge to )
for i:= Ito vertex do (To itself)

begin
j:=j +1;
if (matrixlliji <> 0)

then begin
notvalid :=true;
writein (cliquefile);
writein (cliquefile);
write (cliquefile, 'In net 'matrixnumber);
write (cliquetile, ', position ', i, ' for ');
writein (cliquefile, vertexname[i], ' is not valid.');
writein (cliquefile, 'The entry on a diagonal must be a "0".');
writein (cliquefile);

end;
end;

end;

if (notvalid = false) ( If input is still valid then write matrix to)
then begin ( A file and return to MAIN to calculate the)

writein (cliquefile); ( Maximal cliques for the input graph
writein (cliquefile);
write (cliquefile, 'The maximal cliques for net ', matrixnumber);
writeln (cliquefile, ' will be determined for ', vertex:l,' stations.');
writeln (cliquefile);
write (cliquefile, blank: 11);
for i : = I to vertex do

write (cliquefile, leftalign(vertexname[i]));
writeln (cliquefile);
for i 1= to vertex do

begin
write (cliquefile, leftalign(vertexnanielil));
for j : = I to vertex do

write (cliquefile, blank:2, matrix[i, j], blank:8);
writeln (cliquefile);

end;
writeln (cliquefile);

writeln (cliquefile);
end;

end; J inakemnatrix)
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INCLUDE FILE NAME: writinc.pas

REFERENCED BY : clique

PROCEDURE : writeclique

CALLED BY : findclique
twovert
threevert
fourvert
fivevert
sixvert

PURPOSE To write the found maximum clique to the user's
output file. The cliques are determined in the
main program.

procedure writeclique (var maxclique: nametype; totsize, numcliques:
integer, var maxcliquefile: text);

var
j : integer; { Incremental counter

begin ( writeclique)
writeln (maxcliquefile);
write (maxcliquefile, blank:5, numcliques, '= { ');

(While there are vertices in the clique)
(Number of vertices in clique = totsize)

while (maxclique]j] <> blank) and (j <= totsize) do
begin

write (maxcliquefile, maxclique[j], blank:2);
j:=j +;

end;
write (maxcliquefile, '}');
writeln (maxcliquefile);
forj := I to totsize do

maxcliqueo] := blank;
end; ( writeclique }
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APPENDIX B

CLIQUE USER'S GUIDE

A. OVERVIEW

CLIQUE is a stand-alone, IBM-compatible, executable program. Given the

adjacency matrix representation of possible transmission conflicts (conflicts are

characterized by the user) in a communications net, it will produce a listing of

maximal (k-order) cliques, representing communications subnets with a common

conflict (k represents the number of stations in a complete subnet K of the original

net). Any text editor may be used to create an input file of the conflict

representation. Using the input and a user's named output file, CLIQUE will then

detect and record as cliques the maximum number of stations, per net, in radio-

transmission conflict.

B. FEATURES OF CLIQUE

CLIQUE detects all maximal cliques (subnets) or determines that the primary net

itself is maximal. Each primary net or subnet may consist of no more than six

stations. Currently, a net may not consist of twelve, thirteen, or fourteen

transmission "conflicts" between six stations. A transmission is defined as the

ability of one station to transmit to a second station's receiver and for the second

station to have the ability to transmit back to the first station's receiver. If two

stations may also transmit to the same third station, a possible conflict exists and the

conflict is modeled as an edge between the first two stations in the net conflict graph.
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Transmission conflicts within a net are limited to one if the net has two stations and

fifteen if the net has six stations.

C. CREATING A CLIQUE INPUT FILE

1. What is an Input File?

An input file can be written using any IBM-compatible text editor. Simply

create a file as you would for any high-level-language program. Characteristics of the

filename and filename extension you select are dependent upon your particular

operating system. (See your operating system's reference manual for details.) The

input each graph consists of three sections which will be explained in detail in the

following paragraphs. Figure 14 represents oi. -- communication net's conflict graph

and the beginning of a second net. A file containing a single net will use a maximum

of 160 bytes. The actual file may contain as many nets as your text editor will allow

in one file.

2. Number of Stations

The first line of the file should contain an integer from one to six which

represents the number of stations in the net. Any other input will be considered an

error. Enter a carriage return, leaving a blank line following the number of stations,

before entering the station name as described next.

3. Station Names

Enter the name of each station in the net on separate lines. The number of

names should correspond to the number of stations you entered above or an error will

occur. The station names in the input file are limited only by the number of characters

allowed on a line in your text editor. However, just the first ten characters of each

station's name will be printed in the output file. The names may consist of any

keyboard letter, number or special character. It is left up to the user to choose a

IIl



unique name for each station. The clique output may be confusing if the user does not

somehow distinguish a station's name. Enter a carriage return, leaving a blank line,

before entering the adjacency matrix as described next.

6

Denver
Toronto
Seattle
Orlando
Salinas
New Orleans

011111
101111
110111
111011
111101
11 1110

3

Honolulu...

Figure 14 Input File to CLIQUE

4. Station Conflict Representation

In the graph modeling of a communication's net, vertices represent the

stations and edges represent the conflict between stations. CLIQUE requires that an

edge be represented as a "1" (one) and the absence of an edge be represented as a

"0" (zero). To better visualize the net, we will put the stations into a matrix format.

Thus each station will be both a row and a column header. Placing a "1" in the column

under station two on station one's row indicates that station one and station two

have a conflict. The matrix must be symmetrical. In other words, a "1" must also be

in the column under station one on station two's row. An inaccurate detection of
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cliques may occur if the matrix is not symmetrical. A quick check to ensure symmetry

involves adding the one's across a station's row and then adding the one's down a

station's column. They should be equal!

A station is not allowed to be in conflict with itself so you must enter a "0" in

the position intersecting a station's own row and column. This is easily checked by

verifying that the center diagonal in the matrix consists only of zeros.

You may leave as many blanks between entries as you desire but you should

leave at least one for ease of reading the matrix. Each station is limited to one line

(row) in the text file. You must enter a carriage return, leaving a blank line, at the

end of the completed matrix before starting a new graph or an error will occur.

D. EXECUTING CLIQUE

Ensure that the program, CLIQUE, and your "nput file have been loaded onto your

hard drive or are located in the proper floppy-disk drive. If located on your hard drive,

make sure you can access the program/file. Access is obtained within a directory or

via a path your system recognizes. The output file does not have to exist prior to

running CLIQUE. However, you must have enough memory to store the resulting

output file. The amount of memory required to store an output file should be

cumulative, estimating up to 900bytes per graph.

On the command line on your IBM-compatible computer, type the following

clique(space)inputfilename(space)outputfilename.

Typing "clique" executes the program. Do not type in the word "space". It is

merely a stroke of the space bar to separate the program and its parameters

(parameters are the input filename and output filename). The input filename and

output filename are per the instructions in Section C.1. If you do not type the

command line as specified, CLIQUE may not operate correctly.
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E. CLIQUE OUTPUT FILE FORMAT

An example of CLIQUE's output is in Figure 15. The output may be printed to the

screen or to a file.

The input filename is : matrix.txt

The maximal cliques for net 1 will be determined for 6
stations.

Denver Toronto Seattle Orlando Salinas Minneapoli
Denver 0 1 1 1 1 1
Toronto 1 0 1 1 1 0
Seattle 1 1 0 1 1 0
Orlando 1 1 1 0 1 0
Salinas 1 1 1 1 0 0
Minneapoli 1 0 0 0 0 0

The maximal cliques, K, are:

1 = { Minneapoli Denver }

2 = { Denver Toronto Seattle Orlando Salinas }

Figure 15 CLIQUE Output

1. Header

The header at the top of the file indicates the user's named input file. If an

input file is not found, CLIQUE will abort. Only one input file may be used at a time.
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2. Identifying the Graph

Each graph will be identified by a sequential number corresponding to its place

in the input file. The number of stations, the station names, and the matrix

representation will correspond to input file information. Any entries not meeting the

criteria of Section C above will create an error and cause CLIQUE to abort.

3. Maximal Cliques

The maximal cliques found in the current graph will be output sequentially

using mathematical set notation. For graphs consisting of six stations and twelve,

thirteen or fourteen edges, an appropriate message will be generated.

F. CLIQUE MESSAGES

1. General

If CLIQUE encounters errors, then error messages will be generated.

Messages will be output to the screen if an output filename is not supplied. CLIQUE

does not currently check for groups of stations which might not be connected to each

other. Nor does it check for matrix symmetry. In other words, the user must insure

that the entry for [rowi , columnj] is the same as the [rowj, columni] entry.

2. Error Messages and Their Explanations

* Must enter an input filename to execute CLIQUE.
* EXPLANATION : Must give an input filename parameter after invoking the

program CLIQUE, per Section D.

" Must enter a valid integer less than or equal to six.

" EXPLANATION : The total number of stations per net must be between
one and six. This is entered in the input file per Section C.2.

" Cannot find the input file -.
* EXPLANATION : You entered an input file on the command line which does

not exist or cannot be accessed by CLIQUE.
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* In net -, to represent an edge:

* Enter a "1" or a "0" followed by a blank space.

* There is an illegal character at matrix position row _ , column

• EXPLANATION : An illegal character is entered in the input file in the posi-
tion CLIQUE expects to be reading the net's adjacency matrix. Check Sec-
tion C for input file format.

" In net -, station - must be connected to at least one other station.

" Such an edge must be indicated by a "1" in the input matrix.

* EXPLANATION : The entry for the indicated station contains only zeros
which indicates an isolated station. Either remove the station from the net
or connect it to at least one other station.

" In net _ , position - for (station name) is not valid.

" The entry on a diagonal must be a "0".

• EXPLANATION : A station may not be in conflict with itself. The input file
must have a center diagonal containing only zeros in order to avoid a station
"looping" to itself.

• This program cannot detect the maximal cliques for a net of six stations
with edges.

* EXPLANATION : CLIQUE cannot currently detect cliques for a net of six
stations and twelve, thirteen or fourteen conflict edges.

3. Other Messages and Their Explanations

" The maximal cliques for net - will be determined for _ stations.

* EXPLANATION : Header which inserts a sequential number for the net in
the order it occurs in the input file and indicates the number of stations in the
current net.

* The maximal cliques, K, are:

* EXPLANATION : Lists the sets of cliques determined for the input net.

* The input filename is : _ .

" EXPLANATION : Header for the output which indicates the input file used.
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APPENDIX C

CLIQUES NOT IN THE PROGRAM

A. OVERVIEW

The following graphs are those which are not yet programmed in CLIQUE and

each has six vertices.

1. Conflict Graphs with Twelve Edges and Six Stations

ECC(G) =2 ECC(G) =2 ECC(G) =3

ECC(G) = 4 ECC(G) = 3 ECC(G) = 4 ECC(G) = 5
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2. Conflict Graphs with Thirteen Edges and Six Stations

ECC(G) = 2 ECC(G) = 4

3. Conflict Graph with Fourteen Edges and Six Stations

ECC(G) = 2

B. PROGRAMMING

The conflict graphs in Section A above should be programmed in Turbo Pascal and

inserted into procedure sixvert in order to be compatible with CLIQUE. The

programming of these ten graphs would complete the "brute-force" method of finding

the maximum number of maximal cliques in a graph of less than six vertices. There is

no guarantee that all possible graphs from one to six vertices have been found.

However, the program can be easisly modified to include such a graph if one is found.
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